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Ratios of regulators in" extensions of number ftelds

Antone Costa* and Eduardo Friedman**

Abstract. Let LIK be an extension of number fields. Then

where Reg denotes the regulator, DL is the absolute discriminant of L and C[L:Q) > 0
depends only on the degree of L. The non-negative integer m = m(LIK) is positive if
LIK does not belong to certain precisely defined infinite families of extensions, analogous
to CM fields, along which Reg(L)/Reg(K) is constant. This generalizes some inequalities
due to Remak and Silverman, who asstuned that K is the rational field Q, and modifies
those of Berge-Martinet who dealt with a general extension LI I< but used its relative
discriminant where we use the absolute one.

1. Introduction

Remak [R 1] laid down the principle that a number field ought to have a large regulator if
and only if it has a large discriminant. In oue direction this follows from work of Landau [L]
[Sie], who proved that .jj15"Zf (log IDLI)(L:Q]-l is an upper bound for Reg(L). To obtain
an inequality in the opposite sense, Remak considered the field Q(EL) generated by the
units EL of L. The geometry of numbers teIls us that Q(EL ) can be generated by integral
elements (units) whose size at every embedding is bounded in terms of Reg(L). It follows
that IDQ(EL)I can be bounded above by a function of Reg(L). Remak then observed that
Q(EL) = L unless L is a CM field (a totally imaginary quadratic extension of a totally
real field). Thus he proved [R 1]

(1.1 )

where L is assumed non CM, N = [L : Q] and CN > 0 depends "explicitly on N. In 1984
Silverman [Sill improved the dependence on log IDLI in (1.1) to

where IDLI > NN
10

S2(8N) is assumed, rL is the unit rank of L and p = max{rp}.
PCL
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It follows from (1.1) that given an integer N and areal number y there are only fini tely
many non-CM number fields L such that [L : Q] :s N and Reg(L) < y. CM fields must
be excluded since in this case the regulator is essentially that of a proper subfield and is
shared by infinitely many CM fields. We can, however, drop all restrictions on the degree
[L : Q] by using Zimmert's [Z] bound

Reg(L) > (0.04)1.05[L:Ql.

In the late 1980's Berge and Martinet [B-M 1] [B-M 2] generalized Remak and Silver
mau's method to the relative case. Given an extension L/l{ of number fields their idea was
to equate the ratio of regulators Reg(L )/Reg(K) with the co-volurne of a lattice produced
from the umts of L. In their approach the absolute norm N(VLjK) of the relative dis
criminant of L / K appeared naturally and they were able to bound Reg( L) /Reg(K) from
below by apower of log(N(VLjK )).

While Berge and Martinet's results can be used quite effectively [B-M 3] if N(DLjK )
is large, they are otherwise not so strong. This makes it difficult to obtain inequalities in
which K is allowed to vary, say only fixing [L: Q], as there will be in general infinitely
many L/K with N(DLj K) = 1. Dur results for totally real fields [C-F] suggested that this
problem could be overcome by modifying Berge and Martinet's lattice. We use the lattice
associated to the relative units E LjK . By definition, E L / K consists of those units of L
whose norm to K is a raat of unity. Since the co-volume of E L / K under the logarithmic
embedding is readily related to Reg(L)/Reg(K), we ean apply Remak's geometrie method
to bound the absolute diseriminant of Q(EL / K ) from above in terms of Reg(L)/Reg(K).
It turns out that Q(ELjK) = L, exeept when one of the following three eonditions holds:

(i) L = K.

(ii) The field L is CM (and K is auy subfield of L).

(iii) The field L is a Galois extension of a totally real field k with group Gal(L/k) rv

Z/2Z x Z/2Z, k;l<~L, and there is a CM field M -I K lying strietly between k and
L.

We eall the extension L/l< unit-weak if it satisfies (i), (ii) or (iii) above.

Theorem. Let L/K be an extension oEnumberfields and assume that DL > 3NN , where
DL is the absolute discriminant oE L and N = [L : Q]. Then

Reg(L) ~ (1 (ID I/NN))m
Reg(l<) > N2r og L .

(1.2)

Here Reg is tbe regulator, C > 0 is a computable absolute constant, r = rL - TK =
rank(EL / K ) is the difference oE the unit ranks oE L and l{J and m = m(L/l{) = r 
max{rank{EL / K n F)} , where F runs over a1l proper subfields oE L and where E L / K is
FCL
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(2.1)

(2.2)

the group consisting oE those units oE L whose norm to K is a root of unity. IE L/[( is not
unit-weak (see ahove definition), then m ~ 1.

In general we do not obtain a good value of C, so we do not calculate it here. Our proof
does yield that one can take C = 1 and m = r if K contains all proper subfields of L.
In general, m = max{ dimR((.c(EL / K ) ®z R) n (.c(F*) ®z R))}, where .c denotes the

F~L

logarithmic embedding (2.1). Thus m can be computed by linear algebra without any
knowledge of E L / K .

When LIK is unit-weak, m vamshes and (1.2) becomes almost useless. However,
in trus case the ratio of regulators Reg(L) /Reg(K) is essentially that of a proper sub
extension. Unit-weak extensions can thus be treated inductively and represent no essential
complication to the problem of bounding Reg(L)/Reg(K) from below. We treat unit-weak
extensions briefly at the end of §2 and 3.

A consequence of (1.2) is

Corollary. Given an integer N and areal number y, there are at most finitely many
extensions L/K such that [L: Q] :s N, Reg(L)/Reg(K) < y and L/K is not unit-weak.

If L is totally real we can drop the restriction on [L : Q]. In other words, given any real
number y there are finitely many pairs of totally real fields L and [{, with [(; L, such that
Reg(L)/Reg(K) < y [C-F]. We do not know if this extends to all non unit-weak L/K,
totally real or not.

2. The Held generated by the relative units

Recall that the group of relative units E L / K of an extension L/[{ of number fields is
defined by

E L/ K = {a E EL I NormL/K(a) E WK},

where EL denotes the units of Land WK the torsion subgroup of EK. The (free) rank
of E L / K is r = rL/K = rL - rK, where rL is the rank of EL. Let SL denote the set of
embeddings of L into C. We embed EL/WL into RSL by the map .c = 'cL : EL ---+ RSL

defined by
(.cL(a))u = (L:(a))q = Iogla(a)l,

We enclow RSL with the Euclidean inner product

< (x q), (Yq) > = L XqYq .
qESL

Then L:L(EL / K ) is perpendicular to LL(EK ). A dimension count shows that the Q-spans
QL:L ( E L / K ) and Q.cL (EK ) of these two Iattices are orthogonal compiements of each other
inside Q.c(EL)'

Our first goal is to characterize the extensions L/K for which Q(EL/ K) is a proper
subfield of L. Slightly more generally, we prove
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Proposition 1. Let L/K be an extension oE number neids and let E L / K be its group
oE relative units. Let E be a subgroup oE nnite index in E L / K and suppose that E is
contained in a proper subneid oE L. Then at least one oE (i), (ii) or (iii) below holds:

(i) L = K.

(ii) L is CM (and K C L is arbitrary).

(iii) The neid L is a Galois extension oE a totally real neid k with group Gal(L/k) r-..J

Z/2Z x Z/2Z, k~K~L, and some CM neid M f:. K lies strictly between k and L.

Conversely, if (iii), (ii) or (i) holds (with L t=- Q), then E L / K contains a subgroup E as
above.

Proof. The last statement is obvious in cases (i) and (ii). If (iii) holds let H t=- !(, H f:. M
be the third field lying strictly between k and L. A short computation shows that E :=

E H / k C H has the same rank as E L / K and E C E L / K , proving the converse claim.

We now prove the first part of the proposition. Given a subfield F c L and an
archimedean place W of L, let eF(w) = eL/p(w) = 2 if W ramifies in L/F. Otherwise let
ep(w) = 1. Let 00 p denote the set of archimedean places of F. Then

because

1
TF + 1 = (L : F] L ep(w),

WEOOL

(2.3)

Let H = Q(E). Then H~L, byassumption. Since E C EH, we have rH ~ TL/K = TL-rK.

From this and (2.3) we obtain

1 1
(L: H] L eH(w) + (L: !(] L eK(w) > L 1.

WEOOL WEOOL WEOOL

The compositum H!( C L contains E and EK. These are independent (perpendicular!)
subgroups of EL of rank rL -rK and rK. Hence the units of HK have rank TL. If HK f:. L,
then L must be a CM field, in which case the proof is done. We may therefore assume
HK = L. Then we cannot simultaneously have eH(w) = 2 and eK(w) = 2 for W E OOL.

Hence,

By assumption, [L : H] ~ 2. Thus, either (L : H] = 2 or [L : !{] = 2 (we dismiss the trivial
case L = K).
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We first assurne [L : K] = 2. Let T be the non-trivial element of Gal(LIK) f"V Z/2Z.
For a E E C E L / K , we have NormL/K(a) E WK. Therefore, T(a) = 11 a - 1, 11 E WK. By
passing, as we may, to a subgroup of finite index in E, we can assume T(0') = 0'-1. Hence
Tinduces a non-trivial field automorphism of H = Q(E). Let H.,. be its fixed field, so that
[H : H.,.] = 2. Since H.,. C L.,. = K, we must have either H n [{ = H.,. or H n [{ = H. In
the latter case we would have EcK. But then ECK n E L / K = WK. Since E has finite
index in E L / K , this could only happen if L is CM. We may thus assurne HnK = H.,.. Then
E C H n EL/K = E H/ HnK C E L/ K . Since E has finite index in E L/ K , TH/HnK = rL/K.
From this and (2.3) we find

Since [L : H n K] = 2 [L : H], we have

2: (2 - eK(w)) .
WEOOL

(2.5)

Observe that if w ramifies in LIK 1 then W ramifies in LIH n !( but does not ramify in
LIH (since L = HK). Thus, if eK(w) = 2 then 2eH(w) - eHnK(W) = O. H eK(w) = 1,
then 2eH(w) - eHnK(W) ::; 2. It now follows from (2.5) that [L : H] = 2 and that
eH(w) = 2 if and only if eK(w) = 1. Hence [L: H] = 2 = [H: HnK] = [K: Hn[(]
and all arcmmedean places of L ramify in either LIK or LIH, hut none ramifies in both
extensions. It follows that LI[{ satisfies condition (iii) in the proposition (let k = K n H
and let M =1= K, M =I=- H, be the third field lying strictly between k and L). This proves
Proposition 1 when [L : K] = 2.

If [L : [(] > 2, then (2.4) implies [L : H] = 2. The strategy now is to reverse
the roles of Hand K and thereby reduce the proof to the quadratic case which we have
just handled. Recall that if F is any subfield of L, then the Q-spans of J:(E L / F ) and
L(EF ) are orthogonal with respect to the (R-valued) inner product (2.2). By construction,
L(E) C L(EH). Since E has finite index in EL / K , Q.c(E) = QL(EL / K ) . Hence

(2.6)

where 1. denotes the orthogonal compiement inside Q.c(E L ). Since the kernel WL of .c is
finite, (2.6) shows that E L/H C E K for some positive integer n. Thus E' := EL/H has
finite index in E L / H , [L: H] = 2 and Q(E') C K, a proper subfield of L. But this is the
quadratic case of the proposition, so the proof is done.

We concIude this section with abrief discussion of the unit-index U L / K of a unit-weak
extension L/K. We assume first that K f:. L and that L is not CM. Let k and M be as in
(iii) above. Denote by [{ and H the two remaining fields lying strictly hetween k and L. Let
TH, TK and TM = THTK be the non-trivial automorphisms of LIH, LI!{ and LIM. Since
we assume that L is not CM, at least one archimedean place of k ramifies in H. Hence at
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least one archimedean place of K ramifies in L. Thus W K = {±1} and -1 is not a norm
in L/K, whence NormL/K(EL/ K ) = {+1}. Equivalently, TK(a) = a-1 for a E E L/ K .
Hence, NormL/M(a) = iXTH(TK(a)) = a/TH(a). Therefore, NormL/M(a) = 1 if and only
if a E E L/ K n H = E H/ k . In short, NormL/M induces an injection of EL/K/EH/ k into
W M = E M / k . As Wk = NormL/M(WM) C NormL/M(WL) and WM is cyclic, we have
uL/K := [EL/ K : WLEH/ k ] = 1 or 2.

So far we have assumed that L is not CM. If L is CM, let H be its maximal totally
real subfield. It is well-known that [EL : WLEH] = 1 or 2 [R 2]. It follows that UL/K :=

[EL / K : WLEH / k ] = 1 or 2, where k = H n K. Finally, if L = K we let H = k = Q and
UL/K = 1.

We have thus defined, whenever L/K is unit-weak, a sub-extension H/k and a unit
index UL/K := [EL/ K : WLEH / k ] = 1 or 2. When L is CM and K = Q, UL/Q is just
the usual unit-index of L. In the next section we relate the regulators of E L / K and E H / k

using UL/K' Notice that H/k is not umt-weak unless rL/K = O.

3. Proof of Theorem

We begin with the definition of the regulator of relative units Reg(EL / K)' Pick a}, a2,

. ", a r to be independent generators of the relative units modulo torsion. Let M be the
matrix M == (log lIaillw), where 1 ~ i ~ r, w runs over the set OOL of archimedean places
of Land I1 Ilw denotes the normalized absolute value at w (so that 11 IIw = 1I~ if w is
complex and 11 IIw = 1Iw otherwise). For each place v E OOK, fix a place W lI E OOL lying
above v. Then Reg(EL / K ) is the absolute value of the determinant of the submatrix of M
which results when we delete from M the rows corresponding to the wll's. In [C-F, Th. 1]
we showed, for L/!( of any signature,

(3.1)

We also related [C-F, Lemma 2.1] Reg(EL / K ) to the r-dimensional volume VL(EL/ K ) of
a fundamental domain for L:(EL / K ) (see (2.1)),

VL(EL / K ) = [L : !(](rd K)+r2 (K»/2 2(r2 (K)-r2 (L»/2 Reg(EL/ K ) , (3.2)

where (r1, r2) denotes the number of (real, complex) places. The Euclidean structure
(which normalizes volume) is given by lI(x u )11 2 =< (x u ), (x u ) >, as in (2.2). For 0' E EL
we write 110'11 instead of lIL:(a)lI. Thus,

110'11 2 := L (logla(a )1)2 ,
UESL

(3.3)

where SL denotes the set of all embeddings of L into C. We will need the lower bound [F,
(3.21 )]

c'
110'11 > VN(log N)3

6
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where 0:' E ELl Cl' 1 WL, N = [L : Q] and C' > 0 is a computable absolute constant
(inequality (3.4) follows easily from Dobrowolsky's lower bound for heights [D]).

Let the successive minima of 1I 11 on the lattice .c(E L / K ) be at t ained at Cl, C2, ... ,Cr'

Thus [G-K, pp. 195, 197] the subgroup E := < Cl, C2,' .. ,Cr > of E L / K generated by the
Ci has finite index in E L / K and

r

TI llcil! :::; 1;/2 VL(EL/ K ) ,

i=l

where Ir denotes Hermite's constant in dimension r = r L/ K.

(3.5)

(3.6)

Lemma. Let Cl, c2,'" ,cr be as above and assume tbat LIK is not unit-weak (see §1).
Let Ho = Q, Hi = Hi-l (cd. Tben there is integer T such that HT t= L, HT+I = L,
0:::; T < r and

1 1 T+I
[L : Q] loglDLI :::; log([L: Q]) + L Ilcillv[Hi : Hi-l]2 -1,

J3[L: Q] i=l

where DL denotes the absolute discriminant of L and 11 11 is given by (3.3).

Proof. Proposition 1 implies that there is aleast T < r so that L = Q(cl, C2, ... ,cT+I).
The inequality then follows from [F, (3.3), (3.14) and Lemma 3.5].

Theorem. Let LIK be an extension ofnumber neids and assume that D L > 3NN, where
DL is the absolute discriminant of L and N = [L : Q]. Then

(3.7)

Here Reg(EL / K ) is the regulator of relative units given by (3.1) above, C > 0 is a com
putable absolute constan t, r = r L - r K = rank( E L / K) is the differen ce oE the unitranks
oE L and 1(, and m = m(LIK) = r - max{rank(EL / K n F)} , where F runs over all proper

F~L

subfields oE L and where E L / K is tbe group consisting oE those units oE L whose norm to
K is a root of unity. H LIK is not unit-weak (see §1), tben m ~ 1.

The slightly simplified version of the theorem given in §l follows from (3.1) and (3.7).

Proof We first assume that LIK is not unit-weak. From the lemma and (3.5) we have
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(3.9)

If we put this together with (3.2) and (3.8), and use log(lDLI/N N ) > 0, we find

(3.10)

If (L : K) ~ 3, (2.3) yields

Hence, for any (L : K) 2: 2,

> (L: Q)
6

«(L : K]/2)(r 1 (K)+r2 (K»/r :::; «(L : K)/2)rbJ < 3.003.

Note that

(3.11)

(3.12)

and that, for r > 2, Fr:::; r/2.1 (Proof: Use the inequalities quoted in [C-F, (2.9)]). We
have then in (3.10)

(UL: Kj/2)(r,(KH r,(K))/r 2((K'Q]-r,(L))/r 31~) r/2 :s 1 ,

for all r > 0 (do r = 1 or 2 separately). Since T < r < N, (3.10) aod (3.13) yield

c (( N )r-TReg(EL/K ) > N2r log IDLI/N) ,

(3.13)

(3.14)

with C > 0 a computable absolute constant. To prove (3.7) we must still show that in
(3.14) we can replace T by p := max{rank(EL / K n F)}. Since we assume DL > 3NN ,

F~L

it suffices to show T :::; p. By the lemma, HT is a proper subfield of L containing the T
independent relative units c:1, c: 2 , ... , c:TEEL / K . Hence T :::; p. P roposition 1 implies
that m = r - p > 0, which concludes the proof when L/K is not unit-weak.

H L/K is unit-weak then m = r - p = 0 in (3.7). In this case (3.7) follows from
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(3.15)

Proposition 2. Let LIK be an extension of number neIds. Then

er

Reg(EL / K ) ~ (Nr (log N)6f/2'

Here Reg(EL / K ) is the regulator of relative units given by (3.1) above, c > 0 is a eom
putable absolute constant, N = [L : Q] and r = rL - TK is tbe difference ofthe unit ranks
oE L and K (lf r = 0, (3.15) means the trivial 1 ~ 1).

Proof. From (3.4), (3.6) and (3.2) we obtain

Reg(EL/ K ) ~ (N"fr (log N)6 ([L : KlI2)(r~::)+r2(K»/r 2([K'Q]-r2(L»/r ) r/2

Now use (3.11), (3.12) and Ir :S: r to obtain (3.15), with c = C'IJ6.006.

Corollary. Let LIK (and a11 notation) be as in the theorem. Suppose furtber that a11
proper subneids oE L are contained in K . .Then

(3.16)

Proof. We first dispose of the trivial cases. If L = K is umt-weak, the hypothesis on
K implies that case (iii) in Proposition 1 cannot hold. If (ii) holds, so L is CM, then K
must be its maximal totally real subfield. Then r = 0 and (3.16) is trivial. Since case (i)
(L = K) is equally trivial, we may assume that LI!( is not unit weak. But then T = 0 in
(3.10) because of the assumption on K (use E L / K n K = W K). The corollary now follows
from (3.13) and (3.10).

We conclude with a comment on Reg(EL / K ) and Reg(L)/Reg(K) for LIK unit-weak.
We defined in §2 a sub-extension Hlk and a unit index UL/K := [EL / K : WLEH / k ] = 1 or
2. On examining the ramification of the archimedean places in LIK and H Ikone finds,
directly from the definition of Reg(EL / K ) as a determinant,

(3.17)

If we let LIK range over the infinitely many unit-weak extensions associated to the same
Hlk, it is clear from (3.17) that Reg(EL / K ) assumes at most two values. It follows, mainly
from (3.1), that Reg(L)/Reg(K) assumes at most 2[H:Q] values.
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