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0. Introduction

Volumes of hyperbolic polytopes are of considerable interest in various branches of math-
ematics. In function theory, the classical polylogarithms Lig(z), defined by

Lij(2) = —log(l — z) and Lik(z)=fL‘tl(ﬂdt for k22 , zeC ,
0

are involved in volume computations, at least in low dimensions.

By the Rigidity Theorem of Mostow and Prasad, the volume of a hyperbolic n-manifold,
n > 3, is a topological invariant; the spectrum Vol, of such values is therefore an im-
portant object to study and manifests different behaviour with respect to the dimension
n. For n = 3, by work of Jgrgensen and Thurston, Volg is a non-discrete subset of Ry
whose order type and structure around limit points are well understood; much activity is
going on in search of the minimum in Volg (cf. [K2, 14.4.1]). For n # 3, the volume
spectra Vol, are discrete; for example, for n = 2m > 2, the Theorem of Gauss-Bonnet
says that the volume of a hyperbolic manifold is, up to constant depending only on m,
given by its Euler-Poincaré characteristic. A polytopal analogue is Schlifli’s Reduction
Principle expressing the volume of a (2m)-dimensional polytope in terms of the volumes
of certain lower- and odd-dimensional ones (cf. [S] and [K2, 14.2.2]).

Furthermore, there is also a strong number theoretical aspect. Volumes of hyperbolic
3-space forms defined arithmetically over an algebraic number field F' are related to
Dedekind’s zeta function (#(2). This in combination with Lobachevskij’s result expressing
volumes of three-dimensional hyperbolic simplices in terms of his (dilogarithmic) function
Jo(w) = — [ log|2sint|dt,w € R, (cf. [Lo], and see 2.2) was the initial motivation for
Zagier’s Conjecture about (g(m), m > 2, and certain modified polylogarithms. Although
Zagier’s Conjecture holds for m = 3, as was shown by Goncharov (see [C] for a survey
and an extensive list of references), it is unclear whether there is any connection between
Dedekind zeta functions at m = 3 and volumes of arithmetic hyperbolic 5-space forms.
First results about volumes in hyperbolic 5-space were obtained by Miiller [M] in 1954 and
by Bohm [B] in 1960. Using different approaches, their main result consists in showing
that the trilogarithm, as a function of a single variable, suffices to express volumes of
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hyperbolic five-dimensional polytopes. Both contributions, however, show some disadvan-
tages; Bohim’s result is not expressed in closed form, while Miiller’s work does not allow a
generalization to higher dimensions.

In this paper, we present a complete solution of the volume problem in hyperbolic 5-
space. We derive an explicit volume formula for generic simplices, that is, for doubly
asymptotic orthoschemes; the formula is expressed in terms of trilogarithmic functions in
the dihedral angles which allows both, evaluation in concrete cases and generalization to
higher dimensions.

An orthoscheme R in an n-dimensional space of constant curvature is a simplex bounded
by hyperplanes Hy,...,H, such that

H; 1 H; for [t —7]>1

It is, up to isometry, uniquely determined by its (at most n) non-right dihedral angles,
and it is very conveniently described by means of schemes or weighted graphs (see 1.1).
For hyperbolic orthoschemes R with vertices p; opposite to H;, 1 = 0,...,n, at most pg
and/or p, may be points at infinity. In such cases, R is called simply or doubly asymptotic.
Doubly asymptotic orthoschemes are characterized by many nice properties (see 1.2). For
example, they are parametrizable by n - 3 points on P;(R), and each doubly asymptotic
n-orthoscheme gives rise to a cycle of n 4+ 1 of such ones (see Proposition 1.3, 1.2); by
forming circular graphs out of them, they allow to construct new polytopes in higher
dimensional spaces (see Proposition 1.4, 1.2). For our purpose, one of the most important
properties is reflected by the result, due to Sah [Sa] and Debrunner [D] (we reproduce the
proof in 1.2), that every hyperbolic polytope of odd dimension can be equidissected into
doubly asymptotic orthoschemes; therefore, in hyperbolic 5-space, it suffices to solve the
volume problem for doubly asymptotic orthoschemes.

A fundamental tool for volume computations is Schlafli’s differential formula expressing the
volume differential of a simplex in terms of small angle perturbations. This beautiful result
(see Theorem 1, 2.1), combined with Lobachevskij’s volume formula for hyperbolic three-
dimensional orthoschemes, allows to tackle the remaining single integration in the case
of doubly asymptotic 5-orthoschemes. For this, we distinguish two cases. By expressing
the cycle property of a doubly asymptotic 5-orthoscheme I? in terms of its dihedral angles
ai = L(H;—1,H;), 1 <i<5, we obtain the relation

A= cotaptan oz = tan oy cot oy = cot az tanas

wherein the additional angle o can be seen as some angle in R.

The integration of the volume differential in the case A = 1 was already performed in [K3];
there, we make use only of the so-called Trilobachevskij function JI3(w) = % Re(Lis(e**)),
w € R (see Theorem 2, 2.3). With the aid of that result, all covolumes of hyperbolic
Coxeter groups with linear diagrams could be computed giving a first insight into Vol .

The case A # 1 is much more difficult; nevertheless, Theorem 3 of 2.3 provides a volume
formula for an arbitrary doubly asymptotic 5-orthoscheme in terms of trilogarithm func-
tions in complicated arguments related to its dihedral angles. It would be interesting to
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know whether the formula can be simplified in terms of Trilobachevskij functions. More-
over, by means of cutting and pasting, and after analytical continuation, Theorem 3 solves
also the volume problem for arbitrary non-Euclidean 5-polytopes, at least in principle. As
an application, Theorem 3 allows us to compute the volume of the totally asymptotic reg-
ular simplex in hyperbolic 5-space which maximizes all volumes of hyperbolic 5-simplices
(see Theorem 4, 2.4).

This work is organized as follows: In Chapter 1, we discuss the algebro-geometrical prop-
erties of doubly asymptotic orthoschemes making use of the language of weighted graphs.
Chapter 2 contains the analytical part with all volume computations. We conclude the
paper with two appendices; in Appendix A, we collect some useful determinant identities.
The first half of Appendix B contains a summary on polylogarithms, in particular, for
orders two and three. In the second half, we show how the characteristic volume integral
can be represented in terms of trilogarithmic functions.

Finally, I would like to thank Herbert Gangl for helpful discussions about trilogarithm
identities.

1. The geometry of polytopes in hyperbolic space

1.1. DESCRIPTION OF POLYTOPES IN SPACES OF CONSTANT CURVATURE

Let X" be either the sphere S*, Euclidean space E™, or hyperbolic space H* = H* UQH™
extended by the set 9H" of points at infinity. Represent them by their natural embedding
in Y"1, where Y"*! is E™*! or Minkowski space E™? of signature (n,1).

An n-dimensional convex polytope P C X" is the non-empty intersection of finitely
many closed half-spaces bounded by hyperplanes H; with outer unit normal vectors e; €
Yyr+l 4 eI, say. We always assume that P is indecomposable (i.e., {e;}ics does not split
into two mutually orthogonal subsets) and of finite volume.

To a polytope P C X" C Y"1 we can associate its Gram matrix G(P) = (< ei,€j >yn
)i,jer of the vectors {e;}ier . We assume from now on that P is acute-angled, which means,
by abuse of language, that all non-right dihedral angles «;; = £(H;, H;) are strictly less
than Z. Then P is determined by G(P) in the following way (cf. [V, §2]):

Proposition 1.1.

Let G = (gij) be an indecomposable symmetric m x m-matriz of rank n + 1 with g;; =1
and gi;; < 0 for i # j. Then G 1s the Gram G(P) of an acute-angled polytope P C X™ of
finite volume defined uniquely up to isometry. In particular,

(1) if G is positive definite (elliptic), then m = n + 1, and P is a simplez on the sphere
S”;

(2) if G i3 positive semidefinite (parabolic), then m = n + 2, and P is a simplez 1n Entl;
(3) if G is of signature (n,1) (hyperbolic), then P is a convez polytope i H™ with m
facets.

If P has many right dihedral angles, then P can be better visualized through its scheme
Y(P): In general, a scheme T is a weighted graph whose nodes 4,7 are either joined by
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an edge with positive weight w;;, or 7, 5 are disjoint with weight w;; = 0. The number |I|
of nodes is called the order of £. To every (connected) scheme X of order m corresponds
an (indecomposable) symmetric matrix A(Z) of order m with entries a;; = 1 and a;; =
—w;; <0 for : # 7. Rank, determinant and character of definiteness of ¥ are defined by
the corresponding data of A(X). In particular, ¥ is elliptic, or parabolic, or hyperbolic
if either all its components are elliptic, or — beside of elliptic ones - there is at least one
parabolic component, or precisely one component is hyperbolic.

The scheme £(P) of an acute-angled polytope P C X™ is the scheme whose matrix coin-
cides with the Gram matrix G(P): The nodes 7 correspond to the bounding hyperplanes
H; = e of P and the weights equal — < eiye; >yn+1,1,7 € I. L(P) describes P
uniquely up to isometry.

As for Coxeter polytopes in X" (all the dihedral angles look like %, peN,p>2) we
join two nodes related by the weight cosa (a = &%, p,q € N coprime with 1 < p < ¢)
by a (g — 2)-fold line for p =1, ¢ = 3,4, and by a single line marked o = % , otherwise. If
two bounding hyperplanes of P C X™, X™ #£ §", are parallel, their nodes are connected
by an edge marked oo; if they are divergent in hyperbolic space, we join them by a dotted
line discarding the weight > 1.

In the following we consider acute-angled polytopes in H”. Their geometry is particularly
rich since their Gram matrices can be of arbitrarily high order as long as the index of
inertia is one; moreover, depending on whether a vertex is an ordinary point, or a point at
infinity, or ultrainfinite (i.e., lying outside the cone in E™' defining hyperbolic space and
forcing its truncation to reach finite volume), the scheme of its vertex polytope is elliptic,
or parabolic, or hyperbolic, encoding therefore all three geometries of constant curvature
(cf. [V, §3]). For the purpose of volume computations, we restrict to appropriate families
of hyperbolic polytopes, to the ones represented by simplest schemes, which, as we shall
see, are simultaneously the most important ones.

1.2. DOUBLY ASYMPTOTIC ORTHOSCHEMES

The most basic and important family of polytopes are n-orthoschemes R C X7, that is,
simplices bounded by hyperplanes Hg,..., H, such that H; L H; for |i — 7| > 1; their
schemes T(R) are linear of order n + 1 with weights o; = £(Hi—,Hi),1 <i<n:

E(R) : Sl P L M

Denote by p; the vertex of R opposite to the facet H; N R. Its vertex polytope in R is the
simplex described by the subscheme of order n of L(R) arising by discarding the node ¢
together with the edges emanating from it. In hyperbolic space, among all vertices of R,

at most pp and p,, may be points at infinity (the only parabolic subschemes of £(R) may

be

(8 0] rp )

0 0—+-—0——""=—0 and o 0—:--—0 )

The vertices po,pn are called principal vertices of R, and if pg or/and p,, are at infinity, R
is said to be simply or doubly asymptotic. Notice that R C H" is always acute-angled.
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The notion of orthoschemes was introduced and systematically studied by Schlafli (cf.
[S]), however, in spherical space only. These stmplices are generalizations of right-angled
triangles and arise in a very natural manner out of general polytopes by successive dropping
of perpendiculars to lower dimensional faces.

This amounts to say that the scissors congruence groups P(X") (that is, the abelian
groups generated by [P] for each polytope P in X™ equipped with the relations (i) [PUQ] =
[P]+ {Q] (U denotes disjoint interior union) and (ii) [P] = [Q] for P isometric to Q) are
generated by the classes of orthoschemes.

In the hyperbolic case, there is an isomorphism between the groups P(H") and P(H")
for n > 0 (cf. [DSa, Theorem 2.1, p. 162]). Moreover, they are 2-divisible (cf. [Sa, p. 197])
which means that to each polytope P there exists a polytope @ such that [P] = 2(Q].
Another important property is the following (cf. [Sa, Prop. 3.7, p. 195], [D, Prop. 6.4, p.
142)):

Proposition 1.2.
For n > 1 odd, P(H™) is generated by the classes of doubly asymptotic orthoschemes.

Proof:

Let P € 'P(m) Then, by the 2-divisibility of P(H"), there exists a polytope @ such
that [P] = 2[Q], and [Q] can be written as algebraic sum of classes of orthoschemes.

We show that the class [R] of each orthoscheme R is equal to the algebraic sum of classes
of doubly asymptotic orthoschemes.

The first step is to represent [R] by simply asymptotic orthoschemes. The following
standard process supplies this representation (cf. [M, p. 9] and [BH, p. 191 ff]): Let
R = pg---p, be the convex hull of its vertices p; opposite to H; N R, 0 <7 < n. De-
note by p;po the ray through the edge pipo starting at p;, by go € JH" the intersection
point of p;py with the boundary of H" at infinity, and set g, := pg. Choose points ¢, 4
(indices modulo n + 1) on p;po such that the plane spanned by qo,...,¢n.—1 is orthog-
onal to the line through ¢,-1¢n In g,—1. Then, it is easy to check that the simplices
Si = qo: " qiPi+1° - Pn, 0 < 1 < n, are simply asymptotic orthoschemes which, on the
scissors congruence level, yield the equation

n

[R]=) (-1)'[S] - (1)

1=0

Notice that S,, = qo - gn, by construction, is the simply asymptotic orthoscheme having
the same (spherical) vertex figure at g, = po like R; therefore, S, is given by

B(S.) : o @z o——---—oioio , (2)
where the (elliptic) scheme o D2 o—i—0-2" 6 s also a subscheme of L(R), and
0 < 8 < § issuchthat o @3 o—--~—oﬁ-o—@—o is parabolic.

It remains to show that every simply asymptotic orthoscheme R can be written in terms
of doubly asymptotic ones. For this, we dissect R into asymptotic orthoschemes in two
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different ways. Let R = pg - p, with p, € 0H". Denote by qp the intersection point of
pop1 with OH™. Again, choose points ¢n+i (indices modulo n+1) on pgpi, 2 < i < n, such
that the hyperplane generated by go,...,qr-1 is orthogonal to popn, and put ¢, := po.
Then, the simplices T; 1= go - ¢ipi+1 ' Pn, 0 < 1 < n, are asymptotic orthoschemes.
In fact, apart from T, = qo- - ¢n which is simply asymptotic, Tp,...,T,—1 are doubly
asymptotic. Moreover, there is the following relation (cf. [D, Theorem, (i), p.127])

[Rl==) [T+ ) [T] , (3)

=0 t=p+1

where p=p(R), 0 < p < n -1, depends on the dihedral angles of R. For example, p =0
if the double of the dihedral angle of R, visible as planar angle of R at p; in the triangle
pop1p2, 1s still acute.

Notice that the simply asymptotic orthoschemes R and T, = qp:-- ¢, share the same
(spherical) vertex figure at po = ¢, implying E(T%,) = E(Sn) (see (2)).

Therefore, combining the two cutting and pasting procedures (1) and (3), we obtain for a
simply asymptotic orthoscheme R the relation

n

2R} =) (-1)'[Si| - Y [T]+ D, [T] (0<p<n—1) . 4)

i=0 1=0 i=p+1

On the right hand side, S, and T, are the only simply asymptotic orthoschemes; by the
above remarks, they are isometric to each other. Hence, for n odd, we obtain the relation

R =3 (-1 (s - ST+ Y. [T 0<psn-1) | )
i=0 i=0 i=p+1

The application of the cutting and pasting procedures (1) and (5) to the orthoschemes
dissecting the polytope [@] in [P] = 2[Q] implies that [P] can be represented as algebraic
sum of classes of doubly asymptotic orthoschemes. Q.E.D.

Doubly asymptotic orthoschemes R ¢ H" are represented by schemes

Z(R) : 0-M oo dn

with the parabolic subschemes

0 o oSl and 02 o—...—0—"p
Define the angle 0 < ap < § by the condition
cos? arg = det(o il o_..._oﬂi_o)/det(o X2 ..o Sn=2 o)
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using Pringsheim’s notation for continued fractions. This condition is, by (A1) of Appendix
A, equivalent to the parabolicity of o 0 _An-2

0—-+-— 0

Proposition 1.3.

The schemes ; : o i o—---—oM—'——]——-—o, 1 € Z modulo n+1, form a cycle of n+1

doubly asymptotic orthoschemes in H™ wherein two neighbours £; 5,4, have a principal
vertez in common. Moreover, detX; = detX; fori,7 € Z modulo n+1.

Proof:
We prove the periodicity of the weights, that means, @,+i+1 = «;, and the determinant
property for i = 3/ — 1 = 3" — 2 = 0, only.

Let 0 < apy1 < § be such that o o PP s I W parabolic. By (Al),
this means that
0052 Xpt1 Idet(o @3 0—:.:—Q Cn 0)/det(o oy O—ii—0 Qn—3 O)

We have to show that «,41 = «g. For this, look at the extended schemes

o o e o
Yo o2 g-"lo ol 5 7" 6 and

(a4 (87 x (8
E” © 0 1 o 2 0w v rirD n 0 n+1

whose determinants equal, by parabolicity,

184)]

det El = det EJ == d(’)t Eo = det (0
det &” = det £, = det Ty = det (o bt T SO &2 S o)

0_..._0%—-10)

bl

Therefore, detY = detX” = detZy = detZ, = detX; which implies that

detZ; = — cos® ag det(o 2 o_..._oa"—*lo)

a2 0—..._0%—_10)

= — cos? ant1 det{o

Hence, ap = an+1. Since all £;, ¢ € Z modulo n + 1, have (equal) negative determinant,
two parabolic subschemes of rank n — 1 and elliptic subschemes of order less or equal

to n, I; are of signature (n,1) and, being linear, describe therefore doubly asymptotic
n-orthoschemes. Q.E.D.

Remarks.

(1) The hyperbolic orthoscheme cycle of Proposition 1.3 is a by-product of Schlafli’s gener-
alization of Napier’s rule (embodied in the Pentagramma Mirificum of Gauss) for spherical
triangles (cf. [S, p. 259-260], [C1], [C2], [IH]):

Start with a spherical (n — 2)-orthoscheme o0—2-0----—o0 —In=1 4 bounded by
hyperplanes Hy,...,H,_1, say. Denote by py,...,pn—1 its vertices and by Hy, H, the
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polar hyperplanes of the principal vertices p;,pn—1. By polarity, the additional positive

weights are given by (use the linear dependence of Hy,..., Hpti-1, 7 modulo n + 1)
cos® ap = cos?(L(Hn_1, Hy)) =det(o ZZ 0—”'_02"—_]0) )
det(o 0— - —o0—272_ o)
oo = U o) =2
cos® a; = cos?(4(Ho, H)) =ZZ:EZ zz :::Z Z::: :;

Analogously to the two-dimensional case, and by induction, the angles a,, ag, o; can
easily be seen as edge lengths in the spherical orthoscheme

a3 On—1

0 0—++ ' —0————0

More precisely,

m
Q, = Z.(Hn_],Hn) = 5 - l(pn—z,Pn~1) )

Qp = L(Hn7H0) = Z(Pn—'l:pl) 1
23] ZL(HO,H]):g_l(pIaPQ) 3

where I(p;, p;) denotes the length of the edge pip;.

Finally, Hy,...,H, form a cycle wherein non-consecutive hyperplanes, by polarity, are
mutually perpendicular, and any consecutive set of n — 1 hyperplanes bound a spherical
(n — 2)-orthoscheme (for n = 4, this is Gauss’ Pentagramma Mirificum).

(11) Let X(R) : o M o—.-.—0-2" 5 be a doubly asymptotic n-orthoscheme.
Then, L(R) is (up to congruence) uniquely determined by n — 2 of its n dihedral angles
and can be parametrized through P;(R) in the following way (cf. [S, Nr. 27, p. 256ff],
[C2, 83]): Let ¢; :=cos?a;, 1 i <n—2.8et, fork=0,1,...,

2 det(owa_k.ﬂ_oh...__o__q_rﬁi-_k.:g.o)
Cn—14k = CO8" Ap—14+k = "
" " det(o —ZEtl ... o dntk=3 ) G
—1_ Cn—a4 L Cry1]
I 1

By Proposition 1.3, the sequence {c¢i}i>1 has period n + 1, that is, chq2 = ¢1. So, let
Zo,T1, T2 be three distinct points on P1(R) and choose n — 2 further points @3,...,Zn41
such that their cross-ratios give

i1 — T Ti-1 — Tih
{zi—1,T142; 2, T4 } = : =¢ , I=1,...,n—-2 . (8)
. Ti42 — 21 Ti42 — T4
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Combining some properties of cross-ratios one can check that

Cn—2| ¢
n—2Tn+1; - nf=1—- — - - —
{l‘ 2:Tn+1,Tn=-1,2 } 1| 1|
Hence, {zn—2,Zn41;%n-1,ZTn} = ca—1 (see (7)). Thefefore, by identifying zi4nt2 = @y,
(8) holds for all l = 1,...,n and we have a cycle of n 4 1 points on P;(R) parametrizing
the Napier cycle of Proposition 1.3.

Starting with a Napier cycle of doubly asymptotic orthoschemes in H™, we can con-
struct new families of polytopes in H'™t%  TLook at full periods of doubly asymptotic
orthoschemes in H2#*t1 n > 1, which split into identical halves (cf. S, No. 28, p. 261
ff]}; that is, their (extended) schemes (of order 2n + 3) are of the form

Tt 0-20 oo 5 F0 5 A o 69 5 guch that
07 AP B-SURp LAL J H( PARC.2 S L E S S ,
for 1 = 0,1, 2, are parabolic subschemes. By (A2), this means that
detL]- {‘clet"""‘“H — cos? apdetS} T} =
det(0—2% 0—. .. — 02222 o). {det(0—20—-.-—o—2=L o)~ (10)
—coszandet(o =l o—~--—o—gfi-"—2-——-o)} = (
Since Lf is elliptic, we obtain:
2 detSit!  detT - - detZpH!
Cos  an = n_1 n—1 n
detX] detE] ™" - detZj
_{1- cos? ap| o cos? ap— 1|} (- cos? oy 1| o c052a0|}
11 1 1 gt

and cyclic permutations of it. Apart from the n 4 1 (usually) different doubly asymptotic
(2n + 1)-orthoschemes £#"7% 0 < i < n, in the Napier cycle, we can construct the
following hyperbolic polytopes:

Proposition 1.4.

Let m,n € N such that (m,n) # (1,1). Suppose LZ*> to be as in (9), and denote by
Q™ the cyclic scheme of m repetitions of nopt? 00 602 o, Then, Q7 1s
hyperbolic and of finite volume for m = 1,2,4 and arbitrary n > 1. In particular,

(a) Q) describes a compact simples in H";

(b) Q2 describes a totally asymptotic simplez in H?"11;

(c) Q% describes a doubly truncated orthoscheme in HAn+1.

Proof:
First, we compute the determinants detQ] for m,n > 1, (m,n) # (1,1). By Lemma A,
Appendix A, we obtain
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0 for m=0(4) ;
detQ™ = _2ig0 cos™a; form=1,3(4) ;
T
—4 ] cos™a; for m = 2(4)
1=0

Ad (a): Suppose that n > 1. Since Q) is of order n + 1 and contains elliptic subschemes
of order n, detQ), < 0 implies that signQ}} = (n,1). Hence, by 1.1, Q} is a compact
hyperbolic n-simplex.

Ad (b): Q2 is of order 2(n + 1) with elliptic subschemes of order 2n. Again, detf)% < 0
guarantees that signQ? = (2n+-1,1). Therefore, Q2 yields a non-compact (2n +-1)-simplex
of finite volume all of whose vertices are at infinity.

Ad (c): Here, detQf =0 for n > 1. Q% is of order 4n + 4 and contains, by discarding any
two antipodal nodes, two (disjoint) parabolic subschemes of rank 2n, each; by discarding
two non-adjacent non-antipodal nodes in Q1 we are left with one hyperbolic and one
elliptic subscheme whose signatures add up to (4n + 1,1). Together with detf2? = 0 this
implies that sign% = (4n 4+ 1,1). It is easy to see that Q% is an orthoscheme in H4n+!
whose ultrainfinite principal vertices are cut off by means of their polar hyperplanes (cf.
(IH, 3., p. 530}; see also Remark (i)).

It remains to show that, for m =3 and m > 5, n > 1, Q7 cannot describe a hyperbolic
polytope of finite volume.

Let m = 3. Since Q3 is of order 3(n + 1), has negative determinant and contains elliptic
subschemes of order 3n + 1, we obtain signQ3 = (3n + 2,1). Therefore, Q2 is a (3n + 2)-
simplex containing an open subset of H3"+2; but it is of infinite volume since all its vertices
are ultrainfinite (described by hyperbolic subschemes of order 3n + 2).

For m > 5, Q7 is superhyperbolic, that means, of index of inertia bigger than one. To
prove this, we look first at the case m = 5. It is easy to see that Q5 contains the two
disjoint subschemes

o g (4] Op—1

o 0—++ '+ —0——0—"0—++—0——-—0 and

(4 8 84 (84
0 O—---—O—nO—OO—---—O L

e}

which are both hyperbolic of signature (2n + 1,1). Therefore, {23 contains a subscheme of
signature (4n + 2,2). The same reasoning works also for m > 5. Q.E.D.

1.3. THE TOTALLY ASYMPTOTIC REGULAR SIMPLEX

A regular simplex Sy.,(2¢) C H™,n > 2, with dihedral angles 2o satisfying % <
cos(2a) € -5 can be dissected into orthoschemes; by drawing perpendiculars starting
from its center or from a vertex, Syeq(2a) admits the subdivisions

[Sreg(20)] = (n 4+ 1)! [ong1 ] =n! [vn4a]
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where the simplices 0,41 and v,y are defined by the schemes

o

Op41 @ O—0—0—:++ —0—0—0 ;

2c a

Upnt1 © © 0—0—0—:++ —0—0—0
If S7,(2a) is the totally asymptotic regular n-simplex, that is, cos(2a) = ;1;7, then op4q
is simply asymptotic, and v,41 is doubly asymptotic. Put 2 +1 ‘= Vn41 and define, for
0 < <[22,

i ax 20 «
Vpgp 1 O—0— -+ —0—0 o o 0—0—:++ —0—0—0
0 1 n

Then, v}, = v;‘ﬂl_i , and there are the following identities:

i _(n+1 . n-—1
[Vn+1]—(i+1)[0'n+1] forz—O,l,...,[ 5 ]

These relations are consequences of different dissections of S,.q(2¢r) as Schlifli observed
for their spherical analogues (cf. [S, I, p. 271] and [D, (7.4), p. 147]). On the other hand,
in the hyperbolic totally asymptotic case, the dissecting doubly asymptotic orthoschemes
Vii1, 1=0,...,n—1, belong to a Napier cycle (see Proposition 1.3). For the remaining
Napier neighbor

n ) o4 a
Vp4y | ©O—O0—0—::: —0-—0—0 |,

however, it is an open problem whether there is a scissors congruence relation connecting
[vhyi) to [Whyq],i=0,...,n—1.
The regular simplex and its volume play an important role in many branches of math-

ematics. Its importance stems also from the extremality property that the volume of a
hyperbolic simplex is maximal if and only if it is regular and totally asymptotic (see 2.4).

2. Volumes of doubly asymptotic 5-orthoschemes

2.1. SCHLAFLI’S VOLUME DIFFERENTIAL FORMULA

Our aim is to derive an explicit formula for the volume of a generic hyperbolic 5-simplex.
For this, by means of Proposition 1.2, it is sufficient to consider doubly asymptotic or-
thoschemes. We shall make use of Schlafli’s formula expressing the volume differential of a

polytope in terms of infinitesimal angle perturbations. In its hyperbolic form, it says (cf.
K1, §2, p. 549]):

Theorem 1.

Let n > 2, and denote by TIT the set of all acute-angled hyperbolic n-polytopes P of
combinatorial type x, with dihedral angles o, j € J, attached at the codimension two
faces Fj of P. Then, the differential of vol, on II} can be represented by
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1

n—1

dvol,(P) =

Y voly_o(Fj)da; , volo(Fy)=1 . (11)

ieJ

That the congruence class of an acute-angled hyperbolic polytope is uniquely determined
by its dihedral angles was shown by Andreev (cf. [K1, §2, p. 549]) and follows from
Proposition 1.1. Hence, volume is expressible in terms of dihedral angles, and to achieve
this, by Theorem 1, we have to perform a single integration. Notice that, for n = 3, (11)
makes sense for families II7 of compact type, only.

2.2. THE THREE DIMENSIONAL CASE

In order to integrate Schlafli’s differential (11) on II2 | we have to express the volume

coeflicients in terms of dihedral angles. This can be achieved by means of Lobachevskij’s

formula for hyperbolic 3-orthoschemes (cf. [Lo]): Let R denote a hyperbolic 3-orthoscheme,
(431 Qg & &1

E(R) : o 0 o o

Since det 3(R) < 0, we obtain the realization condition cosaz > sincay sinag for R. It is
very convenient to introduce an additional angle 0 <6 < 7 defined by

ton? B | det Z(R) | cos? cey — sin’ oy sin? o
all = =
cos? oy cos? ag cos? ay cos? ay

!

the so-called principal parameter of R. In terms of the imaginary part of Euler’s Diloga-
rithm Lig(2) = %;— ,|z] £ 1,(see Appendix B1)

r=]

. i 1 < sin(2rw)
Im (Liz(e**)) = 3 > —a

=]

J.[Q(LU) =

N | =

Lobachevskij derived the formula

vol3(R) = i{-ﬂz(al + 8) — Jz(cy — ) +J12(g- + az — 8) +J12(12r_ —ag —6)+ 12)
+ Jy(cy +8) — Jp(as — 6) + zﬂg(g —6))

This volume formula for a hyperbolic 3-orthoscheme R = popipzps is invariant with
respect to polar truncation of an ultrainfinite principal vertex po or pg of R as long as the
line through its (longest) hypotenuse pops is hyperbolic; otherwise, (12) has to be slightly
modified (cf. [K1]).

By means of (12) and obvious dissections, we obtain further results. For example:
For a doubly asymptotic orthoscheme
a o« , 1

ER) : o 0 0 o , o&=——a volg(R)=§.]Iz(cr) . (13)
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Therefore, since P(Eg) 1s generated by doubly asymptotic orthoschemes, the Lobachevskij
function Jl;(w), w € R, is characterizable as hyperbolic 3-volume.

For a totally asymptotic simplex @ with scheme (@) = Q% (see Proposition 1.4):

2Q) - o o : volz(Q) = Ja(a) + J2(a’) . (14)

For a general totally asymptotic simplex (e, 3,v), e+ 3+~vy=7:

voly (5%(, 3, 7)) = Jho (@) + J12(8) + T (v) (15)
In particular, for the regular simplex S7%,(F ), we get vola(S2g () = 3JI2(5) ~ 1.0149.

2.3. THE VOLUME FORMULA
Let R C H® denote a doubly asymptotic orthoscheme represented by

a a a o o
Y(R) : o—Ll ot o2 o o D,

By Proposition 1.3, R =: R; is part of a 6-cycle of doubly asymptotic orthoschemes
Ri,1=0,...,5,

o o a; a; a; :
S(R;) : o—to-—Hl o T o T8 o i o, {€Z modulo 6

This cycle property can be put into the following analytical form (cf. also [K3, Lemma, p.
652]):

Proposition 2.1.
The Napier cycle of doubly asymptotic 5-orthoschemes R; with graphs
a;

o Qi o a; :
Y(R:) : o o—ttl o k2 o T3 o TiH ¢ € Z modulo 6

?

associated to R = R, satisfies the relation
cot agtanas = tan oy cot ay = cotag tanas = tan© (16)
where 0 < O < Z is the angle given by

|det S(R) |

tan® © = 3 = =
cos? (] COS® (3 COS® (v

Proof:
First, we remark that the parabolicity condition for R; yields
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det S(R;) = — cos® ar;—o det( 0 W i Zid o) , 1€ Z modulo6

Moreover, by Proposition 1.3, det Z(R;) = det Z(R;) for 7,7 € Z modulo 6, ¢ # j.
Therefore,

0= 92i+1 = =0n |, (17)

to| N

where 0 < 8; < 7 is defined by

det( o SLPOEL . WAL C o)

tan’6; = , 1.7 € Z modulo 6

cos? a; cos? ajyo

The relations (16) follow now from properties of the Napier cycle for spherical 3-ortho-
schemes (see 1.2, Remark (i)) and (17): The length [; of the edge where the dihedral angle
a; sits equals 7 — aiy3, and, by 1.2, (6), there is the correspondence

tanl; = cot aj43 = tanf,cota; , 1,7 € Zmodulo6 . (18)

Q.E.D.

Notice that for © = 0, that is, det Z(R) = 0, R is degenerated in dimension implying
VOls(R) = 0.

Let R be the convex hull of p; (see Figure 1), which are opposite to the bounding hy-
perplanes H;, 0 < ¢ < 5, as usually; denote by F; the apex face of R associated to a;,
1 < ¢ < 5. Notice that the angle ag (see (18) and 1.2. Remark (i)) can be seen as
dihedral angle of R; more precisely, ay = 5 — a0 = popsp1 = pap1ps (see Figure 1).

Fig. 1
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By Theorem 1, the volume differential dvols(R) of R takes the form

(—4) dvols(R) = Y vols(Fy) day;

J=1
Notice that «q,...,as are not independent parameters of R, wherefore the coeflicients
. . Ovols(R . .
voly(F;) are not all partial derivatives % . Since pg, ps are vertices of R at infinity,
a5

the faces
F;j=RNH;_1NH; =py--pj_2P;_1P5pj+1-~"Ps , 1<j<b6

are asymptotic 3-orthoschemes with the schemes

ay o4 as

E(F) o 0 0 °o
E(F7) 035 o o5 oo
L(F3) : o % 0-20 o % o,
L(Fy) oo i o-H.o |
E(Fs) o dL o 2 a )

Their volumes can be computed by Lobachevskij’s formula (12) in the following way:

1

voly (F1) = 7 {Ta(5 = au +as) = o5 + o + as) +2Ta(c) }

V013(F2) =

B = o]

Jz(as) VOlg(F;;):%JIQ(OIS) : volg(F,;)-—-%JIz(al) ; (19)

1 yis
vol3(F5) = 2 {312(% — a2 + o) "312(5 + ag 4+ o) + 20p(a2) }

with the dependences (see Proposition 2.1)
A :=tan ®@ = cot ap tan a3 = tan oy cot oy = cot ap tanasg . (20)
Hence, we need to integrate the differential
(—8) dvols(R) = — % (Tao(F ~ g+ 04) + Ta(5 + e + ca) oy +Ta(ag) dews +
+ Jo(as) dag + Ja(ag) dag + Jz{cq) doy — (21)
- —;— {JIQ(% —ay+az)+ .]Ig(% + ag + a2) }das + Ja(ag) das
subject to the relation (20), that is,

tan g = tanfy tan s
tan ap = tanfs tanaz (20")

tan oy = tanfy tan oy
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with

.2 .
sin’ ag sin® g — cos? ay

tan? 6, = =cot? @

cos? g cos? auy
Observe that we can choose a path of integration along which the parameter © is constant:
R is characterized by three independent parameters. If we fix oy, a4 and let oy vary, for

example, then, by (20'), © is constant. Hence, in the sequel, we may assume A = tan ©
to be constant.

Suppose oy, a3, as to be the free parameters among the five dihedral angles oy, ..., a5 with
the mutual dependences (20), and integrate the (complete) volume differential beginning
from the (collapsed) orthoscheme Rg4ey of volume zero with dihedral angles oy = ay =
a4 = a5 = 5, ap = ag = 0. This yields, together with a symmetrization argument,

(—=8) vols(R) = (22)
I(’\—lao;al) + %I(/\ao;QQ) - I()\—I,O;(JB) + %I(A,O;O.q) + I()‘"110505)_

1 m 7 - .
— Z{I()\;_(_‘f‘al);_"—a] +0.’2) -+ I(’\’_(E—al)§'—_al+az)-

2 2 2
~ I (5 F )it ar) = IO =(5 = an)im = ar) -
- I(,\,—(g—!-as);rr-}-ag,) — I(,\,—(% —as);m—as)+
+ 100, —(5 +as) 5 +as+as) + 10, =(5 —as) 5 = as + ) }

Here, A = tan © is as in (20), and I(a,b;z) is the function in the variable z defined by

I(a,byz) = /JIg(y) darctan{atan(b+y)) , a,b€R fixed , (23)
%

with I(1,b;z) = =JI3(z) — £((3).

The volume problem consists now in expressing the integrals (23) in terms of polyloga-
rithms of orders less or equal to three, related or even simpler functions (see also Intro-
duction). There are special cases which can be treated easier. In fact, there is a basic
difference between @ = 1 and a # 1; for the volume problem, the case A = 1, that means,
] = 4,07 = a5 ,a3 = ap, was already solved in [K3, Theorem, p. 659]. The result in
terms of the Trilobachevskij function JIs(w), w € R, (sce Appendix B1) is as follows:

Theorem 2.

Let R denote a doubly asymptotic 5-orthoscheme with A =tan®© =1, that 1s,

ER) : o—o0 0 e 0 o cos® aq + cos? ag + cos® az =1
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Then,

1 o1 1
vols(R) = 1 {J3(01) + JMz(e2) — 3313(‘7,; —a3)} — E{ﬂs(g +a) +ag)+

T 3
+J13('2'—Cf1+a2)}+giﬁ'(3) . (24)
Remarks.
The orthoscheme
ER) : o 01 5 @2, @3 4, 22 . cos®ay +cos’ay +costag =1

of Theorem 2 belongs to a Napier period splitting into identical halves and generating
further hyperbolic polytopes (see Proposition 1.4). For example, we obtain the totally
asymptotic 5-simplex @ with diagram

g
[

as / \:m
SA

O—r——()
ay

Fig. 2
Its volume can be computed in the following way (cf. [K4, 3.4, Theorem 3)):

vols(Q) = = { Mx(an) + Jha(az) + Ja(as) -
5 (25)

— I(E - a) — (D — )~ Ta(E )} + o5 ((3)

By a similar construction (see Proposition 1.4), we obtain another asymptotic polytope

R, C H® described by )
7N
A

o—C
a4

Fig. 3
R, is a doubly truncated 5-orthoscheme whose dihedral angles o resp. o' are attached at

"the (doubly asymptotic) orthoscheme faces

o o a' a a' a

o) o} o] e] resp. o 0 0 0
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For its volume, we obtain

vols(R) = =3 { My(a) + TTy(a)} + 35¢(3) (26)

In comparison with the result for A = 1 as presented in Theorem 2, the case A # 1 is much
more difficult; one reason for this is hidden behind the function theoretical behavior of the

inverse tangent function

1 14 1:
arctan(z) = % log ] i ?:1:
= — 1T

which does not allow to transform the integral I(a,b;z) into JI3{w),w € R. In order to
derive a formula for vols(R) in the case A # 1 in terms of trilogarithmic functions with
arguments connected to the dihedral angles, we relate the integrals

I{a,bjz) = / J2(y) darctan(atan(b+y)) , a,b€R fixed |,
3

to functions of the form (see Appendix B1)

z

J(a,b,c;z) := / log(1 + at)log(1 + bt)dlog(l +¢ct) , a,b,c€C
0

Then, according to (B24), I(a,b;z) can be expressed in terms of polylogarithms of orders
less or equal to three as follows:

I{a,byz) = (z — —g—) arctan(a cot b) log 2 + JIz(z) {arctan(a tan(b - z)) + arctan(a cot b) }+

™

+ % log 2{Liz((1 + a)sin(b + =), g- —(b+z)) — Liz((1 — a) sin(b + z), 5 (b+z))}-
- %log2{Li2 ((1 + a)sin(b + %),b)'— Liz (1 — a) sin(b + %),b) }+
+ H(w,bjcotz) (27)

where Liy(r, ) denotes Re(Liz(re'?)), tanw = ia; moreover, for ¢ = ¢(w,b) = cot(b + w)
and v = u{z) = cotz, H(w,b;cotz) is defined by (see (B20))

H{w,b;cot z) = 2Re (h(w,b; z)) = (28)
-1 —1ic 1 1 1
_- . ) — 1 —4 - 9 _p(—— _.1_
7] Re F(l—z‘c’1+m) F(1+ic’1 zu) + F(1+ic’ cu) (1—ic’ cu)-i—
1 1-cu 1 1—cu 2 l-cu 2 l—cu
_ — — — — . _F .
(ic’1+iu) F( ic’l-—iu) F(l—ic’l—iu) (1+ic’l+iu)
+ log(1l — cu) {log(1 +iu)logM — log(1 —iu)logM}+
1+1c 1—
= —_ — — - 1
+ 5 log“(1 + iu) log et ) 2 log®(1 —iu) log ee—1)]|
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where, for s,z € C, 2 ¢ R,
F(s;2) = Lig(s) — Lis(sz) + logz - Liz(sz) . (29)
Summarizing, we obtain

Theorem 3.

Denote by R C H5 a doubly asymptotic 5-orthoscheme represented by

Q o a « « )
L(R) : o 1 o0.52 o 38 5 % 5 55 6 with

1/2
|det B(R) | <6<

H
COS (¥] COS (Y3 COS (¥ 2

Let 0 < ap £ 5 such that tanag = cot O tanag. Then,

™

A=tan® =

vols(R) =
%{I(A‘1001)+ 5 T 0:02) ~ T, 0500) + 3 T3, 0;0) + I(A™,055) }+
s IO =5 )i 5+ o+ a2) + 10, =(5 = )i 5 — 00 ) =
— I =(5 +a)im+ ) = I, ~(5 - ar)im — 1) — (30)
— I(), ( +as);m + o) — (A —(g—as)ﬂ'—as—{—
+ I, - ( + a); 2+a5+a4)+1()\,—(g—a5)%—05-{-&4)} :

where I(a,b;z) is the trilogarithmic function according to (27) — (29) with the property
I(1,b;z) = —JI3(z) — 3((3).

Remark.

Theorem 3 contains the complete solution of the volume problem for five-dimensional non-
Euclidean polytopes. Namely, by Proposition 1.2 and its constructive proof, the volume
of a compact hyperbolic 5-orthoscheme is expressible as sum and difference of volumes

of doubly asymptotic 5-orthoschemes. According to the trigonometric principle (that is,
hyperbolic k-volume is ¢* times spherical k-volume (cf. [BH, p. 20-21, p. 210])), the
formula in the compact case can be dualized by means of analytical continuation to yield
a volume formula for spherical 5-orthoschemes. Finally, any non-Euclidean polytope is
equidissectable to orthoschemes (see 1.2).

2.4. APPLICATIONS

Based on Theorem 3 of 2.3, there are various applications and further directions to study.
Computations of covolumes of hyperbolic Coxeter groups and consequences for the volume
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spectrum of hyperbolic space forms of dimension five were already presented in [K3] and
[K4]; there, we determined the volumes of all arithmetic hyperholic Coxeter polytopes with
linear and cyclic schemes of order six. Those results, combined with certain dissections of
the sort (3), 1.2, allowed to compute the contents of the quasicrystallographic simplices

5 3 5 5 5
vy, : O0——O0—*—0—0

b |
o
roen
ot
[SY[e

vy .0

which do not satisfy the conditions of Theorem 2 and serve therefore as test objects for
(30):
1 ™ 3

(D + 6

V015(V1) Z% 5) + %‘6‘ ~ 0.0020 s
1 7
| =—Jl3(=) ~ 0.000
volg(2) =5 Ta( T) = 0.0005
Here, we study implications for the totally asymptotic regular 5-simplex S77,(2c) with

cos(2ar) = § . Its importance is, among other things, expressed by the following

Theorem 4.

In H*  n > 2, a simplex is of mazimal volume if and only if it 1s totally asymptotic and
regular. '

This result was proved by Haagerup and Munkholm [HM] by purely functional analytical
methods; they also showed that (cf. [HM, Proposition 2, p. 4])

n—1 V01n+1(5r°§g) < 1

nt 7 vol,(8%,) T n

For n = 5, this leads to the estimate (cf. [K2, 14.3.2, (14.60)])

0.0510 < vols(Sye

reg

) £0.0638
On the other hand, by 1.3, we know that
vols(Sf:g) = 5!vols(vs)

where vg is the doubly asymptotic orthoscheme

. det{(o—o—o—
2a @ with f\:\/e(O °—° O)=\/5

l/ﬁ . o] O——0—0—0~—0
cos? §

Therefore, by Theorem 3 of 2.3, we obtain

vols(See,) ~ 0.0578

reg



VOLUMES IN HYPERBOLIC 5-SPACE 21

Appendix A. Some useful determinant identities

Let ¥, : o o be a scheme of order n + 1 with weights cosa;. 1
n, detXp := 1 and detl, = sin® oy . Put

o (84
1 O0—--"—0 n

IA
[A

. a' . . -
al - O—Lo—----—o—aa’—o forl1<:i:<3<n

Apart from o] = &, U;f is a proper subscheme of £,,. There are the following recursion
formulae (cf. [S, (1), p. 238, and (1), p. 261]):

detS, = detTp_; — cos’ apdetSp_e ., n>2 (A1)

detZ, = detaf—ldeto'f+1 — cos® apdeta} ~*deto},, for2<k<n-—2. (A2)

Moreover, by (S, (2). p. 259],
deto] 'detof — deto]detay " = _H] cos® o . (A3)
1=

For a cyclic scheme A, of order n with weights cose;, 1 <1 < n,

O ¢ 4 )
ng/ \Orn-l
[} o
N/

ay

Fig. 4

one can show (for one choice of indices) that (cf. [S, p. 262])

detA, = — 2] cosa; + detaf™! — cos® andetoy % . (A4)

=1

Lemma A.
Let myn € N, (m.n) # (1,1). Suppose "t to be as in (9), and denote by Q' the

cyclic scheme of m repetitions of S3*% 1 o S T L B Then,
0 for m = 0(4) ;
-2 cos™a; form=1.3(4) ;
detQ = ,'I;[o (4) (A5)

—4 [] cos™ a; for m = 2(4)

1=0
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Proof:
Denote by
1 0 On—1 44 [24)) Qy—
wy, o o—: | —o—"=0—"0 o— | -—o—"=L o resp.
Mp— (a4 (a4 O
w? o-o—. | —o—2Tlo TR 5 0 o ..o 22,

the schemes of order m(n + 1) resp. m(n + 1) — 2 arising from Q7 by discarding an
edge resp. two nodes together with the edges emanating from them (the verticals indicate
repetitions of B31?); set 61, := detw), and 62, := cos® apdetw?,. Then, by (A4),

n
detQ? = —2]] cos™a; + 6., — 682,
t=0

In order to prove (A5), we show for the ingredients 6! and §2,, by induction on m, that

n
(=1)% ] cos™ o for m even;
1 1=0
Om = m=1 1 o Op—)
(=1)7= [ cos™ ! e det(o 0—+++—0 o) for m odd,
i=0
and
m n
(=1)2 ] cos™ o for m even;
2 _ 1=0
6”! - m=1 O m—1 Qg On—1
(=1)7 = ] cos™ ! a;det(o 0—:--—0 o) for m odd.
i=0

For m = 1, the assertions for §} and §? follow from 1.2, (10).
Let m = 2. Since det T*"*! = 0 for 1 = 0,1 (see 1.2, (9)),

0—«+-—0 0 o) 0—:++—0

o Qg — (a4 < g —
5% :det(o 0 n—1 n 0 n lo)

equals the determinant of the extended scheme

o Cpo1 @ @ «
0—0 g ..o Zr=l gy T 5 0 40" 0 ,
and also the determinant of
o Op-1 @ o o
o Ao o=l TR 5 T0 4 o0
n n 2 1
By (A3), it follows that (§2)? = [] cos? ;. Hence, 83 = — [] cos® a;, and 65 = —43.
i=0 =0
The general case is shown for 6., , only. Write
o a o Qn—y « o Op -1
w02 o— | | —o—o0 0 g vvio——8 20 5 20 5 —o——221 g,
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Since detTi"t! =0, (A3) yields
det(wy,) = 6y, = 65y &3
Now, use the induction hypothesis to finish the proof. Q.E.D.

. Appendix B. The Trilogarithm

B1l. BASIC DEFINITIONS AND PROPERTIES

For the material of this paragraph, we refer to [L].
The Trilogarithm Lis(z), as every polylogarithm function Lix(z), arises as iterated loga-
rithm in the following way: Let

o r
Li = —log(1 — ith Li = — fi
i1(2) og(l—2z), wi i1(2) Z — for lz] <1

r=1
and define the k-logarithm or polylogarithm of order & > 2 by

z

Lie(z) ::/ le;l(t) dt, with Lix(z) = Z ,Z_L for |z| <1 . (B1)
r=1

0
Then, Lix(1) = ((k), £ > 2, and there is the identity

1
mk-1

Lig(z™) = Lig(2) + Lig(wz) + -+ + Lig(w™ 12) (B2)

2rifm

where w = ¢ , m 2 1. In particular,

1
2k—1

Lig(2?) = Lig(2) + Lig(—2) . (B3)

Moreover,

Lig(2) =Lix(z) , £>21 . (34)

There are only a few special polylogarithmic values known; for example,

Lia(-1) = -5 La(h)=T -2 | Lp=T . -
(B o T gl 3V m L2
Lia(~1) = ~20(3) 5 Lis(3) = 5((8) — Tlog2+ Tlog(2) -
L3578 = 2ea) + Do 1520 - Liog (A58
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These values can be computed by means of functional equations for Li,(z) and Lig(z); we
mention here the functional equations of Kummer type in two variables of the form (cf.

(L, (18), p. 284, and (11), p. 297]):

Liz(%:_z;)=Liz(y)—Li2($)+Li2(§)+Li2(i:z)—%-Hogylog1:2 . (B7)
VL St )R T i“’_l(l—)_ a(l—y),
_ 2Li3(i =4y - 2Li3(y2$__yl) — 9Lia(x) — 2Lis(y) + 2¢(3) = (BS)
= logzylog(i_%) - % logy — %logay

Write z = re'®, 7 > 0,0 < ¢ < 27, and put Lix(r,¢) :=Re(Lix(re'?)) in the standard
way. Then, Lig(r,¢) =Lig(r,—¢), and

Lip(re'?) = Lig(r,¢) + i [wlogr + Ja(w) + Ja(6) — Ty (w + 4)] (B9)

rsin ¢

where tanw = . For Liz(re'?), however, there is no equivalent to (B9). But

1 —rcos¢
there are the following identities:
. o1 1 1 w2
LlZ(T7¢)+L12(_‘=¢):__10g2r+_(7r_¢)2__ )
SRR a0
Lis(r, ) ~ Lis(>,8) = £ log r + 2(3(r — §)* = n*)logr

and, by (B2)—(B4),

1
Lio(r,7) = Lig(—r) ; Lig(r,n)= ZLiS(TZ) — Liz(r) ;

: 1. . 1.

Lig(r, %) = ZLIQ(_TZ) ; Lig(r, %) = §L13(—r2) ; (B11)
. 1. 1_. . 1.

Lis(r, %) = 6Lu(—7‘3) - ELIQ(_T) ;  Lig(r, 3) = ﬁng( r) — §L13(—r)

For arguments z = e?'® o € R, on the unit circle, real and imaginary part of Lix(z) play
a particular role. Define the higher Lobachevskij functions by

1 ) m sin(2ra)
Jak () =§'§7¢'31111(L12k(62 22L 1 Z 2k
(B12)

1 ) ; cos 27&
Jak41(a) =55 Re(Liyyy, (€*) 22:. Z T2kt1
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generalizing Lobachevskij’s function (see 2.2)
1 o
Ja(a) = 5 Im(Li,(e*'®)) = — / log |2sint|dt
0

There are the relations

Jar (e /Jlu 1{t)dt , Jopta(e) =

%((2&%—1) —/JIzk(t)dt : (B13)
0

Moreover, JI;(«) is w-periodic, even (odd) for k& odd (even) and distributes according to

1
Jk(ma) = ZJIkcr-i-”T

m‘-’ 1

Now, Lix(e*®) splits in a part consisting of the Lobachevskij function JIx(e), while the
other part is always elementary (cf. (L, (16, (17), (22), p. 300]); for example, for 0 < o <
27,

Lia(¢*?) = (5 — a)? - E + 2l (a)
Lis (¢2%) = 4Jl5(a) + 2= “)3(” —2a);
Finally, by using the integral representations
oo
Lig(z)=flogt{¥—_l—z-—%}dt , Lis(z flog t{———}dt ,
1

one can deduce the identities

i . b—a . ,C—a
3 [ogt-a (T - o =La(70) — L (S04
1
+10g(1_a){Li2(ll):Z)—Liz(ii(;)}—%logQ(l—a)log(i:i)) :
[ osttoste - (25~ 3y =1 + 1 (5 + 1 (B2 - L (=)~
hLia(Gjl)+log(1“a){Li2(i:Z)_Li2(b(b1:aa))—Liz((ail))}+

1
+ % log®(1 — a) log % - §log3(1 - a)
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In the combination, they give rise to the following very useful integral expression, for
¢ # a,b (notice that {M, (A33)] is incomplete and has a misprint):

F

J(a,b,c;z) = / log(1 + at) log(1 + bt) dlog(1l + ct) = (B14)
0

. b . C—
= Lig (=) — Lia (*= =

az . ,C az . ,C bz
- Lin( e - Lin (R - i (R4
1+ az . (1 + az2) . e —=b)(1+ az)
1+bz){L12( (14 bz ))_le((c—a)(1+bz))}+
+ log(1 + az)ng(M) + log(1 + bz)ng((i—i_l;zl)-l—

a(l4+cz) 1, , a(c —b)
+ log(1 + az) log(1l + bz) log—C log“(1 + bz)log b(c— p
)+ F( 1+az)+F(

2
_ b
c—a 1+bz c— —b’ L+b2)+

a(l + cz) 1 2 a(c — b)
+ log(1 + az) log(1 + bz) log — 3 log“(1 + b2) log Ne—a)

b (c—b)(l—}—az))_.

(¢ —a)(1 + b2)

)+Lla(

—5) + Lia(

%)+ Lia (=5

+ log(

b 1+az c—b.l-l—az

_F(a 1+bz)_ F(

where

F(s;z) = Lisg(s) — Lig(sz) + logz - Liz(sz) with F(s;1) = F(0;2) =0

B2. THE INTEGRAL I(a,b; z)
Denote by I(a,b;z), a,b € R fixed, the integral

e s

I{a,b;z) = / J;(y) darctan(atan(b +y)) , (B15)

x
2

with I(1,b;2) = —Jl3(z) — =((3) (see B1). Therefore, suppose that a # 1. Then,

16
integration by parts yields

I{a,b;z) = Jp(z) arctan(atan(b + z)) +41(a,b;z) with (B16)

i1(a,byz) = [ arctan(atan(b + y)) log2siny dy

MR,
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By [L, (28), p. 307], we obtain

t1(a,b;z) = / arctan(a tan(b + y)) {log 2 + logsiny } dy

— 10§2 {Li2((1 + a)sin(b + =), g — (b+2)) - Liz((1 - a)sin(b + =), g (b))
- 1052 {Liz((1 + a)sin(b + g)ab)) = Liz((1 — a)sin(b + %)’b) -
+ / arctan(a tan(b + y)) logsiny dy (B17)

where Liz(r, ¢) =Re(Liz(re'?)) according to (B9). Define

iz(a,byz) := / arctan(atan(b + y)) logsiny dy

7
Then, we can write
. 1 [ 1 - iatan(b+y) .
ig(a,byjz) = 5 / log T atan(b 1 ) logsiny dy (B18)

2

r

s 1 1 + cot(w — b) cot y .
= arct tb){(z — =)1 —
arctan(acot b) {(z 2) og?2 + Ja(z)} + oF /log T~ cot(w +5) coty log siny dy

3

.
2

where w € C is such that tanw =ia (that is, if ¢ =: tanh 4 < 1, we have w = iA, while
for a =: coth A > 1, we obtain w =i(A4 +1%)). Next, we set

. 1 i 1+ cot(w — b)cot y _
i3(w,b; ) ;= 5 / log T cot(w 7 b) cot g logsiny dy . (B19)

z

By means of the variable change t := cot y, 13(w, b; ) transforms into

cotx

1+ cot(w — b)t dt

) 1 2
t3(w, byz) = 47 f log 1 — cot({w + b)t log(1 +¢) 1442 7
0

which can be written as

i3(w,b;z) =h(w,b;z) — h(—w,b;z) with

cotz

log(1 — cot(w + b)t) log(1 + %)

1 dt (B20)
h(w,b;z) == — Z Te
Q
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Let ¢ = c(w,b) = cot(w +b). Then, c(w,b) = ¢(-w,b) implying that h(w,b;z) =
—h(—w, b;z) . Therefore,
i3(w, b;z) = 2Re(h(w, b; z))

Now, decomposition into partial fractions yields
-8ih(w,b;z) = H + Hy + Hf + HY | (B21)
wherein Hfl: = Ht-i(w,b;a:), 1 =1,2, stand for

cotzx

t
HE = | log(l—ct ' :
] /og( c)log(l:l:zt)l:tz,t :
0
cotr
HE = log(1 — ct) 1 '
2 fog( c)og(lizt)lﬁt
0

By (B14), we obtain, for v = u(z) :=cotz,

cotx
HE = 74 / log(1 — ct) log(1 + it) :i:zd.t (B22)
1£et
0
cotx
=F - {log (14 4u) log(l — cu) — / log® (I:i:zt) dt}
0
?zc ., Fic
=F - log (1 £ 4u) log(l — cu) { lxzc L13(1:F (141u)) +
+ log(l:l:iu)Lig( Fic (1 +iu)) + 5 10g2(1 +1u) log 1:—F:: ;
cotzr d
Hf = +4 / log(1l — ct) log(1 + it) Fidt (B23)
1§t
0
i 1 . 2 . 1 o1
~ i [ng(:tg) ~ Lis(o) + Lis(ras) + Lis(3) +
) 2 l—-cu cu ., 1l—cu
(g Ten) — W (iEE lztzu) - Li(35) -
1+2u l-cu 11-cu 2 l-cu
= Lis(=5) +log e (L2 5 i) — Ly vy ) 0
+ log(1 —cu)Lig(ll cu) + log(1 :l:zu)le(liw)+
te(lFiu) 1 , +2i¢

+ log(1 — cu) log(1l % iu) log ~log?(1 + iu)log 1

14ic 2
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Combining equations (B15) up to (B23) and respecting (B4), we finally obtain

Ha,b;z) = (z — g) log 2 arctan(a cot b) + JIz(z) {arctan(a tan(b + z)) + arctan(a cot b) }+

1
+ 5 log2 {Liz (1 + a)sin(b + =), -"'21 — (b+ 1)) — Lig((1 — a) sin(b + z), % —(b+12))}-
1
— 5 log2{Liz((1 + a)sin(b + —g),b) — Liz{(1 - a)sin(b + g—),b) T+
+ 2Re(h(w, b;z)) (B24)
wherein, for u = u(z) := cotz,
(~8) Re (h(w, b)) = (B25)
—1ic . c ) 1 1
Re| F i1 - F ;1 — F 5 - 1 -
© (l—ic’ i) (l-l-ic1 i) + (1-}-1'c1 cu) F(l—ic’1 cu) +
1 1—cu 1 1—-cu 2 l-cu 2 l-cu
— _F e .~ —_ .
(ic’1+iu) ( ic’l—iu)—l_F(l—ic’l—iu) F(1+ic’l+iu)
. ic(l — tu) , 1¢(1 + u)
+ log(1l — cu) {log(1 + zu)logT— — log(l —du)log ———=} +
ic —
U, l4ie 1. 4. 1—ic
—1 1 log ——— — =1 1— 1
+ g log' (Lt i) log 5 oy — 3 log (1 —iw) log o=

Here, tanw =ia, ¢ = c(w,b) = cot(b + w), u =cotz, and, for 5,2€ C, z ¢ R<o,

F(s;z) = Lis(s) — Lizg(sz) + logz-Liz(sz) with F(0;2) = F(s;1) =0
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