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THE REALIZABILITY OF OPERATIONS ON HOMOTOPY GROUPS
CONCENTRATED IN TWO DEGREES

HANS-JOACHIM BAUES AND MARTIN FRANKLAND

AsstracT. The homotopy groups of a space are endowed with homotopytapesavhich
define thell-algebra of the space. An Eilenberg-MacLane space is thieagan of all-
algebra concentrated in one degree. In this paper, we rovdessary and Sicient con-
ditions for the realizability of dl-algebra concentrated in two degrees. We then specialize
to the stable case, and list infinite families of sutlalgebras that are not realizable.

1. REALIZATION PROBLEM FOR HOMOTOPY OPERATIONS

The homotopy groups, X of a pointed spac¥ are not merely a list of groups, but carry
the additional structure of (primary) homotopy operatiomkich are natural transforma-
tions

T XX T, X X ... Xnan — X

These include for example Whitehead produgiX x 74X — m,.4-1X, as well as precom-
position operationg*: tmX — mpX induced by any map: S" — S™as illustrated in the
commutative diagram

S ——>sm

X
Y

X.

By the Yoneda lemmaj-ary homotopy operations are parametrized by homotopgetas
of pointed maps

S" > SMy Sty . vSh,

This information is encoded in a category as follows.

Definition 1.1. Let Top, denote the category of pointed topological spaces. ILeke-
note the full subcategory of the homotopy categdofop, consisting of finite wedges of
spheres/S"™, n; > 1. Note that the empty wedge (a point) is allowed.

A Tl-algebrais a product-preserving functbl®® — Set In other words, a contravariant
functor sending wedges to products. IBAlg denote the category @f-algebras, where
morphisms are natural transformations.
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The prototypical example is the homotofiyalgebra |, X] of a pointed spac¥, which
is the functor represented by in the homotopy category. One can view this data as the
graded groupr, X, with 7, X = [S", X], endowed with the structure of primary homotopy
operations. Likewise, given arj-algebran, the groupr(S") will be denotedr,. Tak-
ing the homotopy groups.X defines a functor,: HoTop, — IIAlg sendingX to its
homotopylI-algebra.

Definition 1.2. A II-algebran is calledrealizable if there is a spac& together with an
isomorphismr ~ 7, X of IT-algebras. Such a spa¥és called arealization of .

Examplel.3. A II-algebra concentrated in a single degneis the same as a group,
which is abelian iih > 2. All suchII-algebras are realizable (uniquely up to weak equiva-
lence), and the Eilenberg-MacLane sp#de, n) is a realization of thigI-algebra.

In general, one has the following problem:

Realization problem. Given all-algebrar, is 7 realizable by a space?

Here, one must realize not only the homotopy groups, butthtsprescribed homotopy
operations.

One has the following classic example due to Quillen [21, THm

Examplel.4. Letr be a simply-connected rationHtalgebra, i.e. satisfying; = 0 and
7y IS a rational vector space. Theris realizable. In fact, the category of sudkalgebras
is equivalent to the category of reduced graded Lie algelraseach such Lie algebra is
the Samelson product Lie algebra of a space.

Examplel.5. A TI-algebra concentrated in degrees 1 armbnsists of a group; and a
m-modulerny,, and can be realized by a generalized Eilenberg-MacLaraespéoreover,
the moduli space of realizations is described ir [18, Tha, Gor. 3.5].

Examplel.6. A II-algebra concentrated in twamnsecutivelegrees), n + 1 (with n > 2)
consists of two abelian groups andr,. 1 together with a homomorphisi}(mn) — 7.1,
where the functor? is given by

Iﬁ%(ﬂn) = {

whereI denotes Whitehead’s quadratic functor. The structure lém,) — m,,1 corre-
sponds to precompositiofi : m, — .1 by the Hopf map;: S™! — S". More precisely,
n*: mn — myy1 IS @ quadratic map wham= 2 (resp. a linear map of order 2 whar» 3),

and therefore corresponds by adjunction to a map of abet@mpgl () — mn.1.

All such IT-algebras are realizable. This follows from J.H.C. Whitele&domotopy
classification of simply connected 4-dimensional CW-cawet in terms of the certain
exact sequenck [25]. See alsb [4, Thm. 3.3 (A)]. Moreovenrhduli space of realizations
is described in[18, Thm. 5.1].

I'(mp) forn=2
m®zZ/2 forn>3

Examplel.7. A Tl-algebra concentrated in a stable range can be identifiédanitodule
over the stable homotopy ring?, i.e. the homotopy groups of the sphere spectrum; see
sectiorl . Our results provide examples of such modulestieaiot realizable (by a space
or, equivalently, by a spectrum)

For more background ofi-algebras, see for example [231] [[7, §3.1] [8, §2] [14), §2]
[11, §4]. For literature on the realization problem fdralgebras and some generalizations,
see for example [9] [10][11][12].
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Main results and organization. In sectiorl 2, we descrilid@-algebras concentrated in two
degrees in terms of homotopy groups of spheres (Hraop. 2€6tidB[3 is devoted to the
metastable case in degreeand 2 — 1 (Prop[3.F).

Sectior4 explains the main result of this paper, which sothe realization problem
for II-algebras concentrated in two degrees. Thedrein 4.2 poaidecessary andféd
cient condition for such &@l-algebra to be realizable, in terms of homology of Eilenberg
MacLane spaces.

Section b specializes to the stable case. In seiion 6, waderinfinite families of
non-realizable examples, using elements in the image of-themomorphism (Prop. 6.4,
[6.5). Sectionl7 contains proofs and technical materialwhatid have otherwise cluttered
the exposition.

2. TI-ALGEBRAS CONCENTRATED IN TWO DEGREES

LetITAIg(n, n+k) be the full subcategory dlAlg consisting ofll-algebras concentrated
in degrees andn + k for somen, k > 1; these are sometimes calledtagell-algebras.
In light of examplé 1.6, we will usually assume> 2.

The categondIAlg(n, n + k) can be described as a comma category. First recall some
terminology [3, Def. 1.1][[4§ 1.5].

Definition 2.1. Let C be a category and ldi: C — A be a functor. Then we obtain
the categonf A as follows. An object is a tripleX, A, 7) whereX is an object ofC and
n: I'X — Ais a morphism inA. A morphism K, A,n) — (Y,B,2) inTA is a pair (, Q)
wheref: X — Y is a morphism irC such that the diagram

rf
I'X——TY

b,k
I

commutes inA. We calll A thecomma categoryof I'. An object X, A,n) of T A is also
denoted by;.

Proposition 2.2. Let n > 2. There is a unique functor (up to natural isomorphism)

fﬁ: Ab — Ab yielding an isomorphism
MAIg(n,n+ k) = TAb

of categories oveAb x Ab. _
For example, in the casex 1, the functom} = T'} is described in Example_1.6.

Proof. Uniqueness follows frorh Al3. For existence, we will use sdrasic facts about
truncatedI-algebras.

Let AIgK denote the full subcategory ®fAlg consisting ofiI-algebras concentrated
in degrees,n + 1,....n + k. Recall [4, Prop. 1.6] thafIAlgk can be described as an
iterated comma category

MAIgK = TKAb
using homotopy operation functof§: IAIgk™ — Ab that encode homotopy operations
inductively, one degree at a time [4, Def. 1.5]. Note thatitftRictive process starts with
MAIg? = Ab.
Now take
T¥(n) = T¥(7n, 0, ..., 0)
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where (@, 0, ..., 0) denotes the (unique) objecof TIAIGK ™ with 7,1 = 0,..., a1 =
0.

Indeed, the full subcategory #fAlg?} consisting of objects with 7,1 = 0 is isomor-
phic to Ab, via the correspondence(0) — m,. This follows from[A1 (4), since the
trivial group O is the terminal object iAb. Repeating the argument, the full subcategory
of lIAIgﬁ*l consisting of objects with 7,1 = 0,..., k-1 = 0 is isomorphic tAAb, via
the correspondence,0, ..., 0) - m,. Now the full subcategorfiAlg(n, n+Kk) of ITAIgX
is isomorphic to the comma category[df restricted to objects of the form{,0,...,0).
That is precisely the funct(fr"n defined above. O

In particular, we havfﬁ = 0if and only if the projectiodIAlg(n,n + k) — Ab x Ab is
an isomorphism of categories, that is fit@lgebra structure concentrated in degrmeasad
n+ Kis trivial. The correspondinfi-algebrasx,, 7n.«) are clearly realizable, for example
by a product of Eilenberg-MacLane spa¢&§a, n) x K(m,k, N+ K).

Remark2.3 By [22 and’A%, the categoIAlg(n,n + k) is additive if and only if the
functor T'X is additive. This certainly happens in the stable range,nbttalways (e.g.
k=2,n=3asin Ex[ZH}). In fact, we will see shortly that it happerten{see Prop._2.7).

Example2.4. Takingk = 2, the formula fol2 in [4, 1.10] yields

0 forn=2
() = {A%(n5) forn=3
0 forn>4

whereA2(A) := A® A/(a®a ~ 0) denotes the exterior square. Note that the né&(ms) —
n5 encodes the Whitehead produet |]: 73 ®7 13 — 75.

In all-algebra concentrated in degreesndn+Kk, any operation that factors through in-
termediate degrees would automatically vanish. This sstgdeoking at indecomposable
operations, in the following sense.

Definition 2.5. Let Qxn denote thendecomposablesof n.«(S"), i.e. the quotient of
mnk(S") by the subgroup generated by all decomposable elements.

Here, an elemenk € mn.«(S") is called decomposabileif it is obtained via (non-
trivial) primary homotopy operations from elements of lowdegree, including possibly
of degreen, but not only elements of degree. For example, the Whitehead product
[V, tn] € 7pn-1(S") With y € 7,(S"), p > n, is decomposable. However, the Whitehead
product [n, tn] € m2n-1(S") is not considered decomposable.

Warning: The definition of decomposable in §2.2] doesinclude elements obtained
via primary operations from elements of degreén particular, the latter definition makes
everyelementx € mn,«(S") decomposable, since it is obtained as a precompositiomeof t
identity classx = tn o X = X*(tn)-

In the stable rangk < n -2, Qs = Qf does not depend am Here QS denotes the
indecomposables of the graded ringy(homotopy groups of the sphere spectrum).

Remark2.6. The subgroup generated by all decomposables is in fact gteadny compo-

sitions of the forms™k AN s gn (with n < m < n + k) and 3-fold iterated Whitehead

products of the identity map, € 7,(S") of even-dimensional spheres. This follows from
the Barcus-Barratt formula and the fact that all 4-foldated Whitehead products of the
identity class for spheres vanish [26, Thm. XI.8.8]. Seediseussion before Lemma 3.6

of [8].
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Proposition 2.7. Assuming ks n — 1, we have
TH(mn) = T ®2 Qun.
In particular, in the stable range k n— 2, we have
Th(mn) = m @2 Q.
Proof. See sectioh 713. m]
Corollary 2.8. For all k and n with k# n - 1 such that Q, = 0 holds, 2-stagell-

algebras concentrated in degrees n and R have trivial homotopy operations and are
thus automatically realizable.

Example2.9. EveryIl-algebra concentrated in degrees 2 andids realizable. The case
k = 1 is settled in Example_1.6. For the cdse 2, note that the Hopf map: S® — S?

induces an isomorphisnp.S3 > 72.«S?%. Hence every element e m,,,S? is in fact a
decomposable element x’' for somex’ € m,,S®. Thus we hav&,, = 0 and the result
follows from[2.8.

As noted in examplel.6, the realization problem is solvettiéndfirmative in the case
k = 1. The same is true for the case- 2.

Proposition 2.10. EveryIl-algebra concentrated in degrees n and £ is realizable.

Proof. In the stable range > 4, it follows fromZB andQ$ = 0, because of5 = Z/2(n?).
Likewise forn = 2, it follows from the factQ,, = 0, obtained fromr4(S?) = Z/2 (5 o n).
The only case where tHé-algebra data is non-trivial is = 3, with fg = A? as noted
in exampld_2K. In that case, tlikalgebrar is realizable if and only if the obstruction
O(r) = 12 o E3(n1) described inl[4, Thm. 3.3 (B)] vanishes. The ntayfn;) described in
[4] § 3.2] factors througltr, and is therefore zero in our case (with= 0). O

3. METASTABLE CASE

The situation is somewhat more complicated for the critiiiaensiork = n— 1, which
is in the metastable range. Let us recall some terminologybasic facts from [1].

Definition 3.1. [1, Def. 2.1] Aquadratic Z-module
M = (Mei Mee - Me)

consists of a pair of abelian groupt and Mg together withz-linear mapH andP that
satisfyPHP = 2P andHPH = 2H.

A morphismf: M — N of quadraticZ-modules consists of a pair @Flinear maps
f: Me = Neandf: Mge — Nee Which commute wittH andP respectively.

For any quadrati@Z-moduleM, one has the involution

T = HP - 1: Mee = Mee
which satisfieT = P, TH=H, andTT = 1.
Example3.2 [1], After Rem. 9.2] Consider

(ST} = (nmsn 5 st nmsn)

whereH is the Hopf invariant an® = [¢y, ¢n]. is induced by the Whitehead square. This
datamr,{S"} is a quadrati@-module.
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In particular, we have

m3(S?)

(7‘(352 i) 7T3S3 E) 71'352) = (Z i) Z E) Z)
7T5{83} = (7‘1’583 i) 71'585 i 71'583) = (Z/Zg Z E) Z/Z).
Definition 3.3. [1, Def. 4.1] Given an abelian groupand a quadratiZ-moduleM, their
quadratic tensor product A®% M is the abelian group generated by symbols
aem, acAme Mg
[a,bl®n, abeAne Mg
subject to the relations
(@a+b)em=aem+beom+[a b] ® H(mM)
a@(m+m)=aem+aen
[a,al®@n=a®P(n)
[a,bj®@n=[b,a ®T(n)
[a,b] ® nis linear in each variable, b, andn.
We will often omit the subscrigt and simply writeA &9 M.
Example3.4 [1], Prop. 4.5] Taking the quadratiEmodule
75 = (z Lz3 Z) ~ 73S,
the quadratic tensor product with any abelian gréujs A ®% Z' = I'(A), Whitehead’s
universal quadratic functar: Ab — Ab described in[[25][5§2.1].

Note that the usual tensor product with a given abelian gf@apnore generallyRr-
module) M defines an additive functor ®z M. Similarly, the quadratic tensor product
— ®4 M with a fixed quadrati@-moduleM always defines a quadratic functdb — Ab
in the following sense.

Definition 3.5. [5], §2] LetF: Ab — Ab be a functor satisfying (0) = 0. Recall thaf is
additive or linear if the natural projection

F(XaY) - F(X)a F(Y)

is an isomorphism.
We say thaf is quadratic if the second cross ffect

F(XIY) = ker(F(X®Y) = F(X) ® F(Y))
viewed as a bifunctor is linear in bo¥andyY. In this case, one has a natural decomposition
F(X@Y) = F(X)® F(Y)® F(X|Y).

Propositio 2.)7 said that a 2-staljealgebra is described by indecomposable homotopy
operations, fok # n— 1. There is an analogous notion in the metastable kase — 1.

Definition 3.6. Forn > 2, thequadratic Z-module of indecomposablesf mo, 1{S"} is
the quotient quadratiz-module

H P
Qn—l{sn} = (Qn—l,n - 7T2n—152n_1 - Qn—l,n)

using the notation df 215. This is well defined sirde 7o,_1S" — 7,_1S?"! = Z van-
ishes on decomposable elements, namely compositiong, tsiese are torsion elements.
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Proposition 3.7. In the metastable casen— 1, the functod ™1 is the quadratic functor
given by
1Hﬂ_l(ﬂn) = 71y ®9 Qn-1{S"}.

Proof. See sectiof 7]3. o
Example3.8. In the casen = 2 andk = 1, we have
mﬁﬂ@@ﬁﬁz@i%i@:f.
As noted in ExamplE_3]4, the quadratic tensor product withdbadraticz-module is
1 @Y7 = ()
which recovers the case= 2 of Exampld_1.b.

Example3.9. In the casen = 3 andk = 2, we have

@B%E@mizizp)
where the groupsS3 = 7,2 is generated by the composgé - S* 2 S8, Therefore the
guadraticz-module of indecomposables is

Qs = (0~ 2Z—0)=2"

using the notation of |1, Lem. 2.11]. By![1, Prop. 4.5], theadtatic tensor product with
this quadrati&-module is the exterior square functor

3 @9 Z = A%(3)

which recovers the case= 3 of Exampld 2.4.

4. CRITERION FOR REALIZABILITY

First recall some notions and notation fram$4.,,2]. LetX be an f—1)-connected CW-
complex, whose homotogy-algebra is given inductively by the abelian grogp:= 7, X
and maps of abelian groups

ni: F%(ﬂn) — MTn+l

n2: Ta(n1) = 7insz
e TR0, 2, -+ s Te1) = Tinek
Note thatg, encodes then+ k)-type of .. X.
Consider Whitehead's “certain exact sequence! [25]
Q) ...—>Hj+1X£>FjX$7rJ-X—h> HngFJ_1X—>...
wherehis the Hurewicz map. There is a transformatjomatural inX, making the diagram
2 TKm1. 72, - - - k1)

TN

FhiX — ek X
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commute. In[[4, Thm. 2.4}y is exhibited as the left edge morphism of a spectral sequence
Ef),q = (Lprﬁ)(nl, n,..., 77q—1) = Fn+p+qx-

Lemma 4.1. Postnikov truncation X— P,X induces isomorphisnis;X 5 I'jPnX for
j<n+1

Proof. The truncation maX — P,X can be chosen as a direct limit of mays= Xo —
X1 — X2 — ... which are cell attachments, wheXg — X, is attaching cells of dimen-
sion at leash + j + 2 (in order to killmn,j.1). In particular, only cells of dimension at least
n+ 2 are involved, so that with this particular cell structute skeletaX(™?b = (P,X)(™1)
agree.

Sincel'; X can be defined a8 X = im (z; X0~ — ;X)) induced by skeletal inclusion,
the result follows. O

Theorem 4.2(Criterion for realizability) The2-stagell-algebra corresponding to
nk: Th(n) = e

is realizable if and only if the magp factors through the magk ., n as illustrated in the
diagram
kK (n, N)

Y

TH(mn) —5—> ek

Here we have the isomorphishia,kK(mn, N) = Hpike1K(mn, N) by the Whitehead exact
sequencdl). The homology of Eilenberg-MacLane spaces is well knfih [16] [17]
[23].

Proof. (=) If = is realizable by a space, then the natural transformatigrfor X yields a
commutative diagram

(0,0, ..., 0) = T¥(my)

l \
X
rn-*—kx i

as noted in[(R). Becaus¢has @ + k — 1)-typePpx_1X = K(mp, n), lemmd4.1L provides a
natural isomorphism

Tnek X = Mnek

TnikX 2= Tnak(Prik-1X) = TnaK(n, N)
and therefore the desired factorization.
(<) We will use the theorem on the realizability of the Hurewinarphism[[2, Thm.
3.4.7], starting from then(+ k — 1)-Postnikov section of a putative realization, which is
K(mn, n). First note that the map

intk-1° Tnik-1K(mn, N) = mnik-1K(mn, n) = 0
in Whitehead'’s exact sequence is null, that isikgr; = Tnw1K(m,n). (Except in
the casek = 1, but the argument below will work anyway, using kgk_1 instead of
Tnik-1K(mn, n).)
We are given a factorization = f o yk(,n), With f: TnK(mn, n) = mpk. Choose
an epimorphisimb;: H; - kerf whereH; is a free abelian group. Now také, =
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cokerf @ I'n,k-1K(mmn, N) with the mapr,.x — Hg surjecting onto the first summand and
bo: Ho - I'ik-1K(mmn, N) the projection. These maps assemble into the exact seguenc
b f
Hi 5 TnikK(mn, N) = mneke = Ho = ThaK(mn, n) — 0.

By [2, Thm. 3.4.7], there exists a CW-compl&xogether with anr{+ k — 1)-equivalence
p: X — Y making the diagram

Hniki1 X FniX TnikX HnikX Ikt X —0
~i ~i P ~\L ~i Ni P
b f
Hi —_— [nikK(mn, ) Tn+k Ho Inik-1K(mp,n) —=0

commute, where the top row is part of Whitehead'’s exact sempufem X. By naturality of
v, the diagram

U

in+k

i:ﬁ(ﬂ'n) LA FnikX ———— mnkX

E l Ps = l
YK(mn.n)

T¥(mn) — TnikK(n, n) LI

BU

Tk
commutes, so thaX has the prescribed-algebra structure up to degree- k. Hence the
Postnikov sectioP,. X is a realization ofr. O

Corollary 4.3. Fixn > 2and k> 1. Then an abelian grousp, has the property that “every
[T-algebra concentrated in degrees n and ik with prescribed groupr, is realizable” if
and only if the map

Vi) : Th(n) = TnaK (1, 1)
is split injective.

Proof. (=) If yk(r,n is Notsplit injective, then pickry.i == fﬁ(nn) with the structure map
n = id: T(rn) — Th(mn)

which does not factor througk ., n, and thus defines a non-realizablealgebra.
(<) If yke,.n) is splitinjective, then a factorization

TnkK (. ) = T¥(m) @ C

y : f
v

% () > ek
can always be found, takingjto beny on the summanﬁ',f,(nn) and an arbitrary map on the
complementary summargi O

Remark4.4. As a particular case of corollafy 4.3, wheneyes not injective, one can find
a corresponding non-realizable 2-std@i@lgebra. Here is another way of thinking about
this.

Say that a homotopy operatien € 7,,xS" can be detected by a spakeif there is
anx € mpX satisfyinga*x # 0 € mp,«X. Using[2.Y, theorem 4.2 says that a homotopy
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operationr € Qcn can be detected by a 2-stage space if and only if it satigligs) () #
0. Indeed, one has the realizable 2-sthigalgebra withr, = Z, .k = I':kK(Z, n), and
Ykan: Qun = I'nikK(Z, n) as structure map.

Remark on k-invariants. It is a classic fact that connected spaces are classified up to
homotopy by theik-invariants. In particular, a 2-stage spac&ith homotopy groupz,,
andrm,,x (wheren > 2) is classified by it&-invariant

k € H™ L (K (7, N); e -
Via the natural surjective map
01 H™1 (K (7rn, ); n4k) > HOM: (Hnske 1 (K (. 1), Z), 7041
this yields a map of abelian groups

6(x)
CnikK(mn, N) = Hn1(K(n, N), Z) — nake

Another point of view on theorefn 4.2, as well as an alternatefpis that thell-algebra
n. X is given by the structure map

= 7N, 0
T () % FoaiK (0, 1) — 2 k.

Tk

This follows from the theorem ok-invariants in[2, Thm. 2.5.10 (b)] and diagrafd (2).
Therefore, the realizable 2-stafealgebras are precisely those whose structure map
factors throughyk . n)-

5. STABLE CASE

A II-algebra concentrated in a stable ramge + 1,...,n + k with k < n— 2 can be
identified with a module over the stable homotopy riffg or more precisely its Postnikov
truncationr®_,. Indeed, in such &l-algebrar, all Whitehead products vanish for dimen-
sion reasons, and all precomposition operatiohsm,.; — mn.j are induced by maps
a: S™i — S™i that live in stable homotopy groups ;. The identification is made more

precise in_Z.D.

Proposition 5.1. ATI-algebra concentrated in a stable rangena-1, . . ., n+k s realizable
(by a space) if and only if the correspondimgrmodule is realizable (by a spectrum).

Proof. (=) Let r be all-algebra concentrated in said stable range, and denotdwlso
the correspondingS-module. IfX is a space realizing, then the Postnikov truncation
Pr:kX* X of the suspension spectrum Xfis a spectrum realizing. Indeed X is (nh — 1)-

connected so that the Freudenthal suspension theorendpsoan isomorphism; X —
X = mE®X fori < 2n- 2, in particular fori < n+ k. Moreover, this isomorphism
is compatible with precomposition operations, so tha>~X has the correct>-module
structure in the stable range< n + k. Becauser has only zeroes above degrmee k, we
obtain the isomorphism ofS-modulesr, P XX =~ 7.

(&) Let M be arS-module concentrated in a stable range, so that the comesmp
I[T-algebra isQ”M, by[7.9. IfZ is a spectrum realizin§, then the infinite loop space
Q>Z is a space realizin@>~M, by[7.6. O

Remark5.2. A nS-moduler is realizable if and only if any of its shiftsix (for j € Z) is
realizable. This follows from the isomorphism(21Z) = Xi(r.Z) of #5-modules.
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The criterior 4.2 indicates that the map
YK (o) - fﬁ(ﬂn) = I'nikK(mn, N) = Hpa 1 K, n)

plays a key role for determining realizability. In the sabhngek < n— 2, we have seen
in[27 that the domain Ok (x, n) is

Ffﬁ(”n) = ®z QE
while its codomain is
Hn+k+lK(7rn, n) = (HZ)k+l(H7Tn) = (Hﬂ'n)k+1(HZ)

whereHA denotes the Eilenberg-MacLane spectrum of an abelian ghodjme universal
codficient theorem yields a natural exact sequence

0 — 7n ®z HZy1HZ — (Hn)ks1HZ - Tors (mn, HZKHZ) — 0
which is split (non-naturally).

Lemma 5.3. Let R be a commutative ringMd the category of R-modules, and f¥Rd
the full subcategory consisting of finitely generated frem®ules. Let: f fRMod —
RMod denote the inclusion.

Let F: ffRMod — RMod be an additive functor. Then there is a unique extension
F: RMod — RMod of F which preserves all (small) colimits. is natural in F. Itis given
by F = — ® FR. For any functor G RMod — RMod, there is a natural transformation
*G — G, which is natural in G.

Proof. For a finitely generated freée-moduleM =~ &R, we have
FM =~ F(®i¢R) = @ FR~ M®gr FR

sinceF is additive.

EveryR-moduleM is (naturally) a colimit of finitely generated fré&modules, which
implies that the left Kan extension oéilong: is Lan ¢ = 1rvoq. Therefore an extensidn,
if it exists, is a left Kan extension df along:, which exists and is unique. It is given by

FN = (Lan F)N = colim FM
= QUM e PR
- (Golm W) &= PR
= (Lan )N ®r FR
=N®rFR
MoreoverF = Lan F is natural inF, that is
Lan: Fun(f fRMod, RMod) — FunRMod, RMod)

is a functor. In fact, Lanis left adjoint to the restriction functar, so that the counit
e: Lan ("G — G provides a natural transformation which is naturabin ]

Remark5.4. *G is not the 0" left derived functorLoG of G, which provides the best
approximation ofG by a right exact functor, with comparison mépG — G. Indeed,
there exist additive right exact functoAd — Ab which donot preserve infinite direct
sums. However, the comparison maps do fit togethet@s- LoG — G.
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Proposition 5.5. In the stable range k n - 2, the map
YK(ron) : Tn ®z QF — (HZ)ks2(H7n)
factors through the summang ®; HZ1HZ, i.e. we have
YK : Tin ®z QF = 7t ®z HZiw1HZ — (HZ)kea(Hrn).

Proof. First note that
A HZ1HA

defines an additive funct@: Ab — Ab. For abelian group8, B, we have:
G(A® B) = HZy,1H(A® B)
= HZy,1(HAV HB)
~ HZ,1HA® HZ,1HB
=GAeGB.

Now y: F — G is a natural transformation from the functer= — ®z QE to G and by
lemmd5.B induces a commutative diagram

*F

F

Becausd- already preserves all colimits (i.e. is of the fofm= — ®; FZ), the maper is
an isomorphism. Moreover we have

G = - ®; GZ = — ®; HZy1HZ

ﬁ
— G

l@

— G

and the coaugmentation
(ec)a: A®z HZ 1 HZ — HA 1 HZ

is the usual inclusion of the tensor summand. Therejdiactors through said inclusion.
O

Corollary 5.6. In the stable range k n — 2, everyll-algebra concentrated in degrees n
and n+ k is realizable if and only if the map

Yken: Q = HZiHZ
is split injective. Note that the map does not depend on 1y, @mthe stable stem k.

Proof. By[4.3, evenyiI-algebra concentrated in degreesndn + k is realizable if and only
if the maps

YK () - Tn ®7, QS — (HZ)ks1(Hmy)
are split injective for every abelian groap. By[5.5, this is equivalent to the maps
YK(mn) - Tn @z QE — 7y ®z HZk 1 HZ

being split injective. Since applying, ®z — (or any functor) to a split monomorphism
yields a split monomorphism, this is equivalent to the srmghp

YK(z.n) - Qf — HZ1HZ
being split injective. O
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6. NON-REALIZABLE EXAMPLES

As noted in Ex[Z1J6 and Prop.Z]10, all 2-std@i@lgebras with sterk = 1 ork = 2 are
realizable — for any value af, not only stably. We will show that the smallest stem where
a non-realizable example appeark is 3.

Let us recall the first few stable homotopy groups of spheses;[4,§ 4]. In degrees
* < 6, the stable homotopy ringf is generated (as an algebra) by elemenist?, v € x5,

anda € 73, subject to relations

2n=0
4v=773
nv=0
V¥ =0
3a=0
a®=0.

Heren is the stabilization of the Hopf map® — S? andv is the 2-primary part of the
stabilization of the Hopf mapi: S” — S*. Integrally,v can be thought of as, sayH3
The element is the first in the 3-primary alpha family.

The first few stable homotopy groups are

Z i=0
Z./2 (n) i=1
Z/2(n?) i=2
m =137/24~7/8(v)®Z/3(a) i=3
0 i=4
0 i=5
z/2(v?) i=6
and their indecomposables are
Z i=0
Z/2(n) i=1
0 i=2
Q®=1372/12~Z/4(v)®Z/3{a) i=3
0 i=4
0 i=5
0 i =6.

Proposition 6.1. Let n > 5. The (stableJI-algebra concentrated in degrees n and 13
given byr, = Z andnn,3 = Z/4 with structure maps: mn ®z Q§ — 73 = Z/4 given by
the projection

m®z Q5 = Q5 = Z/4(v) @ Z/3(a) » Z/4

sendingy to 1 is notrealizable.
Proof. According to [16, Thm. 25.1], we hawdZ,HZ ~ Z/6 = Z/2 ® Z/3. Therefore

the mapy: Q§ ~ 7/12 — Z/6 ~ HZ4HZ sends 2 to 0, whereags does not. The result
follows from[4.2. O
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Theoreni 4P reduces realizability questions to the aldgelprablem of understanding
the mapy, but it can also be used the other way around, as we now dhestr

Proposition 6.2. The mapy: Q§ — HZ4HZ sendsx to a non-zero element (therefore of
order 3).

Proof. Taken > 5 and consider the localization at 3 of the sph&fe— S? ), then take
Postnikov section®,,,.3S" — Pn+as?3) =: X. Because this map induces 3-localization on
homotopy groups (and a map Ofalgebras), thé&l-algebrar, X consists of two non-zero
groups

ﬂ'nx = Z(3)

mneaX = Z/3(a)
with structure map

73 TX®z Qg - Tne3X

sendinge to a, i.e. the identity via the identification
X ®z Q§ = Zp) @z (Z/4(v)®Z/3(a)) =Z/3(a).
By[4.2, we deduce that the map
Ze)®zy: Ze)®z Q5 = Z/3(a) — Z3 ®z HZ4HZ ~ Z/3

sendsy to a non-zero element, and therefore so daes O

In fact, the same argument yields a more general statement.

Proposition 6.3. Fix a prime p> 3 and consider the Greek letter elemente Q§(p_l)_l.
The mapy: Qg(p_l)_l — HZ-1)HZ sendsy to a non-zero element (therefore of order p).

Proof. Write the stable sterk = |ay| = 2(p — 1) — 1 and taken very large, namely
n > k + 2. Consider the localization gt of the spheres" — S?p), then take Postnikov
sectionsPS" — Pn+k8?p) = X.

A key feature ofa; is that it generatesgp_3 ® Zpy =~ Z/p and is the first element of

order a power op in 75 [24, (13.4)]. Thus the-localization of all lower (positive) stems
is zero. Therefore thH-algebrar, X consists of two non-zero groups

X = Zp)
TnekX = (1) (p) = Z/ P

in which o is detected. More precisely, taking=lr, X we havea;(1) = a1 # 0 inmX.
By[4.2 (and remark4l4),; sendsx; to a non-zero element. O

Propositio 6.1l provides a non-realizable 2-stégalgebra with the lowest possible
stem dimensiok = 3. It would be interesting to find an infinite family of such exales, in
infinitely many stem dimensiors For this we need an infinite family of indecomposables
in Q.. The Greek letter elements, for example thendg families, are good candidates.

Proposition 6.4. Fix a prime p > 3 and consider the alpha elements € Qg(p_l)_l
[22, Def. 1.3.10, Thm. 1.3.11]For every i> 2, the mapy: Qg(p_l)_l — HZyip-1HZ
sendsy; to zero.
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Proof. Fori > 2, there is a Toda brackét [24, (13.4)]
aj € {as, P, @i-1)

so thate; cannot be detected by a 2-stage space (or spectrum), and tmehavey(a;) =
0.

In more detail, writes = |a| andt = |@j_1| SO thate; = s+t+1, and assumX is a space
with homotopy concentrated in degreeandn + s+t + 1 (for n large). Let us illustrate
the Toda bracket setup:

ai-1 p a1
Sn+s+t ! Sn+s N Sn+s kN Sn.

Pick anyx € m,X. We claim that the precompositiari(x) = xa; is null. Postcomposing
by x defines a map [24, Prop. 1.2 (iv)]

(az, p, @i-1) 25 (xen, P, ai-1)

=(0, p, ai-1)
using the facta; € mp,.sX = 0. The indeterminacy o, p, @i_1) is

O[Sn+s+t+l, Sn+S] + [Sn+s+l’ X]a/i—l
= (7Tn+s+1x)ai—1

= {0}

again using the assumption apX. Moreover, 0 is clearly a representative(®) p, ai_1)
[24, Prop. 1.2 (0)], thus we have equaliy; p, ai_1) = {0}. Thereforexa; € (0, p, ai_1) IS
null, as claimed. O

Proposition 6.5. Fix a prime p > 3 and consider the divided alpha elemenig; <
Qgi(p_l)_l, where j < vy(i) + 1, and v, denotes the p-adic valuatig22, Def. 1.3.19]
For every j> 2, we have p;;j # 0 buty(pai/j) = 0.

Proof. Recall a few properties of the divided alpha elements [22§1$. The element

ai/j € Extgae-Y(BP., BP.)

defined in theE,-term of the Adams-Novikov spectral sequence is a permanyate and
therefore represents an element in homotapy € ﬂgi(p—l)—l (which is known to be in
the image of thel-homomorphism). It has (additive) ordpt, is indecomposable, and its
order inQS is still p/. This provespa;,j # 0 in Q5.

On the other hand, thp-torsion inHZ,HZ is annihilated by a single power @f[19,
Thm. 3.1] [13,§11, Thm. 2]. Therefore the mag Q° — HZ,,.1HZ must sendpa;/j to
zero. m]

Remarks.6. In propositior 6.5, we may as well take= pi—*.

Whenevery: QE — HZ1HZ is non-injective, we can find a corresponding non-
realizable 2-stagél-algebra in stem dimensiok Therefore, propositioris 8.4 and 6.5
provide infinite families of non-realizable examples, ifinitely many stem dimensions.

Note that[[9, Thm. 8.1] also provides aff@rent) infinite family of non-realizablH-
algebras, which can be truncated to two non-zero degrees. afigument used there is
similar to that of 6.4.
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7. RRoors

7.1. Theories. The categoryIl forms atheoryin the sense of Lawverée [[36], more
precisely agraded(or multisorted theory[3, §8]. We adopt the following convention.

Definition 7.1. A theory is a category with finite coproducts, including the emptyroop
uct (initial objectx).

Definition 7.2. Let T be a theory. Amodelfor T is a product-preserving functdi’® —
Set In other words, a contravariant functor sending copragteproducts.

Asin[4, § 1], let model{) := Fun*(T°P, Sef) denote the category of models for a theory
T.

In this terminologyT-algebras are models f@éf. We will be interested iil-algebras
concentrated in a range of dimensions.

Notation 7.3. Denote by:

¢ II, the full subcategory oflI consisting of wedges of spheres of dimensions at
leastn;

e TIX the full subcategory consisting of wedges of spheres of ngioas fromn to
n+ k.

Note thatll, andHﬁ are also theories, and the inclusion functﬂ¢$—> I, — I are maps
of theories, i.e. preserve coproducts.

Notation 7.4. Denote by:

e ITAlg := model(I) the category ofl-algebras;

¢ TIAlg, the full subcategory consisting af ¢ 1)-connectedI-algebras;

e ITAIgK the full subcategory consisting df-algebras concentrated in degree®
n+k.

The equivalenceHAlg,, = model(T,) andITAIgK = model(IX¥) are proved in[[18, Prop.
4.5, Rem. 4.6].

Let us study the stable case as in secfibn 5 more preciselyenGi spectrun, its
homotopy groups.Z naturally form arS-module, whererS is the stable homotopy ring.
This algebraic structure can also be described as a modeltfaory.

Notation 7.5. Let Spdenote the category of spectra; any version of it will do heiree we
will only use its homotopy category. L& denote the full subcategory of the homotopy
categoryHoSp consisting of finite wedges of sphere spest&", n; € Z. Here again, the
empty wedge (a point) is allowed.

We have the isomorphism of categories moHEY( = 7SMod, sending a modeM to
the7S-moduleM; := M(S') endowed with the induced precomposition operations. Give
a spectrunt, the realizablerS-moduler,Z corresponds to the functor[Z].

We can now make the relationship betwdealgebras andS-modules precise.

Consider the suspension spectrum fun@or. I — IS which sends maps to their
stabilization. Becausg™ preserves coproducts (wedges), it induces a restrictinctdun
on models

Q% = (Z¥)": 7°Mod — TIAlg.
ConcretelyQ>*M has the same underlying graded groupvas degrees > 1, and maps
between spheres act 62°M via their stabilization. The notatiof™ is justified by the
following proposition.
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Proposition 7.6. For any spectrum Z, there is an isomorphisnibélgebrasr. (Q*Z) =
Q*®(n.Z), which is natural in Z.

Proof. Let S be an object ofl, that is, a finite wedge of spheres. By definition, we have
m.(Q7Z)(S) = [S,Q77]
Q% (1. 2)(S) = (m.2)(X7S) = [£7S, Z].
Moreover, X is left adjoint toQ* so that we have an isomorphism of sets
[S,Q°Z] = [£%S, Z]

which is natural inS andZ. Naturality in S provides the isomorphism dil-algebras
1. (Q*Z) ~ Q*(r,Z), while naturality inZ implies that this isomorphism di-algebras is
also natural. O

Notation 7.7. Denote by:

o (IT%Y), the full subcategory st consisting of wedges of sphere spectra of dimen-
sions at least;

e (ITSYX the full subcategory consisting of wedges of sphere spetémensions
fromnton+ k.

As in the unstable picture, the inclusion functo{k — (1Y), — IIS' are maps of
theories.
Notation 7.8. Denote by:

e 15Mod, the full subcategory ofMod consisting of i—1)-connectedtS-modules;
 75Mod¥ the full subcategory consisting af-modules concentrated in degrees
ton+k.

Once again, there are isomorphisms of categafié4od,, = model((1),) andzSModX =
model(@TsY)).

Proposition 7.9. In the stable range k n — 2, the functorQ® restricts to an equivalence
of categories

Q°: 7SMod¥ 5 TIAIgK.

Proof. In the stable range, the stabilization funcist: I — (IT%)X is an equivalence of
categories. Therefore, it induces an equivalence on models

(=*)*: model(@T*)¥) > model(T¥)
which is the desired equivalence. O
7.2. Split linear extension of theories.
Proposition 7.10. Let n> 2 and k> 1. Consider the functor

D: (M, ) x Mkt — Ab
(S,U) > [S,U].
Then the theoryIX with its natural projection
Iy — I < g

given by “collapse” functorq18, § 4] is the split linear extensiof8|, Def. 7.1]of Hﬂ+k X
k-1 by D.
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Proof. First note thaD takes values i\b because every obje&t= v;S™k of H2+k is an
abelian cogroup object (d1 or IT¥). Moreover,D is additive inII®, ,:

D(S1V S2,U) =[S1V Sp,U] =[Sy, U], X [Sp, U] = D(S1,U) x D(Sz, U)
and satisfie®(S, ) = [S, «] = 0 for anyS € Hﬂ+k. Therefore, there is such a thing as the
split linear extensio of M2, x X~ by D, with its projectiong: T — TI°,, x MK,

Let us construct an equivalence of categogedIX 5 T with inversey: T 5 k.
First, note that every object of IIX, i.e. a finite wedge of spheres of dimensions from

H H 0 k-1
to n + k, can be uniquely expressed as a wedge S v U with S € IT, .U € IIT,

i.e. S contains the spheres of dimensior k andU contains the remaining spheres, of
dimensions fromm to n + k — 1. Moreover, extracting either summand frofis functorial
in X, using the collapse functors
hi . yrk 0
col™: Iy — I,
col®: mk — k!

which extract the spheres of highest dimengsionk and lower dimensionato n + k —
1, respectively. By abuse of notation, write %olX - S and cof: X - U for the
corresponding collapse maps.

Step 1: Construction ofp: X — T. On objects, take

e(X =S v U):=(S,U) = (col"X, col°X)

and for a morphisnX; = S; v U; i> S, vV Uy = X, o f) is defined by the data
inc} f colf!
S1 55 vU; -S,vUy, -5 S,

inc? f o

U —>S;vU;—->S,vU, » U,

incy' f colf

S5 S5vU; -S,vU; » Uy

where the last piece of data is an elementyf [J,]. = D(S1, U3). In symbols:
¢(f) = (col(f), col®(f), colf o f oincy)

= (fhi flo fhi|0>-

We havey(idx) = id,x = (ids,idy,0). Remains to check that respects composition.

Given a composit&; i> X 5 Xzin H‘;, which we write as

S1vU; 5 S v U, S S5 v Us
applyingy yields

o(gf) = (@hH™. @h°. @hH"*)

_ (ghi M gofl (g f)hilo)
whereas the composite nis
o(Q)p(f) = (ghi’glo,ghilo)(fhi, flo, fhilo)
_ (ghi £hi gloflo (£hiyrghio 4 (g©), fhno)_
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Let us check the equalitgf)"'© = (fM)*ghle + (g, fhilo:
hiys ilo , (foy hilo _ hilo ghi , o ¢hilo
(f")'g™ +(g°). "0 = g™ " + g°f
= col?ginc)'col) f inc) + colfgincfcol? f inc!!
= colgg(inch'coll’ + incgcol?) f incy
= colfg((1s,, 0) + (0, 1y,)) f inc]'
= col?g 1y, f inc!

= col®(gf)inc!!

— (gf)hilo,
Step 2: Construction ofy: T — IIK. On objects, take
y(S,U):=SvU

and for a morphism
(f", £1,6): (S1,U1) — (S2,Up)

in T, with 6 € D(S1, Uy) = [S1, U3], define the morphism

w(f" £1.6): S1vU; - S, v U,

y(", £,6) = (inc)' " + incps) ;incy .
We have _

Ylsu) = (s, 1y, 0) = inc" v inc® = 1sy

and it remains to check thgtrespects composition. Given a composite

fh,f',6 h, ',e
S1.U1) T2 (s,,U,) 992 (s, Us)

\‘/

(@" g (") e+(d).0)
in T, applyingy yields

incdli £h1indos:indo f! inchigh Lind© ~indlo gl
incy' f"+incy giincy incs'g'+incy’ejincy'g
81VU1#> oVU, —————=S3Vv U3

incy'g" fN+inc (M) e+(g)).0);inco g f!

19

which is still commutative, as we now check. On the sumnBpndhe top composite is

incj! ' +inc s inch g"+incYe;incdg
S g;— S, vUy ———— > S3v Us

(inchig" + incfe; incg') o (i} £ + incys)
@)  =(incf'g" +incfe;incPg) o (inch' ") + (inch'g" + incSe; incFg') o (incss)
=(incj'g" + incfe) o "+ (incSg') 0 6
@) =inchg"f"+inckef" + (incPg) o 6
=incj(g"f") +inc (ef" + ¢'s)
=incj(g" ") +incd ((F")e + (d).0).
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Step [(B) follows from right distributivity for maps betwespheres[[26, Thm. X.8.1].
Step [4) follows from Hilton’s formula [26, Thm. XI.8.5[[2 A.9] and the fact that
fh: S, — S, is a map between spheres of equal dimensions (namely). In that case,
the Hilton-Hopf invariants vanish and composition is intfie€t distributive, in other words
precomposition byf" is linear.

Step 3:y¢ = idy. On objects, the composite of functors does

(X=SvU)S (S,U) S SvU

f
andonamap; =S; vU; — S, v U, = X, the composite does

f &(fhi flo fhilo)

s (incy £+ incg £7) ;inc £,
Here comes the topological argument.Note thatS is (n + k — 1)-connected and is
(n - 1)-connected, so that the natural nfay U — S x U is (n + k + n — 1)-connected.
That means for < n+ k+ n— 2 (in particular fori < n+ k), any mapg: S' - Sv U is

homotopic to in€col"g + inc®col®g.
On the first summan8,, the mapf is

finc' = inc)coly' finc]' + incPcolf? finc!!
— iani fhi + inCIZthiIO
and on the second summadg, the mapf is
finc® = inccol? finc® by cellular approximation
= inc? fl°

from which we obtain the desired equalify(f) = f.

Step 4: ¢y = idy. On objects, the composite of functors does

(S.U)SSvU S (SU)

and on a mapf(", f',6): (S1,U1) — (Sz, U>), the composite does

(" ,6) &5 (incy " + incs) s incs f!

(
5 (colf (inc) " +incPs) , colincs ', colf (inch " + incs))
(
(

colyincf' " + colincys, colfines f', colgincf " + colfincys)

O

Remark7.11 Propositiorl Z.700 was implicitly used inl[4, Prop. 1.6] withdeing proved
there.

7.3. Homotopy operation functors.

Proof of Propositioh 27 Let 7, be an abelian group. We want to compute the abelian
groupI¥(my) = TX(m,, 0, . ..., 0).

Our functorTX is the functor denoted®A in [3, (7.3)]. By propositio 7.0 and][3, Lem.
7.5; Lem. 7.10]J'X can be computed using a free presentation, as we will explairtly.
Here we will implicitly use the identification modé]Q+k) = Ab sending a moddi/ to the
abelian grougvi(S™).
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Letg: T — S be a map between wedges of spheres of dimensians1,...,n+k-1
satisfying
(1) cokerr,(g) = mpn;
(2) cokerri(g) = 0forn<i < n+Kk, that is,zi(g) is surjective in those degrees.

Then the sequence of abelian groups

T+ ( ,1)
) Tnek(T V S)p 2222 71 (S) - T() — 0

is exact, where the left-hand group is

T+ (0’1)
Hnek(T V S)y = ker(nn+k(T v g) 2o, 7rn+k(S))

i.e. the kernel of the collapse map. In other words, our foncan be computed ﬁ(nn) =
cokerm,k(g, 1).

A free presentation can be obtained as follows. Ret> F -» m, — 0 be a free
presentation of,, as abelian group, i.e. an exact sequence wRemdF are free abelian
groups. Realiz&R —» F asnn(g) for a mapg’': S — S between wedges of spheres
of dimensionn (with a sphereS" for each summan@). Now insert spheres of higher
dimensions to kill all the homotopy &. More precisely, consider the wedge

S”:= S
Xen S
n<i<n+k
andthe mag”: S” — S defined on each summagtiby (a representative of) the indexing
elementx € 7;S. The map
T=s"vs T g

provides a free presentation as described above.

Step 1: Assumer, = F =~ Z is free on one generator.

The free presentation af, is given byR = 0 andF = Z, so that we tak&’ = = and
S = S". We want to compute the cokernel illustrated[ih (5). We cl#at the image of
mnk(0, 1) is the subgroupec c 7.k (S") generated by decomposable elements, which
would prove the resuﬁﬁ(Z) = Qkn-

Takex € mk(T Vv S"), and consider its imagen,«(g, 1)(X) € mn.k(S") as illustrated in
the diagram

Sn+k X TvSsn
\ l(g,l)
S

SinceT is a wedge of spheres (of dimensions strictly betwe@mdn + k), the Hilton-
Milnor theorem|[[26, Thm. XI.8.1] implies

Tosk(T V S") = (P 7uk(S™)
i

for some appropriate dimensions, andx can be expressed as

X:ijOXj
i
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where thep; are certain iterated Whitehead products of summand inciasib the indi-
vidual spheres of v S". In particular, the element

(9,1)OX=(9,1)0[Z piOXi]=Z(g,1)op;°Xi
i ]

is a sum of decomposables, except possibly one term, comdspy to the summand in-
clusionS" — TvS". However, that one term is precisely= (0, 1)oX = mn.(0, 1)(X) = 0
by assumption. Hence,«(g, 1)(X) is decomposable.

Conversely, take any decomposable elemxentr, (S"). By the assumptiok # n—1,
x must be a sum of compositions= }; X o a; for somea; € 1,k (S™), X € M (S"),
n < m < n+ k. But each such composite is in the imagergfi(g, 1). By construction of
T, there is a wedge summasd' — T corresponding to; € 7y, (S"). The diagram

gtk . Sm(_‘> TvSsn

\\ l(g’l)

S
illustrates the equality; o aj = (g,1) ot o @i = mnk(Q, 1)(t © @;). Moreover, the map
(0,1)0¢: S™ — S"is null, which guaranteeso a; € kermnk(0, 1) = k(T Vv SM)s.
Step 2: Assumer, = F is free.
TakeS = v|S" satisfyingn, = F =~ &Z = my(S) and takeS’ = =. Consider the
composition function
7n(S) X mnik(S") — mnik(S)
(X, @) P Xoa.
It is linear in the second variabte but not in the first variable. Failure to be linear irx
is measured by the “distributive law of homotopy theory” dttéh's formula [26, Thm.
X1.8.5]. The error terms are composites which are all in thage ofrn,«(g9, 1) : k(T V

S), — mk(S) as explained in step 1. By modding out this image, we obtaialadefined
bilinear map

7n(S) ® Tnik(S") — TK(mn).

This map vanishes on element® a wherea is decomposable, since sucharis in the
image ofm,k(g, 1). Thus there is an induced canonical map

@: 7n(S) ® Qun — TK(mn).
We claim thaty is an isomorphism. The Hilton-Milnor theorem provides amirphism
Tnek(S) = 7Tn+k(VISn)

= @ 7Tn+k(sml)
j

~ @ mek(S") @ @ Tnek(S™)
|

j such tham;>n

so that we can project onto the first summaneh «(S") = F ® m,,k(S") and then mod out
the decomposables:

7Tn+k(s) - F ® 7Tn+k(sn) = F ® Qk’n = ﬂn(s) ® Qk’n.
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This map vanishes on the imagemf(g, 1) and therefore induces a map on the cokernel
Wi Th(rn) = 7n(S) ® Qe
One readily checks thdtis inverse tap. N
Step 3:mpisan arbiEary abelian group. We claim thaf¥ is right exact, i.e. preserves
cokernels. By applyin@X to the free presentation af,, we obtain the exact sequence
TH(R) = TH(F) » Th(xn) = 0
which, by step 2, can be written as
R® Qn — F ® Qun ~> ﬁn(ﬂn) -0
from which we obtain
T\(mn) = coker(R® Qun — F ® Qcn)
= coker(R - F) ® Qxn
=71 ® Qkn.

To prove thafﬁ preserves cokernels, recall that this functor is the coftgos

%
Ab = TIAIg? — MAIgkt 5 Ab.
The homotopy operation functor§ are defined as follows. Postnikov truncation
Pnik.1: HAIgK — MAIgk
has a left adjoint., andI’X is the composite

Kk Tk

nAIgt 5 maigh ™% Ab

where the last step is evaluation on the spl8&&, extracting the highest homotopy group
Tk«

In TIAIgK, cokernels are obtained by modding out the image. Theref@rénclusion
functortAlg® — TAIgKk as well asr,,,«: IIAIgK — Ab preserve cokernels. By virtue of
being a left adjointL also preserves cokernels, and so does the composite fui{ctor

Proof of Propositiod 3]7. Similar to[Z.3. The key ingredient here is the computation of
[1l, Cor. 9.4]:

Ton-1(S) = 7(S) &9 712n-1{S"
whereS = v|S" is a wedge oih-spheres, so that,(S) = ¢/Z is a free abelian group.
Decomposables (compositions) must be modded out for the semson asin'4.3. O

APPENDIX A. MORE ON COMMA CATEGORIES

In this appendix, we recall some basic facts about commaaaés, as defined [N 2.1.
We omit the proofs, which are straightforward (if somewlaidus) category theory.

Let F: C —» D be a functor. Consider the comma categb®, or (F | 1p) in the
notation of [20,§ 11.6]. Recall that objects consist of tripleX,(A,a: FX — A) with
X eC,Ae Danda is any map.

LetU: FD — C denote the projectiod (X, A, a) = X.

Propositon A.1. (1) U: FD — C has a left adjoint L C — FD given by LX=

X FX FX S FX).
(2) AssumingD has a terminal object, then U: FD — C has aright adjointR C —
FD given by RX= (X, *, FX — x).
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(3) L is an isomorphism of categories onto the full subcategdryD consisting of

objects of the fornfX, FX, FX L FX).

(4) R is an isomorphism of categories onto the full subcategbfy® consisting of
objects of the fornX, =, FX — *). In both cases, the inverse isomorphism is the
(restriction of the) projection U.

(5) Assuming has an initial objec® such that K0) is also initial, then the projection
FD — D sending(X, A @) to A has a left adjoint sending A {0, A, F(0) — A).

Now we investigate to what extent the comma catedafydetermines the functdt.

Proposition A.2. Let EG: C — D be functors.

(1) A natural transformatiory: F — G induces a pullback functor': GD — FD,
which is a functor of categories ovérx D (i.e. commutes with the projections
down toC x D).

(2) If moreovery is a natural isomorphism, theyt is an isomorphism of categories.

(3) A functorg: FD — GD of categories ove€ x D (naturally) induces a natural
transformationy?: G — F.

(4) It moreovery is an equivalence of categories, thgnis a natural isomorphism.

Corollary A.3. Functors EG: C — D are isomorphic if and only if the comma categories
FD,GD are equivalent as categories ov@rx D.

Proposition A.4. Let C, D be additive categories and:FC — O a functor. Then the
comma category P is additive if and only if F is an additive functor.

APPENDIX B. A CUTE EXAMPLE

Proposition B.1. The stable3-stagell-algebran defined byr, = m1 = M2 = Z/2
(where n> 4) with structure maps

1 Th) = T ®Z/2 = 2/2 = Z/2 = s
M2 T3(mn, 1) = i1 ® Z/2 = Z/2 = Z/2 = 72
is non-realizable.

Proof. The mapEn(n71) described in[[4§ 3.2] is the composite
TOT(ﬂn,Z/Z)C—i> TTn i» T®Z[2 L TTn+1 *q» M1 @ Z[2 = Fﬁ(ﬂ'n, 771)

which in our case is the isomorphism

m

Rl
Rl

Z]2C Z/2 Z/2 Z/2 Z/2.

i
The obstructiorO(rr) = 1, o En(71) described in[[4, Thm. 3.3 (B)] is the non-zero map

Z]2 5 7/2 = 7/2. Thereforer is non-realizable. |

RemarkB.2. By contrast, example [9, Ex. 7.18] with the same homotopygsobut a
differentll-algebra structure is in fact realizable.
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