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1 Introduction

Let C be a compact Riemann surface of genus ¢ > 1. We embed C into a projective space P*~9 by a very
ample line bundle L of degree n > 2g + 1:
‘I)|L| :C =PI

We denote by Cy, the image of ®||. Let (P"~9} be the dual projective space of P*~9, and let Ci, C (P"~7) be
the dual hypersurface of Cy; that is,

Cp = {H € (P"9Y; H does not intersect O}, transversely}.

The purpose of this paper is to calculate the fundamental group of the complement to this dual hypersurface.
The idea of the calculation stems from [Z], where the fundamental group of such complements was calculated
in the case g = 1.

Let Pic™(C) be the Picard variety of line bundles of degree nn on C, and let S*{C) be the symmetric product
of n-copies of C, which parameterizes all effective divisors on C of degree n. Then there exists a natural
homomorphism :

$: S™(C) — Pic"(C)
which maps a divisor D to the associated line bundle Oc (D). Let V € 5"(C) be the image of the big diagonal;
Vi={(z1,...,zn) € S*(C); z; =z, for some i # j }.

The fundamental group of the complement S™(C) \ V is, by definition, the braid group B(g,n) = m By ,C (in
the notation of [B]) of C with n strings.

Theorem 1 For a general line bundle L € Pic*(C) of degree n, the fundamental group m ((B"¢Y \ C1) is
isomorphic to the kernel of the natural homomorphism

¢, : mSMCO\V) — m(Pic™(C)) = H(C;Z)
induced by the restriction ¢' of ¢ to the complement S"(C)\ V.
We denote the kernel of ¢, by Gy ..

Theorem 2 The group Gy n, n > 29 + 1, is generated by n + 3g — 1 generators. Denote these generators by

C2,C4y ... C29-4,C2p-2,
G2g, G294ty --- 1y On-2,8n-1;
N 9365+ - ) 929-3,4,55929—-1,i5 > 1,7=0,1.



The set of defining relations consists of

[cox,ct] =1, | k—1]#1;
[cu,g;,.-,j]=1, ‘i,j=0,1, Zk#lil;
[car, g} =1, (2k,1) # (29 - 2,29);
(c2k—2C2kC3h—3): J2k—1,i) =1, ,7=0,1, 2<k<g-1;
(CQg—ZQQgC;gl_z):g2g—1,|’,j =1, 1,7=0,1;
(926—1,4,5,92—1,:5] =1, ,j=0,1, k#1;
[92k—l,i,jigl]=15 i$j=031, 122k+1;
fgx, 0] =1, | k~1]#1;
€2i€2i+2€2i = C2i-+2C2iC2i+2 » 1<i<g—2
C2kG2k+1,i,C2k = G2k+1,i,jC2k02k+1,i,7 » 1,7=0,1, 1<k<g-1;
C29-2829C29-2 = J24C29—-2024 5
92¢929—1,i,j92¢ = G29—1,i,j929929~1,i,j » ,7=0,1
GiGi+1i = Gi+19iGi+1 29<i<n—-2
(925+1,1,092521,0,0€25)% = (C2592j%1,1,0925£1,0,0)° » 1<j<g-1
gzji1,0,192j11,1,162j)2 = ((!23‘.(123‘:i:1,0,1gz_;‘;izl,1,1)2 ' 1<j<g-1
92541,0,192j4+1,0,062;)% = (€2j92j41,0,19241,00)% » 1<j<9-1

929—1,0,1929—1,1.1929)2 = (929923—1.0,1929—1,1.1)2i

929—1.0.1929—1,0,09211)2 = (923929—1,0,192g—1,0.0)2 )
€2 C29-292¢ " In—-19n-1"" - 929(929—1,0,1929~1,1,192~1,1,0920~1,0,0) €22
T (93,0,193,1,193,1,093,0,0)02 (91,0.191,1,191,1,091,0,0) =1.

(
(
(929—1,1,0g29—1,0,0929)2 = (929929—1,1,0929—1,0,0)2i
(
(

Proof of Theorem 2 is based essentially on the ideas contained in section 2 of [Z]. By this reason, we advise to
look through section 2 in {Z] before reading the proof of this Theorem.

Let pr : Cp, — P? be a general projection, and denote by C} its image. Then the dual curve (C}} C (P?Y
of C}, is nothing but a general plane section of Cyr. Therefore, we have the following theorem as an easy
consequence:

Theorem 3 For a general line bundle L € Pic"(C) of degree n, the fundamental group (P2 \ (C}) ) has the
same presentation as that of Gy, in Theorem 2.

The contents of this paper are as follows. In section 1, we prove Theorem 1. The main idea is to apply an
analogue of [Sh, Theorem 1] to the pull-back of ¢’ by the universal covering of Pic"(C). In section 2, we recall
some properties of the presentations of the braid group B(g,n). In section 3, we prove Theorem 2 by applying
Reidemeister-Schreier method and by reducing general case to the case considered in [Z].

We would like to thank Max-Planck-Institut fiir Mathematik in Bonn for providing us with excellent research
environment.

2 Proof of Theorem 1

Since n > 2¢ + 1, the morphism ¢ is a fiber bundle with fibers isomorphic to P*~9. For L € Pic™(C), we
denote by P(L) the fiber ¢—!(L), which is canonically isomorphic to the projective space P.(H°(C, L)) of all
lines in HY(C, L) passing through the origin. The embedding morphism &,y is, by definition, a morphism into
the dual projective space P(LY = P,(H%(C, L)). Therefore, we can consider the dual hypersurface Cy, to be a
hypersurface in the projective space P(L) in a natural way. It is obvious that

Co=PL)NV. (2.1)

By Nori’s Lemma [N, Lemma 1.5 (C)], we have an exact sequence

m(B(L)\ C1) — m(S*(C)\ V) — m (Pic*(C)) — {1}



for a general L € Pic"(C). Therefore, the point of the proof is to show the injectivity of the homomorphism
m (P(L)\ CL) = 7 (S™(C)\ V) induced by the inclusion of a general fiber of ¢'. Let u: C? — Pic™(C) be the
universal covering of Pic"(C). We define £*(C) and V by the following fiber products:

e - ©
ool
S"C) — Pic*(C)

and

Vv — ¢
L ol
|4 :Ij Pic™(C).
This V is an analytic divisor of £"(C). Then we have
m(EMCY\V) = Ker(g, : m(S™C)\ V) = m(Pic™(C))). (2.2)
Claim 1 For all L € Pic*(C), the hypersurface Cy, is reduced of constant degree 2(n + g — 1).

To prove this claim, we choose a linear subspace P*~¢73 in (P(L)) of codimension 3 which is in general position
with respect to Cp. Consider the projection pr of Cy, to P? with the center being this P*~9~3, We fix a general
point on P? and take the pencil P of lines passing through this point. This pencil P yields a line in P(L) whose
point corresponds to a hyperplane of (P(L)} spanned by the P?~9=3 and a member of P. The intersection points
of this line with C, correspond to the lines in P which are tangent to the image pr(C},) of C}, by the projection.
Therefore the degree of €, is equal with the degree of the dual curve of pr(CL). Since n > 2g + 1, Cy is
non-singular. Since pr is a general projection, pr(Cy) is a curve of degree n with nodes as its only singularities.
The number of nodes is (n — 1)(n — 2)/2 — g. Thus, by Pliicker formula, its dual is of degree 2(n + g — 1).

Now the holomorphic map ¢ : £*(C) — €7 is a fiber bundle with fibers isomorphic to P"~9. Therefore,
there exists a global trivialization
ohC) = PTIX Y (2.3)

over C#. We fix this analytic isomorphism once and for all. Let W be the analytic divisor of P9 x (¢
corresponding to V via this isomorphism. For a point A of €?, we denote by W(A) the intersection of W with
P"~# x {A}, and consider it as a hypersurface in P*~¢. Tt is obvious that W () is projectively isomorphic to
uf{A)r
Now we shall prove that, for a general A € {7, the inclusion induces an isomorphism

mPPIANW) = m (PP x CO)\W). (2.4)

This isomorphism, combined with (2.2), gives us the hoped-for isomorphism.

The proof of the isomorphism (2.4) is quite similar to the proof of [Sh, Theorem 1]. The reason why we
cannot apply [Sh, Theorem 1] to our situation is that the divisor W on P"~9 x €F is not algebraic but only
analytic. Hence we need to modify some parts of the proof in [Sh].

To be compatible with the notation of [Sh}, we denote by A the affine space €, and by p the projection
from (P?~9 x A)\ W to A. As in [Sh, p.518], we construct the following data,;

e a closed real semi-analytic subset ¥ C A of real codimension > 3,
¢ a sequence of classically open subsets Uy C Uy C -« - such that U2, U; = A\ 2, and

e sections s; : U; = p~1(U;) of p over U;.



For a point a € A and a closed subset I' C A, we use the symbols R,([) C A and R,(T) C S, in the same
meaning as in [Sh, p.519]. Suppose that I' is a closed analytic subset of complex codimension > ¢ in A. Then
Ro(T) is a closed real semi-analytic subset of real codimension > 2¢ — 1 in A, while R,(T) may fail even to be
closed in the (2g — 1)-sphere S;, and this latter is the main reason why we have to rewrite the proof in [Sh, §2].

For a positive real number r and a point b € A, we denote by I'{b,r} the intersection of T with the closed
ball of radius r with the center b. Then R4(I'(b,)) is a closed real semi-analytic subset of real codimension
>2c—-1in S, for any r € Ryg and b € A.

Since the projection S™(C) \ V — Pic™(C) is algebraic, there exists a Zariski closed subset & C Pic"(C) of
codimension 1 such that S*(C)\V — Pic"(C) is locally trivial (in the category of differentiable manifolds) over
Pic"(C)\ A. Let D C A be the pull-back of A by the universal covering u : A — Pic™(C). For a line A C P*~¢
and a point z € A, we put

Dy {X € A; A does not intersect W(A) transeversely},
D, = {deA;ze WA}

.

Then both of Dp and D, are closed analytic subsets of A of codimension 1 or possibly 0. We shall prove the
following:

Claim 2 Ifz, A and a point 0 € A are chosen appropriately, then Ro(D) N Ry,(Da) N R,(D;) is 6 closed real
semi-analytic subset of real codimenston > 3 in A.

After proving this claim, we can construct the hoped-for data by applying the argument in [Sh, p.521-522)
verbatim.

Proof of Claim 2. It is enough to prove that, if z, A and o are chosen appropriately, then EO(D {o,7) N
Ro(Dalo,m)) N Ro(Dz{0, 7)) is a closed real semi-analytic subset of real codimension > 3 in S, for all r € Ryo.

The number of the irreducible components of D is at most countable. Let D;, Ds, ...be the irreducible
components of I, and let A; be a point on D;. By Baire’s category theorem, P"=9 \ (U;W(};}) is non-empty.
Let y be a point of P*~9\ (U;W (X)), and put

Gy = {A € Grass(P',P"79); y € A}.

Since A; € Dy, D, is a closed analytic subset of codimension 1 in A.
The number of the irreducible components of Dy is at most countable. Let Dy, 1, Dy 2, ... be the irreducible
components of Dy, and let Ay ; be a point of D, ;. We put

Fyi={AeGy; ACW(), )}
Then T, ; is a Zariski closed subset of codimension > 1 in G,. We also put
[; := {A € G,; A does not intersect W();) transeversely }.

Since y & W();) and W(X;) is reduced by Claim 1, [; is a Zariski closed subset of codimension > 1 in G.
Hence, by Baire’s theorem again, the set

Gu \ (Uri u Urv.j)

is non-empty. We choose a line A from this set. By the definition of I';;, Dy does not contain A; for any . Hence
D N D is of codimension > 2 in A. By the definition of I'y ;, ANW(A,,;) consists of finite number of points
for all j. Hence there exists a point z on A\ (U;W (A, ;)). Then D, does not contain A, ; for any j. Hence
D, N Dy is a closed analytic subset of codimension > 2 in A. This implies that

Eai={A€eA; ACW(N)}

is contained in a closed analytic subset of codimension > 2 in A.



Since Da N D is of codimension > 1 in D, there exists a set {aj,as,...} of countably many points on
D\ D4 which is dense in D. Let E,{r) be the union of all affine lines in A passing through a, and intersecting
Dafay,7). Let E, be the union Uyer,,E, (). Each E,(r} is a closed subset of A which is real semi-analytic of
real codimension > 1. Hence, by Baire’s theorem again, we have

A\Uva = A\U.,(U;”=1E.,(n)) # 0

Let o be a point of A\ U, E,. Then Ro(D{0,7)) N Ro(Da(0,7)) is a closed real semi-analytic subset of real
codimension > 2 in S, for all r, because R, (Da{o,r}) does not contain the image of a, by the projection
w: A\ {o} = S,, and the set {w(a,);a, € D{o,r)} is dense in R,,(D(o,r))

Let Ra(D Dy, r) be the union of the irreducible components of R o(D, Dy, r) which are of real codimension
2 in S,. Recall that Z, is contained in a closed analytic subset of codimension > 2 in A. Hence R,(Za {0, 7)) is
contained in a closed real semi-analytic subset of real codimension > 3 in S,. Thus there exists a set {b1,bg,...}
of countably many points of Ro(D,Da,r) \ Ro(Z(0,r)) which is dense in Ro(D,Da,r). Let o, be the real
semi-line in A passing through o and b, with the end-point 0. Then the intersection

AN (Urgo, oy W(N)

is a closed real semi-analytic subset of A of real codimension > 1 for all ¢t € Ryo. Hence A \ U, (Uxeo, W (X))
is a non-empty set, from which we choose a point z. Then Ro(D.) contains none of b,. This implies that
R,(D{o,7)) N Ro{Dp(0,r}) N Ry(Dz{0,7}) is a closed real semi-analytic subset of real codimension > 3. a

Thus the construction of the hoped-for data is completed.

The projection (P"~9 x A)\ W — A is locally trivial (in the category of differentiable manifolds) over A\ D.
Moreover, when we are given a continuous map fo : I2 = A such that fo(872)N D = @, then we can perturb fo
to f. : I* = A homotopically relative to 8% so that f.-!(f.(I?) N D) consists of finitely many points in J2.

Now we can apply the argument in the first paragraph of [Sh, p.519], and follow the proof of [Sh, Corollary]
to obtain the isomorphism (2.4). The assumption (C.1) in [Sh, Corollary] follows from Claim 1. The assumption
(S) in [Sh, p.511] follows from the above construction. The assumptions (2.1), (2.2} and (3.1) in [Sh, Theorems
2 and 3] hold obviously. The assumption (3.2) in [Sh, Theorem 3] does not hold in our case, at least literally,
because we have left the category of algebraic varieties when we take the universal covering of Pic"(C'). This
assumption, however, is used only in [Sh, §1.3]. All we have to do is to replace PM in [Sh, p.517] by the first
factor P*~9 of the product P"~¢ x C?, and to replace Zariski open subsets of B by classically open subsets of
B. 0

3 The braid groups B(g,n)

Consider the braid group B(g,n) of n strings on a surface S, of genus g. We shall assume that n > 2g+41. The
presentation of B(g,n) was obtained in [Sc] . The sets of generators and defining relations of the presentation
in [Sc] (after correction misprints) can be reduced to the following presentation of B(g,n). The generators of
B(g,n) are
Pij> 1<i<n,1<5 <2,
01,02, y On—1- '

The set of defining relations consists of

[Pi.japk,l] = 17 1<k .7 < l (.71 ‘-Ié (2t -1 2t)1 (1)
[pijrox] =1, i#k nor k—1; (2)
PR = OkPR+1,50% s 1<k<n-1; (3)
(pijor ') = (07 piy)?, 1£i<n—1,1<7<2g; )
[oi,05] =1, [i—71#1; (5)



Oi0i410i = 034100541 , 1<i<n~2 (6)
((ips.2007 1), 07 901) = 07, j=id, ori+1; (7

0102 ... Opn_208_\0n_2-...-01 = [p11,073) [Pr.3,PT4) -+ [P1r20-1,PT24) - (8)

Note that we read all words contained in the presentation given in [Sc] from right to left and write down
them from left to right.

(2k)-th handle

(2k — 1)-st handle

Figure 1

The generators p; j and o3 have the following geometrical meaning: S, minus a 2-disc can be thought as a
2-disc A union 2¢ untwisted 1-handles. For each r the (2r — 1)st and (2r)th handles are linked and no other
pair of handles is linked. We number the handles reading from left to right. We shall assume that n fixed points



lie on a circle which is the boundary of a smaller disc in A. We choose one of these points, say ¢, and number
them (starting from z} consecutively moving along the circle in clockwise direction. The elements p; ; and o;
are drawn in Figure 1. '

Lemma 1 Put
- -1 -1
On =00 =01 Op-20n-10,_" 01 . (9)

and define oy for all k € Z assuming oy = 0n4i. Let

A = 0p0py1 ... -o’k+n_3a§+n_2ak+n_3 e O (10)
Then the following relations

On010n = 010001; (11)
On-10n0n-1 = OnOn_10n; (12)
OnOk = OrOn, 2<k<n—-2; (13)
Apyr = akAkak_l , kelZ; (14)
Aroy = o1Ag, l # k nor k — 1(mod n) (15)

are consequences of (5) and (6).
Proof follows from the same assertion for the braid group of n strings on a disc. o

Lemma 2 The presentation (1) - (8) of B(g,n) is equivalent to the following presentation. The generators of
B(g,n) are
P11, 1,2, P3,3, P34, 'y P2g—~1,29—15 P2g—129 >
G1,02, "'y On-i.

The set of defining relations consists of

[piss ] = 1, i# ;5 (16)
[pi,t)aj] = 1, J '_/'- it omor 1—1; (17)
[(Ui—lpi,ng,'__ll)ao-i] = 1’ i= 17 3:"-1 29—' 1! (18)
(pri-10nin)) (05 P21 )™ = 1, j=2—-1 or 2; (19)
[oi,0] = 1, |[i-Fl#1; (20)
a;a;.,.lo;a;'_llai_la;_ll =1, 1<i<n-2 (21)
[(o5p2is1,2i07 )y prir2in) 052 = 1, §=2i or 2i+1; (22)
2 —1i -1

0102 ... On_20,_10pn—2"... 0291 [p?g—l,2g—l’p29—1|2g] G29—-202g-3

_ -1 _{1-1 (-1
[p29-3.20-3,P2p_3.2g-2) -+~ 0403 [p33,p54) 0201 [p1,1,P72) = L (23)

Proof. To obtain relations (1) - (8), we define p;; by induction using (3). After that, to verify relations (2}, we
need to show by induction that if relations (17), (18) hold for p;,, then the similar relations also hold for piy; 4.
The checking is the following.

[pi—1,1,05] = [oicipiioil) 03] =1
for j #1i — 2 nor i — 1 by assumption of induction and by (20).

[(Gi—z2pic1,107),0i-1]) = [(Giczoicipigoitioily), 0im1] =
Oim20i1Pi g0 107 90i-10i—20i—1p} | 07 0ig0i ) =
Ui—ZUi—lPi,lai-_llU:2Ui—2ai—10i—2pg_,l 0,'__110‘.-__126,-__1 =
U;-zo‘i_lpi,la'i_gp:ila;_l0'-__20"__' =

- 1 —

L1 =1 -1 — -1 ,=1 =
0i20i-10i~2Pi 1Py} 0;_10; o0, | = 0i-20i-10i_20;_,0; 50, = 1.

The detailed check of the remaining relations is left to the reader. ]
Denote co; = 0';-}'_10'2,‘0'2,'4.1 forl1<i<g-1.



Lemma 3 The group B(g,n) is generated by

M.1y P1,2y P3,3: P34y """ p‘Zg—l,2y—l: p?g—l‘fz_q »
01,€2,03,C4 ~°,029-3,C29-2,029—1,T02g,""",Tn—1-

The set of defining relations consists of

Ryj = [pinpin) =1, i#7];

Ry ;= [Pie, 0] =1, i#£ 7

R j:= [p2i41,0,025] = 1, 0<i<g-1,1Z5j<g-1;

Ry;i= (p2im1,000:0 VP05l p2ic10) "2 =11, 1<i<g;

Ry 5= loi,05] = 1, li-jl#1;

Ry 25252 := [ch,(C:Tj]—zf’2j—lcﬂj-2)] =1;

Rg,ij := [oie]=1, i#j+1;

R72g,29-2 1= [Uzgs (C;g1—20-29—1029—2)] =1;

Rg;j:= [c2i, c25) = 1, |i—7|#1;

Ro,si = 9i0i110i0 107 o = 1, 1<i<n-2
Rio = €2iC2i42C2iChieaCi Caige = 1, 1<i<g—-2
Rt = C2i02i+1C2i02141Coi Oqigr = 1, 1<i<g—-1;
Rig ;= [(02:'—1[721'—1,2;'02_.'1_1):pz_.'l_l'zi_l] 0‘2_.-2_1 =1, 1<i<yg;

Ry3 = C2C4 C2g—202g02g41 ** On=202_10n3...02g °

-1 -1 -1
(o2g-1 [Izg—1 029—1)C2g-2 - (03 []3" o3)ca(o1 []; 1) =1,
— —1

where [']2i—1 = [921'—1.2:‘—1,92;'—1.2:']-

Proof. The elements o9; can be expressed through o2;41 and ¢y; :

_ -1
02i = 02i+1C2i09;1-
Since g2;02i1102; = 02i+102,02i1.1, it i8 easy to check that
€2i02i41C2i = 02i4+1C2i02i+1

and
—1
O2i = C2502i+1Cy; -

(40)

(41)

If we substitute these expressions into (16) - (23), then we obtain relations (26) - (39). For example, relations

(18) (applying (21) and (17)) gives rise to (28). In fact, for j =1

0’2j+10'2jp2j+1'..02_jl = Usz2j+1,*02_lezj+1 =

_ Ug_jlﬂzj+1_cl’21p2j+1,. P2j+1,¢0'2_j1(72j+10'2j =

To; (0'2j+10'2j02j+l)02j+1P2j+1,t

037 (02502541025)0534 1 P2jit 1+ P2j+1,605; (02j02541025)05, ) =
C2;iP2j+1,x =  P3j+1,5C25-

il

If 7 # 7, then (28) is a consequence of (18) , since oy; and 03541 are commutative with p2iy1 ..

P2i+1,005; (02j4109502541)0554, = (by (21))

Conversely, if we substitute 51 ;0902;—1 in (26) - (39) instead of cy; we obtain relations (16) - (23). The

detailes are left to the reader.

]

For the presentation of B(g,n) given in Lemma 3, the following elements will be called the additional
generators: og; defined by (41), 1 < i < g — 1; g, defined by (9); Ay defined by (10); p; ; recurrently defined



by (3), (i,5) # (2t — 1,2t — 1) nor (2t — 1,2t); B;j = [pi.2j-1, pi,2;); and co = 07 '0,01. It is easy to check that
the following relations hold.

Tn = o016 ; (42)

CoO1Co = 01C0071 ; (43)
C00nCo = OpCoOpn ; (44)
(o5,c0] =1, 2<j<n—1; (45)
[P2i-1,0:c0] =1, 1<j<g; (46)
[Bz.'_l.j,czk] =1, for all 1, j, k; (47)
[Bijoel=1, i#k nor k—1; (48)
By j = 0xByy1507 ", 1<k<n-1; (49)

The following lemma. is a corollary from Lemmas 1 - 3.
Lemma 4 Relations (2), (11) - (15), (42) - (49) are consequences of (27), (28), (80} - (37), (89).
Denote relations (2), (11) - (15), (42) - (49), respectively, by Ry, ..., Rys.

4 Proof of Theorem 2

In the sequel we use presentation (24) - (39) of B(g,n). Consider the homomorphism
a: B(g,n) > 2%

sending pg;_1,; to ij =(0,...,0,1,0...,0), where 1 is in jth place, and sending all o; and ¢y; to zero. Obviously,
a =~ ¢,. Denote by G = Gy 5, the kernel of a. Put p; = pg;—1,;, where pa;_),; are the generators of B{g,n) from
presentation (24) - (39).

By Reidemeister - Schreier Theorem [R], [Sch], the following elements are generators of G :

ar = (PNpe(p™*), 1<k <29, (50)
ajr = (PNeile’)™,  1<ji<g-1 (51)
ar = (Halh™, 1=1,3,...,29-1,2g,...,n~1, (52)
where I = (i1,..., i2y) and .
pl=pl

The defining relations of G are
RE ;=R k=1,...,13, (53)

. is written as a word in the generators a., ¢, and g,.

where each R,{‘ i

Remark 1 If a relation R is a consequence of relations R, ..., Rg, then for fired I the relation Rl isa
consequence of the relations R{ ceny R,{ .

Decrease the number of generators of G. It follows from (26) that
ay;r =1 (54)

for 1 <1 < g and all I. Similarly,
025 - 1,iy izjm 1 Osizjp1reonrizg = 1 (55)

for all sets of integers (iy,...%2—1,%2j41,-.-,02q)-



Relations (26) give rise to

-1 -1 -
023'—1.!021,{+I,,_1ﬂzj_l_,qim%;’[ =1, j # f, (56)
and
-1 -1 .
91-1,182j1,+Tam1 Op—1 T4 Ty, O2jmr, s = 1> J #1. (57)
It follows from (54) - (57) that
225—1,iy yooy 825 =2,825 = 1,825,025 41101 12g = a2j—1,0,...,0,i3,'_| vi25,0,...,0 = a2j—1,l'g,'_1 RUTE (58)

that is, a2;j_1,4,,....i2;_3,42i-1 i35 i2541,...iz, 10€S not depend on 11,...,42;_2,%2541,.-.,12¢. In particular, by (55),
aﬂj—l,ig)’_l,ﬂ =1. (59)

Similarly, it follows from (27) and (28) that

G2 —1,iy,. i35 2.025 - 14825 8254 1o nfag — 925—1,0,...,0,425-1,125,0,...,0 = F25—1,ia;_1,i2; I<g (60)
iiitoning = 970,...0 =95, J 2 2g; {61)
25,1, b2y = C24,0,...,0 = €25, (62)

that is, gji,,...,42,, J 2 29, and cgj,4,,...,i, do not depend on iy,.. ., iz,.
Similarly, it follows from (46) that the generators ¢, y corresponding to the additional generator co do not
depend on 1, that is, ¢ 5 = co. By (41), the generators g,; 1 corresponding to the additional generator o3; :

-1
92,1 = €2;92j—1,izj_1 ,iz; C2; (63)
do not depend on 1y, ...,42j_2, 12j41,.. -, 124, and it follows from (42) that the generators 9n,1 corresponding to
the additional generator o, :
In,T = C0Giin,izCo (64)

do not depend on i3, ...,i,.
Denote by Ay 1, p; &1, and B; ; y the generators corresponding respectively to the additional generators Ag,
Pik, and B; . The relations defining Bj x give rise to the relations
_ _ -1 -1
Bj.k,l = P4,2k=1,1P5,2k T+Tauo1 Py ak—1 F+1a4 Pi2k T

in particular,

BZJ:-—I,):,I = Q2k—1,i301,i24 “2_13—1,.',,,_,,;2,,—.1’ (65)
and relations (47) and (48) yield the following relations

[Bl,j,fi Ck,f] = 1: for all I) j) k; (66)

[B,‘J-J,crk,y] =1, l#k nor k—1. (67)

Let us write down relations (53).

R{,j,l = [@2j—1,msC2t-1,4] = 1, J#; (68)

Rg,j,r = [e2j—1,4,921-1,¢) =1, i# (69)

R2I.j,l = [a2j—1,0: 91] = 1, 1> 2g; (70)

R ;.= [a2j-1,0, €2} = 1, 1<j<g,1<i<g-1; (71)
R.{‘gj_l‘gj_, = agj_l,.',j_1,i,,-gg_jl_l,,-,,._,+1,,~,,.azj—l.i,,_1+1,i,,g{jl_1‘,-,,._l+g,,~,j

-1 Lo . p-] o - . .
Qoi—1,ig5-1+1,iag 925 —Voiaj—a+ 1,025 0251 iaj o ig; 925 =1 daj—1,00; = 1, 1<j<g; (72)
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I . -1 -1 _ . )
R4,2j—1,2j b gﬂj—l,ig,‘_l,I'nj+1g2j—l,l'nj_1.ig,-+292j—1ui9j—l-i2i+1923"—1yi2;‘—1|i‘);’ - 1’ 1 S 7 S aq; (73)
I

Ry.;= 9,951 =1, li—71#1,4,7 > 2g; (74)
Rg,j,i = [92;‘-1.;'2,-_1:',,-,921-1.:‘,,_1,,',,] =1, [l#£j7; » (75)
Rg,zg—l,:' = [920-1i3p-1,i00095] =1, 5> 203 (76)
R£,2j,2j—2 = [c2s5 (C'z_jl-zgﬁ—l.inj-l,iz;'32.f—2)] =1, 1<j<g-1; (77)
RE ;= [025-tinyrsingrcat) =1, §#1 and j#1+1; (78)
R’{.Zy,Zg—2 = [gzg,(Cg_yl_gmg—l.ig,_l,ig,ng—z)] =1; (79)
Ri; ;= i3} =1, [i—jl|#1; (80)
Rg,j,j = 939i+195 = Gi+19595+1 » 20<j<n—-2 (81)
Rg,2g—],23 = 9291429142920 92— 1,451,432, = 920929~ 1,421,425 920 ; (82)
R{o_;,.- = €2iC2i+2C2i = C2i4+2C2iC2i+2, 1<1<g—2; (83)
R{I,J’,J' = €292 iagan inga141 C2F = 925k 10541 inie 141 €25 925 Ligjariajain oy J S 9L (84)
Rfl,g,g = Cog—28929C29—2 = §29C29—202¢9; (85)

R{Z,j,l = A2j—1,igj_1,iz3+1 =
g2j—1,|'25_1,ig,-+192_jl_1’,'”_1,|'2j a2j—1,¢'2,'_1,inj'gz_jl_l‘igj_l+1|i2jg2_j]:_1,i2j_1+l‘f2j+1 ; (86)

Rfa = C2C4 + '+ C2g—292g029+1 °° ‘Qn—zgﬁ—l!]n—z - 82g

-1 -
*(920-11i20-1,i20 (8201521 i3, B2g—1 iy _y izg—1) ~ 929—L1i2p=1,iz, )C29—2 """
_1 — —_ P
“ (98,0310 (83,15, 03 4y 50 =1 ) 03,5,0a )2 (91,01,102 (01 60,1287 3, igm1) T G1siaia) = 1. 87)

Each relation depends on at most two parameters and the set of relations is similar to the relations in [Z] in
the case g = 1. Now we shall show how to obtain a finite presentation of G using the arguments of [Z].
Relations (73) imply that gaj_1iy,_1 iz;4+192j-1,ia;_1.is; 15 independent of 43;. Let for brevity,

92j—igg_1,iz;4+192j—1daj-1,42; = S2j—1,425-1- (88)
The recurrence relations (86) allow us to express all @gj—1,iy;_1,i,;'8 in terms of the gaj_14,,_, i;’s, since
25— 1,ig;u1,0 = 0 by (55) We obtain
P = ges i1 s —i3j (89)
2j=1,825—1,82; — 923—1,12,-_1,121923—1.121—1.0‘923'—1,1'3,-_1-}-1‘

Substituting these expressions of agj—1,iy;_,,i5;’s into relation (87) and taking into account (88) we find in a
straightforward manner that relations (87) can be replaced by the following relations:

€2 C29—282¢g - -Gn—19n—1...92¢ (929—1,€3,_1 ,lg2y—1,i2,_1+1,192g—1,ig,_1+l,0929—1.ig,_1,O)CQg—‘l e
o (93,i5,193,43+1,193,i3+1,093,i3,0)€2 (91,6, ,1 91,61 +1,191 i +1,091,iz,0) = 1. (90)

By (55), relation (72) for i5; = 0 yields the following relation

921,21 +2,092i—1izj-1+1,0 = §2j—1,izj_1+1,0925=1,i25-1,0 - (91)

Since, by {90), the product

92j—1,i2;1,192j— 1,421 +1,1825 -1 42;_1+1,0925—1,iz5_1,0

is independent of y,...,i24_;, we deduce, as a cosequence of (91), the following relation

gzj—l,i,j_l,1923‘—1,1’;_,-_1-4-1,1 = gzj—l,l'n,'_l—1,192_1'—1,5:_,‘_1 - (92)
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Lemma 5 The defining relations (72) are consequences of the set of relations (68) - (71), (73) - (87), (91),
(92), where the elements azj_1,i;_, iy, ore defined by (88) and (89).

Proof. Denote by

T25-1 = (925125119251 i2jo1 41,1925~ 1 inj_1 41,0925 —1,i2j_1,0) - (93)
or, equivalently,
, 2=l = 92j1iay -y ing (02— Viiaio1.1025 92G—1 g 1 siag~1) 923~ Lia 1 viz; (94)
By (90), we have
R | -1 2 -1 -1 ..
T2§—1 = 623_21'2];_3 N CQTl Cg - 629_2929 e Gn-29n_19n-2--- 929729_1029_2 - T2j+1021 (95)

By (69) - (71) and due to (93) and the previous equation, each element agi—1,iy 5,1 < 1 < g, and
Tyj—1 commute, hence 72;-, and agj_l,,-zj_l_,-,,.a{j‘_l'ﬂj_l'i”_l commute, i.e. in view of (94), m;_, and
92§~ 1,i2-1,i2; T2j—192j—1,izj1 4a; COMMuUte:

. Lo .y = Lo . , 2
(723—1921—1.1:5—1.135) = (923—1.22,'—1.12;721—1) .

The rest of the proof of Lemma coincides with the proof of the same asgertion in the case g = 1 and is contained
in [Z] pp. 347 - 349 (starting from equation (14) in [Z]). a

Lemma 6 The set of relations (68) - (71), (73) - (87), (91), (92) is equivalent to the set (78) - (85), (90),
(91), (92), where the elements ag;—1,iy;_, in; are defined by (88) and (89).

Proof. Relations (68) and (69) are cosequences of (75) due to (89).
Relations (71), ! # 7 and I # j + 1, are cosequences of (78} in view of (89). Deduce (71) from (73) - (84),
(90), (91), (92) in the case ! = j. By (87) (which is cosequence of (90), (88) and (89)),

-1 _
aﬁj-l.525—1,inja2j—1,i35-1.igj—l =

=1 -1 2 -1 -1
92j—1,i3j—1,i;C2j—2T2j3 .- - C2Ty C2°""C29-282g -+ Gn_1-+- 929725 1C2¢~2 -+ - T2j41€25925—1,iz;1,ia; -

. 4 e . . o |
Since agj—1,i5;_;,0 = 1, it is sufficient to deduce that cz; and az;—1,ip;_1,i5;82,_1 ig;_, iy;—1 cOmMmute. Note that

relations (77) and (79), in view of (82) and (84), are equivalent respectively to

[623" (g2j—1’iﬁj—lviﬁjczj“zg;jl—l,izj_l,ig,‘ )] =1 (96)

and
[929, (929—1.=‘=,-1,-'z,02g—29{gl_1,.-,,_1,,-,,)] =1. 97)
We have

-1 —
c2j(a2j—l,iz;-1,izj %j-1,i,~_1,i,,~—1) —1
€2j892j—1,igj—1,i2yC2j—2Tgj—3 =" €27y C2° - C29-2829°""
p) =1 -1 =
T On—1" " 929Tag—1 02_4{—2 T o541 C23 925 - Viizg iy - (by (96)) .
sz—l.iu-n,izjc2j—2(gzj—1,ig,~_l,i,j C25925 1,451,825 )T2j—3 crrCeTy CprrcCog—202g "
.. gl e 1—_] c --.7-_1 Casi : : i '“(b (74)—(80))
Gn—1"" 9297291 '219—2 2j+41 2.1921—1.;:1-1 vizg = DY
925—1,425-1,42;C25—2T2;3 " C2T1 €2~ (93511 iy, in; €23 925~ 1,421 42, )C2j—2C25 "~ C29~2024 " *
2 -1 —1 s 1 . =
Gn_1° '929T2g—16219—2 T sz41-1023921—1.n:,--1.u,- = (by (96))
92— 1,iaj-1,i2; C2j=2T2j—3 " €2Ty  C2 "+~ C2j—2C25(G25—1,ia;1 ia; ) * *~ C2g—2929 * -
2 ~1 —1 COos 1 s , = —_
v Op—1 '929729-10219—2 e 'TZj-Iilchng-l-"Zj-lulzj = (by (74) ; (80))
gzj"‘lui2j-1yi2j 62]’—2721'—3 e C2T] Cg--- CZj—Zc2j . czg_zgzg - gn_l -
-1 o T (G251 i) ias )C23 92— Loizs— 1 ias = (DY (84))
929Tog—1C29-2 * ** T 11925 —1,i2y—1,i2; /€25 92j—1,izj—1,iz; = (DY
—1 —1 2
92j—1,izj-1,i2;C2j—2Taj—3 """ €eTy C2°''Czj—2C25" " C29—-2029 " " Gn-1"""
—1 — —
"1t 929T29—1C29-2 " T2 4123925~ 1025142, €25 =

(a2J—l.taj-1,1njazj—1,i,j_,,i3,~—1)c21 .
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The deducting of (70) and (71) (in the case ! = j + 1) from (73) - (84), (90), (91}, (92) is the same as the
previous one and will be omitted. ]
The relations (73):

— ) . . . . . _l
G925-1,i35-1,42;42 = 92j—1,42;_1,i0j+1925— Lizj—1,i25925-1,ig,_, RIYESE (98)

for a fixed value of i3;-1, can be considered as recurrence relations defining the elements gz;_1 iy;_, iy; in terms
of the two free elements gz;_1,i,;_,,0 and 92;-1,4,;_,,1. Then the relations (91) and (92) can be used in order
to express all the elements g2;1,5,;_,,0 and g2j—14,,_,,1 in terms of gz;-1 0.0, 92j-1,1,0 and g2j_1,0,1, 92j-1,1,1
respectively. Consequently, our group G, is generated by 3g + n — 1 elements:

92j-1,0,00 92j-1,1,0, 92j-1,0,1, 925-1,1,1, 1<j<yg; (99}
62: Cq LA | C29_2 ) (100)
9291929415+« > Gn—1. (101)

Relations (75) - (79) follow from the same relations for g2;_1,0,0, 92j-1,1,00 92j—1,0,1» 92j~1,11 (respectively,

929—1,0,0> 929—1,1,0» 92g—1,0,1, 92g—1,1,1), Since all gaj_1,i,;_, i; (respectively, g2g—1,i5,_, in, ) belong to a subgroup
generated by these elements, and since relations (77) (respectively, (79)) can be written as

[(C2j—2c2j02_j1_2): 92j—1izj1yin;) = 15 (102)

[(629—29296‘2_91—2)’ 929—1&'2:—).%] =1. (103)

Applying Zariski’s Lemma ([Z}, p.350), we obtain that relations (84) (for (82) the arguments are the same)
are consequences of any three of them relative to three consecutive indices i35, say i3; = 0, 1, 2. By (91) and
(92), we conclude, on the basis of Zariski’s Lemma, that for i2; = 0, 1 relations (84) are consequences of three
of these relations relative to three consecutive values of i5;_,, say ig;_; = 0, 1, 2. To decrease the number of
relations (84) for iy; = 2, we change, as in [Z], these relations to equivalent relations

2 _ 2
(9252130741 ,19251,i2,21,0€25)° = (C25925:1,00;41,1 92551 ias21,0) - (104)

To show that these relations are equivalent to one of them, say

(9221,0,192%1,0,002;)° = (C2782541,0,19221,0,0)°, (105)

it is sufficient to show that the expressions

— . . . . 2 - I3 - r : _2
52j:§:1,i2,‘11 = (sz:l:l,ng,-ﬂ ,1923:&1,12511 ,062_1) (c2jg2_]:i:l,tg,-11 ,192]:&1,:2,-5:1 ,0)

are all transforms of each other, for i2;4; = 0,%1,£2,..., as a consequence of relations (74) - (84) (iz; =0 or
1,1<5<g-1),(73), (87), (91), (92) (where the elements azj_1iy;_,,i;; are defined by (88) and (89)), and
additional relations defining additional generators. Hence, we shall be able to take the relations corresponding
to 135, = 0. For this we need, in order to apply Zariski’s arguments (see the computation on p. 351 in [Z}), to
show that

61'.:!: = §2j:|:1,inj:|:1 = €592k 02;41,1 92551 40541 +1,1 92581 62541 +1,092541 42541 ,0025

are commutative respectively With g2;41,i5;01 2742 804 g2j—1,i3;_, ia; IN the case 13542 and iz; = 0 or 1. Let us
check that §;_; 4 and g2j_1,4,,_,,i;; commute. For this, denote by

A= (923‘_3.53,-..,.1923’—3,.‘,,-_,+1,1gzj—a,i,,_3+1,0923‘—3,5,;_,,0)62_1'—4 "'C2(91,i.,191,i1+1,191,i,+1,0'
“1,i1+1,001,i1,0)€C2 * ** C2j—4 ;

B =cojya---Cog—292¢ " Gn-19n-1" " 929{029—1,i25-1,1920—1,i2,-1+1,192g =1 ingr +1,092g 1 i2,_1,0)*
“C2g—2 * * * (92j41,izj 41,1925+ 1,241 41,1925t 1iz5414+1,092541,i2,41,0) -
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We have .

925—1,z5-1 0250514 = (by (90))
(925-1,i2y1,ia; JAC2j 225 Benjcy_, = (by (74) — (76))
A(gzj-1,i,j_,.ig,-)czj—zcszcszﬂ_g = (by (77), (83), (84))
A!','zj_gczj(c;jl_zgzj_l,iﬁ_’_i.,ngj_g)BCQjC;jl_.z = (by (74) - (76), (78), (80))
ACj 2625 B(Coj 3 921,251 42 C2§=2)C25Ch) g = (by (77), (83), (84))

-1
Aclzj—zcszcszzj-zgzj—1.-':;-:.-'n =
(5_.,;_1‘.,.92,7;—1,1':;-1 BT

To prove that gaj_1,iy;_;,i,; and Jj" 1 commute in the case i35 = 0 or 1, we need the following lemma.

Lemma 7 For fized I = (i1,...,i34), where iz; = 0 or 1, the following relation

_ . 1 -1 -1 - ~1 ]
Agj, 1 = Baj151955 1 1925, 1B2i41,541,192j41, 19 420+ * 92g—3,1929—2,1B29—1,6,7

.g;gl—l,ng_gl.rA;gl-i-l,lB29+1;1-r oot Bygyy jo1,TA2g41,792,7 " - -+ G217 (106)
is a consequence of relations (68) - (71), (73) - (85), (87) with the same set I.

Proof. By (8),
A1 =B1a-... By,
Hence,
A1 = Bl‘j feaat Bl_gAl_lBl‘l et Bl,j—lAl-

By (14) and (49), this relation can be written in the form
Agj1=Byj 15+ ...~ Bajo1gA7} | Bajra ... - Bajo1 o1

If we substitute in the last relation af;;-l_l "'0;k1~2B2k—1-k”2k—2 -+ -0 instead of Byj_y i for k > j;
a.L.l_l ---a;,'glAgy.Hagg -+ - 0951 instead of Az;-1; and for k < j, substitute

02__1-1_1 ---cr;; Bag41,6025 -+ - 0251 instead of By;_y x, we obtain the following relation

— . . =1 =1 . : =1 ~1 . . -1 =1 .
Azj1 = B2J—1.J‘72j—102j B2J+1.J+1U2j+1a2j+2 Uzg—aazg—szy—l,g
-1 =1 4-1
0291025 Azgy1Bag1,1 -+ Bogyr,j-1 42041025 - ... - 0251 (107)
Now Lemma follows from Lemma 4 and Remark 1. O

Since, by (65), Bog—y k.7 = 2k=1,izu-,iza O2b—1,igy_, igu—1» LhETElOTE, by (89), (91), (92), and (63}, relation
(107) can be witten in the form

-1 _ -1 A . . i -1 -1 _
Jj,_ - CQJ (g2j—l,l':,'_1,1921’—1,('2,'_1-{-[,192_1—].I:5_1+1.0921—1.l:|j—!.'O) c2_1 -

-1 -1 -1
92542, " 929-1,1920 " Int2j-3,I9n+2i-3,1 " GrarrAgg s pBy oty sy r Bygiy y rAsgenr
—1 —~1
'g2yg2g—l.izg—1.izgng_l,g,fg2y—2.='2,—s,i:g—: CT 0254202541825 42 2j+1‘j+1_fg2.‘i+1.izj+1 RITFER (108)
Now, by Lemma 4, Remark 1, and by (13) - (15), (30), (45) - (48), it is obvious that gg;_1,i,;_, ip; and 5;:1
commute.

Finally, by (91) and (92), we observe that the infinite set of relations (87) reduces to one relation, say
igj—1 = 0 for all j. This completes the proof of Theorem 2.

14



References

[B] J.S. Birman, Braids, Links, and Mapping Class Groups, Annals of Math. studies, vol. 82 Princeton Univ.
Press, Princeton, 1975.

[N} M. Nori, Zariski‘s conjecture and related problems, Ann. Sci. Ecole Norm. Sup., vol. 16 {1983}, pp.
308-344.

R} K. Reidemeister , Knoten und Gruppen, Abhandl. Math. Sem. Univ. Hamburg vol. 5, (1927), pp. 8-23.

[Sch]  O. Schreier, Die Untergruppen der freien Gruppen, Abhandl. Math. Sem. Univ. Hamburg vol. 5, (1927),
pp. 161-183.

[Sc]  G.P. Scott, Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc. vol. 68,
(1970) pp. 605-617.

[Sh] 1. Shimada, Fundamental groups of open algebraic varieties, Topology, vol. 34, (1995), pp. 509-531.

(Z] O. Zariski, The topological discriminant group of a Riemann surface of genus p, Amer. J. Math., vol. 59
(1937) pp. 335-358.

Current address

Department of Mathematics

Moscow State University

of Transport Communications (MIIT)
Obraztcova str., 15,

101475 Moscow, Russia

e-mail address: victor@olya.ips.ras.ru

Department of Mathematics

Hokkaido University

Sapporo 060 Japan

e-mail address: shimada@hokudai.ac.jp

15



