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1. INTRODUCTION"

According to N.Katz (sce [Kad], Introduction), it was B.Dwork the first person to understand that
classical differential equations with irregular singularities had deep meaning in arithmetic algebraic geom-
etry (against the “prevailing dogma” which held that only equations with regular singular points should
have meaning). Since then, the irregular differential equations have been gradually reappropriated into
the mainstream of geometry. Initially only some specific areas were affected, such as p-adic analysis and
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positive characteristic geometry, but the trend is now spreading even to the domain of complex analysis,
as witnessed e.g. by the recent book [Mal], which reports on ideas of P.Deligne, B.Malgrange et al.
towards establishing an irregular Riemann-Hilbert correspondence.

The aim of this paper is to explore a p-adic version of the theory developed in [Mal]. In truth, in our
work the differential equations remain on the background, while the emphasis is on the “dual world” of
étale local systems naturally attached to them. In this we are guided by a well known heuristic, which
translates many concepts arising from the study of differential equations, into dual topological notions
(see e.g. the table at the end of [Kal]). In particular, it is well understood that the notion of irregular
singular point should be related to the appearance of wild ramification on a local system. Now, in our
framework, all the varieties are defined over some p-adic field k& of characteristic zero. But for such
varieties, the étale topology is very close to the classical complex analytic topology, in particular, all
ramification is tame: in other words, the algebraic étale topology in characteristic zero is too coarse to
describe the monodromy of irregular differential equations.

We remedy this problem by replacing the algebraic étale topology with the much finer analytic étale
topology recently introduced by V.Berkovich. In this sense, the upgrade from algebraic to analytic étale
topology is analogous to the introduction of the space E of Deligne, which plays a major role in chapter
XI of [Mal].

In technical terms, what we need to do is to consider our algebraic varieties as special analytic spaces,
and then work systematically inside the framework developed by Berkovich. We should stress here, that
our main object of interest remains the category of algebraic schemes (over a fixed local field) and algebraic
morphisms: the analytic spaces are always intended as auxiliary tools to define the finer topology and
perféfrm certain crucial constructions.

O‘rilce we have our candidate topology, we need to describe the class of analytic étale local systems we
are interested in. In this paper, we limit ourselves to the study of local systems on smooth curves (notice
that also the book [Mal] is mainly concerned with the one-dimensional case).

A priori one may see no reasons why one should not consider the category of all such locally constant
sheaves of finite rank. However it turns out that, if the curve is not compact (and this is really the only
non-trivial case), certain bounds on the ramification of the sheaf around the points at infinity must be
imposed in order to obtain a reasonable theory.

In order to conveniently express this condition, we introduce first a notion of analytic local fundamental
group: this is actually a pro-group m (n,, ) built out of the inverse system of the fundamental groups of
all small punctured discs centered at a given point 3 on a curve. More or less tautologically, any locally
constant sheaf on a small punctured disc around s yields a continuous representation of 7 (1,, I).

Next, to single out our class of sheaves, we construct a certain canonical quotient u(n,, =) of 7 (15, T):
the finite rank representations of m(#,,Z) which factor through this quotient, classify the admissible
ramification behaviours of our sheaves.

Chapter 5 is devoted to this construction. This canonical quotient should really be thought of as a
topological incarnation of the local differential Galois group of [Kal]. In particular, the upper numbering
filtration defined in loc.cit. has a very satisfactory counterpart: that is, we have a canonical higher
ramification filtration on our local fundamental group, which behaves pretty much the way it is expected
of these gadgets. In terms of this filtration we define also a notion of analytic Swan conductor, which is
one of the main characters in our story.

Thanks to Huber’s theorem 3.2.11, the theory of abelian representations of the local fundamental group
{i.e. the case of rank one sheaves) is pretty much settled. By contrast, much work remains to be done to
clarify the case of higher rank: the theory proposed in this paper should be more properly regarded as a
first approximation towards a better and more intrinsic understanding of the local monodromy of analytic
sheaves. But lest the reader should fear of being dragged on some wild Swan chase, let us highlight, few
firm points already established: first, the definition of the Swan conductor itself, is given in section 5.2,
together with the usual paraphernalia of representations, their slopes and so on. Second, we can prove
(theorem 5.2.13) a version of the Arf-Hasse theorem: the Swan conductor of a representation of finite
rank is always an integer. Third, we construct {scction 4) a functor of locally algebraic vanishing cycles
for analytic étale sheaves, for a basis of dimension one (i.e. essentially for a family of varieties over an
open disc). This functor takes values in the category of sheaves with an action of the local fundamental
group.

In view of its ties with the local differential Galois group, and since the latter group classifics con-
nections with poles of finite order, the label “meromorphic fundamental group” which we bestow on our
construction, secms appropriate enough. Hence we derive a notion of meromorphically ramified local
system on an open curve, and the class of such sheaves is the chief object of study in this paper.
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Our main tool for the investigation of the meromorphically ramified sheaves is the Fourier transform.
The construction of the Fourier transform for analytic étale sheaves of A-modules (where A is some “big”
torsion ring) is accomplished in chapter 7: it is really what one expects: we take the (essentially unique)
rank one local systemn Ly on the affine line which has Swan conductor equal to one at infinity, then, for
any vector bundle E = § with dual E' = S, we have the dual pairing (,) : E xgE' = S, and the Fourier
transform on E is the anti-involution

Fy: DT(E,A) o DT(E',A)

with “kernel” given by {,)* £,;. We actually give a somewhat more general construction of the kernel, using
Lubin-Tate theory: all these alternative kernels become isomorphic on the completion of the algebraic
closure of our base field, but the extra generality could be useful for future arithmetic applications.

Our first application of the Fourier transform is contained in section 8.1: there we prove (see theorem
8.1.4) that the cohomology of any meromorphically ramified local system on a curve, has finite rank. We
also show by a counterexample, that finiteness does not hold if the ramification is worse than meromorphic.

Wherever there is a Swan conductor, one expects also a formula of the Grothendieck-Ogg-Shafarevich
type. As a second application, we prove the formula for all meromorphically ramified sheaves on any
smooth open curve.

The proof makes use of Huber’s theory of étale cohomology for adic spaces, and in particular exploits
the possibility of working with sheaves which are (a priori) not necessarily overconvegent in the sense of
{Hub]. Huber’s and Berkovich’s theories do not always agree, but they do in the situations which are of

. Interest for us (e.g. in case of analytification of schemes over k, or more generally, of morphisms between

+schemes over k). There is little doubt that it would have been possible to write the entire paper in the

,}language of adic spaces and their étale cohomology. Regrettably, the additional burden of making this
translation, coming on top of an already extensive editing of the previous version, proved too much to
“handle for the author. Instead, we have opted for the more conservative approach of inserting a few
explanatory remarks, just before Huber’s theory inakes its appearance in section 8.3.

On the other hand, some proofs in section 8.3 exploit in an essential way the possibility of working
with sheaves which are {(a priori) not necessarily overconvegent in the sense of [Hub]. For this reason,
it does not seem to be easy to reproduce the arguments without leaving the framework of Berkovich’s
theory.

In the algebraic geometric case, the formula is established via a global argument, basically by some
considerations from group cohomology and by applying Lefschetz trace formula.

By contrast, our proof is essentially a local Morse-theoretic argument, inspired by Witten’s approach
to Morse inequalities via the principle of stationary phase.

In section 8.4 we prove our principle of the stationary phase, and we sketch a study of the local
Fourier transform by the usual global to local method. The knowledgeable reader will recognize the
influence of Katz’s paper [Ka3] on our presentation (except that our poor style cannot match Katz's
elegant exposition). In particular our theorem 8.4.9 is formally identical to theorem 3, pag.114 in loc.cit.

Our last application of the Fourier transform is of arithmetic nature: the inspiration comes from the
classical work [We] of Weil. In that paper, a special role is played by certain quadratic characters of
a locally compact topological field F. Let ¢ : F — €* be a fixed additive character of ', V a finite
dimensional F-vector space and g : V — F a non-degenerate quadratic form. Weil defines a Fourier
transform f +— ffrom the space of distributions on V to the space of distributions on the dual V', Next
he proves the following formula (see [We|,chapt.I,n.14}:

Bogl) =) - lgl" *Wog)(E) (E€V?)

where 7(g) is a complex number of absolute value equal to one, |g| is a volume factor and ¢* : V' — k is
the transpose of g (sce loc.cit.).

Of the two factors, the most interesting one is, by far, v(¢). In [We], the properties of y as a function of
the quadratic form g are studied at length. The main result is that the assignment

g+ (g

descends to a group homomorphism from the Witt group W (F) of the given base field F to the group of
complex roots of unity.

In case F is a finite field, a simple application of the sheaves-to-functions dictionary of [SGA4 %} allows
us to recover the value of y(g) by cohomological means. In fact, in this case it boils down to a finite
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{Gauss) sum, and one has the formula:
(1.0.1) v(a) = Te(Fr, HE™V(V xp F*,q"£y)(dim V/2))

where £y is the Lang torsor associated to the character ¢ (which acts as a kernel for the £-adic Fourier
transform in the finite field case), ¢ is the algebraic closure of F and Tr(Fr, M) denotes the trace of
the action of the Frobenius generator Fr € Gal(F°/F) on a Galois module M.

The cohomology group appearing in (1.0.1) has an obvious analogue in our theory (after all, g* L, is a
meromorphically ramified sheaf), except that for the time being, we can only deal with torsion coefficient
sheaves. But this limitation cannot stop us from considering an inverse system of kernels {Ly,} (see
chapter 9 for the notation) and then define

() = lim HI™V(V x k*,¢" Ly, )(dim V/2) ®z, Q.

In chapter 9 we show that I'(¢) descends to a homomorphism from the Witt group of k to the group
of isomorphism classes of one-dimensional f-adic Galois representations of (a certain extension of) k.
Furthermore, many formal properties of Weil’s y-invariant have adequate counterpart for I'. The precise
rclatlonshlp between I' and Weil’s invariant is not completely clear yet; nevertheless, we hope that this
example may offer a glimpse of the kind of applications which we foresee for our theory.

2. PRELIMINARIES

Throughout this paper, & denotes a field of characteristic zero, complete with respect to a non-
Arch]medean metric | -|. For any such field, we let k° be the valuation ring of k and k°° its maximal ideal.
Alsc"we set k = k°/ k°° which is a field of characteristic p > 0. Furthermore, we let k* be the algebraic
closure of k, and k® the completion of &%, endowed with the unique valuation which extends | - |.

Some general notation: we denote by D{e, p) (resp. E(a, p)) the closed (resp. open) disc of the affine
line with radius p € R and centered at the point a € Al. Also, N denotes the set of positive integers, and

N, = NU {0}.

2.1. Lubin-Tate theory. We recall here some well known facts from Lubin-Tate theory. The paper
[LT] is the original source, but a complete account can be found in Lang’s book [La].

Let ko be a onc-dimensional local field (not necessarily of characteristic zero) with valuation | - |;
denote by = a uniformizing parameter in £§. Let ¢ be the cardinality of the residue field ko = k§/kS°.
Set p = char Eo > 0.

Following Lubin-Tate [LT], we let §, be the set of power series f € k°[[X]] such that

f(X)=xX mod degree 2
FX)=X? modnw

The simplest example is just the polynomial f(X) = 7#X 4+ X9 Recall that a formal group F is a
power series F(X,Y) = 3. ai; X Y7 with coefficients a;; € ko, satisfying the identities F(F(X,Y), Z) =
F(X,F(Y,2)), F(X,Y) = F(Y,X) and F(X,0) = 0. A homomorphism of the formal group ¥ into the
formal group F” is a power series f{X) € ko[[X]] such that f{(F(X,Y)) = F'(f(X), f(Y)). In particular
an endomorphism of F is a homomorphism of F into itself. We say that a formal group is defined over
kg if its coefficients a;; are in kg.

The following theorem summarizes the main features of the Lubin-Tate construction:

Theorem 2.1.1. a) For each f € §, there exists a unique formal group Fy, defined over k§ such that f
i3 a (formal) endomorphismn of Fy. Moreover, for any two power series f,g € §» and every a € k§ there
is a unique [a};,, € k§[[X]] such that [a];,y € Hom(Fy, Fy} and [a]f,, = aX mod degree 2.
b) The map a — [a]s, gives a group homomorphism k§ — Hom(Fy, Fy) satisfying the composition
rule
[alg,n © als.g = [ab]sn.
In particular, if f = g, this map is a ring homomorphism k§ — End(Fy).

Proof. This is theorem 1.2, chapt. 8 of [La]. O

We will write [a]s in place of [a]y s; in particular notice that [7]; = f

Given f € Jn, the associated formal group Fy converges, as a power series, for all pairs (z,y) of
clements of ’153 such that |z|,]y| < 1. It is clear that F induces an analytic group structure on E(0, 1).
Any a € k§ induces an endomorphism [a]; of this group.
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Definition 2.1.2. For any positive integer n we let G,, C kg be the kernel of the iterated power (=]}
Also we define G = UpsoGa.
We collect here some well known results about G,:

Theorem 2.1.3. 1) The action of k§ on E(0, 1) induces an isomorphism of k§-modules between G, and
the additive group k3 /(k3°)™.

2) The field ko(Gr) is a totally ramified abelian extension of ko with Galois group isomorphic to
(kg /(kg®)™). :
Proof. See theorem 2.1, chapt. 8 of [La]. O

We specialize now to characteristic zero, that is char(ko) = 0. In this case it is known (see [La], section
8.6) that for any formal group F over ko, there exists a formnal isomorphism

AF G,

where G, is the usual additive formal group over kg, that is G,(X,Y) = X + Y. The isomorphism X is
called the logarithm of F, and it is uniquely determined by F and by the condition dA(0)/dX = 1.

Lemma 2.1.4. Let F be a Lubin-Tate formal group, i.e. F = Fy for some f € .. Then the logarithm
A = Ap can be written in the form: _
r r ‘\’q‘
MX) =3 0:(X)
with 9:(X) € K(IX]]
Proof. This is lemma 6.3, chapt. 8 of [La]. O
T

It follows easily from the lemma that A converges over E(0, 1), therefore it induces an analytic group
homomorphism

A:E(0,1) — (G,)*.

Theorem 2.1.5. Let ep(Z) be the power series (with coefficient in ko) which is the inverse of Ap(X).
Then ep(Z) converges on the disc E(0, |r|'/(9~1)) and induces the inverse homomorphism to Ap on the
analytic subgroups

E(O, [7]/(07)) =2 G (0, [/ 19-D),
F

(the group on the right coincides set-theoretically with the group on the left, and we use the notation
G, to emphasize that it is endowed with additive group structure).

Proof. See lemma 6.4, chapt. 8 of [La]. d

Remark 2.1.6. (1) It can be shown that A is a homomorphism of k§-modules, i.e. for all a € k§ there
is an equality of power series:

a-A=Ao [a]f.
(2) Using theorem 2.1.5 and (a) it is not hard to show that the kernel of A is the subgroup Go.

In what follows we will reserve the symbol p; for the constant, ||!/(s-1),

2.2. Complements of étale cohomology. Berkovich has defined an étale topology on his analytic
varieties, and has studied the corresponding cohomology. In the work [B1], which is the reference for all
the definitions which are implicit in this paper, he establishes the usual properties for his cohomology, like
proper and smooth base change and Poincaré duality. In {B2] and [B3] he introduces two constructions
of vanishing cycles.

We denote by Et.(X ) the category of étale analytic varieties over X and for any ring A, we let S(X, A)
be the category of sheaves of A-modules on Et(X).

In his paper, Berkovich considers mainly finite rings of coefficients, of the form A = Z/nZ. For our
purposes, these are not quite encugh, since we have to consider characters of an infinite divisible group
Goo into A%, '

In this section we sketch briefly some arguments to extend the main results to more general torsion
rings A: we will show that in order to compute the effect of a cohomological functor on a sheaf F of
A-modules, it suffices to regard F as a sheaf of abelian groups and compute the cohomological functor
inside the category of sheaves of abelian groups. This will allow us to quickly derive our results from the
theorems of Berkovich.
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To start with, let A be any torsion ring and let D(X,A) (resp.(D¥(X,A)) be the derived category
of complexes (resp. of complexes vanishing in large negative degrees) of sheaves K* of A-modules and
similarly define D™ (X, A); denote by Fx the forgetful functor from D(X, A) to D(X,Z).

Let f : X — Y be a map of analytic spaces over k. First of all there is a direct image functor
Rf.:DY(X,A) - DY(Y, A).

Proposition 2.2.1. The functor Rf. commutes with the forgetful functor, i.e. '
th ofFy = FY o Rf-

Proof. For any sheaf F' we will construct a resolution 7* by sheaves which are both injective as sheaves
of A-modules and flabby as sheaves of abelian groups. One checks as in the algebraic case that flabby
resolutions are f.-acyclic : to do this one can look at [Mi] chapt. III sections 1,2,3 and convince oneself
that all the arguments work without change in the present situation. Then /* computes at the same time
Rf, in the categories D(Y, A) and D(X, Z), and the proposition follows.

For each ¢ € X, choose a geometric point 2’ localized at =, i.e. an imbedding of the residue field H(z)
of z in the completion of its algebraic closure. We form the locally ringed space X' = Uzexz’ that we
endow with the discrete topology. This space is an inductive limit of analytic spaces and therefore carries
a natural étale site X,. Let 7 : X/, = X.; be the obvious map.

The sheaf 7*F is the direct product over the stalks F,, = z'*F at the points z' € X’. For every
z' € X' choose an imbedding into an injective A-module Fy: — [ : we see I, as an injective sheaf of
A-modules over the point z'. The product I° = I cx I, is an injective sheaf of A-modules on X’ and
cleatly F' imbeds into w.1. Since 7. preserves injective sheaves, we have constructed the first step of an
injective resolution of A-modules; if we iterate this construction we obtain a full Godement resolution
I* for F. On the other hard, I is also flabby as a sheaves of abelian groups (since every sheaf on X' is
flabby) and 7, preserves flabby sheaves, therefore I* is also a flabby resolution, as wanted. O

Next we turn to cohomology with support. For the notation we follow section 5.1 of [B1], to which we
refer the reader for all the relevant definitions.

Recall (see loc.cit) that a ¢-family of supports & defines a left exact functor ¢¢ : S(Y,A) = S{X,A)
as follows. If F € S(Y,A} and f: U — X is etale, then

(¢ F)(U) = {s € F(Us)|Supp(s) € ()}

For example, if @ is the family of all closed subsets, then ¢4 = ¢.. If the map ¢ : X — Y is separated
then the family of all ¢-proper subsets of X is a paracompactifying ¢-family, and we get a left exact
functor which is denoted by ¢.

We can derive the functor ¢¢ in the two categories DT (X, Z) and D™ (X, A), and in this way we obtain
two functors that we denote both by R¢e. The following proposition shows that in the cases of interest
no ambiguity arises from this choice of notation.

Proposition 2.2.2. Suppose that the family ® is paracompactifying. Then the two functors defined above
cotncide, t.e.
R¢gp oFx = Fy o Roe.

Proof. The proof of proposition 2.2.1 produces for any sheaf of A-modules a resolution that is injective
in the category of sheaves of A-modules and flabby in the category of sheaves of abelian groups.

To prove the theorem, it suffices to show that this resolution is acyclic for the functor ¢4 defined on
the category S{X,Z}, thus the proposition follows from lemma 2.2.3 below. D

Lemma 2.2.3. Suppose that the family ® is paracompactifying. Let F' be a flabby sheaf of abeltan groups.
Then R*¢e(F) =0 for all n > 0.

Proof. It is shown in [B1], proposition 5.2.1, that R"¢¢(F') is the sheaf associated with the presheaf (U —
X)— Hg 5 (Us, F). Therefore it suffices to show that under the stated hypothesis, Hy,,(Uy, F) = 0 for
all étale morphisms U — X and all n > 0. Since the restriction to U/ of a flabby sheaf of abelian groups
on X, is a flabby sheaf, we have only to prove this for U = X

Consider the morphism of sites 7 : X,y — |X|, where | X| is the space X with its underlying analytic
topology. The morphism « induces a spectral sequence

HY(IX|,Rn.F) = HY (X, F).

We will prove that R, F = 0 for all ¢ > 0. Assuming this for the moment, we show how to conclude.
It follows from the vanishing that H} (|X|,7.F) = Hg (X, F). Since F is flabby by hypothesis, we obtain
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from [B1], corollary 4.2.5, that . F is flabby in the analytic topology. Then m.F is Tg-acyclic, by lemma
3.7.1 from [Gro] and the lemma is proved.

To see that R7¥7,F = 0, we can look at the stalks of this sheaf. For any point z € X, let G be the
Galois group of the algebraic closure of the residue field #(z). According to [B1], proposition 4.2.4, we
have (Ri7,F), ~ HY(G_, F), ¢ > 0. Since F is flabby, it follows from [B1], corollary 4.2.5 that £ is an
acyclic G -module, as wanted. O

As a corollary, we get a proper base change statement for sheaves of A-modules.

Proposition 2.2.4. Assume that char(k) is invertible in A. Let ¢ : ¥ = X be a separated morphism
of k-analytic spaces, and let f : X' = X be a morphism of analytic spaces over k, which gives rise to a
cartesian diagram

}n_’by

o
!
4 Xl — X
Then for any comples K* € DV (Y, A) there is a canonical isomorphism in DT (X', A)
FT(R$K*) = Re|(f " K*).

_Proof. The usual devissage reduces to the case where K* is concentrated in degrec 0. Then the theorem
' follows from proposition 2.2.2 and theorem 7.7.1 of [B1]. a
¢

Let D*(X,A) be the subcategory of DT (X, A) consisting of cohomologically bounded complexes. Let
¢ : Y — X be as in theorem 2.2.5 and suppose that the fibres of ¢ have bounded dimension. Then, by
corollary 5.3.8 of [B1] and proposition 2.2.2 we deduce that R¢; takes D*(X, A) to D*(Y, A) and extends
to a functor Réy : D™ (X, A) - D™(Y,A).

The following projection formula is proved as in [B1], theorem 5.3.9.

Proposition 2.2.5. Suppose that F* € D™(X,A) and G* € D™ (Y, A) or that F* € D*(X,A) has finite
Tor-dimension and G* € D(Y,A). Then there is a canonical isomorphism
L L
F* ® Rp(G*) = Rp(¢*(F*) ® G*).
a

Similarly, using the propositions above we can establish the other main results of [B1], such as Poincaré
duality and cohomological purity in the context of sheaves of A-modules. We leave the details as an
exercise for the referee.

3. THE ANALYTIC FUNDAMENTAL GROUP OF AN AFFINE CURVE

3.1. The asymptotic Kummer sequence. Let X be any Hausdorff analytic space over the field £.
We introduce the sheaf U}, on the étale site of X', by setting

Up(V)={f€Ov(V) | [1-flwp <1}

for any étale morphism V — X; the usual multiplication of functions defines an abelian sheaf structure
on U}. Moreover, the abelian sheaf iy x is defined as the subsheaf of p™-torsion sections of i4},. We set

Hpee ¢ = 1M pipn .
n

Lemma 3.1.1. (Asymptotic Kummer ezact sequence) There erists a short exact sequence of étale sheaves

oo >l 2,
f ——log(f)

Proof. We only have to prove the surjectivity of A, and for this we can check on the stalks. Let p € X
be any point, and f € O . Choose some pointed étale morphism (V,q) = (X,p) where f extends to
an element f € Oy (V). Take a compact neighborhood W of g in V so that f is bounded on W, and we
can find an integer N such that [p" flsupw < p/1=P. Then g = exp(p” f) is defined and belongs to
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Ow (W); moreover, g vanishes nowhere on W. Hence g defines an analytic map W — G2*. Define W'
as the fibre product in the following square diagram

¢

W —— W

. g
l posm” l

an an
Gﬂ"l ———‘;\-Gm .

Then W' is étale over W and h = g/ ?" is defined as an element of Ow(W'). One sees easily that
A(h) = ¢*(f) and the claim follows. O

Supposce in addition, that X = X" where X is a connected and reduced algebraic scheme over k. Then
HO(X*™, U") is the group U} of elements £ € k° which are congruent to 1 modulo k°°. Taking the
cohomology of the exact sequence (3.1.2) we obtain

(3.1.3) 0— HO (X", O/ MUL) = HYX®™, o) = HY(X*™ U') - HY(X™, 0F).
For the rest of this chapter we make the further assumption that the field k be algebraically closed.
Under this hypothesis, we have A(U}) = k.

Lemma 3.1.4. Suppose that k is algebraically closed and let X be a reduced k-algebraic scheme. Then
the natural morphism fipe < Uy on induces an imbedding in cohomology

lim H'(X" ppn) <= HYX™ UY).
C.? n—00

Iy .
Proof. It suffices to consider the usual Kummer exact sequence
i

4 00— bpn —> Yl —> 11 0

and observe that the induced sequence
(O — Hpr —— HD(xan’ul) S HO(X“",H]) — 0
is exact. 0

We notice that, due to the comparison theorems between algebraic and analytic étale cohomology, and
the well-known compactness properties of the algebraic étale topology, the group lim H 1(Xem™, ppn) can
n

be suggestively rewritten as H! (X, ypeo).

3.2. Huber’s theorem. What seems to be happening is that the analytic and algebraic contributions to
the (abelianized) fundamental groups are distributed onto respectively H(X*? O%) and H' (X ™, U').
Accordingly, T do not expect any exotic coverings coming from the cohomology of ¢!, but in general I
do not know how to compute it completely. However, for our purposes, the case when X is an open
subscheme of the affine line is the most urgent. Luckily, this is precisely the case covered by the following
theorem 3.2.11 of R.Huber. We start with some notation and three preliminary lemmas.

Let X be an analytic space over k and for any integer n define ¢ : H(X,0%) = H' (X, ptyn) as the
boundary map induced by the Kummer exact sequence. Moreover, let ¢ : H (X, ppn) — H(X,U5) be
the map induced by the inclusion pgn < UL.

Lemma 3.2.1., Let X and n be as above. We have
Ker(y o ¢) = {f € HYX,0%) | 3g€ HO(X,0%) such that |f/g"" — 1| < 1}.

Proof. Let f € HY(X,0%) be given. Let ¢ : Y — X be the cyclic covering associated to the p™-root of f.
On Y we have f1/7" € Oy (). Let p1,pe : ¥ xxY — Y be the projections. Then p;(fl/’"“)-p;(_fl/*’")"1 €
iy (3 % x ¥) and 6(1) is given by the cocycle e = ((V = &), pt (/") - p3(f1/7") ). Then $(p()) is
given by the same cocycle but where we now consider p} (f1/P")-p5(f'/?")~! as an element of UL (Y x x V).
Since the mapping H'((¥ = X),U}) = H'(X,Ux) is injective, we obtain

P(B(f) =0 = c=0€ H'((¥ = X),Uy)

3t € Up(Y) with pi(F1/7") - p3(f1/7")~1 = pi(t) - p3 (1)~
3t € UL (V) with p;(F1/7" - t=1) = ps(F1/7" - t71)

3t € UL(Y) and g € HO(X,0%) with f1/*" .47 = ¢*(g)
3g € HO(X, O%) with [f/7" /¢*(g) = 1| <1

Jg € HO(X,03%) with |¢*(f)/g*(9)*” — 1| <lonY

Jg € HY(X,0%) with |f/g"" — 1| <1on X.

fgeene



ON A CLASS OF ETALE ANALYTIC SHEAVES 9

O

We put HO(X,0%)(n) = {f € HY(X,0%) | 3Jge H(X,0%) with |f/¢?" — 1] < 1}.
According to lemma 3.2.1, we are interested in the group H*(X, 0%)/H®(X, 0% )(n). In the following
lemma we compute this group in a special situation.

Lemma 3.2.2. Let D be a closed disc of (Ay)*" and let By, ...,E,, be open discs of (AL)*™ such that
E CDandE; CE; =0 fori#j. Leta; be an element of E;. Put X = D—|J" E;. We assume that, for
every i, the boundary of E; is contained in X. Then HO(X,0%)/H*(X,0%)(n) is a free Z/p"Z-module
of rank m with basis T — ay,...,T — a,, (where T denotes the coordinate function of A} ).

Proof. First we show the following

Claim 3.2.3. For every f € H%(X,0%) there exists £1,...,4, € Z,d € k* and 7 € H°(X, Ox) such that
f=d- (T—-0a)" .- (T-ap) -rand |r -1 < 1.
Moreover £y, ..., £, are uniquely determined.

Proof of the claim: to show the existence of £y, ..., £y, we fix f € H°(X,0%). There is a ¢ € R such
that0 < c< landc < |[T—a;|lx < c lfori=1,..,m. Thereexists N € Nand ¢ € R, ¢ > 0 such that, for
every meromorphic function g on B with g,» holomorphic and |f - g|lx < g, we have Z:::ED ord;(g) =N
([FP] lemma 1.3.3). We fix a zo € X. The function f can be approximated by elements of the localization
A = k[T)ir-a,)...(T~am)- We choose a g € A such that |g(zo)] = |f(zo)| and g(zx) # 0 for every z € X

,.v;‘:md |f = glx < min(g, |f(zo)| - V). We split g|p into a product

j(3.2.4) gp={(T=b)" .- (T=b)" g

.'_iwhere g € HY(D,Op), br,....bs € U;" Ei and €y,...,¢, € {+1,—1} (we do not assume that b; # b; for
i # j). Since ¢’ € H(D, Oy,), there exist d € k* and 7' € H°(D, Op) with

(3.2.5) g =d-r"and |r' —1p < 1.
{See [BGR] 5.1.3/1]). For i = 1,...,m put

Li=e{Lust | beR)

=3 e, 6 €L
We show that, setting r = f - d™' - (T —a;)™% - ... (T —a,) "% € HY(X,0Ox), we have

f=d- T-a)" ... (T—ap)m-r and |r =1 < 1.
We have to check that |[r — 1| < 1. We have
r=g-d(T—a)™ 8 . (T-am) ™+ (f—9)-d - (T—a))™ . (T —am)™ .

We will show that

(3:2.6) lg-d™t (T =)™ - (T = am) ™ — 1] <1
and
(3:27) (f-g)d™ (T —a) ™ o (T —am) o lx < L.

From (3.2.6) and (3.2.7) we obtain |r — 1] < 1.
Since, for every b; € L; we have |;:E;ﬁl —1jx < 1, (3.2.6) follows from (3.2.4) and (3.2.5).
Since |g{zo)| = | f(zo)|, we obtain from (3.2.4} and (3.2.5)

[ = |f(zo)|™" - |mo — b1]* - ... - {mo — bs|*.
Since, for i € {1,...,m} and j € L;, we have {go — b;| = |zo — a;|, we obtain
7! = |£(zo)| ™" - |zo — @] - .. - |20 = aml|™.

By definition of ¢ we have |zo — a;} < ¢! for i = 1,...,m. Since |f — g| < g, we have by (3.2.4) and
definition of N, €; + ... + £, = N. Hence

(3.2.8) | < | f (o)™t - .

By definition of ¢ we have [T —a;|~! < ¢™!. Furthermore, we have |f —glx < |f(z0)|-¢*" (by construction
of g) and &, + ... + € = N. Hence

(3.2.9) (f=9)- (T—a))™" - (T = am) ™| < |f(mo)] - "
By (3.2.8) and (3.2.9) we obtain (3.2.7). This finishes the existence part of the proof of claim 3.2.3.
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Uniqueness of £,...,¢n,: for every i € {1,...,m} there is a mapping v; : Ox(X) — {0} - Z which
satisfics the following properties: 1) vi(g - k) = vi(g) + vi(h) for every g,h € Ox(X) — {0}; 2) vi(c) =0
for every ¢ € k*; 3) v;(s) = 0 for every s € Ox(X) with |s =1/ <1;4) 15(T —a;) =1 and (T ~a;) =0
for j # 4. (v; is the order function with respect to the boundary of E;; cf. {[FP) Prop 1.3.1.iii).

Hence the equation

f=d-T-a) .- (T—an)™ 7 with |r-1|<1

implies ¢; = v;(f). This shows that ¢; i3 uniquely determined and concludes the proof of claim 3.2.3.
We define a group homorphism

e: HO(X,0%) — Z™
= (6(f); s lan(f))

where £1(f), ..., £m(f) are the integers of claim 3.2.3. We have to show that H°(X, O%)(n) = e~1(p"Z™).
Obviously we have e~!(p"Z™) C H%(X,0%)(n). In order to show the reverse inclusion we use the
mappings v; introduced above. Let f € HO(X,0%)(n) be given, ie. f € HO(X,0%) and there is a
g € HY(X,0%) with |f/g?" — 1] < 1. Then v;(f/g?") = 0. Hence &:(f) = vi(g”") = p™wi(g) € p"Z™.
This shows that f € e (p"Z™). a

Let D, be closed discs of (A4;)°" and let Ei,...,En,E,,...,E, be open discs of (A})*" such that
E.CECDCD and E;NE; =0 for ¢ # j. Let r,7’ be the radius of D, D’ and let r;, 7} be the radius of
E,Ef Put ¥ =D - |J"E; and &' =1V — [J"E;. Then X C A"

;l

Len'lfma 3.2.10. With the notation above, for every h € O3 (X') with h(xy) = 0 for some 9 € X we

have.
B '

r T
[h|x < max (#, "‘,-7) R

,;'_TT_I r
In particular, for every f,g € O (X") with |f — 1 < 1, |[¢ = la < 1 and f(z0) = g(zo) for some
zg € X, we have
] T, T
- < ey =y =]
”. gl-x_ma‘x (1"1’ :rm!rr
Proof. We may assume zy = 0. For every i € {1,...,m} we fix an element p; of E;. We consider the
automorphism ¢ : (P)*" — (P)*", £ — 1. Then ¢(0) = co. By [FP| Prop.L.1.3 every h € O(¢(X")) has
a unique representation
B B = RS BE
—_ —_— —_1 e —_—i—'
neNy ™ neN (T - D )n neN (T — Pm )ﬂ
. 12
with an,al,...,a™ € k such that (la,,| - 7"™)nen and {|aif - (L%I—)")neN are zero sequences. Moreover,

2\ "
|f| gy = max ({|a,‘| 7™} neN, U {|a:,[ : (@) |neNi=1, ...,m})

and

. -2 n
ey = max ({anl - "3nens U {lal - () jn e nii = 1,0m} ).

If h{co) = 0 then ag = 0 and 8o we obtain

rr

,rl
h <max |-, .,2, —
|hlgixy < m (,_1 e

r

O

Theorem 3.2.11 (R.Huber). Let X be an open subscheme of the affine line A;. Then the natural
mapping

lim B (X%, i) = H'(X°", Ulan)

neN
s an ssomorphism.
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Proof. In view of lemma 3.1.4 it suffices to show that the mapping of the theorem ig surjective. Put
X = A - {a1,...,am}. Let (D,|s € N) be an increasing sequence of closed discs of (A})%" and, for every
i € {1,..,m} let (E}|s € N) be a decreasing sequence of open discs of (A} )°" such that (A})*" = {J,en Ds,

{ai} =N,enEi, Ef C Iy and Ef NE =@ fori#j. Put

m .
X, =D, - | JE.

i=1
Then (X,|s € N) is an increasing admissible covering of X“". We assume that, for every ¢ € {1,..,m},
the boundary of E| is contained in X,. For every s,n € N, let H, , C H'(X,,U4") be the image of the
mapping H'(X,, pupn) = HY(X,,U). Then, for every s € N, (H, ,|n € N) is an increasing sequence of
subgroups of H'(X,,U"). Since X, is affinoid and thus H'(X,, 0} = 0, the asymptotic Kummer sequence
gives
(3.2.12) HY (X, U") = | Ham-

neN
Since O, (A,) is a principal domain, we have 0 = Pic(X,) = H'(X,,0*). Therefore the Kummer
sequence 1 = gipn = O — O = 1 gives a surjection H(X,, 0*) - H'(X,, iy~ ). Hence by lemma 3.2.1

(3.2.13) HYx,, 0% /H(X,,0%)(n) = H, ..

Then lemma 3.2.2 implies that, for every n, s, s’ € N with s’ > s, the restriction homomorphism H, , —

H,,» is bijective. With (3.2.12) we obtain
«(3.2.14)  For every s,s' € N with s’ > s, the restriction map H'(X,,U') = H'(X,,U') is bijective.

Let H be the image of the mapping lim HY X jpn) —» HYX™ U'). We have to show H =
neN

HY (X" U'). Let a € HY (X", 1Y) be given. By (3.2.12), (3.2.13) and lemma 3.2.2 there is a b € H with

ajx, = bx,. Then by (3.2.14), ax, = by, for every s € N. Now the following claim 3.2.15 gives ¢ = b.

Claim 3.2.15. The mapping H! (X", U') = H'(X,,U") is injective.

Proof of the claim: Let F be a U!'-torsor on X" such that Fix, is trivial for every s € N. We have to
show that F is trivial.

For every s € N, we equip HO(X,, F) with the metric such that for one (and hence for any) trivial-
ization F|x, — L(IIX., the induced mapping of global sections HO(X,,F) = HO(X,,U"}(C H*(X,,0)) is
isometric. (If this mapping is isometric for one trivialization then it is isometric for every trivialization,
since for every z € X, and t € H%(X,,U") we have [t(z)| = 1).

We fix an element z; € & and an element a € i*(F), where ¢ : {1} = A is the inclusion. For every
s € N we put

Ly={te HO(/Y,,]"-) | 7(¢) = a}.
Then, for every s € N, (Ly|X, ), >, is a decreasing sequence of non-empty subsets of H%(X,, F). For fixed
s and increasing ¢, the diameters of (Lyx,) in the metric space H(X,, F) tend to zero (by lemma 3.2.10).
Then, since H°(X,,F) is complete, the sequence (Lyix, )or>s cOnverges to an element t, € HY (X, F).
The t,, s € N glue to a global section t € H?(X ", F). O

Remark 3.2.16. We take the time out to make some side remarks on the cohomology of U!'. These will
not have any bearings on the continuation, so the hurried reader is invited to skip them.

The question of the structure of H'(X ") is meaningful and not trivial even in the proper case.
Suppose now that X is the analytification of a proper scheme. I propose the following conjectural
picture. First of all, let us introduce the sheaves U5}, Of defined by

ULWV)={f el (V) | 1= flsup <pr}

OR(V)={f€Ox(V) | |floup <p1}
for any étale map V — X. The restriction of A induces an isomorphism U% —== 0% . The situation
is summarized by the following diagram

1 .
IO mi(x, 08) =2 H(X, 0).

We recall that H'(X,Ox) is canonically identified with the tangent space TpPic(X) of Pic(X) at the
point 0 € Pic(.X). Hence the following conjectures arise naturally:

HV(X, 0%) <2 HY(X,ul) <2 HY(X,Ug)
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1) the map j3 is injective and identifies H'(X,O%) with an open neighborhood {with the topology
inherited from k) of the origin in ToPic(X);

2) the composition j; o j2 o H'(A)™! corresponds, via the identification in (1) and the standard iden-
tification H'(X, 0% ) = Pic(X), to the classical exponential map for (p-adic) Lie groups.

Then we expect that also the map j; be the imbedding of an open disc around 0 € Pic(X)}. This
should be in fact the smallest open disc which contains all the p-power torsion elements in Pic(X}.

3.3. Flat line bundles and unitary characters. Unitary representations of the fundamental group
play an important role in complex analytic geometry. In this section we propose a (very modest) analogue
of the complex analytic picture.

We consider only the analogue of unitary representations of dimension one, i.e. of maps of the funda-
mental group into the unit circle S, In our setting, we have a kind of “discretized” version of §*, namely
the group pe of roots of unity of arbitrary order. As an abstract group this is isomorphic to Q/Z and
we point out the split imbedding ppe 3 jieo. The quotient pioo/pipee is canonically identified with the
group li_r’n .

{(n,p)=t
Lemma 3.3.1. Let X be an open subscheme of the affine line. Then
HY'(xo", lim pn) > HY (X, lim  p,).
(n,p)=1 {(n.p)=1
Proof Write X = A} — {a1,...,am} and let (D,|s € N) be an increasing sequence of closed discs of the
afﬁne line, with {al,. »@m} C Dy and for ea.ch i € {1,..,m} let (Ei|s € N) be a decreasing sequence
Of opcu discs such that [ J,enDs = (A})°", B} C Dy, {ai} = ﬂseN E: and Bl NE] = 0 for i # j. Put
=D, — U Ei. Since X, is quasi- compa,ct we have
' Hi(X,, lim pp)= lim HY(X,, pn).
{n,p)=1 {n,p)=1
But it is well known that H(X,, i) ~ H'(X, u,) for (n,p) = 1. Moreover, for any s’ > s the restriction
maps H( X, un) = HO(X,, 1n) is clearly bijective, hence the claim follows from [B1] lemma 6.3.12. O

Proposition 3.3.2. Let X be an open subscheme of Al and fiz a geometric point To € X. There is a
canonicel isomorphism

Homgn, (71 (X", Fo), ftoo) = DX, 0%) /k & H (X, p1oo)
where Home, (—, poo) denotes the group of continuous homomorphisms into the discrete group jioo.
Proof. The isomorphism piog ™ figes @ (ftoo/ttpe) induces a canonical decomposition

Hom ni (G, pico) =~ Hompy (Gr .‘—‘p“") & Homcnt(Ga ﬂoo/ﬂp‘”)

for any topological group G. The term Homen, (w1 (X", 20), oo/ pipee) is computed by lemma 3.3.1.
Moreover, since H'(X°", 0%") = 0, by (3.1.3) and theorem 3.2.11 we have a short exact sequence

0= HO(X™™, O9)/k & H' (X", tyen) = H' (X, tyee) = 0.
A splitting for this short exact sequence is provided by the sequence of imbeddings of sheaves ppn — iy
for all n € N. O
In particular, the proposition shows that
(3.3.3) Homgny (1 (&)™, o), hoo) = D((A4)"", 0°") k.
More generally, for a smooth connected scheme X over k and a point Tz € X (k) N.Katz defines in
[Kal] the differential fundamental group wl'” (X,Zo) of X (based at z¢). This is a pro-algebraic k-group

scheme, whose algebraic representations into an algebraic group GL(n, k) classify the vector bundles of
rank n on X with an integrable connection. It is shown in [Kal] that there is an isomorphism

(334) Homy_ —gryp.sch. (7"1 ff(A E0)’ Gm,k) = F(Ak, O)/k
Comparing (3.3.3) and (3.3.4} we derive an imbedding
@ Homk—grp sch. ( e (Ak:x(}) Gmk) < Homcnt(wl((Ak )unsf()) Hoo)

which morally says that all line bundles on A} with an integrable connection “come from” a unitary
character of the rigid analytic fundamental group. It can be shown that in fact ¢ is a canonical map.
It would be possible to define a Tannakian category of analytic flat bundles on (A})*" and hence a
“rigid differential Galois group”, which would induce an isomorphism in place of the imbedding ¢ above.
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However, it is more interesting to make the following observation. Take a field R of characteristic £ # p

and such that pyc C R*. Then to each ppeo-torsor T € Homgn, (71 {X % Fo}, upe) we can associate a

locally constant sheaf of free R-modules of rank one on the étale site of X°", which is usually denoted

T x R (see e.g. [SGA41] Sommes trig. for the yoga of torsors). Let 7. be the generic point of
Bpoo

henselization of P} at the point co € P}.

Claim 3.3.5. (1) The cohomology groups H*((A;)®",T x R) are finitely generated R-modules if and

Jigoo
only if there exists a flat line bundle (L, V) on Al such that T = ¢(L, V). (2) Suppose that T' = ¢(L, V)
for some (L, V) as in (1). Then we have

x((Ai)“",TpX R) =1-Trr((L, V)q,,)

where x denotes the Euler-Poincaré characteristic and Irr((L, V), ) is the irregularity index of the
restriction of (L, V) to the 14, as defined in [Kal].

~Part (2) and the “if” direction in part (1) of the claim will be proven later in this paper, as special
cases of our Grothendieck-Ogg-Shafarevich formula (theorem 8.6.2). We will also illustrate the “only
if” direction with an example (see remark 8.6.7). This result suggests that there should be a class of
analytic étale local systems on algebraic curves which we might call “locally of differential origin” which
should be especially well-behaved; in particular, the étale cohomology of such sheaves should be finitely
generated. The attempt to materialize this intuition will lead us to the definition of the meromorphic
s+local fundamental group in chapter 5.

‘. The case X = Gy, ¢ is also interesting. Herc we have the two formulas

1

- Homcnt(ﬁl‘((ﬂm.k)‘”‘,fo), too) 2 L((Gm k)2, 0°™) [k ® (Q/Z)
I HOTnk—grp.ach.('”'l tff(Gm,k ) 57-0); Gm,k) = F(Gm,k ’ O)/k 7] (k/Z)

Here the terms @/Z and k/Z due their appearence to the tamely ramified (algebraic} local systems on
(Gin,k)*" and respectively to the connections with regular singularities on Gy, x. More precisely, we
obtain a canonical imbedding ¢ : Q/Z — k/Z, and the image of 1 consists of the connections with
regular singularities, whose residue (at the origin and at infinity} is a root of unit. Morally this means
that the solutions of the remaining differential cquations (i.e. those in the complement of Im{1))) converge
only on small discs, and hence do not yield any local systems on the étale site of (G, 1 )®". Perhaps the
appropriate language here would be that of Frobenius-crystals, or of unit root crystals.

4, LOCALLY ALGEBRAIC VANISHING CYCLES

4.1. o-compact spaces. In the following two definitions we introduce a class of spaces which will play
a special role throughout this chapter.

Definition 4.1.1. An analytic space X is said to be o-compact if it is locally compact and it is a
countable union of compact analytic subdomains.

If X is also connected, it follows from [Bou] chapter 1.11 exercise 14, that X can be written as an
increasing union of connected compact subspaces (X;);»o such that Xy C I nt{Xi+1) (the interior of X;41)
for all i. We say that the o-compact space X is geometrically connected if the X; can be chosen to be
geometrically connected analytic spaces.

Definition 4.1.2. Suppose that X is a connected o-compact analytic space and write X = |J X, for a
family of compact connected subspaces as above.

The category Q(S’x_’ x of locally algebraic coverings consists of all the surjective connected étale morphisms
f:Y = X where Y is any analytic space which can be obtained as an increasing union Y = | J;5, Yi
such that f restricts to a finite étale covering ¥; — X for all > 0. In particular, Y is g-compact. -

Fix a geometric point T localized inside Xo. The locally algebraic fundamental group of X (based at
T} is the topological group

F1(X,F) = lim #17(X;,T)
00
endowed with the direct limit topology.

e

Remark 4.1.3. By a compactness argument, it is not hard to show that neither Covy nor 7 (X, r)
depend on the choice of the X;. Notice that a locally algebraic covering is an ¢tale covering in the sense
of [del]; the converse is not necessarily true. We also observe that a composition of locally algebraic
coverings is again locally algebraic (the corresponding statement for étale coverings is false), and that if
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X' — X is a morphism such that X’ is also g-compact, then for any locally algebraic covering ¥ — X
the fibre product Y' =Y xx X’ = X' is a disjoint union of locally algebraic coverings.

Let X be any connected k-analytic space. Recall (see [deJ] theorem 2.10) that for any geometric point
T € X the fibre functor
wxz:Covy — m (X, F) — Set
is fully faithful, and induces an equivalence between the category of disjoint unions of étale coverings of
X, and the category 7 (X,T) — Set. Similarly, if X is connected and g-compact the map ¥ — Y xx T
defines a fibre functor .
wx,z: Qovy = 71 (X,T) ~ Set

with target the category of discrete sets with a continuous action of 7 (X, F).

Proposition 4.1.4. The fibre functor Wx z s fully feithful and every 7 (X, T)-set consisting of a single
orbit is contained in the essential image of Wx z.

Proof. Locally on X, this reduces to a question about finite étale coverings and their morphisms, and
fully faithfulness follows easily. If O is a set consisting of a single orbit, let S be the stabilizer of some
point of Q. This is an open subgroup of 7, (X, ), which means that the preimage of § in 739 (X;, %) is a
subgroup of finite index, which by [de]] theorem 2.10 corresponds to some finite étale covering ¥; = X;.
It is casy to check that these Y; glue to give Y € @X with ¥z ~ O. O

Definition 4.1.5. Let £ be a prime number different from the residue characteristic p of k. An £-
coeﬂicaent ring is a local Artinian ring A in which £ is nilpotent, such that A is the inductive limit of the
dlrect system of all its finite subrings and such that pp- C A*.

In', the following we shall be primarily interested in sheaves of A-modules where A is an £-coefficient
ring.” Denote by A — Locy (resp. by Rep_ (71 (X,T),A)) the category of locally constant sheaves of
finitely generated A-modules on X (resp. the category of continuous linear representations of 7 (X, T)
into finitely generated A-modules).

Lemma 4.1.6. Let X be a compact analytic variety and F' a locally constant sheaf of finitely generated
A-modules on X, where A is an £-coefficient ring. Then we can find a finite subring A C A and a locally
constant sheaf F' of A-modules on X such that F ~ F' ®4 A.

Proof. Since X is compact, we can find a finite covering | J; U; = X by open subsets, and for each 7 a finite
étale morphism V; — U; such that G = F|y, is the constant sheaf associated to a certain finitely generated
A-module M;. The descent data for F' from V; to U; is then essentially a finite set of automorphisms of
M;. These automorphisms are then defined already over some finite subring A; C A. Hence we can find
a locally constant sheaf F; of A;-modules on U; such that Fi, = Fi ®4, A.

Similarly, let U;; = U;NUj, so that F is defined by a cocycle system of morphisms ¢;; : (Fi®a, A)jy,; =
(F; @a, A)IUe,- . Again, these morphisms are already defined on some big finite subring A;; O A; + A; and
the claim follows. O

Proposition 4.1.7. Suppose X is connected and o-compact and A is some £-coefficient ring. Then there
is an equivalence of categories

A - Locy > Rep, ,(71(X,3), A).

Proof. Write X = |J;5, Xi as above and pick a geometric point T localized at a point z € Xo. Let
Fi be the stalk of F at Z. By lemma 4.1.6 the restriction of F' to X; is already defined on some finite
subring of A, hence F|x, corresponds canonically to a representation of ﬂ’;ﬂg (X;,Z) on Fz. For different
i, these representations are compatible, hence they define a representation of 7y (X, Z) on Fg. Viceversa,
a continuous representation gives rise to a sequence of sheaves F; on X; which glue over all X. O

Proposition 4.1.8. Suppose that X is o-compact and geometrically connected. Then the sequence
X x k% F) = T (X, T) = Gal(k®/k) - 1
is ezact.

Proof. Since a direct limit of exact sequences is exact, this follows immediately from [deJ] proposition
2.13. O

Proposition 4.1.9. Let X be a o-compact space and G be a discrete group which is the inductive limit
of its finite subgroups. Then every G-torsor over X is a disjoint union of o-compact spaces.



ON A CLASS OF ETALE ANALYTIC SHEAVES 15

Proof. We can assume that X is connected, so that X = |J,,, Xi as usual. Let T be some G-torsor on X.
The restriction of T to X; is a G-torsor on X;, and hence it is classified by some class in H}(X;,G) (sce

[B1] corollary 4.1.9). Since X; is compact we have H'(X;,G) = lim HY(X;, F) where the limit ranges

F
over all the finite subgroups F C G. The claim follows. a

Corollary 4.1.10. Suppose that X is connected and o-compact. Then for any group G as in proposition
4.1.9 there is a canonical isomorphism

HY(X,G) ~ Homen (7 (X, E), G).
O

4.2. pro-analytic spaces. We recall here a few generalities about pro-analytic spaces and ind-sheaves
in an equivariant setting.

Let F : T — Cat be a functor from the cofiltered small category T to the category of all small
categories. We define a new category lim F" as follows. The objects are all the pairs (z;1) such that i € Z

. z
and z € F(¢). A representative of a morphism (z,1) = (y,J) is a triple (o, 8,u) where a : i — | and
B:j— larearrows in T and u : Fo(z) = Fs(y) is a morphism in F({). Two representatives (o, 3, )
and (¢, ', u’) of a morphism (z,7) — (y, 7) are said to be equivalent if there exist arrows v:{ — ¢ and
¥ U 5 gsuch that yoa =o' o', yo 8 =+"0f and F,(u) = Fy (u').

- Let us specialize and assume that F : T — AbCat is a functor from Z to the category of all small

; abelian categories satifying the axioms (AB1)—(AB5) of Grothendieck. Then lim F' is an abelian category

: I
.*as well. Moreover, if all the categories F(i) have enough injectives and all the functors F,, take injectives

. to injectives, then we obtain enough injectives.in lim F' by taking all the objects of the form (z,1), where
z
T is injective in F'(i).

Next, let N be the set of natural numbers with its natural ordering, which we view as a cofiltered
category in the standard way. Let F : N — Cat be a functor. We construct the category FN as
follows. The objects are all the pairs (z;a) = ({zi}ien ; {@ij}ic;)} where z; € F(i) for all i and
ai; € Hompjy(Fij (), #;) for all i < 7, and such that a;; 0 ajr = ay for all i < j < k. The morphisms
Hom((z, ), (y, 8)) are all the sequences {;}ien where v; € Homp(;y(2i,9:) and By; o Fij(vi) = 75 0 a5
for all 4 < j.

Next, suppose that F : N - AbCat is given. Then FN is also abelian. We say that an object
(z,a) is eventually zero if z; = 0 for all ¢ larger than some 5. The eventually zero objects form a thick
subcategory, and we form a new category ind F by localizing with respect to the eventually isomorphisms.

N
Clearly ind F' is again abelian. For all ¢ we obtain an additive functor
N

F(i) = ind F
N
by sending an object & of F(i) to the sequence (zj,a;;) such that z; = 0if i > j and x; = Fy;(z) if
7 > i, and such that ay; is the identity of z;. We say that (z;, ;) is the stable ind-object associated to
z. Any object of ill_("lF isomorphic to some object of this type will be said to be stable. Notice that the

N
full subcategory of stable objects is equivalent to the limit category lim F'(i) (cf. [B2] section 2).
ieN
On the other hand, we can also form the derived category D¥(FN) and then define a complex { K7 }en
to be eventually zero if for all integers i > iy the complexes K? € DV(F(i)) are quasi-isomorphic to
zero. The localization of Dt (FN) relative to the family of eventually quasi-isomorphisms will be denoted
D*(ind F). It is a triangulated category with a canonical faithful functor
N

ind F = D% (ind F).

El N
We also have a notion of stable ind-complez defined in the obvious fashion.

Suppose now that F,G : N —» AbCat are given, together with, for each ¢ a left exact additive functor
¢; : F(i) > G(i} is given such that ¢;Fj; = Gy;¢;. This data yields a left exact functor

N FN 56N
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in a natural way. Suppose moreover that for all i the category F(¢) has enough injectives, and that all
the functors Fj;, Gy; are exact. We consider the §-functor whose component in degree g

T9:FN 5 GN
is defined as
(z,0) = ({RI¢o(z:) }ien 5 {0 }ics)
where of; : Gi; Ri¢i(z;) -+ RI¢;(z;) is the composition of the canonical morphisms
Gijo R'%i(wi) = RY(Gyj 0 ¢:)(z:) = R¥(¢; 0 Fij)(zi) = Ri¢; o Fyj(zi) = RI¢;(z;)-

It is clear that T is effaceable for all ¢ > 0, hence the é-functor {T9}4en is universal. In this way we
obtain a derived functor

R(ind ¢) : D*(ind F) = D' (ind G).
N N ~

Finally we return to analytic spaces. A pro-analytic space Z = limZ; is a functor from a smail
i€z
cofiltered category T to the category of analytic spaces. For an analytic space X we denote by X — An
the category of X-analytic spaces, defined in the obvious way. For all ¢ € Homz(j,¢) the corresponding
morphism ¢z : Z; — Z; induces a functor

Z,;—.ATL—)ZJ'—ATI : X,‘HXj=XiniZj.
Then the category of Z-analytic spaces is by definition the direct limit category
5 .
Z—-An = 151’1 Z; — An.
4 i€Ze
Rexi;iark 4.2.1, The category of pro-analytic spaces admits fibre products and cofiltered projective lim-
its. The category of Z-analytic spaces admits fibre products.

Definition 4.2.2. Let X be a Z-analytic space. With the notation above, let ¢x : X; = X; be the
morphism induced by ¢ € Homz. (7, 7). We derive a collection of functors

¢ : S(Xi, A) = 8(X;, A)
ie. a functor F : I° — AbCat. Then we define the category of abelian sheaves on X by setting
S(X,A)=1lim F.
7

If all the morphisms ¢z : Z; = Z; are étale, the category S(X, A) has enough injectives. In this case,
for any morphism f : Y — X of Z-analytic spaces, the usual cohomological functors f*, Rf.,... extend
naturally to the corresponding limit categories.

Next, a pro-group I' = {[';}iez is a functor from the small filtered category N° to the category of
topological groups.

Definition 4.2.3. Let Rep(T';, A) (resp. Rep_ (I'i,A)) be the category of all A-modules (not necessarily
finitely generated) endowed with a ['j-action (resp. a continuous [j-action). The morphisms I'; — T;
{ > j) induce restriction functors

pi; : Rep(T';, A) - Rep(Ty, A)

(resp. the restriction p{I** to the subcategories of continuous representations) and hence a functor p: N —
AbCat. The category of ind-representations of the pro-group I is defined as Rep(T", A) = indp. The
N

category of continuous ind-representations of [ is Rep . e(F’ A) = ind p°"t. Similarly, if X is an analytic
N
space, we get a system of functors

on the categories of sheaves of continuous A[[;]-modules on X. Then we define the category S(X,A[T])
of ind-sheaves of continuous ['-equivariant A-modules on X as ind p.

N
Remark 4.2.4. In dcfinition 4.2.3 the continuity of the I';-action on an object of S{X, Af[;]) is meant
as in the weak sense of [B2] section 1.

Proceeding as above we can extend the usual cohomological formalism to the categories Rep(I', A) and
S(X,A[l]).
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4.3. Construction of the functor. As customary, the functor of locally algebraic vanishing cycles will
assume its values in a certain category of equivariant sheaves under the action of some fundamental
group. The problem is that we do not know whether the family of all open normal subgroups of the
locally algebraic fundamental group of a o-compact space forms a fundamental system of neighborhoods
of the identity. Hence we must proceed a bit more carefully than usual.

Proposition 4.3.1. Let X be o-compact and connected, and write X = |J;5, X; as usual. Then for
every open subgroup S C T (X, T) and for every integer ¢ > 0 there erists another open subgroup S' C S
whose preimage in 129 (X,,Z) is a normal subgroup of m29(X;, ).

Proof. Let T be the preimage of S in (X,, T). Since the latter group is profinite, we can find a largest
subgroup T C T which is open and normal Clearly T" =), g~ !Tg where g ranges over all the elements

of 1r°19 (X;,T). By compactness, there is a finite sct P such that we have already T/ = Neer 9 'Tg. Then
we can take §' = \,cp g7 Sy. O

Let C be a smooth curve defined over k, and s a k-rational point on C. We consider the associated
pro-analytic space C(s). Concretely, if we fix a local coordinate z around s, C(s) is isomorphic to a
projective system of small dises E{(s,7) = {z : 0 < |2(z)| < r} centered at s. Clearly for all r > 0 the
space E* (s,r) = E(s,7) — {3} is o-compact. The projective system of all such E* (s, r) forms a pro-analytic
space which we denote 7,. Similarly, we denote by 7z the pro-analytic space formed by the projective
system of all E* (s,r) x; ke,

To start with, we want to construct a certain pro-analytic space 7, with a map of pro-analytic spaces

+47j, = 1,. For each r > 0 choose a geometric point %, € E*(s,r) and set rr{' = m(E*(s,7),T,). For all

"¥r1 > r2 > 0 pick a system of morphisms ¢y, ., : (r") - 1r1 {r1) {(induced by the imbeddings E* (s,r2) C
VE* (s,71)) such that ¢y, ,, o Drars = Py ory- These maps are unique only up to inner automorphisms, but
"we do not mind. We remark the exact sequence

(4.3.2) T (5, T) = m(ne, T) = Gal(k®/k) = 0

which follows immediately from proposition 4.1.8.

The obvious next step would be to define the fundamental group of 7, by taking the inverse limit
of the projective systein defined above. Unfortunately very little is known about these groups and
homomorphisms, hence for the time being I see no alternative to bringing along the whole structure.

\.\.4’

Definition 4.3.3. The local fundamental group m(n,,T) is the pro-group indexed by the ordered set of
positive real numbers and defined by the family of groups {w{r)},.>g and their homomorphisms {¢r, r, :
(fﬂ) - 7'rlrl)}l'l >r3>0-

We denote by DY (X, Al (n,, E)]) the derived category (in the sense of section 4.2) of S(X, A[m; (77, F)])-
The usual global section functor (and its derived functors) for A-sheaves extends to ind-sheaves in the
obvious manner

HYX, =) : S(X, A[m1 (15, T)]) = Rep(mi (15, %), A) : Fy { H"(X F.) }rso.

For any r > 0 choose a left inverse 7, of the functor Wz g;ovE (a,r) = 1:1 — Set. Then for all open

subgroups § C -.rr( ) we obtain a locally algebraic covering ts T,(wlr) /S) = E*(s,r) and using the maps
¢r,,r; We also get morphisms

tsys;  Te(m ™ [S1) = o(m))[52)
whenever ry > 2 and ¢, ,,(S1) C S2. By construction we have tg, otg, 5, =tg, for all S1,5; as above.

We define a small cofiltered category Z whose objects are all pairs (r, S) where S is an open subgroup
of w{r) and with morphisms Hom((ry, S1), (r2, S2)} equal to the restriction of ¢,,,, : S1 = S; in case
r1 < g and @y, (S1) C S2, the empty set otherwise. The data above defines a functor ¢ : 7 — Et(n,)
i.e. a pro-analytic space which we denote 7,.

With this preparation, we can now dcfine our functor of vanishing cycles. Let X be a C(s)-analytic
space so that X = X x¢ C(s) for some C-analytic space X and setX,, = X X¢(4) s, Xz, = X X (4) T4
The morphisms py, r, : X XcE* (3,71) = X x¢E*(s,72) induced by the imbeddings E* (s, 71) < E* (s,73)
(ry € r2) define a system of functors

pr o S(X X B (5,72),A) = S(X X B (5,71), A).
Set I(X,,,A) = mdp Let also D¥(X,,,A) be the derived category D"'(md p) defined as in section 4.2.

Moreover, for any T € Iset Xo = X %o t(T) and let Fr be the l'CStI‘ICt.IOI'l of the sheaf F' to Xp. The
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image of T inside Gal(k®/k) is a subgroup of finite index, corresponding to some finite extension kg of
k. If we let Xy = X X kp we obtain a diagram

, Jr i ,
Xr > Xiq = X5

b

t(T) —> O X kr =—3,

Let, Z, be the full subcategory of T consisting of all the objects of the form (S,r) for arbitrary S and
denote by B4 : S(X x¢ E*(s,r), A) = S(X5, A[x{™]) the left exact functor
(4.3.4) Fe lim ifjr.(Fr).
TeZ.

This collection of functors determines a functor on the corresponding categories of ind-sheaves:

¥, = 1nd‘I‘ ') I(X,,, A} = S(X5, Alm1 (1., F)])
whose derived functor R’i’,,_ is the functor of locally algebraic vanishing cycles. The only point which
requires explanation is the m(1,,T)-action on R:I",,‘ (F,). Here is how it is obtained: fix r and let
F =F, € 8(X xc E*(s,r),A). Clearly it suffices to produce a compatible system of ﬂ'{')—actions on the
right-hand side of (4.3.4). To this purpose, write E (s,7) = J;5 X for an increasing sequence of compact

connected subspaces. Now, for fixed r, it suffices to produce a compatible family of =] alg {X;, T )-actions
for all i > 0. But for any glven i, it follows from proposition 4.3.1 that the set Z, ; of all open subgroups
of w{, whose preimage in 171 9(X;,ZT,) is normal, forms a cofinal family in Z,, hence we can replace the
index category Z, in (4.3.4) by the smaller Z,; and then the action of 7] alg (X:,Z,) is apparent.
We review hereafter the standard properties of R¥,,. For any F, € I(X,,,A) set
H%X5,,F.) = { lim H( X7, Fr) }rso.
TEL,
By the remarks above this defines a functor
H°(X5,,-) 1 I(X,,,A) = Rep(mi(ns, %), A)
whose derived functor is the cohomology of the general fibre of X.

Proposition 4.3.5. Let f : Y — X be a smooth morphism of C(s)-analytic spaces. Then for all
F € D*(X,,,A) there is a canonical isomorphism in D1 (Y3, A[7 (55, F)])

£ (R¥,,F) ~ RY, (f; F).
Proof. Follows directly from smooth base change. a
Proposition 4.3.6. Let f : Y = X be a compact morphism of C(s)-analytic spaces. Then for all
F e DT (Y,,,A) there is a canonical isomorphism in D™(Xz, A[m1(n,,7)])
RV, (Rfq..F) = Rfs.(RY,, F).
Proof. Follows directly from compact base change. O
Corollary 4.3.7. Let X be a compact C(s)-analytic space. Then for all F € 8(X,,,, A) there is a spectral
sequence of m(ny, T)-ind-representations
ED® = HP (X5 RS, (F)) = HPY (X5, F).

O
Theorem 4.3.8. Suppose that X is smooth over C(s). Then 'Z[.',,, (Ax) =~ Ax; and R‘i’,,_(Ax) =0 for
i>0.
Proof. By smooth base change it suffices to consider the case X = C. It is clear that ‘f‘m (Ax) = Ax,-

From Poincaré duality it follows easily that R“i',,, {Ax)=0fori > 1. Fori=1, it suffices to show that
for any T = (5,7) € T and any f € H'(¢(T),A) we can find T’ which dominates T and such that the
image of f in H(t(T"),A) is zero. The class f defines a certain A-torsor over t(T). But according to
proposition 4.1.9 every connected component Y of this A-torsor is locally algebraic over ¢(T"). Hence ¥
is a locally algebraic covering of E* (s, r) corresponding to some subgroup S'. Clearly 7 = (§',7) will do
the job. O
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Corollary 4.3.9. Suppose that X is smooth over C(s). Then for any locally constant sheaf F' of finitely
generated A-modules on X we have U, (F) = Fy and R'¥, (F) =0 for i > 0. O

An argument like in the proof of theorem 4.3.8 also shows the following

Lemma 4.3.10. Let F be a locally constant sheaf of finitely generated A-modules on n,. Then H'(7,, F)
vanishes for all i > 0. O

Slightly more generally, for any algebraic extension E of k we let ' = s xx E and we consider the
family of continuous morphisms
pr T (E" (5,7) %1 E,E,) = 71 (E* (3,7),E,).
We introduce a category Z; (and also Zy ) consisting of all the pairs (S’,r) such that S’ is a subgroup of

71 (E* (s, 1) x4 E,%,) of the form §' = p71(S) for some open subgroup S C 7 (E* (s, r), Z,); the morphisms
are defined as for Z. For all C(s) x E-analytic space X we define a functor

‘I'n,:/k : I(X,?_,,A) - 5(X7, A[m (n,r,f)]) : For | 1i_r{1 ir}jT.(Fp) }rso-
‘ TeZyn

For the derived functor of \f’,,_, /& we can prove the obvious analogues of proposition 4.3.5 and 4.3.6. But
I do not know whether the analogue of theorem 4.3.8 also holds. However, it follows from the following
proposition that theorem 4.3.8 does hold in case X is obtained by base change from a C(s)-analytic space.

Proposition 4.3.11. With the notation above, let F : S(Xg, Almi(ns, T)]) = S(X5, Alm1(ns,T))) be the
“natural forgetful functor. Let Fy € I(X,,,A) und denote by F, the inverse image of Fy on X, ,. For all
}integers q > 0 there is a canonical isomorphism

Fo R, (F) ~ R'E, ,/t(F)).

Proof. Clearly it suffices to treat the case g = 0. For this, given two pairs T' = (S,7) and T' = (5, 7)
related as above, it suffices to remark the isomorphism

i jree (Fr) = tpjra(Fr).

5. LOCAL THEORY IN DIMENSION ONE

5.1. The meromorphic gquotient of the local fundamental group. In this chapter we construct
our category of sheaves which are “locally of differential origin” (see the discussion in section 3.3).

Lemma 5.1.1. Let : X —= Y be a locally algebraic covering of o-compact spaces over k. Fix a geometric
point T on X and let ¥ = Y(E). The induced group homomorphism
TJ)* : :';r-l (X!_f) - ﬁ1()/117)

is injective.
Proof. For any locally algebraic covering ¢ : C =& X we obtain a covering ¢ o ¢ : C — Y. By virtue of
proposition 4.1.4, the map ¢ — ¥ o ¢ corresponds to a functor

T %I(A’yf) _m_} %1(},!5) “&-’:E
On the other hand we have a natural pullback functor

‘(,[')’ : %1()’,5) —S_et_. - ﬁl(.":,f) - M
which is dual to the group homomorphism .. But for every S € 7, (X, Z) — Set, there is an equivariant
imbedding

S Pt o ¥(S)
and the claim follows. a
Choose a local coordinate t around 0 (so that ¢(0) = 0) on (A} )*™. For any p > 0, N € N and any

finite extension k' of k, we let E(p) be an open disc of radius p in (A})°" centered at 0 € (AL)°", we sct
E*(p) = E(p) — {0} and we consider the morphism

(5.1.2) U E(pVN) x kK E(p) t N

Our point of departure is Levelt’s theorem (see [Kal)] {2.2.2) and theorem 2.4.6) according to which (1)
any connection on 7., (see section 3.3 for the notation) extends canonically to a connection on Gy, . with
regular singularities at the origin; and (2) given any connection V on Gy, ;. with regular singularities at
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the origin, there exists a finite extension k' of k and an integer N > 0 such that (¢} ., V) is a successive
extension of flat line bundles which extend to all G,, & with regular singularities at the origin.

We cook up our meromorphic quotient of the local fundamental group just in such a way to ensure
that a topological analogue of Levelt’s theorem becomes true, basically by definition.

From the asymptotic Kummer sequence (3.1.2) we derive an imbedding

(5.1.3) HO(E" (p), 0)/ log(H° (E* (p),U")) = H'(E* (p), ptp=o ).
Lemma 5.1.4. Choose a geometric point T, € E(p). The map (5.1.3) induces an imbedding
71 k[t < Homene (F1(E" (p), T1), rpe).-

Proof. From corollary 4.1.10 we know that H'(E*(p), ppe) = Homn:(%1(E" (p),T1), pipeo). Hence it
suffices to show that k[t~'] N log(H(E* (p),U*)) = k.

Claim 5.1.5. the restriction map HO(E{p),U') — HO(E* (p),U') is a bijection.

Proof of the claim: One proceeds as in the proof of lemma 3.2.10. The details are left to the reader.

From the claim it follows that log(H°(E*(p),U')) C H°(E(p),0). Now the lemma follows by the
stronger equality k[t™'] N H°(E(p), O) = k. a

Now, for any integer N > 0 choose a geometric point Ty € E*(p!/") and a coordinate ¢'/V on
E(pl.{’-lw) such that ¥} , (£) = (t'/N)¥ and ¢y (Tn) = Ty for all N € N. We obtain a system of group
hom'qmorphisms

4 Yt T1E (PN) xx K EN) = T (B (p), T1)

and we let
P = () []Im@xe.)CF(E (p),F).
LCK Cke NEN .
From lemmas 5.1.1 and 5.1.4 we obtain a homomorphism

(5.1.6) A= lm  lim YN RN = lim ¢~/ . k[t~ 1/N] = Homent (P(p), fipe)
kCk ke NEN NeN

where k' ranges over all the finite extensions of k.

Definition 5.1.7. For each a € A denote by x, : P(p) = ppe the corresponding character defined by
(5.1.6). The essential ramification subgroup of 71 (E* (p),T,) is defined as

Pesslp) = ﬂ Ker(xa) C P(p).
acA
Lemma 5.1.8. P.,;(p) i3 a normal subgroup of 7 (E* (p), Ty ).
Proof. Let v € 71(E* (p), T, ) and a € A. After replacing k by some finite Galois extension &' (and hence
71(E*(p), 1) by its open normal subgroup 7, (E* (p) x4 k', %)) we can assume that a € ¢t~V/Nk/[t=1/N].
Then xa : P(p) = pp~ extends to a character X, -1/~ : Im(¥nkre) = pp= for some N. The conjugate
¥(Ker(x,))y~! depends only on the class

3 € 71 (B (p) xx k', 51 )/Im{ypw prs) ~ Z/NZ.

Clearly Z/NZ acts as the group of deck transformations of the covering ¥n e : E*(0'/N) x4 k' —
E*(p) x& k', i.e. 7 corresponds to a morphism

FE (N x kB = E (0N xp kN o N

where ¢ is some N-th root of 1. Unwinding the definitions one checks easily that W(Ker(fa(t_uw)))'y_l =
Ker(Xo(c.c-1/vy) which means that Pe,,(p) is normal in (), 71 (E* (p} x4 k', %1). To descend to the base
field k£, we need to consider the Galois action. However, let o € Gal(k®/k); unwinding the definitions we
see easily that

g(Ker(x.)) = Ker(xa-)

where a = a% is the obvious Galois action on the group .A. The claim follows. O
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Definition 5.1.9. (1) The meromorphic quotient of T, (E* (p),F1) is the topological group pu(E* (p),T:)
obtained as follows. As a group, we let

#(E. (p):fl) =T (E‘ (P)afl)/Pcu(p)'
A topology is specified on u(E*(p), %) by declaring that the intersections of finitely many subgroups
Ker(Xo-uny s Im(Pn,pa) = ppe) (@€ A5 K CE CkY)

introduced in the proof of lemma 5.1.8, form a cofinal system of open neighborhoods of the identity
element. (By [Bou] chapter I11.2 the topology is well defined and unique).

{2) Let C be a smooth curve defined over k, s a k-rational point on € and t a local coordinate on C
around s. Recall from section 4.3 that the pro-analytic space 7, is isomorphic (as a pro-analytic space)
to a projective system (indexed by p > 0) of pointed discs E* (s, p) = {z : 0 < |i(z)| < p} centered at s.
Choosing geometric points Z; € E* (s, p) for all p > 0 gives us, as in section 4.3, the pro-group m(n,, E ).
The meromorphic quotient of m(1,,%;) is the topological pro-group p(7;,Z:) indexed by the ordered set
of positive real numbers and defined by

p (B (s,0),7])  (p>0)

where, for p, > p;, the morphism apml (B (s, 01), T ) = p(E* (8, p2),Z0*) is induced by the morphism
Boapr T (E (8,01), 20} = F1(E" (8, p2),Z77?) (see section 4.3 for the notation). Similarly we define the

pro-groups P(n,) = {P(p) | p > 0} and Pess(ns) = {Pess(p) | p > 0} with morphisms for pa > py given
. by the restrictions of ¢, p, .

!:Remark 5.1.10. Notice that the definition depends on the choice of a local coordinate ¢ around the

point s. We use the same coordinate for the construction of all the quotients p(E* (s, p),z4) (for varying
'p) which occur in part (2) of the definition. After that, it is easy to see that, given a(t~'/V) € A, the
composition

~ - — [-FOW ~— * — Xa
W ke (T (B (s, ﬂ}/N) xi k' ZN)) 2R N (T (E (s, P;/N) Xp k', TR)) = pupes

coincides (up to inner automorphisms) with X, : ¥, k. (71 (E* (s,p:/ N),’.Ef.’\}) — fipe>. This shows that the
maps ¢,,,,, descend to the respective meromorphic quotients.

Remark 5.1.11, (1) I tend to think that the topology of x(n,, 1) coincides with the quotient topology
induced by the projection

(5.1.12) T1 (15, F1) = (N5, T1)

but I do not know how to prove (or disprove) this statement. In any case, the homomorphism (5.1.12)
is continuous {i.e. all the surjections (for varying p) from the first projective system to the second one,
which define (5.1.12), are continuous).

(2) We remark the natural imbeddings of pro-groups (by this we just mean that they are induced by
imbeddings on the component groups, for varying p)

(5.1.13) Peas(11s) = P(ns) = m1(ns, T1).

We discuss the dependance on the parameter ¢. Given any two local coordinates ¢,t' as above, we can
assume that t' = ¢ - (1 + h{t)) where h(0) = 0. For all small p > 0 we obtain an automorphism

7 E{s, p) = E(s,p) t— t-(1+h(t)

such that 7°(t) = t'. In correspondence with the two parameters we obtain two meromorphic quotients
w(E(s, p),Z%) (resp. pi(n,,T1)) and p'(E(s,p),F]) (resp. u'(ns,%1)). I do not know how to compare
directly these two pro-groups; however we have the following resuit.

Proposition 5.1.14. The automorphism T induces an equivalence of categories
7+ lim ' (E(s, p), T5) — Set — lim p(E(s, p), Z7) — Set.
p »

In other words, the category of stable u(n,,T)-sets is an analytic invariant of 1,. The same holds for
the category of stable ind-representations of u(n,,T) on finitely generated A-modules (where A is any
£-coefficient ring).
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Proof. Let a(t'/M) € A. Choose N-th roots /N and t*/¥ for t and respectively t'. We have two
morphisms ¥k, ¥y o+ E*(8,p1/N) x4 k' = E* (s, p) defined by ¢nx (¢'/V) = t and Py (EN) = ¢,
We can find a positive real number £ < p*/" small enough so that the function 1+ A(t) has a N-th root
g(t) on E(s,e). Define an automorphism

¢ E(s,6) xp k' = B (s,6) xx k' /N o VN g(0).

We obtain a commutative diagram

E* (3,) x5 k' —2> B (s,€) x4 K

¢N,h’ l l"’;v';,l

E* (s, p) —— E* (3, p).

It follows that ¢*(t/N) = ¢ - #''/N for some N-th root of unit ¢ € k®. After base change to k' = k[¢] we
can even obtain that ¢*(¢'/V) = ¢''/¥_ Hence we can replace p by £ and assume that N = 1 and that
a = a(t) induces a character X, : 71 (E(s, p), E) = jipee. Then we can find a positive real number € < p
small enough so that

tTh =t =t =t (T R(E) ! € log(HO (B (s,€),Ut)).
By lemma 5.1.4 it follows that for any a € t~'k[t™!] the characters Xa(t)s Xa(t) : T1(E*(5,€),T) = pipoe

coin&ide. The proposition follows from this and from the definition of the topology on u(7,,¥). i}

vale to this proposition, we will sometime omit to specify the choice of the parameter ¢.

Wg remark that the category of groups can be imbedded in the category of pro-groups (indexed by
some fixed small category I) by assigning to a group G the pro-group {Gi;¢i; | 1,7 € I} such that G; = G
for all : € T and all the maps ¢;; : G; = G; (i < j) being the identity of G. Denote by ﬂf‘g(n,,ﬁ,) the
usual algebraic local fundamental group of the generic point of the henselization C* of the curve C at
the point s. In other words, this is the Galois group of the algebraic closure of the fraction field of OF ,.
With this notation we have the following proposition.

Proposition 5.1.156. There are natural ezact sequences

0— P(UA)/Ijeca("?s) = 1(ns, T1) — W?‘g(nsaﬁa) -0
(N xx k%, T) = p(ns,T) = Gal(k®/k) - 0.
Proof. The first sequence just restates the definitions. The second one follows easily from proposition
4.1.8. a

Now, let us take C = A} and s = 0. For the coordinate t we choose a global algebraic section
t € H°(AL,O) such that t(0} = 0 and H°(A},O) = k[t]. This is determined up to scalar multiples. All
the construction of the meromorphic quotient can be repeated over T ((Gp % )*™, ) : we define P(Gy, )
as the kernel of the canonical map %;((Gmk)*,T) = 719(Gx,F). Then, inspecting the previous
arguments, we obtain also a map

X: A - Hmcnt(P(Gm,k)a .upm)

and for each p > 0, the imbedding j, : E*(0, p) < (G )*™ induces a group homomorphism j,. : P(p) =
P(Gpm) such that xa © jp» = Xa for any a € A. Therefore we define Pegy(Gm i) and p({Gyn )", F) as in
the local case, and clearly there is a canonical homomorphism

(5.1.16) T B(E"(0,0),T) = p((Gm k)™, T).
(Here 1(E* (0, p), T) is defined by the same coordinate t chosen above).

Definition 5.1.17. The category Qﬂf‘cm b)an of meromorphic coverings of (G, ¢ )*" is the full subcat-

egory of Qfé’!(cm‘h)u. consisting of all the locally algebraic coverings X — (G, )" such that the action
of 1 ((Gm.x )™, F) on the fibre wz(X) factors through a continuous action of p((Gm & )*", ).

Lemma 5.1.18. (1) The fibre functor Wz restricts to o fully foithful functor
a:'f H mf(;m.h )an -) ,L‘((Gm,k )anif) - m

and every T, (X, T)-set consisting of a single orbit is contained in the essential image of Wx 7.
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(2) For an integer N > 0 let YN : Gmx — Gux be the morphism t = t™N. Then for any covering
X e OVqu,k)" there ezists an integer N > 0 and e finite extension k' of k such that ¥* (X)) %y K
extends to an abelian covering of (AL, )",

Proof. Part (1) follows from proposition 4.1.4. To prove part (2) we can replace k by some finite extension
k' and then assume that Wg(X) is of the form p((Grm i )*", )/ (Ker(X,, )N..."Ker(X, . )) for some ay, ..., apm.
Then we can find N > 0 large enough so that aq,...,a, € t"/‘vk[t'l/”]. It is clear that * o (X) xy k'
extends to an abelian covering on (Al, )", O

Proposition 5.1.19. The continuous map j,, in (5.1.16) induces a homeomorphism from p(E*(0, p), Z)
onto a dense subset of p{(Gm & }°", E).

Proof. For the injectivity of 7,, we need to show that j,,' (Prsa(Gm.k)) = Pess(p). This follows directly
from the equality x4 © jo« = xa for any a € A. We show that 7,, has dense image: for a given open
subgroup S C u{((Gn k)%™, T) we obtain a map of discrete sets:

35, n(E(0,p), E)/iTH(S) = u((Gm k)™, E)/S.
It suffices to show the following

Claim 5.1.20. For any S as above the map jf, is bijective.

iProof of the claim: Let § be the preimage of S in T1({Gm k)", Z). Then S is an open subgroup

N .
;" and the quotient p((Gmx)*",Z)/S = 71 ((Gm k)", Z)/ S represents a connected locally algebraic covering

' Xs = (G )" By general nonsense, the claim amounts to saying that the restriction Xs(p) = Xgg- (o

WP}
is still connected. Take an integer N and a Galois extension &' as in lemma 5.1.18(2) such that 3* 5 (Xs)

extends to an étale covering over all of (A}, )*". The group G = Z/NZ x Gal(k' /k) of deck automorphisms
of Y_n : Gnkr = Gm i acts on the set of connected components wo(¥? 5 (X)) (resp. mo(¥2 5 (Xs(p))))
of Y% y(Xs) (resp. of 2 5(Xs(p))). The action is transitive on mo(3”. (X)) and induces a bijection
between the G-orbits in mo(¥* 5 (Xs(p))) and the set mo(Xs(p}). Hence we can assume from start that
X is an abelian covering which extends over all (P})?" — {0}. Then, from the definition of the topology
of ((Gm,k)*™,T), we see that there exist polynomials ay,...,am € t7'k[t™!] such that Ker(X,,)N..N
Ker(X,,_ ) € S. Hence it suffices to check that jf_ is bijective when § = Ker(¥,,) N ... N Ker(X,, ).
Moreover, using the imbedding Xg — (}L’Ker(fﬂ1 )) X ... X (XKGI‘(T.,,,,)) we reduce to the case S = Ker(¥,)

for an a € t='k[t™!]. In this case the claim follows from lemma 5.1.4. O

Combining the maps 7, of (5.1.16) for varying p we obtain a homomorphisin of pro-groups
Ju: 160, ) = p((G k)", )
which is well defined up to inner automorphisms.
Corollary 5.1.21. The map j, induces equivalences of categories
7" ¢ B((Gm k)™, F) — Set -~ lim u(E (0, p), 3°) — Set.
]

7 i Rep_, (#((Gm k)" E), A) = lim Rep__ (1((E* (0, p),Z*), A)
[

for any €-coefficient ring A. O
Finally we return to the case of a general analytic local coordinate ¢.

Corollary 5.1.22. Let t be any local (analytic) coordinate centered at the point 0 € (AL)*". Form the
corresponding pro-group jt(no,T). For any stable object X € p(no,T) — Set there erists a meromorphic
covering X’ € Cgv”(cm Y)en such that X ~ 7* olx{X). A similar statement holds true for stable continuous

ind-representations of p(mo, T). a

We regard corollary 5.1.22 as the analogue of Levelt’s theorem; of course in our situation, the result is
just built into the definition.
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5.2. Swan conductor. In this section we construct a higher ramification filtration on the local funda-
mental group and establish some basic facts about the linecar representations of u(n,, ). By virtue of
corollary 5.1.22, it is equivalent to study the representations of u((G., )", %), i.e. the continuous group
homomorphisms

P p((Gr i)™, E) = GL{n,A)
where A is an £-coefficient ring.

We introduce an increasing filtration on A by subgroups A(r), indexed by the ordered set of positive
rcal numbers, as follows. For an element a(t~!/V) € A4 we define the degree deg(a) € @ which is the
highest power of t~! occuring in a. (So, for instance, deg(t~1/~) = 1/N). Then, for r € R, 7 > 0, we let
A(r) = {a € A deg(a) <r}.

Definition 5.2.1. The higher ramification filtration on p(E* (s, p), ) (resp. on u((Gu )", %)) consists
of a sequence of subgroups I5” (resp. 1) indexed by the real numbers r > 0, defined as follows. We
sct I,§°’ = u(E*(s,p), F) (resp. I'® = p((Gm x)®™, 7). For r > 0 we set
7= [\ Ker(xa) C P(p)/Press(p)
a€A(r)

2.0, (€€ definition 5.1.9(2))
I™ | p > 0} defines an injective morphism of
r

(and similarly for 1" C P(Gy, 1)/ Pess(p)). For varying p, the morphisms
carry I{P1) to I#2) and hence the sequence I(f) =
pro-groups
¢ LD p(ns, 7)

for e'){ery r > 0. It is clear that, given r, > r}, we have If(,f") C I,(,:‘) (resp. 1("2) C I(™1)) hence this defines
a degcending higher ramificaion filtration on pu(n,,T) (resp. on p((Gy )", T)) by closed subgroups.

Using the higher ramification filtration we will define a Swan conductor for stable ind-representations
of p(ns,Z). Proceeding as in definition 5.2.1 we also obtain a parallel notion of Swan conductor for
1(Gp x,E). Everything has been set up in such a way that the corresponding representation theories
become equivalent (via corollary 5.1.21). In particular, this allows to work as if the meromorphic quotient
of the local fundamental group were an actual group, rather than a pro-group, which sometimes may be
convenient, For this reason, in the sequel we will write simply I}, P and P,,, to denote indifferently
the local pro-objects or their global counterpart.

Lemma 5.2.2. The morphism Y of (5.1.2) induces an isomorphism
YN e T2 [/N)
Proof. 1t follows easily by lemma 5.1.1 and by remarking that the map ¥} , : A — A is an isomorphism

(you can always take an N-th root of t1/*). O

Let & be some group and p: G — GL(V) a representation of G on some finite rank free A-module V.
For any character x € Hom(G, pp) we let V,, be the maximal submodule of V on which G acts as x i.e.

plov=x(gh  (9€G, veVy).
Notice that this definition makes sense since any ¢-coefficient ring contains fipe.

Proposition 5.2.3. Let G be a finite commutative p-group end p : G = GL(V) a representation of G
as above. Then there is a canonical decomposition

Ve P W%

xeHom(G ppeo)

Proof. Let g be some element in 7. Let p" be the exponent of G and choose a primitive root of unity
{ € ppeo of order p”. First of all we remark that all elements of the form ¢* — {7 (i 2 j mod p”) are
invertible in A. This follows easily from [Wa] proposition 2.1. For 1 < j < p" we define

C; = [T - ¢h.
i3
Clearly we have

(5.24) IT e -¢H=0

1<i<pn
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as an element of End4 (V). Define the element 7; € Enda (V) by setting
= ¢ [[(olo) -
J#i
From (5.2.4) it follows that the image of #; lands into the submodule V, (; = Ker(p(g) ~ ¢7).
Claim 5.2.5. The morphism

@lsjspnﬂ’j V= @
1858
is injective.
Proof of the claim: For any subset S C {1,2,...,p"} define more generally
s = [](olg) -
[
For any such § and any two distinct elements ¢, 7 in the complement of S we show that
(5.2.6) Kermsugiy N Kermgyy;y = Kermg.

The claim will follow easily from (5.2.6) and a simple induction argument.
Let v € Kermgyqiy N Kermgyy;) and set w = wg(v). Then we have

(p(9) = ¢w = (p(9) = C)w =0
__which implies (¢* — ¢#)w = 0. Since (¢* — (%) is invertible, this yields w = 0 and proves (5.2.6).

v
} Next we show that the composition
o

@5
EBJ' Vo,¢s -y — @j V,

(V1) ey Upn ) —= 2, Vj

is the identity map. This is a direct calculation:

frj(Zkvk)-—C'IH#,( (9) - C)(ZL Uk)
- ZL C J.;él( ( C )UL
= C H;;e (ﬂ(g) )va
Together with claim 5.2.5 this shows that V is isomorphic to the direct sum of G-stable A-modules
EBJ- Voi-
Let ¢1,...,9m be a set of generators of G. To conclude the proof, it suffices to remark that, for any
character x € Hom{G, jipe ),
Vi = Voixtan) N N Vo x(om)
and that this intersection of A-modules is a direct summand of V. O

Corollary 5.2.7. Let p: P = GL(V) be a representation of P into a finite rank free A-module V. Then
there is a direct sum decomposition
Vo~ @ V-

xeHom(P,u 00 )

Proof. Since V has the discrete topology, p factors through a discrete quotient P of P. Then P is a
commutative p-power torsion group, and hence it is the direct limit of the filtered family F of its finite
subgroups.

We argue by induction on the rank r of V. Thanks to proposition 5.2.3 we can choose for cach subgroup
S € F a character x5 : S = piy and a non-zero G-stable direct summand Vs in V such that

D pvs = xs;

2) Vir € Vg and xr restricts to xs on S for any S,T € F such that S C T
Then, since the rank r is finite, the submodule

= 1.121 Vs
SeFe
is non-zero and it is clearly a direct summand in V. On V' the action p is given by the character l'iﬂx X5

SeFe
and the complement of V' has rank strictly less than r, which shows the claim. O
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Lemma 5.2.8. Any continuous character x : P/Pess = pp s of the form x = x(f) for some element
f of the algebra A.

Proof. Since yx i3 continuous, we can find f1, ..., fn € A such that Ker x(f1)} N ... N Ker x(f,) C Ker x.
Definc N
P =P/ Ker x(fi).
i

The morphism (fi,...,fn) : P = Hges induces an imbedding Po Hpes. Since ppe is injective in the
category of commutative p-groups, we derive a surjection

~

Hom(ppee , prpee ) = Hom(P, prpeo).
Clearly x factors though P, hence it lifts to an element ¥ € Hom({pipe , pipo) ~ Z7. Let us say ¥ =
(a1,...,a,) for certain a; € Z,. Then we conclude x = 3, a; - x(fi) = x(3_; ai fi). O

Proposition 5.2.9. For any f € A we have
deg(f) =inf{re R | I") c Ker(x(f))}-

Proof. Using lemma 5.2.2 we can reduce to the case that f is a polynomial in ¢, hence in particular
n = deg(f) € N. Next, it is obvious that I™ C Ker(f), so that the infimum over the set of real numbers
with this property is smaller than or equal to n. Suppose that this infimum r is strictly smaller than n.
For any ¢ € A of degree less than r, set C, = f(Ker(g)) C pp=. By hypothesis:

¢, =0.
g

Since all the proper subgroups of pye are finite and nested into each other, this means that for some g
we have already C, = 0. Take N an integer large enough so that both fy = ¥} (f) and gn = ¥y . (9)
extend to homomorphisms 71 ((A} )™, T) = pipes.

By construction we have Ker(gny) C Ker(fn) and therefore we can find an endomorphism w of ppe
which makes the following diagram commute:

71 (AL, 7) —> pipee
g~ l /
Hp=
We have End(ppe) =~ Zp, the isomorphism being given by

Y (( = () (Y € Zp,C € prp=).
Suppose that w = (=)” and consider the ladder diagram with exact rows

0 > [ipeo >l —2» Ox —>0

(5.2.10) l(_y l(_), l,,

0 — lpm —— Yt —> Ox — 0.

From the long exact ladder for the cohomology of (5.2.10) we derive that.
fn =wagn =7v-gn.

But this is a contradiction, since the degree of gy is strictly smaller than the degree of fy. The claim
follows. O

Deflnition 5.2.11. The slope of the character x(f) is the degree of the element f. If M is a A-module
on which P/P,,, acts through its character x(f), then the slope A(M) of M is defined as the slope of
x(f). In particular, the slope of a simple P/P,,,-module is always a rational number.

Finally, let V an arbitrary P/P,,,-module free of finite rank. Corollary 5.2.7 shows that V' decomposes
as direct sum of P-stable rank one A-submodules. We denote by A(V) the set of the slopes of the simple
rank one components of V; clearly A(V) is a finite subset of , whose elements are called the slopes of
V. Gathering the simple components of V' which have same slope, we obtain a canonical decomposition
of V as direct sum

V=P W

AEN(V)
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where each V), is purely of slope A.
Definition 5.2.12. The Swan conductor sw(V) of a P/P,,;-module V, is the rational number
sw(V) = Zxeav)A - thkaVia.
The next result is our version of the Hasse-Arf theorem.

Theorem 5.2.13. Let V be a finite rank free A-module with an action of p(n,,E) (i.e. a stable ind-
representation which is a free A-module). Then sw(V) is a positive integer.

Proof. For an element f(z'/V) € A let us denote by M; the one-dimensional A-module on which P/P,,,
acts through the character x(f). Then the P-module V has a decomposition of the kind

V ~ @M}"

feS

for some finite set S of elements of 4. Let v € w;"g(n,,?i,) be any element. We can define a new action
of P/P.;, on V, by setting

(p,v) = vy~ (v) (p € P/Puss, 7€ 7™91,,7,))-

Let V7 be the module V with the new P/P,,,-action. Since Y{P/Pess)y~! = P/P.ss as subgroups of
u(ns, F), it follows that V¥ = V. On the other hand, we can write

4 M} =M

i'!where f* € A denotes an clement of the form F{¢x'/N) for some ¢ € un. Hence we sce that the set
.S must be stable under the substitution f — fY for any v as above. Suppose that N has been chosen
minimal among the integers such that we can write f as a polynomial in z!/. Then it is casy to see that
the orbit {f7 | v € 729(n,,7,)} consists of exactly N elements. On the other hand, A(M;) = M M) is
a rational number of the form n/N (n € N). The claim follows directly from these facts. 0

Definition 5.2.14. Let {V, p) be a representation of u(7,, %) into a finitely generated free A-module V.
We say that (V, p) is tame if the action of u(n,, F) factors through the quotient 7% (,,7,). We say that
(V,p) is irreducible if it does not contain any non-trivial u(sn,, T)-stable free A-submodule (this means
that for all p > 0, the u(E” (s, p), F)-module (V] p) does not contain any free p(E* (s, p}, F)-submodules).
We say that (V, p) is absolutely irreducible if for all finite flat extensions A = A’ of {-coefficient rings,
(V,p) ®a A’ is an irreducile A'[(1,, F)]-module.

Remark 5.2.15. (1) We caution the reader that our terminology does not agree with the standard usage
of the terms “irreducible”, resp. “absolutely irreducible”. (2) An easy induction argument shows that
for all representations (V,p) as in the definition, there exists some finite flat ring extension A — A’
and a pu(n.,Z)-stable filtration on (V, p) ®a A’ such that all the associated subquotients are absolutely
irreducible.

Let ¢n : 0 = 1o be the étale covering of pro-analytic spaces induced by the morphism G, — Gy
z - z. Tt induces a morphism ¢uy. : u(n9,Z) = 1{no,T) and we let Sy be the image of ¢n.. Clearly
Sn is an open normal subgroup of index N in pu(ng,Z) = S;.

Theorem 5.2.16. Suppose that k is algebraically closed. Let (V,p) be an absolutely irreducible represen-
tation of u(7.,T) into a free A-module V' of rank n. Then there erist a positive integer d dividing n, «
finite flat estension A’ of A, a representation (L, x) of Sy/q into a rank one free A'-module L and a rank
d absolutely irreducible tame A’-representation (T, p') of Sy ja such that

(V,p) ®a A =Indg (LRT,x®p').

Proof. (Cp. [Kal] theorem 2.6.6) By corollary §.2.7 and lemma 5.1.18(2), there exists some N such that
the restriction of p to Sy decomposes as direct sum of characters. Pick such an N and consider the
Sn-isotypical decomposition of V

R
V=PV

=1
where x; ranges on a finite set of characters of Sy. Since V is S)-irreducible and Sy is normal, S; acts
transitively on the set of isotypical components. Consequently d = dim(Vy) is independent of x and
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n =dR. Let Sy, C S; be the stabilizer of V. Then Sy C Sy, and Sy, has index R in S;. Since 5{/Sn
is a cyclic group, we must have S,, = Sg, independent of 7. Therefore, as a representation of 51 we have

V =Ind3' (V)

for any x = xi. Clearly V, is an irreducible S, 4-representation and we must show that V;, ~ L®T
for appropriate L,T. Renaming V,, S,,q as V, §1 we are reduced to the situation: V is an irreducible
representation of S; of rank d, but for some N > 1 the subgroup Sy acts on V' by scalar matrices, i.e.
there exists a character y of Sy such that

p(V)(v) = x(7)(v)
for all ¥ € Sy. By a simple computation we see that the character y is invariant by S;-conjugation.
Since S1/Sy is cyclic, we can then replace A by some finite flat extension and find an extension of x to
a character ¥ of S,. Twisting V by the inverse of ¥, we reduce to the case where V' i3 an irreducible
representation of Sy which is trivial on Sy, t.e. V is tame and absolutely irreducible, as stated. O

Remark 5.2.17. (1) When k is algebraically closed, it might well be that every absolutely irreducible
tame representation has rank one. This is certainly the case for representations which factor through
some quotient Z/m of the tame local fundamental group, when m is prime to £. (2) It follows casily
from lemma 5.2.8 that every character x as in theorem 5.2.16 is of the form x(f) ® x’ where f is some
polynomial and x' is a tame character.

6. THE LUBIN-TATE TORSOR

¢

Iz this chapter we introduce and study the sheaf that plays the role covered by the Lang torsor in
positive characteristic. I believe the name “Lubin-Tate torsor” is appropriate enough for this object.
We teturn to the setup of chapter 2: here ko is a one-dimensional local field of zero characteristic, i.e.
a p-adic field. Let F be a fixed Lubin-Tate group. As in chapter 2, we view F' as an analytic group
law for the analytic space E(0,1), and the associated logarithm Ay as a morphism of analytic groups
Ap tE(0,1) = (Gap, )™ = (ALD)“".

6.1. Construction of the torsor.
Lemma 6.1.1. The logarithm Ap : E(0,1) — (A} )" is an étale covering of (A} )*".

Proof. Let (A} )" = U,;»0D(r) be the covering of the affinc line by closed discs of radius r centered at
the origin. Denote by E(r) the connected component of A™'(B(r)) containing 0.

From remark 2.1.6(1) we get an equality of formal power series: Ao [7]} = 2" - A. By analytic
continuation, this formal identity gives rise to a commutative diagram of analytic maps:

(=]}

E(Oa 1) —— ]E(Oa 1) i — E(O’pl)

(AL ~To> (AL )" —— G ().

We remark that, for sufficiently large n,, E(r) is the connected component of the inverse image of
ep(nFD{(r)) by {n}]. Looking at the diagram above, we see that the restriction of A to E(r) is a finite
map, hence E(r) is an affinoid domain in E(0,1) for all » and E(0,1) = U,sgE(r). Note that for r < s,
E(r) is contained in the interior of E(s). It follows easily that X is étale and surjective if and only if the
induced maps E(r) = D(r) are étale and surjective for all r.

Given r > 0, choose an integer n, large enough such that [}~ (E(r)) C E(0, p1). By theorem 2.1.5,
the power scries ep converges on E(0, py ). This means that e defines a morphism on the quasiaflinoid
space E(0, p;), and therefore the restriction of A to E(0, p;) is an isomorphism of quasiffinoid spaces.
It follows that A : E(r) — D(r) is an étale covering if and only if [#]y" : E(r) — =" -D(r) is an
étale covering. Let g € §, be any other power series; the homomorphism [1]y,4 : E(0,1) = E(0,1) of
quasiaffinoid spaces has an inverse [1], ; and therefore it is an isomorphism. From theorem 2.1.1{b) we
see that [1]y, o [7]f o [llg,; = [x],- Therefore it suffices to prove that for some g € § the morphism
g = [r]y : E(0,1) — E(0,1) is finite and étale. Then we select g(Z) = #Z + Z9. Now consider the
map of schemes A}m - A}m defined by the polynomial g(Z): this map ramifies over a finite set of points
1y @ € AL (k§) = k§, and using the jacobian criterion one checks easily that |z;| > 1 for all . On
the complement of z,, ..., .., ¢ restricts to an étale covering U — A}c —{z1,...,Zn}. By proposition 3.3.11
of [B1], it follows that the map g*" : U™ — (A} )" — {1, ..., Z,} is also an étale covering. But clearly
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[7]y is obtained from g°" by base change to E(0,1) C (A} )*", and the lemma follows from corollary 3.3.8
of [B1]. O

Remark 6.1.2. The proof of the lemma shows in particular that the restriction of the analytic covering
A E(0,1) — (A} )" to any bounded disc E(0, p) — (A} )*" factors as a trivial (split) covering followed
by an algebraic covering of finite degree.

For any positive integer n, let k, = ko(Gr), koo = Unsokn and Ew the completion of k. Recall
(remark 2.1.6(2)) that G = Ker{X : E{0,1) — (A%u)““). In particular, this kernel is contained in k.

As usual we obtain a sheaf of sets (in the analytic étale topology) over (A.ltu )%™ by taking the étale
local sections of the morphism A; let us denote by ¢ this sheaf.

For any given complete field extension k of ko, there is a base change map p : (A} )*" — (A} )*" and
we can form the pull back ¢, = p*¢. For our purposes, the really useful sheaf is ¢z..; for brevity we will
denote it simply by doo.

Definition 6.1.3. The sheaf ¢, acquires a translation action of the discrete group G, which as usual
makes it into a Geo-torsor. We call ¢, the Lubin-Tate torsor associated to F.

Let A be some torsion ring in which the residue characteristic of k is invertible, and 1 : G = A™ be
a character of G,. We can form the associated sheaf
£¢. = ¢m Xy A
;lwhich is a rank one local system of A-modules on (A‘}: yen,
.7 A note about notation: for a map f : X — (A}E )" sometime we will write £(f) in place of f*L.
+Also, if k is a complete extension of koo, the base change map = : (A} )*" — (A% }*™ gives us a new sheaf
Ly =a*L. If it is clear from the context which base field we have in mind, we will omit the subscript k.
Given a linear coordinate ¢t on (A})*", sometime we will write G, (p,t) for the analytic group obtained
by restricting the addition law of G, to the disc E(0, p) = {z € (A})*" | |t(z)| < p}-

We list here some elementary propertics of £, that follow from the general yoga of torsors. Let
m: G, x G, = G, be the addition map, and pr;,pr, : Go x G = G, the projection maps on the first
and second factor. Then Ly comes with:

LT1) a rigidification at the origin:

Ly g0y = Ay 10}
LT2) a trivialization:
m*Ly @prily' ®pr3ly' = Ag, xG,
compatible with the rigidification at the origin {0,0} induced by LT1.
LT3) In particular:

;Ctp—l o~ ﬁ;l

We will denote by p(1,t) the supremum of all real numbers p such that Ly trivializes on G, (p,t). If ¢
happens to be the samc parameter which we chose to give the power series expansion for the morphism
X, we get p(1,t) >.p1 and equality holds if and only if ¢ is injective. Moreover p(i,t) = oo if and only
if 4 is trivial.

Before moving on, we should remark that the difference between one choice or another of the undertying
Lubin-Tate group, is purely arithmetic. By this we mcan the following: suppose that F, F’ are two Lubin-
Tate groups, and G, G%, the respective torsion groups. Take two characters ¥, ¢ of G, and respectively
G',. Then over the completion of k(G) (resp. of k{(Gy,)) we obtain the Lubin-Tate torsor £y (resp.
Ly). We can pull-back both of them to the common overfield k§, and there we have

Proposition 6.1.4. Fora € JJE{]‘, let pg, (A’lia jan — (A“;u )" be the morphism © — axz. Then there exists
Y0 0

a € k§ such that, with the ebove notation
Lyfe ™ ‘“;C\b',ia'

Proof. 1 am grateful to G. Faltings for furnishing the following explanation. It suffices to compare a
general Lubin-Tate torsor F with the classical Gy, . To distinguish the two analytic groups, call Er (resp.
Eg,. ) the analytic space E(0,1) endowed with the group law F (resp. the multiplicative group law). The
torsion of G, is of course piye. To prove the claim it suffices to show that the group homomorphism

1) : Goo = pip= 18 induced by a morphism of analytic groups ¥ :Ep = Eg, , because in that case we can
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find out the right a € ’l;f]‘ by noticing that Ag,, 01:50 A7! is an endomorphism of G, , hence of the form g,

for a certain a. Now, the map v induces a map on the Tate groups {5 : T(FY = T(Gy), or what is the
same, an element of T(G)* ~ T(G?) (here G* is the Cartier dual group of G). This is the same as giving
a compatible system of group scheme homomorphisms

TZnZF[n]“"P-p" (n>0)

defined over (k§)°. In turns, this is a map of p-divisible group schemes F[p™] = ppe which determines
the needed morphism v : Er = Eg,, over (k%)°. O

The proof of the following proposition is taken from [SGA4%], Sommes trig. We reproduce it here to
stay on the safe side.

Proposition 6.1.5. Let k be a complete extension of koo. Let 1 1 Goo = A* be a non-trivial character.
Then:

Hct(Ga (s t) X kg kvﬁlﬂ) =0
for all p > p(3,t).

Proof. Let A, be the connected component of AN (G p,t)) containing 0. For a Em—rational point, T of
A,, let 7; be the translation 7,(g) = g[+7]z on A,, where [+/] is Lubin-Tate group law. Also, let 7,
be the translation by y € G,, with respect to usual addition law on G,. The formula Ao 7, = 'r;\(z) oA
statgé that the pair (7, TA(I)) is an automorphism of the diagram A, = G, (p, t).

Let 4(z) be the induced automorphism of (Gq (p,t), Ly). For z € Goo this automorphism gives the
identity on G, (p,t), and multiplication by % (z)~" on Ly.

Let 1y () be the automorphism of HZ(Ga (p, t);_, £y) induced by ¥(z). Then ¢y (z) is multiplication
by #(z)~!. On the other hand, the following “homotopy” lemma (applied to ¢ : A, x G, (p,t) —
A, X Gy(p,t) defined as ¥(z,y) = (z,y + Az))) shows that ¥y (z) = ¥y (0). Since by hypothesis
p > p(ih,t), we can find z € G(p,t) N Go such that 1 — (z)~! is invertible; but we have seen that
multiplication by 1 —(z)~? is the zero map, therefore the claim follows. ]

Lemma 6.1.6 (“Homotopy” lemma). Let X and Y be two analytic spaces over a complete valued fleld
k, with Y connected. Let G be a sheaf on X and (¢, ) a family of endomorphisms of (X, G) parametrized
by Y, ie.:

Y: Y x X —Y xX isaY-morphism and

g P*prsG — pr3g a morphism of sheaves.

Assume v is proper. For y € Y (k), let Yu(y)* the endomorphism of H}(X,G) induced by ¢, : X — X
and g, 1 ;G — G. Then ¥y (y)™ is independent of y.

Proof. In fact, RPpr,,pr3G is the constant sheaf on ¥ with stalk HP(X,G), and ¥4 (y)* is the fiber at y
of the endomorphism :

RPpr,pr3g 5 RPpry ¥ pr3§ = RPpry pr3G.
|

6.2. The character induced by g:ﬂois action. We conclude this chapter with some observations
about the Galois action on L£y. Let ¢ be the pull back of ¢y to (A%a )4™; by trausport of structure we
Q

get a natural action of Gal(kg/ke) on @, covering the action on (Aig ). This action is inherited by
Lya
of Gal(k§/kw) of rank one. For any n < oo, let k2® denote the maximal abelian extension of k,. It
is clear that the action on Ly, factors through Gal(k%/ke). I do not know the complete structure of
Gal(k8® /k); in particular I don't know whether there is a canonical generator that takes the place of
the Frobenius element as in the finite field case. Instead we do the following. Let k§" be the maximal
unramified extension of ky. Clearly k5" C k% and k§" Nke = ko. We say that an element o €
Gal(k [k ) is a Frobenius element if the image of o in Gal(k3" /ko) is the canonical Frobenius generator.
Our aim is to give an explicit formula for the trace Tr(o, Ly p) of the endomorphism induced by the
Frobenius element ¢ on the stalk of £y at the point p. We start with two elementary lemmas:

In particular, if p is a koo-rational point of (A%a )°™, then the stalk £, , becomes a representation
0

Lemma 6.2.1. The map p = Tr{o, Ly p) is a continuous group homomorphism Tr, @ koo = AX.
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Proof. Tt follows easily from LT1 and LT2 that the map Tr, is a group homomorphism. Moreover, it
follows from lermina 2.1.5 that the restriction of ¢ to E(0, p(¢,¢)) is the trivial Go,-torsor; therefore the
restriction of Ly to the same disc is a trivial line bundle, and we conclude that the kernel of Tr, contains
this entire disc, i.e. the map is continuous. O

Lemma 6.2.2. k% = U,enkS0.

Proof. 1t is clear that k2° C k2. On the other hand, let z € k% and let z;,...,2,n be the orbit of =
under the action of the full Galois group Gal(k§/kg); take n big enough such that [kn(z1,....,2m) @ kn] =
koo(Z1) -y Zm) © ko). We get an isomorphism Gal(kn(zy,...,Zm)/kn) =~ Gal(keo(Z1, ..., Tm)/keo), and
this last group is abelian, being a quotient of Gal(k% /keo)- O

It follows from the lemma that the choice of a Frobenius element o in Gal(k2?/ks) is equivalent to
the choice of a sequence og,07,... of liftings of Frobenius o, € Gal(k3%/k,) such that the restriction of
Ont1 to k3% acts as g,,. Let B, € ky, such that the Artin symbol (8,, k% /k,.) acts on k% as o,,. Then by
local class ficld theory, it follows Nmy_ sk, (Bn+1) = Ba. Also, by Lubin-Tate theory it follows gy = .
Conversely, the choice of a compatible system of elements 8, € k,, as before is equivalent to the choice
of a Frobenius element o.

For the next result we need some notation. First of all we select for each positive integer n:

1) a generator v, of Gy, as an kg-module, such that (77" |¢(vy) = vg;

2} an element B3,, € k, such that the sequence of these elements satisfies the compatibility condition
above, and corresponds to the choice of a Frobenius element og;

7 3) a power series by (2) = 2 ra(2), where r{z) € k°[(2]) satisfies 7(0) # 0 and such that b,(v,) = 8.
,'EFinally, let T3, be the trace map from k, to ko.

‘Proposition 6.2.3. Let p be a point in A (keo) = koo, and choose an integer n such that (a) [7"p| < py
and (b) [ko(p) : ko] < n. Let m be any integer > 2n + 1. Then, with reference to the notation above:

Tr(051£¢1.9) = d) ([ﬂ'"}—ﬂ T ( P dbn, _ )] (Un)) .
=vm ) ] s

N(vy) dz
Proof. First of all, notice that the group Gal(k§/ke) acts also on E(0, 1) xy, Eg in such a way that the
logarithmn becomes an cquivariant morphism. Let g € A7'(p). Let & be any lifting of o5 to Gal(kg/keo);
then essentially by definition we have:

(6.2.4) Tr(o, Lu.p) = ¥(F(D)[-sla)

(where [—]; denotes subtraction in the formal group). Obviously this formula is independent of the
choices involved. Take n such that (a) is satisfied; by inspecting the proof of lemma 6.1.1 and the remark
that follows it, we obtain:

A7 p) = [7"]7 (e(7"p))[+£]C oo
In particular we can take g € ['rr"];l(e(w“p)) in {6.2.4). We recall now the definition of the generalized

Kummer pairing, introduced by Fréhlich in [Fr]: let F(k,) be the subgroup of E(0,1)(kw )} consisting of
the elements rational over ky; then there is a bilinear map:

()F Pk x kX — Gy,

defined as follows. If 8 € kX, let 73 be the element of the Gal(k2®/k,) which is attached to 8 by the
Artin symbol. If « € F(k,,), choose ~y in E(0, 1)(k®) such that [#"];(v) = a. Then (a, 8)F = ma(v}[—]7-
Clearly, if we take n such that both {a) and (b) are satisfied, the right-hand side in (6.2.4) translates as
W((e(mp), B)E). Then the formula of the theorem follows immediately from [Wi} theorem 1. Q

6.3. Semilinear Galois action. Since the sheaf ¢ is already defined over kg, it is natural to expect the
full Galois group Gal(kg/ko) to act on L. In this section we show that this is indeed the case, at least
when the Lubin-Tate formal group under consideration is the classical multiplicative group Gy,. The
action thus obtained will not be linear, but rather semilinear in a precise sense. In this way, our theory
acquires a “p-adic flavour” which is unusual in an £-adic setting.

As announced, in this section we restrict to the Lubin-Tate group G,,. Take a prime £ whose residue
class generates Z /p?; by Dirichlet theorem on primes in arithmetic progressions, there are plenty of such
. With this choice, the Galois group of Q¢ (tp~) over ( is easily scen to be isomorphic to Z). Let
be the ring of integers of Q¢ (up) and set A,, = Q/£".

The group Geo attached to Gy, is just ppe and any character ¢ @ ppee — A lifts to a character
P fpee — @ conversely, we can start with % and then obtain ¥ by projecting onto AY¥. Clearly
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we can assign ¥ by identifying the two copies of ppe, one in Q¢ (jtp) and the other in @y (f2pee). Such
identification also induces a unique isomorphism x between Gal(Qe (ppe)/Qe) and G = Gal{Qyp (fape=) /@),
given explicitly by the rule

o(P9)) = %(x(0)9)

for all o € Gal(Qy (ptp=}/Q¢) and all g € ppw. Another way of seeing this is as saying that t,"; becomes
G-equivariant, if we endow Q (jip=) with the G-action

(0,2} = x(0)x

for 0 € G, © € Q{pp~). Having equivariance for ¥ is exactly the condition needed to transfer the
G-action from ¢ to the associated locally constant sheaf £,,. The G-action on L, is not linear, but has
the following semilinearity property:

a(bs) = (x(a)b) - o(s)
for any local section s of Ly and all o € G, b € Qe (pp=).
Next, let ' be any algebraic extension of k., and K its completion. There is a natural surjection
7 Gal(K/kg) = G and the G-action on L£y5,, lifts in a natural way to an action of Gal(K/k) on L, 7,

which satisfies again the same semilinearity condition above (after replacing x by its composition with
7). For a detailed treatment the reader is referred e.g. to [B2] proposition 1.4.

Remark 6.3.1. In the algebraic setting, one usually introduces the topos Sx of sheaves of sets on the
scheme X, and then, for any given ring A, assigns to Sx a structure of A-ringed topos. by selecting the
ring%gbject A x defined by the constant sheaf on X with stalks isomorphic to A. As the above construction
illustrates, in the étale analytic setting, the choice of the constant A,-sheaf is not the most natural: one
should rather take the geometrically constant sheaf A, x, twisted by the semilinear Gal(kg /ko)-action
defined in this section.

7. FOURIER TRANSFORM

We are now ready to define the Fourier transform. With the set-up of the previous chapters, we
only have to mimic the construction of the Deligne-Fourier transform. The proofs of most of the main
properties reduce to routine verifications, carried out by applying projection formulas, proper base change
theorem and Poincaré duality, exactly as in Laumon’s paper.

7.1. Definition and main properties. We consider complexes of sheaves of A-modules, where A is
an {-coefficient ring. Let Ly be the locally constant Lubin-Tate A-sheaf of rank 1 associated to the
Lubin-Tate group F defined over the field kg, and the character ¢ : Goo = A*. In this chapter and the
following one, the base field is a complete extension k of koo.

Let § be an analytic variety over ¥ and # : E = S an analytic vector bundle (defined in the obvious
way) of constant rank r > 1. We denote by ' : E' - S the vector bundle dual to E —+ S, by
(,) : ExgE' = (A})* the canonical dual pairing and by pr: E xgE' = E, pr' : E xg E' = E' the two
canonical projections. ‘

Definition 7.1.1. The Fourier transform for E — S, associated to the character ¥, is the triangulated
functor
Fy: DY(E,A) — D(E',A)
defined by
Fy(K*) = Rpri(Ly((,)) @ pr*K*))[r].

We will usually drop the subscript ¢, unless we have to deal with more than one character at the same
time. For later use we also introduce a special notation for a closely related functor: the operator Fy .
is given by the following formula:

Fom = Bpri(Ly({,)) ® prK*))[r].

Next we would like to show that F shares some interesting properties with the Fourier transform defined
over finite fields.

To start with, we state and establish involutivity: denote by 7" : E” — S the double dual vector
bundle of E. The previous construction applies to E' and its dual E” to give a Fourier transform ' (and
the related functor F)). We consider the composition:

D(E,A) 25 DE(E, A) 25 DY(E”, A).
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Denote by a : E -=3 E” the S-isomorphism defined by a(v) = —(v,-). Also,let 0: S = E, 0" : § = E/,
0" + S <+ E” the zero sections of m, 7', 7" respectively. We denote by s : E xg E - E (resp. by
s :E' xg E' = E') the addition law in the vector bundle E & S (resp. in E' = §) and by [-1]: E 5 E
the inverse map for this addition law.

Theorem 7.1.2. There is a functorial isomorphism:
F o F(K®) ~ a(K*)(-r)
for K* € DY(V, A) (The brackets denoting Tate twist, as usual).

Proof. (Cp. [Lau), theorem (1.2.2.1)). We fix some notation: let @ : E xgE' xgE” — E' x5 E” be
defined as a(e, e’ e") = (¢',e"” —a(e)) and B: E x B’ — E" as B(e,e") = & — ale).
Consider the commutative diagram:

E Xs E” “ o
‘I)I’l3 er
EXsEIXE" \ a AEIXEH

pr’
prn/ \r
“

E X85 E' E' x s E”
l/ \pr’ ’/ \pr”
/ N N
'E Ef EII’

where the two squares are fiber diagrams.
It follows easily from property LT2 that

(7.1.3) priz £(()) ® pris £((:)) = a*L((,))-

Then we have:

F'o F(K*) = F'(Rpri(L((,)) @ pr™ K*)[r])
=~ Rpr{'(L((,)) ® pr'™ (Rpri(L((,)) ® pr* K *)))[2r]

~ Rpr!(£((,)) ® Rpry ity (£((,)) @ prK*)(2r] (proper base change)
=~ Rpr) Rpryg (pr3s £((, ) ® prizL£((,)) @ prizpr K *)[2r] (proj.formula)
~ Rpr{ Rpryg (a”L((,)) ® prizpr* K*)(2r] (by formula (7.1.3))
~ Rpr} Rpryg,(a” L({,}) ® prigpr* K *)[2r] (functoriality)
~ Rpr{ (pr" K* ® Rpr,;,a” L{(,))}[27] {projection formula)
~ Rpr{'(pr*K* ® 8~ Rpry L({,)))[2r]- (proper base change)
To end the proof we apply to ' : E' = S and L = A the lemma 7.1.4 below. O0

Lemma 7.1.4. For any L* € D*(S, A) we have:
F(r*L*[r]) ~ oL L*(—1).
Proof. By the projection formula:
F(mx*L*[r]) = L* @ RpriL({,))[2r].
On the other hand, using proper base change, property LT1 and proposition 6.1.5, we get:

o RpriL({,)) = RmA = Ag(—r)[-2r]
RpriL({, ))lE'-o‘(S) =0.

O

Corollary 7.1.5. F is an equivalence of triangulated categories of D®(E, A) onto DP(E', A), with inverse
a* F/(=)(r). 0
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In the case of the Fourier transform over a finite field, it is known moreover that F preserves the
t-structure coming from middle perversity. As explained in [Lau], this boils down to the equality of
functors Fy = Fy .. Even in absence of a theory of perverse sheaves for analytic varieties, we can still
prove the corresponding statement:

Theorem 7.1.8. The canonical map of “forget support” induces an isomorphism of functors:
¢ Fy(=) = Fyul-).

Proof. Fix as usual a coordinate ¢ on (A} )®". First of all, an argument like at the beginning of the proof of
[Ka-La] Theoréme 2.4.1 reduces us to the case r = 1. Moreover, the assertion is obviously local on §, hence
we can suppose that there exists a fiberwise linear isomorphism z : E = (AL)%" xS = (A")%*. Then
also E' is trivialized by a coordinate y : E' — (A!)%" such that t{{e,e')) = z(e)y(e’) for all local sections
e,¢'. Next we can find a unique E D E such that z extends to a (unique) isomorphism % : E = (P*)$",

Let j : E xg E' = E xg E’ be the natural imbedding. Clearly it suffices to show that for all points of
the type (oo,p) € E xg E'

' R (Ly((,)) ® Pr K *)(00,0) = 0.

We consider the map 7 : E' xs E xs E' = E x5 E' defined as (e}, e,e}) — (e,5'(e},e})). We form the
fibre product diagram

E xskE XsE"'J—“'E' XSEXSE'
s
?{ T“l lf
¥ ExgE ——>ExgE
and 'by smooth base change
T Ri(L(()) @ prK®) = Rj2r® (L((,)) ® priK*).
In particular
Rj (L)) ® prK*)(co,py = RIZTL(()) @ pr™K*)p,00,0)-
Let Cs be the partially ordered set of all the étale neighborhoods of (y(p), c0,0) in (Al)E* xs (P14 x
(Al)ar. We introduce the family CZ consisting of all the varieties of the form W x B such that
1) B is an open disc in (A})°", centered at zero, i.e. B = {a € (A[)*" | |t(a)| < rg}, and W 4
(AN)2r x g (P1)9" is an étale neighborhood of (p,00) € (P')%* x5 (A)E";
2) the image ¢(W) is contained in an open subset of the form N (p) x, C, with C an open disc in (P})°"
of radius r¢ around oo i.e. C = {a € (PL)*" | |t(a)| > r5'} and N(p) some fixed open neighborhood of

y(p) in (AD)E
3) the ratio rg/r¢ is equal to the constant 4.

Lemma 7.1.7. For any real number § > 0 the family C% is cofinal in Cs.

Proof. Let o : U = (AT x5 (P& x5 (A')%" be any étale open neighborhood of (p,0,0) and q € U
a chosen lifting of (p,cc,0). We have an induced map of germs

(U,9) = (A")§" xs (P1)E" x5 (A1)F", (p, 0,0)).

Notice that the residue fields of the points (p, c0) € (AN)Z x s (P*)%" and (p,00,0) € (A" )& x5 (P xs
(A')4" are naturally isomorphic. Therefore, it follows from theorem 3.4.1 of [B1] that the germ (U, q) is
isomorphic to a product of germs (W', q') xx ((A};)*",0), where ¢ : (W’,q') = ((A1)%"* x5 (P1)E", (p, ))
is a morphism of germs with an étale representative. Concretely this means that there exists an open
subset V C W' xx (AL)*" with an open imbedding V < U which make the following diagram commute

W'Xk(A}c)“"‘ v >
¢X1,\11 10
(A x5 (BIZ) x5 (A)™" = (A2 x5 (V)3 x5 (A1),

Then proposition 3.7.8 of [B1] says that we can find inside V' a subset of the form W" x B' which
fulfills condition (1) above. Conditions (2) and (3) are easy to fix, by taking open subsets B C B’ and
W cw”. O
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Fix a real number § strictly greater than p(1,t). Let W xx B € C% be any neighborhood as above
and set Bs = y~ 1B x; Sy, C°=Cn (Ai)“", Cg = :c"l(C° xp8), We =W X (Al xP1ygn (E' x5 E).
Furthermore, we obtain obvious projection maps « : W° — C% and 8 : C% - C°.

In view of the lemma, the theorem will follow if we show that
(7.1.8) HY(W®° x5 Bs,7°" L({,)) ® T°*pr* K*) = 0.

We remark the commutative diagram

' ' pry, '
E'xsExgE  —— =t ' xgE
(7.1.9) l lprn
r
EXSF_' P > E.

Moreover, let s : E' x g E — (AL)?" be the map (e, e) — (e, e'); an easy application of the Yoga of torsors
yields

(7.1.10) L)) = pras () @ priplip).

We apply the Leray speciral sequence for the morphism pryy : W° X3 B - W°,
Set M* = pri K(* ® L(p); then, in virtue of (7.1.9) and (7.1.10) it suffices to show that

RprlZ- (prEBC’((: )) ® pr;2ﬁ{.)w =0

“‘for all points w € W°. We consider the commutative diagram
"

. 1 1
v HJDXSBS__“_X"—,.CEXSBS__Q.B__,.CGXJ:B

l pr?S L (t) l

E xs E xXg E—E ><5E'I —_'_“—>(A}i)an

where m(a,b) = ab. Set u = f ¢ a(w), take a small open neighborhood U C C° around u, and let
E(r) = m(U x B). One checks easily that, if I/ has been chosen small enough, then E(r) is some open
disc of finite radius r, centered at the origin. Denote by E the connected component of A™! (E(r)) C E(0,1)
which contains 0 € E(0,1). We formn the fibre diagram

’
m

E = W] - Vs

Al fl yl
(Boa)x1g

E(r) = UxpBe————((foa)'U) x; B.

By construction, the sheaf m* L trivializes on the étale covering of finite degree f : Vi = U x, B. Tt
follows that m* L)y, g is a direct summand in f,A and hence we obtain an imbedding

(7.1.11)  Rpryp.(pra;£((,)) ® PrizM*)|(goa)-1 () < BI(pri2 © g)u(pr12 © 9)" Mi500y-1 0y (92 0).

Notice also that for all ¥ € U, the geometric fibre (pr; o f)~!(y) is a finite union of open discs. In order to
apply this observation, we need the following lemma, which is a minor variation of [B1] Corollary 7.4.2,
and whose proof we leave therefore as an exercise for the referee.

Lemma 7.1.12. Let ¢ : X = Y be a separated smooth morphism of pure dimension d, and suppose that
the geometric fibres of ¢ are non-empty and have trivial cohomology groups HJ with coefficients in A for
q < 2d. Then for all F € S(X,A) we have R1¢.¢*F =0 for ¢ > 0. O

Next, since we have taken W xx B € Cg and 6§ > p(i,t), we see that the sheaf m*" Ly, p is never
trivial on any of the geometric fibres {y} xx B (y € U). From this, together with (7.1.11) and lemma
7.1.12 (applied to pr;, o g} we derive easily that

Rpry,. (pris £((,)) ® Pl"sz)uaoa)—lu =0.
This proves (7.1.8) and the claim of the theorem, g
Remark 7.1.13. it is well known that theorem 7.1.6 formally implies that the Fourier transform com-

mutes with Verdier duality. A Verdier duality theory for étale analytic sheaves has been established by
Berkovich in [B5].
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We list hereafter a few of the other main formal properties of the Fourier transform. The proofs have
the same flavour as the previous proof of involutivity, and proceed exactly as in Laumon’s paper, therefore
we limit ourself to give the statements and refer the reader to the corresponding results in [Lau].

Theorem 7.1.14. (Cp. {Lau|, theorem (1.2.2.4)) Let By — E; a morphism of vector bundles over S
of constant ranks ry and ry respectively, and let f' : €y — E| be the transpose of f. Then there is a
canonical isomorphism

F2(RAKT) = [ Fi(K]Yry — 1]
for all Kt € D*(E;,A). a
Corollary 7.1.15. There is a canonical isomorphism
RmF(K®) ~ 0" K*(—1)[-7]
for all K* € DY(E1,A). a
Deflnition 7.1.168. The convolution product on £ = S is the operation
‘ «: DP(E,A) x D°(E, A) = D(E, A)
defined as
K}« K3 = Rs(K} B K3).
Profg’osition 7.1.17. (Cp. [Lau], proposition (1.2.2.7)) There is a canonical isomorphism

) L
A F(KG » K3) = F(K?) & F(K3)[~7]
for all K3, K3 € D*(E,A). a
Proposition 7.1.18. (Cp. [Lau], proposition (1.2.2.8)). There is a canonical “Plancherel” isomorphism
L L
Rm(F(K7) @ F(K3)) = Rm(KT & [-1]"K3)(-7)

for all K3, K3 € D*(E,A). O

Proposition 7.1.19. (Cp. [Lau], proposition (1.2.8.5)). Let 5 L S bea morphism of k-analytic
varieties. Let E; 33 S, and E ik Sy the vector bundles over S; obtained by base change from E 5 S

and E' T3 §. Denote by fg : 1 = E and fgr : B} = £ the canonical projections. Then there exists a
canonical isomorphism
.T(RfE!K.) jond RfEf!f1 (K.)

for all K* € D*(E,,A) (we have denoted by F, the Fourier transform for the vector bundle E; = S1). O

7.2. Computation of some Fourier transforms. The following examples of calculation of Fourier
trasforms are taken from [Lau], with the exception of proposition 7.2.4, which has no analogue in positive
characteristic.

. ;L
Proposition 7.2.1. Let F < E be a vector sub-bundle over S of constant rank s. Denote by F* N
the orthogonal of F in E'. Then there is a canonical isomorphism

F(iuAp[s]) > iy ApL(=8)[r — 8].
O

Proposition 7.2.2. Let e € E(S) (i.e. a section of E 5 S). Denote by 7. : E = E the translation by e.
Then there is a canonical isomorphism

FlreK*) = F(K*) @ L{{e, ))
for all K* € D*(E,A). O

Proposition 7.2.3. Let a : E 5 B be a symmetric isomorphism. Denote by q : E —» (A})°" and
q' 1 E' — (A})°" the quadratic forms associated to a (i.e. qle) = (e,a(e)) and ¢'(e') = (a1 (¢'),€')). Let
[2] 1 E' — E' be multiplication by 2 on the vector bundle E'. Then there is a canonical isomorphism

[2]* F(L{g)) = L(~¢") @ ="" Rm L(q)[r].
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For the next result, we suppose E 5 S has rank one for simplicity. Let B 5 Sbea sphere bundle
inside E, i.e. a fibre bundle over S with an open imbedding 5 : B < E which is a morphism of S-varieties,
and such that over each point s € S, the restriction j, : 8~ (s) = 7~!(s) is the imbedding of an open
ball of finite radius centered at o(s) € 7~ (s).

We also fix some linear coordinate ¢t on (A} )®" and let D £, S be the dual bundle of B — S, i.e. the
fibre bundle over S with a closed S-imbedding i : D — E', defined by the equation

It((e, e’ < p(¥,t) (e € B,e' € D).
In other words, the restriction i, : 8™ (s} = 7'*(s) is the imbedding of a closed disc centered at o'(s).

Proposition 7.2.4, With the notation above we have
i) F(i.Ap) = fiAg[l],
i) F(idg) = i.Ap(-1)[-1].

Proof. By theorem 7.1.2 we see that (i) and (ii) are equivalent. We will prove (ii). By proper base
change we can assume that S is a point; then B is an open disc G, (o, t) and D = Dg is a closed disc of
radius 8 = p(¢,t)/a. Set T = Ga{a, t) xg Dg. Note that the condition o = p(¥,t) implies that £({,))
trivializes on T It follows that the restriction of F(jiAg, (a,1)) to Dg coincides with A[—1]. Therefore it
suffices to show that F{jiAg, (a,)) vanishes outside Dg. To this purpose we can check on the stalks, and
then the claim follows from proposition 6.1.5. a

4 8. GLOBAL THEORY IN DIMENSION ONE

Ué In this chapter we study the cohomology of a local system with meromorphic ramification on an affine

-eurve (see definition 8.1.1 below). We start by establishing the finiteness of the cohomology, then we make
_a detailed study of the Fourier transform of a meromorphic local system, in case C is an open subscheme of
the affine line. Finally we refine our finiteness result into a formula of type Grothendieck-Ogg-Shafarevich
for our class of sheaves.

8.1. Finiteness properties. Let C be an affine smooth geometrically connected curve over k, and
let C' be a compactification of C. Let C — C = {s),...,8,} and F a locally constant sheaf of finitely
generated A-modules on C*". For each i, choose a local parameter ¢; on C"", centered around s;. We
obtain a family of discs 7; = {E(s;,p) | p € R} and the restriction of F to E*(s;,p) = E{si,p) — {si}
yields a representation of 7, (E* (s, p),Z,) (we choose some base point Z,). Hence F' determines a stable
7 (n;, T)-module of finite rank F(s;) = HO(7;, Fy;,).

Definition 8.1.1. We say that F has meromorphic ramification, if the action of 71 (7;,T) on each of the

A-modules F(s;) factors through pu(n;, Z).

Definition 8.1.2. Let x : 709 (Gn x,Z) = A* be a non-trivial character. It defines a locally constant
sheaf of A-modules Ky on (G x)®" which we call the Kummer sheaf associated to the character y.
Similarly, for a given tame character x' : u{E" (0, p},%Z) = A we obtain a sheaf of A-modules of rank one
on B* (0, p), which we call the Kummer sheaf associated to x'.

Proposition 8.1.3. Let Ly be a rank one sheaf of A-module associated to some Lubin-Tate torsor and
a character i as in section 6.1. Let G(x,¥) be the A-module with continue Gal(k®/k)-action defined as

Glx, ) = HN((Gm)®™ xx K, Ky ® Lyy).

Then: 1) G(x,%) is a free A-module of rank one and the H{((Gm)*" x4 E“,ICX ® Ly) vanish fori#1;
2) if j is the imbedding of G x in A}, there is a canonical isomorphism
Foliko) = 5. K1 ® G0 %),
Proof. The second statement can be infered, mutatis mutandis, from the proof of proposition 1.4.3.2 of

[Lau]. Tt is easy to verify that the cohomology of K, ® Ly vanishes in degrees i # 1. To show that
G(x, ) has rank one, we can use (2) and the involutivity theorem 7.1.2 to obtain

L L
(1) 5. Kx(=1) = 1Ky ®@ GO, ¥) ® G(x7, ).
This implies that G(x, ) é G(x~!,v) must be free of rank one, hence the claim. O

Theorem 8.1.4. Suppose that F is a locally constant sheaf of finitely generated A-modules on C°,
with meromorphic ramification. Then the cohomology groups H:(C®" x k°, F) are finitely generated
A-modules.
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Proof. Choose local parameter t1,..., t,, as above. Let B (p), ..., E, (p) be small open discs in T, with
8; € Ei(p) for i = 1,..m. Set Ef (p) = Ei(p) — {s:} and V = C°" — |J7o, E} (p). By lemma 4.1.6 the
restriction of F' to V is already defined over some finite subring A’ C A, and then, by [B3] corollary 5.6,
it follows that H*(V, F) is finitely generated. Hence it suffices to show that all the groups H} (E:(p), F')
are finitely generated for sufficiently small p.
For any N € N, let ¢ : Ef (p) — E; (p”) be the morphism ¢; —= ¢/, From the equality

(8.1.5) H; (Ei(p), F) = H; (B (p"), v F)

and from theorem 5.2.16 we derive that it suffices to consider the case when F' = L® T where L has rank
one and T is tame of finite rank. Let m be the maximal ideal of A. Using inductively the short exact

sequence
0-mF 3 FoF—>F/(mF)—>0

we can reduce to the case when A is a field. Then, by standard modular representation theory we can
assume that T has rank one, hence T = K, is a Kummer sheaf associated to a tame character x of
1#(E*(p),T,). Moreover, by lemma 5.2.8 we know that L is of the form f*(Ly) where £y is a rank one
sheaf associated to a Lubin-Tate torsor as in section 6.1 and f is a polynomial f(¢;) € k[t;] (since we are
only interested in geometric results, the choice of the Lubin-Tate torsor does not matter).

Let n = deg(f). By standard arguments, after reducing the radius p, we can find an automorphism
o : Ef (p) = E;f(p) such that o*(Ly(f)) ~ ¢5(Ly). Morcover, after further reducing p, we can also
achieve that ¢*(T") >~ T. Hence we can assume that f(¢;) is a monomial f(¢;) = t?. Using the formula
folLy(f)@T) ~ Ly ® f.T together with (8.1.5) and some standard modular representation theory, we
can ::r'éducc to the case when FF = Ly ® K,,. Then the result follows from proposition 8.1.3. O

8.2. {Canonical calculation of cohomology. The following very useful results are shamelessly adapted
from.[Ka2| sections 2.1 and 2.2.

Let C be a proper smooth geometrically connected curve over k and U C C a non-empty open sub-
scheme. We are concerned with locally constant sheaves F of A-modules with meromorphic ramification
on U where A is an ¢-coefficient ring. For s € C — U we may speak of the slope decomposition of
F(s). The slopes which occur in it are called the slopes of F' at s. We say that F is totally wild at s
if F(s)Pmer = 0, where Prer = P(1,)/ Pess(11:) C 12(n,,Z) is the meromorphic ramification subgroup. In
other words, F is totally wild at s if 0 is not a slope of F' at s.

Lemma 8.2.1. For A as above, and s a chosen point of C — U, denote by W the abelian category of
locally constant sheaves of finitely generated A-modules on U™ which are meromorphically ramified at all
points of C — U and totally wild at s.

(1) HO(U®™ x, k*, F) = 0 = HZ(U°" x4 k°, F) for any Fe W.

(8) The functors F = HY (U™ x4 k%, F) and F — HY (U x ke, F) are ezact functors from W to
the category of finitely generated A-modules.

(8) Both functors in (2) above carry A-flat F in W to free A-modules of finite rank. Their formation
is compatible with extensions of scalars A — A’ of £-coefficient rings.

Proof. (Cp. [Ka2] lemma 2.1.1) (1) We have H® = 0 because Fy;, has no non-zero Ppe.-invariants. By
corollary 5.2.7, F3, is semisimple as a Py,.,-module, hence it has no coinvariants either, which shows that
H? = 0. (2) follows immediately from (1) and from theorem 8.1.4. (3) If N is any finitely generated
A-module; take a resolution K, — N by free finitely generated A-modules. For ¥ € W we obtain a
complex F @4 K, of objects in W and by exactness, the functor H carries its homology objects to those
of the complex H} (U™ xx k9 F s KJ) = HY(U®™ x, E“,F) ®a K,.. This means that

H} (U™ x, k%, Tor} (F,N)) = Tor®(H}(U®" x, k%, F), N).

Therefore, if F is A-flat, then so is H}(U*" xi E“,F). Taking i = 0 also yields compatibility with
extensions of scalars. O

Lemma 8.2.2. Suppose that C —U = D, U D, is a decomposition of C — U into two disjoint non-empty
finite sets of closed points. Denote by j1 : U — C — D3 and jo : U — C — D, the corresponding
partial compactifications of U. Then for A as ebove and F any locally constant sheaf of finitely generated
A-modules on U™ with meromorphic ramification at all points of C - U we have

(1) H((C = D)™™ x4 k%, juF) = 0 fori # 1.

(2) The H' is an ezact functor to finitely generated A-modules.

(8) This functor carries A-flat sheaves F to free finitely generated A-modules. Its formation commutes
with extensions A - A’ of £-coefficient rings.
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Proof. (Cp [Ka2] lemma 2.2.1) The only point which requires attention is the proof that H? = 0. In
the absence of clean-cut results on the cohomological dimension of affine varieties, we offer the following
somewhat ad hoc argument. Let m be the maximal ideal of A. Using inductively the short exact sequence

0-mF 3 FF o Ff(mF)—>0

we reduce to the case when A is a field. Since C — Dj is affine, we can find a sequence of affinoid domains

(Vi)ren with V; C Vi, for all 4, such that |J, Vi = (C — D3)*". Since F is meromorphically ramified, the

groups H(V; x; k%, ju F) are finitely generated, and by Mittag-Leffler (see [B1] lemma 6.3.12) it follows
HY((C = D)™ xi k%, juF) = lim HY(V; x k*, juF).

Consequently, it suffices to show that H*(V x; ke, JjuF) = 0 for all sufficiently large affinoids V. Since

V is quasi-compact we have

HYV xx B, juF) = HA(V x4 k%, juF) = HY((V NU) %, k°, F).

Write V NU = AU B where A is an affinoid domain and B is a smooth analytic space of dimension one
such that BN A = . We consider the short exact sequence

0_>F|B!")F_’F.[At‘-}0
with obvious notation.. Taking cohomology with compact support we obtain an exact sequence
L(823) HY(A x1 K Fia) S H(B %3 k% Fig) = H2((V NU) xx k%, F) = H2(A xx k%, F|).

-' 'The rightmost term in (8.2.3) vanishes by [B1] theorem 6.4.1(i). Hence it suffices to show that o is
-fsurjectlve for some choice of A and B. Suppose first that Ho(U®"® x, ke, FVY) = 0. Given V as above,
" take an affinoid W C V such that B ¢ W. Let A" = AnW. It is clear that o factors thxough
o P H'Y(A' X k°, Fa) - HYB x k%, Fig). We show that the natural morphism g : H'(A xkE“,F]A) -
HY (A xg E“, Fi4-) is surjective if A is sufficiently large and A’ is sufficiently small. Since both 4 and
A" are qua51—compact this can be checked in Huber'’s theory. The cokernel of 8 injects into H2((A —
A) xg ko, F) =~ H((A — A") xx k*, F¥(1)). Since by hypothesis HO(U x k%, FV) = 0, it follows that
for A sufficiently large, and A’ sufficiently small H((4 = A’) x; E“,Fv(l)) = 0. Hence for sufficiently
large V and sufficiently small W, the map B is surjective as required. Consequently, in order to prove
that o is surjective, we need only to show that o' is surjective for sufficiently small A’ and B. Let
N = H%B x; k*,FV). We can find a sufficiently small affinoid A” C W such that A" N U = A"N B
and such that the constant sheaf Nauqy on A” NU®" injects into Flannyen. Replace V by A", and find
new A, B C V as above, so that we have a short sequence of locally constant A-sheaves on V ny{e?

(8.2.4) 0= Nyngan 2 FY 25 Q=20

and N C HO(B x; k*, FV). If N' = HO(B x, k9, FV) is strictly larger than N, we can repeat the above
procedure and find smaller V, A, B such that the exact sequence {8.2.4) holds with N' in place of N and
such that N ¢ N' ¢ H%(B x; E“,FV). The sequence N C N’ C ... obtained by iterating this procedure
must stabilize, since the rank of F' is an upper bound for the rank of all these modules. Hence we can
assume that N = H°(B x, E",FV). We take Huber’s cohomology of the exact sequence (8.2.4) : since
HY(A x4 };“,Q) = 0 we get an imbedding H}!(A4 X ‘IE“,N) — HMHA x4 ‘E",FV) which dualizes to a
surjection
HYA % k% F) = HYA x k% NY) ~ H'(A x4 k°,A) @ NV.

Again, the same surjection holds in Berkovich’s cohomology, and thercfore we obtain a commutative
diagram

HY(A x; k®, F) —> H(A x4 k%, NV)

l |

H3(B x; k*, F) —— H(B x; k*, NV).
Thus we are reduced to the case where F is the constant sheaf A and we need to show that the morphism
HY(A xxk® A) = H2(B xr k%, A) is surjective. Going back to (8.2.3), we sec that, it suffices to show that
H2((VNU®*")xk®, A) = 0, which is easily done. This concludes the proof in case HO(U®" x; k*, FV) = 0.
In the general case, let M = HO(U®" x; k%, FV); we get a short exact sequence of A-sheaves on U
0= K = F = M =0
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whence an exact cohomology sequence

H*((C - Dg)*™ x4 k%, juky) = H*((C = Da)™ x4 k&, i F) & H*((C — Da)™ xx k%, jinA) @ MY = 0.
One checks easily that the rightmost term vanishes, and hence we are reduced to verify the claim for the
sheaf K. Proceeding inductively we obtain a finite sequence of locally constant sheaves Ky, K, ..., K
with the property that H2((C — D)™ xx k*, j11 K;) = 0 = H2((C — D3)*" x4 k%, juF) = 0 for all i, and
such that HO(U™ x, k%, KY) = 0, so the claim follows by the previous case. O

Now let us consider the following situation: U is an affine open subset of C, D C U is a finite set of
closed points and j : U — D — U is the inclusion. For F locally constant on U we have a long exact
cohomology sequence

0— HOU® x& k% F) = HY(D x4 k*, Fip) 3 HY(U®™ x4 k%, 515" F) = H' (U x k%, F) = 0.
This means that we can calculate the cohomology groups H(U®" x ke, F) as the cohomology of the two
term complex

| «(F): HO(D x k%, Fp) 5 H' (U™ x4 k°, j1j"F).
Proposition 8.2.5. (1) For A as above, the construction F' = x(F) is an exact functor from the category
of meromorphsically ramified locally constant sheaves of finitely generated A-modules on U™ to the category
of two-term complexes of finitely generated A-modules.

(2) If F is A-flat, then x(F) is a two-term complez of free finitely generated A-modules.
{ 3) The formation of *(F) commutes with extensions of £-coefficient rings.

Pmof (Cp. [Ka2] Key lemma 2.2.5) The essential part is a special case of lemma 8.2.2 with (U, D, D3) =
w2 D D, C-U). a

Next we consider how to “calculate” cohomology with compact support. For a locally constant sheaf
F of finitely generated A-modules on U%", the cohomological purity theorem [B1] 7.4.5 yields a short
exact sequence on %"
' 0— F = Rj.j*F — (F(-1),p)[-1] = 0.

Notice now that H2(U®" x, ke, Rj.(j*F)) = 0. Indeed, in terms of the diagram of inclusions

C-

b

we have _ . . N
HIU™ x B, Ria(5* F)) = H'(C*" x B* kn Rju (5" F))
= H'(C‘m X k%, RkL.jzl(j'F))
= HY((C — D)*" x4 k%, ju(j* F))
which implies the claim by virtue of lemma 8.2.2. We derive a long exact cohomology sequence
0= HIU™ x4 k%, F) 5 HY (U™ x4 k%, Rj.(5°F)) = H(D x4 k%, Fip)(=1) = H2(U x; k*, F) = 0.
Therefore the two-term complex placed in degrees 1 and 2
so(F) : HE (U™ x4 k*, Rj. (3" F)) - H(D %, k*, Fip)(-1)

calculates the H}(U®™ x; %“,F). The analogue of proposition 8.2.5 is valid for the functor F — *.(F),
with the same proof.

Definition 8.2.6. For A as above, let F be a locally constant sheaf of free finitely generated A-modules
on %", Then by proposition 8.2.5, the complexes *(F') and *.(F) consist of free finitely generated A-
modules. The Fuler characteristics x(U%" X, E“,F) and x.(U*" %y ke, F ) are the alternating sums of
the A-ranks of the components of x(F') and of *.(F) respectively.

Remark 8.2.7. (1) Of course, if each of the cohomology groups H*(U®™ x; E“,F), i = 0,1 is itself a
freec A-module, then the alternating sums defined above are equal to the literal alternating sums on the
cohomology groups themselves. (2) It can be shown (left to the reader) that the Euler characteristics do
not depend on the choice of the finite set of points D.
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8.3. Constructibility properties. In this and the following section we study some special features of
the Fourier transform on rank one vector spaces. Hence here the base variety S of section 7.1 is reduced
to a point and both E and its dual E' are affine spaces of dimension one, identified with (A} )*". The main
result of this section says that the Fourier transform of a meromorphically ramified sheal K on (A} )"
is locally constant outside a finite set of points S; moreover the set S can be completely determined in
terms of the ramification of K at infinity. Since we are interested only in geometric results, we can and do
assume that F is the formal multiplicative group Gy,. Our methed consists in studying in detail certain
one-parameter continuous deformations of some special local systems on the affine line (see lemma 8.3.3
below).

We fix an £-coefficient ring A and we denote by £y the rank one sheaf of A-modules associated to
the Lubin-Tate torsor £ and to a character ¥ : gpeo — A*. Let j : G — Al be the imbedding. We
choose lincar coordinates y and = on the first and second factor of A} x; Al and a linear coordinate ¢
on Aj. Then the dual pairing {,) of section 7.1 reduces to a map m : A} x; A, — A} defined by the
ring homomorphism k{t] — k[z,y] which sends ¢ to zy. For a complex K* of A-modules on (A})°", the
Fourier transform in degree 7 is then the functor

t }—I(K') - RH—I(}!(_P.K.@TIL'C)
where ¢, p are the two projections of A} x, Al on the two factors.

Lemma 8.3.1. Let f(t) = t" be a monic polynomial, seen as an algebraic map f : AL — A} and denote
by Ky the locally constant sheaf of free A-modules on (G x)°" associated to some tame representation y

“30f F1(Grm, ). Then HI((Gm)™ xx k%, Ly (f) ® Ky) is a free A-module and
4

! tk H((Gm )™ x4 B*, Ly (f) @ Ky) = deg(f) - tk(Ky).
* Proof. The isomorphism
HI(Gm )™ x5 k%, Ly (f) ® Ky) = HE(Gn )*™ x5 B, Ly ® fu(Ky)

reduces to the case where deg(f) = 1. Freenes follows from lemma 8.2.1.(3) which also shows that to
compute the rank we can assume that A is a field of characteristic £. By lemma 8.2.1.(2), after a finite
extension of scalars, we can even assume that the tame representation K, is absolutely irreducible. In that
case, it follows by standard modular representation theory that x is a character, i.¢. rk(X,) = 1. Finally
we are reduced to show that H}((G,,)®" X ’E“,L,‘b ® Ky) has A-rank one, which holds by proposition
8.1.3. ]

In the remaining part of section 8.8 we will switch to Huber’s theory of étale cohomology for adic
spaces. Formally this means that in place of a Hausdorff strictly k-analytic space X we consider the
associated rigid analytic variety, which is denoted s(X) in [B1] section 1.6. By [Hub](1.1.11) the category
of rigid analytic varieties over k is a full subcategory of the category of adic spaces over Spa(k, k°) (see
loc.cit. for the notation). Then, according to [Hub] proposition 0.7.15 one associates to the functor s a
morphism of sites

Ox 1 s(X)at = Xers

where s(X )4 is the étale topology of s(X) and X ; is a certain site on X (defined in [Hub] section 8.3)
with a natural morphism of sites Xs — X¢ ., which induces an equivalence on the associated toposes.

Huber studies the cohomology of sheaves on the site s(X). We will denote with the usual symbols
(Hi(s(X),-), R fi...) the respective functors defined as in [Hub]. Moreover, we will actually denote the
rigid analytic variety s(X') again as X.

A priori this notation could lead to some conflict with our previous use of these symbols, since in
general the cohomology of [Hub] does not agree with Berkovich’s theory. However, Huber proves that
there is agreement in a number of important cases. Notably, if f : X — Y is a closed morphism of
analytic spaces (see [B1](1.5.3iii)), then one obtains a natural isomorphism of functors

yoRfi — Rs(f)ioO%.
Moreover, for any X as above, any abelian sheaf F on X4 , and every n € Ny,
HMXg.4, F) = H*(5(X) s, 0" F).

Using these results, most of the results proved so far remain available after we switch to Huber’s theory.
We will leave to the referee the task of checking that in the following we make indeed a legal use of the
comparison theorems between the two theories.
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Lemma 8.3.2. Keep the notation of lemma 8.8.1. Then for all real numbers r large enough, the natural
morphism which “forgets supports”

HUDO,7) x5 k%, Ly (f) ® 1K) = HY(D(O0,r) x k¢, Ly(f) ® i)
iy an isomorphism. '

Proof. For any r > 0 we have a commutative diagram

HUD(O,7) xx k2, Ly (f) ® 1Ky) — HY(IXO, ) xx k%, Ly(f) ® 51Ky

HI(AL)™ xx k%, Ly (f) ® ji/Cy) ——> HL((AL)™™ x4 &%, Ly (f) ® 1Ky)

and for all  large enough, both maps @, and b, are isomorphisms, as one sees easily, since all these
cohomology groups have finite rank. Hence it suffices to show that « is an isomorphism.

By lemma 8.2.2.(3) we know that both groups are free A-modules, whose formation is compatible with
scalar extensions, hence to show that « is an isomorphism we can assume that A is a field of characteristic
£. By lemma 8.2.2.(2) we can also take a scalar field extension to reduce to the case when K, is absolutely
irreducible, f.e. it has rank one.

Suppose first that x is not the trivial character and let j' : A}, < P} be the natural imbedding. We

consider the following sequence of maps of complexes
Y

HLHN®IK) D GULH®HK) D RILLH(H®KY) T RiL(LH(N@1K) D BIL(Lo(£)ORIK):

By the Leray spectral sequence, the maps in cohomology induced by 8 and + are injective, consequently
we obtain imbeddings

HI(AL)™ % k%, Ly (f) @ 31Kx) < H' ((AL)*" xx k%, Ly (f) @ 51Kx) = H ((Gmok)*™ xx k%, Ly (F) ®Ky)-

By lemma 8.3.1 (and by Poincaré duality), the first and the third terms have the same rank, hence the
claim in case x is not trivial,
If x is trivial, we consider the short exact sequence

0= 77" Ly(f) = Lo(f) Q@ =0
which shows that
Hy (M), 31" Ly () = H' (AL, 515" Ly (f)) = Ho (A, Lo (f)) = H' (A, Ly (f)).
Now an argument similar to the previous case concludes the proof. O

Now, let f{y) = 3_; a;y?, gly) = > b;y7 be any two polynomials with coefficients a;,b; € k and
R > ( any real number. We consider the following diagram

(AL)or < (AL)*" x, D(0, R) —— D(0, R)

l“l.ﬂ.n

(Ay)e"

where pg nn{z,y) = f(y)+z-9(y) and pr, gr are the natural projections. Moreover, for any two positive
real numbers r > £ > 0 define U(f,&,7) C (A})°" as follows:

- if deg(f) > deg(g) then U(f,e,r) =U(r) =D, r);

- if deg(f) < deg(g) then U(f,e,7) = 0, r) — ]D(-adeg(g)ss)-
Notice that po g, coincides with the restriction of the multiplication map m : Ay x Ay — A}, hence for
f =0 and g(y) = y we recover the Fourier transform:

F(K) = lim Rori(ppk @ 15,0, C)-

Lemma 8.3.3. With the notation above, for any two real numbers r > € > 0 we can find Hy > 0 such
that the for all R > Rq the natural morphism

Or : R'qr(PRKy ® i} p L) = R qra(PRKx ® 1} g Ly)

restricts to an isomorphism over the open subset U(f,e,7).
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Proof. For any two real numbers B2 > R; > 0 we have imbeddings (and a projection)
(A}L)*" x B(0, R, ) —s (AL)e™ x D(0, Rp) ~ (Ap)*™ x ({0, Ry) — (0, Ry))
p»
(Ao ———— (A} xx P})m.

Set G = prKy ® p} g gLy- We obtain a morphism of exact triangles in the derived category:

mii"G inG > ji.i’G
(8.3.4) l l la
Rjp. 1j*G — Rjp.G — Rjp.i.i*G

where the map o is a quasi-isomorphism. Let U C (A})*® be any open subset. By applying the
triangulated functor Rg+ to (8.3.4) we derive the following equivalence
R'qr Gy ~ Rlqr, Gy <= Rlqry (33" Chu ~ R'ar,. (515" Gy

which says that the cone of 8g, depends only on the behaviour of the sheaf G on (A})*" x (D{(R2)—D(R; )).
Now, suppose that deg(f) = M > deg(g). Then for any » > 0 we can find Ry sufficiently large, so
that for all Ry > R; > Ry there is a commutative diagram

7 D(0,7) X (B0, R2) = B(0, Ra)) — = B0, 1) x (B0, Bz) — O, Fy))
15(8.3.5) iu‘!o.ﬂg.(} l“l.ﬂmﬂ
(A)e" (A})"

where fo(,y) = apy™ and B is an isomorphism. Then to decide whether 6 is an isomorphism it suffices
to check on the stalks over the points x € D{0,r). Finally, by quasi-compact base change we reduce to
the situation of lemma 8.3.2, which shows the claim in case deg(f) > deg(g).

For the case deg(f) < deg(g) = N, let go(y) = bay®™ and fi(y) = any™. Pick real numbers r > ¢ > 0.
Then, again for R; > Ry > Rp all large enough, we find a diagram like 8.3.5, except that we must take
U(f,e,r) instead of D(0,7) and py, r,,q, instead of sz, ry 0. Again we can check on the stalks, and reduce
to lemma 8.3.2 as in the previous case. 0

Theorem 8.3.6. Let K be a sheaf of free A-modules of finite rank on (A})*", which is the extension by
zero of a local system meromorphically ramified on the complement of a finite set of k-rational points.
Then FO(K) is locally constant on the complement of the finitely many k-rational points z,,...,x, €
(AL)°" such that the Swan conductor of (DK @ M*Ly)(z,yx (A} )en 18 lower than its generic value.

Proof. With the notation above, set G = pR K @ Hg, R',E,l,. To start with, we would like to find some
large open subsct U C (A} )*" over which the following map restricts to an isomorphism:

Or: RgrG - Rqgr.G.

An argument like in lemma 8.3.3 says that the cone of §p depends only on the behaviour of the sheaf K
on some annulus D(R) - D(r), and in particular we can assume that K is the extension by zero of a local
gystem on (G, )®", by replacing K with the canonical extension of K, (provided by corollary 5.1.21).
Then K will even be tamely ramified at 0. Let us introduce the map

Moo

YN AL o A yy
Clearly 8y~ is a direct summand of the map
fﬂ : R(Hn(l X ‘l,!)N)‘G b d RqR.(l X U‘)N)‘G‘

We know that for some N the sheaf o5 K is unramified at zero, and since by hypothesis it is meromor-
phically ramified at infinity, we have (by lemma 5.2.8)

bk =@ fi Lo
J

for some polynomials f;. Thus (1 x ¥n)*G =~ EBJ- l“}j.R.wan\l’ and we can apply lemma 8.3.3 which shows
that for all # > ¢ > 0 we can find Ry such that for all R > Ry the map £g restricts to an isomorphism
on the set V(r,e1) =[); U{fjmer).
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This in turns means that also fr is an isomorphism over V{r,e;). Now, let yy, ..., yn be the ramification
points of the sheaf K, contained inside (0, R). Let E(y;,ea) C D(0, R) be the open disc of radius £,
centered at the point ;. We can choose €2 small enough so that p5 g Ly is a geometrically constant sheaf
on each of the open subsets V(r, 1) x E(y;,€2) C V{r,e1)xB(0, B). Let W(eg, R) = D(0, R} ~J; E(y:, £2).
We have the usual projections

Vire1) < V(r,e1) x W(eq, R) —> W(ea, R).

By [Hub] theorem 6.2.2, we know that R'q.(pt K ® g r,, L) is a constructible sheaf. Since by hypothesis
K has only meromorphic ramification, this easily imnplies that also R!qiG is constructible on V (e, 7).
On the other hand, by [Hub] theorem 8.3.5 we know that R'q,G is an overconvergent sheaf, hence by
[Hub] lemma 2.7.11, R'q\G is locally constant on V(r,g;).

Finally, letting 7 — co and €1 = 0 we obtain that F°(K) is locally constant outside finitely many
points, as stated. By inspection, it is clear that these points are exactly those z € (A} )*™ where the Swan
conductor of the sheaf G| {z} (A} Jan drops from its generic value. O

Remark 8.3.7. Thanks to the remarks above, we see that theorem 8.3.6 also holds true in Berkovich’s
theory as well. I do not how to prove this theorem without making use of Huber’s theory.

8.4. Stationary phase. We return to Berkovich’s étale cohomology of analytic spaces. In this section
we establish our version of the principle of stationary phase.

We apply the constructions of section 4.3 to the pro-analytic space C(s) = PL(00). Let X denote the
pro—andlytlc space (A} X Pl) Xp1 P;(00). The sheaf mn* £ induces a sheaf on Xnm, which we will denote by

the s same name. Then for each i > 0 we may form Rt \I’,,m (m* L), which is a sheaf on X5 = (A} )" X§ %o,

A’ blt more generally, suppose that k is the completion of an algebraic extension of a complete subficld
k' which contains koo. All the varieties and sheaves introduced above are obtained by base change from
corresponding objects defined over &', and we can consider the functor R‘i,,w Ik

Proposition 8.4.1. With reference to the notation above, R“inm/k; (m*L) =0 for alli > 0.

Proof. The proof is basically a variation of the proof of theorem 7.1.6 (with the two affine axes swapped
in Al xx P} x; AL). Thanks to proposition 4.3.11, it suffices to consider the case k = k', and hence we
need only to study R'\Ifﬂm (m*L). We will show that the stalk of R\ 7. (mM* L) vanishes at, all points
s € (AL)®" x, k2. By definition the stalk (R*¥,,_ (m"L)), consists of a direct system of A-modules {M}
indexed by the ordered set of positive real numbers p. Hence it suffices to consider a given p and show
that M, =0.

Let Y = (A} x& P} x A}) xp1 Pi(00). We define a map 7 : Ap xx Py xi Ay — A} xx Py by letting
(z,y,2) = (z + z,y). Then 7 induces a smooth map of pro-analytic spaces Y — X which we denote
again by 7. Proposition 4.3.5 applies and we obtain

T3 (R, (m"L)) = R, (1, m" L),

ﬂoo
In particular

(8.4.2) (R'¥,,. (m"L))s = (BT, (17_m"L)) 0,5

Yoo
By (8.4.2) (see also section 4.3 for the notation) and a standard argument we obtain
M} ~ lim Lim H'(j7' Uz, (7*m" L)1)
TeI, Ur
where (7*m*£)r denotes the restriction of 7*m* L to (AL, )* xxp ¢(T) Xk, (A}, )*" and Ur ranges on all
the étale neighborhoods of (0,00, s) inside (A} )®" Xz E(00, p)rr Xir (A}, )*". Let Cr be the partially
ordered set consisting of all such Uz and let C = UTeZ,, Cr. We introduce the family C!’r consisting of all

the varieties of the form Br x, Wr such that

1) Br is an open disc in (A}‘T)“", of radius rg and centered at 0, and Wy -2) (H"LT X kg ALT)“" is an

étale neighborhood of (0o, ) € (Py,. X & AL )"

2) the image ¢(Wr) is contained in an open subset of the fortn B! X, N(p), with B’ an open disc of
radius rw around oo and N(s) some fixed open neighborhood of s;

3} the ratio rp/rw is equal to the constant &,

Lemma 8.4.3. For any real number 6§ > 0 the family C° = UTEI,, Césn is cofinal in C.

Proof. This is of course just a special case (up to swapping the axes) of lemma 7.1.7, with § = Speckyr. O
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- Fix a real number § strictly greater than p(1,t). Let Br X, Wr € C§ be any neighborhood as above,
and set Wy = Wrp X(pL jan t(T). In view of the lenma, the theorem will follow if we show that
T

(8.4.4) HY(Bp x Wr,(r"m*L)r)=0 (i >0).

Let pryy : Br x Wy — Wr be the projection. Define m’ : A} xi AL — Al by setting (y,z) = yz. An
application of the Yoga of torsors gives us the isomorphism

(r"m" L)1 ~ pri, £(m) ® pr3; L(m').

Now we can proceed exactly as in the proof of theorem 7.1.6 and conclude that Rpryg, (7*m*L)r = 0,
which, by virtue of the Leray spectral sequence for pr,,, implies (8.4.4). |

Next, let X be the P}(co)-space (P} x4 PL) xp1 Py{00) = P} x; P}(00) s0 that there is an embedding
of P}(co)-spaces X — X. We have two natural projections

(PLyon <2 — K —» PL(co).

Given a k-rational point s € P}, we will also consider the pro-analytic spaces P}(s) and 7,. For any
sheaf F of A-modules on (A})*" we will let F(s) = H%(7,, F,,) which carries a natural structure of
m1{7s, E)-module.
For a given sheaf G on (A} xi A}}*" we denote by G the extension by zero of G to (P} x AL)*"; then
#4G determines a unique sheaf on X,_ . We are interested in studying complexes of the form

it Ky =R¥, (pF @mL)
"where F is a sheaf on (A})*".

Lemma 8.4.5. Let F' be a sheaf of finitely generated A-modules on (A})*™ which is locally constant on
the complement of a finite set S C (AL)°". Set U = (A})*™ — S. Then K} vanishes on U x ke, If,
moreover, S C AL (k®) and F is the extension by zero of F|y then F(F) is a complez concentrated in
degrees 0 and 1, and F'(F) is supported on ua finite set.

Proof. Let Y be a P{oc)-analytic space, j : Y,,, — Y the open imbedding and i : Ysg — Y the
imbedding of the special fibre. Let G be a sheaf on Y, and H a locally constant sheaf on Y. Then one
has the standard general formula

(8.4.6) RV, (j*H®G)~i*H® RY,_G.

Let F be the extension by zero of F to (P1)*™; clearly p"F is locally constant on U x S. Then from
proposition 8.4.1 and (8.4.6) we derive

Ky =i Fy ® (RE,, (D) =0

which proves the first claim.

Assume now that F is extended by zero from U and S C A} (k*). By Poincaré duality and proper base
change, it is clear that F*(F) can be non-zero only for —1 €< i < 1. Since F is extended by zero from a
locally constant sheaf on U, it is also obvious that F~1(F) = 0.

We show that F!(F) is supported on finitely many points. The usual argument (sec e.g. the proof of
lemma 8.2.2) shows that we can assume A to be a field. Let T = {¢;, ...t } be any finite collection of points
in (AL)*", with the property that F'(F),, # 0 for all t; € T. Let K be a complete algebraically closed
extension of k large enough to contain the residue fields of all the points ¢;. Let m : (Al )™ — (AL)®" be
the base change morphism. Define y; : Ak — A} as z — t;z. By Poincaré duality we obtain

HOU m* Hom(F,A) @ uim*Ly-1) #0
for all ¢;. This implie‘s that 7% F contains @;pu] (1*Ly) as a direct summand. Since F has finitely generated
stalks, it follows immediately that the cardinality of T' is bounded, i.e. F'(F) has punctual support. O

Suppose that for a certain point s € PL(k) the stalk ', vanishes. The definition of R'if,,m being purely
local, it is clear that the stalk of K}, at s only depends on F;,, € I(n,, A).
By an argument like in the proof of proposition 4.1.7 we get a fully faithful functor

(8.4.7) Rep_ (m(ns,Z),A) = I, A) Vi V.
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Definition 8.4.8. For any point s € P}(k) let pr,, : 7, X 700 — 75 be the projection on the first factor.
The local Fourier transform at the point s is the functor

Fioucy)  Rep,, (11 (10,2), &) = Rep(m (e, Foc), A)
which sends a 7 (75, %, )-module V to H°(55, R' ¥, (pr;,ff ® (M* L), xames )

Theorem 8.4.9 (Principle of Stationary Phase). Let F be a sheaf on (A},)®", which is the extension by
zero of a locally constant sheaf of finitely generated A-modules, defined on the complement of a finite subset
S C A} (k) and meromorphically ramified around the points of S. Then there is a canonical equivariant
direct sum decomposition

FY(F)(00) = Byesu(oo) Froes (F(s)).

Proof. Let s € SU {co} and define ¢ : 1, xx Pi{00) = X as the map of P}(0o)-spaces induced by the
obvious imbedding. Notice that ¢ is a smooth morphism. Thus, from proposition 4.3.5 we derive

H'(¢p5Kp) = B'T,,_ (¢ (00 F @ mLy)) ~ F&™) (F(s)).

It follows from lemma 8.4.5 that, under the stated hypotheses, F}(F),,, =0, i.e. Fy(F),,, reduces to a
single ind-sheaf placed in degree zero. Hence the spectral sequence of corollary 4.3.7 gives

Fo(F)(00) = HY(SS, ¥y, (Fy(F)y.. ).

On thic other hand, from proposition 4.3.6 we derive

4

: R, (F(F)y.) = RY, AT, ,(0°F @ m*Lg)[1] > Rz, (K3)(1].
Frorit lemma 8.4.5 we know that the complex K% is concentrated on the set SU{cc}, therefore R'G, (K§)
vanishes for 7 > 0 and the claim of the theorem follows. |

Corollary 8.4.10. For all stable ind-representations V of u(n,,T,) represented by a finitely generated
A-module we have R*E¥,_(pr} V & (m* Lyl xune) vanish fori# 1.

Proof. 1t follows by inspection from the proof of theorem 8.4.9, by taking for F' the canonical extension
of V. O

Remark 8.4.11. The formula of theorem 8.4.9 holds for general locally constant sheaves of finitely
generated A-modules. A proof valid in this generality was given in [Ra3).

To conclude this section we propose to show how our local Fourier transforms honour their name with
a behaviour which, in many ways, mimicks that of their namesakes introduced by Laumon,

Proposition 8.4.12. For any s € PL(k) let M(s) be the category of stable continuous representations
of u(ns,,) into free A-modules of finite rank. Then F (8:09) 1ostricts to an ezact functor from M(s) to

Jdoe

the category of stable objects of Rep_ (71(700,Fco), A) whtch are represented by free A-modules of finite
rank. Moreover f,&f’jz) commutes w:th extension of scalars A — A’

Proof. Exactness is clear from corollary 8.4.10. Then the rest follows formally as in the proof of lemma
8.2.1. ]

Lemma 8.4.13. 1) Let V € M(3) be unramified, i.e. suppose that the p(n,,F;)-action on V factors
through the quotient Gal(k®/k). Then

F vy = 0.
2) If we denote by A the trivial representation of rank one, then
FL2(A) = A
Proof. For (1), we observe that
FEoRI V) = FSou Ay o v

which allows us to reduce to the case V = A; from lemma 7.1.4 we derive Fy, (0, )(00) = 0 and the claim
follows from theorem 8.4.9. Part (2) is dealt with in a similar way, by considering the {global) Fourier
transform of the extension by zero of the trivial sheaf Ag,, , and using theorem 8.4.9 to analyse the local
contributions at infinity. a
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For s € G & (k), let p, - A = Al be the map z — sz and set L(s) = ,us[l‘t.),,m This A-module is a
rank one object of M(s) of Swan conductor one. The translation map 7, : AL — A} defined by z = z+s
induces a morphism 79 — 7, and hence a group homomorphism

Tsu 0 (N0, T0) = (N5, Ts)
as well as a functor

7 M(s) = M(0).

Proposition 8.4.14. (1) If V € M(c0) is a tame representation, then ff;f;:o)(V) =0.
(2) If V € M(s) and s € Al (k) then

f&’ei‘Z)(V) 1,(901:2 (s V) ® L(—s).

Proof. For the proof of (1), thanks to proposition 4.3.11 we can base change everything to k%, at the
cost, of replacing everywhere the vanishing cycle functor with its generalization R@,,m k- We leave to
the reader to state the obvious variant of the principle of stationary phase for the more general functor.
Basically all the statements remain formally unchanged. Therefore we can assume that & = k@, in which
case R
T (s Too) = 11 (Gim ) 2= (1).

Next, by proposition 8.4.12 we can assume that A is a field and V is absolutely irreducible, hence of

rank one. The canonical extension of V is therefore a rank one sheaf of Kummer type Ky on (G x)*"
x}extended by zero to (A})°". The case of a trivial character has already been taken care of in lemma
*8 4.13. So we assume that x is a non-trivial character. Now, let E be an open disc in (A})*", centered

fat 0. Denote by K, the extension by zero of j,K,g. Then K, imbeds in j.K, and there is a short exact

sequence

0= K, = 7. = Ky = 0.
An argument as in the proof of lemma 8.4.5 shows that F(K} ) is a complex concentrated in degree zero,
and hence we obtain a short exact sequence:

0= FOK) = FO(.Ky) = FAUKY) = 0.

Let s € Gy, & (k) be any point. It is easy to.check that ,u,;;C;( is isomorphic to the extension by zero of
JeKyyuri g~ It follows:

HI((AL)™, KL ® i3 L) = Hi(u7 (B),5.Ky ® Ly).
From proposition 5.2.9 of [B1] we know that
HI(A)™ K6y © o) = lim, HiGsT (B, @ Ly).

Proposition 8.1.3(1) says that the left-hand side of this equation has rank one, therefore the limit is
already attained for some value |sq|. This means that on the complement U = (A} )*" — p;.' (E) we have
FUK I w = FUKy)w, and therefore FO(Ky )y = 0; in particular F°(KY),,, = 0. Next, notice that
the sheaf K is locally constant on the complement of a single point p {of type (2) in the notation of
[B1], paragraph 3.6) in (Al)9", namely the point corresponding to the sup-norm on the disc E (sce {B1],
remark 6.3.4). Therefore lemma 8.4.5 applies, and shows that K Ko i concentrated on {p,oo}. It is also
clear that the stalk of K} Ky OVer 0o is isomorphic to the stalk of K} x, over the same point. Now, the same

argument which was used in the proof of theorem 8.4.9 shows that fﬂ()C”)(oo) ~ HO((Pl)en, K,C,,) This

implies K}, = 0. It follows that also the stalk of Ky vanishes over 0o, and therefore 7 f;"foio)(ﬁx‘,,m)
vanishes, as stated.

For (2), let 7;V be the global extension of 77V, as provided by lemma 5.1.21. According to part (1)
and theorem 8.4.9, the only contribution to F§(V)(co} (resp. Fg(r;V)(00)) comes from F¢3,32)(V( )

{resp. 5,0,3'2)(1- V(0))). Proposition 7.2.2 allows to compare the two terms and yields the claim. O
Proposition 8.4.14 says that it suffices to study the functors J-'{ tz‘z) for the values s = 0 and s = oo to
know all of them.

Remark 8.4.15. If we take the formal multiplicative group G,, as the underlying Lubin-Tate group,
then the theory above can be refined by using the constructions of section 6.3. Suppose that a sheaf F is
defined over (the completion of) any algebraic extension ko of Q. In this case the principle of stationary
phase gives a canonical decomposition of the semilinear ) (100, Too)-representation which describes the
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asymptotic behaviour of Fy(F'), in terms of local contributions. In particular the local Fourier transforms
land in the category of these semilinear representations.

8.5. Behaviour at the origin. The setup for this section is as in the previous one: we consider a sheaf
K of free A-modules of finite rank on A!, which is the extension by zero of a meromorphic local system
on the complement of finitely many k-rational points. We want to understand the behaviour of FO(K)
around the origin 0 € (AL)°", i.e. we want to study the cone R®,,(K) of the natural morphism

K = Ry, (5" (5K) ® m" Ly)
where 5 : P} xx AL — Al is the projection and j : AL < P} the obvious imbedding. This is a complex
concentrated on P} = (PL xx AL) xa {0} and we remark that
(8.5.1) R, Ry, (5" (1K) ® m* Ly) = RT (7o, F (K)o [~1])
where as usual F(K),, stays for the stable ind-complex associated to F(K).

Proposition 8.5.2. With the notation above, R‘gﬂo (K) is a skyscraper sheaf concentrated at the point
™ € (P))*" xx k* and vanishing in degrees i # 1.

Proof. Let zy,..,z, € A} be the finitely many points where K, = 0. It follows from corollary 4.3.9
that R®,,, (K') vanishes outside {zi,...x,,00}. For any € > 0 let E*(0,¢) = E(0,¢) — {0}. We recall the
standard formula

‘%’ R, (0" () @ m* Ly)a, = im H (U Xp1 xs (Al X G ), p" K @ " Ly)
1 U

= ‘ . -
where U ranges over a certain projective system of locally algebraic neighborhoods of E(z;,€) x E*(0,¢).
If U is sufficiently small, m* L, is constant on U, hence we reduce to studying the cohomology group

H'(E(zi,e) X V,p"K)
for V ranging over the system of locally algebraic coverings of E* (0, ). By smooth base change, we need
only to understand H(E(z;,€) x; k%, K). Since by hypothesis K has only meromorphic ramification,
this group vanishes when € -+ 0. This shows that R®, {K) is concentrated at 50.

It is also easy to check that R°®, (K)s = 0. For degrees > 1, we observe that F(K),, is locally
constant and concentrated in degree 0, so that we can rewrite (8.5.1) as

(8.5.3) R¥(K)ss 2 RT (g, F (K)o [-1]) = H ™ (g, FO(K)o).

But according to lemma 4.3.10 the rightmost term in (8.5.3) vanishes for i — 1 > 0, hence R'®,,(K) =0
for i > 1, as stated. O

Definition 8.5.4. The functor (see (8.4.7) for the notation)
F) s Rep, (71 (Mos Foo), A) = Rep(ma (10, 0), A)

sends a 7 (Moo, Too )-module V to the my (19, To)-module H%(D, Rl‘f,,o (Pn.. (17) ® (M* L) noe x10))-

Theorem 8.5.56. The local Fourier transform J-'gl’fc;g) is an exact functor and for every meromorphic sheaf

K as in proposition 8.5.2 there is a four term exact sequence of stable w1 (ngy, To)-ind-representations
0 - HI((AL)™ xx K K) = FUK)(0) = Fin? (K(o0)) = H2((AL)™ x k%, K) — 0.

Proof. Since we know that F(K),, is concentrated in degree 0, the exact sequence above follows from
proposition 8.5.2 and the long exact sequence for vanishing cycles on proper varieties.

To show that 7;5,0?53) is exact, we use the canonical extension functor to reduce to a global question,

and then we apply proposition 8.5.2. d
Lemma 8.5.6. With the notation above, suppose that V is unramified. Then we have
0
Fend W) = v(-1)
(as usual (—1) denotes Tate twist).

Proof. Tt suffices to compute the global Fourier transform of the constant sheaf on (AL)%™ with stalk
isomorphic to V, and apply the exact sequence of theorem 8.5.5. a
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" Proposition 8.5.7. (1) .77( ,ac restricts to o functor from M(oo) to the category of stable objects of
Rep M(m (110, Z0), A) which are represented by free A-modules of finite rank. Moreover f&?ﬁ;g) commutes
with extension of scalars A = A'.

(2) If V is a p(neo, Teo )-representation with all slopes > 1 then }'gf’og)(‘./) =0.
(8) If V is a tame representation, then rk(}'fﬁog)( )) =rk(V).

Proof. (1) follows formally from the exactness of .7-_( ,oc , as in the proof of lemma 8.2.1(3).
To show (2), let. K be the canonical extension of N it follows from theorem 8.3.6 that F°(K) is locally

constant around the point 0 € (A})*", so the result is immediate from the exact sequence of theorem
8.5.5.

For (3) one reduces to the case k = ke using proposition 4.3.11. Thanks to (1) we can also assume
that A is a field and that V is absolutely irreducible, hence of rank one. Then the claim follows easily
from proposition 8.1.3(2} and the exact sequence of theorem 8.5.5 above. . [

Remark 8.5.8. It is also true that .’)‘-"‘(;fl;g)(V) is tame if V is, but the proof is more delicate than in the
“classical” case. We leave this for later.

Lemma 8.5.9. Let f be some polynomial in one variable and K, some tame locally constant sheaf of

free finitely generated A-modules on G,,,. Then H!((G,, )" xkE“, Ly(fHRK,) is a free A-module of rank
equal to deg(f) - rk(Ky).

"f)‘Proo)'. Let n = deg(f) and fo(y) = any™ so that f{y) = fo(y) + fi(y) where fi(y) has degree < n. We
) {fconsider the morphism

o gn i AL Xk AL 2 AL 0 (z,y) » o) + 2 A1)

Set K = R'qi(p"Ky ® nj, ;, Ly). Clearly Hi{(Gm )" x4 L Ly(f)oK,) ~ K{13. On the other hand
HI({(Gm)*" xi E“,)Cx ® Ly(fo)) =~ Koy and we know that this cohomology group is a free A-module
with the predicted rank, thanks to lemma 8.3.1. Hence it suffices to show that the sheaf K is locally
constant on (AL )*". To this purpose we apply lemma 8.3.3 to the case f = fp and g = f; and we argue
using Huber’s theorems, as in the proof of thcorem 8.3.6. 0

Theorem 8.5.10. Let (V,p) be a representation of (1ee, Too) in & free A-module V of finite rank, with
ull slopes < 1. Then .7-"?:"2)(1") is a free A-module of rank

rk( Tocnd (V)) = rk(V) - sw(V).

Proof. We can assume that V is irreducible of rank N. and that A is large enough so that, by virtue of
theorem 5.2.16 we can write V' = Ind‘g:v (M) where M has rank one, hence is of the form M = K, ® Ly (f)
for some tame character x and some polynomial f of degree equal to sw(V). The canonical extensions
YV and M of V and M are locally constant sheaves on Gy, related by ¢y M =~ V. Let j : G, — Al be
the imbedding. Then we have

FY(V)o = HE(AL™ xx K, 5iV) = HL((AL)™ x4 k%, M)
hence by lemma 8.5.9, .7-'3(3'!1/’)0 is free of rank equal to sw(V'). On the other hand, for the stalk at the
point 1 € Al we have
FOGV)y = HUAD™ xx k31V @ Ly) > HI (AL X1 k°, jigwa (M ® d3 Ly)
and again lemma 8.5.9 says that Fg(ng){l} is free of rank rk(V). But we know that }3(]’;1’) is locally

constant on (G, & )*", thus the claim follows immediately from theorem 8.5.5. O

8.6. The formula of Grothendieck-Ogg-Shafarevich. The main result of this section is the étale
analytic analogue of the formula of Grothendieck-Ogg-Shafarevich which computes the Euler-Poincaré
characteristic of a meromorphically ramified sheaf on a curve in terms of Swan conductors. For the proof
we reduce first to the case where the curve is the affine line, and then we apply the principle of stationary
phase to analyze the situation. To this purpose we must gather some preliminary information on the
local Fourier transforms of representations of p(7,,T).

Theorem 8.6.1. For any representation (V| p) of 11(mo,Z) into a free A-module V of finite rank, we have
k(FSN (V) = sw(V) + rk(V).
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Proof. We can assume that V is irreducible. Let V be the canonical extension of V, extended by zero to
(A})™, so that V,, is tamely ramified. By proposition 8.4.14 we have fﬁ)?’(v,,m) = 0. Hence by the

principle of stationary phase we obtain
0.
FoV) (o0} = FHw).
By theorem 8.5.5 we have

rk(F(V)(00)) = tk(H} ((AL)™ xx k%, V) + tk(F e (V(00)))

and from proposition 8.5.7 it follows that rk(]—"fﬁog (V(00))) = rk(V). An argument like in the proof of
theorem 8.5.10 shows that rk(H2((AL)*" xx k%, V)) = sw(V), which implies the claim. O

Let C be a smooth affine curve with completion C. We consider locally constant sheaves F of free A-
modules on C' which are meromorphically ramified around the finitely many points {z1,...,x,} =C —=C.
The Euler characteristic of the constant sheaf A¢ is also called the Euler characteristic of C and denoted
simply by x.(C). For any point 8 € C we obtain a finite rank representation of u(7,,%,) in the free
A-module F(s) whose Swan conductor we denote by sw(F(s)).

Theorem 8.6.2 (Grothendieck-Ogg-Shafarevich). With the notation above we have the equality

(8.6.3) Xe(C, F) = tk(F)xo(C) = D sw(F(z:))
=1
Proof By proposition 8.2.5 we can assume that A is a field, hence we can compute x.(C, F) as the literal

d]tornatmg sum of the ranks of the HI(C*" x;, k9, F). Let U be any dense open subscheme of C. One
checks easily that the formula holds for x.{U, F|U) if and only if it holds for x.(C, F). Hence we can

rc,movn any finite number of closed points whenever we wish to. Pick a finite morphism f : C - Pi
sufficiently general, so that f is étale around the points z;,...,z,. Let U be the open subscheme of C
obtained by removing all the fibres of f which either intersect the branch locus of f or contain one or
more of the points z;. Let V = f(U) C P} and set {21,...,2,} = C —U. Then f: U — V is a finite étale
morphism and we consider G = f,F'. Clearly G is locally constant on V™ and meromorphically ramified
at the points {y1,...,4m} = IP}: — V. By construction, we see easily that

(8.6.4) st st [+ F(yi))

i=1
We are going to show that the equahty (8.6.3) for x.(V, f.F) implies the same equality for y.(C, F). By
the remarks above we can instead consider x.(U, Fjy). Then we have

XC(U) =x':(5) -T
(8.6.5) Xe(V)=xc(P}) —

From Hurwitz formula, we derive the relation

(8.6.6) deg(f) - m —r = deg(f) - xo(Pi) — xc(C).

Taking into account that rk(G) = rk(F) - deg(f), the formula for x.(U, Fjy) follows by combining (8.6.4),
(R.6.5) and (8.6.6)

It remains to prove (8.6.3) for the case when A is a field and 5 : C < A} is an open imbedding. We
can even assume that F(oo) is unramified. Moreover, we can assume that F is geometrically irreducible,
so that either F is a geometrically constant sheaf or H(C®" x; ke, F) =0.

Formula (8.6.3) is trivial for a geometrically costant F', hence we reduce to the case H2(C®" x Lk, F)y=
0= HC™ x4 k¢, F) and we have to show that

rk(H)(C" x4 k%, F)) = st (z:)) = tk(F)x.(C).

From theorem 8.5.5 and lemma 8.5.6 we derive
rk(HH(C™ x k®, F)) = rk(F°(j; F){0)) — tk(F).
On the other hand, from theorem 8.3.6 we obtain
rk(FO(71F)(0)) = rk(F°(jiF)(c0))

and the principle of stationary phase can be applied to compute the rank of the right-hand side. We leave
it to the reader to verify that formula 8.6.3 follows by combining lemma 8.4.13 and theorem 8.6.1. O
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Remark 8.6.7. One may wonder whether the condition on the ramification on F is really necessary for
the finiteness of the cohomology. We will not attempt here a precise analysis, but we give an example to
demonstrate the general situation.

We construct inductively a sequence of polynomials in one variable f;(t) {( = 1,2,...) and positive real
numbers 1 < 12 < ... such that lim;_,, ri = 00 and lim;, f; = f is an entire power series on the
affine line (A})*". Suppose f; of degree ¢ and r; have already been constructed, with the property that
HI((AL)™™ xg ko, £(f:)) = HX DO, r:) xx k2, L(f3)) is a free A-module of rank equal to i — 1. Choose an
element § € k* of norm small enough so that |8 -r; < pi. Set fir1(t) = (1 + 6t)fi(t). Then it is clear
that

L(firD) o) = L(f)xo0,m)
and as a consequence we get an imbedding

HY((AL)™ < k%, LUfO)) = HI((A)™ %k k%, L(firn)):
On the other hand, the polynomial fi,,(#) has degree i + 1, hence by the usual argument (and by lemma

8.5.9) we find rypy > O such that H!(D(0,ri11) Xe &%, £(fir1)) is free of rank i. Clearly the sequence
Hi(), f2(t), ... converges to some f(t) and the cohomology of L(f) cannot be finitely generated.

8.7. Special calculations. As we saw above (theorem 8.3.6) the Fourier transform F{K) of a sheaf

K with meromorphic ramification on the affine line, is a constructible sheaf. However, we do not know

at present, whether F(K) has again meromorphic ramification. This is clearly the first important open

question in the theory, and can be translated into a problem concerning the local Fourier transforms of
“.a meromorphic representation. I would not be overly surprised, if it turned out that the answer to this
- question is not always affirmative. For this reason, I will refrain from stating a precise hypothesis, and
“'will place the whole issue under the general heading of “infomal conjectures”.

However, in this section we offer some pretty calculations, adapted from unpublished notes of Katz,
which could be interpreted as lending a modest support to our informal conjecture.

We start with some preparation. Let X be an affine smooth scheme over k, purely of dimension d + 1;
let C be an open algebraic smooth curve, geometrically connected and defined over k. Suppose that
f: X = C is a smooth affine morphism of relative dimension d. Now, let F be an analytic étale sheaf
of A-modules over X°®". Notice that X*" is o-compact, hence we can find an exhaustive sequence of
subspaces UneN X, = X°" as in definition 4.1.1.

Definition 8.7.1. With the notation above, we say that F is locally algebraic over X" if for all integers
n € N there exists some algebraic constructible sheaf F, on X such Fix, ~ (F"){Il;n'

We remark that, for any k®-rational point s € C, the natural action of 7\ (7,,T) on R f,(F)(s) restricts,
via (4.3.2) to an action of the group I, = m (77, T).

Lemma 8.7.2. Suppose that F is a locally algebraic and locally constant sheaf of A-modules on X°".
Suppose also that G = RAfi(F) is a constructible sheaf on C®" (i.e., it is locally constant of finite rank
outside finitely many k®-rational points). Then we have an injection

G5 <= G(s)"
for any k*-rational point s € C.
Proof. 1t suffices to show that H2(C°",G) = 0.
Claim 8.7.9. R fi(F)=0for all i < d.

Proof of the claim: For this it suffices to check on the stalks. By Poincaré duality, we are reduced to show
that H'(f~!(z), F) = 0 for all ¢ > d and any geometric point & of C*". For all integers n € N we let
Y, = X, N f~'(z). Then, by [B3] corollary 5.5, all the groups H*(Y,, F) are finite A-modules, thercfore
by Mittag-Leffler, we are further reduced to prove that H'(Y,,F) = 0 for all n € N and i > d. But since
by hypothesis, F is locally algebraic, this follows from [B6] theorem 6.1.

From the claim and the Leray spectral sequence for f it follows easily that H?(C°™ R*fF) =
H4(X°" F). But again, dualizing and applying [B6] theorem 6.1 we obtain that H3(Xe" F) vanishes
and the claim follows. |

For our applications, we will need a slight twist of lemma 8.7.2, i.e. we want to add a group action
to the picture. So, let T a smooth affine curve with an action ¢ : G — Aut{X) of a finite group G,
and suppose that there is a point co € T which is fixed by G and such that the G-action is free on the
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complement T =T — {oc}. Set C = T/G and let f : X — C be a morphism which satisfies the hypothesis
of lemma 8.7.2. Let fr : X xg¢ T = T be the base change of f and let g € G act on X x¢ T by the
morphism 1x x¢ o(g). This action makes fr a G-equivariant morphism. Finally, let j : X x¢cT = Y be
an equivariant morphism into a G-variety Y, such that there exists a smooth morphism f. fitting into a
commutative diagram

X X XGTQ-*?

(874) fl f’rl l?‘r
C~—"—17% T,
Now, suppose that F is an étale sheaf on X®" which satisfies the conditions of lemma 8.7.2. Then 7*(F)

is a G-sheaf on X x¢ 7. Suppose that we can find a G-sheaf F on Y such that 5*(F) ~ n*(F). In this
situation, lemma 8.7.2 yields a G-equivariant imbedding

(8.7.5) (R Floo = (B fru(m* F))(c0) o=

Let z be a coordinate on A} and let ¢ be the dual coordinate on (A}) ~ A}. Let K = k((1/¢)) be the
completion of the field of fractions of the local ring Op; 0o Let E(co) a disc of small radius p in (P})*"
centered at 0o, and let E* (00) = E(oo)—{00}. Let also K be some finite extension of K of degree N. The
imbedding K C Ky corresponds to a finite analytic morphism ¢ : E* (00) = E*{c0) of degree NV (for all
radiuses p sufficiently small). If & is algebraically closed, any such Ky is isomorphic to a field £((1/7))
whe};’é ¥ = (. By lemma 5.1.1 the map ¥n induces an injection Y. : T (Neo, ) < 71 (70, Z). Hence,
for any representation V' of 7 (7700, %) we can consider the induced representation from the subgroup
Im(zn.) to the whole group. We denote by

Ind s~ (V)
this induced representation. Clearly, if V is meromorphic (i.e. factors through the meromorphic quotient
141w, T)) then Indﬁ“" (V) will again be meromorphic.

Lemma 8.7.6. With the notation above, let x be a rank one meromorphic character of 7| (100, T) whose
Swan conductor is an integer o > 1 prime to N. Then Ind’,‘f" (x) is an absolutely meromorphic represen-
tation.

Proof. The argument is well known: the induced representation has all slopes equal to a/N. But since
(a, N) = 1, the existence of non-trivial subrepresentations would contradict the Hasse-Arf theorem 5.2.13.
O

Corollary 8.7.7. Suppose that k is algebraically closed. Let p be a meromorphic representation of
71(Too, E) for which there exists some N > 1 such that the restriction of p to the subgroup Im(n.)
contains as a subrepresentation a character x whose Swan conductor is an integer a prime to N. Then
p containg the representation Ind?’ (x)-

Proaf. By Frobenius reciprocity we obtain
Homm (oo ) (IndﬁN (X): p) =~ Homlmw,v,) (X: p][mwy_))-
Since, by lemma 8.7.6, the representation Indﬁ” (x) is lrreducible, the claim follows. O

We denote by K, the unique Kummer character (see definition 8.1.2) of order 2 (i.e. K$? is trivial).
Recall that for any morphism ¢ : X — A} we denote by £y (¢) the sheal ¢*Ly. Similarly we may write

Ka(9).

Proposition 8.7.8. Suppose that k is algebraically closed. Let f € k[x] be some polynomial of degree N.
Let Ky = k((1/7)) be the finite extension of K = k((1/()) such that f'(7)} + { = 0. Then we have

(8.7.9) Fioe N Ly(f(z))) = Ind ™ (Ka(£7(C)) ® Lo (£(C) — ¢+ £(Q)))-
Proof. In view of corollary 8.7.7 it suffices to show that there is a 71 (500, F)-equivariant imbedding
K2(f(0) ® Lo (£(Q) — ¢+ F1(Q)) = (= ()" Fu(Ly(f(2))(o0)

because then, the principle of stationary phase and theorem 8.6.2 imply that the two sides of (8.7.9)
are both free modules of the same rank. Let us introduce the morphism g : A} x, AL — A! defined by

g(z,¢) = f(z) — f'(¢). We obtain
(=1 () Fy(Ly(f(2) = Rpar(pi Ly(f(2)) @ Ly(~z - f'{x)}) = Rpalg™Ly).
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Let 7 : A} xx AL — A} be the translation map (z,¢) — (z + ¢,{). It follows
Bpa(g°Ly) = Rpa(1 9" Ly) = Ly(F(Q) = €+ f(Q)) ® Rpa(Ly(f(z + ) = FIO) — = - f/(OD.
Write f(")((:) = #8&‘)’(() Then we derive
Ly(F(Q) = - F(OY @ (= F () FulLy(f(z)) = Rpar( Ly (D =™ - FOUO)).

n>2

Let T be the ramified double covering of AL defined by T = Speck[(, £]/(f@(¢) — #2). The restriction of
T — A}l to some open subscheme C' C A} is a Z/2Z-Galois covering T — C; if co denotes the unique

point “at infinity” of T, we set T = T U {00} which is a smooth open curve with a Z/2Z-action fixing
the point co.

Now, set X = p3 {(C) and let f : X — C be the restriction of p;. We define fr as in (8.7.4) and we
take for Y the variety Al x, T. A Z/2Z-equivariant imbedding j : X x¢ T <+ Y is obtained by

{z,t) = (z-t,1).
Then we let F = Ly(3 52" - f™(()). To define the sheaf F on Y we introduce the morphism

tp:?—)A}'.givenby
F™()
oty 22+ S zn 2l g
(z,t) ( HXZ:S o

E'We let F = @"Ly, and it is easily seen that n*(F) ~ j*(F). Moreover, since £y is locally algebraic,
the same holds for F; i.e. we are in the situation of (8.7.4). The restriction of p to AL xj {oco} is the

"morphism z — 22, hence V = H}(f7 (00), F) has A-rank one and by (8.7.5) there is an imbedding
Vo Ly (F(0) = € S0 ® (= F(O) FulLu(f(2))(o0)
Hence for either t =0 or i = 1 we have
Ko (fEHON® @ Ly (F(C) = ¢ F1(Q)) = (=f'(2))" Fy( Ly (f(=)))(00).

We have to show that indeed i = 1, i.e. that the Z/2Z-action on V is non-trivial. This follows easily
from the following lemma 8.7.10. O
Lemma 8.7.10. The action of Z /2Z on H((A})"" x5 k®, Ly (x?)) induced by the automorphism z — —z,
is non-trivial.

Proof. The imbedding j : G — A} is Z/2Z-equivariant, therefore, from the exact sequence

0= 31(Ly(2*)i6, ) = Ly(2®) = Mgy = 0
we derive an equivariant short exact sequence
0= A = H ((Cruk)®™ xi k%, Ly(2?)) = H((AL) x4 k%, Ly(22)) = 0.

In particular, it suffices to show that the Z /2Z-action on H1({Gpm x)*"™ Xx %, L4(x?)) is non-trivial. But
by the Leray spectral sequence for the Galois Z/2Z-covering Gyn ;. — Gk : = — 22 we see that

(8.7.11) H (Gt )®™ x5 K%, Ly (2)2/ 22 = HY (G x)*™ x5 k*, L ()

and the right-hand side of (8.7.11} has rank one, which implies the claim. !

9. THE HOMOMORPHISM T

9.1. Definition and basic properties. From now on we restrict for simplicity to the Lubin-Tate torsor
arising from the multiplicative group Gy, ; morcover, the base field k is taken to be equal to the field kg
of section 2.1. Accordingly, the value p, equals p~ /=1 Also, G, equals the group ftpn of p"-th roots
of unity. We pick a non-trivial character ¥ of the group G = pipe with values in the ring of integers
O of the f-adic completion of Qr(yp=). Then, by composing with the natural projections we obtain a
compatible sequence of characters ¥, : fi,ee — Of€". If ¢ is the cardinality of the residue ficld of &, we
denote by E, the £-adic completion of the field Q¢ (gp,q'/?), and by O, the ring of integers in Ey. We
need the extension E, to make sense of the “half Tate twist”: the Tate module Ey (1/2) is the unramified
Galois representation on which Frobenius acts as multiplication by ¢=1/2.
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Let V be a k-vector space, ¢ : V — V' a symmetric k-linear isomorphism and f : V — k the associated
non-degenerate quadratic form. We take inspiration from formula (1.0.1) of the introduction to make the
following definition:

D(f) =lim HI™V (Ver x, B, £ Ly,) ®o B (dim V/2).

In this chapter we will be concerned with the study of the Gal(k® [k )-module I'( f), seen as a function
of f. With the present setup, this cohomology group carries also a semilinear action of Gal(k*/k), as
explained in section 6.3. Even though it may be interesting and worth exploring, we will not deal here
with this extra structure.

The next two results establish the elementary properties of I".

Lemma 9.1.1._For any f as above, T'(f) is a Gal(k®/keo)-module of rank one, which depends only on
the isomorphism class of f.

Proof. 1t suffices to prove the corresponding result for the torsion modules [, (f) = HI™V(Von x,
k%, f*Ly, ). Let g be another non-degenerate quadratic form, in the same isomorphism class as f. Then

we have g = f o A for some automorphism h: V = V. We get
HIMV (Vo 5, k9,97 Ly, ) = HEPV (VO X k07 f7Ly,) = HIWV (V9" 5, &0, £ Ly,)

which proves the second assertion. Since the characteristic of & is different from 2, we can always ﬁnd a
bamsz{el, .e€m} of ¥, such that the quadratic form f diagonalizes in this basis. Let V; fori =1,.

be the span of e;, and let p; : V — V| be the projection such that p,(e_,) = 6;;e;. Denote also by f, the
resmcmon of f to Vi. The yoga of torsors (for which we refer to [SGA43]) implies the formula

.f C :plfl£®"'®pmfmc'

Since HY(VA x k°, f1£) = HO(VA™ x, k2, f1£) = 0, it follows that HI (V" x, k9, £ £) # 0 if and only
if 7 = 1. Then, by Kunneth formula we have:

Ta(f) 2 T(f1) & ... & Tn(fim).

Hence, to prove the first assertion it suffices to assume dimV = 1. Let f' be the inverse transpose of f,
defined as in proposition 7.2.3. Combining proposition 7.2.3 and the involutivity theorem 7.1.2 we obtain

L(f) = L(f) @ Talf) S Tulf")
which implies that T',(f) is free of rank one. a

Remark 9.1.2. The proof also shows that the groups H:(V°" x, E“, f*L£) vanish for i # dim V.

Proposition 9.1.3. The map f — I(f) descends to a group homomorphism from the Witt group W (k)
of k to the group of isomorphism classes of rank one Gal(k®/ky)-modules (with multiplication given by
tensor product).

Proof. Again, we reduce easily to the corresponding statement for torsion coefficients. Let f: V — k,
g : W — k be two nondegenerate quadratic forms, and let f @ g: V & W — k be their sum. Denote also
by py (resp. pw) the projection of V@& W onto V (resp. onto W). From another application of the yoga
of torsors, one obtains

(9.1.4) (f® 9" L=py["LEpwg L.
Using (9.1.4) and the Kunneth formula it follows

Ta(f) @ Tplg) = HIMVHmW(V @ W) x, k%, pY f*L © plyg™L) = To(f © )

which says that I[',, induces a homomorphism from the monoid of isomorphism classes of quadratic forms,
to the group of isomorphism classes of Gal(k®/ke)-modules of rank one. Let fir : V @ V' = k be the
standard quadratic form induced by the dual pairing: fy{z,£) = {(z,£) for all z € V,£ € V'. We want to
show that I',,(fy) is the trivial Gal(k®/k)-representation. But this is nothing else than a special case
of lemma 7.1.4. Since the relations in the Witt group are generated by all the isotropic quadratic forms
of the form fy, the claim follows. d
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9.2. Computation of '(f). In this section we obtain some information on the Galois structure of I'(f).
For a € k%, let M, denote the f-adic representation of Gal(k®/k.,) corresponding to the character
o+ a(y/a)//a = %1 and let f, : k = k be the quadratic form z — az?.

Lemma 9.2.1. W:’t_h the neotation above
[(fa) = T(f1) ® M,.
Proof. Define a projective system of sheaves M, = {M, n}nen on (AL)2", by requiring fo. (D) /€") =
(0, /") ® My.n. Then we have B
HI((A) Xk k%, f1L4,) = HA(AD™ X k%, Ly, ® fae(02 /€)= HI((AL™ x4 K%, Ly, ® Man).
By M, =~ M, @ M,, the assertion follows. O

Given a general non-degenerate quadratic form f : V — k on a vector space of dimension n, denote
by D{(f) the discriminant of f. Set HP(V°e", f*L,) = lim HX(V, f* Ly, ) ®o Ex:

Proposition 9.2.2. With the notation above, let n = 2m (resp. =2m+1) and d = (=1)D(f). Then
we have
Ma(-m) n even

Hc (V yf C\b) jad { Hcl((Ai)nn X g Eu’cw @Md)(—m) n odd.

Proof. Let U = f~1{Gpx x k%) and W = f71(0). Then from Theoreme 3.3 and Table 3.7 of [SGA7]
Exp. XII Quadriques, we derive

Ma(—{m —1)) g=n-—1,neven

Th By ~ Ma(—m) g=n-1,nodd
BT finEx > Ex(=(n-1)) g=2n-2
0 otherwise.

From this and the projection formula we obtain
HE(U™, f*Ly) = lim H} ((Gmx % K, Ly, ® R fi1n(0/€")) @0 En.
n
Since W is the affine cone over the non-singular quadric @ C P(V) defined by f, we can compute

HI(Wer, f*Ly) = HI(W,E\) by using [SGA7] Exp. XV Formule de Picard-Lefschetz. We have
HI(W.E\) = H?O}(W, E,) by Prop. 2.1.2(ii) loc.cit. In the long exact sequence

= Hfo}(W,E,\) — HYW,E\) - HY(W - {0},E»\) — ...

we have HY(W,E,) = E, for ¢ = 0 and = 0 otherwise by Prop. 2.1.2(i) loc.cit. Finally, since W — {0} is
a G -bundle over Q, we obtain

Mg(—-(m - 1)) g=n-1,neven

My(—m) q = n,neven

q ~ .

HI(W,Ey\} ~ Ex(—(n - 1)) g=2n-2
0 otherwise.

From these computation we can easily deduce the claim. (Warning: in this proof we have used somewhat
freely an f-adic language: this is only a harmless abbreviation for some more cumbersome notation, and
does not imply that we rely on a formalism of analytic £-adic sheaves). O

Corollary 9.2.3. With the notation above
C(fa)®% >~ M_,
and the Gal(k®/ks)-action on T(f) factors through p,.
Proof. It follows immediately from proposition 9.2.2 and proposition 9.1.3. ‘ O

As an example we consider the classical case of the norm of the quaternion algebras. Recall that
for any pair of elements a,b € k, one obtains an associative k-algebra (9-,;3) of dimension 4, with basis

{1,i,j,k}, and multiplication fixed by the rules:

2:(]. j2=b ii:-—ji=k.

i
Let m be a uniformizing parameter for k. If a € (k°)* is not a quadratic residue modulo , then the
algebra (%) is a division algebra and any two division algebras arising in this way are isomorphic. We
denote by H this division algebra: it is the quaternion algebra over k. The algebra H is endowed with a
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norm map N : H = k. The norm map induces a homomorphism from the multiplicative group H* to
k*. In terms of the basis given above, one has

Ni-1+y-i+z-j+w-k) =z —ay? — x2? + arw?.
The following result is now a straightforward consequence of proposition 9.2.2 and corollary 9.2.3.
Theorem 9.2.4. The action of Gal(k®/ke) on ['(N) is trivial. O

In (We] it is proved that, with the notation of the introduction, the constant 7(N) equals —1. This
shows that Weil’s invariant is not a homomorphic image of our [.

9.3. The deformation from Kummer to Artin-Schreier. The aim of this section is to obtain an
explicit formula for the action of a Frobenius element on the stalks of a Kummer sheaf K,. This
formula will be applied in the next section, to determine the Galois action on ['(z?), thus completing
the computation started in section 9.2. The method followed here exploits the group scheme G(» of
Oort-Sekiguchi-Suwa, originally introduced in [0-S-§] for other purposes. Alternatively, the main result
of this section could be seen as a special case of the general formula of proposition 6.2.3, and could have
also been obtained just by quoting some of the classical Iwasawa’s explicit reciprocity laws, which would
have made the treatment somewhat shorter. Our choice is based mainly on a matter of personal taste.
We start with some notation. Let [p] : {1, p;) = D1, o7) the étale covering = — (z + 1)®. The étale
local sections of the map [p] gives us the usual Kummer torsor X, and therefore, given any homomorphism
¥ : pp =+ A%, the rank one sheaf of A-modules K. To study K, we introduce the group scheme G{*) of
[O-S-S]. We recall here the main features of this theory. First, for any t € k° = k{u,)°° we define

G = Speck?(z, 1/(1 + tz)].
It is shown in [O-S-S] that ¥ is a group scheme over Speck?, with addition law given by
(z.y)— tzy+z+y
. The ring homomorphism .
Ky, 7' = ki(z, 1/(1 + tz)] y—tr+1

defines a morphism of group schemes a; : 'Y = G ke which restricts to an isomorphism over the
generic fibre of Speckf. On the other hand, the special fibre of G(!) is the additive group G, ;-

In particular, let {, be a generator of the cyclic group pup; we define A = 1 - (,. The deformation from
Kummer to Artin-Schreier is the étale morphism w : G1**) o Q("’ of group schemes over &7 induced by
the ring homomorphism

kP[z,1/(1 + APx)] = kT(y, 1/(1 + Ay)) z= AP (g +1)P - 1).
One checks easily that there is a commutative diagram

G —2 > (A7)

Grn kg e, G kg

Let 0 be the canonical zero section of the group scheme G, i.e. 0 : Speck? — G'*") is induced by the
ring homomorphism

K[z, 1/(1 + APz)] = kf  ze—0.
Then clearly w=!(Q) is a reduced finite group scheme isomorphic to (Z/pZ)xe, with a map of group
schemes w™!(0) < G{*) given explicitly by the ring homomorphism

Bz, 1/ 1+ ) k@ ok = @G -1)/A
Let v : k3 = kS /k° =k = k be the map “reduction modulo k2°". The assignment { — v(( — 1)/X)
defines a group isomorphism o : yu, = F,, and we set ¥ = oo~ ! : F, = AX. Again, the étale sections of
w define a w=1(0)-torsor, and via the character ¥ this gives rise to a locally constant sheaf of A~-modules
of rank one on the étale site of G(**}, which we can denote by Gz By the remarks above it is clear that
the restriction of Gz to G, ; = =G xpo k is nothing else than the Lang torsor usually denoted £g. On
the other hand, we have

(ax Xk k1) Ky = (GF)1g0m g b, -
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Let z € (1, p{')(k1) be any k,-rational point. We can see = as a morphism z : Speck; — Gz, and
clearly we can find a unique morphism % : Speck? — G{*") which fits into a commutative diagram

Speck; - Speck} ——— g(3*)

Gm,le Gm,k‘; .

Let Fr denote any lifting of the canonical Frobenius generator on Gal(k®/k), tris, the trace for the
residue field extension F, C k and denote by Tr(Fr, M) the trace of Fr on the Galois module M.

Proposition 9.3.1. Letz € D0, p)(k1) be any ki -rational point. Then the stalk (Ky), is the unramified
A-representation of Gal(k§ /ky) such that

Tr(Fr,(Kg)z) = ib‘(tr;/l,yu((l — )/ "))

* Proof. The restriction z*(Gy) is a locally constant sheaf on Speckf, corresponding to some unramified
representation of Gal(k¢/k;). For any z as above we derive

Pltryp v((z - D/ANT = T(Fr, (Lgu(a-1y/8) = TH{FREGy) = Te(Fr, (Ky)s).
O

,9.4. Quadratic Gauss sums. In this final section we obtain an explicit description of the Galois action
‘on ['(z?), thus complementing proposition 9.2.2. Unfortunately our method works only when the residue
characteristic is different from 2. Therefore in this chapter we assume throughout that p is odd.
Let f) : A = A! be the quadratic form in one variable z — z2. Let D(r) be the closed disc of radius
7 in (A})®", centered at the origin and 7 : (A})*" = B(r) — (A})°" the imbedding of the complement
of D(r). Suppose that the restriction of f;L, to D(r) is not the constant sheaf. We derive an exact
sequence in cohomology

HI((AL)™ x B, fTLy) = HY(D(r) x4 k% f7 L) = H2(((AL)™™ — D{r)) xx K%, f1Ly).

By Poincaré duality H2(((A})®" = B(r)) xx k%, f{ L) =~ Hom(H°(((A})™" — D{r)) xx & f3£3"),A) = 0.
An argument like in the proof of lemma 8.2.1 shows that all these groups are free A-modules, and therefore
HY(AL)™ xy ke, frLy) = H (D(r) x1 k%, f7Ly) if and only if H! (D(r) x& ke, frLy) # 0. Hence, let us
assume that r is large enough, so that H!'(D(r) x ke, fiLy) # 0. In this case,a little juggling (sce the
remarks in section 8.3) shows that the group H!((A})®" x« E“,f,’ﬁ“ computed in Berkovich’s theory
coincides with the group H! (D{r) x4 ke, frLy) computed in Huber’s theory.

Hence in the following we unll switch again to Huber’s theory. This change is not strictly necessary,
but in our view it simplifies the cxposition (and it also shows once more, how much more desirable would
have been to use Huber’s theory consistently throughout the paper).

Set ) = p:m. We will show that indeed H!(D(ry) xx E“,fl‘ﬁ.;,) does not vanish.

Let 7 : (0, p1) — D(1, p1) be the translation map £ = z + 1 and € : {0, p; ) — (1, p7) the analytic
isomorphism z — eP*. Looking back at section 2.1 we obtain easily the equality

[pleT =€g0A.
We derive an isomorphism of rank onec sheaves of A-modules:
(9.4.1) E‘K:,p ~ E‘puxo'pl).

Let a : D(O,P:ﬂ) — I{1,p%) be the morphism z — 1 + pz?. The morphism f) restricts to a map
fi: YO, p:/ 2} = D{0, p1) and by a standard calculation we can find an analytic isomorphism (at least if
the residue characteristic is odd) 8 : D(0, p}/ %) 5 (o, pi/ %) such that
aof=cof.
Then from {9.4.1) it follows
[ily =B 0a"Ky.
In particular we have, for all integers ¢ > {}

HID(O,r1) xx K, £ Ly) = HAD(O,71) x k%, 0" Ky)
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After base change to the overfield K = k;(A!/?) we can find a formal model D for the analytic variety
(0, pi/ %); the simplest such D is given by SpfK°{T }, whose special fibre D, is the affine line over the
residue field k. Denote by X the scheme Al... We can realise D as the completion Xof X along its
closed fibre X, = D,. We observe that the sheaf a"Ky is the restriction to I(0,r;) of an algebraic
constructible étale sheaf defined over the generic fibre X, of X. Notice also that the set of K-rational
points D = (0, r; )(K) is a compact Hausdorff topological group, and denote by dyu the invariant measure
on D, normalized so that the total mass is equal to one. We introduce a A-valued function

@ :D(0,m)(K) 2 A T -Iz;(trE/F’ (v(p- 22/ ).

Theorem 9.4.2. Let H denote the open subgroup Gal(k® /K (ppe)) of the Galois group G = Gal(k®/kss)-
The G-action on the A-module ['(x?) restricts to an unramified action of H, and we have the following
trace formula for the action of any lifting of the Frobenius generator to an element Fr e H

Te(Fr,T(z?) = ¢~1/? [ o dy
D

Proof. Let RY,, : D+(X,7, A) = D*(Xs, A) be the usual nearby cycle functor; by [Hub] theorem 5.7.6 we
have an isomorphism
HY(D(0,r1) % k%, a*Ky) = Hi(Dg, R¥,(a"Ky)).

Let % € D5(k) be any k-rational point. The stalk (R¥,(a*Ky))z is a complex of A-modules with an action
of G_a‘l(K“/K). Let B{z,r) C D(0,r,) be the open disc, centered at some k-rational point z € D(0,r,),
and','f:onsisting of all the points which specialize to T (in Huber’s notation, this is the analytic variety

b

A7H({Z})). According to [Hub] theorem 5.7.9 we have
¥ (R, (" Ky))z ~ HiE(z,r1),a"Ky).

-

The restriction of a*Ky to E = E(x, r, } is geometrically constant, hence, if Ag denotes the constant sheaf
of A-modules on E{z, ), we have

s

a'-C,ME o~ AE @ (K¢)a(x).
Then the trace formula of the claim follows easily from the remarks at the beginning of this section, and
from proposition 9.3.1. |

Acknowledgments

After almost three years of tinkering and tayloring, this work has ended up locking a bit like an anthology
of several authors: section 3.2 is entirely due to Roland Huber (with the sole exception of remark 3.2.16);
Gerd Faltings contributed the proof of proposition 6.1.4; section 8.7 is adapted from unpublished notes
of Nicholas M. Katz and a referee has suggested some nice improvements which I have adopted in what
is now section 9.2. It is a pleasure to be able to acknowledge such a qualified team of “assistants”.

Furthermore, I would like to thank Alexander Beilinson for a wonderful summer at the Moscow Math-
ematical Institute in 1992; the core ideas contained in this paper were slowly developed during and after
that visit, and became my PhD thesis ([Ral]). I also owe to David Kazhdan, Peter Schneider, Francesco
Baldassarri, Marc Levine, Francois Loeser for much needed encouragement and interesting conversations
on the subject, to Vladimir G. Berkovich, Nicholas M. Katz for replying to my e-mails, and to Noriyuki
Suwa and Tsutomu Sekiguchi for keeping me up to date on their work. I also benefited from conversations
with Ulrich Stuhler, Siegfried Bosch, Gerd Faltings and Roland Huber. Finally, I thank Hélene Esnault
and Eckart Viehweg for their most welcome invitation to spend one year at the University of Essen, where
[Ra2] was completed; their forthcoming and congenial attitude towards newcomers made for a pleasant
and productive stay.

) REFERENCES

[BI] V. BERKOVICH, Etale cohomatogy for non-archimedean analytic spaces. Publ. Math, THES 78 (1993).

[B2] V. BERKOVICH, Vanishing cycles for non-archimedean analytic spaces. To appear in J. Am. Math. Soc.

(B3] V. BERKOVICH, Vanishing cycles for formal schemes. Inventiones Math. 115 {1994) pp.539-571.

[B4] V. BERKOVICH, Spectral theory and analytic geometry over non-archimedean fields. Math. Surveys and Mono-
graphs 33 (1990).

[B5] V. BERKOVICH, On the comparison theorem for étale cohomology of non-archimedean analytic spaces. Jsrael
J. Math. 92 (1995) pp. 45-60.

[B6] V. BERKOVICH, Vanishing cycles for formal schemes. 11. Inventiones Math. 125 (1996) pp. 367-390.

(BGR]) S. BoscH, U. GUNTZER, R. REMMERT, Non-archimedean Analysis. Springer Grundichren 261 (1984).

{Bou] N. BOURBAKI, General Topology - Chapters 1-5. Springer Verlag (1989).

[Bry] J.-L. BRYLINSKI, Transformations canonique, dualité projective, théorie de Lefschetz, Transformations de
Fourier et sommes trigonométriques. Asterisque 140-141 (1986) p.3-134.



[Fr]
[Gro]
[Hub]

(deJ]

[FP]
[Kal]
(Ka2]
[Ka3)
[Kad]
[Ka-La]j

(La]
[Lau]

[LT)
[Mal]
(Mi]
[0-5-5)

[Ral]
[Ra2]
(Ra3]

. [8GA4]]

SGAT)
[Wal

[We]
[Wi]

ON A CLASS OF ETALE ANALYTIC SHEAVES 3

A. FROHLICH, Formal groups. Lecture Notes in Mathematics 74 {1968),

A. GROTHENDIECK, Sur quelques points d’algébre homologique. Tohoku Math. J. 9 (1956).

R. HUBER, Etale cohomology of rigid analytic varieties and adic spaces. Preprint University of Wuppertal
(1995).

A.J. DE JONG, Etale fundamental groups of non-Archimedean analytic spaces. Comp. Math 97 (1995) pp.89-
118.

J. FRESNEL, M. VAN DER PUT, Géométrie Analytique Rigide et Applications. Progress in Math. 18 (1981).
N.M. KATZ, On the calculation of some differential Galois groups. fnventiones Math. n.87 (1987) pp.13-61.
N.M. KATZ, Gauss sums, Kloosterman sums and monedromy groups. Princeton Univ. Press 116 (1988).
N.M. KATZ, Travaux de Laumon. Sem. Bourbaki 691 (1987-88) pp.115-132.

N.M. KATZ, Exponential Sums and Differential Equations. Princeton Univ. Press 124 (1990).

N. KaTz AND G. LAUMON, Transformation de Fourier et majoration de sommes exponentielles. Publ. Math.
IHES 62 (1985).

S. LANG, Cyclotomic fields T and I1. Springer GTM 121 (1990).

(5. LAUMON, Transformation de Fourier, constantes d’équations fonctionelles ¢t conjecture de Weil. Publ. Math.
1HES 68 (1987).

J. LUBIN AND J. TATE, Formal complex multiplication in local fields, Ann. of Math. 81 {(1965) pp.380-387.
B. MALGRANGE, Equations Differenticlles a Coefficients Polynomiaux. Birkhduser (1991).

J.S. MILNE, Etale cohomology. Princeton Mathematical Series 33 (1980).

F. OorT, T. SEKIGUCHI, N. SUWA, On the deformation of Artin-Schreier to Kummer. Ann. scient. Ec.
Norm. Sup. 22 (1989) pp.345-375.

L. RAMERO, Ph.D. Thesis. Massachusetts Institute of Technology (1994).

L. RAMERO, An £-adic Fourier transform over local fields. Preprint Unfversitat Essen (1995).

I.. RAMERO, On a class of analytic étale sheaves. Preprint MPIM-Bonn (1996).

P. DELIGNE ET AL., Séminaire de Géometric Algébrique; Cohomologic étale. Lecture Notes in Mathematics
569 (1977).

P. DELIGNE AND N. KATZ, Seminaire de Geometrie Algebrique; Groupes de Monodromie en Geometrie
Algebrique. Lecture Notes in Mathematics 288 (part I), 340 (part II).

L. WASHINGTON Introduction to cyclotomic fields, Springer GTM 83 (1982).

A. WEIL, Sur certain groupes d’operateurs unitaires. Acte Math. 111 (1964).

A. WILES, Higher explicit reciprocity laws. Ann. of Math. 107 (1978) pp. 235-254.

LORENZO RAMERO, MAX-PLANGK-INSTITUT FUR MATHEMATIK, GOTTFRIED-CLAREN-STRASSE 26, 53225 BORN
E-mail address: ramerofmpim-bonn.mpg.de



