Ratios of regulators of number fields

Antone Costa
and
Eduardo Friedman

Department of Mathmatics
American University
Washington, D.C. 20016

USA

Max-Planck-Institut für Mathematik
Gottfried-Claren-StraBe 26
D-5300 Bonn 3

Germany

Ratios of regulators in extensions of number fields

Antone Costa* and Eduardo Friedman**

Abstract

Let L / K be an extension of number fields. Then $$
\operatorname{Reg}(L) / \operatorname{Reg}(K)>c_{[L: Q]}\left(\log \left|D_{L}\right|\right)^{m}
$$

where Reg denotes the regulator, D_{L} is the absolute discriminant of L and $c_{[L: \mathbf{Q}]}>0$ depends only on the degree of L. The non-negative integer $m=m(L / K)$ is positive if L / K does not belong to certain precisely defined infinite families of extensions, analogous to CM fields, along which $\operatorname{Reg}(L) / \operatorname{Reg}(K)$ is constant. This generalizes some inequalities due to Remak and Silverman, who assumed that K is the rational field \mathbf{Q}, and modifies those of Bergé-Martinet who dealt with a general extension L / K but used its relative discriminant where we use the absolute one.

1. Introduction

Remak [R 1] laid down the principle that a number field ought to have a large regulator if and only if it has a large discriminant. In one direction this follows from work of Landau [L] [Sie], who proved that $\sqrt{\left|D_{L}\right|}\left(\log \left|D_{L}\right|\right)^{[L: Q]-1}$ is an upper bound for $\operatorname{Reg}(L)$. To obtain an inequality in the opposite sense, Remak considered the field $\mathbf{Q}\left(E_{L}\right)$ generated by the units E_{L} of L. The geometry of numbers tells us that $\mathbf{Q}\left(E_{L}\right)$ can be generated by integral elements (units) whose size at every embedding is bounded in terms of $\operatorname{Reg}(L)$. It follows that $\left|D_{\mathbf{Q}\left(E_{L}\right)}\right|$ can be bounded above by a function of $\operatorname{Reg}(L)$. Remak then observed that $\mathbf{Q}\left(E_{L}\right)=L$ unless L is a CM field (a totally imaginary quadratic extension of a totally real field). Thus he proved [R 1]

$$
\begin{equation*}
\operatorname{Reg}(L)>C_{N} \log \left(\left|D_{L}\right| / N^{N}\right) \tag{1.1}
\end{equation*}
$$

where L is assumed non CM, $N=[L: \mathbf{Q}]$ and $C_{N}>0$ depends explicitly on N. In 1984 Silverman [Sil] improved the dependence on $\log \left|D_{L}\right|$ in (1.1) to

$$
\operatorname{Reg}(L)>2^{-4 N^{2}}\left(\log \left(\left|D_{L}\right| / N^{N^{\log _{2}(8 N)}}\right)\right)^{r_{L}-\rho}
$$

where $\left|D_{L}\right|>N^{N^{\log _{3}(8 N)}}$ is assumed, r_{L} is the unit rank of L and $\left.\rho=\max _{F}^{\subsetneq} L<r_{F}\right\}$.

[^0]It follows from (1.1) that given an integer N and a real number y there are only finitely many non-CM number fields L such that $[L: \mathbf{Q}] \leq N$ and $\operatorname{Reg}(L)<y$. CM fields must be excluded since in this case the regulator is essentially that of a proper subfield and is shared by infinitely many CM fields. We can, however, drop all restrictions on the degree [$L: \mathbf{Q}$] by using Zimmert's [Z] bound

$$
\operatorname{Reg}(L)>(0.04) 1.05^{[L: \mathbf{Q}]}
$$

In the late 1980's Bergé and Martinet [B-M 1] [B-M 2] generalized Remak and Silverman's method to the relative case. Given an extension L / K of number fields their idea was to equate the ratio of regulators $\operatorname{Reg}(L) / \operatorname{Reg}(K)$ with the co-volume of a lattice produced from the units of L. In their approach the absolute norm $\mathrm{N}\left(\mathcal{D}_{L / K}\right)$ of the relative discriminant of L / K appeared naturally and they were able to bound $\operatorname{Reg}(L) / \operatorname{Reg}(K)$ from below by a power of $\log \left(\mathrm{N}\left(\mathcal{D}_{L / K}\right)\right)$.

While Bergé and Martinet's results can be used quite effectively [B-M 3] if $\mathrm{N}\left(\mathcal{D}_{L / K}\right)$ is large, they are otherwise not so strong. This makes it difficult to obtain inequalities in which K is allowed to vary, say only fixing [$L: \mathbf{Q}$], as there will be in general infinitely many L / K with $\mathrm{N}\left(\mathcal{D}_{L / K}\right)=1$. Our results for totally real fields [C-F] suggested that this problem could be overcome by modifying Bergé and Martinet's lattice. We use the lattice associated to the relative units $E_{L / K}$. By definition, $E_{L / K}$ consists of those units of L whose norm to K is a root of unity. Since the co-volume of $E_{L / K}$ under the logarithmic embedding is readily related to $\operatorname{Reg}(L) / \operatorname{Reg}(K)$, we can apply Remak's geometric method to bound the absolute discriminant of $\mathbf{Q}\left(E_{L / K}\right)$ from above in terms of $\operatorname{Reg}(L) / \operatorname{Reg}(K)$. It turns out that $\mathbf{Q}\left(E_{L / K}\right)=L$, except when one of the following three conditions holds:
(i) $L=K$.
(ii) The field L is CM (and K is any subfield of L).
(iii) The field L is a Galois extension of a totally real field k with group $\operatorname{Gal}(L / k) \cong$ $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}, k_{\neq}^{\subsetneq} K \subsetneq=L$, and there is a CM field $M \neq K$ lying strictly between k and L.

We call the extension L / K unit-weak if it satisfies (i), (ii) or (iii) above.
Theorem. Let L / K be an extension of number fields and assume that $D_{L}>3 N^{N}$, where D_{L} is the absolute discriminant of L and $N=[L: \mathbf{Q}]$. Then

$$
\begin{equation*}
\frac{\operatorname{Reg}(L)}{\operatorname{Reg}(K)}>\frac{C}{N^{2 r}}\left(\log \left(\left|D_{L}\right| / N^{N}\right)\right)^{m} \tag{1.2}
\end{equation*}
$$

Here Reg is the regulator, $C>0$ is a computable absolute constant, $r=r_{L}-r_{K}=$ $\operatorname{rank}\left(E_{L / K}\right)$ is the difference of the unit ranks of L and K, and $m=m(L / K)=r-$ $\max _{F \subset L}\left\{\operatorname{rank}\left(E_{L / K} \cap F\right)\right\}$, where F runs over all proper subfields of L and where $E_{L / K}$ is $F \varsubsetneqq L$
the group consisting of those units of L whose norm to K is a root of unity. If L / K is not unit-weak (see above definition), then $m \geq 1$.

In general we do not obtain a good value of C, so we do not calculate it here. Our proof does yield that one can take $C=1$ and $m=r$ if K contains all proper subfields of L. In general, $m=\max _{F}^{\subsetneq}\left\{\operatorname{dim}_{\mathbf{R}}\left(\left(\mathcal{L}\left(E_{L / K}\right) \otimes_{\mathbf{z}} \mathbf{R}\right) \cap\left(\mathcal{L}\left(F^{*}\right) \otimes_{\mathbf{Z}} \mathbf{R}\right)\right)\right\}$, where \mathcal{L} denotes the logarithmic embedding (2.1). Thus m can be computed by linear algebra without any knowledge of $E_{L / K}$.

When L / K is unit-weak, m vanishes and (1.2) becomes almost useless. However, in this case the ratio of regulators $\operatorname{Reg}(L) / \operatorname{Reg}(K)$ is essentially that of a proper subextension. Unit-weak extensions can thus be treated inductively and represent no essential complication to the problem of bounding $\operatorname{Reg}(L) / \operatorname{Reg}(K)$ from below. We treat unit-weak extensions briefly at the end of $\S 2$ and 3 .

A consequence of (1.2) is
Corollary. Given an integer N and a real number y, there are at most finitely many extensions L / K such that $[L: \mathbf{Q}] \leq N, \operatorname{Reg}(L) / \operatorname{Reg}(K)<y$ and L / K is not unit-weak.

If L is totally real we can drop the restriction on $[L: \mathbf{Q}]$. In other words, given any real number y there are finitely many pairs of totally real fields L and K, with $K_{\neq}^{\subset} L$, such that $\operatorname{Reg}(L) / \operatorname{Reg}(K)<y[\mathrm{C}-\mathrm{F}]$. We do not know if this extends to all non unit-weak L / K, totally real or not.

2. The field generated by the relative units

Recall that the group of relative units $E_{L / K}$ of an extension L / K of number fields is defined by

$$
E_{L / K}=\left\{\alpha \in E_{L} \mid \operatorname{Norm}_{L / K}(\alpha) \in W_{K}\right\}
$$

where E_{L} denotes the units of L and W_{K} the torsion subgroup of E_{K}. The (free) rank of $E_{L / K}$ is $r=r_{L / K}=r_{L}-r_{K}$, where r_{L} is the rank of E_{L}. Let \mathcal{S}_{L} denote the set of embeddings of L into \mathbf{C}. We embed E_{L} / W_{L} into $\mathbf{R}^{\mathcal{S}_{L}}$ by the map $\mathcal{L}=\mathcal{L}_{L}: E_{L} \longrightarrow \mathbf{R}^{\mathcal{S}_{L}}$ defined by

$$
\begin{equation*}
\left(\mathcal{L}_{L}(\alpha)\right)_{\sigma}=(\mathcal{L}(\alpha))_{\sigma}=\log |\sigma(\alpha)|, \quad \sigma \in \mathcal{S}_{L} \tag{2.1}
\end{equation*}
$$

We endow $\mathbf{R}^{\mathcal{S}_{L}}$ with the Euclidean inner product

$$
\begin{equation*}
<\left(x_{\sigma}\right),\left(y_{\sigma}\right)>=\sum_{\sigma \in \mathcal{S}_{L}} x_{\sigma} y_{\sigma} . \tag{2.2}
\end{equation*}
$$

Then $\mathcal{L}_{L}\left(E_{L / K}\right)$ is perpendicular to $\mathcal{L}_{L}\left(E_{K}\right)$. A dimension count shows that the \mathbf{Q}-spans $\mathbf{Q} \mathcal{L}_{L}\left(E_{L / K}\right)$ and $\mathbf{Q} \mathcal{L}_{L}\left(E_{K}\right)$ of these two lattices are orthogonal complements of each other inside $\mathbf{Q} \mathcal{L}\left(E_{L}\right)$.

Our first goal is to characterize the extensions L / K for which $\mathbf{Q}\left(E_{L / K}\right)$ is a proper subfield of L. Slightly more generally, we prove

Proposition 1. Let L / K be an extension of number fields and let $E_{L / K}$ be its group of relative units. Let E be a subgroup of finite index in $E_{L / K}$ and suppose that E is contained in a proper subfield of L. Then at least one of (i), (ii) or (iii) below holds:
(i) $L=K$.
(ii) L is $C M$ (and $K \subset L$ is arbitrary).
(iii) The field L is a Galois extension of a totally real field k with group $\operatorname{Gal}(L / k) \cong$ $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}, k_{\neq}^{\subsetneq} K_{\neq}^{\subsetneq} L$, and some $C M$ field $M \neq K$ lies strictly between k and L.

Conversely, if (iii), (ii) or (i) holds (with $L \neq \mathbf{Q}$), then $E_{L / K}$ contains a subgroup E as above.

Proof. The last statement is obvious in cases (i) and (ii). If (iii) holds let $H \neq K, H \neq M$ be the third field lying strictly between k and L. A short computation shows that $E:=$ $E_{H / k} \subset H$ has the same rank as $E_{L / K}$ and $E \subset E_{L / K}$, proving the converse claim.

We now prove the first part of the proposition. Given a subfield $F \subset L$ and an archimedean place ω of L, let $e_{F}(\omega)=e_{L / F}(\omega)=2$ if ω ramifies in L / F. Otherwise let $e_{F}(\omega)=1$. Let ∞_{F} denote the set of archimedean places of F. Then

$$
\begin{equation*}
r_{F}+1=\frac{1}{[L: F]} \sum_{\omega \in \infty_{L}} e_{F}(\omega) \tag{2.3}
\end{equation*}
$$

because

$$
r_{F}+1=\sum_{\nu \in \infty_{F}} 1=\sum_{\nu \in \infty_{F}} \frac{1}{[L: F]} \sum_{\substack{\omega \in \infty_{L} \\ \omega \mid \nu}} e_{F}(\omega)=\frac{1}{[L: F]} \sum_{\omega \in \infty_{L}} e_{F}(\omega)
$$

Let $H=\mathbf{Q}(E)$. Then $H_{\neq}^{\subsetneq} L$, by assumption. Since $E \subset E_{H}$, we have $r_{H} \geq r_{L / K}=r_{L}-r_{K}$. From this and (2.3) we obtain

$$
\frac{1}{[L: H]} \sum_{\omega \in \infty_{L}} e_{H}(\omega)+\frac{1}{[L: K]} \sum_{\omega \in \infty_{L}} e_{K}(\omega)>\sum_{\omega \in \infty_{L}} 1
$$

The compositum $H K \subset L$ contains E and E_{K}. These are independent (perpendicular!) subgroups of E_{L} of rank $r_{L}-r_{K}$ and r_{K}. Hence the units of $H K$ have rank r_{L}. If $H K \neq L$, then L must be a CM field, in which case the proof is done. We may therefore assume $H K=L$. Then we cannot simultaneously have $e_{H}(\omega)=2$ and $e_{K}(\omega)=2$ for $\omega \in \infty_{L}$. Hence,

$$
\begin{equation*}
\left(\frac{1}{[L: H]}+\frac{1}{[L: K]}\right) \sum_{\omega \in \infty_{L}} 1+\max \left(\frac{1}{[L: H]}, \frac{1}{[L: K]}\right) \sum_{\omega \in \infty_{L}} 1>\sum_{\omega \in \infty_{L}} 1 \tag{2.4}
\end{equation*}
$$

By assumption, $[L: H] \geq 2$. Thus, either $[L: H]=2$ or $[L: K]=2$ (we dismiss the trivial case $L=K$).

We first assume $[L: K]=2$. Let τ be the non-trivial element of $\operatorname{Gal}(L / K) \cong \mathbf{Z} / 2 \mathrm{Z}$. For $\alpha \in E \subset E_{L / K}$, we have $\operatorname{Norm}_{L / K}(\alpha) \in W_{K}$. Therefore, $\tau(\alpha)=\eta \alpha^{-1}, \eta \in W_{K}$. By passing, as we may, to a subgroup of finite index in E, we can assume $\tau(\alpha)=\alpha^{-1}$. Hence τ induces a non-trivial field automorphism of $H=\mathbf{Q}(E)$. Let H_{τ} be its fixed field, so that [$H: H_{\tau}$] $=2$. Since $H_{\tau} \subset L_{\tau}=K$, we must have either $H \cap K=H_{\tau}$ or $H \cap K=H$. In the latter case we would have $E \subset K$. But then $E \subset K \cap E_{L / K}=W_{K}$. Since E has finite index in $E_{L / K}$, this could only happen if L is CM. We may thus assume $H \cap K=H_{\tau}$. Then $E \subset H \cap E_{L / K}=E_{H / H \cap K} \subset E_{L / K}$. Since E has finite index in $E_{L / K}, r_{H / H \cap K}=r_{L / K}$. From this and (2.3) we find

$$
\frac{1}{[L: H]} \sum_{\omega \in \infty_{L}} e_{H}(\omega)-\frac{1}{[L: H \cap K]} \sum_{\omega \in \infty_{L}} e_{H \cap K}(\omega)=\sum_{\omega \in \infty_{L}} 1-\frac{1}{2} \sum_{\omega \in \infty_{L}} e_{K}(\omega)
$$

Since $[L: H \cap K]=2[L: H]$, we have

$$
\begin{equation*}
\frac{1}{[L: H]} \sum_{\omega \in \infty_{L}}\left(2 e_{H}(\omega)-e_{H \cap K}(\omega)\right)=\sum_{\omega \in \infty_{L}}\left(2-e_{K}(\omega)\right) . \tag{2.5}
\end{equation*}
$$

Observe that if ω ramifies in L / K, then ω ramifies in $L / H \cap K$ but does not ramify in L / H (since $L=H K$). Thus, if $e_{K}(\omega)=2$ then $2 e_{H}(\omega)-e_{H \cap K}(\omega)=0$. If $e_{K}(\omega)=1$, then $2 e_{H}(\omega)-e_{H \cap K}(\omega) \leq 2$. It now follows from (2.5) that $[L: H]=2$ and that $e_{H}(\omega)=2$ if and only if $e_{K}(\omega)=1$. Hence $[L: H]=2=[H: H \cap K]=[K: H \cap K]$ and all archimedean places of L ramify in either L / K or L / H, but none ramifies in both extensions. It follows that L / K satisfies condition (iii) in the proposition (let $k=K \cap H$ and let $M \neq K, M \neq H$, be the third field lying strictly between k and L). This proves Proposition 1 when $[L: K]=2$.

If $[L: K]>2$, then (2.4) implies $[L: H]=2$. The strategy now is to reverse the roles of H and K and thereby reduce the proof to the quadratic case which we have just handled. Recall that if F is any subfield of L, then the \mathbf{Q}-spans of $\mathcal{L}\left(E_{L / F}\right)$ and $\mathcal{L}\left(E_{F}\right)$ are orthogonal with respect to the (\mathbf{R}-valued) inner product (2.2). By construction, $\mathcal{L}(E) \subset \mathcal{L}\left(E_{H}\right)$. Since E has finite index in $E_{L / K}, \mathbf{Q} \mathcal{L}(E)=\mathbf{Q} \mathcal{L}\left(E_{L / K}\right)$. Hence

$$
\begin{equation*}
\mathbf{Q} \mathcal{L}\left(E_{L / H}\right)=\mathbf{Q} \mathcal{L}\left(E_{H}\right)^{\perp} \subset \mathbf{Q} \mathcal{L}\left(E_{L / K}\right)^{\perp}=\mathbf{Q} \mathcal{L}\left(E_{K}\right) \tag{2.6}
\end{equation*}
$$

where ${ }^{\perp}$ denotes the orthogonal complement inside $\mathbf{Q} \mathcal{L}\left(E_{L}\right)$. Since the kernel W_{L} of \mathcal{L} is finite, (2.6) shows that $E_{L / H}^{n} \subset E_{K}$ for some positive integer n. Thus $E^{\prime}:=E_{L / H}^{n}$ has finite index in $E_{L / H},[L: H]=2$ and $\mathbf{Q}\left(E^{\prime}\right) \subset K$, a proper subfield of L. But this is the quadratic case of the proposition, so the proof is done.

We conclude this section with a brief discussion of the unit-index $u_{L / K}$ of a unit-weak extension L / K. We assume first that $K \neq L$ and that L is not CM. Let k and M be as in (iii) above. Denote by K and H the two remaining fields lying strictly between k and L. Let τ_{H}, τ_{K} and $\tau_{M}=\tau_{H} \tau_{K}$ be the non-trivial automorphisms of $L / H, L / K$ and L / M. Since we assume that L is not CM, at least one archimedean place of k ramifies in H. Hence at
least one archimedean place of K ramifies in L. Thus $W_{K}=\{ \pm 1\}$ and -1 is not a norm in L / K, whence $\operatorname{Norm}_{L / K}\left(E_{L / K}\right)=\{+1\}$. Equivalently, $\tau_{K}(\alpha)=\alpha^{-1}$ for $\alpha \in E_{L / K}$. Hence, $\operatorname{Norm}_{L / M}(\alpha)=\alpha \tau_{H}\left(\tau_{K}(\alpha)\right)=\alpha / \tau_{H}(\alpha)$. Therefore, $\operatorname{Norm}_{L / M}(\alpha)=1$ if and only if $\alpha \in E_{L / K} \cap H=E_{H / k}$. In short, $\operatorname{Norm}_{L / M}$ induces an injection of $E_{L / K} / E_{H / k}$ into $W_{M}=E_{M / k}$. As $W_{M}^{2}=\operatorname{Norm}_{L / M}\left(W_{M}\right) \subset \operatorname{Norm}_{L / M}\left(W_{L}\right)$ and W_{M} is cyclic, we have $u_{L / K}:=\left[E_{L / K}: W_{L} E_{H / k}\right]=1$ or 2 .

So far we have assumed that L is not CM. If L is CM, let H be its maximal totally real subfield. It is well-known that $\left[E_{L}: W_{L} E_{H}\right]=1$ or 2 [R 2]. It follows that $u_{L / K}:=$ [$\left.E_{L / K}: W_{L} E_{H / k}\right]=1$ or 2 , where $k=H \cap K$. Finally, if $L=K$ we let $H=k=\mathbf{Q}$ and $u_{L / K}=1$.

We have thus defined, whenever L / K is unit-weak, a sub-extension H / k and a unitindex $u_{L / K}:=\left[E_{L / K}: W_{L} E_{H / k}\right]=1$ or 2 . When L is CM and $K=\mathbf{Q}, u_{L / \mathbf{Q}}$ is just the usual unit-index of L. In the next section we relate the regulators of $E_{L / K}$ and $E_{H / k}$ using $u_{L / K}$. Notice that H / k is not unit-weak unless $r_{L / K}=0$.

3. Proof of Theorem

We begin with the definition of the regulator of relative units $\operatorname{Reg}\left(E_{L / K}\right)$. Pick α_{1}, α_{2}, \cdots, α_{r} to be independent generators of the relative units modulo torsion. Let M be the matrix $M=\left(\log \left\|\alpha_{i}\right\|_{\omega}\right)$, where $1 \leq i \leq r, \omega$ runs over the set ∞_{L} of archimedean places of L and $\left\|\|_{\omega}\right.$ denotes the normalized absolute value at ω (so that $\| \|_{\omega}=| |_{\omega}^{2}$ if ω is complex and $\left\|\|_{\omega}=| |_{\omega}\right.$ otherwise). For each place $\nu \in \infty_{K}$, fix a place $\omega_{\nu} \in \infty_{L}$ lying above ν. Then $\operatorname{Reg}\left(E_{L / K}\right)$ is the absolute value of the determinant of the submatrix of M which results when we delete from M the rows corresponding to the ω_{ν} 's. In [C-F, Th. 1] we showed, for L / K of any signature,

$$
\begin{equation*}
\operatorname{Reg}\left(E_{L / K}\right)=\frac{1}{\left[E_{K}: W_{K} \mathrm{~N}_{L / K}\left(E_{L}\right)\right]} \frac{\operatorname{Reg}(L)}{\operatorname{Reg}(K)} \tag{3.1}
\end{equation*}
$$

We also related [C-F, Lemma 2.1] $\operatorname{Reg}\left(E_{L / K}\right)$ to the r-dimensional volume $V_{L}\left(E_{L / K}\right)$ of a fundamental domain for $\mathcal{L}\left(E_{L / K}\right)$ (see (2.1)),

$$
\begin{equation*}
V_{L}\left(E_{L / K}\right)=[L: K]^{\left(r_{1}(K)+r_{2}(K)\right) / 2} 2^{\left(r_{2}(K)-r_{2}(L)\right) / 2} \operatorname{Reg}\left(E_{L / K}\right) \tag{3.2}
\end{equation*}
$$

where (r_{1}, r_{2}) denotes the number of (real, complex) places. The Euclidean structure (which normalizes volume) is given by $\left\|\left(x_{\sigma}\right)\right\|^{2}=<\left(x_{\sigma}\right),\left(x_{\sigma}\right)>$, as in (2.2). For $\alpha \in E_{L}$ we write $\|\alpha\|$ instead of $\|\mathcal{L}(\alpha)\|$. Thus,

$$
\begin{equation*}
\|\alpha\|^{2}:=\sum_{\sigma \in \mathcal{S}_{L}}(\log |\sigma(\alpha)|)^{2} \tag{3.3}
\end{equation*}
$$

where \mathcal{S}_{L} denotes the set of all embeddings of L into \mathbf{C}. We will need the lower bound [F, (3.21)]

$$
\begin{equation*}
\|\alpha\|>\frac{C^{\prime}}{\sqrt{N}(\log N)^{3}} \tag{3.4}
\end{equation*}
$$

where $\alpha \in E_{L}, \alpha \notin W_{L}, N=[L: \mathbf{Q}]$ and $C^{\prime}>0$ is a computable absolute constant (inequality (3.4) follows easily from Dobrowolsky's lower bound for heights [D]).

Let the successive minima of $\left\|\|\right.$ on the lattice $\mathcal{L}\left(E_{L / K}\right)$ be attained at $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}$. Thus [G-K, pp. 195, 197] the subgroup $E:=\left\langle\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}\right\rangle$ of $E_{L / K}$ generated by the ε_{i} has finite index in $E_{L / K}$ and

$$
\begin{gather*}
0<\left\|\varepsilon_{1}\right\| \leq\left\|\varepsilon_{2}\right\| \leq \cdots \leq\left\|\varepsilon_{r}\right\| \tag{3.5}\\
\prod_{i=1}^{r}\left\|\varepsilon_{i}\right\| \leq \gamma_{r}^{r / 2} V_{L}\left(E_{L / K}\right) \tag{3.6}
\end{gather*}
$$

where γ_{r} denotes Hermite's constant in dimension $r=r_{L / K}$.
Lemma. Let $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}$ be as above and assume that L / K is not unit-weak (see §1). Let $H_{0}=\mathbf{Q}, H_{i}=H_{i-1}\left(\varepsilon_{i}\right)$. Then there is integer T such that $H_{T} \neq L, H_{T+1}=L$, $0 \leq T<r$ and

$$
\frac{1}{[L: \mathbf{Q}]} \log \left|D_{L}\right| \leq \log ([L: \mathbf{Q}])+\frac{1}{\sqrt{3[L: \mathbf{Q}]}} \sum_{i=1}^{T+1}\left\|\varepsilon_{i}\right\| \sqrt{\left[H_{i}: H_{i-1}\right]^{2}-1}
$$

where D_{L} denotes the absolute discriminant of L and $\|\|$ is given by (3.3).
Proof. Proposition 1 implies that there is a least $T<r$ so that $L=\mathbf{Q}\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{T+1}\right)$. The inequality then follows from $[F,(3.3),(3.14)$ and Lemma 3.5].

Theorem. Let L / K be an extension of number fields and assume that $D_{L}>3 N^{N}$, where D_{L} is the absolute discriminant of L and $N=[L: \mathbf{Q}]$. Then

$$
\begin{equation*}
\operatorname{Reg}\left(E_{L / K}\right) \geq \frac{C}{N^{2 r}}\left(\log \left(\left|D_{L}\right| / N^{N}\right)\right)^{m} \tag{3.7}
\end{equation*}
$$

Here $\operatorname{Reg}\left(E_{L / K}\right)$ is the regulator of relative units given by (3.1) above, $C>0$ is a computable absolute constant, $r=r_{L}-r_{K}=\operatorname{rank}\left(E_{L / K}\right)$ is the difference of the unit ranks of L and K, and $\left.m=m(L / K)=r-\max _{F \neq}^{c} L \operatorname{rank}\left(E_{L / K} \cap F\right)\right\}$, where F runs over all proper subfields of L and where $E_{L / K}$ is the group consisting of those units of L whose norm to K is a root of unity. If L / K is not unit-weak (see $\S 1$), then $m \geq 1$.

The slightly simplified version of the theorem given in $\S 1$ follows from (3.1) and (3.7).
Proof. We first assume that L / K is not unit-weak. From the lemma and (3.5) we have

$$
\begin{equation*}
\frac{1}{N} \log \left(\left|D_{L}\right| / N^{N}\right) \leq \frac{\left\|\varepsilon_{T+1}\right\|}{\sqrt{3 N}} \sum_{i=1}^{T+1} \sqrt{\left[H_{i}: H_{i-1}\right]^{2}-1} \leq\left\|\varepsilon_{T+1}\right\| \sqrt{N / 3} \tag{3.8}
\end{equation*}
$$

since $\prod_{i=1}^{T+1}\left[H_{i}: H_{i-1}\right]=N$. From (3.5), (3.6) and (3.4)

$$
\begin{equation*}
\left\|\varepsilon_{T+1}\right\|^{r-T} \leq \prod_{i=T+1}^{r}\left\|\varepsilon_{i}\right\| \leq \frac{\gamma_{r}^{r / 2} V_{L}\left(E_{L / K}\right)}{\left(\frac{C^{\prime}}{\left.\sqrt{N(\log N)^{3}}\right)^{T}}\right.} \tag{3.9}
\end{equation*}
$$

If we put this together with (3.2) and (3.8), and use $\log \left(\left|D_{L}\right| / N^{N}\right)>0$, we find

$$
\begin{equation*}
\frac{1}{N^{2 r}}\left(\log \left(\left|D_{L}\right| / N^{N}\right)\right)^{r-T} \leq \frac{\left(([L: K] / 2)^{\left(r_{1}(K)+r_{2}(K)\right) / r} 2^{\left.\left([K: Q]-r_{2}(L)\right) / r \frac{r_{r}}{3 N}\right)^{r / 2}}\right.}{\left(\frac{N C^{\prime}}{\sqrt{3}(\log N)^{3}}\right)^{T}} \operatorname{Reg}\left(E_{L / K}\right) \tag{3.10}
\end{equation*}
$$

If $[L: K] \geq 3,(2.3)$ yields

$$
r=r_{L}-r_{K}=\sum_{\omega \in \infty_{L}}\left(1-\frac{e_{K}(\omega)}{[L: K]}\right) \geq \sum_{\omega \in \infty_{L}} \frac{1}{3} \geq \frac{[L: \mathbf{Q}]}{6}
$$

Hence, for any $[L: K] \geq 2$,

$$
\begin{equation*}
([L: K] / 2)^{\left(r_{1}(K)+r_{2}(K)\right) / r} \leq([L: K] / 2)^{\frac{\theta}{[: R]}}<3.003 \tag{3.11}
\end{equation*}
$$

Note that

$$
\begin{equation*}
[K: \mathbf{Q}]-r_{2}(L) \leq r_{1}(L)+r_{2}(L)-r_{1}(K)-r_{2}(K)=r \tag{3.12}
\end{equation*}
$$

and that, for $r>2, \gamma_{r} \leq r / 2.1$ (Proof: Use the inequalities quoted in [C-F, (2.9)]). We have then in (3.10)

$$
\begin{equation*}
\left(([L: K] / 2)^{\left(r_{1}(K)+r_{2}(K)\right) / r} 2^{\left([K: \mathrm{Q}]-r_{2}(L)\right) / r} \frac{\gamma_{r}}{3 N}\right)^{r / 2} \leq 1 \tag{3.13}
\end{equation*}
$$

for all $r>0$ (do $r=1$ or 2 separately). Since $T<r<N,(3.10)$ and (3.13) yield

$$
\begin{equation*}
\operatorname{Reg}\left(E_{L / K}\right)>\frac{C}{N^{2 r}}\left(\log \left(\left|D_{L}\right| / N^{N}\right)\right)^{r-T} \tag{3.14}
\end{equation*}
$$

with $C>0$ a computable absolute constant. To prove (3.7) we must still show that in (3.14) we can replace T by $\rho:=\max _{F \neq L}^{C_{L}}\left\{\operatorname{rank}\left(E_{L / K} \cap F\right)\right\}$. Since we assume $D_{L}>3 N^{N}$, it suffices to show $T \leq \rho$. By the lemma, H_{T} is a proper subfield of L containing the T independent relative units $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{T} \in E_{L / K}$. Hence $T \leq \rho$. Proposition 1 implies that $m=r-\rho>0$, which concludes the proof when L / K is not unit-weak.

If L / K is unit-weak then $m=r-\rho=0$ in (3.7). In this case (3.7) follows from

Proposition 2. Let L / K be an extension of number fields. Then

$$
\begin{equation*}
\operatorname{Reg}\left(E_{L / K}\right) \geq \frac{c^{r}}{\left(N r(\log N)^{6}\right)^{r / 2}} \tag{3.15}
\end{equation*}
$$

Here $\operatorname{Reg}\left(E_{L / K}\right)$ is the regulator of relative units given by (3.1) above, $c>0$ is a computable absolute constant, $N=[L: \mathrm{Q}]$ and $r=r_{L}-r_{K}$ is the difference of the unit ranks of L and K (If $r=0$, (3.15) means the trivial $1 \geq 1$).

Proof. From (3.4), (3.6) and (3.2) we obtain

$$
\operatorname{Reg}\left(E_{L / K}\right) \geq\left(\frac{C^{\prime 2}}{N \gamma_{r}(\log N)^{6}([L: K] / 2)^{\left(r_{1}(K)+r_{2}(K)\right) / r} 2^{\left([K: Q]-r_{2}(L)\right) / r}}\right)^{r / 2}
$$

Now use (3.11), (3.12) and $\gamma_{r} \leq r$ to obtain (3.15), with $c=C^{\prime} / \sqrt{6.006}$.
Corollary. Let L / K (and all notation) be as in the theorem. Suppose further that all proper subfields of L are contained in K. Then

$$
\begin{equation*}
\operatorname{Reg}\left(E_{L / K}\right) \geq \frac{1}{N^{2 r}}\left(\log \left(\left|D_{L}\right| / N^{N}\right)\right)^{r} \tag{3.16}
\end{equation*}
$$

Proof. We first dispose of the trivial cases. If $L=K$ is unit-weak, the hypothesis on K implies that case (iii) in Proposition 1 cannot hold. If (ii) holds, so L is CM, then K must be its maximal totally real subfield. Then $r=0$ and (3.16) is trivial. Since case (i) ($L=K$) is equally trivial, we may assume that L / K is not unit weak. But then $T=0$ in (3.10) because of the assumption on K (use $E_{L / K} \cap K=W_{K}$). The corollary now follows from (3.13) and (3.10).

We conclude with a comment on $\operatorname{Reg}\left(E_{L / K}\right)$ and $\operatorname{Reg}(L) / \operatorname{Reg}(K)$ for L / K unit-weak. We defined in $\S 2$ a sub-extension H / k and a unit index $u_{L / K}:=\left[E_{L / K}: W_{L} E_{H / K}\right]=1$ or 2. On examining the ramification of the archimedean places in L / K and H / k one finds, directly from the definition of $\operatorname{Reg}\left(E_{L / K}\right)$ as a determinant,

$$
\begin{equation*}
\operatorname{Reg}\left(E_{L / K}\right)=2^{r_{H / k}} \operatorname{Reg}\left(E_{H / k}\right) / u_{L / K} . \tag{3.17}
\end{equation*}
$$

If we let L / K range over the infinitely many unit-weak extensions associated to the same H / k, it is clear from (3.17) that $\operatorname{Reg}\left(E_{L / K}\right)$ assumes at most two values. It follows, mainly from (3.1), that $\operatorname{Reg}(L) / \operatorname{Reg}(K)$ assumes at most $2^{[H: Q]}$ values.

References

[B-M 1] Bergé, A.-M. and Martinet, J. : Sur les minorations géométriques des régulateurs, Séminaire de Théorie des Nombres de Paris 1987-1988 (C. Goldstein, ed.), Birkhäuser Verlag, Boston 1990, pp. 23-50.
[B-M 2] Bergé, A.-M. and Martinet, J.: Notions relatives de régulateur et de hauteur, Acta Arith. 54 (1989), 155-170.
[B-M 3] Bergé, A.-M. and Martinet, J.: Minorations de hauteurs et petits régulateurs relatifs, Séminaire de Théorie des Nombres de Bordeaux 1987-1988, Univ. de Bordeaux, 1989.
[C-F] Costa, A. and Friedman, E.: Ratios of regulators in totally real extensions of number fields, J. Number Theory 37 (1991), 288-297.
[D] Dobrowolsky, E.: On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401.
[F] Friedman, E. : Analytic formulas for the regulator of a number field, Invent. Math. 88 (1989), 599-622.
[G-K] Gruber, P. M. and Lekkerkerker, C. G.: Geometry of Numbers, North Holland, Amsterdam, 1987.
[L] Landau, E.: Abschätzungen von Charaktersummen, Einheiten und Klassenzahlen, Nachr. Kgl. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1918), 79-97. Also in Landau's Collected Works 7, Thales Verlag, Essen, pp. 114-132.
[R 1] Remak, R.: Über Größenbeziehungen zwischen Diskriminanten und Regulator eines algebraischen Zahlkörpers, Compos. Math. 10 (1952), 245-285.
[R 2] Remak, R.: Über algebraische Zahlkörper mit schwachem Einheitsdefekt. Compos. Math. 12 (1954), 35-80.
[Sie] Siegel, C.-L.: Abschätzungen von Einheiten, Nachr. Akadem. Wiss. Göttingen Math.-Phys. Kl., Nr. 9 (1969), 71-86. Also in Siegel's Gesammelte Abhandlungen 4, Springer Verlag, Berlin, 1979, pp. 66-81.
[Sil] Silverman, J. : An inequality connecting the regulator and discriminant of a number field, J. Number Theory 19 (1984), 437-442.
[Z] Zimmert, R.: Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math. 62 (1981), 367-380.
A. Costa, Department of Mathematics, American University, Washington, D.C. 20016, U.S.A.
E. Friedman, Max Planck Institut für Mathematik, Gottfried Claren Straße 26, 5300 Bonn 3, Germany

[^0]: 1991 Mathematics Subject Classification. Primary 11R27, 11R29.
 Key words and phrases. Regulator, discriminant, unit-weak extensions.

 * Partially supported by NSA grant MDA90-H-1019.
 ** Research supported by the Max Planck Institut für Mathematik and the NSF.

