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Introduction

A Riemannian manifold (M"g) s defined to be harmonic if the

Riemann—Lebesques density function W, = J|det gl-‘| (resp. if the polar density

functi =
unction 6 p rp

normal coordinate neighbourhood around any point p . These spaces can be

1wp) is depending only on the geodesics distance I from p in any

characterized also by the Mean Value Property of the harmonic functions [10].

The harmonic manifolds are Einstein manifolds and therefore all these spaces are
real analytic w.r.t. the normal coordinate neighbourhoods by the Kazdan—de Turck
Theorem [2]. So the distinguation of the infinitesimal, local and global hé.rmonicity is
not necessary as all these properties are equivalent.

Any two point homogeneous space is obviously harmonic. The classical
Lichnerowicz conjecture [5] asserts the converse statment: Any harmonic manifold is
two—point homogeneous.

This conjecture was proved by the present author in the simply connected compact
case (resp. in more general, for compact manifolds with finite fundamental groups) [8].
The methods of this proof are of global character which do not work in the non—compact

case. The main tricks if this treatment can be summarized as follows:
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The compact harmonic manifolds considered are Blaschke manifolds, which have
simple closed geodesics with the same lengfh, say 2x . It turned out also, that the
squared density function 62(r) is a trigonometric polynomial of the form
H2(r) = T(cosr)  furthermore the symmetric (globally defined) eigenfunctions
9, (1) = ¢,(— 1) of the radial Laplacian

89’ d -
tr &

Q-NJ (=9
- (L)

are also trigonometric polynomial of the form ¢, (r) = P (cos 1) .
One can prove from these properties, that the density function #(r) is of the form:
8(r) = (sin r)P(1 — cos r)d furthermore the first non—trivial eigenfunction ¢, is simple

linear, i.e. ¢, (r) = A cos r + B . Using an imbedding procedure, the symmetricity of
1

the space follows. This proves the conjecture in the case considered.
In the present paper we consider the harmonic manifolds without any topological
conditions. On the other hand we prove the Lichnerowicz conjecture under a stronger

assumption namely for sharply harmonic manifolds.

It i3 a well known fact that the invariant differential operators of a
two—point—homogeneous space are the polynomials of the Laplacian. In Chapter 2 we

converse this statement, asserting that a Riemanni ace is two—point—homogeneous if

polynomial of the Laplacian. Also characterizations of harmonic as well as of Einstein

and super Einstein manifolds are given there.

In chapter 3 we characterize the symmetric spaces.
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At last we mention that in an earlier paper [9] of the author a simple topological
proof is given for the symmetricity of the two—point—homogeneous spaces. The basic
statement of this proof is the following.

7 . . . . . .
The Ry (.):= (Vm R)(.,m _)m_ denotes the indicated covariant derivative of
P P
the curvature tensor with respect to a unit vector m_ at a point p. So R 111 (.) isa
P
self adjoint endomorphism.

If for any p the eigenvalues (or the invariants) of R 1;1 are constant along the
P
CTp(Mn) then R/ =0 VR =0 follows, i.e. the space is
Y

n—1

euclidean unit sphere Sp

symmetric.

We use this statement also in this paper.

§ 1. The Lichnerowicz conjecture on sharply harmoni¢ manifolds

Let Ap-r be the Jacobian endomorphism field along an arc—wise parametrized

geodesics (1), 7(0) = p, defined as usual by

(1.1) AB;I+R.0A =0; A ,=0; A’ =1Id,

7/
. .0 .
(r) pir P; p;0

where R (X)=R(X)=R(X,7)7 is the Jacobian curvature—operator field. The
7

endomorphism Ap,r acts in the (n— 1)—dimensional subspace of the tangent space
T 'y(r)(Mn) standing orthogonal to 4(r) . The density function Hp('y(r)) along 7(r) is
one of the invariants of A .p namely it is the determinant: 6 =det A_. In the

following we consider all the invariants aI()l) ; al()z), ,al()n—l) of Ap defined by the



characteristic equation:
(1.2) det(A + Ald) = anl c;rl()l))\n_2 + ot al()n"l) .

Therefore al()l) =Tr Ap ; a(n-l) = 0p satisfy. For a technical simplification we
introduce also the invariants a§0) defined by

(1) ._ . o(2) . _ e A2, AP . AP
(1.3) ay TrAp,ap : TrApoAp TrAp,ap : TrAp.

The connections between these invariants are described by the well known formulas

([15], p. 92)

a(p) —a(p_l)a(l) + .+ (- 1)pp a(p) =0 for p<n;
(1.4)

alP) — olP1)5(1) + ..+ (- 1)na(p—n+1)a(n 120 for pn.

Using induction, we get that any invariant a(l) is a polynomial of the invariants
0(1), ,a(n—l) , and conversely, any invariant cr(i) is a well defined polynomial of the
invariants a(l), ,a(n—l) . It is also well known, that any invariant system (ap or
ap) uniquely determines the eigenvalues of the endomorphism Ap , including the
multiplicities as well.

A Riemannian manifold is called gharply harmonic if all the invariants

al()l); ;ar()n_l) (or equivalently all the invariants crl()l); ;ar()n_l)) are radial
functions around any point p.
Any two—point homogeneous space is obviously sharply harmonic. The following

theorem says the converse statement in the odd dimensional case.



Theorem 1.1. Any odd dimensional sharply harmonic manifold is a symmetric space,

rather more it is a space of constant sectional curvature.

Proof Fix a point p e M and pick up a unit vector m € Tp(Mn) . The Taylor series

f A .I.t. is
0 pwr m i

. b
31 41 2 6
(1.5) A =rd-PgR -~ Hﬁé+§r[Rg—3Ré]+0(r)

where the self adjoint operators R_(X):=R(X,m)m; R’ (X):=(V_R)(X,m)m are

considered acting in the tangent space of the unit sphere Sg"l C Tp(Mn) at the point

me Sg_l . In the case considered also the invariants

(1.6) ﬂl()f’) - Tr[-rl—g (A, - 11d) ]P =Tt # RY +0(1)

are radial functions, which means that also the invariants of R, are constant along the

sphere gh-1

. Therefore also the eigenvalues of R are constant (with constant
multiplicities) along Sg_l . These eigenvalues must t; equal because in the opposite
case the eigensubspaces of R m split the tangent space T(Sg_l) into non—trivial
orientable (the first Stiefeld—Whitney class of Sg_l is 0 !) and continuous
distributions: T(S;_1)=§19526... ng . This is impossible because the Euler
classes x({i) are Z€ros, furthermore the Euler class
x(T(Sn_l))= x(€)VX(€9)V ... Vx(€,) of the even dimensional sphere Sg_l is

non—zero.



. .

Therefore R = ApId holds for some constant ’\p and the space is of constant

curvature by the Schure Theorem.

Q.ed.

The situation is more complicated in the even dimensional case because the Euler
class of an odd dimensional sphere is zero rather more the tangent space T(Sg—l) can
be splitted into non—trivial continuous distributions. Also in this case the invariants as
well as the eigenvalues of Rm are constants on Sg_l rather more these constants are
independent also from the point p . By our guess these properties implies that R m 30
be identified with one of the curvature operators belonging to— the
two—point—homogeneous spaces but the details seem to be complicated.

Because of these technical difficulties we introduce a new endomorphism field,

namely the field

4

1 ' _2 1
1. B = - =
(1.7) Ap 7 IpAp I, 14 + 7 I

’ 5
p Rg + 0(rp)

along the geodesics <(s) with p=+(0) . All the invariants of Bp define radial
functions around p in the two point homogeneous spaces. This statement can be

conversed for any dimension as follows.

Theorem 1.2 A Riemann space (M®,g) is two point homogeneous if and only if the

invariants of Bp define radial functions around any point p .

Proof If the invariants of Bp define radial functions around p then also the invariants

I

(18) 51()") = Tr [3—2 (B,-§r,14) ]p = Tr(R )P + 0(1)
p



define radial functions around p . This means that the invariants as well as the
eigenvalues of RI; are constant along Sg‘l . By the methods of the paper [8] we get
R’ =0; VR =0, i.e. the space is locally symmetric. Therefore for Bp we get

5
_2 Ip o2 6
Bp_Krpld_Tg'O'Rg+0(r ),
(1.9)

| p
Tr [— lgg (Bp —%rp 1d) :| = TrRép + 0(1) ,

which means that the invariants of Rli as well ag of R_ are constant along Sg"l . So
also the invariants of the Jacobian field Ap define radial functions around p .
Specially, the space is a symmetric harmonic space which is a two—point homogeneous

space by a Lichnerowicz theorem [1].

Q.ed.
§ 2. The higher order Laplaciang

It is a well known fact that the invariant differential operators of a
two—point—homogeneous space are the polynomial of the Laplacian. Following we
converse this statement, showing, that if some differential operators of a Riemannian
space are the polynomial of the Laplacian than the space is two—point—homogeneous.

For preparing of these operators let us consider a C®—kernel function (or double

function)

(2.1) H(p,q) : M® x M®* — R



on a C®—Riemannian manifold M™ such that the function H(p,p) : M — R never

vanishes. For a point p and for a unit vector e_e Tp(Mn) the ep(r) denotes the

p
arc—wise parametrized geodesics through p with the tangent vector e_ furthermore

Y
dép means the normalized euclidean measure of the unit vectors ép in the euclidean
tangent space Tp(Mn) . Using the function H(p,q) as weight function we introduce the
averaging operator Ep

by

.p;x 0D @ geodesics sphere Sp-r with the centre p and radius r

(2.2)

B, pe(#) = [ de DB ), ,

|R:(CXXCIL

where ¢ is an arbitrary C®—function . The odd order derivatives of EH- . WLt the

1

r at r =0 vanish. The higher order Laplacian Aék) generated by H are defined by

the even order derivatives as follows:

02]: B
(23) s = — féﬁ"("’),mo

The operators Aﬁk) = A(k) generating by the constant function H(p,q) =1 were
introduced by Willmore [13] and these were studied by many other authors.. In the
present paper we study more such operators namely generating by the several invariants

of the Jacobian field. From the point of view of harmonic spaces the operators A(k) and

n—1)

Agk) play an important role, where 0p =det A = a( is one of the invariants.

p p
These operators are obviously equal on harmonic spaces (i.e. A(k) = Agk)) .

A function u is called of a ¢ommon harmonic¢ function w.r.t. the operators A]gk)
if



(2.4) Aﬁk)u =0; k=12, ..

satisfy.
Let us assume that the space (M",g) is analytic w.r.t. the normal coordinate
neighbourhood (it is so called normal anylytic) and also the function H is analytic. In

this case the Taylor serie

aLk)
(25) Bpppy(#) = 2 _I(&'Tkj).i{_

gives the following theorem immediatly.

Theorem 2.1 A function u is common harmonic w.r.t. the operators Aﬁk) if and only
if for it the mean value property:

holds for any small radius value r > 0.

In the next step we consider the Willmore’s operators A(k) and the operators

alk).

k)

Theorem 2.2 On any harmonic space the operators A(k) = AS are the polynomials of

the Laplacian.



-10 -

Proof For a Laplacian eigenfunction with the eigenvalue A we get

pore .
2.7) Js (6p") dep-,\J'S Ppds,
pir P

which follows from the classical decomposition
2
(2.8) A=AS+%2+U_%

and from the Stokes theorem easily.

By the (n—1 + 2k)—th derivatives w.r.t. r at r =0 we have

(2.9)

9k+2 2k
J Z [n+2k] (a) p(n+i- a+1)de "J y [n—1+2k] (a) p(n-1 +2k—a)de

e a=0 e

where :p(.a) resp. 0(3) means the a—th covariant derivative: Vga)go Tesp. V(a)o of

°p °p p p

the functions w.r.t. e .
The above formula gives the recursion:

-ty [2125] ale+) - %k[n_uaak] Jogn—l +2k—a)vga)dép R

a=0 P p
(2.10)

2k
_ 2 [nl-gllx] jagn+2k—a+1) V((.aa.) dép
= P p
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for the Willmore’s operators:

(k) _ [9(2k) 45 . a(1)
(2.11) A/p _jvép de; AY/=nA.

On harmonic manifolds the derivatives a(,a) are constant therefore from (2.10) a

°p

recursion formula of the form
(2.12) a(k) = p(k=1), + Pk(A(l),A(2), ’A(k"l))

follows, where Pk(A(l), ,A(k-l)) is a polynomial of the arguments. The proof can be
completed by induction.

The following is the converse statement.

Theorem 2.3 A space is harmonic if and only if the operators Ask) or the Willmore’s

operators A(k) are the polynomial of the Laplacian.

Proof First notice that in an arbitrary Riemannian manifold the integral formula

: 6, (e5(r)
(2.13) Jfﬁ(ep(r))u’(ep(r))dep: 0, where @(e(r)) := p(%"

J 0 (e (e,

holds for any harmonic function u , which can be proved by the Stokes theorem easily.

Notice too, that from (2.10)
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a(n + 2)a(2) = 3a% 4 2V, v+ 2, AV,
(2.14)
a(n + 2)A4%) = a(n + 2)a(2) — 2rA— 4NV i~ (PR)Y,

follow, where pij is the Ricci curvature und R is the curvature scalar. Therefore each
of the operators A(z) , 652) is the polynomial of the Laplacian A if and only if the
space is an Einstein space. So the spaces comsidered are normal analytic by the
Kazdan—de Turck theorem furthermore the harmonmic functions are analytic by the
Bernstein theorem.

k)

First let us assume that the operators As are polynomials of the Laplacian. In

this case any harmonic function (w.r.t. the Laplacian A) is a common harmonic
function w.r.t. the operators Ask) , therefore by Theorem 2.1 the mean value property

(u)

u(p) = Eg_ ..(u) follows for any harmonic function u . By derivation of E,
DT f;pir
w.r.t. 1 and by (2.13) we get

(2.15) jS ¢l’)udgp =0
P

T

for any harmonic function u . As any continuous function u of Sp-r can be extended
)

into a harmonic function of the inside of Sp;r (Dirichlet—problem), so the above
integral equation says: ¢i’) =0, ie ¢p is constant on the geodesics ep(r) . As
¢p(p) =1,s0 ¢p =1 follows and therefore Gp is a rational function. This proves the
harmonicity of the manifold in the first case.

If the operators A(k) are the polynomial of A then from the mean value property

u(p) = I u(ep(r))dép of the harmonic functions u we have

(2.16) JS u’(e ()i, = 0.

pr
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So by (2.13) we get

¢ -1
2.17 ‘de =0,
(217) Jo F-ves

where for the function v = (¢p - 1)/0p on Sp-r the integral formula

(2.18) Js vde, =0
it

satisfies. Solving the Neumann problem, a harmonic function u in the inside of Sp° r
exists, such that u” = v on the boundary Sp.r . Using this function u , from (2.17) we

get: ¢p = 1. This proves the harmonicity in the second case completely.

Q.ed.

In the last step we are interested in the question, that in which case is a

Riemannian manifold of a two—point homogeneous space.

Theorem 2.4 A compact Riemannian manifold with finite fundamental group is a
two—point—homogeneous space if and only if the higher order Laplacians Agk) or the
Willmore operators A(k) are the polynomial of the Laplacian.

This statement follows easily from the proof of the Lichnerowicz conjecture in the

compact case [8] and from Theorem 2.3.

Theorem 2.5 An odd dimensional Riemannian manifold is a two—point—homogeneous

space (rather more a space of constant sectional curvature) if and only if all the higher
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order Laplacians A((%) ((%) e A((1)1 1)= g ) , generated by the invariants

al()i)(q) = a(i)(p,q) of the Jacobian field Af)‘ q B the polynomials of the Laplacian.

Proof If all these operators are the polynomials of A , then the space is harmonic (i.e.

ap—l = 8p is radial) by Theorem 2.3. Furthermore for any harmonic function u we
have
=E =E =E s
W =E (1) W=E ) ()= Epp )
therefore

o{De () (e () 0,(ep(0)

Jal() e (1))dé J(z (e, ()d Jﬂp(ep(r))dép

follows from the Dirichlet problem, i.e. all the invariants al()i) define radial functions

around p . The proof can be completed by using of Theorem 1.1.
Q.ed.

In the general case let w(l) w(2) w(n_l) be the invariants of the
endomorphism field B, = Ap %rpA’ deﬁned in (1 7) (i-e.
det(B pt Ald) = Aty w(l)An 2t (n 1)) Then by the same argument and

from Theorem 1.2 we have

Theorem 2.6 A Riemannian space is two—point homogeneous if and only if the operators

Agk) and the operators A(](‘%), ’A(l(il)l—].) are the polynomial of the Laplacian A .
w w
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At last we characterize the Einstein and also the super Einstein manifolds (An

Einstein manifold is called to be super Einstein if also R?bc R = ’\gij satisfies for a

abcj
constant value A).

Theorem 2.7 A space is Einstein if and only if for an arbitrary fixed index i the
operator A(%g) is the polynomial of the Laplacian.
4

A space i8 super Einstein if and only if for an arbitrary fixed index i the operators

A(%z) . A(%l)) are the polynomial of the Laplacian.
o o

The theorem is only a reformulation of a Gray~Willmore theorem [3] asserting,
that a manifold is Einstein (resp. super Einstein) iff the mean value property of
harmonic functions holds up to the order 6 (resp. up to the order 8). The proof is based

upon the remark that the operator A(%g) is a linear combination of the operators:
22
A2 = AA ; leViVj , RA, (Vj ,r;'-‘)Vi , (VIR)Vi and the operator A(?g) can be built as a
(72

polynomial of the operators A , A(2) , RabdR?bCVIVJ ; Rope dR""deViVl ;

J V. [ R. . R ?* b ] V. dép . For super Einstein manifold the last operator
ep epaepb ep ep ep
vanishes and the others are polynomials of the Laplacian. These technical details are left

to the reader.

§ 3. Symmetricity of manifolds

In this chapter we are interested in the question that which symmetricity
properties of the invariants 0(1), ,a(n_l),w(l), ,w(n_l) guarantee the

symmetry of the space.
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In this consideratons we initiate the holonomy group ¥ P acting in the tangent

space Tp(Mn) . The local action h : M® —— M™ of the elements h e a"o’p is defined

by the exponential map:

h=expohoexp_1.

For symmetric spaces these actions are isometrics.

We draw into the consideration algo the Simons theorem [7], asserting that the
holonomy group a"?p of an irreducible Riemannian space is tramsitive on the unit
sphere exept the space is a symmetric space with rank > 2.

In the proof of the following theorems we use de Rahm decomposition and the
proof follows immediately from the Simons theorem, from the proof of the Lichnerowicz

conjecture in the compact case [8] resp. for sharply harmonic manifolds.

Theorem 3.1 Let M™ be a compact Riemannian space with finite fundamental groups.

The M" is a symmetric space if and only if the elements h e J?p induce volume

preserving maps h on M.
Indeed, if one component at the de Rahm decomposition is not a symmetric space

of rank > 2, then it is a two—point—homogeneous space by [8].

Theorem 3.2 Let M™ be an odd dimensional irreducible Riemannian space. The M™ is
symmetric if and only if the functions al()l), ,aI()n—l) =0 p € invariant under the

~

actions h where h e Jb’p.
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Theorem 3.3 A Riemannian space is symmetric if and only if the functions

Hp,wl()l), ,wlgn_l) are invariant under the actions h , he a"o’p , for any point

peMn.
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