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§0. Introduction.

In this paper we extend the theorem due to C. Fefferman [12] on boundary regularity of
biholomorphic mappings f: $— Z’ between smoothly bounded, strongly pseudoconvex
domains Z,2’ CC" to certain generic smooth Cauchy—Riemann manifolds in € with

nondegenerate Levi form.

The local version of Fefferman’s theorem can be stated as follows: Let M and M’ be
smooth strongly pseudo—convex hypersurfaces in €* (n>1) and f:M—M’ a
homeomorphic mapping so that both {f and 1 satisfy the tangential Cauchy—Riemann
equations (in the weak sense). Then f is necessarily a gmooth diffeomorphism. The point

is that, under these conditions, f extends to a biholomorphic mapping from a domain
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PC " bounded in part by M to a similar domain @’ bounded in part by M’, so we

are back in the usual setting.

This theorem has been generalized to much wider classes of hypersurfaces and was proved
under weaker hypotheses on f. For this development we refer the reader to the survey

papers by Bedford [6], Bell [7], and the author [13], and to the references therein.

In this paper we consider another kind of generalization of Fefferman’s theorem. Let M
and M’ be local smooth, generic, Cauchy—Riemann (CR) manifolds in C", of real
codimension d > 1 and of Cauchy—Riemann (CR) dimension m>0 (m+d=n) A
CR-homeomorphism f: M — M’ is a topological homeomorphism such that both f and
! are CR mappings, i.e., they satisfy the tangential Cauchy—Riemann equations in the
weak sense. Our main result is that, under certain geometric assumptions on M and M/,

every such mapping is a smooth diffeomorphism.

Our hypotheses are of two kinds. First, we require that M and M’ are strongly
pseudoconvex (Definition 1, Section 1). This condition is a natural generalization of the

strong pseudoconvexity of hypersurfaces. The second condition, we call it

over—extendability, concerns the holomorphic extendability of CR functions on M resp.
M’ to wedges. We require that, at the chosen point p € M, every CR function h
defined on M near p extends near p to a wedge ¥ = ¥(I') with edge M so that the

cone I' determining the wedge is strictly larger than the Levi cone of M at p (Definition

2).

The Main Theorem (Section 1) states that whenever M and M’ are smooth, strongly

pseudoconvex and over—extendable at p €M resp. p’ € M/, then every local CR

/

homeomorphism f: M — M’ with f(p) = p’ is a smooth CR diffeomorphism near p.



Mappings of this kind arise in the following situation. Suppose Z(C C" is a domain
containing a smooth generic CR manifold M in its boundary 8%, and such that & is
wedge—like near M (i.e., it contains a wedge with edge M). If M’ C 82’ satisfies a
similar condition, and if f: UM — £’ UM’ is a homeomorphic map that is
holomorphic on &, with f{(M) = M’, then {: M — M’ isa CR homeomorphism.

This formulation also makes sense when M and- M’ have CR dimension zero, i.e., they
are maximal totally real submanifolds of €™. The smoothness of f on M then follows by
reflection on M and M’ and applying the (smooth version of) edge of the wedge

theorem, see Pinchuk and Hasanov [23].

It seems that the intermediate case when M,M’ are not hypersurfaces but have positive
CR dimension has not been treated, except in the papers [28,29] by Webster in which he

assumed from the outset that the map f is of class & 1

on M. However, as is
well-known from the hypersurface case, the hard problem is exactly to obtain some initial

regularity of f.

The interesting point is that there is a deep connection between the mapping problem for
strongly pseudoconvex CR manifolds of positive CR dimension and the mapping
problem for wedges with totally real edges. This has been discovered (in the hypersurfaces
case) by Lewy [21] and Pinchuk [22] and, in a more explicit form, by Webster [27]. Another
important ingredient are certain estimates of the derivative of f, and these require most of
the work. Among other things we use the generalized theorem of Julia—Carathéodory for {
on certain families of osculating balls. In the hypersurface case this approach has been
explained in the recent paper [15] by the author. The present proof uses similar ideas, but

is technically more involved.



In section 2 we use results on microlocal hypoanaliticity due to Baouendi, Chang,
Rothschild, and Treves [1]{4] in order to obtain some sufficient conditions for
over—extentability. In sections 3—5 we do the preparatory work concerning wedges and
mappings between them. Among other things, we prove the Hopf lemma on wedges
(Corollary 3.4), obtain information on the local polynomial hull of M (Proposition 4.2),
and prove the boundary distance preserving property of f (Proposition 5.2). In section 6

we prove the Main Theorem.

This work was supported in part by a grant from the Research Council of the Republic of
Slovenia, and in part by the Max—Planck—Institut fiir Mathematik in Bonn. I wish to
thank this institution for its kind hospitality. I had the opportunity to report on this work
at the AMS Summer Research Institute 1989 in Santa Cruz, and I wish to thank the

organizers for their kind invitation.



§ 1. The Main Theorem.

In the space €™ we shall use the coordinates (z,w), 2= (zl,...,zm) 3
w = utiv = (w,...,w4) € €4 . Let M C € be a smooth manifold of real codimension d

defined near the origin by a set of d real equations

(1) vj = wj(zﬁiiu)’ 1 S j S d )

where ¢ = (@y,...,94) i8 a smooth map with ¢(0) =0 and dp(0) = 0 . We shall use the

vector notation

v = ¢(z,2,u) .

C

For each p € M, the maximal complex tangent space T pM =T MNiT M has

p P
complex dimension m , s0 M is a generic Cauchy—Riemann (CR) manifold of CR

dimension m . Conversely, every such manifold is locally of the form (1).

Recall that a #1 function f on M is called CR if df(p) is €linear on the maximal
complex tangent space TgM for each p € M . Equivalently, J f @a =0 for all smooth
M

n

forms a of type (n,m-1) on €  such that supp a N M is compact; this is used as the

definition of CR when f is merely continuouson M.

We shall now define the Levi form of M at 0. According to [8], Proposition 3.1, we can
find local holomorphic coordinates near the origin in €™ such that M is given by
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(2) v= Q(Z:Z) + R(z,E,u) )

where Q = (Ql,...,Q d) is a hermitian quadratic form on €™ with values in Rrd and

IR(zZu)| = a(]2]2+]ul?) .

The form Q is uniquely determined by M up to transformations of the form
(3) Q’(A2Kz) = B-Q(z2), z € €™,

where A € GL(m,C) and B € GL(d,R) . We call Q the Levi formof M at 0. For an

intrinsic definition in terms of commutators of complex tangential vector fields see [8].

We associate to Q the Levi cone C(Q) and its dual cone C*(Q) (also called the polar)
by

C(Q) = #a{Q(z2) : 2 € €™\ {0}} CRY

(4) c(Q)={seRd:-x20 forall x€C(Q)} .

d
Here, 0°x = 2 0 X; is the usual real inner product, and ¥« denotes the (linearly)
=1
convex hull. Clearly C(Q) U {0} and C*(Q) are closed convex cones in RY . When

C(Q) is allof RS, C*(Q) is the trivial cone {0} . However, when C(Q) # RY, the

*
Hahn—Banach theorem implies that C (Q) is nontrivial, but it may still have empty
interior. This will happen whenever C(Q) contains a complete straight line through the

*
origin, since C (Q) is then contained in the orthogonal complement of that line.



Definition 1. The manifold M given by (2) is said to be strongly pseudoconvex at the
origin if there exists a vector o € rd such that o-Q is strongly positive definite on ¢,

that is,

d
(3) 2 7 Qj(z,i) >0 forall z€C™\{0} .
j=1

Clearly this property is preserved by the transformations (3).

It is not hard to see that the strong pseudoconvexity of M at 0 is equivalent to any of

the following conditions:

(i) C(Q) is contained in an open half space of RY determined by a real
hyperplane through the origin.

(ii) C(Q) does not contain the origin.

(iii) Q is non—degenerate in the sense that Q(z,-) =0 for some z € €™ implies

z=0,and C(Q) contains no complete straight line.

*
(iv) Q is non—degenerate and C (Q) has nonempty interior.
(v) Locally near 0, M is contained in a strongly pseudoconvex hypersurface
(Proposition 4.4).

A propos (iv), we remark that the set of vector o € R4 satisfying (5) is precisely the
interior of the dual Levi cone Int C*(Q) , a8 follows immediately from the definition of
C*(Q) . We leave out the simple proof of these equivalences since we will not need them in
the sequel. The same condition has been used by Khenkin and Tumanov in [18] and [26]
where they proved that local CR homeomorphisms of strongly pseudoconvex quadrics

whose Levi cones have nonempty interior extend to birational mappings on .



See also [16] for related results.

We remark that when Q has the property that for each o € IRd\{O}, o+ Q has at least
one negative eigenvalue, then C(Q) = rd , 80 every CR function (or distribution) on M
extendﬁ holomorphically to an open neighborhood of 0 in € [1], [8]. In this case our
mapping problem is not interesting, 50 we do not loose much generality by restricting our

attention to the strongly pseudoconvex case.

To every open connected cone I' C IRd with vertex 0 and a neighborhood U of 0 in "
we associate the wedge #(I',U) with edge M by

(6) ¥, U)={(zw)€U:Imw—¢p(zzRew)ET} .

We say that a continuous CR function f on M extends holomorphically to #{(T',U) if
there is a holomorphic function on  ¥{(I',U) that is continuous up to M N U and

matches with f on MNU.

Let SC IRd be the unit sphere. We say that a cone I' C IRd is finer than T/ C IRd if
T'NS is relatively compactin Int T/ NS . Wedenotethisby ' <T/ or T/ >T. A
wedge ¥= W¥(I,U) isfinerthan ¥’ = ¥(I'',U’') ( ¥< ¥’) if T <T’/ and
Uccu’.

Definition 2. The manifold M defined by (2) is over—extendable at the origin if every CR
function h defined in a neighborhood of 0 in M can be extended holomorphically to a

wedge ¥(I',U) with T > C(Q) (= the Levi coneof M at 0).

Remark. For every cone I' < C(Q), h can be extended holomorphically to ¥{(T,U) for
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a sufficiently small U [1], [8]. When M is the quadric
(7) Im w = Q(z,2) ,

every h can be extended near 0 toa wedge ¥(I',U) with I' =1Int C(Q), and in
general to no larger wedge. We are requiring the extendability to wedges whose cones are
slightly larger than the Levi cone. We shall give some sufficient conditions for
over—extendability in Section 2. Our use of over—extendability will become clear in

Proposition 5.1 in Section 5.

Dgﬁm’ﬁgn 3. Let M and M’ be manifolds of the form (2), of the same type (m,d). A
local CR~homeomorphism f: M — M’ at the origin is a homeomorphism f: v — &’
of open neighborhood 0 € wC M, 0 € o’ C M’ , with £(0) = 0, such that both { and
1 are CR mappings (i.e., they satisfy the tangential Cauchy—Riemann equations in the

weak sense).

MAIN THEQREM. Let M and M’ be manifolds of the form (2) in €*, of the same
type (m,d), and smooth of order k > 3.If M and M’ are strongly pseudoconvex and
over—extendable at the origin, then every local CR homeomorphism f: M — M’ with

f(0) = 0 is a smooth diffeomorphism of class ghk-1-0

near the origin. When M and
M’ are real-analytic, then f extends to a biholomorphic mapping in a neighborhood of 0

in €.

Here, k need not be integer; if k = [k]+a with 0 < @ < 1, then k- ¢ [k],a is

the usual Hélder class. As usual, gk ki x g 4 »and

gk 0_ y gklay kET, .

0<ax<l

means ¥

&
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As in the classical Fefferman’s theorem for hypersurfaces, the hard problem is only to show
that f is of class ! (see Webster [27], [28]). Our theorem contains the hypersurface
situation as a very special case, since the condition of over—extendability is then vacuously

satisfied.

When M and M’ have CR dimension m = 1, it suffices to assume that they are Levi
non—degenerate (and over—extendable), since the Levi cone is then a ray in [Rd\{O}

whence they are strongly pseudoconvex. This case is just the opposite to the hypersurface
case when the CR dimension is the maximal possible. Of course we have the whole range

of intermediate cases where both m 2> 2 and d 2 2.

Since a strongly pseudoconvex quadric (7) is never over—extendable yet the analogous
result for CR homeomorphisms f: M — M’ holds whenever the Levi cones of M and
M’ have non—empty interior according to [18], our condition on over—extendability is
certainly not the best possible one. However, as we will see in Section 2, it holds in may
cases, especially when the third order part in the Taylor expansion of M at 0 is
sufficiently independent of the Levi form Q (Corollary 2.3). Over—extendability even
holds in certain cases when the Levi cone C(Q) has empty interior. For instance, if the
CR dimension of M equals one, and if M is semirigid at 0 with all the higher
Hérmander numbers being odd, then M is over—extendable (Corollary 2.4). For smooth

rigid CR manifolds

Im w = ¢fz,z)

we give a rather specific procedure for checking the over—extendability by using the line

sector property from [2] and [3]. (See Theorem 2.2.)

Before making any guesses as to what the optimal condition in our problem might be, we



consider the following example. Let M =M, xR, where M, C ¢® 1 isa strongly
pseudoconvex CR manifold (2). Every CR mapping f: M — M is of the form

() = (g,(2)h(t))

where g M1 —_— M1 is CR , but the dependence of 8 and h on t is completely
arbitrary, in spite of the strong pseudoconvexity of M . This is essentially the only known
counter—example to the regularity problem within the class of strongly pseudoconvex CR

manifolds.

In this case CR functions on M do not extend to any nontrivial wedge in C" . The
necessary and sufficient condition for extendability to wedges near 0 € M is that M is
minimal at 0, in the sense that there exists no CR manifold N C M passing through 0,
of the same CR dimension a8 M but of smaller real dimension (Tumanov [25],

Baouendi and Rothschild [5]). The following conjecture seems plausible:

CONJECTURE. If M and M’ are smooth strongly pseudoconvex CR manifolds (2)
that are minimal at the origin, then every local CR homeomorphisms f: M — M’ |

1(0) = 0, is a smooth diffeomorphism near 0 .

Every manifold M (2) whose Levi cone C(Q) at the origin has non—empty interior is
minimal at 0. We expect that the conjecture may be easier to prove in this case, perhaps

by a reduction to the hypersurface situation as in Khenkin and Tumanov [18].

Another remark concerning the loss of smoothness in the Main Theorem is appropriate.
Just as in Lempert [20] one can obtain a more precise result by introducing a different

smoothness class that measures the smoothness of both M and the
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associated manifold M (6.1). If M € gk ,then B € #° for some s between k-1 and
k.Ifboth M and M’ areofclass #® k—1<s<k,then f€ Vi Also, in the
hypersurface case, the loss of smoothness is no more than 1/2 + 0, and the loss of 1/2

can actually occur.



—13 —

§2. Sufficient conditigng for gver—extendability.

Let M C ¢+ pey generic smooth CR manifold of real codimension d given by (1.2),

ie.,

(1) v = Q(z,2) + R(z,z,u) = ¢(z,2,1),

where w=u+iv € Cd, the Levi form Q = (Ql""’Qd) is strongly pseudoconvex in the
senge of Definition 1 (section 1), and R contains only terms of order > 3. Let C(Q) and
C*(Q) be the Levi cone and its dual cone as defined by (1.4).

We will show how the microlocal results of Baouendi, Chang, Rothschild, and Tréves
[1]-{4] can be used to get some sufficient conditions for over—extendability of the manifold
(1) at the origin. For this purpose we must recall the notion of the mini—FBI

transformation and the hypoanalytic wave front get from [3).

To every CR function (or distribution) h on M one associates its mini—FBI
transformation F,(z,w,0) asin 3], (6.3). The explicit form of this transformation will not
be important for our purposes. Recall that this is an analogue of the Fourier transform, but
with an additional factor in the kernel that is essentially the complex Gaussian kernel,
whose purpose is to improve the convergence of the transform. It has been invented by
Bros and Iagolnitzer and was subsequently used, with certain modifications, by the authors
named above and by others in problems concerning the approximation and extension of

CR functions. (See the references in [1] and [3].)

One says that a CR function h on M is hypoanalytic at a vector 7 € IRd\{O} if Fy
has the exponential decay
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@) |Fy(zw,0)] <C - e 171/C

uniformly for (z,w) in a neighborhood of 0 in €" and for ¢ in a conical neighborhood
of o in ¢4, The set of all directions o, € [Rd\{O} at which h is not hypoanalytic is
called the hypoanalytic wave front get of h at 0, and is denoted by WFO(h). This is a
closed cone in IRd\{O}. For related notions of the wave front set see Hérmander [30} and

Tréves [31].

The importance of this notion is evident from the following result of Baouendi and
Rothschild [3] (see also [1]). Let T'C RY bea strictly convex closed cone and h a CR
distribution on M. The following are equivalent ([3], Theorem 7):

(a) WFy(h) CT.

(b) For every open cone A < r* (where r'* s the polar of I') there is an open
neighbbrhood U of 0 in € such that h extends holomorphically to the wedge
¥(A,U) with edge M.

The following is a microlocal characterization of over—extendability (see Definition 2 in

Section 1).

2.1 THEOREM Let M C € be a strongly pseudoconvex CR manifold (1). The following

are equivalent:

(i) M is over—extendable at the origin.

(if) Every CR function h on M is hypoanalytic at every vector
o € 8C*(Q)\{0}. (Here, C*(Q) is the dual Levi cone, and 8C*(Q) is its
boundary.)
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Proof. Recall from [2] or [3] that a real—valued homogeneous polynomial q(¢,{) (¢ € €)
of degree k > 2 satisfies the gector property if we can find a 4 € € and a sector (cone)

o in the complex plane satisfying
3) 0y(¢0) + Re(u(*) <0 on o, angle (&) > n/k.

Notice that when q, is harmonic, q) = Re(a(k), it does not have the sector property,
since in this case we only have sectors o’ as above with angle ( ¢’) = x/k. On the other

hand, if Q. is non—harmonic and of odd degree, it always satisfies the sector property.

I ceRY is any vector not in C*(Q), then by definition of C*(Q) we can find a
2 € €™ suchthat a= o - Q(zO,EO) < 0. Hence for { € € we have

o - (0,0 0) =a-¢T+ (] <)),

and a-({ clearly has the sector property since a < 0. Corollary 8.3 in [3] implies that
every CR function h on M is hypoanalytic at such a vector ¢ at 0 € M. Thus

WF,(h) € C*(Q)
for all CR functions h on M.

Recall that WF(h) is a closed cone in [Rd\{O}, and C*(Q) is a closed convex cone
contained in a closed half—space in RY. 1t (ii) holds, then WF(h) C Int C*(Q), 50 we can
find a strongly convex closed cone T with WFy(h)CT < C*(Q). Then
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> (C*(Q))* = C(Q), and h extends near 0 to a wedge W¥(A) for some cone A
satisfying C(Q) < A < r* according to the implication (a) 2 (b). Thus (i) holds.

Clearly we can turn this around: if h over—extends at 0, say to a wedge ¥(A,U) for
some open convex cone A > C(Q), then WF((h) must be contained in A¥ < C*(Q), §0
(ii) holds. Theorem 2.1 is proved.

In certain cases one can test the hypoanalyticity of h at a given vector o € 00*(Q)\{0}
by using the sector property as in [2] or [3]. We shall assume that the smooth CR

manifold M (1) is rigid, i.e., it can be represented in the form

(4) Imw = ¢(2,2) = Q(2,2) + R(z,7)

that does not depend on Re w. The power series R(z,z) has a unique decomposition

R(Z,E) = R(p)(z,-Z) + R(n)(zvz) y

where R(p) contains all the pure (pluriharmonic) terms Re(aaza), and

Royd)= ) a5 Gga=a,9.
laf,| 8121

Recall from {3] that a real—valued homogeneous polynomial q;(¢,{) (¢ € €) of degree k
is said to have the gxtension property if every CR function defined near the origin on the
hypersurface

£={(¢n) €€ Imy=q (0}
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extends holomorphically to the side of ¥ defined by Im 9 < qk((,'(). If q, has the
sector property (3), then it also has the extension property [2].

Using Theorem IIT.4 from [2] and the Theorem 2.1 above we get the following sufficient

condition for over—extendability on rigid CR manifolds.

2.2 THEOREM. Let M be a smooth rigid CR manifold (4) that is strongly pseudoconvex
at the origin. Suppose that for every vector o € BC*(Q)\{O} we can find 20 € ¢™\ {0}

such that
(i) s Q7% =0, and
(i) 7+ Ry (2T = a0 + (1 ¢1FF,

where q, isa homogeneous polynomial of degree k 2 3 that has the extension property
(or the sector property). Then M is over—extendable at the origin. In particular, if we

can choose zO so that q is of odd degree, then Q has the sector property.

Remark. By definition of C*(Q) we know that for each ¢ € C*(Q)\{0}, ¢-Q(z,2) > 0
on €™, and there is at least one direction 2 € C™\{0} such that o - Q(zO,EO) =0.
Thus, what is required is that the lowest order homogeneous part in o - R(n)((zO,ZzO)
has the extension (or the sector) property.

As a very special case we obtain the following Corollary. Denote by Q(k)(z,E) the

non—pure homogeneous terms of degree k in R, so Q(2) = Q is the Levi form and

. k
ORI
k=3
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2.3 COROLLARY. (Same hypotheses as in Theorem 2.2).

Suppose that there is an odd number k > 3 such that Q(s) =0 for 3<s8<k and the
polynomial

€3 ¢— o - QD7) + Q¥ (¢, 7))

does not vanish identically for any o€ ﬁC*(Q) and z € C™\{0}. Then M s

over—extendable at the origin.

Example 1. Wetake m=2,d=2, M ( ¢t a rigid strongly pseudoconvex CR manifold
(4). By a linear change of coordinates we can normalize its Levi form Q = (QI,Q2) 50

that one of the following two cases holds:

() Q= Iz1%+ |z]*, Q=0
(B) Q1=|z1|2’ Q2=|32|2-

In the first case we have

C(Q) = {(¢,0) ER*: o, > 0},
c*(Q) = {(7y,05) €R®: 5, 2 0},

s0 8C*(Q) = {(0,0,) : 7, ER}.

Thus we must check the hypoanalyticity at the two vector ol = (0,1), pr (0,~1). If the

equations of M are

2 2 3
Imw; = |2)|"+ |z5|" + o(]z]%)
Im w, = Q(k)(z,a + o |z|k+1) + (pure terms),
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then the hypoanalyticity at a'l holds when Q(k) restricted to some complex line through
0 in C2 has the extension property; for a2 we must check —Q(k) In particular, if k is
odd, then both iQ(k) satisfy the sector property (whence the extension property) along
any line €-z for which Q(k)(z,ﬂ # 0,80 M is over—extendable.

In case (B) we have

C(Q) = {(v},09) ER?: 7, 20, 7 > 0}\{(0,0)},

50 C*(Q) = C(Q), and we must check hypoanalyticity at the vectors o = (1,0),
o2 = (0,1). Suppose the equations of M are

Imw, = |z, |2 + Q(k)(z,i) + 0(|z|k+1) + (pure terms) ,
Im wy = |z2|2 + P(s)(z,i) + J( |z|s+1) + (pure terms).

The hypoanalyticity at o@ holds when
k )

has the extension property (which is true if k is odd). The hypoanalyticity at o% holds

when
s —
¢> z; — P( )(zl,O,zl,O)
has the extension property.

Thus, if both k and s are odd, M is over—extendable at 0.
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A similar analysis can be carried out whenever d =2 and m is arbitrary. When d 2 3,
the analysis is more difficult since we must check hypoanalyticity at a set of vectors of

positive dimension.

Example 2. We consider CR manifolds of CR dimengion one and of arbitrary
codimension. We shall assume in addition that at the origin M is strongly psendoconvex,
of finite type, and semirigid (see [3]). This means, that in suitable local holomorphic
coordinates, we can represent M by

Imw, =2z + 0(3),

1

(5)
Im wy = pmk(z,i) + O(mk+1), k=2,..,r,

14 14

where wy €ecC k, P, 18 a homogeneous polynomial in z € € with values in R k, m, ’s
k

are the higher Hormander numbers of M at 0 of multiplicity £, (the first number is

m, =2 with ll = 1), and the components of P, are independent in the sense that for
k

14
any n €R l‘\{0}, n-pmk is not M—harmonic of degree m (see [3, p. 435]). Semirigidity

means that the variables Rewj do not enter the leading order terms p_ . We have
k

1+ £2 + £3 +...+ lr = d. For every such manifold we have

Q(z,2) = (ZE,Q,...,O),
C(Q) = {(¢,0,---0) €RY: 0, > 0},
6c*(Q) = {0} xrI.
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From Theorem 2.1 we see that M is over—extendable at the origin when for each
4
k=2,.,r andeach n€R k\{O}, the polynomial % - p_ (z,z) satisfies the extension
k

property (or the sector property). In particular, we have

2.4 COROLLARY. If M C €119 is a semirigid CR manifold (5) of CR dimension one,
with the first Hormander number at the origin m, =2 and with all the higher Hérmander
numbers being odd, then M is over—extendable at the origin.

Analogous result holds whenever the first Hormander number m, =2 has multiplicity

one. (See the case A in Example 1 above.)

Example 3. Here is a very simple example of a manifold M C € of CRdimM =1 that
is strongly pseudoconvex and minimal at the origin, but is not over—extendable at 0:

2 4

Imw1= |z | ,Imw2= |z| "

The Levi cone is C = {(0;,0): o, >0} =R_x {0}.If 0€ wCM and ¥{(I\U) is any
wedge to which all CR functions on « extend holomorphically, then we must have

I"CIR+ xR+,so I’ can not contain C.
To get a slightly more general example we replace the second equation by

Im w, = A% 2 4 Re(Bzai + Cz4) + 0(]z| 5).
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To get over—extendability it suffices to check the sector property of % the polynomial
above. The term involving Cz4 is irrelevant. Also, by rotation in z coordinate we may

assume B € R. Setting z =¢'7

, we must consider the longest interval for ¢ on which the
expression A 4+ B-Re e2i‘7= A+ B -cos20 is negative resp. positive. A simple
calculation shows that the longest such interval has length > x/4 if and only if
|A/B| < 2/2. In this case M is over—extendable. On the other hand, when
|A/B| > 1, we can see just as before that M is not over—extendable at 0, since

A + B cos 20 is then always of the same sign.

The sufficient conditions for over—extendability presented above are far from satisfactory.
Most of them only hold for smooth rigid manifolds, and they depend in a rather
complicated way on higher order terms in the Taylor expansion of the defining function.
Our feeling is that this condition is related to the behavior of the Levi cone Cp(M) of M
at points p € M near the origin. Intuitively speaking, if Cp(M) turns rather generically
in all directions in IRd as we pass through points p €M mnear 0, we expect to get
over—extendability at the origin. At the moment we do not know how to make this

observation precise, but we hope to return to this question in a future publication.

Before concluding this section we note that the over—extendability is equivalent to the

following, apparently stronger condition that will be used in Proposition 5.1 below.

2.5 PROPOSITION Let M be a strongly pseudoconvex CR manifold (1), with the Levi
cone C(Q) at the origin. Then M is over—extendable at 0 if and only if for



—923—

every neighborhood 0 € wCM of 0 we can find a cone I' > C(Q) and a neighborhood

U of 0 in €™ such that every CR function on w extends holomorphically to the wedge
¥(T,U).

Proof follows the same lines as the proof of Theorem 7 in [4]. It is an application of the

extendability criteria by the mini—FBI transformation and a Baire category argument.
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§ 3. Geometry of wedges.

In this section we shall first obtain some geometric information about the wedges (1.6)
whose edge is an arbitrary CR manifold (1.1). This will enable us to prove a version of the
Hopf lemma on wedges (Corollary 3.4) and a distance estimate for holomorphic mappings
of wedges (Corollary 3.5).

In wedges (1.6) the origin 0 € M has a special role since the cone T' determining the
wedge lies in the normal space NOM . The wedge is obtained by parallel translations of T
along M .If { € M is different from the origin, the translated cone (+T lies in a real
d—plane that is tilted with respect to the normal space N (.M to M at (. Thus,a
unitary change of coordinates that brings T CM into CmXIRd (= TOM) transforms our

wedge into a wedge—like domain that is no longer of the form (1.6).

Thus we must also consider the "tilted" wedges with edge M . Let X C €™ be a real
d—dimensional subspace that is transverse to TOM . For each open connected cone ' C ¥
with vertex 0 and each sufficiently small neighborhood U of 0 in €™ we define the

tilted wedge with edge M by

(1) ¥s(T,U)= {(+t EU: (EM,tET} .

When ¥ =NyM we shall delete the index X and write #(I',U) as before. In this case
the new definition (1) agrees with the old one (1.6), provided that we make the obvious

identification of NyM = {0}™xiR? with RY, which we shall freely do in the sequel.

Let ACNM = {0}™ x iRY be the orthogonal projection of the cone T' onto N,M . The

following lemma shows that it suffices to consider the "straight" wedges (1.6), provided



—95—

that we have some freedom in choosing the cones.

3.1 LEMMA. For each pair of cones Ay A2 C NM satisfying Al <A< A2 thereis a
neighborhood V of the originin €* such that

2) #(ALV)C ¥gI,U)AVC ¥(A,V) .

The size of the largest such V depends on U, on the angle between ¥ and NgM , on the

size of second derivatives of the defining function of M , and on the number
d(Al,Az) =sup{d>0:Vt € Ay B(t,d|t|) C Az} .

Here, B(t,c) denotes the Euclidean ball in NoM = RY with center t and radius c.
(Clearly d(AI’A2) >0 ifand only if A <A, J)

Proof. Fix a point { = (z,w) and a vector t € NyM such that (+t € ¥y(I',U) . Then
thereis a point ¢/ =(z’,w/) EMNU andavector t” €T sothat (+t= ¢ +t’ .
Thus '

t’ = (z—=',Rew-Rew’) + [i(0,lm w—Imw’) +t] .

The first vector on the right hand side is in TOM , the second in NoM , s0 the second

vector lies in the cone A C NOM . Hence
(3) t =ty +i(0,Im w'~Im )

for some tO EA.
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We would like to show that t € A, , provided that || = € is sufficiently small. To do

this we must estimate |Im w’/—Im w| intermsof |t| = 6.

First we have |(—("| < C;|t| = C§ for some C, <o depending on the curvature of
M and on the angle between ¥ and NoM. Also,

|Im w—Im w’ | <sup|Ve| - | (¢’ |

where the sup|Vyp| is taken on the interval from (z,Re w) to (z’,Rew’) in ™ x R

This can be estimated by 02(] Cl+1¢=¢" )& Cy(e+8) for some constant C,
independent of € and 4, s0

|Im w—Im w’ | < Ca(e+8)6 < C 6 .

We can make C, arbitrary small by requiring that {+t lies in a sufficiently small
neighborhood V of the origin in €" (s0 €+6 is small). We determine V so that

2C, = min{1,d(A,A,)} .
Then (3) implies

[tg] 2 [t] = |Im w~Im w’ |
26-C462 6/2

and
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[Im w/-Imw| < C,6<2C,|t,] <d(AA)[t,l -

Hence t lies in the ball B(t;,d(A,A5)[ty]) C Ay, 80 (+t € ¥{(A,,V). This proves the
right inclusion in (2).

The proof of the left inclusion in (2) is obtained by reversing the roles of ¥ and NyM in

the proof given above; we shall omit the details. Lemma 3.1 is proved.

3.2 PROPOSITION. Let ¥’ < ¥ be wedges (1.6) with edge M and with cones

I'’ < T . For any pair of cones A’ < A in IRd satisfying
I'" <A’ <A<T

there i8 a neighborhood U of 0 in €" and a family of unitary maps" Up € %(n),

depending continuously on p € M N U, so that the associated affine transformations
$5(0) =T, (¢-p)

satisfy:

(a) #,(p)=0,

(b) D¢ (p)=T

(= NM) .
(c) The wedges Yp = ¢p( ¥)nU, Yl‘; = ﬁp( ¥/)NU satisfy

p Taps TpM onto CPxRd (= TyM) and NpM onto {D}m><iIRd

¥, C ¥4, U)C ¥(AU)C ¥, pEUNM .
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Here, #(A’,U) and #(A,U) are wedges (1.6) with edge Mp = ¢p(M) nuU.

Proof. Choose any continuous family p € M — ?tp € U(n) of unitary maps satisfying
(a) and (b). For p€ M closeto 0, ¢p( ¥) is a tilted wedge with edge ¢p(M) and
with cone Up({O}dXiI‘) C Up(NOM) . The orthogonal projection I‘p of this cone onto
NOM is very close to the original cone I' = I‘0 if p is close to 0. Similar property holds
for ¢p( #’). Thus, if U is chosen sufficiently small, we have

I'’ <A’ <A <T M .
p <A< <p,pE nNu

The property (c) now follows from Lemma 3.1, provided that we shrink U further if

necessary. This proves Proposition 3.2.

Next we will show that, given any pair of wedges ¥’ < ¥ (1.6) with edge M , we can
exhaust the finer wedge ¥’ in a suitably small neighborhood of the origin by linearly
embedded (m+1)—dimensional complex balls of uniform radius R > 0, contained entirely
in the larger wedge ¥.

For each point ( outside M but close to M there is a unique closest point »({) €M so
that (—={¢) belongs to the normal space Nﬂ_( C)M . Since T x{ C)M is a generating
subspace of €™, it follows that i((—x(()) € T (M - Let d(¢) = | ¢-x(0)] .

For each such { we denote by T ¢ CC the complex affine subspace

Tl = MO + Ty M + € (¢-(0))

of complex dimension m+1 , passing through #(({) € M . Let £(¢) = ({—=({))/d({) be
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the unit vector in direction {—={¢) . We choose a C—orthonormal frame XXy in

TE_( C)M and let ¢ ¢ @l _, T ¢ be the affine parametrization of TT ¢ given by

m

$(zm) = 7(0) + g 52X, + - 4(() -

Let B(R) = {(z,7) € €. 2|2+ |»R|2<R%}, R >0, and let

Bc(R) = ¢C(B(R)) C Trg

be the image ball of radius R contained in T ¢ with #({) € 6B C(R) . Notice that the
vector 2RL(¢) is the diameter of B C(R) , passing through x(¢) and the center

7(¢) + RE(() of B(R).

3.3 PROPOSITION. (Balls in wedges.) Given wedges ¥’ < ¥ of the form (1.6) with
edge M , there is a neighborhood U of 0 € €* andan R > 0 so that B (R)C ¥ for
each ( € ¥’ nU. The number R can be chosen so that it only depends on the
curvature of M and on the number d(I'’,I') associated with the cones '/, C NoM

determining ¥’ resp. ¥ .
Proof. By Proposition 3.2 it suffices to consider the points ( = (0,it) € NoM with

tET’, |t| =1. Then a(¢) =0, we may take {Xj} to be the standard basis in €™,

and we have

TTczTrtz{(z,qit):ZECm,nEC} :

Writing 7 =x+iy, w=nit =u +iv, we have u=—yt, v=xt. On the ball B(R)
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we have
X = (|z|2+y2)/R+ x, x'>0.
To prove that the image belongs to the wedge ¥ we must consider the expression
Im w — ¢(z,z,Re w) = v — ¢(z,z,u) = xt — ¢(2,2,~yt) .
We can estimate the second term by
| plzz-y)| < Cy(12]2+y®) for |z|2+y® <R?,
and write
o(zzyt) = Cy( |21 *+y%) - Haz1)

where || <1. Thus

v—g(zz0) = (1/R)(|2) 2y + x"t + Cy(|2)? + )z z,yt)
= (1/R)(121%+y%)(t + CR Hzz—y1) + x't .

If we choose R so that C,R < d(I'’,I'), then the vector (t+ C;R ) belongs to T for
all t € rlns , 80 v —(z,2,u) € T . This proves that for this choice of R we have
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B,(R)C # forall t ET’ NS. Proposition 3.3 is proved.

Remark. If we denote by A C(R) CB C(R) the complex disc of radius R passing through
the center of B ((R) , with «({) € A C(R) , then we obtain a family of complex discs in
¥ that exhaust every finer wedge ¥’ < ¥ near the origin, provided that R > 0 is
chosen sufficiently small. This already suffices in several applications; we shall state some

of them here.

3.4 COROLLARY. (Hopf lemma on wedges.) Let p be a continuous functionon ¥ UM
that is zero on M and negative plurisubharmonic on ¥ . Then for every finer wedge

¥’ < ¥ and every sufficiently small neighborhood U of 0 in €" there is a constant
C > 0 such that

p(¢) < —Cdist((M), (€ ¥/ nT .
Proof. Apply the one variable Hopf lemma to p on each disc A C(R) (see the Remark
above). We may assume that the union of discs A C(R) for (€ ¥’ NnU is contained in
a wedge finer than ¥, so the standard proof of the Hopf lemma shows that the constant
C above can be chosen independent of ¢ .

Remark. A similar result has been proved in [23].

3.5 COROLLARY. Suppose that 01 C € is a domain with a plurisubharmonic defining

function near 80 .If ¥ C (" is a wedge (1.6) withedge M and f: ¥ — N isa
holomorphic mapping that is continuouson % UM and maps M into 80, then for
every finer wedge ¥’ < ¥ there are a constant C > 0 and a neighborhood U of
0 € €" so that
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dist(f(¢),0) 2 C dist(¢,M), (€ ¥ ' nU .

Proof. Apply the previous Corollary to the negative plurisubharmonic function pof on
the wedge ¥ .

Remark. If ) is an arbitrary pseudoconvex domain with € 2 boundary, we can find a
2 defining function p such that 7= ——p)€ is plurisubharmonic on € for € > 0
sufficiently small [11]. Applying the Hopf lemma to 7of we obtain the estimate

dist(f(¢),60) > C dist(¢M)Y€E, c€ ¥/ nU .

This kind of estimates are well-known when M is a hypersurface.



—~ 33 -

§ 4. Convex barriers and estimates of the local hull of M.
Let ¥ bea wedge (1.6) with edge M and U C €® a neighborhood of the origin. Every
real—valued function p € ¢ 1(U) satisfying p |y =0, dp 40 on MNU, and

p<0 on ¥ NU will be called a barrier for the wedge ¥ in U . Clearly every wedge

¥ with an acute cone has plenty of barriers.

In the rest of this section we assume that the manifold M defined by

(1) Im w = Q(z,z) + R(z,z,Re w)

is strongly pseudoconvex at the origin, and we shall be interested in strongly

plurisubharmonic and even strongly convex barriers. Let C(Q) and C*(Q) be the Levi

cone and its dual cone as defined by (1.4).

d
For vectors o,7 € rd we denote o7 = 2 775 For each vector o € RY , le| =1, we
=1
define the function
(@) pylaw) = —o-Imw + (¢-Q(2) + |Imw|?)

+ (¢+R(z,7,Re w) — | Q(z,7) + R(zZ,Re w)|?) .

Notice that p is obtained by taking the inner product of & with the defining equation (1)
(with Im w moved to the right hand side) and adding the squares of the equations in (1).
We have arranged the terms so that ¢°Q + |Im w| 2 ig the quadratic part, and the terms

in the last parentheses are small of order 2.
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Clearly p, is a barrier for each wedge ¥{(I') whose cone T' is contained in the half

space ot = {r€ Re:o-7> 0} , at least in some neighborhood of the origin. Moreover, if
*

o €Int C (Q), then o-Q is positive definiteon €™ , s0 Py is strongly

plurisubharmonic near the origin.
Recall that for each cone T C RY its dual cone I‘* is defined by
* d
I' ={c€ER :0-720 forall 7T€T} .
Let S denote the unit sphere in IRd .

41 LEMMA. Let T C IRd be an open convex cone whose closure I' contains the Levi cone
C(Q) of M at 0. Then for every compact subset K CC Int r NS thereisa
neighborhood U of 0 in C" such that every function in the family {pa 0 €K} isa
strongly plurisubharmonic barrier for the wedge ¥(T,U).

* X
Proof. The condition T' ) C(Q) implies I' C C (Q), s0 p, is a plurisubharmonic
*
barrier for ¥{(I') for every o €Int T in some neighborhood U_ of the origin. Clearly
*
Ua can be chosen to be independent of ¢ € K CCInt ' N S. This proves Lemma 4.1.

Often it will be useful to have strongly convex barriers. In fact, a quadratic change of
w—variables turns every function in {pa : 0 € K} into a strongly convex one in some
smaller neighborhood U, of 0 € C". By a rotation in RY we may assume that

T C{o; >0} U {0} (otherwise T has no interior!). We introduce new w—coordinates

*

* %
w =u +iv by



d
3) wi=wi—g ) ()7

In the new coordinates p g 18 given by

(@) paw) ==y +(0-QED) + g |2+ 1=V D) + a(2) |

*
so the quadratic part is strongly positive definite whenever ¢ € (IntI' ) N S (since then
*
O<01$1). On each compact set ¢ EKCC(Int T ) NS we have 0<c501$1,so
*
the functions in {pa : 0 € K} are strongly convex on a fixed neighborhood U, of

oech.

Let M* denote M in the new coordinates. The above implies that the polynomially
convex hull of M* n 'U1 is contained in N {p; <0:0 €K} . Since a polynomial change
of coordinates maps polynomial hulls to polynomial hulls, it follows that for all sufficiently
small balls 0 € U C €, the hull of M N T is contained in the set {{ € U': p,(¢) <0
forall o € K} .

If we now fix a cone T' > C(Q) , we can find finitely many vectors

7q,-0) € Int C*(Q) NS such that

k
(5) cQ)Cnot<r.
=1

If Pi=Pg. (1 € j<k) are the corresponding functions (2) and B is a sufficiently small
J
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closed ball in €™ centered at the origin, then the polynomial hull M N B is contained in
{CEB: ()0, 1<i<K}C ¥TB)UMNB) .
The last inclusion is elementary and follows from (5). This proves

4.2 PROPOSITION. If M is a strongly pseudoconvex manifold (1) with the Levi cone
C(Q) at the origin, then for every cone ' > C(Q) there is a closed ball B C €" centered
at the origin such that the polynomial hull of M N B is contained in the wedge

#(I',B) U (MnB) .

The same proof shows the following
4.3 PROPOSITION. Let M be a strongly pseudoconvex ¢ 2 manifold (1) with the Levi
cone C(Q) at 0. For every strongly convex cone T' C R4 satisfying I' J C(Q) we can
*
find a small neighborhood U of 0 € € 5o that theimage ¥ of the wedge
*
# = ¥(I,U) (1.6) in the coordinates (z,w ) defined by (3) satisfies
x x
(6) ¥ nU C 20N F,n..0 F,4

*
in some neighborhood U of 0 € C*, where each & j is a strongly convex domain

9,={CEV :p,(()<0, 1£j<a},
J

* *
every p, is of the form (4), and the vectors 0,,...,04 € (Int T ) NS are linearly
J

independent.
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* *
If we denote the image of M in coordinates (z,w ) by M , the condition on
T1rn04 implies that

* *

*
M NnU =a.@1n...n8.9dnU ,
*
and the intersection is transverse, provided that U is sufficiently small.

We have seen that a strongly pseudoconvex manifold (1) lies locally near 0 in many
strongly pseudoconvex hypersurfaces. This property characterizes strongly pseudoconvex

CR manifolds:

4.4 PROPOSITION. Let M C €® bea #2 manifold of the form (1.1) near the origin, of
real codimension d > 1. Then M is strongly pseudoconvex at 0 if and only if it is

locally near 0 contained in a strongly pseudoconvex hypersurface.

Proof. It remains to prove the "if" part. Write M in the form (1). After a linear change
of w—coordinates the strongly pseudoconvex hypersurface ¥ containing M is given locally

by an equation
(7) Im w, = A(z,2) + B(z,w’ Re wy) ,

where A contains quadratic terms involving z and z,and B contains the remaining
quadratic terms and terms of higher order. We substitute the first d—1 equations (1) for
M into the right hand side of (7). Clearly this does not affect the quadratic part A of (7).
The condition M C ¥ implies that the last equation of M now agrees with the new

equation for X . Comparing the quadratic parts involving z or z we conclude
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A(z,z) = Qd(z,i) , 80 A is hermitian. Since A is the restriction of the Levi form of ¥ to
{w=0}C TgE , A must be positive definite (we adjust the sign of w g if necessary), so
Q d(z,E) is positive definite. Thus M is strongly pseudoconvex.
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§ 5. Estimates of the mapping.

In this section we assume that f: M — M’ is a local CR homeomorphism of CR
manifolds (1.2) that are strongly pseudoconvex and over—extendable at the origin, and

f(0) = 0 . We denote by C(Q) resp. C(Q’) the Levi coneof M resp. M’ at the origin.

5.1 PROPOSITION. There exist open, strongly convex cones in IRd satisfying
C(Q) <T; <Ty<T, and C(Q") <T| < T, and there exist neighborhoods
U, CU,CU; and U CU, of the origin in C" so that the following hold:

i) f extends holomorphically to the wedge ¥, = ¥,,(I',,U,) and maps it
2 MVt 2072
into ¥4 = ¥/ (T5,U5).
(ii) f maps #; = ¥(T},U;) into ¥ = ¥p/(T],U]).
(iii) 1 extends holomorphically to 7’5 = YM,(I",Ué) and maps it into
. 1 ’
(iv) " maps ¥ to ¥,.

Moreover, we can choose 'y resp. I‘é to be contained in a prescribed cone I'y > C(Q)

resp. Ty > C(Q").
Theindexin ¥ indicates that we have a wedge with edge M, and similarly for M” .

Proof. Choose Lg> C(Q) and U, C C" , and consider the inverse map .M —M.
If w' CM’ isasufficiently small neigborhood of 0 € M’ , then the polynomial hull of
- I(E’ ) CM is contained in the wedge ¥y UM = ¥(T3,Us) UM according to
Proposition 4.2. Since M’ is over—extendable at 0, there is a cone I‘é >C(Q’) anda
neighborhood Uy of 0 in C" so that every CR functonon w’ extends
holomorphically to the wedge #5 = ¥7,/(T'5,U5) (see Proposition 2.5). Hence this
wedge is contained in the polynomial hull of &' ,50 ' maps ¥% to ¥, . Thus
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(iii) holds.

We repeat the same argument with f instead of 1 We use the over—extendability of
M at 0 tofind a cone T, satisfying C(Q) <T, < Ty and a neighborhood U, CC U,
of 0 s‘uch that { extends to the wedge ¥, = ¥,(I'),U,) and maps ¥, into Yé :
Thus (i) holds.

Consider again { 1 Using the over—extendability of M’ at 0 and Proposition 4.2 we
find a wedge ¥ < ¥ withcone T}, C(Q’) < T} <Tj,sothat ( ¥)C ¥,.
Thus (iv) holds. Finally, we repeat the same with f tofind ¥, C ¥, such that

f( #,) < ¥ . This proves Proposition 5.1.

5.2 PROPOSITION. Let f: M — M’ be as in the Main Theorem. Then there is a
wedge ¥= ¥(I,U) withedge M whose cone T’ satisfies C(Q) < I', such that {

extends holomorphically to ¥, it satisfies the distance estimate
e g dist(¢,M) € dist(f((),M) ¢ C dist(¢ M), (€ ¥

for some C > 0, and is uniformly Hélder continuous with the exponent 1/2 on
¥UMnU).

Proof. Choose wedges ¥#= ¥, < ¥,< ¥, and ¥ < ¥, asin Proposition 5.1.
Assume also that ¥, and Yé are sufficiently, small so that they admit strongly
plurisubharmonic barriers p resp. p’ . The estimate (1) is obtained by applying the Hopf

lemma (Corollary 3.4) to the negative plurisubharmonic function p”of on ¥, and to



pof_1 on 7/’é.

To get the Holder estimate we first apply the change of coordinates (4.3) on the target side
sothat %7 is contained in a strongly convex domain & with M’ C 8 2. For each
point ¢ € ¥ and each vector X € €"\{0} we can find a linear complex disc A((;X) in
¥, , centered at (, in direction X, of radius comparable to dist({,M) . On the target
side, the largest such discin &, centered at f({), in any direction, has radius

< C dist(f( g’),M’)ll2 for some constant C, . Since & is convex, the result of [17] and

(1) imply the following estimate on the derivative of f at (:

IDIOX|/1X] < C, dist(E(¢),M" )/ ?/dist(¢,M)
<cydist(¢M2, ce v,

A standard argument shows that f is Holder continuous on % U (MNU) with the

Holder exponent 1/2 . This proves Proposition 5.2.

In order to obtain more precise information on Df({) for ( € ¥ we shall introduce
certain affine coordinate changes on the domain and the target. In the domain we fix a pair
of wedges ¥ = ¥, and ¥, withcones T, T, satisfying C(Q) <T <T,. On the
target side we use the coordinates in which Proposition 4.3 holds, i.e., we have d strongly

convex domains Dy Dy C €™ so that
MU' =89,n..n8FynU’

for a suitably small neighborhood U’ of 0 € €™, the boundaries 8§ & j intersect
transversely along M’ , and f maps ?’2 holomorphically into Ql n..ng 4
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Moreover, we may assume that the distance estimate (1) holds on ¥, .
For each point p € M we choose a unitary matrix Up € #%(n) satisfying

2) UL(T M) = €™ x Re=T M,

0

— [0y xird —
U,(N M) = {0} x iR = NoM .

Let ¢, €™ —— €" be the associated affine map

(3 $(0) = U(-D) -

We denote by UI’> resp. ¢l’) similar maps associated to f(p) € M’ . Then we have
a1

where fp is the expression for { in the new coordinates. Notice that fp maps the

manifo M) of the form (1.1) to the manifo , an 0)=0.
fldg?p f the fi h 'fldp&I’)M’ dfp

We will assume that ¥, is sufficiently small such that each point ¢ € 1/’2 has the

unique closest point p = 2(¢{) € M, and ((—p)ENpM . We then have
$(0) = (0,t(0)
for some t(¢) € RY with

M| = 1¢-p| = dist((M) .
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From (2)—(4) we get

Di(¢) = (U/) L - i . .
Q) ()= (™ - DLt(0) - U
For each t € RY such that fp is defined at (0,it) we shall write its derivative in the

block notation

A4 B

(6) Di_(0,it) =
Y
C(t) D)
with blocks of sizes A € ¢™*™ B¢ med , C€ Cde , DE Cdxd . If we choose Up
to depend continuously on p € M | then for all p € M sufficiently close to 0 we may
take t to be an arbitrary vector of sufficiently small length in cone I‘0 C [Rd satisfying
C(Q) <T <Ty<T,. (Here, I' is the cone determining the wedge ¥= ¥ ,and T,

determines ¥, .)

5.3 PROPOSITION. For each point p € M sufficiently close to the origin and each vector
t €RY such that the point ¢ = p + U;;l(o,it)t = ¢;1(0,it) is contained in ¥, the
blocks in (6) satisfy the following estimates:

(a) A(t)=0(1), D) = o(1) ,
B ()= o(1t17%), cyt) = o(18] /%) |

1/2
() c()=a(jt]'/?) .
. x
(c) If the limit Dp = lim Dp(t) exists as t — 0 within some conein T CRY with
t—0

non—empty interior, then it is a real—valued d x d matrix.



—44 —

Moreover, the estimates in (a) are uniform with respect to p and t.

Remark. At this point we are not able to prove that the estimate in (b) holds uniformly
with respect to p, s0 we stated it separately. We shall prove in section 6 that the limit in
(c) exists for almost every p € M (with respect to the surface measureon M )as t — 0

within some smaller cone containedin T .

Proof. We shall give the proof for the point p = 0 € M since the proof for any other point

i8 just the same.

Fix a point ¢ = (0,it) € ¥ andlet {(¢)= ¢’ = (z’,u’+iv’).If X € €" is any vector
of length one, then by [17] we have

IDI(C)X| <A - Ry/R,

where A is an absolute constant, R1 is the radius of the largest linear complex disc in

7!’2 , centered at (, in direction of the vector X, and R, is the radius of the largest
d
such discin N 9 i centered at ¢’ , in direction of the vector Df(({)X.
j=1

For each X we can take R, proportional to |t| or bigger. When X € € x {0}9, we

can take R, proportional to |t|1/ 2

1/2

. On the other hand, we have dist(¢’,M’)w~ |t]|,
so R, is at most C |t] for some C > 0 because of the strong convexity of the
domains Qj . Thus |DI(¢{)X]| is always < Cl|t|_'1/2 , and is bounded when X is

complex tangential. This gives the estimates (a) for the blocks A and B.
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The estimates for C and D require some additional work. By Hélder continuity we have
1 ¢ = 1(¢)] € Cylt] 1/2 e (i = (z’,u’+ivi) be the uniquely determined point in
M’ that differs from ¢’ only in the v’ coordinate. From the defining equation of M’

we have
/ 7 F B /
vl = ¢ (z ’z !u ) H

so |vi| = 0(|t]) (since ¢'(0) =0, dp’(0)=0). Also,
|vi—v’| s dist(¢",M") = o(|t|) . This implies

(") v =o(lt]) -

Hence the projection onto the w’ —space {0}m x Cd of any linear complex disc
AC P, N..N P, centered at ¢’ has radius at most C,|t| . This implies the

estimates for the blocks C and D corresponding to the components fm .,fn of 1.

1
Since all of these estimates only depend on the radii R, and R, and on the distance
estimate for f, it is clear that the same holds uniformly for p € M sufficiently near 0.

To prove the estimate (b) we shall use the generalized theorem of Carathéodory on the

angular derivative [24, Theorem 8.5.6]. Again we shall take p=0€E M.

We can find osculating balls B,,...,B, C C" such that B.i D Qj , 0Bj na Qj = {0},
and the normals to 4B i at 0 are linearly independent vectors

ajE{O}minRd=N0M’, 1<j<d.
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Fix a point (0,it) € ¥ . In Section 3, Proposition 3.3, we have constructed an
(m+1)—dimensional complex plane T]'t , generated in the present context by
TgM =¢™x {O}d and the vector t, containing a ball B,(R) C TT, of radius R >0

(R independent of ¢ ), such that B,(R)C ¥, and OB, (R)N & ¥, = {0} €EM.

For each j€ {1,...,d} we consider the restricted mapping f: Bt(R) — B j between
balls. Clearly f(0) = 0, and the estimate (7) implies that

(8) lim inf dist(f((),dB,)/dist((,0B,(R)) <w .
B,(R)3(—0

For a fixed j we write { = (f(t)’f(n)) , where f(n) is the normal component of f with
respect to B j at 0 (i.e., the projection of { onto the normal direction to 0Bj at 0),
and f(t) is the tangential component. The cited theorem [24, p. 177] implies

)] B2 0jit) = a(e’?), 1<x<m .

d over €, we get

Since the normals to 9B; (1<j<d) at 0 span {0} x ¢
&'j/&zk(o,it) = a(|t]), 1€k<{m, m+1<j<n

when t €Ty, [t] — 0. This is precisely the estimate (b) on Cp(t) at p=0.

It remains to prove (c). The theorem quoted above implies that for each fixed t € Iy and

j € {1,...,d} , the derivative of f(n) in the direction of the vector it (the "normal"

direction in Bt(R) at 0 ) converges to a real number:
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d

(9) e]-jfo ikZ1 ty Of(p)/ 0w, (Oiet) €R .

For each j, f(n) is a linear combination with purely imaginary coefficients of the

components {ft}3= m+1 - BY the assumption (c) the limits

(10) tEI_I’IO ﬂa/awk(o,it) , 1<k<d, m+1<2<n ,

exist a8 t — 0 within certain cone. Applying (9) in d linearly independent direction

t € [Rd we conclude that the limits

lim idf /0wk(0,it) ER, 1{k<d
t—0 n)

are real—valued. Finally, as j runs from 1 to d, the normals to 4B ; at 0 span
{0} x iR , 80 the limits in (10) are also real-valued. This proves (c), and Proposition

5.3 is proved.

Remark 1. In the proof of (c) we had to know in advance that the limits (9) exist and are
independent of t . The problem is that on wedges there is no immediate Lindeldf’s
theorem: a bounded holomorphic function may have a limit along certain radial direction,

but may fail to have the nontangential limit. For versions of Lindel5f’s theorem in C" see
(9], [10], [19], and [23].
5.4 COROLLARY. (Notation as in Proposition 5.1.) There is a constant C > 0 such that

1/C < |det DI(¢)[ <C, CE ¥ .



— 48 —

Proof. The estimate on |det Df({)| from above follows immediately from (5) and the
estimates in Proposition 5.3 (a). We use the fact that these estimates are uniform with

respect to p and t.

The estimate on |det Df(¢{)| from below follows by applying the first part of the

’

Corollary to the mapping 1 1. ¥y —— ¥, that maps 7fi into ¥, (see
Proposition 5.1.) This proves Corollary 5.4.
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§ 6. Proof of the Main Theorem.

Let f:M— M’ be a CR homeomorphism as in the Main Theorem. Let
# = ¥(I',U) be a wedge with edge M such that ' > C(Q), f extends holomorphically
to ¥ and satisfies the estimates of Proposition 5.3 and Corollary 5.4 there.

1

If, in addition, f is a CR diffeomorphism of class %~ on M, then for each point

¢ €M the derivative Df(¢) maps TE‘M isomorphically onto T‘{:( oM

If we think of the complex m—planes T%M and qu:( C)M’ as points in the complex
Grassman manifold Gr(m,n) of complex m—dimensional subspaces of €, it is natural to
associate to M resp. M’ the manifolds M resp. 8/ in €® x Gr(m,n) by

(1) ft = {((,T%M) . ¢ € M} C € x Gr(m,n) ,

and analogously for M’ . Then f lifts to a continuous mapping 1 : ff— M’ defined
by

C C
Notice that T can be defined even when f is merely continuous on M .

Over the wedge ¥ we can lift f to the holomorphic mapping
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F: ¥ x Gr(m,n) — C" x Gr(m,n) ,
(3)
F({,A) = ((¢),DI(O)A) .

Here, Di(¢)A is the image of A € Gr(m,n) under the linear map Df(¢) ; this requires

that Df(() is non—degenerate for each { € ¥, as is the case in our situation.

When f€ #M(M) and Df(¢) is non—degenerate for (€M, then F extends
continuously from ¥ x Gr(m,n) to M and coincides with T on M. Moreover,
Webster proved in [28] that the manifold M is totally real at a point ((,T%M) if and
only if the Levi form of M is non degenerate at { € M . The proof of the Main Theorem
now follows exactly as in Webster [28, 29], provided that we use the smooth version of the
edge—of—the-wedge theorem given in [23]. This will be explained in more details below.
In this case one does not need the over—extendability of M resp. M’ at 0 ; instead it
suffices to assume that M and M’ are minimal at 0, so the result of Tumanov [25]
can be applied to extend f resp. 1 1o some wedge. In this case we do not require any of

the results of sections 3—5.

We now drop the assumption f€ 3‘1(M) . We will nevertheless find a suitable wedge
¥ C ¥ x Gr(m,n) with edge M s0 that the mapping F (3) extends continuously from
¥ to ¥ UM and coincides with T on M . This will suffice to conclude the proof of
the Main Theorem along the same lines as before. In the hypersurface case this approach
has been developed in the papers by Pinchuk and Hasanov [23] and the author [15]. Our

present proof includes the hypersurface situation as a very special case.

Before proceeding, we must introduce homogeneous coordinates on the Grassmannian
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Gr(m,n) and express the map F (3) using these coordinates. To each matrix

PE€ Cd!(m+d) of rank d we associate the complex m—plane
d
Ap=[P] = {¢EC™TC:P(=0},
where P( is the matrix product. Clearly every A € Gr(m,m+d) is of this form, and we

have [P,] = [P,] ifand onlyif P, =B-P, for some B € GL(d,() .

rd

If A€GL(nC), n=m+d,then A maps each m—plane onto an m—plane as follows:

A([P])={ACEC": P( =0}
={¢’ €C*:PAT ¢ =0}
= [PAT] .

We shall say that P is the homogeneous coordinate of [P] € Gr(m,m+d) . When d=1,

we have Gr(m,m+1) = CP™ | the complex projective space.
In these coordinates the map F can be expressed by

—1
(4) F(¢ [P]) = (f(¢), [P-DI(¢) 7]) -

We must also write the manifold M (1) in the coordinate notation. Let M C €™ be
defined by

1({) =r(z,w) = -Im w + ¢(z,z,Re w) = 0 ,

where we think of r = (Il’“"rd)t as a column vector in RY . We denote by Ie= (r 1)
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the Jacobian &-matrix of r of dimension dxn, where 1 = (&rj/é‘zk) and

rw=(&rj/0w£) for 1<j2<d, 1<k <m. Notice that
™M = [ (p)] , pEM .
) ¢

Since ¢(0) =0, dp(0) =0, the matrix r_ is invertible in a neighborhood of the origin

in €", and we shall always work under this hypothesis.
This allows us to consider F only on the coordinate chart of Gr(m,n) consisting of points
[P] € Gr(m,n) for which P = (P,P,) and the matrix P, € ¢9*4 js invertible. On this
chart we can use the affine coordinate [P] = P;lP1 € €™ | Hence TgM has the affine
. -1
coordinate r_"(p)r,(p) for pEM.
It will be convenient to introduce the holomorphic mapping
G: ¥ x cdxm___chXn ,
G(¢,P) = (P,1%*%) D) .
In the choosen affine coordinate system on Gr(m,n) the map F is then given by

(6) F(¢,P) = (1(¢), [G(¢,P)]), CE ¥, Pec™ .

Unfortunately we cannot pass to an affine coordinate system on the target yet.



We shall now define a special wedge ¥ C C" x ¢ ™ with edge M as follows. For
(E ¥ welet x({) €M be its closest point in M . Recall that TE_( C)M has the affine

coordinate (r . 1

W) (7(€)) . Fix a> 0 sufficiently large and set

(1) ¥ = {((P) € ¥ x €™ P~ (£ 1 )(x(()] < a-dist((M)} .
(Here we can use any matrix norm.) Our first goal is to prove

6.1 LEMMA. The holomorphic mapping G (5) is bounded on the wedge v .

Proof. In order to estimate G((,P) welet p= x({) €M be the closest point to { on
M . We introduce the affine change of coordinates (5.2)—(5.3), so f satisfies (5.4). We also
let t=1t((¢)€ RY be such that

$,(0) = U () = (0,1) -

Since the unitary map Up takes TgM = [r C(p)] isomorphically onto

¢™ x {0}4 = [(0,19"9)] , it follows that

(®) r (8)- U5 = (07 E(p))

for some matrix E(p) € GL(d,C) . We may choose Up to depend continuously on p € M
and Uy =1"" 50 E(p) will also be continuous in p € M and E(0) = r_(0) = 5 19*¢.
We perform similar transformations on the target side with respect to the point

f(p) € M’ ; we denote the corresponding quantities by the same letters, only adding a
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prime.

From (5.4) we calculate by the chain rule

9) pi(¢) L = U o Df (0,it) Lo U’ .
)Y pt’ p

Set

R0 B0

. y—1
Df _(0,it) ~ =
P B (t
8 () B
where the blocks have the same sizes as those in Dfp(o,it) (5.6). Since
| det Dfp(O,it)| = |det Df(¢{)| is bounded away from zero on ¥ according to Corollary

5.4, Proposition 5.3 (a) and (b) implies that the blocks Kp , B, €, ﬁp satisfy

Y Y

exactly the same estimates as the corresponding blocks Ap, B p’ Cp, Dp. In
particular,as t — 0,

() b =0(), Em =00, Bm=200),
uniformly with respect to p € M, and also ﬁp(t) = a(]|t] 1/2) :

From the definition of the wedge ¥ (7) we see that for each (¢(,P)€ ¥ | with
7({) =p EM, we have

P=r ), 0) + 2 (It])
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80

(11) (P17 = P () + 0 (181) -
We can now estimate G(¢,p) as follows:

G(¢P) = (P19 D ¢!
= 1, 1(0) 1 0)- 0,1 DE 0ty 102 4 0 (14 1F2)
= 1,1 0) (0™ E(0)) - D (0t U7 + 0 (1611
-1 ’ 1/2
= ) B)- (@,(08,(0)- U} + 2 (11112 .
We have used (8)—(11) in these calculations. If we take into account
8w =0 (1t

and

dx ’_ pdxm pdxdy | rs
(0 m!ﬁp(t)) 'Up - ﬁp(t) (0 m:i ) Up
=B (0)-E (@) 1 /(i)

(we have used the analogue of (8) for the point f(p) ), we finally get

G(¢P) = [ ()E®)] - B()- B/ (o)’ (o (o)1 + 2 (18111 .

The expressions in the square brackets are continuous with respect to p€ M, Bp(t) is
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uniformly bounded, and the term 0(|t|1/ 2) is also uniform with respect to p . This
implies that G is boundedon ¥ and Lemma 6.1 is proved.

To simplify the notation we introduce the function

H(¢) = £, (») B(p)-B() B (0, CE ¥,

with values in Cdxd, 50

G(¢P) =H(Q)r’ /(o) + 2 (1t11D), (¢P) € #°.

Wesplit G as
G=(G.G,), G, €¢P™, G e,
where
= ’ 1/2
G (¢P) =H(()-r" /(f(p)) + 2 (|t]77) ,
(12)

Gy(¢.P) = H(Q)-r’ ,(i(p)) + 2 (111 /%) .

Notice that the first term in G((,P) does not depend on the second component P which
only contributes a term & (|t] 1/2) , provided of course that ({,P) € ¥ .

6.2 PROPOQSITION. There is a smaller wedge 7’0 C¥% with edqge M and the

corresponding wedge
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¥o={((P)E ¥ :CE ¥}
with edge M 5o that the following hold:

(a) For almost every p € M with respect to the surface measure on M, the function G

has a limit

lim G((P)=G (p) € ¢I*®
(—p

as ((,P)E€ 7/?0 and ¢ — p nontangentially within the wedge ¥, . (This means that
| ¢—p|/dist({,8 ¥,) stays bounded.)

(b) |det Gy| is bounded away from 0 on ¥’y mear B, s0 G,'G, is bounded
holomorphic there.

(c) G;IG1 extends continuously from f’o to M so that foreach p€ M:

(13) C]i]’_—l']p G;IGI( C,P) = I’W’ (f(p))_]- .rfz;(f(p)) .

(d) The mapping F defined by (3) (or (6)) extends continuously to 7/"0 UM and
coincides with T (2)on M .

Proof. Our final goal is to prove (d), from which the Main Theorem will follow by applying

the smooth version of the edge—of—the—wedge theorem as in [23] or [15].

Clearly (d) follows from (c) since, in the affine coordinates on  Gr(m), F
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equals

F({,P) = (£((),(G3 G)((,P)) -

Notice that the right hand side in (13) is just the affine coordinate of Tdf:(p)M’ , 60

Flg = T as required.

Also, if (b) holds, then |det H({)| is bounded away from zero when |t| is sufficiently
small (ie. (€ ¥, is closeto M ), hence (12) implies

(14) (GG )(¢R) =1/ (o)) ™h el o (i0)) + o( 141 1/2) .
As {—p, t— 0 and we have (13).

The only factor in the matrix H(({) over which we have no apriori control is ﬁp(t) .
Clearly the property (b) is equivalent to having |det ﬁp(t)| bounded away from zero.

Unfortunately we are not able to derive such an estimate directly from Proposition 5.3.

*
In order to prove b) we will first show that G, has a.e. boundary values G,(p) on M

such that det G;(p) satisfies one of the estimates
*
* Re(det Go(p))2C > 0
for some constant C > 0 and for p €M close to 0. Since G2 is bounded holomorphic

on ¥, the same estimate (with a smaller C) will hold on %) near f, so (b) will be
verified.
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At this point a technical probem appears: the manifold Mt Gr(m,n) is totally real
but is not generating, unless d =1 and m = n-1. To avoid this problem we shall first
define a manifold ¥ C €" x Gr(m,n) of real dimension dimp¥ =2 dimmﬁ , called the
approximate complexification of ﬂ, that contains M as a maximal totally real
submanifold, and whose tangent bundle TX is complex—inear to as higher degree as

possible along § .

When M is real-analytic, so is M, and welet ¥ be the usual complexification of M,
i.e., a complex submanifold of dimension equal to dimmﬂ[ containing M.Such ¥ is

unique near M.

When M is merely of class gk ,80 M€ g , we first parametrize M locally by a
gkl map @:wC RZ™Hd __, ff  defined as folows. Let xyER™, u€ rd ,

z = x+iy € €™ . Define

P(x,y,) = (1,11, )(z,u+ig(z7,0))
= Goy + 51" g s € €T

and
(15) 8(x,y,u) = (5,u+ip(z,z), P(xy,0) € € x (I

Here, ¢ € ¢4 ana @, € ¢4*™ are the matrices of derivatives of @ = (P10
u z 1 d

(1.1) with respect to the indicated variables.

We now extend & to complex valued (x,y,u) in a small neighborhood of the origin in

80 that the extension is ¥~ -, smooth away from g2m+d ,and #@& and all its
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derivatives of order € k—2 vanish on R2m+d . When M is real-analytic, we may take &

to be holomorphic. In particular, D& is C—linear at each point of IR2m'H1

near the origin.
We let TCC x ¢ pe the local image of & mnear &(0)= (O,TgM). In the

real-analytic case ¥ is the usual complexification of 8 .
Next we want to find a nonempty wedge

v, = @™+ ) nv, ¢ ¢2mHd

IR2m+d

with edge nv, ( V, being a small neighborhood of the origin) such that

(16) o V)C ¥ .

Let TC IRd be the cone determining the wedge  ¥. Choose an arbitrary finer cone
I'" <T and let I‘0 C g2m+d be a cone contained in a small conical neighborhood of
{0Y*™ x T/, satisfying Ty ({0}*™ xR%) =T’ . We claim that the inclusion (16)
holds provided that I‘0 and VD are chosen sufficiently small. To see this, notice that for
each t € [Rd the vector

d
iD#0) =i ) t; 98/ du;(0)

j=1

belongs to TQ(O)S' Since at the origin ¢ contains no quadratic terms éxcept the Levi

form, a simple calculation shows

i D, 8(0) = (0,it,0) .
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If t€T, then i DtQ(O) points to the interior of the wedge ¥ . The definition of 7y

now implies the inclusion (16).

Consider now the smooth bounded function Go & on 70 . Denote by d the distance
from the edge in Yy - Since G is bounded holomorphic on ¥ , the Cauchy estimates
give |6G| = a(d_l) . Also, |08 = 0(dk_2) by construction. Thus the chain rule

gives
FGod) = o(d7Y) - (a2 = o(a* P .

Since k > 2, Theorem 4 in [14] implies that Go® has a nontangential limit within "
at almost every point of the edge r2m+d V, - The cited theorem is stated in [14] only
for a special cone I‘* , but since we have considerable freedom in choosing I‘0 , We may
assume that I‘0 can be covered by finitely many cones isomorphic to I‘* . Thus the result

applies in our situation.

This implies that at almost every point (p,TgM) € M, the function G( ¢,P) has a limit
*
G (p) as ((,P)— (p,TgM) nontangentially within the wedge &( 7)) CZn

Clearly the first coordinate projection of &( 70) onto C" contains a finer wedge
¥y < ¥ with edge M. Let 7/6 C ¥ be the corresponding wedge with edge M
defined by

Vo={((P)E ¥ CE ¥} .

Since the second coordinate P only contributes a term 0(|t|1/ 2) in G(¢(,P) that

vanishes a8 { — M (see (12)), G(¢(,P) has the same nontangential limit
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lim G({,P)=G (p)
(—p

as ({,P)€ 7#0 and { — p nontangentiallyin ¥/, .

Fix a point p € M at which the limit exists. From (12) it follows that

tim B (t) = B (p)
t—0 P

also exists a8 t —— 0 through certain cone in rd so that (= ¢;1(0,it) €E¥,.

* *
We claim that the limit D (p) € GL(d,R) is real valued and |det B (p)| is bounded
away from zero, uniformly with respect to p € M. To prove this, note first that the

estimates (a) and (b) in Proposition 5.3 imply
det Dfp(O,it) = det Ap(t)det D p(t) + a(1)
a8 t — 0. Since this is bounded away from zero and |det Ap(t)l , |det Dp(t)| are

bounded from above, they are also bounded away from zero for [t| small. Thus Dp(t) is

invertible, and the formulas for calculating the inverse matrix show that

D, -B ()] = 2(1) -
Hence

3 lim D_(t)=5 (p)" .
t—0 P
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*
Proposition 5.3 (c¢) implies that ) (p) is real—valued, and we have already seen above
*
that |det I3 (p)| is bounded and bounded away from 0, uniformly in p .

* *
Now we can see from (12) that the second component Gy(p) € ¢4*d hag det Gy(p)
nearly real—valued for p € M sufficiently close to 0, and it is bounded away from 0.

Thus thereis a C > 0 such that for each p € M where the limit exists we have
(17) + Re[det Gy(p)] 2C >0 .

Apriori the sign depends on p , but we claim that one of the two signs holds for almost all
pPEM.

This follows from the following well-known fact. Let h be a bounded holomorphic
functidn on the unit disc A C €, with a.e. boundary values h* on dA . Assume that we
have an arc 1=1, U I, C 85 such that I,, I, are measurable sets, Re h* 21 ae. on
I1 ,and Re h* <-1 a.e.on L. Then one of the sets I, I2 has measure zero. Here is a
sketch of the proof. Suppose both I1 and I2 have positive measure. By Runge’s
approximation theorem there is a polynomial P on € such that g = Poh is arbitrarilly
close to 0 on I and to 1 on 12. Suppose for the sake of the argument that

I, UL, = 9A . Since log|g| is subharmonic, we have

27
.
log|8(0)| < | loglg (¢ 1a8
0

. *
and this is very small since |g | is close to 0 on I, . Applying the same to log|i—g]|
we get that log|1-g(0)| is also very small, a contradiction. f I, UL, =1 is just
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a proper subarc of A we apply a similar proof for a suitably chosen point z € A close to

I.

We apply this to the function h = (det Gy)o® on the wedge  %,. We have that
| dh} = O(dk_a) is bounded since k 2 3. On each linear disc 4 C ¥, abutting the edge

1R2m+d N V0 along an arc 1 we first correct h to a holomorphic function R by

B=h-T(31|,),

where T is the Cauchy—Riemann operator on A solving the equation 3(Tu) = u , chosen
so that T(Fh|,) vanishes at a prescribed point py€I. Since T maps L7(4)
boundedly into each Holder space ¢%(A) (a < 1), the correction function is so small
(provided that A is small) that % Re ﬁ*(p) 2C/2 ae. on I, UI,=1. As before we
conclude that one of the two sets I, , I, must have measure zero. Cleraly we have enough
discs in VO to prove that either Re h* 2C or -Re h* 2C a.e. on the edge
IR2m+d n VO '

Thus we may assume that (17) hold with the + sign for almost all p € M ; the proof in
the other case is analogous. The proof of Theorem 4 in [14], applied to the function
h = (det Gy) o ¢ on ¥, » show that

Re[(det G2) o %] 2C/2

on ¥ sufficiently close to the edge rZm+d V- Now (12) implies Re(det G,) 2C/2

on f'o near M . This proves Proposition 6.2 (b), so the Proposition is proved.

Conclusion of the proof of Main Theorem. Recall that we have totally real manifolds M,
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B/ Ce®x €™ = N ofclass #*71, a wedge domain ¥, C €N with edge ft, and
a bounded holomorphic mapping F: v N CN that extends continuously to
fOUM and maps M into M’ .

If the manifolds M and M’ were generating in N (i.e., of real dimension N ), we

k-1-0

could apply Theorem 3 in [23] to conclude that Flﬂ is of class ¢ , whence

fly € gk 10 4 required. (For this we would only need k > 3 .)
Unfortunately M and M’ are not generating unless d =1, and we must do some more
work to reach the same conclusion. We shall assume k > 3 in the rest of the proof.

(However, k need not be an integer.)

Let 8 =2m+d,andlet &:wC ¢ — ¢ be the mapping as in (15) whose restriction to
w=Rnw locally parametrizes M , and such that d ¢ vanishes to order k-2 on w.In
the terminology and notation of [23], & is asymptotically holomorphic of order
(k—2, k—1) on & attheedge w, & € 0(1(—2,1;—1)(:’)'

Let &’ be the analogous mapping associated to M, except in this case we extend &’
{0 a neighborhood of 0 in € as a local diffeomorphism onto its image in € . Clearly
its inverse ¥ = (~i")_1 maps M’ to R® x {0} C ¢ andis asymptotically holomorphic
of the same order (k—2, k—1) on M’ .

We now show that W¥oF € #%( fo) is asymptotically holomorphic of order
((k—3)/2,0) at the edge M . Let Z be the coordinate on ¢ . From the distance estimate

for { (Proposition 5.2) and from (14) we obtain the distance estimate

(18) dist(P(Z), M) < C - dist(z, M)}/
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for Z € f'o . The usual argument involving the Kobayashi metric then gives
| o7/ 02.(2) | = o(dist(z M2, ze ¥ .

(See the proof of Lemma 2 in [23].) The chain rule gives

N
8(¥oF)/ 9T () = Y (8%/9Z;)(F(z)) - OFy [ 97 (Z) .
=1

Set d = dist(Z,M). The first term in each product on the right is a(d(k_z)/ 2)

according to (18) and the construction of ¥, and the second term is O(d—l/ 2

) - Thus
|B(¥oF) | = o(alk—3)/2) |

Similarly we can obtain the appropriate estimates for the higher order derivatives of ¥oF,

so YoF € 0((1{ -3) /2’0)( 7?'0) as claimed.

0
¢€ 0k—2,k—1( ¥,) and k-22 (k-3)/2 + 1, the composition

Let Yy = ¥t be the wedge (16) in €, with the edge IRanO. Since

F* = §oFod € ¢%( ¥,)

is in 0((1{ _3) /2’0)( ¥,) according to Proposition 2 in [23]. Notice that Ft extends
continuously to the edge R® n V, and maps it into R® x {0} C V.
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Using the antiholomorphic reflection Z —— Z on both the domain and the target we

extend F to a mapping F , defined on the opposite wedge
8 .

so that F~ € 0((k -3)/2 0)( 7y), and F matches with F* on the common edge
R®n V - Theorem 1 in [23] implies that the restriction Ft g is smooth of class
RNV
0

b,(k—l)/2—0 , 80 F| gy is of the same class.

Since k> 3, we get F|M € ¢! . This implies that the distance estimate (18) holds
without the power 1/2 on the right, and | §F| is bounded on 7/’0 . Repeating the same
proof with these improved estimates gives F € 0(]‘_2’0)( 73) , 80 Theorem 1 in [23]
implies F | HE¥E k-1-0 This proves f| mME ¥ k=10 Ghen k > 3 . The same applies to

1 , 80 the Main Theorem is proved.
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