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Abstract

T. Arakawa, in his unpublished note, constructed and studied a theta lifting from
elliptic cusp forms to automorphic forms on the real symplectic group Sp(1, q)R of sig-
nature (1+, q−). The second named author proved that such a lifting provides bounded
(or cuspidal) automorphic forms on Sp(1, q)R generating quaternionic discrete series.
In this paper, restricting ourselves to the case of q = 1, we reformulate Arakawa’s
theta lifting as a theta correspondence for similitude groups (GL2 × B×) × GSp(1, 1)
in the adelic setting and give a commutation relation of Hecke operators satisfied by
the lifting. Here B× denotes the multiplicative group of a definite quaternion algebra
B over Q. As an application we show that the theta lift L(f, f ′) of a Hecke eigenform
(f, f ′) on GL2 × B× is also a Hecke eigenform on GSp(1, 1). We furthermore provide
all finite local factors of the spinor L-function attached to L(f, f ′) in terms of Hecke
eigenvalues of (f, f ′).

1 Introduction.

The prototype of our study in this paper is the classical work [E] by M. Eichler on the com-
mutation relation of Hecke operators for theta series associated with spherical polynomials
on a definite quaternion algebra over Q. After this, several generalizations of it were given.
For example, H. Yoshida constructed a theta lifting from a pair of automorphic forms on a
multiplicative group of a definite quaternion algebra to holomorphic Siegel modular forms
of degree two, and gave a commutation relation for his lift. S. Kudla [Ku] considered such
a relation for a theta lifting from elliptic cusp forms to holomorphic automorphic forms on
SU(2, 1). Moreover we note that S. Rallis [Ra] investigated in great generality a commuta-
tion relation via the Weil representation for symplectic-orthogonal dual pairs. Our concern
here is a theta lifting from elliptic cusp forms to automorphic forms on the real symplectic
group Sp(1, q)R of signature (1+, q−) originally formulated by T. Arakawa. We study this
lifting for the case of q = 1 along the same line as [Y] and [Ku].

Let us recall that Arakawa formulated the theta lifting mentioned above by considering
the restriction of a theta correspondence of SL2(R)×SO(4, 4q) to SL2(R)×Sp(1, q)R (cf. [Ar-
1], [N-1] and [N-3]). We henceforth confine ourselves to the case of q = 1. It turned out that
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Arakawa’s formulation is not appropriate for proving a commutation relation, since we do
not have sufficient Hecke operators. Following T. Ikeda’s suggestion, we formulate our lift as
a theta correspondence between (GL2×B

×) and GSp(1, 1), where B is a definite quaternion
algebra over Q. This amounts to the same as taking a certain average of original Arakawa’s
lifts over the ideal classes of B. In this setting, we have Hecke operators enough to show
a good commutation relation. On the other hand, we note that our lift can be viewed as
a theta correspondence of similitude groups. For references in this direction see [G], [H-K],
[Ro], [Sz] and [W] etc.

We now explain more precisely our reformulation of the lifting, which is given in the
adelic setting. Let κ > 6 be an even integer and let D be a divisor of the discriminant dB of
B. We denote by Sκ(D) the space of elliptic cusp forms on GL2(A) of weight κ and level D,
and let Aκ be the space of automorphic forms on B×

A (for definitions of Sκ(D) and Aκ see
Definition 2.2). Furthermore, using a metaplectic representation of GSp(1, 1)A ×GL2(A) ×
B×

A (cf. §3, §4.1), we construct a theta kernel θκ on GSp(1, 1)A × GL2(A) × B×
A under a

special choice of a test function (cf. (4.1)). For (f, f ′) ∈ Sκ(D) × Aκ we then construct an
automorphic form L(f, f ′) on GSp(1, 1)A by integrating (f, f ′) against θκ (cf. (4.2)). This
L(f, f ′) belongs to the space Sκ of bounded (or cuspidal) automorphic forms on GSp(1, 1)A

given in Definition 2.1 (cf. Theorem 4.1), which turn out to generate at the infinite place
a quaternionic discrete series in the sense of Gross and Wallach [G-W] (cf. [N-2, Theorem
8.7]).

Our main result is a formula for Hecke eigenvalues of L(f, f ′) stated as Theorem 5.1.
For all non-Archimedean primes we provide such formula in terms of Hecke eigenvalues of
f and f ′. This follows from our formula for the commutation relation of Hecke operators
in Proposition 6.1 and Proposition 6.2. Then we discuss an application of this formula to
the spinor L-functions of L(f, f ′)’s. We define an Euler factor of the spinor L-function at
a prime p - dB (resp. p|dB) using the formula for the denominator of the Hecke series by
G. Shimura [Shim-1, Theorem 2] (resp. T. Hina and T. Sugano [H-S, §4], [Su, (1-34)]). To
be precise we give our formulas of the spinor L-functions under some normalization of the
Hecke eigenvalues. Among such formulas, the case D = 1 is the most interesting. In fact, if
we assume that f and f ′ are Hecke eigenforms, the spinor L-function L(L(f, f ′), spin, s) of
L(f, f ′) for that case admits the following simple decomposition (cf. Corollary 5.2)

L(L(f, f ′), spin, s) = L(f̄ , s)LdB(f ′, s),

where L(f̄ , s) (resp. LdB(f ′, s)) denotes Hecke’s classical L-function for f̄ (some partial L-
function for f ′ whose Euler factors range only over p - dB).

This paper is organized as follows. In §2 we define the automorphic forms we need after
giving basic notations. In §3 we introduce a metaplectic representation of GSp(1, 1)×GL2×
B× over local fields. Then we define a global metaplectic representation of the adele group
and provide the adelic reformulation of the Arakawa lifting for the case of q = 1 in §4. The
section 5 is devoted to the statement of our main results, i.e., Hecke eigenvalues and spinor
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L-functions for the lifting. In §6 we state our result on the commutation relation of Hecke
operators, from which our main results are deduced immediately. In §7 and §8 we prove
the commutation relation. More precisely the case of unramified finite places (resp. ramified
finite places) is considered in §7 (resp. §8).

We express our profound gratitude to T. Ibukiyama and T. Ikeda for their comments
on our study. Our results in this paper are obtained during second named author’s stay at
Max-Planck-Institut fuer Mathematik for 2005 April to 2006 March. He thanks the institute
very much for providing him with a fruitful research stay.

Notation

For an algebraic group G over Q, Gv stands for the group of Qv-points of G, where Qv denotes
the p-adic field (resp. the field of real numbers) when v = p is a finite prime (resp. v = ∞).
By GA (resp. GA,f ), we denote the adelization of G (resp. the group of finite adeles in GA).
Let ψ be the additive character of QA/Q such that ψ(x∞) = e(x∞) for x∞ ∈ R, where we
put e(z) = exp(2πiz) for z ∈ C. We denote by ψv the restriction of ψ to Qv for a prime v
of Q.
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Let B be a definite quaternion algebra over Q. In what follows, we fix an identification
between B∞ := B ⊗Q R and the Hamilton quaternion algebra H, and an embedding H ↪→
M2(C). Let B 3 b 7→ b̄ ∈ B be the main involution of B, and put tr(b) := b + b̄ and
n(b) := bb̄ for b ∈ B. Let B× := B \{0} be the multiplicative group of B. The center Z(B×)
of B× is Q× · 1. Let dB be the discriminant of B. By definition, dB is the product of finite
primes p such that Bp := B ⊗Q Qp is a division algebra.

We let G = GSp(1, 1) be an algebraic group over Q defined by

GQ = {g ∈M2(B) | tḡQg = ν(g)Q, ν(g) ∈ Q×},

where Q =

(
0 1
1 0

)
. Denote by ZG the center of G.

The Lie group G1
∞ := {g ∈ G∞ | ν(g) = 1} acts on the hyperbolic 4-space X := {z ∈

H | tr(z) > 0} by linear fractional transformations

g · z := (az + b)(cz + d)−1, (g = ( a b
c d ) ∈ G1

∞, z ∈ X ).

Let µ : G1
∞ × X → H× be the automorphy factor given by µ(( a b

c d ), z) := cz + d. The
stabilizer subgroup K∞ of z0 := 1 ∈ X in G1

∞ is a maximal compact subgroup of G1
∞, which

is isomorphic to Sp∗(1) × Sp∗(1), where Sp∗(1) := {z ∈ H | n(z) = 1}.
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Let κ be a positive integer. Denote by (σκ, Vκ) the representation of H given as

H ↪→M2(C) → End(Vκ),

where the second arrow indicates the κ-th symmetric power representation of M2(C). Then

τκ(k∞) := σκ(µ(k∞, z0)), (k∞ ∈ K∞)

gives rise to an irreducible representation of K∞ of dimension κ+ 1.
Define ωκ : G1

∞ → End(Vκ) by

ωκ(g) := σκ(D(g))−1n(D(g))−1, (g ∈ G1
∞),

where D(g) := 1
2
(g · z0 +1)µ(g, z0). It is known that ωκ is a matrix coefficient of the discrete

series representation with minimal K∞-type (τκ, Vκ) (cf. [Ar-2, §2.6]). That discrete series is
a quaternionic discrete series in the sense of B. Gross and N. Wallach [G-W]. We note that
ωκ is integrable if κ > 4.

Throughout the paper, we fix a maximal order O of B. We also fix a two-sided ideal A

of O satisfying the following conditions:

(i) If p 6 | dB, then Ap = Op.

(ii) If p|dB, then Ap = P
ep
p with ep ∈ {0, 1}, where Pp is the maximal ideal of Op.

We set
D =

∏

p|dB ,ep=0

p.

Note that D = 1 if and only if ep = 1 for any p|dB. Let L := t (O ⊕ A−1), which is a
maximal lattice of B⊕2. For a finite prime p, Kp = {k ∈ Gp | kLp = Lp} is a maximal
compact subgroup of Gp, where Lp := L⊗Z Zp. We set Kf :=

∏
p<∞

Kp.

Definition 2.1. For an even integer κ > 4, let Sκ be the space of smooth functions on
F : GA → Vκ satisfying the following conditions:

1. F (zγgkfk∞) = τκ(k∞)−1F (g) ∀(z, γ, g, kf , k∞) ∈ ZG,A ×GQ ×GA ×Kf ×K∞,

2. F is bounded,

3. cκ
∫

G1
∞
ωκ(h

−1
∞ g∞)F (gfh∞)dh∞ = F (gfg∞) for any fixed (gf , g∞) ∈ GA,f ×G∞,

where cκ := 2−4π−2κ(κ− 1).
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Here we remark that this automorphic form has been verified to be cuspidal (cf. [Ar-
2, Proposition 3.1]) and generate a quaternionic discrete series at the infinite place (cf. [N-
2, Theorem 8.7]).

Next let H and H ′ be algebraic groups over Q defined by HQ = GL2(Q) and H ′
Q = B×

respectively, and denote by ZH and ZH′ the center of H and H ′ respectively. We define
an action of SL2(R) on the complex upper half plane h := {τ ∈ C | Im(τ) > 0} as usual.
Let U∞ := {h ∈ SL2(R) | h · i = i} = SO(2) and U ′

∞ := {h′ ∈ H | n(h′) = 1} = Sp∗(1).
Moreover, we put Uf =

∏
p<∞ Up and U ′

f =
∏

p<∞ U ′
p, where Up := {u = ( a b

c d ) ∈ GL2(Zp) |
c ∈ DZp} and U ′

p := O×
p .

Definition 2.2. (1) Let Sκ(D) be the space of smooth functions f on HA satisfying the
following conditions:

1. f(zγhufu∞) = j(u∞, i)
−κf(h) ∀(z, γ, h, uf , u∞) ∈ ZH,A ×HQ ×HA × Uf × U∞,

2. For any fixed hf ∈ HA,f , h 3 h∞ · i 7→ j(h∞, i)
κf(hfh∞) is holomorphic for h∞ ∈

SL2(R),

3. f is bounded,

where j(( a b
c d ), τ) := cτ +d denotes the standard C-valued automorphy factor of SL2(R)×h.

(2) Furthermore, Aκ stands for the space of smooth Vκ-valued functions f ′ on H ′
A such that

f ′(z′γ′h′u′fu
′
∞) = σκ(u

′
∞)−1f(h′) ∀(z′, γ′, h′, u′f , u

′
∞) ∈ ZH′,A ×H ′

Q ×H ′
A × U ′

f × U ′
∞.

3 Metaplectic representation

In this section, we fix a prime v of Q. When v = p is a finite prime (resp. v = ∞), |∗|v denotes

the p-adic valuation (resp. the usual absolute value for R). For X =

(
x
y

)
∈ B⊕2

v , we put

X∗ := (x̄, ȳ). For a finite prime p, let Vp be the space of functions on B⊕2
p ×Q×

p generated by
ϕ1(X)ϕ2(t), where ϕ1 (resp. ϕ2) is a locally constant and compactly supported function on
B⊕2

p (resp. Q×
p ). We also let V∞ be the space of smooth functions ϕ on B⊕2

∞ ×Q×
∞ = H⊕2×R×

such that, for any fixed t ∈ R×, X 7→ ϕ(X, t) is rapidly decreasing on H⊕2.

Lemma 3.1. There exists a smooth representation r = rv of Gv ×Hv ×H ′
v on Vv given as

follows:
For ϕ ∈ Vv, X ∈ B⊕2

v and t ∈ Q×
v ,
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r(g, 1, 1)ϕ(X, t) = |ν(g)|
− 3

2
v ϕ(g−1X, ν(g)t), (g ∈ Gv), (3.1)

r(1, ( 1 b
0 1 ), 1)ϕ(X, t) = ψv(

bt

2
tr(X∗QX))ϕ(X, t), (b ∈ Qv), (3.2)

r(1, ( a 0
0 a′ ), 1)ϕ(X, t) = |a|

7
2
v |a

′|
− 1

2
v ϕ(aX, (aa′)−1t), (a, a′ ∈ Q×

v ), (3.3)

r(1, ( 0 1
−1 0 ), 1)ϕ(X, t) = |t|4v

∫

B⊕2
v

ψv(t tr(Y
∗QX))ϕ(Y, t)dQY, (3.4)

r(1, 1, z)ϕ(X, t) = |n(z)|
3
2
v ϕ(Xz, n(z)−1t), (z ∈ B×

v ). (3.5)

Here dQY is the Haar measure on B⊕2
v self-dual with respect to the pairing

B⊕2
v ×B⊕2

v 3 (Y, Y ′) 7→ ψv(tr(Y
∗QY ′)).

We define a partial Fourier transform I by

Iϕ(

(
x1

x2

)
, t) =

∫

Bv

ψv(−t tr(ȳx1))ϕ(

(
y
x2

)
, t)dy, (ϕ ∈ Vv),

where dy is the Haar measure on Bv self-dual with respect to the pairing Bv ×Bv 3 (x, y) 7→
ψv(tr(x̄y)). The proof of the following fact is straightforward and we omit it.

Lemma 3.2. For h ∈ Hv, we have

(I·r(1, h, 1)ϕ)(X, t) = | deth|
− 1

2
v Iϕ((det h)·h−1X, (det h)−1t), (ϕ ∈ Vv, X ∈ B⊕2

v , t ∈ Q×
v ).

When v = p <∞, we put

ϕ0,p(X, t) := charLp(X) charZ×
p
(t),

where charLp (resp. charZ×
p
) is the characteristic function of Lp = t

(
Op ⊕ A−1

p

)
(resp. Z×

p ).
When v = ∞, we put

ϕκ
0,∞(X, t) :=

{
t

κ+3
2 σκ((1, 1)X)e( it

2
tr(X∗X)) (t > 0)

0 (t < 0)
.

Lemma 3.3. Let v = p <∞. Then we have

r(kp, up, u
′
p)ϕ0,p = ϕ0,p

for kp ∈ Kp, up ∈ Up and u′p ∈ U ′
p.
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Proof. This is verified by a direct calculation. When p|D we need Lemma 3.2 to show the
Up-invariance.

Lemma 3.4. Let v = ∞. Then we have

r(k∞, u∞, u
′
∞)ϕκ

0,∞ = j(u∞, i)
−κτκ(k∞)−1 · ϕκ

0,∞ · σκ(u
′
∞)

for k ∈ K∞, u ∈ U∞ and u′ ∈ U ′
∞.

Proof. The transformation law with respect to the U∞-action follows immediately from [N-
3, Lemma 3.8]. The other transformation laws are checked in a straightforward way.

4 Arakawa lift

4.1

Let VA be the restricted tensor product of Vv with respect to {ϕ0,p}p<∞. By rA we denote
a smooth representation of GA ×HA ×H ′

A on VA given as

rA(g, h, h′)ϕ := ⊗
v
rv(gv, hv, h

′
v)ϕv

for ϕ = ⊗
v
ϕv ∈ VA and (g = (gv), h = (hv), h

′ = (h′v)) ∈ GA × HA ×H ′
A. Define a function

ϕκ
0 ∈ VA by

ϕκ
0(X, t) := ϕκ

0,∞(X∞, t∞)
∏

p<∞

ϕ0,p(Xp, tp)

for X = (Xv) ∈ B⊕2
A and t = (tv) ∈ Q×

A .
Set

θκ(g, h, h′) :=
∑

(X,t)∈B⊕2×Q×

rA(g, h, h′)ϕκ
0(X, t), ((g, h, h′) ∈ GA ×HA ×H ′

A). (4.1)

It is easily verified that the series (4.1) is uniformly convergent on any compact subset of
GA ×HA ×H ′

A, and that

θκ(γgkfk∞, γ1hufu∞, γ2h
′u′fu

′
∞) = τκ(k∞)−1j(u∞, i)

−κθ(g, h, h′)σκ(u
′
∞)

for (γ, g, kf , k∞) ∈ GQ × GA × Kf × K∞, (γ1, h, uf , u∞) ∈ HQ × HA × Uf × U∞ and
(γ2, h

′, u′f , u
′
∞) ∈ H ′

Q × H ′
A × U ′

f × U ′
∞. Now note that r∞(g∞, h∞, h

′
∞)ϕ0,∞(X∞, t∞) is

ZG,∞ × ZH,∞ × ZH′,∞-invariant. We also then see that θκ is ZG,A × ZH,A × ZH′,A-invariant,
since Q×

A = Q× · R>0 · Z×
f .

For f ∈ Sκ(D) and f ′ ∈ Aκ, we set

L(f, f ′)(g) :=

∫

ZH,AHQ\HA

dh

∫

ZH′,AH′
Q\H

′
A

dh′ θκ(g, h, h′)f(h)f ′(h′) (g ∈ GA). (4.2)
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Theorem 4.1 (Arakawa, Narita). Suppose κ > 6.
(i) The integral (4.2) is absolutely convergent.
(ii) L(f, f ′)(g) ∈ Sκ.

Proof. Since GA = ZG,AGQG
1
∞Kf (cf. [Shim-2, Theorem 6.14]), it is sufficient to consider

the restriction of L(f, f ′) to G1
∞. By a standard argument, we see that L(f, f ′)|G1

∞
is a finite

linear combination of original Arakawa lift (cf. [Ar-1], [N-1, §4] and [N-3, Theorem 4.1]),
from which the theorem follows.

5 Main result

5.1

To state the main result of the paper, we need to review several facts on Hecke operators.

5.2

First we consider the case where p - dB. We fix an isomorphism of Bp onto M2(Qp) such
that Op maps onto M2(Zp) and that the main involution of Bp corresponds to an involution
of M2(Qp) given by

M2(Qp) 3 X 7→ w−1 tXw, (w = ( 0 1
−1 0 )).

The reduced trace tr corresponds to the trace Tr of M2(Qp). We henceforth identify Bp

with M2(Qp) using the above isomorphism. Then Gp, Kp, H
′
p and U ′

p are identified with
GSp(J,Qp), GSp(J,Zp), GL2(Qp) and GL2(Zp) respectively, where GSp(J) is the group
of similitudes of J = ( 0 w

w 0 ). Note that we can identify Up with U ′
p by the isomorphism

Bp 'M2(Qp) fixed above.
Define Hecke operators T i

p (i = 0, 1, 2) on Sκ by

T i
p F (g) =

∫

Gp

F (gx)Φi
p(x)dx,

where Φ0
p, Φ1

p and Φ2
p are the characteristic function ofKp diag(p, p, p, p)Kp, Kp diag(p, p, 1, 1)Kp

and Kp diag(p2, p, p, 1)Kp respectively. Note that T 0
p F = F for any F ∈ Sκ.

We also define Hecke operators Tp and T ′
p on Sκ(D) and Aκ by

Tp f(h) =

∫

Hp

f(hx)φp(x)dx,

T ′
p f

′(h′) =

∫

H′
p

f ′(h′x′)φ′
p(x

′)dx′,

where φp = φ′
p is the characteristic function of GL2(Zp) diag(p, 1)GL2(Zp).
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5.3

We next consider the case where p|dB, i.e., Bp is a division algebra. In this case, we fix a
prime element Π of Bp and put π := n(Π). Then π is a prime element of Qp.

Define Hecke operators T i
p (i = 0, 1) on Sκ by

T i
p F (g) =

∫

Gp

F (gx)Φi
p(x)dx,

where Φ0
p and Φ1

p are the characteristic functions of Kp ·diag(Π,Π) ·Kp and Kp diag(1, π)Kp

respectively. Note that (T 0
p )2F = F for any F ∈ Sκ. We also define Hecke operators Tp and

T ′
p on Sκ(D) and Aκ by

Tp f(h) =

∫

Hp

f(hx)φp(x)dx,

T ′
p f

′(h′) =

∫

H′
p

f ′(h′x′)φ′
p(x

′)dx′.

Here φ′
p is the characteristic function of U ′

pΠU
′
p = ΠU ′

p and φp is defined as follows: If p|D,
φp is the sum of the characteristic functions of Up( π 0

0 1 )Up and Up( 1 0
0 π )Up. If p - D, φp is the

characteristic function of Up( π 0
0 1 )Up.

5.4

We say that F ∈ Sκ is a Hecke eigenform if F is a common eigenfunction of the Hecke
operators T i

p for any p <∞. Let F ∈ Sκ be a Hecke eigenform with T i
pF = Λi

pF (Λi
p ∈ C).

We define the spinor L-function of F by

L(F, spin, s) =
∏

p<∞

Lp(F, spin, s),

where Lp(F, spin, s) = Qp(F, p
−s)−1,

Qp(F, t) =

{
1 − pκ−3Λ1

pt+ p2κ−5(Λ2
p + p2 + 1)t2 − p3κ−6Λ1

pt
3 + p4κ−6t4 if p 6 |dB,

1 − {pκ−3Λ1
p − pκ−3(pAp − 1)Λ0

p}t+ p2κ−3(Λ0
p)

2t2 if p|dB,

and

Ap =

{
1 if p 6 |D,

2 if p|D.

The Euler factor for p - dB (resp. p|dB) is given by the formula for the denominator of the
Hecke series in [Shim-1, Theorem 2] (resp. [H-S, §4] and [Su, (1-34)]), under the normalization
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of the Hecke eigenvalues

{
(Λ0

p,Λ
1
p,Λ

2
p) → (p2(κ−3)Λ0

p, p
κ−3Λ1

p, p
2(κ−3)Λ2

p) (p - dB)

(Λ0
p,Λ

1
p) → (pκ−3Λ0

p, p
κ−3Λ1

p) (p|dB)
.

We say that f ∈ Sκ (resp. f ′ ∈ Aκ) is a Hecke eigenform if f (resp. f ′) is a common
eigenfunction of Tp (resp. T ′

p) for any p < ∞. For Hecke eigenforms f ∈ Sκ and f ′ ∈ Aκ

with Tpf = λpf and T ′
pf

′ = λ′pf
′ (λp, λ

′
p ∈ C), we define L-functions

LD(f, s) =
∏

p-D

(
1 − λpp

κ−2−s + p2κ−3−2s
)−1

,

LdB(f ′, s) =
∏

p-dB

(
1 − λ′pp

κ−2−s + p2κ−3−2s
)−1

.

When D = 1, we write L(f, s) for LD(f, s), which is the usual Hecke L-function of f .

5.5

We are now able to state the main result of the paper.

Theorem 5.1. Let f ∈ Sκ and f ′ ∈ Aκ, and suppose that

Tp f = λp f,

T ′
p f

′ = λ′p f
′

for each p < ∞. Then F (g) := L(f, f ′)(g) is a Hecke eigenform and the Hecke eigenvalues
are given as follows:

(i) If p - dB, we have

T 0
p F = F,

T 1
p F =

(
pλp + pλ′p

)
F,

T 2
p F =

(
pλpλ

′
p + p2 − 1

)
F.

(ii) If p|dB, we have

T 0
p F = λ′pF,

T 1
p F =

(
pλp + (p− 1)λ′

p

)
F.

10



Corollary 5.2. Let f and f ′ be as in Theorem 5.1. Then we have

L(L(f, f ′), spin, s) = LD(f, s)LdB(f ′, s)
∏

p|D

(
1 − {λp + (1 − p)λ′

p}p
κ−2−s + p2κ−3−2s

)−1
.

In particular, if D = 1, we have

L(L(f, f ′), spin, s) = L(f, s)LdB(f ′, s).

Here we define LD(f̄ , s) or L(f̄ , s) by replacing λp with λp in LD(f, s) or L(f, s) respec-
tively.

Remark 5.3. When p - dB the formula for the Hecke eigenvalues is essentially the same as
the corresponding result of Yoshida lifting (cf. [Y, Theorem 6.1]). For such p this leads to
the following decomposition

Lp(L(f, f ′), spin, s) = (1 − λpp
κ−2−s + p2κ−3−2s)−1(1 − λ′pp

κ−2−s + p2κ−3−2s)−1.

6 Commutation relations

6.1

In this section, we state the commutation relations of Hecke operators, from which Theorem
5.1 immediately follows. For a function φ on Hp, we put φ̂(h) = φ(h−1) (h ∈ Hp). We

define φ̂′ for φ′ : H ′
p → C in a similar manner.

6.2

In this subsection, suppose that p - dB and let the notations be the same as in §5.2. The
metaplectic representation r in this case is given as follows:
Let Φ ∈ S(M4,2(Qp))⊗S(Q×

p ), X ∈M4,2(Qp) and t ∈ Q×
p . Here S(M4,2(Qp)) (resp. S(Q×

p ))
denote the space of locally constant and compactly supported functions on M4,2(Qp) (resp.
Q×

p ). We have

r(g, 1, 1)Φ(X, t) = |ν(g)|
− 3

2
p Φ(g−1X, ν(g)t), (g ∈ Gp),

r(1, 1, h′)Φ(X, t) = | det h′|
3
2
p Φ(Xh′, (det h′)−1t), (h′ ∈ H ′

p),

r(1, ( a 0
0 a′ ), 1)Φ(X, t) = |a|

7
2
p |a

′|
− 1

2
p Φ(aX, (aa′)−1t), (a, a′ ∈ Q×

p ),

r(1, ( 1 b
0 1 ), 1)Φ(X, t) = ψ(

bt

2
Tr(tXJXw−1))Φ(X, t), (b ∈ Qp),

r(1, ( 0 1
−1 0 ), 1)Φ(X, t) = |t|4p

∫

M4,2(Qp)

ψ(t · Tr(tY JXw−1))Φ(Y, t)dQY.

11



6.3

The commutation relations are stated as follows:

Proposition 6.1. Suppose that p - dB. Then we have

(i) r(Φ1
p, 1, 1)ϕ0,p = p · r(1, φ̂p, 1)ϕ0,p + p · r(1, 1, φ̂′

p)ϕ0,p,

(ii) r(Φ2
p, 1, 1)ϕ0,p + (1 − p2)r(Φ0

p, 1, 1)ϕ0,p = p · r(1, φ̂p, φ̂
′
p)ϕ0,p.

Proposition 6.2. Suppose that p|dB. Then we have

r(Φ0
p, 1, 1)ϕ0,p = r(1, 1, φ̂′

p)ϕ0,p,

r(Φ1
p, 1, 1)ϕ0,p = p · r(1, φ̂p, 1)ϕ0,p + (p− 1)r(1, 1, φ̂′

p)ϕ0,p.

7

Given a condition S, we set

δ(S) :=

{
1 (if S is satisfied)

0 (otherwise)
.

For the reamining part of this paper we often use this notation, and denote ϕ0,p simply by
ϕ0

7.1

In this section, we assume that p - dB and prove Proposition 6.1. We keep the notations of
§5.2 and §6.2. For X ∈M2(Qp) with wX + tXw = 0 and Y ∈ GL2(Qp), we put

u(X) :=

(
12 X
02 12

)
, τ(Y ) :=

(
Y 02

02 w−1tY −1w

)
∈ Gp.

The following is easily verified.

Lemma 7.1. (i)

Kp diag(p, p, 1, 1)Kp =diag(1, 1, p, p)Kp ∪
⋃

c∈Zp/pZp

u(( 0 0
c 0 )) diag(1, p, 1, p)Kp

∪
⋃

b,d∈Zp/pZp

τ(( 1 d
0 1 ))u(( 0 b

0 0 )) diag(p, 1, p, 1)Kp

∪
⋃

a,b,c∈Zp/pZp

u(( a b
c −a )) diag(p, p, 1, 1)Kp.
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(ii)

Kp diag(p2, p, p, 1)Kp = diag(1, p, p, p2)Kp ∪
⋃

d∈Zp/pZp

u(( 1 d
0 1 )) diag(p, 1, p2, p)Kp

∪
⋃

a∈Zp/pZp, c∈Zp/p2Zp

u(( a 0
c −a )) diag(p, p2, 1, p)Kp

∪
⋃

(a,b,c)∈Λ

u(p−1( a b
c −a )) diag(p, p, p, p)Kp

∪
⋃

a,d∈Zp/pZp, b∈Zp/p2Zp

τ(( 1 d
0 1 ))u(( a b

0 −a )) diag(p2, p, p, 1)Kp,

where

Λ := {(a, b, c) ∈ (Zp/pZp)
3 | (a, b, c) 6≡ (0, 0, 0) mod p, a2 + bc ≡ 0 mod p}.

Here we note ]Λ = p2 − 1.

7.2

Denote by σm,n (resp. σ′) the characteristic function of Mm,n(Zp) (resp. Z×
p ). Then we have

ϕ0(X, t) = σ4,2(X)σ′(t). In the later discussion, we often write σ for σm,n if there is no fear
of confusion. The following facts are frequently used.

Lemma 7.2. We write σ for σ1,1. Then

∑

a∈Zp/pZp

σ(p−1(t+ a)) = σ(t) (t ∈ Qp)

and
∑

a∈Zp/pZp

σ(t)σ(p−1(at+ t′)) = pσ(p−1t)σ(p−1t′) + σ(t)σ(t′) − σ(p−1t)σ(t′) (t, t′ ∈ Qp).

Lemma 7.3. For x ∈M2,2(Qp), set

λ(x) := σ(( 1 0
0 p−1 )x) +

∑

a∈Zp/pZp

σ(( p−1 0
0 1

)( 1 a
0 1 )x)

and
ρ(x) := σ(x( p−1 0

0 1
)) +

∑

a∈Zp/pZp

σ(x( 1 a
0 1 )( 1 0

0 p−1 )).

Then
λ(x) = ρ(x).
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For the rest of this section, we put

[i1, i2, i3, i4](x) = σ2,2

((
p−i1x1 p−i2x2

p−i3x3 p−i4x4

))

for x = ( x1 x2
x3 x4 ) ∈M2,2(Qp) and i1, i2, i3, i4 ∈ Z.

7.3 Proof of Proposition 6.1 (i)

Let X =

(
x
y

)
∈M4,2(Qp) and t ∈ Q×

p . In view of §6.2 and Lemma 7.1, we obtain

r(Φ1
p, 1, 1)ϕ0(X, t) = p

3
2σ′(pt)I(X),

where

I(X) =
∑

a,b,c∈Zp/pZp

σ

(
p−1{x + ( a b

c −a )y}
y

)

+
∑

b,d∈Zp/pZp

σ

(
( p−1 0

0 1
)( 1 d

0 1 ){x+ ( 0 b
0 0 )y}

( p−1 0
0 1

)( 1 d
0 1 )y

)

+
∑

c∈Zp/pZp

σ

(
( 1 0

0 p−1 ){x + ( 0 0
c 0 )y}

( 1 0
0 p−1 )y

)

+ σ

(
x

p−1y

)
.

On the other hand, since

Up( p−1 0
0 1

)Up =
⋃

a∈Zp/pZp

( 1 a
0 1 )( 1 0

0 p−1 )Up ∪ ( p−1 0
0 1

)Up,

we obtain
p{r(1, φ̂p, 1)ϕ0(X, t) + r(1, 1, φ̂′

p)ϕ0(X, t)} = p
3
2σ′(pt)I ′(X),

where

I ′(X) =δ(Tr(xw−1tyw) ∈ pZp)σ(X)

+ p3σ(p−1X)

+ p
∑

a∈Zp/pZp

σ(X( 1 a
0 1 )( 1 0

0 p−1 ))

+ pσ(X( p−1 0
0 1

)).
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The proof of Proposition 6.1 (i) is reduced to that of the following formula:

I(X) = I ′(X). (7.1)

Without loss of generality, we may assume that y =

(
pλ 0
0 pµ

)
with λ ≥ µ ≥ 0 in view of

the elementary divisor theorem. First suppose that µ > 0. Then

I

(
x
y

)
= p3σ(p−1x) + pλ(x) + σ(x)

and

I ′
(
x
y

)
= σ(x) + p3σ(p−1x) + pρ(x).

The equality (7.1) immediately follows from Lemma 7.3.
Next suppose that λ = µ = 0. Then

I(X) =
∑

a,b,c∈Zp/pZp

σ(p−1(x + ( a b
c −a )))

and
I ′(X) = δ(Tr(x) ∈ pZp)σ(x).

Let x = ( x1 x2
x3 x4 ). If x 6∈ M2(Zp), we have I(X) = I ′(X) = 0. Assume that x ∈ M2(Zp). If

Tr(x) = x1 + x4 ∈ pZp (resp. ∈ Z×
p ), we have I(X) = I ′(X) = 1 (resp. = 0), which proves

(7.1).
Finally suppose that λ > 0 and µ = 0. Then

I(X) =p
∑

a,b∈Zp/pZp

σ(p−1x + ( 0 p−1b
0 p−1a

))

+
∑

b∈Zp/pZp

σ(( p−1 0
0 1

){x+ ( 0 b
0 0 )})

=p[1, 0, 1, 0](x) + [1, 0, 0, 0](x)

and
I ′(X) = δ(x1 ∈ pZp)σ(x) + p[1, 0, 1, 0](x),

hence we get I(X) = I ′(X). This complete the proof of Proposition 6.1 (i).

7.4 Proof of Proposition 6.1 (ii)

Fisrt observe
r(Φ2

p, 1, 1)ϕ0(X, t) = p3σ′(p2t)J(X),
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where

J(X) =

σ

(
( 1 0

0 p−1 )x

( p−1 0
0 p−2 )y

)
+

∑

d∈Zp/pZp

σ

(
( p−1 p−1d

0 1
)x

( p−2 p−2d
0 p−1 )y

)
+

∑

a∈Zp/pZp

c∈Zp/p2Zp

σ

(
( p−1 0

0 p−2 )x+ ( p−1a 0
p−2c −p−2a

)y

( 1 0
0 p−1 )y

)

+
∑

(a,b,c)∈Λ

σ

(
p−1x+ p−2( a b

c −a )y
p−1y

)
+

∑

a,d∈Zp/pZp

b∈Zp/p2Zp

σ

(
( p−2 p−2d

0 p−1 )x+ ( p−2a p−2(b+ad)

0 −p−1a
)y

( p−1 p−1d
0 1

)y

)
.

We also have
r(Φ0

p, 1, 1)ϕ0(X, t) = p3σ′(p2t)J ′(X),

where

J ′(X) := σ

(
p−1x
p−1y

)
.

On the other hand, we obtain

r(1, φ̂p, φ̂p)ϕ0(X, t) = p2σ′(p2t)J ′′(X),

where

J ′′(X) :=δ(Tr(xw−1tyw) ∈ p2Zp)
∑

b∈Zp/pZp

σ

((
x
y

)(
1 b
0 1

)(
1 0
0 p−1

))

+ δ(Tr(xw−1tyw) ∈ p2Zp)σ

((
x
y

)(
p−1 0
0 1

))

+ p3
∑

b∈Zp/pZp

σ

((
x
y

)(
1 b
0 1

)(
p−1 0
0 p−2

))

+ p3σ

((
x
y

)(
p−2 0
0 p−1

))
.

To show the second part of Proposition 6.1, it remains to prove

J(X) + (1 − p2)J ′(X) = J ′′(X). (7.2)

As in §7.3, we may assume that

y =

(
pα 0
0 pβ

)
(α ≥ β ≥ 0).

We divide the proof into the five cases as follows:

(a) β ≥ 2 (b) α ≥ 2, β = 1 (c) α = β = 1 (d) α ≥ 1, β = 0 (e) α = β = 0.
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(a) Under the setting of this case, we have

J(X) + (1 − p2)J ′(X) =σ(( 1 0
0 p−1 )x) +

∑

d∈Zp/pZp

σ(( p−1 p−1d
0 1

)x)

+ p3σ(( p−1 0
0 p−2 )x)

+ p3
∑

d∈Zp/pZp

σ(( p−2 p−2d
0 p−1 )x)

=λ(x) + p3λ(p−1x)

and
J”(X) = ρ(x) + p3ρ(p−1x).

The equality (7.2) follows from Lemma 7.3.
(b) For this case, we have

J(X) =[1, 1, 0, 0](x) + p2
∑

a∈Zp/pZp

σ
((

p−1x1 p−1x2

p−2x3 p−2x4−p−1a

))
+

∑

(a,b,c)∈Λ

σ
((

p−1x1 p−1(x2+b)

p−1x3 p−1(x4−a)

))

+ p
∑

d∈Zp/pZp

b∈Zp/p2Zp

σ
((

p−2(x1+dx3) p−2(x2+dx4)+p−1b

p−1x3 p−1x4

))

=[1, 1, 0, 0](x) + p2[1, 1, 2, 1](x)

+
∑

a≡0 mod p
bc≡0 mod p, (b,c)6≡(0,0) mod p

σ
((

p−1x1 p−1(x2+b)

p−1x3 p−1x4

))
+

∑

a6≡0 mod p
b6≡0 mod p

σ
((

p−1x1 p−1(x2+b)

p−1x3 p−1(x4−a)

))

+ p2
∑

d∈Zp/pZp

σ
((

p−2(x1+dx3) p−1(x2+dx4)

p−1x3 p−1x4

))

=[1, 1, 0, 0](x) + p2[1, 1, 2, 1](x) + (p− 1)[1, 1, 1, 1](x) + [1, 0, 1, 0](x) − [1, 1, 1, 0](x)

+ p2σ(p−1x2)σ(p−1x4)
∑

d∈Zp/pZp

σ(p−1x3)σ(p−1(dp−1x3 + p−1x1))

=[1, 1, 0, 0](x) + p2[1, 1, 2, 1](x) + (p− 1)[1, 1, 1, 1](x) + [1, 0, 1, 0](x) − [1, 1, 1, 0](x)

+ p2{p[2, 1, 2, 1](x) + [1, 1, 1, 1](x) − [1, 1, 2, 1](x)}

and hence

J(X) + (1 − p2)J ′(X) =[1, 1, 0, 0](x) + p[1, 1, 1, 1](x) + [1, 0, 1, 0](x)

− [1, 1, 1, 0](x) + p3[2, 1, 2, 1](x).
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On the other hand,

J ′′(X) =δ(x1 ∈ pZp)
∑

b∈Zp/pZp

σ
((

x1 p−1(bx1+x2)

x3 p−1(bx3+x4)

))

+ δ(x1 ∈ pZp)σ
((

p−1x1 x2

p−1x3 x4

))
+ p3σ

((
p−2x1 p−1x2

p−2x3 p−1x4

))

=σ(p−1x1)σ(p−1x2)
∑

b∈Zp/pZp

σ(x3)σ(p−1(bx3 + x4))

+ [1, 0, 1, 0](x) + p3[2, 1, 2, 1](x)

=p[1, 1, 1, 1](x) + [1, 1, 0, 0](x) − [1, 1, 1, 0](x)

+ [1, 0, 1, 0](x) + p3[2, 1, 2, 1](x).

The equality (7.2) in this case immediately follows.
(c) For this case, we have

J(X) =
∑

a∈Zp/pZp

c∈Zp/p2Zp

σ
((

p−1x1 p−1x2

p−2x2+p−1c p−2x4−p−1a

))

+
∑

(a,b,c)∈Λ

σ
(
p−1 (x + ( a b

c −a ))
)

+
∑

a,d∈Zp/pZp

b∈Zp/p2Zp

σ
((

p−2(x1+dx3)+p−1a p−2(x2+dx4)+p−1(b+ad)

p−1x3 p−1x4−a

))

=pσ(p−1x) + δ(x1 + x4 ∈ pZp, x
2
1 + x2x3 ∈ pZp)(σ(x) − σ(p−1x)) + p2σ(p−1x)

=(p2 + p− 1)σ(p−1x) + δ(x1 + x4 ∈ pZp, x
2
1 + x2x4 ∈ pZp)σ(x).

On the other hand, we immediately have

J ′(X) = σ(p−1x)

and

J ′′(X) =δ(x1 + x4 ∈ pZp)



σ

(
x
(

p−1 0
0 1

))
+

∑

b∈Zp/pZp

σ
(
x ( 1 b

0 1 )
(

1 0
0 p−1

))




=δ(x1 + x4 ∈ pZp)



σ

((
p−1x1 x2

p−1x3 x4

))
+

∑

b∈Zp/pZp

σ
((

x1 p−1(bx1+x2)

x3 p−1(bx3+x4)

))


 .

To prove (7.2), it is sufficient to show that

pσ(p−1x)

+ δ(x1 + x4 ∈ pZp)



δ(x1 + x2x3 ∈ pZp)σ(x) −

∑

b∈Zp/pZp

σ
((

x1 p−1(bx1+x2)

x3 p−1(bx3+x4)

))
− [1, 0, 1, 0](x)




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vanishes. This is proved by a tedious but straightforward calculation and we omit its proof.
(d) In this case, we have

J(X) =
∑

a∈Zp/pZp

b∈Zp/p2Zp

σ
((

p−2 0
0 p−1

)
x +

(
pα−2a p−2b

0 −p−1a

))
,

J ′(X) =0,

J ′′(X) =δ(x1 + pαx4 ∈ p2Zp)σ
((

p−1x1 x2

p−1x3 x4

))

for X =

(
x
y

)
and x =

(
x1 x2

x3 x4

)
. Since

J(X) =
∑

a∈Zp/pZp

σ
((

p−2x1+pα−2a x2

p−1x3 p−1(x4−a)

))

=J ′′(X),

we are done.
(e) For this remaining case, we have

J(X) = J ′(X) = J ′′(X) = 0

and the proof of (7.2) has been completed.

8

8.1

In this section, we assume that p|dB and prove Proposition 6.2. The proof of the first
formula of the proposition is straightforward. To prove the second formula, we need some
preparation. By σm,n, we denote the characteristic function of Mm,n(Op). As in §7, we often
omit the subscripts of σm,n’s. For a subset A of Bp, we put A− := {a ∈ A | tr(a) = 0}.
Recall that Op is the maximal order of Bp, Π is a (fixed) prime element of Bp and π = n(Π).
We put Pp = ΠOp.

8.2

We now collect several facts on the arithmetic of Bp used in the later discussion.
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Lemma 8.1. We have

]Op/πOp = p4,

]Op/ΠOp = p2,

]O−
p /πO

−
p = p3,

](Π−1Op)
−/O−

p = p2.

Lemma 8.2. Let σ = σ1,1 be the characteristic function of Op.

(i)
∑

b∈O−
p /πO−

p

σ(π−1(x+ b)) = δ(tr(x) ∈ pZp)σ(x),

(ii)
∑

b∈O−
p /πO−

p

σ(Π−1(x + b)) = p2δ(tr(x) ∈ pZp)σ(x),

(iii)
∑

b∈(Π−1Op)−/O−
p

σ(x+ b) = σ(Πx),

(iv)
∑

b∈P−
p /πP−

p

σ(π−1(x+ b)) = pσ(Π−1x),

(v)
∑

b∈O−
p /P−

p

σ(Π−1(x+ b)) = δ(tr(x) ∈ pZp)σ(x),

(vi)
∑

b∈P−
p /πP−

p

σ(π−1Π−1x + b) = δ(tr(x) ∈ p2Zp)σ(Π−1x).

8.3

We first consider the case p|D. Let φ+
p (resp. φ−

p ) be the characteristic function of Up

(
1 0
0 p−1

)
Up

(resp. Up

(
p−1 0
0 1

)
Up). Note that φ̂p = φ+

p + φ−
p .

Lemma 8.3. We have
r(Φ1

p, 1, 1)ϕ0(X, t) = p
3
2σ′(πt)I(X),

where

I

(
x
y

)
=

∑

b∈O−
p /πO−

p

σ

(
π−1(x + by)

y

)

+
∑

c∈(Π−1Op−Op)−/O−
p

σ

(
Π−1(x + cy)

Π−1y

)

+ σ

(
x

π−1y

)
.
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Proof. This follows from the definition of r and the coset decomposition

Kp

(
1 0
0 π

)
Kp =

⋃

b∈O−
p /πO−

p

(
1 b
0 1

)(
π 0
0 1

)
Kp

∪
⋃

c∈(Π−1Op−Op)−/O−
p

(
1 c
0 1

)(
Π 0
0 Π

)
Kp

∪

(
1 0
0 π

)
Kp.

Lemma 8.4. (i) If y ∈ O×
p , we have

I

(
x
y

)
= δ(tr(xy−1) ∈ pZp)σ(x).

(ii) If y ∈ ΠO×
p , we have

I

(
x
y

)
= p2δ(tr(xy−1) ∈ pZp)σ(Π−1x) − σ(Π−1x) + σ(x).

(iii) If y ∈ πOp, we have

I

(
x
y

)
= p3σ(π−1x) + (p2 − 1)σ(Π−1x) + σ(x).

Proof. When y ∈ O×
p ,

I

(
x
y

)
=

∑

b∈O−
p /πO−

p

σ(π−1(xy−1 + b))

=δ(tr(xy−1) ∈ pZp)σ(xy−1)

=δ(tr(xy−1) ∈ pZp)σ(x).

When y ∈ ΠO×
p ,

I

(
x
y

)
=

∑

b∈O−
p /πO−

p

σ(Π−1(xy−1 + b)) +
∑

c∈(Π−1Op)−/O−
p

σ(xy−1 + c) − σ(xy−1)

=p2δ(tr(xy−1) ∈ pZp)σ(xy−1) + σ(Πxy−1) − σ(xy−1)

=p2δ(tr(xy−1) ∈ pZp)σ(Π−1x) + σ(x) − σ(Π−1x).

21



When y ∈ πOp,

I

(
x
y

)
=](O−

p /πO
−
p )σ(π−1x) + ]((Π−1Op −Op)

−/O−
p )σ(Π−x) + σ(x)

=p3σ(π−1x) + (p2 − 1)σ(Π−1x) + σ(x).

Lemma 8.5. We have

r(1, φ+
p , 1)ϕ0(X, t) = p

1
2σ′(pt)J+(X),

where

J+

(
x
y

)
= σ(y) ×

{
δ(tr(xy−1) ∈ pZp)σ(x) (y ∈ O×

p )

σ(x) (y ∈ ΠOp)
.

Proof. Since Up

(
1 0
0 p−1

)
Up =

⋃
b∈Zp/pZp

(
1 b
0 1

)(
1 0
0 p−1

)
Up, we have

r(1, φ+
p , 1)ϕ0(X, t) =p−

1
2σ′(pt)

∑

b∈Zp/pZp

ψ

(
bt

2
tr(X∗QX)

)
σ(X)

=p−
1
2σ′(pt) · p · δ(tr(xσy) ∈ Zp)σ2,1

((
x
y

))

=p
1
2σ′(pt)σ(x) ×

{
δ(tr(xy−1) ∈ pZp) (y ∈ O×

p )

1 (y ∈ ΠOp)
,

which proves the lemma.

Lemma 8.6. We have

r(1, φ−
p , 1)ϕ0(X, t) = p

5
2σ′(pt)J−(X),

where

J−

(
x
y

)
= σ(y) ×





0 (y ∈ O×
p )

(δ(tr(xy−1) ∈ pZp) − p−1)σ(Π−1x) (y ∈ ΠO×
p )

pσ(π−1x) + (1 − p−1)σ(Π−1x) (y ∈ πOp)

.

Proof. To prove the lemma, we recall that, for h ∈ GL2(Qp),

(I · r(1, h, 1)ϕ)(X, t) = | det h|−
1
2Iϕ(det(h) · h−1X, det(h−1) · t),
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where

Iϕ

((
x
y

)
, t

)
=

∫

Bp

ψ(−t tr(uσx))ϕ

((
u
y

)
, t

)
du

(cf. Lemma 3.2). Here the measure du on Bp is normalized by vol(Op) = p−1.
It is easily verified that

Iϕ0

((
x
y

)
, t

)
= p−1σ(Πx)σ(y)σ′(t)

and

I−1ϕ

((
x
y

)
, t

)
= |t|4

∫

Bp

ψ(t tr(uσx))ϕ

((
u
y

)
, t

)
du.

It follows that

(I · r(1, φ−
p , 1)ϕ0)(X, t) =p−

1
2

∑

b∈Zp/pZp

Iϕ0

((
1 0
b p−1

)(
x
y

)
, pt

)

=p−
3
2σ(Πx)σ′(pt)

∑

b∈Zp/pZp

σ(bx + p−1y).

We thus have

r(1, φ−
p , 1)ϕ0(X, t) =|t|4

∫

Bp

ψ(t tr(uσx))p−
3
2σ(Πu)σ′(pt)

∑

b∈Zp/pZp

σ(bu+ p−1y)du

=p
5
2σ′(pt)K

(
x
y

)
,

where

K

(
x
y

)
=

∫

Bp

ψ(p−1 tr(uσx))σ(Πx)
∑

b∈Zp/pZp

σ(bu+ p−1y)du.

First observe that K

(
x
y

)
= 0 if y 6∈ ΠOp. Assume that y ∈ ΠOp. Then

K

(
x
y

)
=σ(p−1y)

∫

Π−1Op

ψ(p−1 tr(uσx))du+
∑

b∈(Zp−pZp)/pZp

∫

Π−1Op

ψ(p−1 tr(uσx))σ(b−1u+ p−1y)du

= vol(Π−1Op)σ(p−1y)σ(p−1x) +
∑

b∈(Zp−pZp)/pZp

∫

Π−1Op

ψ(p−1 tr((u− bp−1y)σx))σ(b−1u)du

=pσ(π−1x)σ(π−1y) +
∑

b∈(Zp−pZp)/pZp

ψ(p−2b tr(yσx))

∫

Π−1Op

ψ(p−1 tr(uσx))σ(u)du

=pσ(p−1x)σ(π−1y) + {pδ(tr(yσx) ∈ p2Zp) − 1} vol(Op)σ(Π−1x).
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The last term is equal to

{δ(tr(xy−1) ∈ pZp) − p−1}σ(Π−1x)

if y ∈ ΠO×
p , and

(1 − p−1)σ(Π−1x)

if y ∈ πOp. This proves the lemma.

The following lemma is clear.

Lemma 8.7. We have
r(1, 1, φ′

p)ϕ0(X, t) = p
3
2σ′(pt)J ′(X),

where

J ′

(
x
y

)
= σ(Π−1x)σ(Π−1y).

A straightforward calculation shows the following, which completes the proof of Propo-
sition 6.2 in the case where p|D.

Proposition 8.8. We have

J(X) − J+(X) − p2J−(X) + (1 − p)J ′(X) = 0.

8.4

In this subsection, we suppose that p - D. We only give a sketch of the proof of Proposition
6.2 in this case, since the proof is similar to that in §8.3. First we have the following coset
decomposition:

Kp

(
1 0
0 π

)
Kp =

⋃

b∈P−
p /πP−

p

(
1 b
0 1

)(
π 0
0 1

)
Kp

∪
⋃

c∈(Op−Pp)−/P−
p

(
1 c
0 1

)(
Π 0
0 Π

)
Kp

∪

(
1 0
0 π

)
Kp.

Lemma 8.9. We have

r(Φ1
p, 1, 1)ϕ0(X, t) = p3/2δ′(πt)I(X),

r(1, φ̂p, 1)ϕ0(X, t) = p1/2δ′(πt)J(X),

r(1, 1, φ̂p)ϕ0(X, t) = p3/2δ′(πt)J ′(X),
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where

I(X) =
∑

b∈P−
p /πP−

p

σ

(
π−1(x + by)

Πy

)
+

∑

c∈(Op−Pp)−/P−
p

σ

(
Π−1(x + cy)

y

)
+ σ

(
x

Π−1y

)
,

J(X) = δ(tr(xσy) ∈ pZp)σ

(
x

Πy

)
+ p3σ

(
π−1

Π−1y

)
,

J ′(X) = σ

(
Π−1x
y

)
.

Using Lemma 8.2 and Lemma 8.9, we obtain the following formula, from which Propo-
sition 6.2 immediately follows.

Proposition 8.10.
I(X) = J(X) + (p− 1)J ′(X).
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