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An algebraic geometry view of a model
quantum field theory on a curve

A. K. Raina

Abstract

We survey an algebraic geometry approach that we have developed to a
certain model quantum field theory on a compact Riemann surface, which
first arose in string theory. Our aim has been to use algebraic geometry to
formulate it in a way which is not only mathematically rigorous, but which
also brings out the physics as well as the geometry of the model. This is
achieved through an algebro-geometric formulation of the analyticity con-
straints implicit in the physicist’s description of the model by the so-called
operator product expansion (OPE). Algebraic geometry serves not only to
formulate the model, but also provides powerful computational tools. As a
consequence we are able to show that these analyticity axioms are sufficient
to determine all the field correlation functions (needed by the physicist to
describe the system), which we show to be sections (in general meromor-
phic) of line bundles on cartesian products of the Riemann surface. In
the process we obtain a rigorous, unified proof of celebrated identities of
Cauchy, Frobenius and Fay, which are hereby seen to express the fermionic
nature of the quantum system. The current correlation functions, formally
defined by coalescing arguments in the field correlation functions, are ob-
tained using ringed spaces with nilpotent elements. This provides an ex-
ample of a solution using global geometry to a problem of normal-ordering
a product of flelds. The technique of using ringed spaces can be extended
to give a global geometric formulation of the Sugawara construction of the
energy-momentum tensor as a normal-ordered product of currents. We
thereby arrive at a new algebro-geometric construction of a projective con-
nection. Algebraic geometry proofs of classical forinulas in the theory of
functions on a Riemann surface are also obtained in the course of this
study.



. .:1 ..Algebraic.geometry.formulation

The procedure that we shall follow here repeatedly will be to first
introduce the heuristic expressions from quantum field theory that we wish
to interpret in terms of algebraic geometry. The mathematician may regard
them as symbolic expressions yet to be defined. We shall then formulate
those that we shall work with in terms of algebraic geometry. Thus the
sytem that we shall consider consists of a pair of “quantum fields” b and ¢
on a compact, connected Riemann surface M of arbitrary genus ¢ > 0. The
quotes indicate that we do not attempt to define a quantum field, which is
a very singular object and extremely difficult to deal with mathematically
with any rigour. We shall always deal, instead, with certain well-behaved
functionals of the fields, called the correlation functions of the system.
These are, in fact, what the physicist would like to compute.

We denote the general correlation function C(m,n) by the symbolic
expression

Cln,n) = < b(Q1)...0(Qu)e(Py)...c(Py) > (1.1)

where Qy,...,Qm, P, ..., P, are points on M. In physics, such a corre-
lation function should give the expectation valne of finding mn particles of
the field b and n of the field ¢ at Qy,...,Q,, and Py,..., P, respectively,
in their ground state. It is difficult, however, to sustain a serions physical
interpretation of the correlation functions in view of the physical artificial-
ity of the wodel, although these fields do arise naturally in string theory
as Faddeev-Popov ghost fields. Their rather pedestrian origin, however,
does not give any idea of the remarkable interest of this model from the
viewpoint of mathematical physics. Our aim here is to develop a single co-
herent viewpoiut of this system and accordingly we make only occasional
mention of some of the many interesting papers that have been written
about the system.

We shall regard the correlation functions C(m, n) as functionals of the
fields, complete knowledge of which specifies the model. More precisely,
the C'(m,n) will be seen to be - not necessarily holomorphic- sections of
holomorphic line bundles. The analyticity properties of these sections are
constrained by the operator product expansion (O PE) of the b and c fields,
which is given by the heuristic relation [1]

I
b(z)e(w) = p + holomorphic terms, (1.2)

where [ is the identity operator and this relation is supposed to make sense
only inside one of the C'(n, n).

We begin the development of our algebraic geometry formulation of the
model by assoctating a holomorphic line bundle e on M to the “quantum
field” ¢ and a holomorphic line bundle § on M to b. Thus C{m,n)is a
meromorphic section of the line bundle

p;(ﬁ) @ Q p‘r‘u(ﬂ) ® ]):n+1(f.l‘) ® @ p:n+n(a) (1’3)
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on M™¥" = My X...X Mpqn, the cartesian product of m+n copies of M,
where p; : M™¥" — M; is the i-th canonical projection. The OPE (1.2)
will now be interpreted as saying that the only singularities of C(m,n) are
simple poles when a @ and a P argument coincide. We must emphasise
that this global principlc in no way restricts the possible singularities that
can arise in practice. All it means is that we require that any singularity,
other than the ones of physical origin coming from the OPE (1.2), must
. be forced on us by rigorous mathematical analysis. (See the discussion of
the spin (1 — J) — J system below). Wlhile our principle has a certain
resemblance to the “principle of maximal analyticity” in vogue in physics
many years ago, it is more compelling here, since our model belongs to
a class of models essentially defined through their OPE’s. It should be
noted, however, that our principle extends the meaning of the OPFE, a
property of the model on the compler plane [1], to the compact Riemann
surface M.

Our first conclusion from this is that the “one point functions” C(1,0) =
< b >, C(0,1) = < e > aresimply holomorphic sections of 8 and « re-
spectively. A plysicist who was studying this system starting from a la-
grangian would call thesc one point functions the zero modes of the system
and would want to eliminate them. Starting from the OPE (1.2) as we
are doing, however, there is no reason up fo now to introduce constraints
on the line bundles o and A so as to eliminate such sections.

The first nontrivial case is that of the “two point function” C(1,1) =
< WQ)e(P) >. In view of the OPE (1.2) we are led to the following
definition :

Definition 1.1 < be > is @ meromorphic section of the line bundle p}(5)®

pa{a) whose only singularity is a simple pole along the diagonal A of M x
M.

This means that a non-zero two point function exists if and only if the map
1 in the exact sequence

0 — HOM x M, pi(B)@py(a)) 5 HOM x M, pi(8)@p(a)@0(A)) (1.4)

s not an isomorphism,

So far the line bundles o and § have been completely arbitrary. We
cannot, of course, expect to get anything interesting without some restric-
tion, but it is important to make these restrictions as weak as possible.
The optimum condition turns out to be to simply bound the sum of the
degrees of the two line bundles by 2¢ — 2. We then have the following
elegant characterisation of the b — ¢ system (see [2] for the proof):

Theorem 1.2 Let deg(«) + deg(B) € 2g — 2. Then a non-zero two point
SJunction < be > exists if and only if :
(i) B® o = K = the holomorphic cotangent bundle of M

(i) deg(a) = g — 1 = deg(f)



« s e (Ad) neither. . nor. B havesanyholomorphic:sections. :
If these conditions hold then the two point function not only ersts, but it
is also unique (after normalisation).

Thus we see that simply requiring the existence of a non-zero two point
function imposes very stringent conditions on the line bundles o and g,
even though the degree condition we imposed is very much weaker than
the conditions one would be led to impose in a field-theoretic approach. In
fact we can use Theorem 1.2 to understand the conventional formulation of
the model. Thus condition (i) is precisely the condition that the integrand
of the standard action for the b — ¢ systemn, viz. S ~ [y, bic, is indeed a
volume form, as it must be for the integration over M to make sense. A
field associated with the line bundle K®*, the A-th tensor power of the
holomorphic cotangent bundie &', will be said to have “conformal spin A”
and so condition (ii) means that we are in the case when b and ¢ are fields
of conformal spin 1/2, or rather a “twisted” version of it since we do not
require 4 = « = VK. Finally, condition (iii) says that zero modes must be
absent. However, we now see that this is necessary in order to have a two
point function whose singularity structure is determined by the OPE (1.2),
rather than because some undefined functional integral will otherwise give
trouble, as is nsually argued !

We seemn to be excluding fromn consideration the (conformal) spin
(1 - J) — J version of the b — ¢ system (J is a positive integer or half-
integer) which is usnally considered in the literature. That is, however,
not the case. For indeed let us take deg{«) = 2J(y — 1). The Riemann-
Roch theoremn tells us that « has holomorphic sections (“zero modes”)
if J > 1. Theorem 1.2 asserts that in that case the two point function
< be > must have ertre singularities not coming from the OPE (1.2) and
these extia singularities must be such that we obtain « new b — ¢ system
which docs satisfy the conditions of the theorem. One way is to introduce
points xy,..., 2z, where = (2J — 1)(g — 1) and let D denote the divisor
14 ---4+x7. Define @ = cr®0(—D),ﬁ = f®O(D). Then for & and 8 we
have the required properties deg(@) = g—1 = deg(B) and G®f = a® B =
K. Condition (iii) of Theorem 1.2 will also be satisfied for a generic choice
of the points {=;,7 = 1,...,I}. This is ¢ffectively how physicists handle
the spin (1 —J)—J case of the b — ¢ system. For complete details we refer
to [3].

Anotlier interesting cousequence of Theoremn 1.2 is that it provides a
proof of one of the folk theorcins of the physics literature, viz. a kind of
“charge conservation theorem” for “spin fields” (mnore generally, for “twist
fields™). We are given pairs of points and rational numbers {z, ;| 1 <
i < Nyt {ys,~v; | 1 <5< N_}, where the =, y; are points on M. The
{ti, ¥; are positive rational numbers which satisfy the constraint Zf\:'l -

Z;V:'l v; = £ (€is a positive or negative integer called the “total twist”) and

which describe the monodromy of the b and ¢ fields near the corresponding



points :

b(z) ~ (z—=wm)™" e(z) ~ (z =z}

~ (z=y)7 ~ (z=y;)™" (1.5)

Then with the help of techniques from algebraic geometry we can re-
duce the problemn of studying the § — ¢ system in the presence of such
a “twist structure” to the generalised system of Theorein 1.2 on a finite
cyclic covering M — M, defined by a positive divisor D of M and a line
bundle £ such that £L®¢ = O (D), where d is the degrce of the cyclic
covering. Theorem [.2 then implics that the total twist £ must be zero. In
the case of spin ficlds this iminediately iinplies that for a nonzero two point
function we must have as many spin fields with a positive square-root be-
haviour as with negative, a well known folk theorem [4]. For details of the
construction and proofs we refer to [2)].

2 Field correlation functions

In the previous section we saw that algebraic geometry helped us to
achieve a rather detailed qualitative understanding of the b — ¢ system from
its OPE (1.2). In fact, algebraic geometry enables us to do much more
and we will need no more input from physics (apart from the question of
statistics). We shall from now on assune that the line bundles a and g
satisfy the conditions of Theorem 1.2, i.e. that o € Pic?”!(M) and has no
holomorphic sections and that § = K ® «~!. We shall not give any further
discussion of the spin (1 = J) = J system, for which we refer to [3]. We can
now obtain an explicit expression for the two point function < be > with
the help of the following lemma :

Lemma 2.1 Let M¢(1,1) = p5(K ®(H@p3() @ O(A), where deg(() =
g—1. Then:

(i) if g = 0, M¢(1,1) is the trivial line bundle on M x M,

(i) if g 2 1, M(1,1) = 7(O(0)) where 7¢ : M x M — Pict™' (M) is
given by (Q, P) — O(Q~P)®(. Here O denotes the canonical theta divisor
(in Pics=Y(M)). (This becomces a translate of the usual theta divisor by
the Riemann constant once « marking is chosen on M, which defines a
Riemnann matriz in canonical form).

We also need the concept of the “prime form” E(Q, P) for which we
liave found it convenient to introduce a new algebro-geomnetric definition :

Definition 2.2 We definc the prime formn to be the tmage of the canonical
element 1 € Oprxar in the exact sequence :

—E(Q.F
0 — Orrxar | =Q )OMxM(/-\) (20

[ubs |



~ s« This definition. of the prime form E(Q, P) can be related to the usual |
function-theoretic definitions in various genera to he found in the books of
Fay[7] and Mumford([8] with the help of Lemma 2.1. Then by once again
using Lemma 2.1, we can obtain the two point function < be > explicitly
and for ¢ > 1 it coincides with the Szeqgs kernel for o compact Riemann
surface, which was introduced by Hawley and Schiffer [5]. We refer to [2]
and [6] for details of our approach.

The question of determining the higher point field correlation functions
of the system is, of course, not meaningful until we have specified the
statistics of the system. In [2] we have analysed the possible statistics of
the system from an axiomatic analysis of the OPE (1.2). We shall not go
into that hiere but merely report the conclusion that the usual Fermni/Bose
dichotomy holds (if we weaken our requirements then some more exotic
possibilities do exist [2]). Of the two cases the ferinionic one turns out
to be more interesting and we shall confine our attention to that case,
although the hosonic case requires only a simple modification.

Our claim that the fermionic case is mnore interesting than the bosonic
one only holds if we implement the condition of fermionic statistics in a
special way, viz. by adding to the OPE (1.2) the following OPE’s for two
b or two ¢ fields:

b(2)o(w) ~ Oz — w), e(z)e(w) ~ Oz — w) (2.2)

whose meaning is that the correlation function C'(m, n) should vanish when
the arguments of two & or two ¢ fields coincide. We can now write down
siimple axioms for all the field correlation functions C(m,n) :

Axioms 2.3 Fach ficld correlation function Cm,n) =< b(Q1)...0(Q:)

(A1) ...c(Py) > is a meromorphic section of the holomorphic line bundle

Falmyn) = pi(K@a™ @ - Qi (K®a)® P (@) ® - @ pl g ()
(2.3)

on M™" having :

(A1) « simple zero for Q; = Q; or P; = Pj,

(A2) «a simple pole for Q; = P;,

(A3)  no singularitics other than thosc required by the second axiom,

Axioms (A1) and (A2) define divisors (formal smns with integral co-
efficients of codiinension 1 subvarieties) of M™*" which we respectively
denote by D (m,n) and D,(m,n) and the total divisor is D(m,n) =
D (mn,n) — Dp(in,n), where we follow the usual convention of putting
a plus sign for zeros and a minus sign for poles (see [9] for an introduction
to this concept for physicists). Then by (A3) we conclude that C(m,n)
defines a holomorphic section of the line bundle

Mo(m,n) = Fo(m,n)® O(-D(m,n)) (2.4)
Thus, C(mn,n) defines an element of HY'(M™" Mq(m,n)) and we can

pose a precise mathematical question, viz. what is the dimension of the
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following theoremn (see [6] for the proof) :

Theorem 2.4 (i) If m # n, dimH(M™*" Ms(m,n)) = 0
(ii) If m = n, dimH(M*™ My(n,n)) =1

This theoremn has significant implications for the physics of the b — ¢
systemn, for part (i) implies that C(m, n) = 0 for m # », which is in perfect
agreement with the physicist’s argument that this must happen due to the
requiremnent of churge conservation. This latter argument would normally
be based on the lagrangian of the systen, but here we see that the OPE’s
serve equally well. Part (ii) of the theorem is even more remarkable, as it
implies the validity of the Wick representation

Clnyn) = det(< b(Qi)e(P) >)|:‘j_1 (2.5)
since it is clear that the determinant of two point {functions on the right-
hand side of (2.5) satisfies all our axioms. This result shows that indeed
our method of introducing the condition of fermionic statistics through
the OPE’s (2.2) was correct. Moreover, it also leads to - rigorous proofs
of- interesting identities once we can write down the correlation functions
explicitly. Tor this all we need is the following lemma and our previous
observations on the prime form :

Lemma 2.5 (i} If g =0, then M,(n,n)) is the trivial line bundle;
(ii) for g > 1, Mu(n,n)) = 7*(O(0)) where o) Mo, Png—l(M)
s given by (Q], N .,Q,;,Pl, NN P”) . O(Z?(Q: _ Pc))@ .

With the help of this lemina we can write down the 2n-point function
C(n,n) directly as a product of the unique section of M, (n,n) (1 forg =10
and a theta function for g > 1) and the canonical meromorphic section of
O(D(n,n)) (aratio of products of prime forms). Ou the other hand, by the
Wick representation (2.5), which we have proved, it can also be expressed as
a determinant of two point functions. In this way we obtain, with complete
mathematical rigour, interesting identities. These identities are usually
referred to as the bosonization identitics in the physics literature hecause
of the way they first appeared in physics, viz. they provided a proof that
two methods of obtaining the correlation functions of the b — ¢ system were
consistent {10]. Our analysis, on the other hand, traces their physics origin
to the O P E’s of the systemn and is more powerful in that it provides a proof
of the identities instead of using them to show counsistency. Of course, the
bosonization viewpoint can also be made rigorous in the Grassmannian
formulation[11]. The identities take different forms in different genera and
were first obtained by the mathematicians wlhose names are attached to
them :



© 4t 4(i) Cauchy’s-bialternant -identity (¢ ='0) :

Micici<n(Qi — Q; )P - F) ( 1 ) n ‘
- = det | s—— — 2.6
M<ij<n(Qi — Pj) I.‘,j:x (2.6)
(ii) Frobenius’ identity (y = 1) :

ola + 33(Qi - F)) Micicjena(Qi — Q;) a(P; — F;)
a(e) h<ij<no(Qi — F;)

det. (U(Q + Qi - Pj))
ala) a(Q; — Py)

mn

(2.7)

1,57=1
(iii) Fay’s identity (g > 2) :

Bla)(3(Q: — F;) Micici<n BE(Qi, Q;) E(P;, F)
9[(1‘](0) rllfl’,jﬁﬂE(Qi ) PJ)

dcl,( Ola)(Qi — F;) )
fe](0) E(Qi , F;)

Note that in (2.7) and (2.8) the conditions that o(a) # 0 and #[a](0) #
0 hold if and only if « has no holomorphic sections, which is (LA3) of our
axioms. The case n = 2 of (2.8) is usually known in the mathematics
literature as the trisecant identity for geometrical reasons into which we
shall not go here [8]. Detailed proofs of the results of this section can
be found in [6] and [2}. An exposition of our proof for mathematicians, in
which tlie connections with physics have heen eliminated, has also appeared
in the treatise [12].

Before we conclude our discussion of the field correlation functions of
the b—ec system, let us expand on a remark in [2] concerning a variant of the
systemn dicussed above, which sometimmes appears in the literature (see the
paper of the Verlindes in [10]). The only diflerence is that the defining line
bundle «r is now taken to be an odd theta characlerisiic. More generally,
we take deg(a) = g — 1, h'(M,«) = 1, i.e. « is a smooth point of the
canonical theta divisor © in Pic!~'(M). Of course, Theorem 1.2 says that
this system has no two point function in the sense of Definition 1.1, but in
the physics context what is of interest is the question of the existence of
higher point functions satisfying Axioms 2.3. By a carcful analysis of the
proof [6] of part (ii) of Theorem 2.4 we obtain :

Theorem 2.6 dimH(M** M,(n,n)) = 1 (n=1,2,..)) <
eithcr « € Picd=Y (M) = O or «v is a smoolh point of O,

n

(2.8)

i,7=1

With this theorem we can not only show that the system has 2n—point
functions (for » > 2) uniquely determined by Axioms 2.3, but with this
we can also give a direct proof of a corollary to Fay’s identity (2.8), which
Fay {7] obtains by a limiting argument from (2.8) (see equation following
eqn.43 on p.33 of [7]). Thus we see that this case of the b — ¢ system is
also covered by onr approach.



3 Currents

1

We shall now describe some recent work [13](details will appear in [14])
on an algebraic geometry approach to the current correlation functions.
The heuristic definition of the current j(z) is through point-splitting and
subtracting the leading singularity :

i(z) = D b(Q)e(P) - o-F (3.1)

This definition does not lend itself in any obvious way to a geomet-
ric formulation, but we shall show (see [13]) that in fact the modern
Grothendieck forinulation of algebraic geometry provides us with the nec-
essary concepts to achieve this. To understand the problem, let us first
consider the one point function < j(z) >. According to the heuristic defi-
nition (3.1), < 7(z) > should be identified with the coefficient of (Q — P)
in an expansion of < 0(Q)c(P) > E(Q,P)— | about the diagonal A of
M x M. This definition suggests that < j(z) > is a holomorphic one form
on M, but this procedure does not offer a global geometric definition. It
involves subtracting sections of (at least for g > 1) two different line bun-
dles, viz. M, (1,1) and the trivial line bundle on M x M, and performing
a Taylor series expansion.

Our solution to this problem is based on the observation that we do not
require M,(1, 1) to be trivialisable on the whole of M x M, which in any
case is not true for g > 1, but ounly on the first infinitesimal neighbourhood
of A in M X M, which is defined through the concept of a ringed space.
Since ringed spaces arc not very familiar to physicists, let us first consider
the variety A itself as a ringed space. It is defined as a pair (A, Oa)
consisting of the topological space A and its structure sheaf of holomorphic
functions Opa, which is the guotient of the sheaf of holomorphic functions
on M x M modulo those vanishing on A. The restriction of O to an affine
open set I is of the form [z, y|/S(x — y), where k{z,y] is the polynomial
ring in the variables x and y and S(a — y) is the ideal in k{z, y] generated
by (x—y). This quotient is of the form of a polynomial ring in one variable
k[t], where t = & + y, which is as it should be for it to be the structure
sheaf of the one dimensional variety A, which ts simply a copy of M.

The first infinitesimal neighbourhood 2A of A consists of the pair (A,
24 ), where A is, as before, the topological space, but with a new structure
sheaf Q4. This latter is the quotient of the sheaf of holomorphic functions
on M x M modulo those with a double zero on A. The restriction of this
to an affine open set I/ is of the form k[z,y]/S(z — ¥)?, where S(z — y)?
is the square of the ideal generated by S(z — y). This quotient is of the
form k[t) @ k[t]dt, where t = ¢ + y and dt = & — y so that (dt)? = 0, i.e.
the ringed space (A, O2a) contains nilpotents. The global geometric way
of describing this is that

P(02a) = Op & K, (3.2)

9
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first factor of M x M is the direct sum of the trivial line bundle and the
cotangent bundle of A (or rather their associated sheaves). The important
point is that the decomposition (3.2} is canonical. This means that we can
in a natural way find the component of an element of the Lh.s. of (3.2) in
cach factor on the r.h.s.

4 Field-current correlation functions

We shall now see how the concepts introduced in the previous section
enable us to compute not mercly < j(z) >, but also the general field-
current correlation function < (@) ... 0(Qn-1)e(Pr)...c(Pro1)i(2) >.
By (3.1), this field-current correlation function is the coefficient of (@,,— P,,)
in an expansion of C(n,n)E(Q.,, P,) about the diagonal @, = P, = z of
M, x My,. This suggests that the field-current correlation function is a

- meroworphic one form for fixed {@Q;, F;, 1 £ i < n —1}. As explained
in the last section, our proposal is to study C(n,n)E(Qn, Ps) on the first
infinitesimal neighbourhood 2A of A in M,, x M,, and to use the canonical
global splitting of (3.2) above to determine this meromorphic one form.

Now C(n,n)E(Q,, P,) is ameromorphic section of Fo (1, n)®0O(Dn 24),
where D;; denotes the divisor of M*" defined by the diagonal of M; x M.
Since the only relevant variables of C'(n,n)E(Qn, P.) are @, and F,, we
can restrict Fo(n,n) @ O(D,, 2,) to general position on each M; for ¢ #
n,2n to get the line bundle £ = M (1,1)® G on M, x M, where G =
P2(O(D)) ® 13, (O(=D)), ¥ = @ ® O(D) and D = TIH(Q: — P). As
explained in the last section, our approach will only make sense if L is
trivialisable on the ringed space 2A. While it is simple to see that £ is
trivialisable on A, this is a very subtle question on 2A, but nevertheless
true :

Proposition 4.1 The line hundles M.(1,1) and G are both trivialisable
on 2A and thus £ 1s so as well.

We can now use the canonical splitting (3.2) to compute the image
of C(n,n)E(Qn, P) in (3.2), where for gy > 1 we take the classical trivi-
alisation of M,(1,1) by Riemann’s theta function 8[a](27~1(Q: - P) +
@)/} (1 (Qi— P;)). Here « in square brackets denotes theta character-
istics determined by e (after having chosen a marking on M, a symplectic
homology basis and the dual basis of holomorphic one forins w;, 1 < 1 < g),
i is in @Y and the sums are Abel sums. We also need to determine what
happens to the natural meromorplic section of G, which is a product of
primne forms.

Lemma 4.2 Let 1p denote the the natural section of O(D) and now con-
sider pr(1p) @ p,(1-p), which can be written in the notation of prime

Jorms as (I VE(Q,, Q) E( Py, PN /(N E(Qy,, P)E(P,, Q). Then the
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restriction of this meromorphic section to 2A takes, in the canonical de-
composition (8.2) above, the form | + wp, where wp is a meromorphic
one form on A (identified with M, ) having stmple poles at @1, ...,0Qn-1
with residue +1 and at Py, ..., P,_y with residue —~1. The stgns of these
residues are fized by choosing an isomorphism between Kp and O(—A)|A
which, when g > 1, is compatible with the Abel map.

Lemma 4.2 is an algebro-geometric form of a well known formula for
the prime form: we-p(z) = d; In(E(z,a)/E(z,b)). Note that there is no
canonical trivialisation of G on 2A. The effect of choosing a different
trivialisation is to siinply change w,_; by the addition of a holomorphic
one form, which does not maitter since w,_p was only defined up to the
addition of such a one form. When we want to write the formulas for the
correlation function in function- theoretic form, the correct choice will be
made by the chosen marking of M and the representation of the prime
form as a function on UXU, where U is the universal covering space of
M.

With these two results it is easy to obtain the field-current correlation
function :

Theorem 4.3 The field-current correlation function is given by :

< ’)(Q]) e .I)(Qn_l)C(P]) .. .C(P“_])j(Z) >= C'(’Il - 1,‘” - 1) X

g n=1 _
wp(z) + ij(z) dn 9[(1](2((?; - P) + @)/ 0’ o (4.1)

where the second term s absent for g = 0.

Alternatively, we can compute the field-current correlation function
starting from the determinantal form of the field correlation function. For
this we need an algebro-geometric analogue of a simple formula given by
Mutnford (see part {a) of the leinina on page 3.225 of [8]) for the prime
form, viz. d.(E(z,a)/E(z,1))]:=e = !/E(e,b). From the proof it is clear
that Mumford actually obtains d,E(z,@)|:=¢ = 1 from which this formula
follows. Our algebro-geometric analogue of the latter is that we can find
the image of the canonical section “1” of the trivial line bundle Opsxar on
M x M in O5(A) by traversing the following commutative diagram in
two different ways :

Omxa|A = Oa(A)

] 1
Omxnr — Onrxm(D) (4.2)

As a result of this calculation we obtain the following alternative form for
the field-current correlation function :

11



s v Theorem-4.4 « From the-Wick-representation wevobtain,

< W(Q1) .. b(Qno1)e(Pr)...e(Pro)i(z) >=C(n-1,n-1) < j(2) >

-1

=3 < Q1) B Quot)e(PL) (P = 7). c(Pact) >< b(2)e( Pi) >
k=1
(43)

The two expressions (4.1) and (4.3) for the field-current correlation
functions give us an identity, which is a simple generalisation of the “first
corollary to Fay’s identity” given by Mumford [8], valid in all genera. We
refer to [14] for details.

5 The two point function of currents

The two point function of currents < j(21)j(z2) > is the most tinpor-
tant current correlation function from the point of view of physics and so
it is very hmportant to sec whether our techniques generalise to this case.

From the OPE (1.2) we see that < j(z1)j(22) > is given in terms of
the 4-point function €'(2,2) by the following heuristic double limit :

< j(z:1)i(z2) > = {C(2,2)E(Q1, P1)E(Q2, P,)
1= < (o) > = < i) >,

(5.1)

—Pi=z;(i=1,2)

It may look very unlikely that we can make mathematical sense out of
(5.1), since we have to make sense first of the sum of I, < j(z1) > and
< F(z2) > and then of subtracting it from the first term in (5.1)!

We expect < j{21)j{22) > to be a {meromorphic) one form in each
variable, i.e. that it is a meromorphic section of the canonical bundle
wamxa = piK) @ p3(I) of M x M. Now C(2,2)E(Q1, PL)E(Q2, P2),

which appears in (5.1), is a meromorphic section of the line bundle
R = .7'—(,(2,2)@0(0]3-}- D'zq) = JMO(Q,'Z)@A, (52)

where
A = O(Dlz + Day — Dy - D?S) (5'3)

The natural generalisation of the procedure of the previous section is
to consider the restriction of the line bundle R to the sub-scheme Z =
2A33 X 2444 of M*. Our basic tool for studying this restriction is the
following beautiful exact sequence

O — wy — Oz — Oy — O (5.4)

where ¥ = A13 X qu.
The exact sequence (5.4) does not seem to exist in the mathematics
literature and its only raison d’étre appears to be to enable us to make sense

12
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s of thedieuristic formula (5.1} for which it has.just-the-right properties. .For

if prq, denotes the projection A4 — M, x M, and we take the direct image
of (5.4) by it, we get a new exact sequence

O — war xa, — Pr12.{0z) — prigO2y) — O (5.5)

The remarkable feature of (5.5) is that pri2.(O2y ) is a rank 3 vector bundle
on M, x My which is canonically the direct sum of three line bundles :

Prize(Oay) = Omyxr, @ Ky, @ Ky (5.6)

Note that this splitting enables us to make sense out of the formal sum
L4+ < j(z1)> + < j(z2) > in (5.1). In addition, pri2.(Qz) is a rank 4
vector bundle on M; X My which is canonically the direct sum of four line
hundles :

pr12-(0z) = Oarxat, © Karp, © Kar, O war xar (5.7)

Now all we need is to know wlether the line bundle R is trivialisable on

Z.

Proposition 5.1 The line bundles M, (2,2) and A are trivialisable on Z
and hence so is R.

In order to be able to actually compute < j(2)j(z2) > we need to
know what happens to C(2,2)E(Q, P1)E(Q2, P} on restriction to Z. It
is the product of the unigne section of M(2,2), which is easy to handle
by a simple generalisation of the procedure for the case of the field-current
correlation function, and the canonical meromorphic section of the line
bundle A, defined in (5.3), which we shall denote as 14. The answer
in this case can be expressed in terms of what is sometimes called the
Bergmann kernelwg [6) or, more appropriately, the generalised Weierstrass
g function. This concept was introdnced for a compact Riemann surface in
function-theoretic form by Hawley and Schiffer [5]. This way is not suitable
for us and so we introduce it through an algebhro-geometric definition: it
is a symmetric meromorplic section of wysxas, defined by a holomorphic
section of wasxar(2A) which is 1 on restriction to the diagonal A of M x M.

Lemma 5.2 Let 14 denote the canonical meromorplic section of the line
bundle A defined in (5.3), which can be wrillen as { E(Q, Q2)E( P, P1)}
[{E(Qy, P2)E(Qq, Pi)} in the notation of prime forms. Then its restric-
tion lo Z has the following decomposition in the canonical decomposition
of equ.(5.7) :

1AlZ = 1 4+ wg(z,22) (5.8)

13



«Since there iscno canonical-trivialisation-of A on Z, wg(21, 27) is+defined
only up to the addition of a holomorphic bidifferential. However, a definite
one is automatically fixed when the appropriate choices have heen made,
just as for wp(z) in Lemnma 4.2.

If we think about the meaning of restricting 14 to Z we easily realise
that Lemma 5.2 is simply an algebro-geometric proof of the following well
known formula wg(w,y) = 9*In E(z,y)/0xdy (see (7] and [8]). When
g = 1 this gives the following well known formula linking two functions of
Weierstrass, viz. p(z) = —d?Ina(z)/dz% The link between Lemma 5.2
and this equation is the elementary formula

o fE eyt 8)f(y) _
2 (f(m+e,y)f(m,y+ﬁ) B ') - Oxdy

In f(z,y)dz dy. (5.9)

e—
§—0
Lemma 5.2 gives a rather remarkable geometric interpretation of this
formula for wg, for if we write down 14 on an affine subset of the Riemann
sphere (case when ¢ = 0), i.e. on the complex plane, we see that it is
simply the anharmonic ratio of four points on the complex plane. Thus
14 is @ natural gencralisation of the notion of the anharmonic ratio (or
cross ratio) to a compact Riemann surface of arbitrary genus. Thus the
formula for the Weierstrass function g(z) comes by coalescing two pairs
of arguments in the generalised anharmonic ratio in the case of genus
g = 1. This viewpoint accords an unexpected fundamental role to this well
known forinnla as well as a new insight. In Leinma 5.2 we wrote down this
generalised anharmonic ratio in terius of prime formns. By the dictionary we
have earlier established for the prime form in [2] and [6], we find that this
combination of pritne forms coincides with a function-theoretic definition
of a generalised anharmonic ratio proposed recently by Guuning [15].
We can now compute the image of C(2,2)E(Q,, 1) E(Q2, P2)|Z in (5.7)

to ebtain :

Theorem 5.3 The two point function of currents is given by

s 3 g , 0%0[ct] (i + )
< .?(31)](22) > = wB(*hQ) + i,j2=:1 1":(21)‘ff3(~2)m 2ed=0
(5.10)

where the sccond terne on the right-hand side is absent if g = 0.
Theorem 5.4 From the Wick representation we obtain

< j(=1)i(z2) > = < j(z1) >< §(22) > = < b(z1)c(22) >< b(22)e(z1) >
(5.11)

Equating these two expressions for < j(z1)j(z2) > gives us only a tautology

for ¢ = 0, but for ¢ > 1 it gives the “second corollary to the trisecant
identity” [8]:

14



Theorem 5.5:-The following identity holds for all genera g 2 1,

g 0% 1In 8[a](0 flal(zy = 2)0a)(z2 — 21
wp(21,72) + ‘.JZ__ZI wilz1)w;(z2) 811.{6[)13,—( ) - [((])([rr](O))z()E[(Z]I(, 22))2 )
| (5.12)

It is important to note that our results for the field-current correlation
functions (equs.(4.1) and (4.3)) as well as for the two point function of the
currents (equs.(5.10) and (5.11)) are perfectly consistent with the standard
field-current and current-current operator product expansions as found in
[1] (with an adjustment for a diflerence of notation}):

i) ~ LD ) ~ - LD ()
J(z)j(w) ~ ; (5.14)

(z — w)*

Details of the proofs of tlie results of this section will appear in [14].
6 n-Point current correlation functions

We shall briefly sununarise the procedure by which we can extend the
methods of the previous section so as to calculate the n-point function of
the currents < j(z1)...7(z,) >. Details will be given in [14]. The heuristic
double limit (5.1) is now replaced by the multiple limit

< j(z1)---3(z) >= litn )C'(u,u)HE(Q,-,P;)
=1

- Q;-—vP,‘:::,‘(leSﬂ

n
—1-Y <z > - > < (z,) 5z, ) > (6.1)
t=1 1<i1 <o Cig—1<n

Our starting point is now the line bundle F,(n,n) @ O(ZIL, D; nti)
of which the first term on the right- hand side of (6.1) is a meromnorphic
section. This line bundle can be shown to be trivialisable on restriction to
the product Z,, of the first order neighbourhoods 24, ,,4; of the diagonals
A of My x M;, over | < i < n. Instead of the exact sequence (5.4) it
turns out that we now have an array of n — 1 short exact sequences. We
define the canonical projection pr,, : M?* — M™ and, as before, taking
the direct image of Oz, by this map enables us to make sense of the
swin of lower order current correlation functions appearing in (6.1). We
have then to compute the imnage of the first term on the r.his. of (6.1)
in pr.Qgz, and to pick out, in the canonical decomposition of the latter,
the component giving a (meromorphic) section of the canonical bundle
of M™. This is a rather complicated expression (except when g = 0),



~« swhichvwe.do not-writerdown,-but-itscan- hesxregarded-asecomingsfrom -the
non- determinantal side of the expressions we had obtained for C{n,n) in
Section 2. The cowmputation is much simpler when one starts with the
determinantal expression for C(n,n). In this case the n-point function of
currents is given by the determinant of the n x n matrix A = (a;;), where
aij = < b(z)e(z;) > if i # j and ay; = < j(z;) >. Equating these
two expressions for the n—point function of currents leads to interesting
identities in all genera:

Theorem 6.1 (a) In the case of genus g = 0, where < j(z1)---j(z,) >=0
if nis odd, let zy, ..., 290 (m > 2) be arbitrary complex numbers and define
the antisymmetric matriz A = {ai;} by aij by ai; = /(2 — ;) for i # 7,
0 otherunse. Then

det(A) = Z H V(= = z,) (6.2)

where (14, 34) is an clement of a partition of 1,. .., 20 into non-intersecting
pairs with iy < jy, the product being over distinct pairs in a given partition
and the sum over different partitions.

(b) Let g > 1 (n > 3) and let D denote the vector field BI_ wi(2)0/0v;,
where, as before, the wy arc a busis of holomorphic 1-forms. Then

Dupoo-Doynbfal(©) = (=0 ] Salzi,z)) (63)

where each term of the sum is labelled by an irreducible n-cycle (e.g.
(12)(23) - -(n — 1 2)(n 1)) and the sum is over all such cycles. S,(z,w)
s the Szcgd kernel, as usnal.

We were unable to find the identity (6.2) in the literature, though, of
course, it would be very surprising if it were new. A direct elementary
proof of it was obtained by Prof. Don Zagier. The second identity (6.1)
can be found in the book of Fay [7] when « is an even theta characteristic
(see eqn. (40) on p.27) and n = 4.

There is a well kuown procedure by which one sees that the O PE (5.14)

o 1
i) ~

is equivalent to the iufinite oscillator algebra

{C:jn”jnnju] - "”cﬁm+n,01 [jrnc] = 0}

It is then natural to regard the set {< j(z1)...5(2,) > [n = 1,2...} as
a realisation of the oscillator algebra with ¢ = 1 on an arbitrary compact
Riemann surface.
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7 Energy-momentum tensor

In this section we shall snmmarise results of [14] on the only aspect of
the system that we have not discussed as yet, viz. the energy-momentum
tensor. We shall fiud that once again our ideas of trivialisation play a
role, but that this time we have to consider second order neighbourhoods.
Formally, the cnergy momentum tensor is the normal ordered product of
the currents: T(z) = (1/2): 55 :. It is to be calcnlated heuristically by the
following “point splitting formnla”:

. 1. , 1
T(z) = | lim_ S(<j(z2)i(z2)> - m) (7.1)

This means that the one point function < T'(z) > should be obtained
by expanding < j(21)7(z2) > (£(z1,22))* — 1 about the diagonal and
looking at the coefficient of (z; — z,)%, which is of a higher order than
in the corresponding situation for currents. We are thus led to consider
the holomorphic line bundle warxar(2A) restricted to the second order
neighbonurhood of the diagonal, which we shall denote as 3A; it represents
the ringed space (A, O3a) where O34 = Oarxar/O(=3A). The exact
sequence that we have to consider is the following canonical exact sequence:

O — K% — O3a — Op — O (7.2)
We thien have the following proposition:

Proposition 7.1 The line bundle wppcar(24) has a canonical trivialisa-
tion on 2A and is trivialisable on 3\ (in fact on nA). '

We shall normalise the trivialisation by requiring that the section which
defines it should restrict to 1/2 on A.

Definition 7.2 We define the one-point function < T(z) > of the energy-
momentum tensor lo be a trivialisation of w(2A) on 3A such that its re-
striction to 2A coincides with the canonical trivialisation, taking the velue

1/2 on A.

It should be noted that the exact sequence (7.2) implies that two such
< T(z) > difler by a holomorphic quadratic differential,

Theorem 7.3 The above definition of < T(z) > ts equivalent to an as-
signment of quadratic differentials to each open set in a comlez analytic
coordinale covering U of A, which is stmply « copy of M, such that on
overlaps they transform as quadratic differentials plus an inhomogeneous
termy, viz. (1/12)x the schwarzian of the coordinate transformation.
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St According- to avstandard-mathematical terminology -[16], this -implies
that 12 < T'(z) > is a projective connection. On the other hand, according
to the definition of Belavin, Polyakov and Zanolodchikov [17], this implies
that the system has central charge ¢ = 1. This is an algebro-geometric
counterpurt on a compact Ricmann surface of any genus of a well known
result in the theory of the Virasoro alycbra (see case (i) of Remark 4.2 on
page 46 of [18]. Since we have shown that the spin (1 — J) — J version of
this system is a disguised version of the (twisted) conforinal spin 1/2 case,
it is not surprising that our methods can he extended to the other cases of
the anowaly formula.

It should also be noted that we have obtained a rather elegant geomet-
ric interpretation of both < T'(z) > as well as of the concept of a projective
connection, viz. that they are just an infinitesimal version of our gener-
alised anharmonic ratio ! This may be regarded, perhaps, as a concrete
form of the characterisation of Deligne that “Intuitivement, se donner une
connection projective ... permet de définir le birapport (=rapport anhar-
mouique) de 4 points infiniment voisins ...” [19].

8 Concluding Remarks

We lLiave seen how every detail of the structure of the b— ¢ system is a
consequence of its OPE (1.2) and statistics. Algebraic geometry provides
a rigorous mathematical language for describing the system and one which
is as physically natural as the language of Hilbert space is for Quantum
Mechanics. Further developments are under investigation.

It is a pleasure to thank the Max Planck Institut fiir Mathematik, Bonn,
and its director Prof. F. Hirzebruch for hospitality during the preparation
of this paper. Discussions with Prof. Werner Nalin and Prof. Don Zagier
were most useful and are gratefully acknowledged.
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