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A jump theorem with uniform estimates
for Jj-closed forms on real hypersurfaces

by Bert Fischer and Jiirgen Leiterer

1 The main result and reduction of the proof to
estimates for 0

Let Q@ CC C* be a C*domain and let p : Us — R be a C?*-function defined in a
neighbourhood Up of Q such that Q = {z € Ug : o(z) < 0} and dp(z) # 0 for all
z € bQd. Suppose that for some integer 0 < ¢ < n —1 the following convexity condition
is fulfilled: For all 2 € b2 the Levi form of g at z has at least ¢+ 1 positive eigenvalues.

Further let M = {z € Uy : oo = 0} be a real C%hypersurface in Uy defined
by a second C?-function gy : Uy — R with dgo(z) # 0 for all z € M such that
the intersection M N bQ} is transversal in the real sense (dgo(z) A dp(z) # 0 for all
z € M NbAY).

Set

Qe ={2€0:00<0} and Q- ={z€ Q:p >0}

In this paper we prove the following

Theorem 1.1 For each continuous closed (n,r)-form f on MNQ withr >n—q—1,
there exist continuous closed (n,r)-forms fi on Q. and f_ on Q_ such that, for some
constant C > 0 which is independent of f,

I7£(=)If £ C(1 +{Indist(z, M)]*) max_ [|f(O)]], z € 4, (1)
CEMNN

and

o+ [ ine=[rnde+ [1onte @)
MR 0, 0

for each Cg5,_._,-form ¢ with compact support in (), where M carries the orientation
of bY,. Equation (2) means that f = f, — f_ in the sense of distributions.

For the definition of the norm of a differential form at a point which appears in (1)
see for instance Section 1.6.3 in [H/Le 1].

In the paper [La/Le] it was proved that under certain additional convexity condi-
tions on M, this theorem together with the main result of {La/Le] leads to uniform
estimates for the tangential Cauchy-Riemann equation on M N Q. This is the motiva-
tion for the present article.

In [La/Le] it was also observed that the essence of Theorem 1.1 is contained in a
special uniform estimate for the J-equation on ¢ which will be stated in Theorem 1.2
below. Let us repeat the corresponding arguments from [La/Le].
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Suppose f is as in Theorem 1.1. Further let

(?2;2‘)13! S (=1 Hdh = d2) A g A (dDn — dZa) Adzy A A dz,
j=1

B(z,{) =
be the Martinelli-Bochner-Koppelman kernel. Set

falz) = (-1) / SQOAB(() for z€0s

(eMnfl

FO= (1) [ fONBEG for ze.
} ceMnbn _
Since d,B(z,() = —8,B(z,() we get dfx = F on Q4 and, by the hypothesis on the
Levi form of p, it follows from the Andreotti-Grauert theory (see [A/G]) that F' = du
for some continuous (n,r)-form u on Q. Setting '

fa=fr—u

we obtain closed continuous (n,r)-forms fi on Q.. Then the relation (2) follows from .
the Martinelli-Bochner-Koppelman representation of the form dip It is clear that

()|l < Co1 + | Indist(z, M)|) max ||f(&)l] for =€ Qu, (3)
ceMnfl

where Cp > 0 is a constant which does not depend on f. Moreover for each compact
set K CC 2 there is a constant Cx > 0 (independent of f) with

(@)l < Cx max 17Ol for =€ K. e

Hence, except of the validity of estimate (1) near M Nb(, the assertion of Theorem
1.1 may be considered as well-known. To obtain the complete Theorem 1.1 we have to
estimate the solution u of du = F near M N Q. For that we introduce the following
abbreviations: N = M N bR, §(z) = dist(z, N) and v(z) = ||0eo(z) A Op(2)]|. Since f
is of maximal holomorphic degree we get

O Il < Crla) +1¢ = ) max. 1O - 6)
for all { € N, z € Q, and therefore

< ! 7(2)
IF@I S O + 1+ 8(:)) max IO, ©)
for all z € 2, where C and C’ are positive constants which do not depend on f.
Therefore Theorem 1.1 is a consequence of the following



Theorem 1.2 Let g be a closed continuous (n,r)-form with'r > n — q on Q such that

ﬁ ! or =z
o S T+ 7 Jor 2 ™

Then there ezists an (n,v — 1)-form u which is Holder continuous with ezponent 1/2
on Q\N! such that du = g on Q and

Hu(z)|| S C(1+ [ é(2)}) for ze (8)
where C > 0 is a constant which is independent of g.

Note that in [BF] already a similar result is proved for the more general situation
where instead of N appears a submanifold of arbitrary codimension in 6. However in
the special case of codimension 1 this result is not strong enough to obtain Theorem
1.1. The main point is that in [BF] ‘the "angle” (z) between the Co e
complex tangent planes of 5Q and M is not cons:.de red The proof of Theorern
1.2 given inthe present paper is a deveIOpment of the arguments from [BF] taking into
account the role of " ¥(z) .

For the proof of Theorm 1.2 we use as in [BF] a version of the classical integral
operator constructed by GRAUERT and LIEB [G/L], HENKIN [H] and W. FISCHER
and LIEB [WF/L]. A certain technical difference to [BF] consists in the following: In
[BF) only the strictly pseudoconvex case (¢ = n — 1) is considered and threffore global
integral formulas can be used. In the case of a general ¢ we have only local operators
which immediately give only the following local version of Theorem 1.2:

Theorem 1.3 For each £ € bS) there exists a neighbourhood U of £ such that Theorem
1.2 becomes true after replacing @ by U N Q.

By the well-known arguments which are known as GRAUERT’s ”Beulenmethode”
(see, e.g., the proof of Theorem 2.3.5 in [H/Le 1]}, Theorem 1.3 and the global results
without estimates from the Abdreotti~Grauert theory {A/G] lead to Theorem 1.2. We
omit these arguments.

Remark 1.4 Let 3, 5o : Uy — R two other C*-functions with

N = {z € Up : §(z) = do(2) = 0}
and
doo(z) Ndo(z) #0 for 2 € N.
Then in Theorems 1.2 and 1.3 the function ¥(z) can be replaced by

7(2) = |980(z) A Da(2)II.

This means u is Holder continuous with exponent 1/2 on each compact set K CC I\N with a
Hélder constant depending on K.




B e,

In fact then there is a non-vanishing function ¢ on N such that dgo(z) A dp(z) =
@(2)380(2) A 08(z) for z € N. Hence we get

¥(2) S K(y(2) + 6(z)) and +(z) < K(5(2) + é(z))

with some constant K > 0 for all z € Q, and therefore

(), 1\ ), 1
ﬁ(a(z)““ 5(2))56(z)+ 5(2)5“(

for all z € Q.

S

2t

|

O

(2 + 1 )
(2) * /é(2)

2 Proof of Theorem 1.3

For the proof of Theorem 1.3 we shall use the same integral operator as in [BF/Le].
Recall the following definition from Section 3 in [BF/Lel: D CC C" will be called
a local g-convex C%-domain, 0 < ¢ < n — 1, if there exist a biholomorphic map k
from some neighbourhood of D onto an open set W C C" as well as a C*-function
@ : W — R such that

(i) (D) ={z € W: () <0}
(ii) dp(z) #0 for =z € h(bD);
(ili) ¢ is strictly convex with respect to zi, ..., zg41-

Repeating the proof of Lemmas 3.1 in [BF/Le] one obtains: If ), M and g are as
in Theorem 1.8 then for each £ € bSY one can find a neighbourhood U of £ such that
UNQ is a local g-conver C*-domain and moreover the intersection M N (U N Q) is
transversal. Therefore and by Theorem 4.1 in [BF/Le], Theorem 1.3 is a consequence
of the following

Theorem 2.1 Suppose that

(i) D CC C" is a local g-conver C*-domain, 0 < ¢ <n—1;

(i) H is the integral operator constructed for D in Section 4 of [BF/Le];
(iii) Op is a neighbourhood of D;

(iv) o : 0p — R is a C*-function with D = {z € 0p : p(z) < 0} and do(z) # 0 for
z € bD;

(v) po:0p — R is a second C*-function with dpo(z) A do(z) # 0 for all z € bD with
QU(Z) = 0;

(vi) Ni={z € D : 0o(z) = of2) = 0};

(vii) 6(z) :=infeen [ — 2| for z € 0p;



(visi) 7(2) == ||800(2) A Do(2)| Jor z € 0p.

Then for each continuous differential form f on D with

7(2) 1
1f(2)Il < er—T(z—) for z€D (9)

the form Hf is Hélder continuous with ezponent 1/2 on D\N and moreover
IHf(2)| < C(1+1Iné(2)]") for z€D, (10)

where C i3 a positive constant which is independent of f.

Proof. Let f be a continuous differential form on D satislying estimate (9). In the
following we denote by C and C" positive constants which are independent of f, where
the same letter C or C' in different places may denote different constants.

In view of Remark 1.4 we may assume that g is the same function as in Section 4
of [BF/Le]. Let also G, Vp, h, ®(z,() and t(z,{) = Im®(z,({) be as in Section 4 of
[BF/Le]. Then we may moreover asssume that D = G, p = Vp and A is the identical
map.

Since do(z) # 0 for z € bD there is a neighbourhood 8;p of bD with

dct(z,C)lc - Ado(z) #0 for 2z € Oyp. (11)

Since dpo(z) A dp(z) # 0 for z € N we can find a neighbourhood 85 CC 8yp with

doo{z) Adp(z) #0 for =z € Oy, (12)
and
C'8(z) < loo(z)| + |o(2)] < Cé(2) for =z € On. (13)
Since
det(2, )|, _ , = i0e(z) - ido(z),

we have the estimate

C'y(z) < [|doo(2) A do(2) Adct(2,() . N<Cr(z) for z€by. (14)

From (13) in [BF/Le] one obtains that

19(z,O)] = C(It(z, O + le(O] + [¢ ~ 2f*) for z,( € D. (15)

Further it is clear that

() =) <Cl(—2| for 2,(€D, (16)

and

lld¢t(z,¢) — det(2, Q)| < Clz =2} for z,2' € D. (17)
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That Hf is Hélder continuous with exponent 1/2 on D\N follows by the same
arguments as in the beginning of the proof of Theorem 4.3 in [BF/Le]. It remains to
prove estimate (10). As usual (cf., e.g., Section 3.2.7 in [H/Le 1]) one obtains that

||H f(z) |<CZ/|@ I O1MC) for ze D, (18)

lklc — z|2n—1 -k

where dA is the Lebesgue measure on D. For each open set W C D, z € D and
k=0,1,2 we set

oy 7(Q)dA(¢)
T(W2) = f (O 12001 + IC = 2/F¢ — 2PF18(0)
(eEW
and
I / dA(¢) |
< (J4(2> O + 12(O] + [¢ = 2[2)*[C — 22=+-1,/6(0)

Then it follows from (9), (15) and (18) that

I|1H f(2) |<CZZIsz) for zeD. (19)

v=1 k=0

Now we choose some neighbourhood 8%, of N with 63, CC 8n. Then it is clear that
I¢(D\8%, z) is bounded by

dA(¢)
ccejD (lt(z: C)I + |9(C)| + |C - zl2)k|c _ z|.2n—k—1 .

Therefore, integrating with respect to ¢(z,-) and g which is possible by (11), one obtains
that :
IX(D\8%,2) < C for z€D, (20)

for k=0,1,2 and v = 1,2. Also it is clear that
(DN, 2)<C for z€ D\bw, (21)
for k =0,1,2 and v = 1,2. In view of (19)-(21) it remains to prove that
DN6%,z) <CL+|Iné(z)?) for ze€ DNy, (22)
for k=0,1,2 and v = 1,2. For all z € DNy we set
Wiz)={CeDnby:|( -z < b(z)/2}

and

Wiz)={Ce DY : |( — 2| > 6(=)/2}.



To prove (22) now it is sufficient to show that
IH(W™(2),2) < C(1 4 |Iné(2)[") (23)

forallze DNy, k=0,1,2,v=1,2and m=1,2.
The case m = 1: Since |{ — z| < §(z)/2 and therefore §({) > §(z)/2 for ( € W'(2)
it follows from (11) that

C dz; A ... A dzo,
Iu Wl & .
k( (z),z) = 5(2) [ (Im1|+|$2|+|$|2)k1I|2n-k-1
|sT<E:s)/2
c 1+ |In|z||
g —Jm / Wdan ALLA dﬁ?gn_k
xel2n—k
lsl<é(2)/2

< C(1+|Iné(z))),

forall z€ DNy, k=0,1,2 and v = 1,2. Hence (23) holds for m = 1.
The case m = 2 and v = 1: In view of (13),(14) and (17) the integrals I} (W?(z), z)
(z€ DNOy, k=0,1,2) are bounded by

C / lldo(¢) A do(¢) A det(z, O)|dA(C)
Wi (It(z, Ol + 1e(O] + 1€ = 212)*|¢ — 2> 1 (100({)] + 12(¢)])

dA(¢)
¥ Cceulm (12, Ol + 1e(O)] + 1€ = 2)*IC ~ 2[**~*=2(|eo(C)] + l2())

By (12), go and g are local coordinates on fy. Therefore we can use the Range-Siu
trick (see the proof of Proposition (3.7) in {R/S]) which allows us to consider go, o and
t(z,-) as coordinates. In this way it follows that the integrals I} (W?*(2),z) (= € Dby,
k =0,1,2) are bounded by

C / dzi A ... ANdzy,
(lz3| + |za| + |2?)¥|z[2n=*=2(|21] + |22])

,E]mn
) f2<is|<C!
+ C / dzi A ... \Ndzq,
/Tl + R RPl+ al)
s(a)f2<is}<C

This implies that

141 2
I%(WQ(Z),Z) S C / %Ld:ﬂl AL d..":gn_;;
relin=3 ¥
s(s)/a<ls|cC?
+C / Mdﬂ:l AN A dIgn_._g
|x|2n—2
relin-2
s(x)f2<|z|<cc!

IA

C(1 +|né(2)])
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i Lk i —h <L v . . . ")

for z € DNy,

141 z
W¥z),z) < C %@-d:ﬁ A oo A dzanos
seln=2
§(z)]2<¢|zl<C!
1+11 z
+C H—D!Illdwl AA dl‘zn-z

|$l2n—3

zehn~-2
s(2)f2<]x|<C!

C(1+|1né(2)]%)

IN

for z € DNOy, and

dzy A ... Adz
]l H;2 , < C ./ 1 2n
o(W{2),2) < PEET{ENF

sckin
§(z)/2<|z)cC!

O / dIl /\...f\d&?gn +c / d$1 /\.../\dlgn_g
-2
|$|2n ]I|2n
zch2n zcB2n=2
§(3)/3<lz|<cC! &) /2<)z|<C!
l*1 [+ leg | >15] /2

< C1+|l6(z))

IA

for z € DN 6y. Hence (23) is proved for m =2 and v = 1.
The case m = 2 and v = 2: From (11) it follows that

dzi A ... Adzo,
IB(W¥z),2) < C /
* J ol + el + a2l b=t ]
K3} 13<ll<C”

for all z € DN Oy and k = 0,1,2. This implies that

W) < ¢ f (d-’””‘---’\d%—l

|z1] + |2 [*)%/2 |23

seBIn—1
§(x}f2<cizi<C’
dry A ... ANdzgn—s
< C
|x|2n—2
361211—2
)2 |x|<C!

< C(+|né(2)})
for z € DNy,

dir] AA dzg,,_l
|_.L-I2n-1

R(W2),2) < C

rel?n—-1
s(s)f2<iz|<C’

C(1+|n6(z)))

IA



for z € DN oy, and

d o Adzan-
IS(WQ(Z),Z) S C / d:l?l A A d:cg,, + C / I A Ton-1

|z[2n-1/2 [z[2n-3/2
:EBZ" ,Elin—l
8(x)/3<jr|<C’ s(n)/2<lsl<c!
EANETE
< C
for 2 € DN 0y. Hence (23) is proved also for m = 2 and v = 2. [ |
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