MIXED HODGE STRUCTURES

ON THE HOMOTOPY OF LINKS

Alan H. Durfee

Richard M. Hain

The Institute for Max-Planck-Institut
aAdvanced Study, Princeton, fir Mathematik
NJ 08540 Gottfried-Claren-Str. 26

D ~ 5300 Bonn 3

MPI/SFB 85-37



MIXED HODGE STRUCTURES ON THE HOMOTOPY OF LINKS

ALAN H. DURFEE and RICHARD M. HAIN

The general purpose of this paper is to use mixed Hodge theory to study the
homotopy of a complex algebraic variety in the neighborhood of a singular point, or more
generally, in the neighborhood of a subvariety. An important application will be to find
topological restrictions on the links of isolated singular points.

First let us describe the applications of this theory. Recall that the link of an isolated

singularity in an n-dimensional variety is a real {(2n-1)-manifold.

Theorem 6.1. Let L be the link of an isolated singularity of an n-dimensional variety. If
s,t <n and s+t > n, then the cup product
HS(L:QIQHYL:Q) » HS"Y(L;Q)

vanishes.

This result shows that there are restrictions on the topology of such links and is, we believe,
the first result of this type in dimensions n > 2. For example, any manifold L of the form
KXMxXN where dim K < n, dim M < n, dim K + dim M > n and dim K + dim M + dim M ~ 2n-1
cannot occur as such a link. This generalizes a result from [Suilivan Topology] for n=2. The
theorem is proved by showing that H'(L) has a mixed Hodge structure which is preserved by
the cup product, and by finding non-trivial restrictions on the weight filtration of H'(L).

The next result is an example of a manifoild M whose cohomology satisfies the restriction

of Theorem 6.1 and hence could have a weight filtration, but whose rational homotopy type could

not have a weight filtration compatible with that on its homology.

Theorem 6.3. There is a smooth simply-connected closed 1l-manifold M with the rational

cohomology ring of



2(s2xs (s xsOaisixs’)
that does not have the homotopy type, or even the rational homotopy type, of the link of an

isolated singularity of a six-dimensional variety.

Finally, a result on three-dimensional link compiements:

Theorem 6.2. If K is the link in the three-sphere of an isolated singular point of a plane

algebraic curve and L =~ 83 - K, then L is a formal space (in the sense of Sullivan).

This result raises the question of whether the complement of any compound torus link in
the three-sphere is a formal space.

Next let us make the notion of link more precise: Let X be a complex projective
variety, and let Z be a closed subvariety with the singular locus of X contained in Z. Let
T be a "sufficiently nice" neighborhood of Z in X. (For the precise definition, see Section
1.) The link of Z in X is by definition

L-LX 2)-T-1Z
This is the ordinary notion of link as in PL topology, for example. If X has complex
dimension n, then L is homotopy equivalent to a real compact (2n-1)-manifold with boundary.

More generally, the applications and proof of the main result require that we consider not
just links but the complement of one link in another: Let X, Z, and T be as above, let Z'
be another closed subvariety, let Y - ZVZ7’ and suppose that the singular locus of X s
contained in Y. The link of Z in X (with Y removed) is by definition

L=-LX Y, Z2)~-T-Y.
Thus L(X, Y, Z) is the complement of Z'NLIX, 2} in L{X.,2).

The main technical result, Theorem 5.1.1, may bc loosely stated as follows: If L -

LX, Y, Z) is as above, then:

{i). For all k, Hk(L) has a real mixed Hodge structure.



{ii). The cup product of H'({L) is a morphism of mixed Hodge structures.
{iii). The real homotopy type of L has a mixed Hodge structure.

Part (i) of this theorem was aiready proved by a number of authors; it was proved in
[Durfee, Duke], for instance, by using a Mayer-Vietoris construction. Unfortunately the algebra
structure is lost in this construction, so the other two parts of the theorem cannot be proved
this way. Although Deligne's original construction of a complex for computing the mixed Hodge
structure on the cohomology of an algebraic variety yields a differential graded algebra, the
algebra is not commutative, so that one cannot conclude that the homotopy of a variety has a
mixed Hodge structure. In [Morgan], it was shown in the case of smooth varieties that the
hixed Hodge structure passes to rational homotopy. In [Hain DHT] this result was extended to
all varieties. In this paper, we use simplicial techniques to get a mixed Hodge structure on the
real homotopy type of the link L. In doing so, we reprove the first result above. For
technical simplicity, we work only with real mixed Hodge structures in this paper, even though
there is no obstruction to working over the rational numbers.

In Section 1, the notion of link is defined more carefully, and its basic properiies are
described. Sections 2 and 3 contain the machinery for the rest of the paper. This machinery
is necessary for dealing efficiently with the formalisms of mixed Hodge complexes, particularly
the quasi-isomorphisms. Section 2 describes simplicial objects in various categories, principally
the categories of smooth manifolds and algebraic varieties. The two basic examples are the
simplicial objects associated to a finite open cover of a smooth manifold, and the simplicial
object associated to a divisor with normal crossings expressed as a union of its irreducibie
components. Next, cosimplicial objects are described; the basic example is a cosimplicial
differential graded algebra. The de Rham functor is defined; this takes a cosimplicial chain
complex to a cosimplicial chain complex by taking collections of "compatible forms” in the sense
of Thom or Sullivan. For example, the de Rham fun-*sr of the complex of smoath fo;'ms on a
simplicial manifold X. is an algebra whose cohomology is is isomorphic to the cohomology of

the geometric realization 1X.!, which is naturally isomorphic to the cohomology of X.



Section 3 describes mixed Hodge complexes. According to [Deligne IHES], a mixed
Hodge complex consists of three objects in various derived categories. We do not adopt this
approach here, since we need concrete objects and morphisms in order to apply the de Rham
functor. Instead we use global mixed Hodge complexes, that is, a chain complex over the real
numbers with a weight filtration and a chain complex over the complex numbers with Hodge and
weight filtrations. With this definition, mixed Hodge complexes form a category in an obvious
way. A muitiplicative mixed Hodge complex is defined to be a mixed Hodge complex which is a
differential graded algebra as well, and a de Rham mixed Hodge complex for a topological space
X is defined to be one whose real part is quasi-isomorphic with the de Rham complex of the
singular simplices of X. These also form categories. Hence we may consider cosimplicial
versions of the three types of mixed Hodge complexes mentioned above. The first main resuit ,
which comes from [Hain DHT], suitably rephrased, is that the de Rham complex of a cosimplicial
muitiplicative mixed Hodge complex is a multiplicative mixed Hodge complex. The second main
result, from (Hain DHT] or [Morga.n]‘. is that if a space has a de Rham mixed Hodge complex,
then the real homotopy type of the space has a mixed Hodge structure.

A de Rham mixed Hodge complex for a link [ as above is then constructed in
Section 4 in the case where X is smooth and projective, Y = D is a divisor with normal
crossings in X and Z = E consists of components of D. When B has one component, the
obvious way to construct a de Rham mixed Hodge complex for L is to take the log complex
E'(X log D+E) and localize it along E. This is done in section 4.2, Proposition 4.2.3 being the
main result. The case of arbitrary E is done in section 4.3, the main technical result being
Proposition 4.3.1. Here is an informal description of the construction: Let E = E;V..VE, be
the irreducible components of E. Choose neighborhoods Ty of E; andlet T;* -~ T, -D
By 4.2, each T,* and all the intersections of the T;* have de Rham mixed Hodge complexes.
The link L is homotopy equivalent to T=* = U'I‘i'. and Lhe space T*® can be replaced by the
simplicial object T*. associated to this cover. Each of the components of this simplicial

manifold then has a de Rham mixed Hodge complex, so that the whole forms a cosimplicial de



Rham mixed Hodge complex. Applying the de Rham functor from Section 2 then gives a de Rham
mixed Hodge complex for the geometric realization IT*.1 , which in this case is homotopy
equivalent to T*.

In Section 5 the main resuits on the existence of a mixed Hodge structure on the
real homotopy type of the link L are proved by using resolution of singularities to reduce to
the case of Section 4. This section also contains the following results: Let W = ZnZ'.
Then the obviously defined map L - X - Y, and the correspondence defined by L ~» Z - W
(the composite of the map L -» T - Z' with an inverse to the homotopy equivalence T - 4’ «
Z - W) induce mixed Hodge structure morphisms on cohomology and real homotopy. As a
corollary, it is shown that real mixed Hodge structure on the cohomology of L obtained here
agrees with that of [Durfee Duke]. Finally, we prove that Alexander and Lefschetz duality
preserve mixed Hodge structures,

The first author spent a very pleasant year working on this material at the Max
Planck Institute for Mathematics, ’Blonn. BRD, and he thanks them fqr their support. He also
paid shorter visits to the University of Utrecht, the Netherlands, and the Institute des Hautes
Etudes Scientifique, France, and he thanks them for their support as well. The second author
would like to thank Jim Carlson for helpful discussions on asymptotic Hodge theory thai led to
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0. NOTATION.

0.1 If A and B are subsets of a set X, we lat

A-B={x:xis an element of A but not of B}

0.2 Two chain complexes A and B are gquasi-isomorphic if there is a sequence of chain
complexes and maps

A"Cl "Cz "--."Cu - B
such that the composite is a cohomology isomorphism. We write

A~ B.



0.3. Suppose we are given morphisms and quasi-isomorphisms as in the following diagram:

A —— B

I

This square is an abbreviated form of
jt - C1 - Cn - 1
A-bCI—...*Cnt-B |
{(Without loss of generality, the chains are of the same length.) A congruence of such a square
is a coliection of maps
hil Ci - C'i
giving commmutative diagrams, for i = 1,..,n.

0.4. A differential graded algebra is defined, for example, in [Halperin]. In this paper, ail

differential graded algebras will bé assumed to be (graded) commutative. A filtered differential

graded algebra is a differential graded algebra with a filtration which is preserved by the

differential and the product. The notion of quasi-isomorphism and congruence is extended to
filtered chain compiexes [Deligne 1.3.6], differential graded algebras and filtered differential
graded algebras in the obvious way.
0.5. Here is some of the notation used in this paper:

L(X, 2) is the link of Z in X (Section 1)

L(X, Y, 2) is the link of Z in X with Y removed (Section 1)

D(C) is the de Rham complex of the cosimplicial differential graded algebra C (2.3)

FpiX) (respectively FC(X) } denctes real {respectively complex) wvalued functions on a
smooth manifold X. The symbol F(X) means Fp(X).

EplX) (respectively En(X) ) is the algebra of real (respectively complex) vaiued forms on
a smooth manifold X. The symbol E(X) is shorthand for Ep(X).

A(X) is the Thom-deRham complex of a topological space X (2.5)



ER(X log D) (respectively E(X log D) ) is the smooth real (respectively complex) log
complex for X - D (4.1)

K(X) is the mixed Hodge complex for the smooth projective variety X (3.2.1)

K(X, D) is the mixed Hodge complex for X - D, where D is a divisor with normal
crossings in X (4.1.2)

KX, D, DI) is the mixed Hodge complex for the link L{X, D, DI) {4.2.2)

1. LINKS.

Let X be a complex projective variety, and let Z and Z' be closed {(and hence
compact) subvarieties. Let
Y-Z2VUZ and W=ZNZ.

(The emphasis will be on the triple X D Y D Z.) Assume that the singular locus of X s
contained in Y. Let T be a neighborhood of Z in X with the property that there is a
sequence of neighborhoods

T=~Ty>Ty2.0%
with f’\Ti = Z, and such that Z - W is a strong deformation retraction of Ti - Z', for all i
The link of Z in X with Y removed is by definition

L-LXYZ~T-Y.
When Z' is the empty set {so that Y = Z), we let

LiX.2) - LIX,Z.2).
We sometimes write
T(X.Y.2)

for a neighborhood T as above. Here is a schematic picture:



Neighborhods T as above can be constructed by triangulation, or by using level sets of
real polynomials as in {Durfee, Neighborhoods].

The homotopy type of L is independent of the choice of T. Thus L(X,Y,Z) as an
isomorphim class of objects in fhe homotopy category depends only on X, Y and Z. (This
follows from the usual nesting argument.)

If X  has (complex) dimension n, then L{X, Y, Z) has the homotopy type of a real
(2n-1)-manifold. This manifold is compact if Y = Z. In fact, L can always be chosen to be a
manifold.

Let X, Y, Z and X4, Y, Z; be as above. An algebraic map

f: X, X
with the properties Y, = f'liY) and Z; - 42} induces a map {well-defined in the homatopy
category)}
L(Xl'Yl’Zl) ~» L{X,¥,Z).
If the map f gives an algebraic isomorphism of XYy to XY, them f 1{L{X,Y,Z)) -

L(Xl,Yl,Zl) is a homotopy equivalence.

If the map f is an inclusion, we say that L(X,Y,.Z,} is a sublink of LIX.Y,Z. If
L(Xy,24) is a sublink of L(X.Y), note that Z; = X; N Z, and hence that
LX,Z) - LIXy.29) = LIXX{VZ,2)
lequality of topological spaces, with proper choice of neighborhood T). Thus our notion of
"link” includes the complement of one link in another. Conversely, given X, Y, Z, Z' and W as
in the beginning of this section, then
LX.Y.Z) = LX.Z) - L(Z' W)

Thus [{X,Y,Z) is the complement of one (absolute) li~k in another.



2.8[IMPLICIAL AND COSIMPLICIAL OBJECTS

2.1. Simplicial objects.

Some of the basic- objects in this paper are simplicial objects in various categories. The
categories we will use most often are the categories of topological spaces, smooth manifolds and
complex algebraic varieties. Let A be the category whose objects are the finite ordinals
{n] = (0,1,....n} and whose maps are order-preserving functions. As usual, a simplicial object X.
in a category C is defined to be a contravariant functor from the category A to C.
Simplicial objects in a category C, with morphisms defined to be natural transformations,
themselves form a category. ‘
2.1.1 Example Let X be a topological space, and let X = VierX; be a cover of X by a
finite collection of subspaces. Let X. be the simplicial space defined as follows: For an
n-simplex o = (ig.....i,) € "1 jet

X, ~ xion...nxi

n
and let

X, - u&cl““ X,

The face maps
di: Xn e d Xn.l
are induced by the natural inclusions

Xi n.nx; - Xi n..NX, nxi n..nX,
0 n 0 -1

b i+1 b
and the degeneracy maps

SjZ Xn ad xn+1
are induced by the natural isomorphism

X. N...NX. ..
19 'n b

For example, X could be a variety with normal crussings, covered by the union of its

» X N 0X; X N0
I

irreducible components.

10



2.2. Cosimplicial objects.

Similarly, a cosimplicial object in a category A {in our case, a category of chain
complexes, differential graded algebras, mixed Hodge complexes, and so forth) is a covariant
functor A -+ A. One way of obtaining a cosimplicial object is to take a simplicial object X.
in a category C, ie, a contravariant functor 4 - C, together with another contravariant functor
T: C » A, and compose them; this gives a cosimplicial object T{X.} in A. For example, let
X. be a simplicial manifold and let E be the functor from manifolds to differential graded
algebras which associates to a manifold its algebra of smooth real-valued forms. Then E(X.) is
a cosimplicial differential graded algebra.

Two cosimplicial chain complexes A and B are quasi-isomorphic if there is a
sequence of objects and morphisms

A»Cy~Cy~.2C +B
such that in each simplicial degree n the induced map H'(A™) -» H'(B®) is an isomorphism.
(This is a strong definition. A weaker definition would require only that the cohomology of the

single complexes associated to the double complexes be isomorphic.) A filtered quasi-isomorphism

is defined similarly.

2.3. The de Rham complex of a cosimplicial chain complex.

s w———

Let C be a cosimplicial real or complex chain complex. The value of C on the
obiect {q] of A is then a chain complex, and will be denoted Clq]. The p-th part of this
chain complex will be denoted CP{q]. The de Rham complex D{C} is by definition the chain

Dst

complex defined as follows: DT = , where an element ¢ of DSt s a sequence

Ssrten

(Cn)n-o.l,... with c, an element of Csin}QEt{An) which satisfies the compatibility condition
fx@idic, = (d@1f1%)c

as elements of Cs[m}eEt(A"). ‘for all f: [n] » Im]lir A. (Here A" is the standard n-simplex,

Et(An) is the algebra of real or complex smooth forms on A" and 1£1: A" - A®

and f,: C%[n] » C%[m] denote the induced maps.) The differentials in Cn] and E(a™

11



make D into a double complex, and the differential in D is the associated single
differential. If C is a differential graded slgebra, the products in Cin] and E(A"
define a product in D and hence in D. Thus D is a functor from the category of real or
complex cosimplicial differential graded algebras to the category of differential graded algebras.
In particular, it takes quasi-isomorphisms to quasi-isomorphisms. The same is true in the filtered
categories [Hain DHT]. We will apply this construction most often when the cosimplicial
differential graded algebra C is E(X.), the algebra of forms on a simplicial manifold X.

Another way of obtaining a chain complex from the cosimplicial chain complex C is by
taking the associated simple complex sC , defined by

(sC)" ~ @, CPla]
with differential defined as usual [Deligne 5.1.9.1]. Integration then defines a quasi-isomorphism
D(C) - sC.

(For the proof, see [Hain DHT 5.10).)

For example, let K be a simplicial set and let F be the contravarient functor from sets
to k-vector spaces (k=R or C) which associates to a set X the vector space Hom(k, X).
Then FK is a cosimplicial chain complex, sFK is the usual complex of simplicial cochains on

K. and D(FK) is Thom's algebra of "compatible forms” on K [Halperin 13.5], [Sullivan IHES].

2.4. Geometric realization. The geometric realization IX.l1 of a simplicial object X. in the
category of topological spaces is defined as usual {Deligne 5.2.1.1]. This defines a functor from
the category of simplicial topological spaces to the category of topological spaces. Now suppose
that X is a topological space, and let X = UX; be a finite cover of X. Let X. be the
simplicial space associated to this cover as in (2.1.1). There is a natural map IX.| -» X

defined by collapsing all the simplexes. The following result is well known [Segall:

2.4.1. Proposition. If X. is the simplicial space defined above, then the map (X.I| - X

12



is a homotopy equivalence.

2.5. Real homotopy type.

Next, we need to make precise what is meant by the real homotopy type of a topological
space X. ({Similar remarks apply to the rational homotopy type; we only use the real homotopy
type in this paper.) If X is a smooth manifold, its real homotopy type is given by its de
Rham complex of real smooth forms. However, we need a concept which will work for more
general spaces such as singular varieties or geometric realizations of simplicial varieties.

Let X be a topological space. The singular simplices A(X} on X forms a simplicial
set. The usual singular cochain complex S(X) of X is defined by

S(X) ~ sFa{X)
where s and F are defined in (2.3). The Thom-deRham complex A(X) of X is defined by
A{X} = DFA(X).
This has the following properties [ﬁaiperin Section 15]
1. A continuous map f: X - Y of topological spaces induces a differential graded algebra map
f*: AlY) » AX).
2. There is a quasi-isomorphism AX) = S{X), and in particular, an isomorphism
H'(A(X)) » H'(X;R) which preserves algebra structure.
3. If X is a smooth manifold, there is a natural {(differential graded algebra) quasi-isomorphism
of A(X) with ER(X),‘ the algebra of real forms on X.
2.5.1. Proposition. If X. is a split simplicial space, then there is a natural quasi-isomorphism

DIA(X.)) ~ A(IX.1).

This is proved in {Hain DHT].

13



3.MIXED HODGE COMPLEXES.

3.1. Mixed Hodge complexes
Recall that a mixed Hodge complex K consists of

(i) A filtered real chain complex (Kp, W.), where W. is an increasing filtration
{ii) A bifiltered complex chain complex (KC. W., F'), where W. is increasing and F s
decreasing, and a filtered quasi-isomorphism of “KC' W.) to (Kk. W.)8C such that
(a) the differential in the zero term of the spectral sequence of the filtration W., i.e.
dy WP + W™
is strictly compatible with the filtration induced by F, and

{b) P° induces a Hodge structure of pure weight q on wElpq.

Although a mixed Hodge complex can be defined over any ring between the integers and the real
numbers (Deligne [I1.0.4], ours will always be over the real numbers R. Note that our mixed
Hodge complexes are not objects in a derived category, as in [Deligne III}, but are actual chain
complexes. This makes it possible to define a morphism of mixed Hodge complexes in an obvious
way: Let
K = (Kg, W), (Ko, W, F)) and K’ ~ ((K'p, W), (K'c, W', F))

be mixed Hodge complexes. A morphism a: K - K' consists of chain maps ap: Kp -
K'p and on: Ko =+ K'G, together with a congruence (0.3) of the square

Kp8C ——K¢

| |
K'r@C—K'¢c

Thus mixed Hodge complexes form a category.

14



3.2 De Rham mixed Hodge complexes

A mixed Hodge complex K as above is multiplicative if Kp and Ko are
(commutative, as always) differential graded algebras which are filtered ({i.e., the products
preserve the filtrations), and if the filtered quasi-isomorphism is a map of differential graded
algebras. These also form a category in the obvious way.

Let X be a topological space, for example, a variety or the geometric realization of a

simplicial variety. A de Rham mixed Hodge complex for X is a multiplicative mixed Hodge

complex K together with a quasi-isomorphism of Kp to A(X), the Thom-deRham algebra of
singular forms on X (Section 2.5).

Let K; be a de Rham mixed Hodge complex for X, for i=1,2. A morphism of de Rham
mixed Hodge complexes consists of a morphism a: K; - K, of multiplicative mixed Hodge
complexes, a continuous map f; X, » Xy, and a congruence of the square

Kjp — Ay

Lo

Kyg — AKXy
Thus de Rham mixed Hodge complexes form a category whose objects are pairs (X,K) and whose
morphisms are pairs {f,a).
3.2.1. Example. The standard mixed Hodge complex K{(X} for a smooth projective variety X
which is defined by Kp = Ep(X) with 0 = W, C Wy ~ ER(X). and Kp = Eq(X) with W
as before and F as usual, is a de Rham mixed Hodge complex for X. In fact, the
correspondence X ~ (X, K(X)) defines a functor from the category of smooth projective
varieties to the category of de Rham mixed Hodge complexes.

If K is a mixed Hodge complex, then the cohomology groups Hn(KR} have a mixed
Hodge structure, for all n [Deligne 8.1.9]. Clearly if K is also muitiplicative, then the
induced product in the cohomology ring H{Kg) prescives both filtrations, ie, the cup product

H'(KR)QH‘(KR) -+ H'(KR) is a morphism of mixed Hodge structures. This proves the following

result:

15



3.2.2. Proposition. Let X be a topological space. If K is a de Rham mixed Hodge comple
for X, them HP®X) bhas a mixed Hodge structure, for all n, and cup products in H(X

preserve this mixed Hodge structure.

More important, and much more difficult, are resuits of Morgan and Hain which show that

the mixed Hodge structure actually passes to real homotopy:

3.2.3. Theorem.- Let X be a topological space and let K be a de Rham mixed Hodge complex
for X
(a) [Morgan 8.6,9.1]. If
p: M -» E(X)

is a minimal model {or a l-minimal model) for the algebra of real-valued forms on X, then M
has a family of mixed Hodge structures such that the product, differential and the cohomalogy
isomorphism (respectively isomorphism on Hl. injection on Hz)

»* HM) ~» H(X)
are morphisms of mixed Hodge structures.
(b} [Hain DHT]. The real Lie algebra model Ly of X has a (not necessarily unique) mixed
Hodge structure such that the bracket, differential and the jsomorphism (to reduced homology)

Ly/ILy, Lyl ¥ HAX)
are morphisms of mixed Hodge structures.
{c). In particular, the Malcev Lie algebra of the fundamental group of X has a mixed Hodge
structure, and, when X is simply connected, the higher homotopy groups of X have a unique

functorial mixed Hodge structure. In addition, Massey products preserve mixed Hodge structure.

Actually, Morgan works with a "mixed Hodge diagram”, which is a2 more restricted notion

than a de Rham mixed Hodge complex, but it is not hard to generalize his proof to the abe.e

16



situation. In addition, both Morgan and Hain find mixed Hodge structures over the rational
numbers rather than the real numbers; we use the real numbers here for simplicity. The
statement about Massey products is proved in [Durfee Notes]. Functoriality for the homotopy
groups of non-simply connected spaces is more subtle, and will not be discussed in this paper.

The following result is well known {[Deligne Weil 5.3.7] [Durfee Notes], [Hain DHT)):

3.2.4. Corollary. Let X be a topological space, and let K be a de Rham mixed Hodge
complex for X. If H™(X) has a pure Hodge structure of weight m for all m {or km, for

some fixed natural number k), then X is a formal space.

3.2.5. Proposition. Let K be a de Rham mixed Hodge complex for X and let L be a de

Rham mixed Hodge complex for Y. Then K@L is a de Rham mixed Hodge complex for XXY.
The proof is straightforward.

3.2.6. Corollary. Under the above hypotheses, the cross product
H{X)gH (Y} » H(XXY)

is a morphism of mixed Hodge structures.

Proof. The cross product can be defined by aXxb = (pl*a)U(pg*b) , where the p; are the

projections.

3.3. Cosimplicial mixed Hodge complexes.

A cosimiplical (multiplicative} mixed Hodge complex K is simply a cosimplicial object in
the category of {m\;ltiplicative) mixed Hodge complexes It thus consists of a cosimplicial real
filtered chain complex KR' a cosimplicial complex bifiltered chain complex KC' and a filtered

quasi-isomorphism (2.2.1) KRQC - KC'

17



Deligne in [Deligne [HES 8.1.15] defines a functor from cosimplicial mixed Hodge complexes
to mixed Hodge complexes by taking the associated single complex: Let K be a cosimplicial
mixed Hodge complex. Its complex part Kc has a bigrading KCP[M. where p is the
differential degree and n _is the simplicial degree. To this cosimplicial object K- a bigraded
cochain complex is associated in the standard way, and sK. is defined to be its associated
single complex. (See 2.3.) The weight filtration on aKC is defined to be the "diagonal
filtration®”

W (sKo) = @, o W, (K Pla])
and the Hodge filtration is defined to be
F'(sKg) = o, o F(K:lal
The same is done for Kp. The object sK associated to K is then a mixed Hodge complex.

We will now describe how the de Rham functor of (2.3} takes a cosimplicial multiplicative
mixed Hodge complex to a multiplicative mixed Hodge complex, thus providing an alternative to
the preceeding construction when .tﬁe complexes in question are muitiplicative. Let K be a
cosimplicial multiplicative mixed Hodge complex. Its real part KR is then a cosimplicial
differential graded algebra, so its de Rham compiex D(KR) is a real differential graded algebra.
Similarly, D(Ko) is a complex differential graded algebra. Furthermore, the de Rham functor
takes the filtered quasi-isomorphism KRQC - l(c into a filtered quasi-isomorphism D(KR)QC =
DIKR®C) «~ DIKs-). Recall from (2.3) that the de Rham complex D has a bigrading pst,
Define filtrations on D(Kp) and D{Ks) by

Wi DiKg) = @0, s Dst(wmﬂKR’
and similarly for K., and
FPD(KC) - D(F"KC).
These filtrations are preserved by products. Hence D(KR) is a filtered differential graded
algebra, D(KC) is a bifiltered differential graded algebra, and the above quasi-isomorphism is a

filtered one.
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1.3.1. Lemma [Hain DHT 5.6]. If K is a cosimplicial multiplicative mixed Hodge complex, then

D(K) is a multiplicative mixed Hodge complex. In fact, D is a functor between these

categories.

3.3.2. Lemma [Hain DHT 5.10]. If K is a cosimplicial multiplicative mixed Hodge complex, then

there is a natural quasi-isomorphism of mixed Hodge complexes D{K) -+ sk.

3.4. Cosimplicial de Rham mixed Hodge complexes.

A cosimplicial de Rham mixed Hodge complex is of course just a cosimplicial object in the
category of de Rham mixed Hodge complexes. It consists thus of a cosimplicial multiplicative
mixed Hodge compiex K, a simplicial space X., and a quasi-isomorphism Kgp == A(X.). The
functor K of (3.2.1) from the ca-te'gory of smooth projective varieties to de Rham mixed Hodge
complexes extends naturally to a functor from the category of simplicial smoath projective

varieties to the category of cosimplicial de Rham mixed Hodge complexes.

34.1.Lemma. If K is a cosimplicial de Rham mixed Hodge complex for a simpiicial manifold

X. , then D(K) is a de Rham mixed Hodge complex for the geometric realization 1X.1 of

X.

Proof. The differential graded algebra D{(K) is a multiplicative mixed Hodge complex by {3.3.1).
Furthermore, the de Rham functor takes the quasi-isomorphism KR > A{X.) to a

quasi-isomorphism  D(Kg) «- D{A(X.), and the latter is quasi-isomorphic to  A{IX.1) by
25.1). m

3.4.2. Example. Let E = Vis[Ei be a variety with normal crossings, where as usual the Ei

19



are smooth and projective. The simplicial space E. associated to the union E = UEi as in
(2.1.1) is a simplicial object in the category of smooth projective varieties. Thus K(E.) as in
(3.2.1) is a cosimplicial de Rham mixed Hodge complex for the simplicial manifold E. , so that
D(K(E.)) is a de Rham mixed Hodge complex for the geometric realization IE.| by Lemma
3.4.1, and hence for B, by Proposition 2.4.1. (Similarly, sK(BE.) is a mixed Hodge complex for
E)

3.4.3. Example. Let f: (X,K} » (Y,L) be a morphism of de Rham mixed Hodge complexes. Then
the mapping cone of f is a cosimplicial de Rham mixed Hodge complex, so applying the de
Rham functor gives a de Rham mixed Hodge complex for it. In particular, if f is an inclusion,
the relative cohomology groups H'(Y,X) have a mixed Hodge structure, which is preserved by
cup products. (See [Deligne 8.3.8], [Durfee Duke Section 2]} Similarly, the relative cross

product is a morphism of mixed Hodge structures.

-

4. THE LINK OF A DIVISOR WITH NORMAL CROSSINGS

4.1. Open varieties

Let X be a smooth projective variety, le¢ D C X be a divisor with normal crossings
and let U = X - D. First we describe the standard real mixed Hodge complex for U, as done
in {Deligne] and modified in [Hain, DHT]. The real part of this complex, .called ER(X log D),
consists of global sections of a sheaf L. The sheaf, a subsheaf of the sheaf of all smooth
real-valued forms on U, is defined as follows: Let N be an open set in X with
holomorphic coordinates (z4,....z) such that N N D is the subvariety zy..z = 0. Let L{N)
be generated as ring by the algebra E(N) of smooth real-valued forms on N together with the

real forms 91""9k' where

8; = (1/4xi)(dzj/zj - dz'j/i"j).
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There is an algebra isomorphism

L(N) = E(N)@A(Bl,....ek).
It is easy to see that this description is independent of the choice of coordinates. Define a
weight filtration on L(N) = by letting W L(N) be the E(N)-submodule generated by forms of
the type GilA...AOik for k < m. This is preserved by wedge product, and is independent of
the choice of coordinates. Let Ep(X log D) be global sections of the sheaf L ; this is a

filtered differential graded algebra. The next result follows by standard sheaf theory techniques.

4.1.1 Proposition. The inclusion of differential graded algebras
ER(X log D) - ER(X - D)

is a quasi-isomorphism. W

Similarly, let i{C and EC(X log D) be defined as global sections of the sheaves whose

sections over N are defined by
EC(N)QA(dZI/zl,...,dzkfzk. dz’llil.....dik/fk) ® Cllog lzli,.,.log lzkl]
and
E(N) @A(dzl/zl,...,dzk/zk)
respectively. Define weight filtrations by letting the weights of dzj/zj, dz’j/i?j and log lzj!
be 1. The filtrations-preserving differential graded algebra homomorphisms
- Eg(X log DigC - Ko « EqlX log D)

are filtered quasi-isomorphisms by standard arguments. Define the Hodge filtration on

EC(X log D} as usual.
4.1.2. Theorem. ([Deligne II, Hain DHT 5.2} (ER(X log D), W), {(Eq(X log D), W, F)) is a (real)

de Rham mixed Hodge complex for X - D. This complex is functorial in maps of the pair

{X.D).
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We denote this mixed Hodge complex by K{(X.D).
4.1.3. Example. Let us generalize Example 3.4.2. (This generalization will be needed in {4.3.3).
Let B be as in that example and let E' be another variety with normal crossings with nc
components in common with E. Let E” - B N B, let E” = Ba N E' for any n-simpley
oel™l et EB". be the simplicial space associated to the umion E" = VieiB"'p and let
(E - E”). be the simplicial space associated to the union B - E" ~ V(E; - E";). Ther
(E - E). is a simplicial variety with cosimplicial de Rham mixed Hodge complex K(E., E".), sc
D(K(E., E".)) is a de Rham mixed Hodge complex for (B - E").| and hence for E - E"

{Similarly, sK(E..E".) is a mixed Hodge complex for E - B with a non-commutative product.

4.2. The link of a smooth complete intersection.
Let X and D be as in {4.1). Suppose that
D~ DI U...UD!,
is the decomposition of D into irreducible components. We may assume that each component i

smooth. Fix some subset ¢ of {1,..r}, and let

Dy = Neoli
In this section we will find a de Rham mixed Hodge complex for the link L(X, D, Da) ol
D o in X with D removed, as defined in Section 1. Throughout this section, X, D anc

Do will be fixed. We let

L, = X, D, D).
Recall that we may always choose L o ‘to be a smooth manifold. We also let T -
TX. D, D} be a neighborhood of D, as in Section 1. Let F(V) (respectively F(V)
denote real (respectively complex) valued smooth functions on a manifold V. Consider the
differential graded algebra Ex(X log D)@F(D o)» Where the tensor product is over P(X); since
F(D,) = PF(X)/(ideal of functions which vanish on D,)

both F(Da) and ER(X log D) are modules over F(X).
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4.2.1. Lemma. There is a natural (differential graded algebra) quasi-isomorphism

a: Ep(X log DI@F(D,) Eg(L,).

Proof. The quasi-isomorphism is the composition
BR(X log D)QF(D a) - ER(T o log DIQF(D a) - ER(T o log D) - ER{T o D) = ER(L a)'

This completes the proof. W

We now make this into a multiplicative mixed Hodge complex. Consider the three algebras
ER(X log D)@F(Da)
K8Fc(D,)
Eo(X log D)GFC(Da)'
Define filtrations by localizing the fiitrations from (4.1) along D o that is, by setfting
Wm{ER(X log DIQF(D cr)) - (WmER(X log D))@F(Da)
and so forth. These filtrations are multiplicative. Standard sheaf theory arguments show that
the filtration-preserving differential graded algebra homomorphisms
ER(X log DIQF(D a)@C - ﬁC@FC(D a) - EC(X log D)@FC(DO‘)

are filtered quasi-isomorphims.

4.2.2. Lemma. If X, D and ¢ are as above, then

(Bg(X log D)F(D,). W), (E(X log DIGFo(D,), W, F)
is a {real) multiplicative mixed Hodge complex.

We denote the complex of this lemma by K{X, D, D a)‘

Proof of Lemma 4.2.2. We will check that K(X, D, Da) satisfies the conditions of (3.1). First

some notation. Let
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o ={l,..r-¢

B' = Vieo'D;
Bn - Do n B
Here is a schematic picture:
-:
Do E
« E"

Choose coordinates (zl.....zn) in a neighborhood N such that
DAN~- ‘zl"“k -0}

Danﬁ'-{zl-...*z -0}

m
for some 1 < m < k < n. Thus
E. hae (zm+1...zk b 0,

E" =z = ...-2, -0z -0}

m+1%n
The weight filtration on ECCX lole 'D)GFC(D a, splits into two peices: In local coordinates on
N, a form in this complex is a wedge product of a form on Dg with forms of the type
dz,/z, , where i is chosen from 1,...k. The external weight filtration WE is defined by
letting WE:q be all forms with at most g terms of type dzi/zi , with 1 < i <m The
internal weight filtration WI is defined similarly by letting qu be all forms with at most ¢

terms of type dzi/zi with m+1 < i < k. It is easy to check that

_ I E
Wy = Egng W, 8 W5, .

The external residue operator is defined on WE_ and vanishes on WEq,l . It removes these

q
dz/z's and induces an isomorphism

wE EG™(X log DIGFC(D,) / WE | & EC®UD_ log V).
Let B denote the weight spectral sequence of K(X, D, D a) and let 'E" denote the weight
spectral sequence of K(Da. E"”). Now, applying this and |Zucker A.2], we have

By ™ = (Wo/W_ 1) B™9X log D) 8 FgiD,)
- | QP | E ,wB m-q
® (W S/W ’.1) W l_/W r-l) EC (X log D’@cha’

r+s=q
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m-q-r T
= @ r+s=q ‘ws/ws-l) EC (Da log E”)

v -S,m-2r
er+s-q El .

The differential dO respects this decomposition. Since d() is strict on ’EO", it is strict on
EO". Also,

El‘q,m - @

t -8 ,m‘zr
rts=q E 1 t-r)

where (-r) denotes tensor product with the Hodge structure of Tate, which increases weights

by 2r. Thus El-q,m has a pure Hodge structure of weight m. ®m
Assembling (4.2.1) and {4.2.2), we get the next result, the goal of this section:

4.2.3. Propasition. The complex KX, D, Dg) is a de Rham mixed Hodge complex for
X, D, D a)'

For fixed X and D, the correspondence
D, = ((LX, D, D) KX, D, D))
is clearly a contravarient functor from the category of such D_ to the category of de Rham
mixed Hodge complexes.
The next two resu_lts are needed to show that there are morphisms from the mixed Hodge
complexes of the complement and divisor, respectively, to the link. They are needed to prove

(4.3.2) and (4.3.3).

4.2.4. Proposition. There is a morphism of de Rham mixed Hodge complexes
KX, D) » KX, D, D)

corresponding to the inclusion

Proof. The morphism of de Rham mixed Hodge complexes is defined by the obvious maps, and to
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check that it is a morphism is straight-forward diagram chasing. =

Let E' and E" be as in the proof of {4.2.2). Let K{D, E") denote the standard de
Rham mixed Hodge complex for Da - B from (4.1} and let Ta - TX, D, Da}. Note that

the inclusion D o E" -+ T_- R is a homotopy equivalence.

o
4.2.5. Proposition. There is a morphism of de Rham mixed Hodge complexes
K(Da, B”") » KX, D, Da)

corresponding to the map

L, + T, -B «D,-E"

Proof. The morphism of multiplicative mixed Hodge complexes is simply the inclusion; in fact, the
external weight zero part of K{(X, D, Da} is isomorphic to K(D o E"). To check that it is

a morphism of de Rham mixed Iludge complexes ia once again a straight-forward diagram chase. W

4.3. The link of a divisor with normal crossings.

Now we assemble the pieces above. Let X be a smooth projective variety, let D be a
divisor with normal crossings in X, and let E be a subdivisor, i.e., a union of irreducible
components of D. We will construct a multiplicative mixed Hodge complex for the link of E
in X with D removed, as defined in Section 1. Suppose

E ~ E{V..VE,
is the decomposition of E into its irreducible components. Let E. be the simplicial variety
associated to E = VEi as in (2.1.1). Thus we may assemble the mixed Hodge complexes of
{4.2.2) into a cosimplicial mixed Hodge complex DK(X, D, B.). The main technical result of

Section 4 is the following proposition.

4.3.1. Proposition. DK(X, D, B.) is a de Rham mixed Hodge complex for L(X, D, E).
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Proof. Just as in Examples {3.4.2) and {4.1.3), we may compose the functor defining the simplicial
variety E. with the functor E, = ( (X, D, E)) , KX, D, E))) of (4.2). Proposition 4.2.3
gives that K(X, D, E). is a cosimplicial de Rham mixed Hodge complex for I{X, D, E) .
Lemma 3.4.1 gives that DK(X, D, E.) is a de Rham mixed Hodge complex for IL(X, D, E)I.
Finally, with proper choice of neighborhoods, we claim that
LKX, D, E) = LIX, D, Ey) V.V L{X, D, EJ) .

In fact, choose neighborhoods T, = T(X, D, E) of E; as in Section 1 such that VT; is a
neighborhood of the form T(X, D, E). This can be done using [Durfee Neighborhoods], for
example. Then Ti -.D is a link of the form L(X, D, Ei) and U(Ti -D) = UTi - D is a link
of the form L(X, D, E). The theorem now follows from (2.4.1). W

This de Rham mixed Hodge complex is clearly functorial for maps as in Section 1. The next
results are needed to show that the mixed Hodge complexes for the complement and divisor,

respectively, map to the mixed Hodge complex for the link.

4.3.2. Proposition. There is a morphism of de Rham mixed Hodge complexes
K(X, D} » DIK{X, D, E.))
corresponding to the inclusion

L« X-D

Proof. By (4.2.4), for each o there is a morphism of de Rham mixed Hodge complexes
KX, D) » K(X, D, E )
corresponding to the inclusion
L,~X-D.
Hence there is a morphism of cosimplicial de Rham mixed Hodge complexes
KX, D) » K(X, D, E})

corresponding to the inclusion
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L. -X-D.
(Here X - D is a "constant” simplicial object, with X - D in each degree and all face anc
degeneracy maps the identity. Similarly, K(X,D) is a constant cosimplicial object.) Thus thers
is a morphism of de Rham mixed Hodge complexes
DK(X,D) » DK(X, D, E.)
corresponding to the map
jL.t - IX - DI.
However, DK(X, D) is quasi-isomorphic to K(X, D}, 11X - DI is just X - D, and the map
IL.1 - X - D can be replaced by the inclusion L « X - D. m
Let E' be the divisor with no irreducible components in common with E  with the
property that D = E V B . Let E”" = E N B and let DK(E., B’} denote the de Rham
mixed Hodge complex for E - B from 4.1.3. Note that the inclusion E - E" - T - E' is a

homotopy equivalence. Here is & schematic picture:

Ly Py e’
e; A
E”
4.3.3. Proposition. There is a morphism of de Rham mixed Hodge compiexes
DK(E., B".} - DK(X. D, B.)

corresponding to the map

L-T-E «E-E".

Proof. We will use the notation of (4.1.3). By (4.2.5), for each o there is a morphism of de

Rham mixed Hodge complexes

K(E,. E",) » KX, D, E )

corresponding to the map
La-'Ta-E' "Ea'E"a'

Hence there is a morphism of cosimplicial de Rham mixed Hodge complexes
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K(E., ") » KX, D, E)
corresponding to the map
L.»T. -E «E -E"
Thus there is a morphism of de Rham mixed Hodge complexes
DK(E., E".) » DK(X, D, E)
corresponding to the map
IL.i » IT. - E'l « {E. - B".]I
which can be replaced by
L->T-.-E «E-E"
by (2.4.1). m

4.4. Comparison with the Mayer-Vietoris complex.

The Mayer-Vietoris construction also gives a (non-multiplicative) mixed Hodge complex for

a link. The next result is a slight éeneralization of [Durfee Duke 3.4].

4.4.1. Theorem. et X, D and E be defined as in the beginning of {4.3) and let E’' and
E" be defined as in {4.3.3). Then
KX, DiasK(E., E".}) / K{X, E)

is a mixed Hodge complex for L{(X, D, E) .

Proof. Since L =~ (X -D)N(T-E) with (X-D V(T - E) =X .E, the construction of

[Durfee Duke 2.13] applies. ®

4.4.2. Proposition. The mixed Hodge complex DK(X, D, E.) of {4.3.1) and the mixed Hodge

complex of {4.4.1) are quasi-isomorphic as mixed Hodge vomplexes.

Praof. Since sK(E., E".] is quasi-isomorphic to the complex DK(E., E".) by (3.3.2), the

29



complex of (4.4.1) can be replaced by K(X, D) @ DK(E., E".) / K(X, E'} . By the universal
mapping property of this complex and (4.3.2) and (4.3.3), there is a map of this complex into
DK(X, D, E.) . This map induces an isomorphism of mixed Hodge structures on cohomology, and

hence is a quasi-isomorphism. ®

5. THE MAIN RESULTS

5.1. Mixed Hodge structures on the homotopy of links.
The main results of thias paper are contained in the following theorem. The basic idea is
to use resolution of singularities to reduce to the case of a divisor with normal crossings, which

has already been treated in Section 4.

5.1.1. Theorem. If L = L(X, ¥, Z) is the link of Z in X with Y removed, as in Section
1, then:

1. The cohomology groups of L have a unique functorial {real}) mixed Hodge structure.

2. The cup product in cohomology preserves this mixed Hodge structure.

3. The mixed Hodge structure on cohomology is the same as the mixed Hodge structure obtained
by the Mayer-Vietoris construction [Durfee Duke].

4. The minimal model and the Lie algebra model for L have mixed Hodge structures, as
described in Theorem 3.2.3. In particular, the Malcev Lie algebra of the fundamental group of
X has a mixed Hodge structure, a:;d. when, X is simply connected, the higher homotopy groups
of X have a unique' functorial mixed Hodge structure. Furthermore, Massey products preserve
mixed Hodge structure.

5. Let Z' and W be defined as in Section 1. Then the inclusion map L » X - Y and
the correspondence L - Z - W defined by L - T - Z' « Z - W induce maps of mixed Hodge

structures on cohomology, and, when the spaces are simply-connected, on higher homotopy groups.
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Proof. Let x: X » X be a resolution of singularities such that D = n"M(Y) is a divisor
with normal crossings and E = x'l(Z) consists of components of D. Then zr(L(i, D, E})) -
LIX, Y, Z), and x is a diffeomorphism of these spaces. Now L(X, D, E) has a de Rham
mixed Hodge complex by (4.3.1). Furthermore, given any two resolutions, a third one can be
found which dominates them, and the corresponding maps will induce maps of de Rham mixed
Hodge complexes. Thus statements (1) and (2) follow from (3.2.2), statement (3) follows from

(4.4.2), statement {(4) follows from (3.2.3) and statement (5) follows from {4.3.2) and 4.3.3). =

Functorality of the homotopy groups of non-simply connected spaces is more subtle, and will

not be discussed in this paper.

5.2. Duality.
In this section we prove that various dualities in the cohomology of a link preserve mixed
Hodge structure. The proofs are similar to those in the global case [Durfee Euler]. Recall that

a link IL{(X, Z), where X  has dimension n, has the homotopy type of a compact real

(2n-1)-manifold.

5.2.1. Lemma. If L = L{(X, 7Y where X has dimension n, then Hzn'liL) has pure type

{n,n).

Proof. By resolution of singularities, we may assume that X is smooth. Choose an open
neighborhood . T of Z in X such that the boundary of T is smooth, and let L be the
boundary of T. This can be done by [Durfee Neighborhoods], for example. Then

Bl = B2K - T, L) # HEYX, 2) % BN .

These maps preserve mixed Hodge structures by [Durfee Duke 3.2]. Furthermore, Hzn{X) has
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pure type (n,n). M

5.2.2. Theorem. If L = L{X, Z) where X has dimension n, then Poincaré duality
HYL) -+ Hyy, (L)

is an isomorphism of mixed Hodge structures of type {-n,-n).

Proof. Since the cup product in H'(L) preserves mixed Hodge structures, so does the cap
product. The duality map is cap product with the fundamental homology class, which has type
(n-n). ®

Recall that a mixed Hodge structure on relative cohomology groupa'is defined in (3.4;3). and
that the notion of sublink is defined in Section 1. Next we will prove that a general duality

[Spanier 6.2.17] preserves mixed Hodge structures.

5.2.3. Theorem. Let Lz C LI C L be links, where LZ - L(Xz, Zz). LI - L(Xl, Zy), L =
X, Z) and X has dimension n. Then
= yon-lq
Hq(L - LZ' L - Ll’ H (Ll. Lz)

is an isomorphism of mixed Hodge structures of type (n,n).

Proof. Recall that products and mapping cones have de Rham mixed Hodge complexes by (3.2.5)
and (3.4.3). The normal bundle to the diagopal A in LXL has a Thom class, which by
excision gives a class u € Hzn'I(LxL. LXL - A). The class u is the image of 1 under the
Thom isomorphism, and hence has tyfa {(n,n}. Let
i: (Ly, Ly} X (LrLy, L-Ly) < (LXL, LXL - &) .
Duality is provided by the morphism
H22 Ly XLy) X (LLy, Loy @ H(L-Ly, LLy) — HEVI9(L;, L))

defined by (i®*uw,c) = i*u/c. The slant product is dual to the cross product, and hence preserves

mixed Hodge structures (3.2.6). =
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The cohomology of a link with compact supports has a mixed Hodge structure, and the
duality theorem with compact supports [Spanier 6.9.16] can be easily reduced to the above

duality theorem, exactly as in the glaobal case.

5.2.4. Corollary. If Ll b L(Xl. Zl) is a sublink of L = L(X, Z), where X has dimension n,
then Alexander duality !
q
H*{L, Ll) s Hzn.l_q‘L - LI’

is an isomorphism of mixed Hodge structures of type (-n,-n).
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6. APPLICATIONS

First we prove the theorem mentioned in the introduction on the vmishing of cup products.

6.1. Theorem. Let L be the link of an isolated singularity of an n-dimensional variety. If
s,t < n and s+t > n, then the cup product
H(L:QI8HYL:Q) + H**YL:Q)

vanishes.

Proof. The groups Hk(L) have a mixed Hodge structure which is preserved by cup products, by
Theorem 5.1.1. In particular, the Qeitht filtration satisfies W, U W C W, ., for all km.
Now for isolated singularities, it is proved in {Durfee Duke 3.8}, or see [Durfee Japan| for an
elementary proof, that

W, HKL) = 0 for k2 n, and

w.HKL) - B5T) for k <n.

It follows that the cup product is zero. W

6.2. Theorem. If Y is an algebraic curve in C2 with an isolated singularity at p and L =
LIC% Y, p) s the link of p in €2 with Y romoved, then HX(L) has pure type (k.k), for

all k. In particular, L is a formal space.
Proof. First some notation. Let

S ~ LIC2, p)
K - L(Y, p).
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Then S is the three-sphere, K is an "algebraic link” in S, and (see Section 1) L = S§ - K is
the link complement. The group HI(K) has type {1,1), and hence (by the long exact sequenée
of a pair [Durfee Duke 2.7)) so does H2(S,K). By Alexander duality (5.2.4), this group is
isomorphic to HI(L). v;hich hence has type {-1,-1}. Thus Hl(L) has type (1,1}, A similar
argument applies to HZ(L). Finally, HY%L) has type (0,0), and all other groups are zero.

Pormality follows from (3.2.4). =

6.3. Theorem. There is a simply-connected closed 11-manifold M with the rational cohomology
of

N = 2(5%xs%r(s%xs®)u218%xs")
that does not have the rational homotopy type of a the link of an isolated singularity of a

{six-dimensional) variety.

Proof. It suffices to construct the rational homotopy type of M, for [Sullivan Inf, Theorem
13.2] then implies that there is a smooth closed 11l-manifold realizing this rational homotopy type.
We obtain the rational homotopy type of M by deforming that of the space N above.
It follows from [Hain Memoir 2.4, 4.16] that the Lie algebra model of N s
Ly = (X4, X, Yy, Yo, X4% X%, Y4*, Yo", U, V, Z), 8)

where deg Xj - 1, deg Yj - 3, deg Xj" -~ 8, deg Yj" = B, deg U = 4, deg V = 5, deg Z =~ 10,
and  3X; = 3Y; = 3X;* = 5Y* = 85U - 5V =~ 0 and 3Z - [X;, X471 + Xy Xp*] + [Yy,
Y'l o+ [Y,, Yz“} + [U, V. We now construct a perturbation ® = 5 + p of the differential ©
of Ly. In order that @ be a differential, it is necessary and sufficient for p to be a
derivation of LN of degree .1, that pz = 0 and that &p + p5 = 0. In order that the
perturbed rational homotopy type (LN. ®) have the same rational cohomology ring as that of
LN' it is necessary and sufficient that the image of p be in {iLN, LN}, LNl {cf. [Hain Men
2.5)). Define p by

pX; =

;= BY; = pV = pZ = 0
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and
PXy* = [V, (X, Xpll + Xy, [¥y, Yyll
pX,* = 2X, [X,, VI + X, Y, Y,ll
PU = (X5, Xpl X,
pY;* - [¥;, [Xj, X
One can easily check that pz -0 and ps + 5p = 0.

As remarked before, there is a simply-connected closed 1l-manifold M with the rational
homotopy type of Ly - “‘N' 2¢). Denote by X xj", j yj"‘. u, v, z the basis of ﬁ‘(M; Q)
dual to the basis X X% Y Y55 UV, 2. According to [Tanre V.7(4)], the Massey products
<Xy, X9, Xp> and Xy ¥y YP for i = 1,2 are defined and non-zero.

Suppose the LM has a mixed Hodge structure and that the mixed Hodge structure on
H'(M:Q) satisfies the weight restrictions given in the proof of Theorem 6.1. Recall from
Section 5 that Massey products preserve weights. Since <Xy, Xg Xp> is a non-zero element
of HXM) - WSHS(M). it follows t-:hat either x; or x, isin WIHIN). Suppose x; €
WHYM).  Since y; ¢ HYM) ~ W,H*M), it follows that <x;, v yp> € WoHO(M), which is
zero. This contradicts the fact that <Xy ¥y ¥y is not zero. Thus L,, cannot have the

rational homotopy type of the link of an isolated singularity. =

Actually, [Sullivan Inf. Theorem 13.2] sllows one to specify the rational Pontrajagin classes

of this manifold as well.
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