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HIGHER ORDER LAPLACIANS I

HARMONIC AND TWO-POINTS-HOMOGENEOUS SPACES

by

Z.I. Szabo

Introduetion

A Riemannian manHold (Mn,g) ia defined to be harmonie if the

lliemwn-Lebc ques ae ty fmetion IlIp = JI aet glJ 1 (resp. if the polar aensity

funetion () = rn- 1cu ) ia depending only on the geodesics distanee r from p in anyp p p p

normal coordinate neighbourhood around any point p. These spaces can be

characterized also by the Mean Value ProDerty of the harmonie functions [10].

The harmonie manifolds are Einstein manifolds and therefore all these spaces are

real analytic w.r.t. the normal coordinate neighbourhoods by the Kazdan-de Turck

Theorem [2J. SO the distinguation of the infinitesimal, local and global harmonicity is

not necessary as all these properties are equivalent.

Any two point homogeneous space is obviously harmonie. The classical

Lichnerowiez conjecture [5] asserts the converse statment: Any harmonie manifold is

two-point homogeneous.

This conjecture was proved by the present author in the simply connected compact

case (resp. in more general, for compact manifolds with finite fundamental groups) [8].

The methods of tbis proof are of global character which do not work in the non-eompact

case. The main tricks if this treatment can be summarized as follows:



-2-

The compact harmonie manifolds eonsidered are Blaschke manifolds, whieh have

simple closed geodesie8 with the same length, say 271" . It tumed out also, that the

squared density funetion 02(r) is a trigonometrie polynomial of the form

02(r) = T(oos r) furthermore the symmetrie (globally defined) eigenfunetions

rpA(r) = rp).(- r) of the radi&l Laplacian

are &Iso trigonometrie polynomial of the form rp).(r) = PA(eos r) .

One ean prove !rom these properties, that the density funetion B(r) is of the form:

B(r) = (sin r)P(l - oos r)q furthermore the first non-trivial eigenfunetion rp). is simple

linear, Le. tpA (r) = A eos r + B . Using an imbedding proeedure, the symmetricity of
1

the spaee follows. This proves the oonjeeture in the ease eonsidered.

In the pr~ent paper we eonsider the harmonie manifolds without any topological

conditions. On the other hand we prove the Liehnerowiez eonjecture under a stronger

assumption namely for sharnly harmonie manifolds.

It is a weIl known fact that the invariant differential operators of a

two-point-homogeneous space are the polynomi~s of the Laplacian. In Chapter 2 we

converse this statement, asserting that a Riemannian space is two-point-homogeneous if

and only if suitable differential operators (the so called higher order Laplacians) Are the

oolynomial of the Laplacian. Also characterizations of harmonie as well as of Einstein

and super Einstein manifoldB are given there.

In ehapter 3 we characterize the symmetrie spaces.
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At last we mention that in an earlier paper [9] of the author a simple topological

proof is given for the symmetricity of the two-point-homogeneous spates. The basie

statement of this proof is the following.

The R~ ( . ) := (V R)(. ,ID)m denotes the indicated eovariant derivative of
-p IDp --p --p

the eurvature tensor with respect to a unit vector mp at a point p. So R' ( ) is a!!!po

self adjoint endomorphism.

If for any p the eigenvalues (or the invariants) of R' are constant along the
IDp

euelidea.n unH sphere 8n- 1 C T (Mn) then R' = 0 VR = 0 follows, Le. the space isp p mp

symmetrie.

We use this statement also in this paper.

§ 1. The Liehnerowiez conjecture on sharoly harmonie manifolds

Let Apjr be the Jacobian endomorphism field along an arc-wise parametrized

geodesics '}(r) , 1(0) = p , defined aB usual by

(1.1) A" + R 0 A = O' Ap',O = 0; Ap'., 0 = Jd ,
p;r 7( r) p;r '

where R. (X) = R(X) = R(X,1)1 is the Jacobian curvature-operator field. The
'}

endomorphisID Ap;r acts in the (n - 1)-dimensional subspace of the tangent space

TJ(r)(M
n

) standing orthogonal to 7(r). The density funetion 0p(J(r)) along '}(r) is

one of the invariants of Ap;r namely it is the determinant: Bp = det Ap . In the

following we consider all the invariants u(l); u(2), ... ,0-(n-1) of A defined by the
p p p p
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characteristic equation:

(1.2) det{A + AId) = An- 1 + q{l)An- 2 + ... + q{n-l) .
p p p

Therefore q(1) = Tr A . q{n-l) = 8 s&tisfy. For a technieal simplifieation we
p p I P p

introduee also the invariants olp) defined by
p

(1.3) o ( 1) := Tr A ; 0 (2) := Tr A 0 A = Tr A2 . 0 (p) := Tr AP .
P P P P P pi P P

The connections between these invanants are deseribed by the weIl known formulas

( [15] ) p. 92)

(1.4)

Using induction, we get that any invariant o{i) is a polynomial of the invariants

q{I), ... ,q{n-1) , and conversely, any invariant q{i) is a well defined polynomial oI the

invariants 0(1), ... ,o(n-I) . It is also weil known, that any invariant system (u
p

OI

0p) uniquely determines the eigenvalues of the endomorphism Ap ' including the

multiplicities a.s well.

A Riemannian manifold is called sham1y harmonie if all the invariants

,..,(1). 'o{n-1) (or equivalently an the invariants q(I). .q{n-1)) are radial....p , ... I P . pi·'· I P

functions around any point p.

Any two-point homogeneous Spate is obviously sharply harmonie. The following

theorem says the converse statement in the odd dimensional case.
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Theorem 1.1. Any odd dimensional sharply harmonie manifold is asymmetrie spaee,

rather more it is aspace of constant sectional curvature.

Proof Fix a point p e. Mn and pick up a unH vector m E. Tp(Mn) . The Taylor aeries

of Ap w.r.t. m is

(1.5)

where the aeH adjoint operators Rm(X):= R(X,m)m; R~(X):= (VmR)(X,m)m are

considered acting in the tangent spaee of the unit aphere S~-l (Tp(Mn) at the point

m E. S~-l . In the case eonsidered also the invariants

(1.6) ß(p) = Tr[~(A -rId)]P= Trl..-RP + O(r)
p r p 6P m

are radial funetions, whieh means that also the invanants of Rm are constant along the

sphere S~-l. Therefore also the eigenvalues of Rm are-constant (with constant

multiplicities) along S~-l. These eigenvalues must be equal beeause in the opposite

case the eigensubspaces of Rm split the tangent space T(Sn-l) into non-trivial
- p

orientable (the first Stiefeld-Whitney class of S~-l ia O!) and continuous

distributions: T(S~-l) = {I S {2 S ... E9 {k . This ia impossible because the Eu1er

cla.sses X({i) are zeros, furthermore the Euler class

x(T(Sn-l)) = x({ 1)VX({2)V ... Vx({k) of the even dimensional sphere S~-l is

non-zero.
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Therefore Rm = -"pId holds for sorne constant Ap and the space is of constant

curvature by the Schure Theorem.

Q.e.d.

The situation is more complicated in the even dimensional case becanse the Euler

class of an odd dimensional sphere is zero rather more the tangent space T(S;-1) can

be splitted into non-trivial continuous distributions. Also in this case the invariants aB

well aB the eigenvalues of Rm are constants on 8;-1 rather more these constants are

independent also from the point p. Hy our guess these properties implies that Rm can

be identified with one of the curvature operators belonging to the

two-point-homogeneous spaces hut the details seem to be complicated.

Hecause of these technical difficulties we introduce a new endomorphism field,

namely the field

(1.7)

along the geodesics ;(s) with p = ")'(0) . All the invariants of Hp define radial

functions around p in the two point homogeneous spaces. This statement can be

conversed for any dimension as folIows.

Theorem 1.2 ARiemann spa.ce (Mn,g) is two point homogeneous if and only if the

invariants of Hp define radial functions around auy point p.

Proof If the invariants of Hp define radial functions around p then also the invariants

(1.8) 6(P) := Tr [~(B -: r Id)] P= Tr(R I f + O(r)
p rl:t P .> P m

p
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define radial functions around p. This means that the invariants as well as the

eigenvalues of R~ a.re constant along 8:-1 . By the methods of the pa.per [9] we get

R I = 0 j VR = 0 , Le. the space islocally symmetrie. Therefore for B we getm p

(1.9)

TI [-~ (B -ir 1d) JP = TrR;P + OCr) I
r p P -
P

2 n-lwhich means that the invariants of Rm as well as of Rm are constant along Sp . So

also the invariants of the Jacobian field Ap define radial functions around p.

Specially, the spaee is a symmetrie harmonie space whieh is a two-point homogeneous

spaee by a Lichnerowicz theorem [1].

Q.e.d.

§ 2. The bigher order Lap1acians

11 ia a well known fact that the invariant differential operators of a

two-point-homogeneous space are the polynomial of the Laplacian. Following we

converse tbis statement, showing, that if same differential operators of a Riemannian

space are the polynomial of the Laplacian than the space is two-point-homogeneous.

For preparing of these operators let us consider a CCD-kerne! function (or double

function)

(2.1)
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on a Cm-Riemannian manifold Mn such that the funetion H(p,p): Mn --t IR never

• nvanishes. For a point p and for a unit vector ep E. Tp(M) the ep(r) denotes the

are-wise parametrized geodesics through p with the tangent vector ep furthermore

dep meaIlB the normalized euclidean measure of the unit veetors ep in the euclidean

tangent space T (Mn). Using the funetion H(p,q) as weight funetion we introduee the
p

averaging operator EH'p'r on a geodesie8 sphere Sp'r with the eentre p and radius r
J , ,

by

(2.2)

where cp ia an arbitrary C(l)-funetion . The odd order derivatives of EH'p'r w.r.t. the, ,
r at r = 0 vanish. The higher order Laplacian A~k) generated by H are defined by

the even order derivatives as follows:

(2.3)

The operators &~k) := &(k) generating by the eonstant function H{p,q) = 1 were

introdueed by Willmore [13] and these were studied by many other authors .. In the

present paper we study more such operators namely generating by the several invariants

of the Jacobian fjeld. From the point of view of harmonie spaees the operators A(k) and

l1~k) play an important role, where 0p = det Ap = u~n-l) is one of the invariants.

These operators are obviously equal on harmonie spaces (Le. ß (k) = ß~k)) .

A function u ia ealled of a common harmonie funetion w.r.t. the operators A~k)

if
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(2.4)

satisfy.

Lei U8 assume thai the space (Mn,g) is analytie w.r.t. the normal coordinate

neighbourhood (it is so ealled normal anylytic) and also the funetion H is analytie. In

tbis case the Taylor serie

(2.5)

gives the following theorem immediatly.

Theorem 2.1 A function u is eommon harmonie w.r.i. the operators A~k) if and only

if for it the mean value property:

(2.6)

holds for any small radius value r > 0 .

In ihe next step we consider the Willmore's operators A(k) and the operators

L1~k) .

Theorem 2.2 On any harmonie space the operators A(k) = &~k) are the polynomials of

ihe Laplacian.
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Proof For a Laplacian eigenfunction with the eigenvalue ..\ we get

(2.7)

which follows from the classical decomposition

(2.8)

and from the Stokes theorem easily.

Hy the (n -1 + 2k)-th derivatives w.r.t. r at r = 0 we have

(2.9)

2k+2 2k

f \ [n+2k ] (a) O( n+k-a+l)de = Af \ [n-l+2k ] (a) O( n-l +2k-a)de
l a-l f{J•• p l a f{J•• P ,

e e e ea=1 p p a=O p p

where cp~ a) resp. O~ a) means the a-th covariant derivative: V~ a)cp resp. V~ a)O of
ep ep ep ep

the functions w.r.t. ep '

The above formula gives the recursion:

(n-l)! [~t~~ ] A(k+l) = [ r[n-1t 2k ] f O~n-l +2k-a)V~ a)dep ] &
a=O ep ep

(2.10)
2k

- \ [n+2k ] f O(n+2k-a+l) v( a) de
l a-l· · p

a=O ep ep
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for the Willmore's operators:

(2.11)

On harmonie manifolds the derivatives O~ a) are constant therefore from (2.10) a
ep

recursion formula of the form

(2.12)

folIows, where Pk(A(1), ... ,A(k-1)) is a polynomial of the arguments. The proof ca.n be

completed by induetion.

The following is the eonverse statement.

Theorem 2.3 Aspate is harmonie if and only if the operators A~k) OI the Willmore's

operators A(k) are the polynomial of the Laplacian.

Proof First notiee that in an arbitrary Riemannian manifold the integral formula

(2.13) Jt/J(e (r))u ' (e (r))de = 0 , where tjJ(e (r)) := Op_(e....p(_r)_)_
p p p p J ·

0p(ep(r))dep

holds for any harmonie funetion u, which ean be proved by the Stokes theorem easily.

Notice too, thai from (2.10)
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(2.14)

follow, where pij is the Rieci curvature und R ia the curvature aealar. Therefore each

of the operators !!(2), !!~2) is the polynomial of the Laplacian !! if and only if the

space is an Einstein spaee. So the spaces eonsidered are normal analytie by the

Kazdan-de Turek theorem furthermore the harmonie functions are analytie by the

Bernstein theorem.

First let UB assume that the operators &~k) are polynomials of the Laplacian. In

tbis case any harmonie funetion (w.r.t. the Laplacian &) is a common harmonie

funetion w.r.t. the operators &~k), therefore by Theorem 2.1 the mean value property

u(p) = EO.p.r(u) followa for any harmonie funetion u. By derivation of EO.p.r(u)
I , , I

w.r.t. r and by (2.13) we get

(2.15) Js rP~ud~ = 0
p;r

for any harmonie funetion u. As any continuous funetion u of Spir ean be extended

into a harmonie funetion of the inside of Sp;r (Diriehlet-problem), so the above

integral equation says: tP~ =0 ,Le. tPp is constant on the geodesics ep(r). As

tPp(p) = 1 ,so tPp = 1 follows and therefore 0p is a rational funetion. Trus proves the

harmonicity of the manifold in the first tase.

If the operators ~ (k) are the polynomial of !J. then from the mean value property

u(p) = Ju(ep(r))dep of the harmonicfunctions u we have

(2.16) Js U I (ep(r))d ~ = 0 .

Pir



-13-

So by (2.13) we get

(2.17)

where for the funetion v = (tPp -1)/Op on Sp;r the integral fonnula

(2.18)

satisfies. Solving the Neumann problem, a harmonie funetion u in the inside of Sp;r

exists, such that u I = V on the boundary Sp;r. Using this funetion u, from (2.17) we

get: rP = 1 . This proves the harmonicity in the second eaBe eompletely.p

Q.e.d.

In the last step we are interested in the question, that in which CaBe is a

Riemannian manifold 01 a two-point homogeneous space.

Theorem 2.4 A eompact Riemannian manifold with finite fundamental group is a

two-point-homogeneous space if and only if the higher order Laplacians &~k) or the

Willmore operators &(k) are the polynomial of the Laplacian.

This statement follows easily from the proof of the Liehnerowicz eonjecture in the

compact case [8J and from Theorem 2.3.

Theorem 2.5 An odd dimensional Riemannian manifold is a two-point-homogeneous

space (rather more a spaee of constant sectional eurvature) if and only if all the higher
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order Laplacians tJ. (N) j tJ. (N) j ... j tJ. (N-l) = tJ.~k) , generated by the invariants
u u u

q~i)(q) = q(i)(p,q) ofthe Jacobian fjeld Ap;q are the polynomials of the Laplacian.

Proof If all these operators are the polynomials of 4. J then the space ia harmonie (Le.

un- 1 = 8 ia radial) by Theorem 2.3. Furthermore for any harmonie function u we
p P

have

u(p) = E (1) (u) =E (2) (u) = EO.p.r(u) J

u iPir U ;pjr ' ,

therefore

u(I)(e (r)) u(2)(e (r))
_ .....P-_P--- = _ .....P_.....P -

Jq~l)(ep(r»dep Jq~2)(ep(r»dep

8p(ep(r))
_ ----'L---oI""----__

J0p(ep(r»dep

(i)follows from the Diriehlet problem, i.e. all the invariante up define radial functioDB

around p. The proof ean be eompleted by using of Theorem 1.1.

Q.e.d.

In the general ease let w(1) w(2) w(n-l) be the invariants of thep , p , ... , p

endomorphism fjeld Bp = Ap - ~ rpA~ defined in (1.7) (i.e.

det(Bp + ~Id) = ~n-l + ",~1)~n-2 + ... + ",~n-l» . Then by the same argument and

from Theorem 1.2 we have

Theorem 2.6 A Riemannian space ia two.-point homogeneous if and only if the operators

tJ.~k) and the operators tJ. ~N)l ... ,tJ.~U-l) are the polynomial of the Laplacian tJ..
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At last we eharacterize the Einstein and also the super Einstein manifolds (An

Einstein manifold is called to be super Einstein if also R~be Rb· = >tg.. satisfies for a
1 a CJ IJ

constant value ;\).

Theorem 2.7 Aspace is Einstein if and only if for an arbitrary fixed index i the

operator t:.~(h is the polynomial of the Lapla.cian.

A spa.ce is super Einstein if and only if for an arbitrary fixed index i the operators

t:. ((?)' t:. ((?) are the polynomial ofthe Lapla.cian.
(J' (J'

The theorem is only a reformulation of a Gray-Willmore theorem [3] a8serting,

that a manifold ia Einstein (resp. super Einstein) Hf the mean value property of

harmonie funetions holda up to the order 6 (resp. up to the order 8). The proof is based

upon the remark that the operator t:.~n) is a linear combination of the operators:

t:.2 = M; piJViVj ' Rt:., (Vj Avi , (ViR)Vi and the operator t:.~U) ca.n be built a.s a

polynomial of the operators t:., t:. (2), RabciRjbCvivj; RabCdRabCdViVi ;

f V. [R. . R. a. b] V. de . For super Einstein manifold the last operator
ep epaepb ep ep ep p

vanishes and the others are polynomials of the Laplacian. These technical details are left

to the reader.

§ 3. Symmetricity of manifolds

In this ehapter we are interested in the question that which symmetricity

properties of the invariants u(1), ... Ju(n-1),w(1), ... ,w(n-l) guarantee the

symmetry of the space.
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In this consideratons we initiate the holonomy group tNp acting in the tangent
N

space Tp(Mn) . The loeal action h: Mn --+ Mn of the elements h E. R p is defined

by the exponential map:

N -1
h=expohoexp.

For symmetrie spaees these actions are i80metrics.

We draw into the consideration also the Simons theorem [7J, asserting that the

holonomy group di of an irreducible Riemannian space is transitive on the unitp

aphere exept the spaee is a symmetrie spate with rank ~ 2 .

In the proof of the following theorems we use de Rahm deeomposition and the

proof follows immediately from the Simons theorem, from the proof of the Liehnerowicz

conjeeture in the compaet case [8] reep. for sharply harmonie manifolds.

Theorem 3.1 Let Mn be a eompact Riemannian space with finite fundamental groups.

The Mn is asymmetrie space if and only if the elements h E. eN induce volumep
N

preserving maps h on Mn.

Indeed, if one component at the de Rahm decomposition is not asymmetrie space

of rank ~ 2 , then it is a two-point-homogeneous space by [8J.

Theorem 3.2 Let Mn be an odd dimensional irreducible Riemannian space. The Mn ia

symmetrie if and only if the functions q(l), ... ,u(n-1) = () are invariant under the
p p p

actions h where h E. ß p .
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Theorem 3.3 A Riemannian spaee is symmetrie if and only if the funetions

Bp,W~l), ... ,w~n-l) are invariant under the actions

n
pE. M .

\

N

h, h E. J'i(P , for any point
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