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Abstract

Twisted homomorphisms of bialgebras are bialgebra homomorphisms
from the first into Drinfeld twistings of the second. They possess a com-
position operation extending composition of bialgebra homomorphisms.
Gauge transformations of twists, compatible with adjacent homomor-
phisms, give rise to gauge transformation of twisted homomorphisms,
which behave nicely with respect to compositions. Here we study (gauge
classes of) twisted automorphisms of cocommutative Hopf algebras. After
revising well-known relations between twists, twisted forms of bialgebras
and R-matrices (for commutative bialgebras) we describe twisted auto-
morphisms of universal enveloping algebras.

1 Introduction

The aim of the paper is to study “hidden” symmetries of bialgebras which man-
ifest themselves in representation theory. It is very well-known that categories
of representations (modules) of bialgebras are examples of so-called monoidal
categories. It is less acknowledged that relations between bialgebras (homomor-
phisms of bialgebras) do not capture all relations (monoidal functors) between
their representation categories. An algebraic notion which does the job (bi-
Galois (co)algebra) is known only to specialists. They fully represent monoidal
relations between representation categories but are sometimes not very easy
to work with. For example, composition of monoidal functors corresponds to
tensor product of Galois (co)algebras and in some situations is quite tricky to
calculate explicitly. At the same time monoidal functors of interest could have
some additional properties which put restrictions on the corresponding algebraic
objects and allow one to have an alternative and perhaps simpler description.

Note that any representation category is equipped for free with a monoidal
functor to the category of vector spaces, the functor forgetting the action of the
bialgebra (forgetful functor). Here we deal with monoidal functors between rep-
resentation categories which preserve (not necessarily monoidally) the forgetful
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functors. The corresponding algebraic notion is of twisted homomorphism. After
defining them in the first section we examine algebraic counterparts of the com-
position (composition of twisted homomorphisms) and natural transformations
of monoidal functors (gauge transformations).

The main object to study for us is the category of twisted automorphisms
of a cocommutative Hopf algebra. We start by re-examining the actions of
twisted automorphisms on twists (twisted homomorphisms from the ground
field) and R-matrices. After that we treat the case of a universal enveloping
algebra of a Lie algebra (over formal power series). It turns out that any twisted
automorphism is a bialgebra automorphism together with an invariant twist
(separated case). The gauge classes of invariant twists form an abelian group
isomorphic to the invariant elements of the exterior square of the Lie algebra.
The group of gauge classes of twisted automorphisms is a crossed product of the
group of automorphisms of the Lie algebra and the group of invariant twists.

Throughout the paper k be a ground field, which is supposed to be alge-
braically closed of characteristic zero.
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2 Twisted homomorphisms of bialgebras and monoidal
functors between categories of modules

2.1 Twisted homomorphisms of bialgebras

Here we recall the notions of twisted homomorphisms of bialgebras and their
transformations and show how they enrich the category of bialgebras making it
a 2-category.

A twisted homomorphism of bialgebras (H,∆, ε) → (H ′,∆′, ε′) is a pair
(f, F ) where f : H → H ′ is a homomorphism of algebras and F is an invertible
element of H ′ ⊗H ′ (f-twist or simply twist) such that

F∆′(f(x)) = (f ⊗ f)∆(x)F, ∀x ∈ H, (1)

(F ⊗ 1)(∆′ ⊗ I)(F ) = (1⊗ F )(I ⊗∆′)(F ), 2-cocycle condition

(ε⊗ I)(F ) = (I ⊗ ε)(F ) = 1, normalisation.

For example, a homomorphism of bialgebras f : H → H ′ is a twisted homo-
morphism with the identity twist (f, 1). A twisted homomorphism is separated
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if the first component f : H → H ′ is a homomorphism of bialgebras. For a
separated twisted homomorphism the condition (1) amounts to the invariance
of the twist with respect to the sub-bialgebra f(H) ⊂ H ′:

∆′(f(x))F = F∆′(f(x)), ∀x ∈ H.

Note that the 2-cocycle and normalisation conditions for a twist F imply
the coassociativity and counitality respectively of the twisted coproduct on H ′:

(∆′)F (x) = F∆′(x)F−1.

The condition (1) says that f : H → (H ′)F is a homomorphism of bialgebras,
where H ′

F = (H ′, (∆′)F ) is the twisted bialgebra. Note also that the condition
on F ∈ H ′⊗H ′ equivalent to the coassociativity of the twisted coproduct (∆′)F ,
is H ′-invariance of

(∆′ ⊗ I)(F )−1(F ⊗ 1)−1(1⊗ F )(I ⊗∆′)(F ).

One could call such elements quasi-twists. Then a quasi-twisted homomorphism
of bialgebras (f, F ) : H → H ′ is a bialgebra homomorphisms f : H → H ′

F for a
quasi-twist F . Although, being a partial case of the general picture of twists for
quasi-bialgebras (see [4]), quasi-twisted homomorphism are interesting in their
own right. For instance, Drinfeld’s rectification of Kohno’s monodromy theo-
rem establishes the existence of a quasi-twisted isomorphism between quantised
and classical universal enveloping algebras Uq(g)[[h]] → U(g)[[h]] (see [4]). For
another example see [2], where it was proved that finite groups have the same
character tables if and only if there is a quasi-twisted isomorphism between their
group algebras (over algebraically closed field of characteristic zero). Being much
more versatile, quasi-twisted homomorphisms lack one important property valid
for twisted homomorphisms. There is no composition operation defined for gen-
eral quasi-twisted homomorphisms. It is related to the fact that (in contrast
to twists) the image of a quasi-twist under a bialgebra homomorphism is not
necessarily a quasi-twist.

For succesive twisted homomorphisms

(H,∆, ε)
(f,F ) // (H ′,∆′, ε′)

(f ′,F ′)// (H ′′,∆′′, ε′′)

we define their composition as

(f ′, F ′) ◦ (f, F ) = (f ′f, f ′(F )F ′).

Here f ′(F ) = (f ′ ⊗ f ′)(F ). It is not hard to verify that the result is a twisted
homomorphism (H,∆, ε) → (H ′′,∆′′, ε′′) and that the composition is associa-
tive. See also section 3. Note that separated twisted homomorphisms are closed
under composition.

By a gauge transformation (f, F ) → (f ′, F ′) of twisted homomorphisms
(f, F ), (f ′, F ′) : (H,∆, ε) → (H ′,∆′, ε′) we will mean an element a of H ′ such
that

af(x) = f ′(x)a, ∀x ∈ H, (2)
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F∆′(a) = (a⊗ a)F ′. (3)

We will depict it graphically as follows:

(H,∆, ε)

(f,F )

%%

(f ′,F ′)

99
(H ′,∆′, ε′)a��

Note that the condition (3) together with normalisation conditions for F and
G implies ε(a) = 1. Note also that a twisted homomorphism gauge isomorphic
to a separated twisted homomorphism is not necessarily separated.

For successive gauge transformations

(H,∆, ε)

(f,F )

��

(g,G)
//

(j,J)

??
(H ′,∆′, ε′)

a��

b��

the composition b.a : (f, F )→ (j, J) is simply the product ba in H ′. Again it is
quite straightforward to check that this is a transformation.

Note that if H ′ is a Hopf algebra, any gauge transformation between twisted
homomorphisms intoH ′ is invertible. This fact can be checked by pure algebraic
computations. A sketch of a different proof will be given in section 3.

We can also define compositions of transformations and twisted homomor-
phisms in the following two situations:

(H,∆, ε)

(f,F )

%%

(f ′,F ′)

99
(H ′,∆′, ε′)

(g,G) // (H ′′,∆′′, ε′′)a��

(H,∆, ε)
(f,F ) // (H ′,∆′, ε′)

(g,G)

&&

(g′,G′)

88
(H ′′,∆′′, ε′′)b��

we define it to be (g,G) ◦ a = g(a) in the first case and b ◦ (f, F ) = b in the
second. The following properties intertwining compositions of twisted homo-
morphisms and gauge transformations are quite straightforward consequences
of the definitions:

(a.b) ◦ (f, F ) = (a ◦ (f, F )).(b ◦ (f, F )),
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(g,G) ◦ (a.b) = ((g,G) ◦ a).((g,G) ◦ b),

(a ◦ (f, F )).((g,G) ◦ b) = ((g,G) ◦ b).(a ◦ (f, F )).

For an alternative explanation see section 3.
Note that the structures described above extend the category of bialgebras

and twisted homomorphisms to a 2-category Tw with gauge transformations as
2-cells (2-morphisms).

Twisted homomorphisms have certain natural involutive symmetry.

Lemma 2.1.1. If (f, F ) : H → H ′ is a twisted homomorphism, then t(f, F ) =
(f, t(F )) : Hco → (H ′)co is a twisted homomorphism between bialgebras with
opposite comultiplication.

Proof. The condition (1) for (f, t(F )) is the transpose (the result of applying t)
of the condition (1) for (f, F ). The same with the normalisation condition for
t(F ). The 2-cocycle equation for t(F ) is the 2-cocycle equation for F where the
first and the last tensor factor have been interchanged:

(t(F )⊗ 1)(t∆′ ⊗ I)t(F ) = (t2t1t2)((1⊗ F )(I ⊗∆′)(F )) =

(t1t2t1)((F ⊗ 1)(∆′ ⊗ I)(F )) = (1⊗ t(F ))(I ⊗ t∆′)t(F ).

Note that if we had a gauge transformation a : (f, F ) → (g,G), then a :
t(f, F ) → t(g,G) is also a gauge transformation. Moreover, all compositions
are compatible with t. In (2-)categorical language t : Tw → Tw is a 2-functor
(2-isomorphism).

We call a twisted homomorphism (f, F ) : H → H ′ of cocommutative bialge-
bras symmetric if t(f, F ) = (f, F ). Note that a twisted homomorphism gauge
isomorphic to a symmetric twisted homomorphism is symmetric itself.

2.2 Twisted homomorphisms and Galois (co)algebras

It was observed by Drinfeld [3] that a twist F on a bialgebra H defines a new
coalgebra structure on H:

∆F (x) = F∆(x), x ∈ H.

Coassociativity for ∆F is equivalent to the 2-cocycle condition on F . The prop-
erty ∆F (xy) = ∆F (x)∆(y) guarantees that the right H-module structure on H
is an H-module coalgebra structure on (H,∆F ). Recall that a coalgebra (C, δ)
is an H-module coalgebra if C is an H-module a : C ⊗H → C and

δ(xy) = δ(x)∆(y), x ∈ C, y ∈ H.

An H-module coalgebra C is Galois if the composition

C ⊗H
δ⊗I // C ⊗ C ⊗H

I⊗a // C ⊗ C
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is an isomorphism. It is not hard to see that if H is a Hopf algebra (H,∆F ) is a
Galois H-module coalgebra. Moreover Galois H-module coalgebras of the form
(H,∆F ) are characterised by the so-called normal basis property. A Galois H-
module coalgebra C has a normal basis if C is isomorphic to H as an H-module.

For a twisted homomorphism (f, F ) : H → H ′, the H ′-Galois coalgebra
(H ′,∆F ) comes equipped with the left H-action H ⊗H ′ → H ′ sending x⊗ y to
f(x)y. It follows from the definition of twisted homomorphism that this action
preserves the coproduct ∆F :

F∆′(f(x)y) = F∆′(f(x))∆′(y) = (f ⊗ f)∆(x)F∆′(y).

Composition of twisted homomorphisms corresponds to the following oper-
ation on Galois coalgebras. Let C be a Galois H ′-module coalgebra and C ′

be a Galois H ′′-module coalgebra with compatible left H ′-action. Then the
tensor product of H ′-modules C ⊗H′ C ′ is a Galois H ′′-coalgebra with respect
to the coproduct t23(δ ⊗ δ′). Moreover a left H-action on C compatible with
H ′-module coalgebra structure will pass on to C ⊗H′ C ′.

For successive twisted homomorphisms

(H,∆, ε)
(f,H)// (H ′,∆′, ε′)

(f ′,F ′)// (H ′′,∆′′, ε′′)

the tensor product (H ′,∆F )⊗H′ (H ′′,∆F ′) is isomorphic to H ′′ as an H −H ′′-
bimodule via x⊗y 7→ f ′(x)y. Moreover, the tensor product of comultiplications
∆F ⊗∆F ′ is carried out into the comultiplication ∆f(F )F ′ . Indeed, the tensor
product of comultiplications followed by the isomorphism sends x⊗ y into (f ′⊗
f ′)(F∆′(x))F ′∆′′(y) which can be rewritten as

(f ′ ⊗ f ′)(F∆′(x))F ′∆′′(y) = (f ′ ⊗ f ′)(F )(f ′ ⊗ f ′)(∆′(x))F ′∆′′(y) =

(f ′ ⊗ f ′)(F )F ′∆′′(f ′(x))∆′′(y) = (f ′ ⊗ f ′)(F )F ′∆′′(f ′(x)y).

Finally (f ′ ⊗ f ′)(F )F ′∆′′(f ′(x)y) is the coproduct ∆f(F )F ′ applied to f ′(x)y.
A gauge transformation a ∈ H ′ of twisted homomorphisms (f, F ), (f ′, F ′) :

(H,∆, ε) → (H ′,∆′, ε′) defines a homomorphism x 7→ ax of Galois H ′-module
coalgebras. Preservation of H ′-module structure is obvious. Compatible H-
module structure is preserved by the property (2) of gauge transformations,
compatibility with coalgebra structures follows from the property (3):

F∆′(ax) = F∆′(a)∆′(x) = (a⊗ a)F ′∆(x).

Define a bicategory Gal with objects being Hopf algebras, arrows from H to
H ′ being Galois right H ′-module coalgebras with compatible left H-action and
composition given by tensor product, and homomorphisms of H −H ′-bimodule
coalgebras as 2-cells. The above construction defines a psedofunctor Tw→ Gal.

In the case of finite dimensional Hopf algebras we can replace Galois coal-
gebra with the more familiar notion of Galois algebra. Note that for a finite
dimensional Hopf algebra H, a Galois H-module coalgebra must be finite di-
mensional (of the same dimension). Note also that the dual algebra to a Galois
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H-coalgebra will be a Galois H-algebra. Recall that an H-algebra R is an al-
gebra and an H-module in such way that the multiplication map µ is a map of
H-modules:

µ∆(x)(a⊗ b) = xµ(a⊗ b) = x(ab), x ∈ H, a, b ∈ R.

The crossed product R ∗ H of H with an H-algebra R is an algebra, which as
a vector space is isomorphic to the tensor product R ⊗H. Denote elements of
R ∗H corresponding to tensors a⊗ x by a ∗ x. The product on R ∗H is given
by the rule:

(a ∗ x)(b ∗ y) =
∑
(x)

ax1 ∗ x2y.

Here we use the so-called Swidler’s notation for the coproduct ∆(x) =
∑

(x) x1⊗
x2. Following [10] we call an H-algebra R Galois if the homomorphism of
algebras

A ∗H → End(A), a ∗ x 7→ (b 7→ ax(a))

is an isomorphism.
For a finite dimensional H the dual of the Galois coalgebra (H,∆H) is the

dual space H∗ with the multiplication:

(l ∗F l′)(x) = (l ⊗ l′)∆F (x) = (l ⊗ l′)(F∆(x)).

This can be seen as an ordinary multiplication on H∗ twisted by F with respect
to the (right) H-action on H∗:

l ∗F l′ =
∑

lF1 (l′)F
2 .

Here F =
∑
F1 ⊗ F2 and ly(x) = l(xy).

3 Categorical interpretations

Most of the material included in this section is pretty standard (for example,
see [6]; for more categorically oriented treatment see [13]).

3.1 Monoidal categories and functors

A monoidal category is a category G with a functor

⊗ : G × G −→ G (X,Y ) 7→ X ⊗ Y

(tensor product), a natural collection of isomorphisms (associativity constraint)

ϕX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y )⊗ Z for any X,Y, Z ∈ G

which satisfies the following pentagon axiom:

(X ⊗ ϕY,Z,W )ϕX,Y⊗Z,W (ϕX,Y,Z ⊗W ) = ϕX,Y,Z⊗WϕX⊗Y,Z,W
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and an object 1 (unit object) together with natural isomorphisms

ρX : X ⊗ 1→ X λX : 1⊗X → X

such that λ1 = ρ1

λX⊗Y = λX ⊗ I : 1⊗X⊗Y → X⊗Y, ρX ⊗ I = I⊗λY : X⊗ 1⊗Y → X⊗Y,

ρX⊗Y = I ⊗ ρY : X ⊗ Y ⊗ 1→ X ⊗ Y
for any X,Y ∈ G. Here I denote the identity morphism. It is known that the
first two conditions follow from the rest. We formulate them for the sake of
symmetry.

The celebrated MacLane coherence theorem [9] says that there is a unique
isomorphism between any two bracket arrangements on the tensor products of
objects X1, ..., Xn, which is a composition of (tensor products of) the associativ-
ity constraints. This fact allows to omit brackets in tensor products. It is also
easy to see that the unit object is unique up to an isomorphism. More precisely,
any monoidal category is monoidally equivalent to a strict monoidal category (a
monoidal category with identity associativity and unit object constraints) (see,
for example, [7]).

A monoidal functor between monoidal categories G and H is a functor
F : G → H with a natural collection of isomorphisms (the so-called monoidal
structure)

FX,Y : F (X ⊗ Y )→ F (X)⊗ F (Y ) for any X,Y ∈ G

satisfying the coherence axiom:

(I ⊗ FY,Z)FX,Y⊗Z = (FX,Y ⊗ I)FX⊗Y,Z (4)

for any objects X,Y, Z ∈ G.
A natural transformation f : F → G of monoidal functors F and G is

monoidal if
GX,Y fX⊗Y = (fX ⊗ fY )FX,Y

for any X,Y ∈ G.
Here we will be mostly interested in tensor categories and functors (linear

over the ground field k). Recall that a monoidal category is tensor if it is k-
linear abelian and the tensor product is k-linear and bi-exact. For a monoidal
functor between tensor categories to be tensor we will ask it to be k-linear and
left exact. Denote by Tens the 2-category of tensor categories, with tensor
functors and monoidal natural transformations.

3.2 Categories of modules over bialgebras

Recall that the comultiplication in H can be used to define a structure of an
H-module on the tensor product M ⊗k N of two H-modules:

h ∗ (m⊗ n) = ∆(h)(m⊗ n) h ∈ H,m ∈M,n ∈ N.
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The coassociativity axiom for the coproduct implies that the obvious associa-
tivity constraint for vector spaces

ϕ : L⊗ (M ⊗N)→ (L⊗M)⊗N ϕ(l ⊗ (m⊗ n)) = (l ⊗m)⊗ n

is H-linear. The counit defines an H-module structure on the ground field k
and the counit axiom guarantees that this is a unit object. Thus the category
HMod of (left) modules over a bialgebra becomes monoidal.

For a homomorphism of algebras f : H → H ′ define by f∗ : H ′Mod → H-
Mod the inverse image functor, which turns an H ′-module M into an H-module
f∗(M). Here as a vector space, f∗(M) is the same as M but with a new module
structure x.m = f(x)m for x ∈ H and m ∈ M . On the level of categories of
modules, twisted homomorphisms and gauge transformations take the following
meaning.

Proposition 3.2.1. For a twisted homomorphism (f, F ) : H → H ′ the inverse
image functor f∗ : H ′ −Mod → H −Mod becomes tensor, with the monoidal
structure given by multiplication with the twist:

FM,N : f∗(M ⊗H)→ f∗(M)⊗ f∗(N), m⊗ n 7→ F (m⊗ n).

Compositions of twisted homomorphisms and corresponding functors are related
as follows:

((f, F ) ◦ (g,G))∗ = (g,G)∗ ◦ (f, F )∗.

A gauge transformation a : (f, F )→ (g,G) defines a monoidal natural transfor-
mation a : (f, F )∗ → (g,G)∗:

aM : f∗(M)→ g∗(M), m 7→ am.

Compositions of gauge transformations correspond to compositions of natural
transformations.

Proof. It is straightforward to see that the condition (1) guarantees H-linearity
of the monoidal constraint FM,N while the 2-cocycle condition for F is equivalent
to the coherence axiom (4). Similarly, the condition (2) for a gauge transfor-
mation a says that aM is a morphism of H-modules and the condition (3) is
equivalent to the monoidality of aM .

2-categorically the proposition 3.2.1 says that the inverse image functor con-
struction defines a 2-functor Tw → Tens contravariant on morphisms and
covariant on 2-cells. We can extend this to a bifunctor Gal→ Tens as follows.

Proposition 3.2.2. A Galois H ′-module coalgebra C with compatible H-action
defines a tensor functor C⊗H′ : H ′Mod→ HMod with the monoidal structure

C ⊗H′ (M ⊗N)

δ⊗I

��

C ⊗H′ M ⊗ C ⊗H′ N

(C ⊗ C)⊗H′ (M ⊗N) // (C ⊗ C)⊗H′⊗H′ (M ⊗N)

t23

OO
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Homomorphisms of H-H ′-bimodule coalgebras define monoidal natural transfor-
mations.

Proof. It follows from the Galois property that the above monoidal structure is
an isomorphism. Coassociativity of the coproduct implies the coherence axiom.

Obviously, composition of functors corresponds to the tensor product of
coalgebras.

4 Twisted automorphisms of a Hopf algebra

In this section we will describe Cat-groups of twisted automorphisms along
with some of their natural Cat-subgroups. One of the reasons (which will be
particularly important in the last section) why Cat-groups are more natural
objects to deal with rather than groups of (classes of) twisted automorphisms
is the following. Suppose that we want to define an action of a group G on a
bialgebra H by twisted homomorphisms. A homomorphism from the group G
into the group OutTw(H) of classes of twisted homomorphism would just not
have enough information. A homomorphism from G to the group AutTw(H) of
twisted automorphisms would do, but that would not capture all the cases. The
right answer is a (monoidal) functor G → AutTw(H) of Cat-groups (a map of
crossed modules of groups).

4.1 Categorical groups, crossed modules and their maps

Recall that a categorical group is a monoidal category in which every arrow
is invertible (monoidal groupoid) and for every object X there is an object X∗

with an arrow eX : X∗⊗X → I (a dual object). A categorical group is strict (or
a Cat-group) if it is strict as a monoidal category and eX can be chosen to be an
identity. In other words a Cat-group is a categorical group whose objects form a
group (with the tensor product). A slight modification of Mac Lane’s coherence
theorem [9] says that any categorical group is monoidally equivalent to a strict
one. Note that Cat-groups are group objects in the category of categories (thus
the name).

For any object A of a 2-category A the category AutA(A) of automorphisms
of A (invertible 1-morphisms A→ A), with the composition as the tensor prod-
uct and bijective natural transformations as morphisms, is a Cat-group.

It is well known (see [1] for the history) that Cat-groups are the same as
crossed modules of Whitehead ([15]). Recall that a crossed module of groups is
a pair of groups P,C with a (left) action of P on C (by group automorphisms):

P × C → C, (p, c) 7→p c

and a homomorphism of groups

P
∂← C
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such that
∂(pc) = p∂(c)p−1,

∂(c)c′ = cc′c−1.

For a Cat-group G the corresponding crossed complex consists of the group of
objects P , the group of morphisms X → I into the identity object with the
product:

(X a→ I).(Y b→ I) = X ⊗ Y a⊗b−→ I ⊗ I = I,

the action

Y (X a→ I) = Y ⊗X ⊗ Y ∗ Y⊗a⊗Y ∗

−→ Y ⊗ I ⊗ Y ∗ = I,

and the homomorphism ∂ : C → P sending X → I into X.
Relative simplicity and compactness of the notion of crossed module as a

description for Cat-groups has its downside. A monoidal functor between Cat-
groups will correspond to something less obvious (and less well-known) than a
homomorphism of crossed modules (a pair of group homomorphisms preserving
all the structures). That will describe only strict monoidal functors. To deal
with general monoidal functors we need the following weaker relation. A map
of crossed modules (P,C)→ (E,N) is a triple (τ, ν, θ) where τ and ν are maps
making the diagram commutative

P

τ

��

C
∂

oo

ν

��
E N

∂
oo

and θ : P × P → N such that

τ(pq) = ∂(θ(p, q))τ(p)τ(q), p, q ∈ P,

ν(ab) = θ(∂(a), ∂(b))ν(a)ν(b), a, b ∈ C,

θ(p, qr)τ(p)θ(q, r) = θ(pq, r)θ(p, q), p, q, r ∈ P,

θ(1, q) = 1 = θ(p, 1), p, q ∈ P,

ν(pa) = θ(p, ∂(a))τ(p)ν(a).

Complete invariants of a categorical-group G with respect to monoidal equiv-
alences are

π0(G), π1(G), φ ∈ H3(π0(G), π1(G)),

where the first is the group of isomorphism classes of objects, the second is the
abelian group (π0(G)-module) AutG(I) of automorphisms of the unit object and
the third is a cohomology class (the associator). In the crossed module setting

π0 = coker(∂), π1 = ker(∂).
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Note that the image of ∂ is normal so the cokernal has sense. The class φ is
defined as follows: choose a section σ : coker(∂)→ P and a map a : coker(∂)×
coker(∂)→ C such that

σ(fg) = ∂(a(f, g))σ(f)σ(g), f, g ∈ coker(∂).

Then for any f, g, h ∈ coker(∂) the expression

a(f, gh)σ(f)a(g, h)a(f, g)−1a(fg, h)

is always in the kernel of ∂ and is a group 3-cocycle of coker(∂) with coefficients
in ker(∂). The cohomology class φ does not depend on the choices made.

Analogously, complete invariants of a monoidal functor F : G → F between
categorical groups with respect to monoidal isomorphisms are

π0(F ) : π0(G)→ π0(F), π1(F ) : π1(G)→ π1(F), θ(F ) : π0(G)×π0(G)→ π1(F),

where the first is the homomorphism of groups, the second is the homomorphism
of π0(G)-modules and the third is really a class in C2(π0(G), π1(F))/B2(π0(G), π1(F))
such that

d(θ(F )) = π1(F )∗(φ(G))− π0(F )∗(φ(F))

Here
π0(F )∗ : C∗(π0(F), π1(F))→ C∗(π0(G), π1(F)),

π1(F )∗ : C∗(π0(G), π1(G))→ C∗(π0(G), π1(F))

are the maps of cochain complexes induced by the group homomorphisms π0(F ),
π1(F ).

4.2 Cat-groups of twisted automorphisms

As a part of the 2-category Tw the invertible twisted endomorphisms of a Hopf
algebra H (twisted automorphisms) and gauge transformations between them
form a Cat-group AutTw(H). The corresponding crossed module of groups has
the form

AutTw(H) ∂← H×
ε .

Here AutTw(H) is the group of twisted automorphisms of H with respect to the
composition, H×

ε is the group of invertible elements x of H such that ε(x) =
1, and ∂ sends x into the pair (an inner twisted automorphism) (x( ), (x ⊗
x)∆(x)−1) where the first component is the conjugation automorphism:

x( ) : H → H, x(y) = xyx−1.

The action of AutTw(H) on H× is given by the action of the first component
(f, F )(y) = f(y).

There are two important Cat-subgroups in AutTw(H). The first is the full
Cat-subgroup Aut1

Tw(H) of twisted automorphisms with the identity as the
first component. Its crossed module is

Aut1Tw(H) ∂← (Z(H)ε)×.

12



Here Aut1Tw(H) is the group of invariant twists on H (invertible elements of
H⊗H commuting with the image ∆(H) and satisfying the 2-cocycle condition),
(Z(H)ε)× is the group of invertible elements of the centre of counit 1: ε(x) = 1 .
Again ∂ assigns to x the invariant twist (x⊗x)∆(x)−1. The action of Aut1Tw(H)
on (Z(H)ε)× is trivial.

The second is the full Cat-subgroup Autbialg(H) of bialgebra automorphisms
of H. Here the crossed module is

Autbialg(H) ∂← G(H),

where Autbialg(H) is the group of automorphisms of H as a bialgebra, G(H) =
{x ∈ H, ∆(x) = x⊗ x} is the group of group-like elements of H and ∂ sends
x into the conjugation automorphism. The action of Autbialg(H) on G(H) is
obvious.

Note that the Cat-subgroup Aut1
Tw(H) is what might be called normal: the

components of its crossed module are normal subgroups in the components of
the crossed complex for AutTw(H) and the action of AutTw(H) on H× preserve
the subgroup Z(H)×.

The Cat-subgroup Autbialg(H) is not in general normal. In the next part
we will characterise it as the stabiliser of a certain action. Recall that an action
of a Cat-group (monoidal category) G on a category A is a monoidal functor
G → End(A) into the category of endofunctors on A. For an object A ∈ A
the stabiliser StG(A) is the category of pairs (G, g), where G is an object and
g : G(A) → A is an isomorphism in A. A morphism of pairs (G, g) → (F, f) is
a morphism x : G→ F in G such that the diagram

G(A)
xA //

g
!!DD

DD
DD

DD
F (A)

f
}}zz

zz
zz

zz

A

commute.

4.3 Action on twists

Here we examine the (categorical) action of the Cat-group AutTw(H) on the
category of twisted homomorphisms Tw(k,H) given by the composition.

Let us start with the category Tw(k,H). Any twisted homomorphism k →
H must have the form (ι, F ) where ι : k → H is the unit inclusion and F ∈
H⊗2 is an invertible element satisfying the 2-cocycle condition (a twist). A
gauge transformation (ι, F ) → (ι, F ′) is an invertible element a ∈ H such that
F ′(a⊗ a) = ∆(a)F . The category Tw(k,H) has a marked object (ι, 1).

On the level of objects the action AutTw(H)×Tw(k,H)→ Tw(k,H) has
the form

(f, F ) ◦ (ι, F ′) 7→ (ι, F ′fF ).

An object of the stabiliser StAutTw(H)(ι, 1) is a triple (f, F, a), where (f, F ) is
an object of AutTw(H) and a ∈ H is an invertible element such that F =
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(a ⊗ a)∆(a)−1 (a transformation (f, F ) ◦ (ι, 1) → (ι, 1)). The element a can
be interpreted as a gauge transformation (f, F ) → (a( ) ◦ f, 1). In particular,
the composition a( ) ◦ f of f with conjugation with a is an automorphism of
bialgebras. The naturality of this construction implies the following result.

Proposition 4.3.1. The inclusion Autbialg(H)→ StAutTw(H)(ι, 1) is an equiv-
alence of categories.

Now we describe the stabilizer StAut1Tw(H)(ι, 1) in the Cat-subgroup of in-
variant twists. Its objects are pairs (F, a) where F is an invariant twist on H
and a ∈ H is an invertible element such that F = (a ⊗ a)∆(a)−1 (a trans-
formation (I, F ) ◦ (ι, 1) → (ι, 1)). Similarly, the element a can be seen as a
gauge transformation (I, F ) → (a( ), 1). In particular, the conjugation a( ) is
an automorphism of bialgebras. Thus we have the following.

Proposition 4.3.2. The stabiliser StAut1Tw(H)(ι, 1) is equivalent to the Cat-
group Aut inn

bialg(H) with the crossed module:

Autinn
bialg(H) ∂← G(H), (5)

where Autinn
bialg(H) is the group of bialgebra automorphisms of H which are inner

as algebra automorphisms, i.e. the kernel of the homomorphism Autbialg(H)→
Outalg(H).

In particular, π0(StAut1Tw(H)(ι, 1)) is isomorphic to the kernel ofOutbialg(H)→
Outalg(H).

We finish this section with a description of the orbits of the Cat-group action
of AutTw(H) on Tw(k,H) in terms of twisted forms of the bialgebra H. Recall
that a twist F ∈ H⊗2 allows us to define a new coproduct on H:

∆F (x) = F−1∆(x)F.

We call the bialgebra Tf(F ) = (H,∆F ) an F -twisted form of H (or just a
twisted form). Note that a gauge transformation of twists F ′(a ⊗ a) = ∆(a)F
defines a homomorphism of bialgebras ( )a : (H,∆F ′

)→ (H,∆F ). Indeed,

∆F (a−1xa) = F−1∆(a)−1∆(x)∆(a)F =

(a⊗ a)−1(F ′)−1∆(x)F ′(a⊗ a) = (a⊗ a)−1∆F ′
(x)(a⊗ a).

Thus we have a functor Tf : Tw(k,H) → Bialg into the category Bialg of
bialgebras and their automorphisms.

Proposition 4.3.3. The functor Tf : Tw(k,H) → Bialg is strictly constant
on orbits of the action of AutTw(H) on Tw(k,H), i.e. isomorphisms of twisted
forms f : (H,∆F )→ (H,∆F ′

) are in 1-1 correspondence with twisted automor-
phisms (f, F ′′) : (H,∆)→ (H,∆) such that (f, F ′′) ◦ (ι, F ) = (ι, F ′).
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Proof. If (f, F ′′) : (H,∆)→ (H,∆) is a twisted automorphism such that F ′′(f⊗
f)(F ) = F ′ then

(f ⊗ f)∆F (x) = (f ⊗ f)(F )−1(f ⊗ f)∆(x)(f ⊗ f)(F ) =

(F ′)−1F ′′(f ⊗ f)∆(x)(F ′′)−1F ′ = (F ′)−1∆(f(x))F ′ = ∆F ′
(f(x))

so that f is an isomorphism of bialgebras (H,∆F )→ (H,∆F ′
). Conversely, for

an isomorphism of bialgebras f : (H,∆F )→ (H,∆F ′
), the element F ′′ = F ′(f⊗

f)(F )−1 defines a structure of twisted isomorphism (f, F ′′) : (H,∆)→ (H,∆):

F ′′(f ⊗ f)∆(x) = F ′(f ⊗ f)(F )−1(f ⊗ f)∆(x) =

F ′(f ⊗ f)(F−1∆(x)) = (F ′)−1F ′∆(f(x))F ′(f ⊗ f)(F )−1.

In particular, the orbits of the group action of AutTw(H) on Tw(k,H) are
in 1-1 correspondence with isomorphism classes of twisted forms of H.

4.4 Action on triangular structures

Here we refine the action of twisted automorphisms on triangular structures to
the level of categories.

Recall that a triangular structure on a bialgebra H is an invertible element
R ∈ H ⊗H (a universal R-matrix) satisfying

Rt∆(x) = ∆(x)R ∀x ∈ H, (6)

along with triangle equations:

(I ⊗∆)(R) = R13R12,

(∆⊗ I)(R) = R13R23,

normalisation:
(ε⊗ I)(R) = (I ⊗ ε)(R) = 1,

and unitarity condition:
R21 = R−1.

Here R21 = (12)R is the transposition of tensor factors of R ∈ H ⊗H, R12 =
R⊗ 1, R13 = (I ⊗ (12))(R12) etc.

Note that any universal R-matrix on a cocommutative bialgebra H satisfies
the 2-cocycle condition:

(R⊗ 1)(∆⊗ I)(R) = R12R13R23 = (I ⊗∆)(R)(1⊗R).

Denote by T r(H) the set of triangular structures on the bialgebra H.
It was observed by Drinfeld (see also [11]) that the map

H∗ → H, l 7→ (l ⊗ I)(R) (7)
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is a homomorphism of algebras and anti-homomorphism of coalgebras for any
triangular structure R. In particular, its image is a (finite-dimensional) sub-
bialgebra HR in H, R belongs to H⊗2

R (the so-called minimal triangular sub-
bialgebra), and the map (7) factors as follows

H∗ → H∗
R ' HR → H,

where the first surjection H∗ → H∗
R is dual to the last inclusion HR → H

and the isomorphism H∗
R ' HR is self-dual. It is well known that the minimal

triangular subalgebra for a cocommutative Hopf algebra possesses a quite simple
description.

Proposition 4.4.1. For a cocommutative Hopf algebra H the set T r(H) of
triangular structures is isomorphic to the set of pairs (A, b), where A is a normal
commutative cocommutative finite dimensional sub-bialgebra in H and b : A∗ →
A is an H-invariant isomorphism of bi-algebras.

Proof. As a sub-biagebra ofH the minimal triangular sub-bialgebraHR must be
cocommutative. It is commutative since H∗

R is a sub-bialgebra of H∗. Normality
of HR and H-invariance of b : H∗

R ' HR are equivalent to the condition (6) for
R.

For a twisted automorphism (f, F ) and a triangular structure R on H define
a twisted triangular structure:

R(f,F ) = F21(f ⊗ f)(R)F−1.

It is straightforward to verify that the properties of the R-matrix are preserved.
Moreover, gauge isomorphic twisted automorphisms act equally. Indeed, for
g(x) = af(x)a−1 and G = ∆(a)F (a⊗ a)−1,

R(g,G) = ∆(a)F21(a⊗ a)−1(a⊗ a)(f ⊗ f)(R)(a⊗ a)−1(a⊗ a)F−1t∆(a)−1 =

∆(a)R(f,F )t∆(a)−1 = R(f,F ).

Thus an action of the group OutTw(H) on the set T r(H) is defined.
Recall that the Drinfeld element of a triangular structureR on a Hopf algebra

H is u = µ(I ⊗S)(R), where S : H → H is the antipode and µ : H ⊗H → H is
the multiplication map. It was proven in [5] that u (also see [8]) is a group-like
element: ∆(u) = u⊗ u. Moreover, if H is cocommutative then u is central and
of order 2. Thus we have a map u : Tr(H)→ (G(H) ∩ Z(H))2 from the set of
triangular structures to the 2-torsion subgroup of group-like central elements.
This map admits a section, which sends a group-like involution u to an R-matrix

Ru =
1
2
(1⊗ 1 + 1⊗ u+ u⊗ 1− u⊗ u).

Proposition 4.4.2. For a cocommutative Hopf algebra the Drinfeld element
map is constant on orbits of the action of Out1Tw(H) on Tr(H).
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Proof. It is quite straightforward to check that the Drinfeld element is constant
on orbits. Indeed, it was proved in [5] that the map µ(I⊗S) : (H⊗2)H → Z(H)
is a homomorphism of algebras. Thus

µ(I ⊗ S)(F21RF
−1) = µ(I ⊗ S)(F21)µ(I ⊗ S)(R)µ(I ⊗ S)(F )−1

equals µ(I ⊗ S)(R) since µ(I ⊗ S)(F ) = 1.

Categorically triangular structures correspond to symmetric structures on
the category of modules. Recall that a monoidal category G is symmetric if it
is equipped with a collection of isomorphisms cX,Y : X ⊗ Y → Y ⊗X natural
in X,Y ∈ G and satisfying the following axioms:

cX,Y cY,X = 1, symmetry,

hexagon axioms:

cX,Y⊗Z = φY,Z,X(Y ⊗ cX,Z)φ−1
Y,X,Z(cX,Y ⊗ Z)φX,Y,Z ,

cX⊗Y,Z = φ−1
Z,X,Y (cX,Z ⊗ Y )φX,Z,Y (X ⊗ cY,Z)φ−1

X,Y,Z .

Note that the last condition is redundant and included here for the sake of
symmetry.

Proposition 4.4.3. A triangular structure R on a bialgebra H defines a sym-
metric structure:

cM,N : M ⊗N → N ⊗N, m⊗ n 7→ R(n⊗m)

on the category H −Mod

Proof. The condition (6) implies that cM,N is a morphism of H-modules:

cM,N (∆(x)(m⊗ n)) = Rt∆(x)(n⊗m) = ∆(x)R(n⊗m) = ∆(x)cM,N (m⊗ n).

Triangle equations are equivalent to hexagon axioms. Normalisation for R gives
the conditions c1,N = I, cM,1 = I. Unitarity for R implies symmetry for c.

Monoidal autoequivalences of a monoidal category act naturally on the set
of symmetric structures of the category. For a monoidal autoequivalence F and
a symmetry c define the new symmetry cF by

F (X)⊗ F (Y )
cF

F (X),F (Y )// F (Y )⊗ F (X)

F (X ⊗ Y )

FX,Y

OO

F (cX,Y )// F (Y )⊗ F (X)

FY,X

OO

It is straightforward to see that this action corresponds to the action of twisted
homomorphisms on R-matrices.
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5 Twisted automorphisms of universal envelop-
ing algebras

In this part we look at twisted automorphisms of universal enveloping algebras
over formal power series k[[h]].

5.1 Invariant twists of U(g)[[h]]

Let F ∈ U(g)[[h]]g be a twist. Expand it as a formal power series in h with
coefficients in U(g):

F =
∞∑

i=0

Fih
i.

Since invertible elements of a universal enveloping algebra over a field k of
characteristic zero are trivial (scalars), the constant term F0 of F must be the
identity. Let X = Fl be the first non-zero coefficient. The degree l part of the
2-cocycle equation is the additive 2-cocycle condition for X:

1⊗X + (I ⊗∆)(X) = X ⊗ 1 + (∆⊗ I)(X).

Following Drinfeld [4] consider the complex (H⊗∗, ∂) with the differential ∂ :
H⊗n → H⊗n+1 defined by

∂(X) = 1⊗X +
n∑

i=1

(−1)i(I⊗i−1 ⊗∆⊗ I⊗n−i−1)(X) + (−1)n+1(X ⊗ 1). (8)

The cohomology of this complex admits a simple description.

Proposition 5.1.1. For a universal enveloping algebra H = U(g) the alterna-
tion map Altn : H⊗n → ΛnH induces an isomorphism of the n-th cohomology
of the complex (8) and Λng.

Proof. Sketch of the proof (for details see [4]):
By the Poincare-Birkhoff-Witt theorem, the universal enveloping algebra U(g)
is isomorphic as a coalgebra to the symmetric algebra S∗(g). The complex (8)
for H = S∗(g) breaks into graded pieces:

Sn(g)→ ⊕i1+i2=nS
i1(g)⊗Si2(g)→ ...→ ⊕i1+...+is=n⊗s

j=1S
ij (g)→ ...→ (g)⊗n

(9)
The degree n piece is isomorphic to the cochain complex of the simplicial n-cube
tensored (over symmetric group) with (g)⊗n.

In particular, for an additive 2-cocycle X ∈ U(g)⊗2 there is a ∈ U(g) such
that

X = X + a⊗ 1 + 1⊗ a−∆(a), X = Alt2(X) =
1
2
(X −X21). (10)

Note that both X and X are g-invariant which makes ∂(a) = a⊗1+1⊗a−∆(a)
g-invariant. The last implies that a can be chosen to be g-invariant (central).
To see it we prove a slightly more general statement.
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Lemma 5.1.2. For a universal enveloping algebra H = U(g) the alternation
map Altn : (H⊗n)H → (ΛnH)H induces an isomorphism of the n-th cohomology
of the subcomplex of H-invariant elements of (8) and the space of g-invariant
skewsymmetric tensors (Λng)g.

Proof. The coalgebra isomorphism between U(g) and S∗(g) is g-invariant. The
isomorphism between the degree n piece (8) and the cochain complex of the sim-
plicial n-cube tensored with (g)⊗n is natural in g and in particular g-invariant.

For the central a satisfying (10) the exponent exp(ahl) defines a gauge trans-
formation of invariant twists F → F ′ where F ′ = 1 +Xhl + ..... Thus we can
assume (up to a gauge transformation) that X ∈ (Λ2g)g. Note that g-invariance
of X implies

[1⊗X, (I ⊗∆)(X)] = [X ⊗ 1, (∆⊗ I)(X)] = 0.

Hence the exponent exp(Xhl) is an invariant twist on U(g)[[h]]:

(exp(Xhl)⊗ 1)(∆⊗ I)(exp(Xhl)) = exp((X ⊗ 1 + (∆⊗ I)(X))hl) =

exp((1⊗X + (I ⊗∆)(X))hl) = (1⊗ exp(Xhl))(I ⊗∆)(exp(Xhl)).

Writing F as exp(Xhl) ◦ F ′ we will have at least the first l components of F ′

being zero. Iterating the argument we prove the following.

Proposition 5.1.3. Any invariant twist on U(g)[[h]] is gauge isomorphic to a
product

∏∞
i=1 exp(Xih

i) where Xi ∈ (Λ2g)g.

Note that the components Xi are defined uniquely by the twist F . Thus
the set π0(Aut1

Tw(U(g)[[h]])) of classes of invariant twists is isomorphic to
(Λ2g)g[[h]]. Another way to see it is to use the logarithmic map. Since, for
an invariant twist F , the factors 1 ⊗ F, (I ⊗∆)(F ) and F ⊗ 1, (∆ ⊗ 1)(F ) of
the 2-cocycle equation pairwise commute, the logarithm log(F ) is an additive
2-cocycle. Hence F is gauge isomorphic to exp(X), where X = Alt2(log(F )) ∈
(Λ2g)g[[h]].

To examine the group structure on π0(Aut1
Tw(U(g)[[h]])) we will use the

Baker-Campbell-Hausdorff formula:

exp(X)exp(Y ) = exp(X + Y )exp(A(X,Y )),

where A(X,Y ) is an element of the completion (with respect to the natural
grading) of the free Lie algebra on X,Y . Note that

A(X,Y ) =
1
2
[X,Y ] + higher terms.

Now for X,Y ∈ (Λ2g)g[[h]] the commutator [X,Y ] is an additive g-invariant
2-cocycle and is symmetric. Thus there is a central a(X,Y ) ∈ Z(U(g))[[h]] such
that

[X,Y ] = a(X,Y )⊗ 1 + 1⊗ a(X,Y )−∆(a(X,Y )). (11)
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Note also that any Z ∈ (Λ2g)g[[h]] must commute with [X,Y ]. Indeed, the first
commutator in

[[X,Y ], Z] = [a(X,Y )⊗ 1 + 1⊗ a(X,Y ), Z]− [∆(a(X,Y )), Z]

is zero by centrality of a(X,Y ) while the second vanishes because of g-invariance
of Z. In particular, the higher terms in A(X,Y ) are all zero and A(X,Y ) =
∂( 1

2a(X,Y )). Thus the exponent exp( 1
2a(X,Y )) is a gauge transformation be-

tween the invariant twists exp(X)exp(Y ) and exp(X + Y ), which proves the
following statement.

Theorem 5.1.4. The group π0(Aut1
Tw(U(g)[[h]])) of classes of invariant twists

is isomorphic to the addititve group (Λ2g)g[[h]].

Moreover, we can calculate the associator class

φ ∈ H3(π0(Aut1
Tw(U(g)[[h]])), π1(Aut1

Tw(U(g)[[h]])))

of the Cat-group Aut1
Tw(U(g)[[h]]) of invariant twists. For our choice of gauge

transformation between the invariant twists exp(X)exp(Y ) and exp(X + Y )
the logarithm of the associator on exp(X), exp(Y ), exp(Z) (as an element of
Z(g)[[h]] ⊂ Z(U(g))[[h]]) equals

1
2
(a(X,Y ) + a(X + Y, Z)− a(Y, Z)− a(X,Y + Z)). (12)

Since both πi(Aut1
Tw(U(g)[[h]])), i = 0, 1 are divisible abelian groups (vector

spaces over k) with trivial action of the first on the second, the cohomology
group

H3(π0(Aut1
Tw(U(g)[[h]])), π1(Aut1

Tw(U(g)[[h]]))) ' H3((Λ2g)g[[h]], Z(g)[[h]])

is isomorphic to the group Hom(Λ3((Λ2g)g[[h]]), Z(g)[[h]]) of skew-symmetric
maps via the map which takes a group 3-cocycle into its alternation. Clearly,
the alternation of the (logarithm of the) associator (12) is zero. Thus the class
φ is trivial.

Remark 5.1.5. Tangent Cat-Lie algebra of Aut1
Tw(U(g)).

We can formalise the ground ring dependence of Aut1
Tw(U(g)) in the form

of a Cat-group valued pseudo-functor

k 7→ Aut1
Tw(Uk(g))

on the category of Artinian local commutative algebras. This point of view
allows us to define in a standard way the tangent Cat-Lie algebra (crossed
module of Lie algebras) for Aut1

Tw(U(g)):

Z2 ∂← C1.
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Here Z2 is the Lie algebra (with respect to the commutator in U(g)⊗2) of 2-
cocycles of the subcomplex of g-invariants of (8) and C1 is the abelian Lie
algebra of 1-cochains of the same subcomplex. The action of Z2 on C1 is
trivial and the commutator [X, ∂(a)] is zero for any X ∈ Z2 and a ∈ C1 (thus
fulfilling the axioms of a crossed module of Lie algebras). Writing [X,Y ] =
[Alt2(X), Alt2(Y )] as ∂(a(X,Y )) for a(X,Y ) = a(Alt2(X), Alt2(Y )) as before
we can see that a(X, [Y, Z]) = 0 so the Jacobiator of the crossed module of Lie
algebras is trivial.

5.2 Separation for twisted automorphisms

Here we examine twisted automorphisms (f, F ) : H → H where H = U(g)[[h]].
The constant term (with respect to h) of F must be the identity. Thus by
condition (1) the constant term of f must be an automorphism of the bialgebra
H, hence must be induced by an automorphism of the Lie algebra g. These
allow us to assume without loss of generality (up to an automorphism of g) that

f = I +
∞∑

i=1

fih
i, F = 1 +

∞∑
i=1

Fih
i.

Let X = Fl be the first non-zero coefficient. As before, the degree l part of the
2-cocycle equation is the additive 2-cocycle condition for X:

1⊗X + (I ⊗∆)(X) = X ⊗ 1 + (∆⊗ I)(X).

As before we write
X = X + a⊗ 1 + 1⊗ a−∆(a)

for X = Alt2(X) and some a ∈ U(g). The exponent exp(ahl) defines a gauge
transformation of twisted automorphisms (f, F ) → (f ′, F ′) where F ′ = 1 +
Xhl + ..... Hence we can assume (up to a gauge transformation) that X ∈ Λ2g.
Now the left hand side of the degree l part of the condition (1), namely,∑

i+j=l

(fi ⊗ fj)∆(x)−∆(fl(x)) = [X,∆(x)]

is symmetric while the right hand side is anti-symmetric. That means both
sides are zero. In particular, X ∈ Λ2g is g-invariant and exp(Xhl) is a twist
on U(g)[[h]]. Writing (f, F ) as (1, exp(Xhl)) ◦ (f, F ′) we will have at least the
first l components of F ′ being zero. Proceeding like that (using induction by
the number of first successive zero components in F ) we prove the following.

Proposition 5.2.1. Any twisted automorphism of a universal enveloping alge-
bra U(g)[[h]] is gauge isomorphic to a separated twisted automorphism, i.e. a
twisted automorphism of the form (1, F ) ◦ (f, 1) where F is an invariant twist
on U(g)[[h]] and f is a bialgebra automorphism of U(g)[[h]].
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5.3 The Cat-group AutTw(U(g)[[h]])

Since any symmetric invariant twist is isomorphic to a trivial one, the group

AutTw(U(g)[[h]]) = π0(AutTw(U(g)[[h]])) ' Outbialg(U(g)[[h]]) n (Λ2g)g[[h]]

is the crossed product of the group of outer bialgebra automorphisms of U(g)[[h]]
and the group of gauge classes of invariant twists. Any bialgebra automorphism
of a universal enveloping algebra is induced by a Lie algebra automorphism.
Thus the group Outbialg(U(g)[[h]]) in its turn is the crossed product

Aut(g) n (1 + hOutDer(g)[[h]])

of the group of automorphisms of the Lie algebra g and the exponent of the
Lie algebra hOutDer(g)[[h]] of outer derivations of g[[h]] of degree ≥ 1. The
action of the subgroup Aut(g) on the group of gauge classes of invariant twists
(Λ2g)g[[h]] is

f(F ) = (f ⊗ f)(F ).

The action of the degree ≥ 1 part (1+hOutDer(g)[[h]]) is induced by the action
of the Lie algebra of derivations Der(g) on the space (Λ2(g))g:

dX = (d⊗ I + I ⊗ d)(X).

It is straightforward to see that inner derivations act trivially (this is equivalent
to g-invariance). To see that g-invariance is preserved by this action we need to
verify that dxd(X) = 0 for any x ∈ g. Here dx(y) = [x, y] is the inner derivation
corresponding to x. Since dxd = ddx+dd(x) we have dxdX = ddx(X)+dd(x)X =
0.

Note that π1(AutTw(U(g)[[h]])) = π1(Aut1
Tw(U(g)[[h]])) = Z(g)[[h]].

Proposition 5.3.1. The associator

φ ∈ H3(AutTw(U(g)[[h]]), Z(U(g)[[h]]))

of the Cat-group AutTw(U(g)[[h]]) is the image of the associator

ψ ∈ H3(Outbialg(U(g)[[h]]), Z(U(g)[[h]]))

of the Cat-group Autbialg(U(g)[[h]]) under the homomorphism of groups Outbialg(U(g)[[h]])→
AutTw(U(g)[[h]]).

Proof. We need to check that the associator is trivial if at least one of the
arguments belongs to the subgroup (Λ2g)g[[h]]. We have seen in section 5.1
that it is trivial if all three arguments are from (Λ2g)g[[h]]. In section 5.5 we
will construct the solution a(X,Y ) of (11) such that a(g(X), g(Y )) = a(X,Y ) for
any automorphism g ∈ Aut(g) (and a(dX, Y )+a(X, dY ) = 0 for any derivation
d ∈ Der(g)) thus covering the case when two of the arguments of the associator
belong to (Λ2g)g[[h]]. Finally, the fact Out(g) and OutDer(g) act on (Λ2g)g

guarantees that the associator is trivial when one of the arguments belongs to
the subgroup (Λ2g)g[[h]].
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5.4 Twists on U(g)[[h]]

Recall that Tw(k[[h]], U(g)[[h]]) is a complicated notation for the groupoid of
twists on U(g)[[h]].

Writing the twist as a formal power series F =
∑∞

i=0 fih
i, we get, for the

degree n part of the 2-cocycle equation:∑
i+j=n, i,j>n

((1⊗ fi)(I ⊗∆)(fj)− (fi ⊗ 1)(∆⊗ I)(fj)) = 0.

The degree 1 part is simply d(f1) = 0. Thus f1 is an additive 2-cocycle and
r = Alt2(f1) belongs to Λ2(g). Up to a gauge isomorphism we can assume that
f1 = r. The degree 2 part reads as

(1⊗ f1)(I ⊗∆)(f1)− (f1 ⊗ 1)(∆⊗ I)(f1) = d(f2). (13)

The left hand side is in general a 2-cocycle (this can be checked directly). Thus
the alternation of the left hand side is an element of Λ3(g). This element can
be written explicitly if we assume as before that f1 = r is bi-primitive and
skew-symmetric. Indeed, for such a choice, the left hand side of (13) has the
form

r23(r13 + r12)− r12(r13 + r23).

Note that

Alt3(r23r13) =
1
6
(r23r13 + r31r21 + r12r32 − r13r23 − r32r12 − r21r31),

which for a skew-symmetric r equals

1
6
([r23, r13] + [r23, r12] + [r13, r12]).

Note also that

Alt3(r23r13) = Alt3(r23r12) = −Alt3(r12r13) = −Alt3(r12r23).

Thus
Alt3(r23(r13 + r12)− r12(r13 + r23)) =

4
6
([r23, r13] + [r23, r12] + [r13, r12]).

Together with (13) it means that

[r23, r13] + [r23, r12] + [r13, r12] = 0. (14)

This equation is known as the classical Yang-Baxter equation (CYBE). Denote
by CY B(g) the set of solutions (in Λ2(g)) of the classical Yang-Baxter equation.
Thus we have the following.
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Proposition 5.4.1. The above defines a map

π0(Tw(k[[h]], U(g)[[h]]))→ CY B(g) (15)

from the set of gauge isomorphism classes to the set of solutions to CYBE.

A section to the map (15) was constructed in [3] (see also [6]). In particular,
the map (15) is surjective.

The map (15) can be extended to a map of groupoids in the following way.
For a gauge automorphism a ∈ U(g)[[h]] of a twist F ∈ Tw(k[[h]], U(g)[[h]]) the
condition ∆(a)F = F (a⊗ a) expanded in h gives∑

i+j=n

∆(ai)fj =
∑

i+j=n

fj(ai ⊗ 1 + 1⊗ ai).

Since a0 = f0 = 1, the degree 1 part is ∆(x) + r = r + x ⊗ 1 + 1 ⊗ x, where
x = a1 and r = f1. Thus x belongs to g. After cancellation the skew-symmetric
degree 2 part reads ∆(x)r = r(x⊗ 1 + 1⊗ x) or

[r, x⊗ 1 + 1⊗ x] = 0. (16)

Define the centraliser Cg(r) of r as the Lie subalgebra in g of those x which
satisfy (16). Denote by CYB(g) a disconnected groupoid with the set of (classes
of) objects CY B(g) and with the abelian automorphism groups AutCYB(g)(r) =
Cg(r) where r ∈ CYB(g). Then the map (15) lifts to a functor of groupoids

Tw(k[[h]], U(g)[[h]])→ CYB(g).

The action of the cat-group Aut1
Tw(U(g)[[h]]) on Tw(k[[h]], U(g)[[h]]) corre-

sponds to the action of (Λ2(g))g on CY B(g) given by addition: for X ∈ (Λ2(g))g

and r ∈ CY B(g) the sum X + r belongs to CY B(g). The action of Aut(g[[h]])
on CY B(g) boils down to the group action of Aut(g).

Remark 5.4.2.

It seems that the construction of [3] (as well as [6]) can be extended to a
bijection CY Bh(g)→ π0(Tw(k[[h]], U(g)[[h]])). Here we understand CY Bh(g)
as the set of solutions to CYBE in Λ2(g)[[h]]. g-equivariance of the construction
from [3] would imply that the map CYBh(g)→ Tw(k[[h]], U(g)[[h]]) is a functor
if we define automorphism groups in CYBh(g) to be exponents of Lie algebras
Cg(r)[[h]].

5.5 Geometric description

For X ∈ Λ2(g) define its support subspace to be a(X) = {(l⊗I)(X), l ∈ g∗} ⊂ g.
Note that X belongs to Λ2a(X) and defines a linear isomorphism

a(X)∗ → a(X), l 7→ (l⊗)(X).
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Thus X is the Casimir element for the symplectic form b = b(X) on a(X):

b((l ⊗ I)(X), (l′ ⊗ I)(X)) = (l ⊗ l′)(X)

(I ⊗ b)(X ⊗ I) = (b⊗ I)(I ⊗X) = I : a(X)→ a(X).

The following geometric characterisation of solutions to CYBE was obtained
by Drinfeld [3].

Proposition 5.5.1. The support s = {(I⊗l)(r), l ∈ g∗} of a solution r ∈ Λ2(g)
to CYBE is a Lie subalgebra of g. The symplectic form b on s is a Lie 2-cocycle.

Proof. Applying (I ⊗ l ⊗m) to CYBE we get

[(I ⊗ l)(r), (I ⊗m)(r)] + (I ⊗ l′)(r) + (I ⊗m′)(r) = 0,

where l′(x) = l([x, (I ⊗m)(r)]) and m′(x) = m([x, (l ⊗ I)(r)]. Thus s ⊂ g is a
Lie subalgebra.

To see that the form b is a 2-cocycle note that

b([(I ⊗ l)(r), (I ⊗m)(r)], (I ⊗ n)(r)) = (n⊗m⊗ l)([r12, r23]− [r13, r23).

Thus the alternation (in l,m, n) of the left hand side is (n ⊗m ⊗ l) applied to
a multiple of CYBE.

In terms of s and b the centraliser Cg(r) is the stabiliser StCg(s)(b) of the
form b in the centraliser Cg(s) of the Lie subalgebra s in g.

For g-invariant X ∈ Λ2(g), its support a(X) is an ideal in g and the form
b(X) is g-invariant.

Lemma 5.5.2. For any g-invariant X ∈ Λ2(g)g,

[X13, X23] = 0. (17)

Proof. SinceX23 is ad(g)-invariant [X13, X23] = −[X12, X23] which equals [X23, X12].
Again, by ad(g)-invariance of X12, we have [X23, X12] = −[X13, X12] which co-
incides with [X13, X21] since X12 = −X21. Now, by ad(g)-invariance of X13,
[X13, X21] = −[X13, X23] which finally implies

[X13, X23] = −[X13, X23].

It follows from the relation (17) that a(X) is an abelian ideal for any X ∈
Λ2(g)g:

[(l ⊗ I)(X), (l′ ⊗ I)(X)] = [(l ⊗ l′ ⊗ I)([X13, X23]) = 0.

Thus we assign an abelian ideal with an g-invariant symplectic form to any
element of Λ2(g)g. Conversely, for such a pair (a, b) the Casimir element Xb of
b obviously belongs to Λ2(g)g. Thus we have the following.

Proposition 5.5.3. The support construction establishes a bijection between
Λ2(g)g and the set of pairs (a, b), where a ⊂ g is an abelian ideal and b is a
g-invariant symplectic form of a
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For a Lie algebra g denote by nil(g) its nilradical, i.e. the maximal nilpotent
ideal ( = sum of all nilpotent ideals).

Corollary 5.5.4. For any Lie algebra g,

Λ2(g)g = Λ2(nil(g))g.

In particular Λ2(g)g = 0 if nil(g) = 0.

Proof. Any abelian ideal is obviously nilpotent. Thus it must be contained in
nil(g).

Now we describe vector space structure of Λ2(g) in terms of pairs (a, b).
Obviously, multiplication by scalars is given by the following rule:

c(a, b) = (a, cb), for c ∈ k \ {0}.

The geometric presentation for the addition is more involved.
For X1, X2 ∈ Λ2(g), the direct sum of their supports a1 ⊕ a2 is equipped

with the symplectic form b1 ⊕ b2. Denote by

(a1 ∩ a2)⊥ = {(u1, u2) ∈ a1 ⊕ a2 : b1(u1, x) = b2(u2, x) ∀x ∈ a1 ∩ a2}

the orthogonal complement of the anti-diagonal image of a1 ∩ a2 in a1 ⊕ a2.
Denote byK the intersection (a1∩a2)∩(a1∩a2)⊥ which coincides with the kernel
ker(b1|a1∩a2 − b2|a1∩a2) of the difference of the symplectic forms bi restricted to
a1 ∩ a2. The kernel of the surjection a1 ⊕ a2 → a1 + a2 ⊂ g coincides with the
anti-diagonal image of a1 ∩ a2 and the short exact sequence

a1 ∩ a2 → a1 ⊕ a2 → a1 + a2

extends to a commutative diagram with short exact rows and columns:

K //

��

a1 ∩ a2
//

��

((a1 ∩ a2)/K)∗

��
(a1 ∩ a2)⊥ //

��

a1 ⊕ a2
//

��

(a1 ∩ a2)∗

��
a // a1 + a2

// K∗

(18)

We can use the bottom row to define a subspace a ⊂ g as the kernel of the map
a1 + a2 → K∗ induced by the map a1 ⊕ a2 → (a1 ∩ a2)∗:

(u1, u2) 7→ (x 7→ b1(u1, x)− b2(u2, x)) x ∈ a1 ∩ a2}.

Then the left column allows us to define a symplectic form on a. Indeed, the
kernel of the restriction of b1 ⊕ b2 to (a1 ∩ a2)⊥ is K. Thus b1 ⊕ b2 induces a
non-degenerate skew-symmetric bilinear form b on (a1 ∩ a2)⊥/K = a.
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Proposition 5.5.5. The subspace a ⊂ g is the support of the sum X1 +X2 ∈
Λ2(g). The Casimir element of the symplectic form b coincides with X1 +X2.

Proof. First we need to verify that the support of X1 +X2 lies in a. For that
purpose we need a more explicit description of the map a1 + a2 → K∗. For
(l1 ⊗ I)(X1) + (l2 ⊗ I)(X2) ∈ a1 + a2 it gives a linear function K → k: if we
write an element x ∈ K as x = (m1 ⊗ I)(X1) = (m2 ⊗ I)(X2) the value of this
function on x is

(l1 ⊗m1)(X1)− (l2 ⊗m2)(X2).

Note that this expression is zero for any li ∈ g∗ such that (l1 ⊗ I)(X1) =
(l2⊗I)(X2) so it is well defined on a1 +a2 (does not depend on the presentation
(l1⊗I)(X1)+(l2⊗I)(X2)). The function associated to an element (l⊗I)(X1)+
(l⊗I)(X2) of the support ofX1+X2 is clearly zero. Thus the support ofX1+X2

belongs to a.
Now it suffices to check that (b⊗ I)(I ⊗ (X1 +X2)) is the identity on a, or

that (b⊗ l)(I ⊗ (X1 +X2)) = l for any linear function l on a. The bilinear form
b on a assigns to (l1 ⊗ I)(X1) + (l2 ⊗ I)(X2), (m1 ⊗ I)(X1) + (m2 ⊗ I)(X2) ∈ a
the number

(l1 ⊗m1)(X1)− (l2 ⊗m2)(X2).

In particular, for x = (l1 ⊗ I)(X1) + (l2 ⊗ I)(X2) ∈ a,

(b⊗ l)(x⊗ (X1 +X2)) = b(x, (I ⊗ l)(X1) + (I ⊗ l)(X2)) =

(l1 ⊗ l)(X1) + (l2 ⊗ l)(X2) = l(x).

In particular, if both X1, X2 are g-invariant we get a geometric description
of the addition on Λ2(g)g.

Remark 5.5.6.

According to proposition 5.5.3, the support subspace a ofX1+X2 must be an
abelian ideal. The fact that a is an ideal follows from the g-equivariance of the
construction for a, while the abelian property can be checked by direct compu-
tation. First note that the commutant [a1, a2] lies in K. As a consequence, the
map a1 + a2 → K∗ is a homomorphism of Lie algebras (with abelian structure
on K∗). Thus a is a Lie subalgebra. To see that the commutant [a, a] is zero, it
is enough to check that b1([u1 + u2, v1 + v2], y) = 0 for any u1 + u2, v1 + v2 ∈ a
and any y ∈ a1. Writing

[u1 + u2, v1 + v2] = [u1, v2] + [u2, v1] = [u1, v2]− [v1, u2],

we need to verify that b1([u1, v2], y) = b1([v1, u2], y). Indeed, by g-invariance of
bi and the defining relations for u1 + u2, v1 + v2 (together with [a1, a2] ⊂ K),
we have the chain of equalities:

b1([u1, v2], y) = −b1(u1, [y, v2]) = −b2(u2, [y, v2]) =

b2([y, u2], v2) = b1([y, u2], v1) = −b1(y, [v1, u2]) = b1([v1, u2], y).
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Note also that the arrows of the diagram (18) are homomorphisms of vector
spaces and not of Lie algebras. To turn it into a diagram of Lie algebras it
suffices to introduce an appropriate Lie algebra structure on the direct sum
a1 ⊕ a2. Denote by a1 ./ a2 the Lie algebra of pairs (x1, x2), xi ∈ ai with the
bracket:

[(x1, x2), (y1, y2)] =
1
2
([x2, y1] + [x1, y2], [x2, y1] + [x1, y2]).

Then the maps of the diagram

K //

��

a1 ∩ a2
//

��

((a1 ∩ a2)/K)∗

��
(a1 ∩ a2)⊥ //

��

a1 ./ a2 //

��

(a1 ∩ a2)∗

��
a // a1 + a2

// K∗

(19)

become homomorphisms of Lie algebras (one should think of objects in the right
column as abelian Lie algebras).

When X1 is g-invariant and X2 is a solution to CYBE the sum X1 + X2

is also a solution to the CYBE. In this case the support space a is still a Lie
algebra. Again the diagram (18) can be made into a diagram of Lie algebras.
One needs to think of a1 ./ a2 as the Lie algebra with the bracket:

[(x1, x2), (y1, y2)] =
1
2
([x2, y1] + [x1, y2], [x2, y1] + [x1, y2] + 2[x2, y2]).

In other words, the diagram (19) defines an action of the set of abelian ideals
with invariant symplectic forms (which coincides with the vector space (Λ2g)g)
on the set of subalgebras with non-degenerate 2-cocycles (the set CY B(g)).

Now we give a geometric description of the map

(Λ2g)g ⊗ (Λ2g)g → (S3g)g, (20)

which for X1, X2 gives a coboundary a for the commutator

[X1, X2] = a⊗ 1 + 1⊗ a−∆(a).

Here we identify (S∗g)g with the centre Z(U(g)) = U(g)g of the universal en-
veloping algebra by means of the Kirillov-Duflo isomorphism.

For two abelian ideals a1, a2 ⊂ g denote by b = [a1, a2] their commutant.
Note that orthogonal complements b⊥bi

with respect to invariant symplectic forms
bi on ai have the following commutation property:

[b⊥b1 , a2] = [a1, b
⊥
b2 ] = 0. (21)

28



Indeed, for x ∈ b⊥b1 , y ∈ a2,

b1([x, y], z) = −b1(x, [z, y]) = 0, ∀z ∈ a1.

Hence [x, y] = 0. Similarly for [a1, b
⊥
b2

]. Now define a map b∗ ⊗ b∗ → b by
sending l1 ⊗ l2 into [x1, x2], where xi ∈ ai are defined by

bi(xi, u) = li(u), ∀u ∈ b.

The elements xi are defined up to b⊥bi
so in view of the relations (21) the com-

mutator [x1, x2] is well defined. Obviously, the map b∗ ⊗ b∗ → b corresponds
to a 3-vector c ∈ b⊗3, which is g-invariant by the construction. To see that this
3-vector is symmetric, think of it as a map

(b∗)⊗3 → k, l1 ⊗ l2 ⊗ l3 7→ l3([x1, x2]).

Find yi ∈ ai such that

bi(yi, u) = l3(u), ∀u ∈ b.

Then

l3([x1, x2]) = b1(y1, [x1, x2]) = −b1([y1, x2], x1) = l1([y1, x2]),

which in terms of the 3-vector c means that c13 = c. Similarly

l3([x1, x2]) = b2(y2, [x1, x2]) = −b2([x1, y2], x2) = l2([x1, y2]),

which means that c23 = c.

Lemma 5.5.7. The element a corresponding to the invariant c ∈ S3(g)g via
the isomorphism S∗(g)g → Z(U(g)) satisfies the equation

[X1, X2] = a⊗ 1 + 1⊗ a−∆(a).

Proof. Since b = [a1, a2] is isotropic with respect to the forms bi we can choose
subspaces Li ⊂ ai, which are Lagrangian with respect to bi respectively and
contain b. Write ai = Li ⊕ L∗i . A choice of bases L1 =< ei >, L2 =< fj >
allows us to write

X1 =
∑

i

ei ∧ ei, X2 =
∑

j

fj ∧ f j .

Here ei (f j) is the dual basis in L∗1 (respectively L∗2). By the choice, [L1, L2] = 0
so

[X1, X2] =
∑
i,j

[ei ∧ ei, fj ∧ f j ] =
∑
i,j

eiej � [ei, f j ].

Here � is the symmetric product x� y = x⊗ y + y ⊗ x. Since the commutator
pairing [ , ] : L∗1 ⊗ L∗2 → b factors through c : b∗ ⊗ b∗ → b we can write

a =
∑
i,j

eifj [ei, f j ] =
∑
s,t

xsxtc(xs, xt),
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where xs is a basis of b. Finally note that the element c belongs to S∗(b)g =
U(b)g ⊂ Z(U(g)) so we do not need to worry about the particular choice of
isomorphism S∗(g)g → Z(U(g)).

Remark 5.5.8.

It follows from the invariance of the construction of c that c(g(X1), g(X2)) =
c(X1, X2) for an automorphism g of the Lie algebra g.

We can use a symmetric 3-vector c ∈ b⊗3 on a vector space b to define a
structure of (meta-abelian) Lie algebra g(b, c) on the vector space b∗ ⊕ b∗ ⊕ b:

[(l1,m1, x1), (l2,m2, x2)] = (0, 0, (l1 ⊗m2 ⊗ I − l2 ⊗m1 ⊗ I)(c)).

The subspaces
a1 = b∗ ⊕ 0⊕ b, a2 = 0⊕ b∗ ⊕ b

are abelian ideals in g(b, c). The symplectic forms bi on ai

b1((l1, 0, x1), (l2, 0, x2)) = l1(x2)− l2(x1),

b2((0,m1, x1), (0,m2, x2)) = m1(x2)−m2(x1)

are g(b, c)-invariant. Indeed, by c13 = c

b1([(0,m, x), (l1, 0, x1)], (l2, 0, x2)) = b1(−(0, 0, (l1 ⊗m⊗ I)(c)), (l2, 0, x2)) =

= (l1 ⊗m⊗ l2)(c), which coincides with

b1((l1, 0, x1), [(l2, 0, x2), (0,m, x)]) = b1((l1, 0, x1), (0, 0, (l2⊗m⊗I)(c))) = (l2⊗m⊗l1)(c).

Similarly, by c23 = c

b2([(0,m1, x1), (l, 0, x)], (0,m2, x2)) = b1(−(0, 0, (l ⊗m1 ⊗ I)(c)), (0,m2, x2)) =

= (l ⊗m1 ⊗m2)(c), which coincides with

b2((0,m1, x1), [(l, 0, x), (0,m2, x2)]) = b2((0,m1, x1), (0, 0, (l ⊗m2 ⊗ I)(c))) =

= (l ⊗m2 ⊗m1)(c). Clearly, the 3-vector corresponding to the pair (ai, bi) via
(20) is c.

The above construction is universal in the following sense. For a pair (ai, bi)
of abelian ideals with symplectic invariant forms, the sum a1 + g2 (which is a
meta-abelian ideal) maps on to g(b, c), where b = [a1, a2] and c is the 3-vector
defined by (20). Note that b is isotropic in both ai so the maps ai → b∗ defined
by the forms bi factor through ai/b. Thus we have a diagram

b

��

// a1 + a2

��

// a1/b⊕ a2/b

��
b // g(b, c) // b∗ ⊕ b∗

The middle vertical map is a homomorphism of Lie algebras since the right
vertical map is compatible with commutator pairings a1/b ⊗ a2 → b (induced
from a1 + g2) and b∗ ⊗ b∗ → b (in g(b, c)).
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Example 5.5.9. Heisenberg algebra

Let (V, b) be a symplectic vector space and g = H(V, b) = V ⊕〈c〉 its Heisen-
berg Lie algebra with the central generator c. Then the map v 7→ v ∧ c =
v ⊗ c− c⊗ v is an isomorphism V → (Λ2g)g. Clearly v ∧ c is g-invariant:

[u⊗ 1 + 1⊗ u, v ∧ c] = [u, v] ∧ c = b(u, v)c ∧ c = 0.

To see that there are no other g-invariant elements in Λ2g note that Λ2g =
Λ2V ⊕V with the g-action on the first component V ⊗Λ2V → V being induced
by the bilinear form b and hence having no invariants.

The commutator (in U(g)⊗2) of two elements from (Λ2g)g

[v ∧ c, u ∧ c] = b(v, u)(c⊗ c2 + c2 ⊗ c)

is a coboundary a⊗1+1⊗a−∆(a). For example, we can choose a : Λ2((Λ2g)g)→
U(g) to be

a(v ∧ c, u ∧ c) =
b(u, v)

3
c3.

The subalgebras in H(V, b) break into two classes depending on whether
or not they contain the centre. A subalgebra of the first type has the form
U⊕ < c > for an arbitrary subspace U ⊂ V , while the second type is simply an
isotropic subspace U of V (isotropic means that the restriction of the symplectic
form b to U is zero). A non-degenerate 2-cocycle on a subalgebra of the second
type is a symplectic form. For a subalgebra of the first type U⊕ < c > with
a non-degenerate 2-cocycle β denote by U ′ the orthogonal complement (with
respect to β) of c in U . Clearly the restriction of β on U ′ is non-degenerate.
Moreover, the 2-cocycle condition implies that U ′ is isotropic with respect to
b. This corresponds to the fact that any X ∈ CY B(g) for g = H(V, b) can be
uniquely written as Y + v ∧ c for Y ∈ CY B(g) supported on a subalgebra of
the second type. In particular, (Λ2g)g acts transitively on CY B(g) with orbits
corresponding to subalgebras of the second type with symplectic forms on them.

6 Crossed products with respect to actions by
twisted automorphisms

In this section we construct crossed product of a bialgebra with a group acting
by twisted automorphisms.

We say that a group G acts by twisted automorphisms on a bialgebra H if a
map of Cat-groups (as in section 4.1): (τ, θ) : G→ AutTw(H) is given:

τ : G→ AutTw(H), τ(g) = (g, Fg),

θ : G×G→ Z(H)×,

satisfying
f(θ(g, h))θ(f, gh) = θ(f, g)θ(fg, h), (22)
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f(Fg)Ff∆(θ(f, g)) = (θ(f, g)⊗ θ(f, g))Ffg. (23)

A crossed product of a bialgebra H with a group G with respect to the action
by twisted automorphisms (τ, θ) is a bialgebra H∗(τ,θ)G, which as a vector space
is spanned by symbols x ∗ f for x ∈ H, f ∈ G subject to the linearity in the
first argument (x+ y) ∗ f = x ∗ f + y ∗ f ; with the product and the coproduct
given by the formulas:

(x ∗ f)(y ∗ g) = (xf(y)θ(f, g)) ∗ fg,

∆(x ∗ f) = (∆(x)F−1
f ) ∗ (f ⊗ f).

It is quite straightforward to check that all bialgebra axioms are satisfied. In-
deed, associativity of multiplication follows from the condition (22):

(x∗f)((y∗g)(z∗h)) = (x∗f)(yg(z)θ(g, h)∗gh) = xf(y)fg(z)f(θ(g, h))θ(f, gh)∗fgh

coincides with

((x∗f)(y∗g))(z∗h) = (xf(y)θ(f, g)∗fg)(z∗h) = xf(y)θ(f, g)fg(z)θ(fg, h)∗fgh.

Coassociativity of comultiplication follows from the 2-cocycle property of twists:

(∆⊗ I)∆(x ∗ f) = (∆⊗ I)((∆(x)F−1
f ) ∗ (f ⊗ f)) =

(∆⊗ I)∆(x)(∆⊗ I)(Ff )−1(Ff ⊗ 1)−1 ∗ (f ⊗ f ⊗ f)

is equal to

(I ⊗∆)∆(x ∗ f) = (I ⊗∆)((∆(x)F−1
f ) ∗ (f ⊗ f)) =

(I ⊗∆)∆(x)(I ⊗∆)(Ff )−1(1⊗ Ff )−1 ∗ (f ⊗ f ⊗ f).

Finally, the compatibility of multiplication and comultiplication follows from
the condition (23):

∆((x∗f)(y ∗g)) = ∆(x∗f)∆(y ∗g) = (∆(x)F−1
f ∗ (f ⊗f))(∆(y)F−1

g ∗ (g⊗g)) =

∆(x)F−1
f (f ⊗ f)∆(y)(f ⊗ f)(Fg)−1(θ(f, g)⊗ θ(f, g)) ∗ (fg ⊗ fg),

which, by the definition of twisted homomorphism, coincides with

∆(x)∆(f(y))F−1
f (f ⊗ f)(f ⊗ f)(Fg)−1(θ(f, g)⊗ θ(f, g)) ∗ (fg ⊗ fg).

At the same time

∆(xf(y)θ(f, g) ∗ fg) = ∆(x)∆(f(y))∆(θ(f, g))F−1
fg ∗ (fg ⊗ fg).

As an example we consider the case of a universal enveloping algebra. Let
A be a subspace of (Λ2g)g. Define a map of Cat-groups A→ AutTw(U(g)[[h]])

32



by assigning to X ∈ A the twisted automorphism (I, exp(Xh)) and defining
θ(X,Y ) as exp( 1

2a(X,Y )h2), where a(X,Y ) ∈ Z(U(g)) is a solution of

[X,Y ] = a(X,Y )⊗ 1 + 1⊗ a(X,Y )−∆(a(X,Y )),

satisfying the 2-cocyle condition

a(X,Y ) + a(X + Y, Z) = a(Y, Z) + a(X,Y + Z).

The crossed product U(g)[[h]]∗A will have the following rules for multiplication
and comultiplication:

(x ∗X)(y ∗ Y ) = xy exp(
1
2
a(X,Y )h2) ∗ (X + Y ),

∆(x ∗X) = ∆(x)exp(Xh) ∗ (X ⊗X).

Writing formally X as exp(lXh) the rules turn into the following

exp(lXh)exp(lY h) = exp(a(X,Y )h2 + (lX + lY )h),

∆(exp(lXh)) = exp(Xh)(exp(lXh)⊗ exp(lY h)).

These can be resolved by setting

[lX , lY ] = −a(X,Y ), (24)

∆(lX) = X + lX ⊗ 1 + 1⊗ lX . (25)

We can formalise these equations by formally adding new generators lX , X ∈ A
to U(g) subject to the relation (24), with the comultiplication extending the
one on U(g) and satifying (25). The resulting object U(g)[A, a] is a bialgebra.
Indeed, the only thing to check in this abstract setting is that the relation (24)
is preserved by the comultiplication:

∆([lX , lY ] + a(X,Y )) = [X,Y ] + [lX , lY ]⊗ 1 + 1⊗ [lX , lY ] + ∆(a(X,Y )) =

([lX , lY ] + a(X,Y ))⊗ 1 + 1⊗ ([lX , lY ] + a(X,Y )).

Example 6.0.10.

Let g = H(V, b) = V ⊕ 〈c〉 be the Heisenberg Lie algebra of the symplectic
vector space (V, b). Let A be the space V mapped into (Λ2g)g by v 7→ v ∧ c. As
in the example 5.5.9, let a(v, u) = b(u,v)

3 c3.Then the extra generators lv, v ∈ V
of the algebra U(H(V, b))[V, a] satisfy

[lv, lu] =
b(u, v)

3
c3,

with the comultiplication defined by

∆(lv) = v ⊗ c− c⊗ v + lv ⊗ 1 + 1⊗ lv.
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