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QUADRATIC ENDOFUNCTORS
OF THE CATEGORY OF GROUPS

HANS-JOACHIM BAUES AND TEIMURAZ PIRASHVILI

Let Gr be the category of groups. In this paper we study functors F': Gr — Gr
which preserve cokernels and filtered colimits. The functor F is linear if the map

(Fri,Fr) : F(X VY) = F(X) x F(Y)

is an isomorphism where X VY is the sum in the category of groups and r; :
XVY = X, rg: XVY = Y are the retractions. Moreover F' is quadratic if
F(X | Y) = kernel(F'ry, Fry) as a bifunctor is linear in X and Y.

Our main result shows that the monoidal category of such quadratic endofunctors
of Gr is equivalent to the monoidal category of square groups; see (3.10) and (8.9).
Here a square group is a diagram

M=(M L M, 5 M)

where M., is an abelian group, M, is a group of nilpotency degree 2, P is a
homomoprhism and H is a quadratic function with properties as in (3.5). We show
that the quadratic endofunctor F' of Gr can be described by a quadratic tensor
product

F(G)=G@ M, GeGr,

where M is a square group. A similar result for quadratic endofunctors of the
category Ab of abelian groups was obtained in [2]. In (3.10) we specify the square
groups corresponding to quadratic functors 4b — Gr and Gr. — Ab respectively.

The category of linear endofunctors of Gr which preserve cokernels and filtered
colimits is equivalent to the category of abelian groups. In fact, such linear endo-
functors L of Gr have a factorization

L: G-—}Ab AbCGr

where ab is the abelianization functor and A = L(Z) is an abelian group. We show
that the quadratic endofunctor F' of Gr has a similar factorization

F:or ™% Nil % Nil ¢ Gr
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Here Nl is the category of groups of nilpotency degree 2, nil is the nilization functor
and M = F{Z} is the square group defined in (3.6) with M, = F(Z), M., =
F(Z|zZ).

The functor F' is exact if F' carries short exact sequences to short exact sequences.
It is well known that exact linear endofunctors F' of Ab are given by torsion free
(or flat) abelian groups E such that F(4) = A® E. In (6.8) we classify the exact
quadratic functors Nil — N:l by flat square groups. Such flat square groups are
simply functions H : " E — E on torsion free abelian groups E for which H(a+b) —
H{a) — H(b) is linear in a and b and H(2a) —4H(a) = a with a,b € E. This result
relies on the universal coeflicient theorem for quadratic functors in [4]. For example

Zni=(H :Z - Z, H(a) = a(a — 1)/2)

is the flat square group corresponding to the identity functor of Nil. The quadratic
tensor product satisfies

G@ Zm’l = ml(G) = G/PaG

where ['3G is the subgroup of triple commutators in the group G.

Square groups may be considered as the quadratic analogue of abelian groups;
they play a similar role in “quadratic algebra” as abelian groups in linear algebra.
For example a square ring (as defined in [3]) is a monoid in the category of square
groups (compare (8.10)); this generalizes the classical notion of ring being a monoid
in the monoidal category of abelian groups. The many examples of square rings
in (3] yield examples of square groups. Moreover Z i above is also a square ring
which, in fact, is the initial object in the category of square rings.

In section §7 we describe free square groups S which are sums of universal
square groups Z® and Z®. Each square group M admits a surjection S —» M. This
implies that each quadratic endofunctor of Gr is obtained as a natural quotient of a
functor ®S. Moreover there is a square ring @ such that the category of Q-modules
coincides with the category of square groups. In fact, Q) is the endomorphism square
ring of Z? Vv Z® in the category of free square groups which is a quadratic category.

In the literature quadratic (and more generally polynomial) endofunctors were
mainly studied for additive categories, in particular for the category of abelian
groups [2], [5], [12], the category of rational vectorspaces [9], the category of Z/p
-vector spaces [7]. On the other hand polynomial endofunctors of the category of
topological spaces were already considered by Goodwillie [6]. The theory of polyno-
mial endofunctors of the category of groups started in this paper is a necessary step
to combine the algebraic and topological approach. In fact, applying polynomial
endofunctors of Gr to simplicial groups yields polynomial endofunctors for spaces.

§ 1 Linear and quadratic functors

Let Ab be the category of abelian groups and let A be an additive category,
for example A = Ab. Recall that an additive category A is a category for which
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the morphism sets A(X,Y’) are abelian groups and composition is bilinear and for
which finite sums exist in A. Such sums AV B are also products in 4 and AV B
has the structure of a biproduct

(L1) A2 AVBSB

ry T2

with ry7; = 14, rote = 1p and 17 + 1372 = 14vB. The empty sum is the zero
object * in A. A functor

(1.2) | F:do

o

is additive if F(f + g) = F(f) + F(g) for morphisms f,g € A(X,Y) and F is
quadratic if A with

A(f,9)=F(f +g) - Flg) - F(f)

is a bilinear function. Additive and quadratic functors satisfy F(x) = 0.

We now generalize the concept of additive, resp. quadratic functors as follows.
For this we replace the additive category A by a category C with sums X VY and
zero object *. Zero morphisms in C are described by 0 : X — * — Y. For each
sum X VY in € one has also a diagram

(1.3) X2XVYsy
r rg
with r17; = 1y, rei; = ly where the retractions are given by m = (1,0) and

ry = (0,1). Moreover we replace the category Ab in (1.2) by the category Gr of
groups and we consider a functor

(1.4) F:C—Gr with F(x)=0.
For objects X,Y in C we define the cross effect F(X |Y) by the kernel

)

F(X | Y) = kernel (F(X vY) "2%) F(X) x F(Y))

Hence one has a short exact sequence of groups

0— F(X |Y) 2% p(x vY) %) FX) x F(X) =0

which is natural in X,Y € C. We now say that F in (1.4) is linear if (X |Y) =0
for all X, Y € C and we say that F in (1.4) is quadratic if /(X | Y) is linear in X and
Y, that is, the functors F(— | V) : X — F(X [Y)and F(X | =) : Y s F(X | Y)
are linear in the sense above. This definition of linear and quadratic functors
resembles the approach in [6]. The next lemma is well known.
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(1.5) Lemma. Let F: A — Ab be a functor as in (1.2). Then F is additive, resp.
quadratic in the sense of (1.2) if and only if the composite A — Ab C Gr is linear,
resp. quadratic in the sense of (1.4).

Hence linear, resp. quadratic functors in (1.4) generalize additive, resp. qua-
dratic functors in (1.2). We shall show that linear functors are actually often
determined by additive functors; see § 2.

(1.6) Lemma. Let F': C — Gr with F(*) = 0 be a functor and let X € C. If F
is linear then F(X) is an abelian group. If F is quadratic then F(X) is a group of
nilpotency degree 2.

Proof. Let a,b € F(X) and let (a,b) = —a—b+ a+ b be the commutator in F(X).
Then (a,b) = (1,1).d where

d = (1140, 12.b) € F(X V X)
and one has
(714, 724)(d) = 0 € F(X) x F(X)
If F is linear then (ry., 72,) is an isomorphism and hence d = 0 which implies

(a,b) = 0. If F is quadratic we consider for z,y,z € F(X) the triple commutator
¢=((z,y),2). Then

v = ((il‘,m, igty), 1,'3,.2) € F(X VXV X)
satisfies (1,1,1),(v) = ¢. Moreover for 1 <7 < j < 3 the projection rj; : X VX V

X — X V X satisfies (ri;)+(v) = 0. Hence the lemma (1.8) below implies » = 0 so
that ¢ = 0. q.e.d.

Let F': C — Gr be a functor with F(*) = 0 and let X, X3, X3 be objects in {'.
) <

Forlgz'i:j ﬁet

ngZXl VA VAs —}X,'VXJ'
be the retractions which induce

(ri2,713,723)s : FX VYV Z) 2 F(XVY)VF(XVZ)VFYVZ)

Then

(17) F(X | Y | Z) = kernel (T]Q,Tl3,r23)*

is the third cross effect of F'




(1.8) Lemma. The functor F is quadratic if and only if the third cross effect
F(X|Y | Z)=0is trivial for all X,Y,Z € C.

Proof. One readily checks that

FX|Y|Z)=kemnel(F(X |YVZ)> F(X|Y)x F(X|2))
and the result follows. g.e.d.

We have inclusions of categories Ab C Nil C Gr where Nil is the full subcategory -

of groups of nilpotency degree 2. Hence by (1.6) any linear resp. quadratic functor
F : ' = Gr has the factorization

(1.9) — AbC Gr  (linear)
_}

il C Gr (quadratic)

For a quadratic functor F' we see by (1.6) that F(X | Y') is an abelian group.
Moreover we get

(1.10) Lemma. Let F be quadratic. Then

0— F(X | Y)- F(XVY) > F(X) XxF(Y)—0
is a central extension.

Proof. Since each element in F(X VY') has the form b+, (z)+12(y) (z € F(X), y €
F(Y),be F(X |Y)) it is enough to show that

c=—-b—1;(z) +b+11(x)
is zero. We consider the following element in F(X VY vV X} :

d = —(i1,72)+(b) = ia(z) + (i1, 32)«(b) + 13: ().
Hereiz : X - X VY VX and (7),13) : X VY = X VY VX are canonical inclusions.
Then for (i1,72,71) : X VY VX = X VY one has
(il,ig,il)*d= [+
and 7ij,d =0, 1 <7 < j <3, and lemma (1.8) gives d = 0 so that ¢ = 0. g.e.d.

(1.11) Definition. Let F : C — Gr be a functor with F(*) = 0. Then we define
the natural transformation

P:F(X|X)—= F(X)
by the composition

F(X | X)c F(xvx) px)

Similarly we define



P:F(X|X|X)— F(X)
by the composition

(1,1,1),

FX|X|X)CFXVXVX) 5 F(X)

(1.12) Lemma. The image of P and P respectively is a normal subgroup. More-
over the image of P is central if F' is quadratic.

Proof. This is clear since F(X | X) is normal in F(XVX) and (1,1). is epimorphic.
The same argument holds for P and for the quadratic case. q.e.d.

(1.13) Lemma. F is linear if and only if P = 0. Moreover F is quadratic if and
only if P =0.

Proof. Clearly P = 0 if F is linear. Conversely if P = 0 we obtain F(X | Y) =0

since we have the commutative diagram

F(XVY|XVvY) 25 FXvY)

57

FX|Y)
A similar argument holds in the quadratic case. q.e.d.

(1.14) Definition. Let F : C = Gr be a functor with F(x) = 0 as in (1.4). Then

the additivization, resp. the quadratization

F*:C - Ab,
Fquad:g_}M

are the functors defined by F2?¢(X) = cokernel(P : F(X | X) — F(X)) and
Fued(X) = cokernel (P : F(X | X | X) = F(X)). Here F*! is a linear functor
and F7%%? is a quadratic functor and we use (1.9). In fact, F°? is linear by the
following argument. Since P is natural and the diagram

FIX|x) 25 FX)
[o |s
Fod(X | X) —2 Fed(Xx)
commutes where ¢2 is induced by the natural transformation ¢g. Here ¢; 1s an

epimorphism and ¢P = 0 so that P in the bottom row is zero. Hence F%¢ is linear
by (1.13). A similar argument shows that F7*?¢ is quadratic.
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Hence the inclusions of functor categories

linear functors C quadratic functors C functors (C — Gr)

have left adjoint functors given by additivization and quadratization respectively.
We leave it to the reader to study more generally functors ¢ — Gr of degree n
(which are linear for n = 1 and quadratic for n = 2) and to prove similar results
for such functors.

§ 2 Linear and quadratic functors on theories of cogroups

We generalize the notion of an additive category as follows. A theory of cogroups
is a category T’ with zero object % and finite sums such that each object X has the
structure of a cogroup given by the maps 1 : X - X VX, v: X - X satisfying
the usual identities. A morphism f: X — Y is linear if the diagram

X — Y

XVX —— Y VY
vy
commutes. Morphism sets T'(X,Y") in T are groups (written additively) with a+b =
(a,b)ir, —a = av, for a,b € T(X,Y). Moreover we assume that for all objects X,Y
in T there is given a diagram of linear morphisms

(2.1) X2XVYSY
1 r2

with r; = (1,0), ro = (0,1) and 717y + 7272 = 1xvyy. Clearly by (1.1) any additive
category is a theory of cogroups. We consider the covariant Hom functors

T(X,-):T - Gr

which carry Y € T to the group T(X,Y).

(2.2) Lemma. A theory T of cogroups is an additive category if and only if all
covariant Hom functors are linear.

This is readily proved and leads to the next definition:

(2.3) Definition. A theory of cogroups T is a gquadratic category if all covariant
Hom functors of T are quadratic.

One can check that this notion of a quadratic category coincides with the one in
[3] where quadratic categories are studied. For any theory of cogroups T’ one obtains

canonically an additive catgeory gﬂd and a quadratic category T uad topether with
quotient functors:



(24) gﬁgquad_)gad

Here the morphism sets in ?__“d and gq"“d respectively are given by the additiviza-
tion and quadratization of the covariant Hom functors in T

T*Y(X,Y) = L(X, -)*(Y),

T7X,Y) = T(X,—)™(Y).

The quotient functors in (2.4) have the obvious universal properties with respect
to functors T — C where C is quadratic (resp. additive) category.

(2.5) Ezample. The category gr of free groups is a theory of cogroups. Moreover

the category nil of free ob jects in the category il is a quadratic category and the
category ab of free abelian groups is an additive category such that the obvious
quotient functors

g_,r ) g_rquad 3 gzad

gr— ml — g

coincide with (2.4). Further examples are obtained by the categories of free algebras,
free Lie algebras, etc. in a similar way.

(2.6) Proposition. Let T be a theory of cogroups and let F : T — Gr be a functor
with F(x) = 0. If F is linear, resp. quadratic, there is a unique factorization as
follows where the vertical arrows denote the canonical functors.

F

T g
l T (linear)
zad _ —A;l_)
T L Gr
l (quadratic)

& —

unad 3

This shows that the category of linear functors T — Gr is equivalent to the

category of additive functors A — Ab where A = zad is an additive category.
Moreover the category of quadratic functors T — Gr is equivalent to the category

of quadratic functors @ — Nil where @ =T 7uad is a quadratic category. For the
proof of (2.6) we will use the following lemma.
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(2.7) Lemma. Let T be a theory of cogroups and F : T — Gr be a functor with
F(*) = 0. We consider for X,Y € T and a € F(X) the evaluation function

T(X,Y) = F(Y), f — ful(a)

and its cross effect

(f [ 9)(a) = (f + g)s(a) = g«(a) - fi(a)

Then F is linear (resp. quadratic) if and only if (f | g)«(a) = 0 (resp. (f | g)«(a)
is bilinear in f and g) for all X, Y and a.

We obtain a retraction of ¢y in (1.4)

(2.8) r2 : F(XVY) F(X |Y) by
112712(a) = a —1grea — tyrya = (347 | 1972)s(a)
In fact as in (2.10) of [3] one shows that 77 is well defined and surjective. Here we

use the assumptions that 217 + 1372 = lyvy. Using the retraction ri2 we obtain
the natural function

(2.9) H:F(X)— F(X | X)

given by the composition

Fx) U pox v x) 2% (X X)

The functions ry; and H need not to be homomorphisms. For f,¢g : X — Y and
a € F(X) one readily gets the formula

(2.10) (F19)«(a) = P(f,9)«H(a)

where (f,g)e : F(X | X) =2 F(Y | Y) isinduced by fVg: F(XVX) > F(Y VYY),
compare (3.3) (6) in [3].

Proof of (2.7). H(f | g)«(a) =0 for all X,Y,a then (i37; | i272)«(a) = 0 and hence
r12 = 0. Therefore F(X | Y) = 0 and thus F is linear. On the other hand if F
is linear then the inclusions 73,72 : X = X V X satisfy (i3 + i2)e = t14 + i24 ¢
F(X) = F(XV X) = F(X) x F(X). Hence for f +¢ = (f,9)(i1 + i2) we get

(f + g)x = f« + gx. One gets the result in a similar way for quadratic functors.
q.e.d.
Proof of (2.6). Consider the diagram

T(X,Y |Y) ——

T(X,Y) —X— Hom(FX,FY)

o

(XY |Y|Y)
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If F is linear one has to show that F(f + Pz) = F(f) and if F' is quadratic one has
to show that F(f + Pz) = F(f). Now let F be linear. For a € F(X) one gets

F(f + Pz)(a) = F(f)(a) + F(P(z))(a) by (2.7)
where F(P(z))(a) = 0 by the commutative diagram

T(X,Y|Y) —— FY |Y)=0

lr e

T(X,Y) ——  F(Y)

Here the evaluation ev with ev(f) = f.(a) is a natural transformation in Y.
Actually this shows that for any linear functor F' and z € T(X,Y | V) with
Pz : X = Y the induced map (Pz), = 0 : F(X) = F(Y) is trivial. Given a
quadratic functor F' this implies that also for z € T(X,Y | Y) the induced map
0= (1z,Pz).: F(Z | X)— F(Z|Y) is trivial. Thus also for any f € T(X,Y) we
get (f, Pz). = 0 and by (2.10) this shows N

(f | Pz)«(a) =0 forany a€ F(X).
Now by (2.10) we get

(f + Py)e(a) = fila) + (Py)la) + (f | Py)u(a)

where (Py). = 0 since ev P = Pev as above for P. Moreover Py = Pz for some z
and hence (f | Py).(1) = 0. This shows that F(f+Py) = F(f) and the proposition
1s proved.

q.e.d.

§ 3 Quadratic endofunctor of the category of groups

We classify certain linear and quadratic endofunctors of the category of groups.
The linear case is easily described by the following result. We say that a functor
F: ( — K preserves cokernels if F' carries each coequalizer in ' to a coequalizer
in I{.

(3.1) Proposition. Let F': Gr — Gr be a linear functor which preserves coker-
nels. Then F has a unique factorization

where the left side is the abelianization functor. Here F again preserves cokernels.
If F also preserves filtered colimits then F is given by the tensor product

F(Ay=AQ M
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with M = F(Z) and A € Ab.
Filtered colimits are also termed direct limits.

(3.2) Corollary. The category of linear endofunctors of Gr, resp. Ab, which
preserve cokernels and filtered colimits is equivalent to the category Ab of abelian

groups.

The quadratic analogue of these results is obtained below by the use of square
groups which replace abelian groups.

Proof of (8.1). Since F' preserves cokernels we see that F' is determined by the
restriction F' : gr — Gr to the category gr of free groups. Hence by (1.7) and

(2.5), (2.6) we obatin F. Moreover if F' preserves also filtered colimits then F' is
determined by the restriction F : fg — ab — Ab where fg — ab is the category of
finitely generated free abelian groups. Hence F' is determined by the Z -module
M = F(Z) = F(Z) with F(A) = A® F(Z).

q.e.d.
We now consider quadratic endofunctors of the category Ab of abelian groups.
For this we need the following notation from (2].

(3.8) Definition. A guadratic Z -module

M =M, L M, D M)

is a pair of abelian groups M., M., together with homomorphisms H, P satsfying
PHP = 2P and HPH = 2H. Given M we obtain a quadratic functor Ab — Ab
which carries the abelian group A to the quadratic tensor product A @ M. Here
A ® M is the abelian group generated by symbols a ® m, [a,b] ® n with a,b € A
and m € M., n € M., subject to the relations

O {(a+b)®m=a®m+b®m+[a,b]®H(m)

[a,a] ®n = a® P(n)
where a @ m is linear in m and [a,b] ® n is linear in a,b and n. let A be an additive

category and F' : A — Ab be a quadratic functor. Then each X € A determines
the quadratic Z-module

2) F{X}=FX) L Fx1x) -5 FX))

where H and P are defined as in (2.12), (1.11). With this notation we obtain the
following quadratic analogue of (3.1) proved in [2].

(3.4) Proposition. Let F': Ab — Ab be a quadratic functor which preserves
cokernels and filtered colimits. Then one has the natural isomorphism

FA)=AQM
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where M = F{Z} is the quadratic Z -module given as in (3.3) (2). Moreover the
category of such functors is equivalent to the category of quadratic Z -modules.

The next notion of a square group generalizes the notion of a quadratic Z-module.

(8.5) Definition. A square group

M =M, 5 M. 2 M,)

is given by a group M, and an abelian group M,.. Both groups are written addi-
tively. Moreover p is a homomorphism and H is a quadratic function, that is the
cross effect

(a|b)n = H(a +b) — H(b) — H(a)
is linear in a,b € Q.. In addition the following properties are satisfied (z,y € M,.)

(1) (Pz |b)y =0 and (a|Py)u=0

(2) Pla|b)py=a+b—-a-b>

(3) PHP(z) = P(z) + P(z)

(4) A(a) =HPH(a)+ H(a+a) —4H(a) islinearin a

By (1) and (2) P maps to the center of M, and by (2) cokernel of P is abelian.
Hence M, is a group of nilpotency degree 2. Let Square be the category of square

groups. Quadratic Z -modules are square groups for which A = 0 is trivial and H
is linear. One has the following additional formulas:

() H{at+b-a-b)=—(|a)n +(a|b)n
(6) AP(z)=0
(7) PA(a)=0

As an example we have the square group

Zni= (2525 7)

P

with H(r) = (2

follows.

) and P = 0; compare [3]. Square groups arise naturally as

(3.6) Proposition. Let T be a theory of cogroups and let F : T — Gr be a
quadratic functor with F(x) = 0. Then each object X € T yields the square group

F{X} = (F(X) =% F(X | X) = F(X))
given by H and P in (2.12) and (2.11).
Proof. For X,Y € @ we have the following diagram in which the row is a central

extension of groups
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0 — F(X|Y) =25 F(Xvy) U2 pxyx FY) —— 0
lrIQ
F(X|Y)

Here the function ri; with ri2112(z) = z is defined by

(1) rig(u) = iﬁl(u — (t272)su — (1171 )stt)

where i) : X = X VY, 2:Y = X VY are the inclusions. By definition of H and
P we have

(2) H=rpu.: F(X)> F(XVvX)-> F(X|X)
(3) P =i F(X | X) = F(XVX) = F(X)
where g = 1; + 12 and 7 = (1,1). We now check that F{X} = (H, P) is a square

group. In fact, P is central since 7, is surjective and since 212 is central. P is a
homomorphism while H is quadratic since for a,b € F(X)

(4) H(a + b) - H(b) —_ H(G.) = i]_zl(ig*a + il*b - Z'g*a - i1*b)

Compare the proof of (3.3) (2) [3]. The right hand side is a commutator in a group
of nilpotency degree 2 and therefore linear in @ and b. Moreover since P is central
and natural we see that i5.(Pz) = P(i2.z) is central and therefore (3.5) (1) holds
by (4). Also (3.5) (2) is a consequence of (4) and (3). We define

(5) T:F(X|Y)> F(Y | X)

by 2127 = t,112 where t: X VY — Y V X is the interchange map. Then PT = P
and T = HP —1 as in the proof of (3.3)(3){3]. Hence PHP — P = P so that also
(3.5) (3) holds. Finally we obtain (3.5) (4) by the following equations.

112{A(a)) = 112(HPH(a) + H(a + a) — 4H(a))
= 112(TH(a) — H(a) + (ala)n)
112(TH(a) — H(a)) = (12 +1)sa — t10a — 1300 — ((i1 + 22)sa — i2-a — 11-a)
= (12 +11)sa —t1«a + (—izra + 1o a+ 1200 — 1100a) + 1120 — (i1 +12)sa
= (i2 + 21)«a + t12(—ala)g — (21 + 12)ea
Hence we get

ilzﬂ(a) = (22 + le)*a fand (11 -+ 1:2),01 € F(X vV X)
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and this function is linear in a since 7,5 is central and (77 + i2). and (ip + 21). are
homomorphisms.

g.e.d.
The following non abelian version of the quadratic tensor product is obtained
almost in the same way as in (3.3) (1).

(8.7) Definition. Let G be a group and let M be a square group. We define the
group G ® M by the generators ¢ ® a and [g,h] ® = with g,h € G,a € M, and
z € M., subject to the relations

(9+h)@a=g@a+h®a+|g,h]®H(a)
[9:9]®z =g ® P(z)
where ¢ ® a is linear in a and where [g, k] ® = is central and linear in each variable
g,h and z. There are obvious induced maps for this tensor product so that one

gets a bifunctor

® : Gr x Square — Gr

This functor factors uniquely as follows

Gr x Square -8, Gr

T

x Square -2, Nzl

(—

=

where the bottom row is the restriction of ® to the subcategory Ni C Gr of
groups of nilpotency degree 2. The left hand side is given by the nilization functor
nil : Gr — Nil which carries G to G™. The commutativity of the diagram is a
consequence of the next lemma.

(3.8)Lemma. For any group G and square group M we have G ® M € Nil and
GeM = G" ® M. Moreover the functor Gr — Gr, G~ G® M, is quadratic

and preserves cokernels and colimits.

We prove this lemma in §4. Next we state our result on the classification of
quadratic endofunctors of the category of groups.

(3.9) Theorem. Let F: Gr — Gr be a quadratic functor which preserves coker-
nels. Then F has a unique factorization

C‘r—F——>&

W

Nil —F Nl

where the left hand side to the nilization functor. Here F' preserves cokernels. If F
also preserves filtered colimits then F' is given by the quadratic tensor product

14



F(Q)=GeM
with M = F{Z} and G € Nil.

(3.10) Corollary. The category of quadratic endofunctors of Gr which preserve
cokernels and filtered colimits is equivalent to the category Square of square groups.

Moreover this equivalence of categories yields equivalences of subcategories accord-
ing to the following list.

quadratic functors as in (3.10) square groups
Gr — Gr all square groups
Ab— Gr square groups with A =0
Gr — Ab square groups with H linear
Ab — Ab quadratic Z-module

Proof of (8.9). Since F preserves cokernels we see that F is determined by the
restriction F' : gr — Gr. Hence by (1.7) and (2.5), (2.6) we obtain F. If F

preserves filtered limits then F is determined by the restriction F: fg—ni — Nil
where fg — nil is the category of finitely generated free objects in nil. Hence (3.9)
and (3.10) are consequences of (3.8) and the following result.

q.e.d.

(3.12)Proposition. The category of quadratic functors fg — nil = Nil is equiv-
alent to the category Square of square groups. The equivalence carries F to F{Z}

with the inverse carrying M to the functor G — G ® M with G € fg — nal.
Proof of(8.12). By (3.8) we know that the functor

~®M: fg —nil — Nil
is quadratic and one really checks that
(—®@M){Z}=M.

On the other hand for any quadratic functor F' : fg — nil — Nil there exists a
natural transformation

TG =T: G®F{Z}—)F(G)
(9 ® a) = F(g)(a)
r((9,h] ® ) = p(F (3, h)(=))

Here g,h € G,a € F{Z}, = F(Z),z € F{Z}.. = F(Z|Z) and §(1) = g. Since 7z
of 7292z (Z|Z) are isomorphisms also 7 is an isomorphism for any G € fg — nil.

q.e.d.
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§4 Properties of the quadratic tensor product

We describe some properties of the quadratic tensor product which in particular
yield a proof of (3.8). Let GG be a group and let M be a square group. Then the
following equations hold for g, h, kK € G and a,b € M., z,y € M.

(4.1) (9,h]®z = [h,g) @ Tz with T=HP -1
(1) (-9)®a=—(9®@a)+g®PHa

©) (1) ®a =98 (w0) +0 () PHa

(3) ~h@a~g@b+h®a+g®b=][g,h]® (alb)n

For the commutator c = —g —h + g+ h € GG one has

(4) c®a={h,g]®Alc)

(5) c,k]@z=0=[k,c]®¢

We leave the proof of (4.1), (1) and (2) and (5) to reader.
Proof of ($). We have the following equations

(g+hR)@(a+bd)=gR(a+b)+h@{a+b)+[g,h]®@ H(a+b) =
=g®a+g®b+h@a+h®@b+[g,h]|®(H(a)+ H(b) + (alb)n)
(g+h)®(a+bd)=(9+h)®a+(g+h)®b=
=g9gQa+h®a+[g,h|®Ha+gR®b+h®b+[9,h]|® Hb

Since [g,h] ® Ha is central one therefore gets (3).

Proof of (4).

c®a=(—g—h+g+h)®a=
(—g)®a+(-h)®a+g@a+h®a+[-g,—h]® Hat
[—g,g]@HG-‘-[—g,h]@H(I-F[—h,g]@H&-}-[—h,h]@Hﬂ-{—[g,h]@H&
= gR®a—-hQa+gR®a+hQa—|hg|®Ha+[g9,h]® Ha
Here we use (1) and (3.7). Now (3) and (4.1) yield (4).
q.e.d.
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(4.2) Theorem. Let GV H be the sum of groups G, H in the category Gr with
retractions r1,7,. Moreover let M be a square group. Then there is a natural short
exact sequence

0> GPQH® @M, > (GVH) @M -5 (GO M) x (HQM) — 0

where ¢ = (r1 @ M, ro @ M). The inclusion i carries {g} ® {h} @ = to [i19, i2h]| @ =
forg€ G,h € H, z € M,..

Proof of (8.8). The theorem shows that the functor G — G ® M is quadratic.
Clearly the functor preserves cokernels and colimits. Therefore (3.8) is a conse-
quence of (2.6) and (2.5).

q.e.d.

(4.8) Addendum. For the product G x H of groups and the canonical map GVH —
G x H one obtains the following natural commutative diagram with short exact
rows.

0 — GU@HY@M,, —— (GVH)@M —1— GOMxH@M —— 0

! l |

0 —— GP@H®@QMpr —— (GXxHQM —— GOMXHQOM —— 0

where Ma is the cokernel of A : M, — M., and where M., & Ma is the quotient
map.

The proof of this addendum can be achieved by the same method which is used
in the following proof of (4.2).

Proof of (4.2). One readily checks that ¢ is well defined and that ¢ is surjective
with ¢i = 0. Since (119 + i2h) @ a = (119) ® a + (12h) ® ¢ modulo image of ¢ we see
that the cokernel of 7 is defined by the same generators and relations as the group
(G M) x (H®M). Hence we get kernel (q) = image (7). It remains to check that
¢ is injective. For this it is enough to prove the theorem for free groups. In fact
let X,Y be free simplicial groups with mgX = G, mY = H and mX = m;Y =0
for 1 > 0. Then the free case of (4.2) yields the short exact sequence of simplicial
groups

03 XY QY@M > (XVY)QM = (X @M) x (Y @M) =0

and hence the sequence in (4.2) is obtained as mg of this sequence. For this we use
the homotopy exact sequence and the fact that

MXVY)OM I n(XeM)x(YOM)=m(X QM) xm(Y @ M)
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1s surjective. A set theoretic splitting of ¢ is given by (e, 8) — 1.0 + i2.3. We
now assume that G and H in (4.2) are free groups. The kernel of ¢ is a quotient
of the biadditive functor (G, H) s G** ® H*® @ M, and hence kernel (q) is also
a biadditive functor by naturality of the sequence. Moreover these functors are
compatible with filtered colimits and therefore it suffices to prove the theorem for
G = H = Z. For this we introduce the following group M given by the square
group M. The elements of M are the triples (a,b,z) with a,b € M,, = € M., with
the group structure defined by

(a,b,z) + (a0 2" =(a+d,b+ b,z 4+ 2" — (V|a)y)

Then there exists a commutative diagram

M. —— ZVZ)OM — 5 ZQMXZOM — 0

| 5 ll

0 — M,, — M — M, x M, — 0

in which the bottom row is the obvious short exact sequence; compare the first part
of (4.4) for M, = Z @ M. We define 9 below such that

M., -5 (2ZVvZ)eM -4 M 2 M,

is the identity of M., where p is the projection (which is not a homomorphism).
This shows that 7 is injective and the proof of the theorem is complete. Moreover
1 is actually an isomorphism of groups. The homomorphism ¥ is the composition

$: (ZVZ)M - (ZVEZ)" oM L M
where (ZV Z)"!is Z x Z x Z as a set with the group structure
(rys,) + (7', ' ) =(r+ 7't +t s+ +s-0).

We define 9 by commutativity of the diagram above and by the following formulas
for the composite pyp = p.

p((r,s8,t) @ a) = tA(a) + rs(H(a) — (ala)n)
p[rys,t),(r', 8", 1) @ ) =rs'z + sr T(z)

A somewhat tedious but straightforward calculation shows that j yields a well
defined homomorphism . Moreover p1 is the identity of M., and hence py1 is the
identity of M.

q.e.d.
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(4.4) Lemma. ZQ M = M,, (Z|Z)® M = M., and G ® Zpy = G™.
Proof. By (4.1) (2) we have a homomorphism

Z@M — M,

given by r ® a— ra + (})PHa and [r, 5] ® 2 — rsP(z). This is an isomorphism
with the inverse a — 1®a. Moreover the cross effect (Z|Z)® M = M., is obtained
by (4.2). The last statement is obtained by the fact that the functor F(G) = G™"
satisfies F{Z} = Z,.; and hence F(G) = G @ Z i by (3.9).

q.e.d.
(4.5) Ezample. Let R C Q be a subring of the rationals and let

Rui=(R-L RS R)

be the square group with H(r) = (2) and P = 0. Then for any group G the group
G ® Rnir is the same as the classical R-localization of the group G™ [14].

§ 5 Exactness properties of the quadratic
tensor product and derived functors

We introduce derived functors of the quadratic tensor product which are used
for the usual exactness properties.

(5.1) Definition. Simplicial objects in the category Nil form a Quillen model cat-
egory [Q]. For G € Nil let K(G,0)V* be a free simplicial object in Nil with

mo K(G,00V" = G,
m K(G,00¥" =0 for i>1.

Hence K(G,0)N" is a cofibrant model of G. We define for any square group M the
Nil-torsion groups by the homotopy groups

TorNH G, M) = ., (K(G,0)N! @ M)

A short exact sequence of square groups

(5.2) O0=M - MM >0

yields a short exact sequence of functors nil — Nil of the form

02 —-QM > —-QM—>-QM; =0

Hernce we obtain as usual the long exact sequence
. = TorNi (G, M) = TorY (G, M) = TorY (G, My) — .
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with Tord (G, M) = G® M. Moreover for i > 0 we have TorN (G, M) = 0if G ¢
nilis free. These Nil -torsion groups are related with the homology groups in the variety
Nil given by

(5.3) HYNG) = ooy (K (G, 00V 5 > 1.

Compare Leedham-Green (8] for the definition and [4] for the computation of these
groups.

If N is a quadratic Z-module then

GON=G*@N.

We computed in this case the groups Tor]*/(G,N) by the universal coefficient
theorem 3.5 and 3.6 of [4] which shows that the groups T'orN(G, N) are determined
by the groups H¥¥(@) and N. This implies that the groups TorN(G, M) for
any square group M can be computed up to extension problems by the following
method. There is a functorial short exact sequence in Square

(5.4) 0N M- N >0

where

Ny = (Im(P) 25 M., 55 Im(P))
Ny = (Coker (P) — 0 = Coker (P))

are quadratic Z -modules.

Next we deal with the exactness of G ® M in the variable G. In this case we get
for any central extension

05 A-S3GES0 in Nil

the exact sequence

(5.5) TorM (G, M) - TorM (E,M) 5 iQM 5 GOM 5 E®@M = 0

where 1 @ M is the cokernel of the map

wa®@b®7)=(—[a,b] @z, a®i(b) ®T)

Proof of (5.5). Let X, be the simplicial object in Nil with X, = Gx A" =G x
Ax...x Aand

{w:A@A@Coker(A)——)(A@M)x(A@G“"@CokerA)
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(o,... 0 + Qig1,--- y@p), 1 <7
di(ag,... ,an) = .

(o, ... yan-1), i=n
si(ag, ... ,an) = (ag,... ,ai,0,ait1,... ,an)

Then mo(X.) = E and mi(X,) = 0,7 > 0. As in [P], [P2] one has the spectral
sequence with

Eyy = Torg " (Xp, M) = Tor;{(Q, M)
which in low degrees yields the exact sequence (5.5).
q.e.d.
If M is a quadratic Z -module one has a similar exact sequence as in (5.5) by’
B.9 in [2]). For the square group M = (Z — 0 — Z) the sequence (5.5) coincides

with the corresponding five-term exact sequence of Stammbach for the homology
in varieties of groups; see I11.2 of [14].

§ 6 Exactness and flat square groups

A functor T : Nil — Nil is right exact if for any short exact sequence

(6.1) 022G 2G—-2G, >0

in Nzl the induced sequence

(6.2) TG, - TG - TG, —0

is exact. Moreover T' is exact if the induced sequence of any short sequence is short
exact.

(6.3) Lemma. T is right exact, resp. exact, if and only if (6.2) is right exact,
resp. short exact, whenever (6.1) is a central extension nn Nil.

Proof. Let C ={c € Gy, c+z =z +¢, z € G} be the centralizer of Gy in G. Then
C' is central in G and G; and G1/C is central in G/C. Using the corresponding
exact sequences (6.1) follows.

q.e.d.
(6.4) Lemma. If T is right exact then T carries a product in Nil to a product.

Proof. Consider the short exact sequence

02 Gy = Gy xGy = Gy = 0.
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(6.5) Proposition. Any right exact functor T : Nil — Nil is quadratic. Moreover
the category of right exact functors Nil — Nil which preserve filtered colimits is
equivalent the category of square groups for which A is surjective.

By (3.5) (7) the surjectivity of A implies that P = 0 and that M, is abelian. In
fact we get the following equivalent description:

(6.6) Lemma. A square group M for which A is surjective is the same as a pair
of abelian groups M., M.. together with a function H : M, — M., such that
the cross effect (a|b)y is linear in a,b € M, and such that A : M, — M,. with
A(a) = H(2a) — 4H(a) is surjective.

One readily checks that A in (6.6) is always a homomorphism.
Proof of (6.5). By (6.4) and (1.6) T is linear on Ab. Hence T carries the central
extension
0 XY 3 XVY 5 X xY =0

in N with X,Y € Nil to an exact sequence

T(X?QY®) s T(XVY) = T(X)xT(Y) =0

where T(X % ® Y°%) is additive in X and Y since T is linear on Ab. Hence also

the image of T(X2® @ Y2%) — T(X VYY) is biadditive and therefore T is quadratic.
Now the equivalence of categories in (6.5) follows from (3.10) and (4.3).

q.e.d.

(6.7) Definition. A flat square group is a torsion free abelian group F together with
a function H : F — F for which the cross effect (a,b)y is linear in a,b € F' and for
which

H(2a) - 4H(a) = a.

We point out that the category of flat square groups is equivalent to the category
of square groups M for which A is an isomorphism and M, is torsion free. The
equivalence carries M to A™1H : M, — M,; compare (6.6).

(6.8) Theorem. The category of exact functors Nil — Nil which preserve filtered
colimits is equivalent to the category of flat square groups.

(6.9) Addendum. For a square group M the following statements (a) and (b)
are equivalent.

(a) — QM : Nil - Nil is exact
(b) A:M,— M, Isan isomorphism of torsion free groups.

The addendum describes in (a) the classical flatness condition for M and (b)
shows that M corresponds to a flat square group as defined in (6.7). Clearly (6.8)

is a consequence of (6.9); compare (6.5). The proof of (6.9) is based on the following
lemma.
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(6.10) Lemma. Let T : Nil — Nil be a right exact functor. Then T is exact if
and only if one of the following condition holds.

(a) For any central inclusion 1 : A — G with abelian cokernel the induced map
T(z) : T(A) —» T(G) is injective.

(b) For any inclusion 7 : B = C of abelian groups the induced map T(j) is
injective and condition (a) is satisfied whenever the cokernel G/A is free
abelian.

Proof of (6.10). Obviously the exactness of T implies (a) and (b). Now assume (a)
holds. Consider first (6.1) with G abelian. Then (a) implies that (6.2) is short
exact. In fact, let C be the centre of G and A = G/C. Then A is abelian since
GeNil. Let C1 =G, NC, G, =C/Cy and A; = G, /Cy. Then rows and columns

in the following diagram are short exact

Ay y A y Ag
[ R
G1 s G y (g
| [
o y C y O

We can apply (a) to all short exact sequences of the diagram except the row in the
middle. Hence T carries this row also to a short exact sequence,

Now assume (6.1) is a central extension and now let C' be the centre of G, B =
(G, /C and form the following diagram with short exact rows and columns.

Gy y C y C
I
G y G y Gy
L
B B

Here B and C are abelian so that T carries the corresponding rows and columns to
short exact sequences. Thus by (6.3) T is exact.

Next assume that condition (6) is satisfied. One shows with similar arguments
that (b) implies (a) and hence the proof of (6.10) is complete. In fact, choose a free
resolution R = F of G2 in Ab and consider
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g.e.d.

Proof of (6.9). We show that (a) or (b) are also equivalent to one of the following
conditions
(¢) A is surjective and Tor¥*(—, M) = 0. In this case also Tor]¥*(—, M) = 0 for
P> 1.
(d) A is surjective, M, is torsion free and Torl¥!(F,M) = 0 for any free abelian
group F'.

We now show (a) <= (c¢) <= (d) < (b).

(a) = (c): We know by (6.5) that A is surjective. Moreover any exact func-
tor preserves the Moore normalisation of a simplical object in Ni and hence
TorN#(—, M) =0for: > 1.

(c) = (a): By (6.5) we know that — ® M is right exact. Then (5.5) and (6.3) imply
that — ® M is exact.

(a),(c) = (d): We only have to show that M, is torsion free. But this follows from
the fact that for abelian A we have 4 @ M = A ® M,.. This equation clearly holds
for A = Z and by (4.3) we see that A = A ® M is an additive right exact functor
preserving colimits so that the equation holds for any abelian group. Now it is well
known that the exactness of the functor A — A ® M, is equivalent to the torsion
freeness of M..

(d) = (a): This is a consequence of lemma (6.10) and (5.5).

(d) & (b): In (b) and (d) the function A is surjective and M, is torsion free. Hence
P =0 and we have the short exact sequence of square groups in (5.4) with

Ny =(0 » M., — 0)
Ny =(M, = 0= M,)

This yields the exact sequence

TorNi(F, Ny) 3 TorNU(F, N} = TorM Y F, M) - TorVH (F,N,) S Fo M
where F' € N:zl If F is free abelian we have
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FQ@N, =(A’F)® M..

TorN(F,N,) = (A*F) @ M.

TorM(F,N,) = F @ A’F @ M..

TorY*(F)N,) = F® A’F @ M,
where 9 is in both cases induced by A : M, =+ M,,. Hence A is an isomoprhism if
and only if Tor'(F, M) = 0 and hence the proof of (d) < (b) is complete. The

computation of the torsion groups above is a consequence of [4] and the remarks in
(6.3) and {5.4) above on the computation of such groups.

q.e.d.

§7 Universal quadratic functors and free square groups

The universal quadratic endofunctors of the category of groups are the functors

®%, @ :Gr— Gr

defined as follows. Here &2 is the tensor square of the abelianization

(7.1) ®%(G) = G** ® G**.

Moreover Q? is defined by a universal quadratic map

(7.2) 7: G = QX(C)

obtained as follows. Let G,G’ be groups written additively (but not necessarily
abelian). A function H : G — G’ is termed quadratic if the cross effect (a|b)y =
H(a + b) — H(b) — H(a) is a central element in G’ and is linear in a,b € G. Then
(7.2) is the quadratic map with the property that for each quadratic map H there
is a unique homomoprhism H such that

——> G
commutes. Next we define square groups Z® and Z® corresponding to the functors

®?, Q* above. For this let Z(z1,... ,zn) be the free abelian group generated by
the elements z1,... ,z,. Let

(7.3) 2% = (Z(Pz) 25 Z(z, HPz — z) - Z(Pxz))
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where H and P are homomorphisms with

P(z) = Pz, P(HPz — z) = Pz,
H(Pz)=z+ (HPz —z).

(7.4) Z® = (Z(e, PHe) 2L Z(He, HPHe, (ele)n) — Z(e, PHe))
Here P is a homomorphism with

P(He) = PHe, P(HPHe¢) = 2PHe, P(ele)y =0
and H is quadratic with H(e) = He, H(PHe) = HPHe and

0 for a=PHe or b=PHe
By -0 =A@ ={ 0 000

(7.5) Lemma. ®? and Q? above are quadratic functors which preserve cokernels
and filtered colimits and @*{Z} = Z®, Q*{Z} = Z? are the corresponding square
groups. Hence one has natural isomorphisms (G € Gr)

®*(G)=GRZ% Q*G)=GRZ?
The lemma implies that Q*(G) € Nil and Q*(G) = Q*(G™"), moreover Q*(Z) =
Z®Zand QYZ|Z)=ZBZBZ.

Proof. For ®? compare [2]. For Q? we observe that the function

7:Go GRZ® y(g) =g®e

1s quadratic. Moreover ~ 1s in fact universally quadratic since a quadratic function
H : G — @' induces the unique homomorphism H : G @ Z% — G' with Hy = H.
Here H is given on generators by

g@er— Hyg

9® PHe — (glg)u

[a,b] ® He — (a|b)n

[a,0] @ HPHe — (alb)u + (bla)n
{a,b] ® (ele)y — —Hb— Ha+ Hb+ Ha

Uniqueness of H is readily checked by the relations in (3.7).

q.e.d.

Looking at the definition of Z® and Z® one readily obtains the following freeness

property. Let Square(M,N) be the set of morphisms M — N in the category of
square groups.
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(7.6) Lemma. For any M € Square one has the natural bijections

Square (Z2, M) = M,, f — f(e)
Square (Z®, M) = Mo, g — g(z)

The category Square has limits and colimits. For example limits are obtained
‘pointwise’, in particular the product M x N is given by (M x N), = M, x N, and
(M X N)ee = M,e X Nee with H = Hyy x Hy, P = Py x Py. Below we also give
an explicit description of coproducts M V N. By (7.6) we see that the forgetful
functors

(77) bey bee : Square = Set

whic13 carry M to ¢peM = M, and ¢ M = M., respectively have left adjoints &,
and ¢.. given by the coproduct over a set S,

gZG(S) = XZQ
bee(S) = Y 2°

This shows the freeness property of Z9 and Z®. It also shows that there is a
canonical surjection of square groups

(7.8) ﬁ\{ZQV VZ® » M

ee

for any square group M. Limits and colimits in Square correspond via the equiva-

lence (3.10) to limits and colimits in the category of quadratic endofunctors of Nil
which preserve cokernels and filtered colimits. The sum of such endofunctors F, F”
is the quadratization F' Vgyeq F' of the functor F V F' which is given by the sum
of groups in Nil

(FV F))G)=F(G)V F'(G).
Moreover by (7.8) and (7.5) we get the following result:
(7.9) Proposition. For each quadratic endofunctor F' of Gr (or Nil) which pre-

serves cokernels and filtered colimits there exists a set S and a natural surjective
homomorphism

V(QY(G) vV 8%(G)) » F(G), G € Gr.
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Here the left hand side denotes a sum in the category Nil of groups of nilpotency
degree 2.

Let G1, G2 be groups in Nil. Then the sum G; V G, in Nil is given by the
nilization of the sums of G; and G, in % There i1s a well known exact central
extension In N=zl

(7.10) 0—>G‘;b®ngi)G1VG2—)G]XG2—>O

where w is the commutator map. This shows that any element in G; V G, can be
written as a sum of elements a + b 4+ w where a € Gy, b € G and w is a sum of
commutators of the form a4+ b—a —b. We obtain the sum M V N of square groups
by the quadratization of the functor G — GQ M VG @ N = Fp n(G), that is

(1) G®(MVN)=Fi{(G)

Using (7.10) this leads to the following explicit description.

(7.11) The sum of square groups. Let

M= (M, 2% 0., 2% M), N = (N, 23 N, 25 N

be square groups. Then the sum

(1) MVN=(MVN, 2 (MV N 2 (MVN),)

in the category Square is given by

(2) (MVN)ee =M @ Nee ® cok(Pag) @ cok(Ppn) @ cok(Py) @ cok(Par)
3) (MVN)e=(M,VN.)/~

Here M, V N, is the sum in Ni/ and the equivalence relation is generated by

Py (z) + ¢~ c+ Py(z),
a+ Py(u) ~ Py(u)+a
for £ € Mee,c € Ne,u € Neeya € M,. Let T € cok(Puy), @ € cok(Py) be the

elements in cokernels represented by z and u respectively. The operators H and P
for M V N are defined by

Ha+c+ (a1 +c1—a1—c1)) =Hyla)+ Hy(c)+a@c+a, @¢ — ¢ @ a
Compare (7.10). Moreover
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P(z4+u+a:®¢ +6Q®az) = Py(z)+Pn(u)+(a1+c1—a1 —c1)+(c2+ ag —c2a—az)

This completes the construction of M V N. Let

(7.12) square C Square

be the full subcategory consisting of sums
L=vz®vVZ?
S R

where S and R are sets. Here L is termed a free square group. For a square group
M one has the canonical bijection

(7.13) Square (L, M) = Set (S, Me.) x Set (R, M.)

so that Square(L, M) has the structure of a group in Nil provided L is free. We

use the next lemma to show that square is a quadratic category; see (2.3). The

lemma describes an analogue of the central extension in (7.10).

(7.14) Lemma. For X,Y € Square one has a short exact sequence in Square

02 XY 5 X VY 25X xY 50

where X{Y is the quadratic Z -module

XY = (A®B -5 (A®B)® (B® A) - A® B)

with A = cokernel(P : X.. = X.), B = coker(P : Y., — Y.) and H(a ® b) =
a®R®b—-bQaand Pa®@b+b®ai)=a®b—a; @b

This is readily proved by (7.10) and (7.10) (1). Since P in Z® is surjective the
lemma implies that

(7.15) Z®v 29 = 7% x 79

Moreover using the fact that XY is linear in X and Y we obtain by (7.13) and
(7.14):

(7.16) Proposition. square is a quadratic category.

This leads to the following alternative description of the category of square
groups.
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(7.17) Proposition. Let ) = End(Z®VZ?) be the endomoprhism square ring of
the object Z®VZ? in the quadratic category square. Then there is an isomorphism

of categories

Square = Mod (@)

where Mod (Q) is the category of Q-modules in the sense of 7.9 [3].

This proposition is the generalization of a result for quadratic Z -modules in 2.2
{2]; hence the square ring @ in (7.17) is the non abelian analogue of the ring Q(2)
defined in [12)].

(7.18) Remark. An explicit computation of the square ring Q = End (Z®V Z9) is
obtained as follows. As a square group @ is given by

Q=(Qc L Q. 55 Q)
(1) Qe = Zs’ Qee =7Z°

where the basis of (). is denoted by a, b, ¢, p, h, ph, hp, hph and the basis of Q..
is z,y,z. We define P by

(2) P(z)=c=P(y) and P(z)=0

In the multiplicative monoid @, the following equations hold:

(3) a?=a, b =bab=ba=0,a+b=1,
(4) ha=0,hb=0, ap=0, pb =0, php = 2p,
(3) (p) - h = ph, (hp) - h = hph, (h) - p = hp.

The equations (3), (4), (5) do not yet determine the structure of the monoid Q.
completely since the distributivity laws do not hold; but they yield a unique ring
structure on

(6) R = cokernel (P)

Clearly R = Z7 has the basis a, b, p, h, ph, hp, hph and the multiplication law is
given by (3), (4), (5). We define the ring homomorphism

) {e:R—)Z,

e(a) = 1, (b) = e(p) = e(h) = 0.
Then the structure of Q.. as an R ® R ® R°" -module is defined by
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(8) (r®s) u=ce(r)-€es) -u for rs€R,u€ Qe,
0=z-a=z-h=y-a=y-h,

z-p=z,y p=—2,z-h=z—y.

The quadratic map H : Q. = Q. is uniquely defined by

(9) H(a) = H(b) = H(p) =0,
H(h) =z, H(c) =z —y,

(r|s)a = —e(r) - €(s) - z.

One can check that these data (1) ... (9) determine the square ring ) completely.
The identification of a @-module M and a square group (M, — M, — M,) in 7.13
is given as follows; compare (7.9) [3]. We have

(10) M=M,xM, wth M=M-a M,.=M":D.

Moreover mutliplication by h and p yield maps H = -h : M, = Mg, P = p:
Mee = M.. Moreover -¢ : M, — M., coincides with the function v — (v|v)n, v €
M,. Finally the bracket )-operations on M are given by (v,w € M,)

(11) [v,w] -z = (v|w)y € M.,
[v,w] ¥y = (w|v)y € Mee

wwl-z=w+v—-—w—-—veE M.

We obtain (1) by (7.15) and

Q. = Square (Z® Vv Z°, Z® v Z.9)
= Square (Z®, Z® x Z9) x Square (Z°, Z® x Z9)
=Z%x 2% x 28 x 2% =7*

See (7.3) and (7.4). Similarly one gets by (7.14)

Qee = Square (Z® \Y ZQ, XX)

where X = Z® x Z°. By (7.14) we have

Xix =2zWzepz"Rz)=12°
so that Q.. = Z®. Here we use the fact that P in Z® x Z satisfies cokernel (P) = Z.
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The category Square has similar properties as the category Nil. Recall that for
G € Nil one has an exact sequence
(7.19) A*G* 5 G- G =0

where w is the commutator map which is injective if G is a free object in Nil,
We now describe the analogue of (7.19) for the category Square. We define the

abelianization M®® of a square group M by the property

(7.20) (GOM)* =G (M™),Geir.
One can check that

M = (M I M)~ M2

is given by M via the equivalence realization (a|b)g ~ 0 for ¢,b € M... Here H and
P in M® are induced by H and P in M. We can define the functor M —— M®
alternatively as follows. Let Absquare be the category consisting of the objects

A=(Ae 5 Ave D5 AL

which are diagrams in Ab with PHP = 2P. We have the full embedding

(7.21) Absquare C Square

Here the objects in Absquare are exactly all square groups M for which H is linear
and hence they correspond by (3.10) to quadratic functors Gr — Ab. The left

adjoint of the inclusion (7.21) is the functor which carries M to M2®. We observe
that Absquare is an abelian category for which

(7.22) (28 v Z2)* = 2% g (Z9)*
1s a projective generator. Here we get by (7.20) and (7.4)

(Z9)* = (Z(e, PHe) =% Z(He, HPHe) — Z(e, PHe))
with H(e) = He, H(PHe) = HPHe, P(He) = PHe, P(HPHe) = ePHe. The
projective generator (7.22) shows that the category Absquare is the same as the

category of R-modules where R is the endomorphism ring of the object (7.22) in
the abelian category Absquare. Here R coincides with the ring R = cokernel (P)

associated to the square ring @ in (7.18) (6). In particular R = Z” as an abelian
group. The ring considered in 2.2 (2] is the quotient R°?/hph = 2h.

We define the exterior square functor
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(7.23) A?: Absquare — Absquare

by the property that for A € Absquare the functor G — G ® A?A is the quadriza-
tion of the functor G — A?(G ® A). Then (7.19) yields the exact sequence

(7.24) AP (M) 5 M — M 50

of square groups which is natural in M € Square. Moreover w is injective if M is

a free square group. The map w is central in M. More explicitly one obtains via
the cokernel A = cok (P : A,, = A.) the exterior square (7.23) by

A4) = (A24 L A A D A2A)

with H(z Ay) =2 Qy—y®=z and P(z @ y) = 2 Ay. The commutator map w in
(7.24) is given by

w(rQy)=z+y—z—y

{ wee(x ® y) = (T|y)H

(7.25) Remark. Let nil be the subcategory of free objects in Nil. Then (7.19)
yields the linear extension of categories

Hom (—,A?) = nil — ab

where ab is the category of free abelian groups. This extension is for example
studied in chapter VI [1]. The bifunctor Hom (—,A?) on gb carries 4, B to the
group of homomorphisms Hom (4,A?B) in Ab. Similarly we get by (7.24) the

linear extension of categories

Hom (—, A?) = square = absquare

where absquare is the category of free objects in the category Absquare. Such

free objects are sums of the universal objects Z® and (Z®)*®. Here the bifunc-
tor Hom (—,A?) on absquare carries A, B to the abelian group of morphisms

Hom (A, A?B) in Absquare where A?B is defined by (7.23).

§8 The composition product for square groups

Endofunctors of the category of groups form a monoidal category with the
monoidal structure given by the composition of endofunctors. The composition
of quadratic endofunctors F; and F, however needs not to be quadratic. We still
obtain a composition product in the category of quadratic functors by the quadra-
tization

(8.1) F\OF, = (F, o Fy)tad
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of the composition Fj o Fy. If F} and F; are quadratic endofunctors which preserve
filtered colimits and cokernels then also Fi[F; is a quadratic endofunctor which
preserves filtered colimits and cokernels. Hence the equivalence of categories in
(3.10) yields a composition product MON for square groups M, N with the defining

property

(8.2) (FOR)G) = G @ (MON)

for (G) =G M, F,(G)=G®N and G € Gr.

(8.3) Theorem. Let Quad(Gr) be the category of quadratic endofunctors of Gr
which preserve cokernels. Then the composition product (8.1) yields the structure

of a monoidal category for Quad(Gr). The unit object is the nilization functor
nil : Gr — Nil C Gr.

For the proof of the theorem we need the following lemmata.

(8.4) Lemma. Let F € Quad(Gr) and let A 4 B -5 € — 0 be an exact

sequence in Gr. Then F induces the exact sequence in Gr

F(A|B) x F(A) B) X9 rc
with 8(z,y) = PF(d|1p)(z) + F(d)(y).
Proof. The exact sequence (g, d) yields the coequalizer in Gr

(d,1)
AVB = B-HC
(0,1)

where A V B is the sum of groups. Since F preserves coequalizers we obtain the
exact sequence (F(q),8). Here 0 is the restriction of F(d, 1) to kernel F(0,1). Since
F is quadratic we have kernel F(0,1) = F(A|B) x F(A) where F(A|B) is central
in F(AV B).

q.e.d.
(8.5) Lemma. Let Fy, F, be endofunctors of Gr. Then the quadratization satisfies

(quuasz)quad — (Fl Fz)quad

Proof. We obviously have the natural transformation (Fy Fy)iued — (Fi** F)qued
induced by the identity of F} F; via the universal property. We construct the inverse
by the following commutative diagram with exact rows.

FI(RG|RGIFRG) —2 FIF(G) —— FPR(G) — 0

l !

RE(GICIG) —f o RFR(G) —— (FiF)™94(G) —— 0
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Here 1 is induced by the canonical map

BRGVFGVFG = FB(GVGVG)

q.e.d.

(8.6) Lemma. Let Fy, F; be endofunctors of@ where Fi is quadratic and pre-
serves cokernels. Then quadratization satisfies

(Flequad)quad — (Fl FQ)quad

Proof. Again we have the natural transformation (Fy Fy)#? — (F qu"ad)q“d in-
duced by the identity of F; F;. The inverse is constructed by the following commu-
tative diagram with exact rows where the top row is given as in (8.4) by the exact
sequence

K5 By(G) - Fe4(G) = 0
with K = F(G|G|G).

R(K|RG) x F(K) —25 ARG —— FRFMY(G) —— 0

[v=cons ” |

K’ P ARG —— (FF)™4(G) —— 0

with K/ = (F1 F3)(G|G|G). Since K’ is abelian we define ¢ by the components
and 2. Here 3y : Fi(X) = K' is induced by the identity of F1Fo(GV GV G).
Moreover ¢, : Fy (I{|F;G) = ' is given by the following commutative diagram

F(K|FG) LN K'
lﬂ(ixzsll)
F(FR(GV GV G)|FRG) =

F(F(GVGVG)VFRG) —Xy FIFR(GVGVGE)

Here )9, 1123 are the inclusions and 3 is induced by the map FR(GV GV G)V
F,G = F,(GV GV G) which is the identity on Fo(GV GV G) and is Fj on F,G.
Here j : G - GV GV G is one of the inclusions. We have to show that the
factorization i, exists. For this we use the definition of K’ by the projections
ri; : GVGV G — GV G. Since Fi(i1zs|1)Fi(Fa(ri;)|1) = F1(0]1) = 0 we see
that (FyF2(rij))stie(Fi(i123]1)) = 0. Here we know that F3(0|1) = 0 since F is
assumed to be quadratic.

q.e.d.

35



Proof of (8.8). We have by (8.5) and (8.6)

(

(Fl 0] F2 o] Fs)quud

— ((FIDFg)quad o Fs)quad
(

Moreover by (3.9) we see that nil is the unit.

g.e.d.

We now compute the composition product MUON for square groups defined in

(8.2) which by (8.3) yields a monoidal structure of the category Square. For a
square group

M= (Me - Mee — Mc)

we define the abelian group

(8.7) M® = cokernel (P : My, — M,)

and for a € M, let @ € M®* be the class of a in the cokernel. We observe by
the axioms of a square group in (3.5) that the functions ( | )z and A induce
homomorphisms

(| )u:M4@ M o M,
A M M,

(8.8) Definition. We define the composition product MON of square groups M, N
explicitly as follows:

MON = (MON), 2 (MON),. = (MON),).
The group (MON), is defined via the tensorproduct M, ®N in (3.7) by the quotient

(1) (MON), =M. ® N/[a,Pz]@u~0

Here and in the following we use the elements a,b € M,, z,y € M., c,d €
Ne, u,v € Nee. The abelian group (MON),, is the quotient

2) (MON)ee = (Mee @ N* @ M* @ M* @ N.of =
where we use the equivalence relation
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(alb)y @ c~=b®z® Ac).
Next the homomorphism P for MON is given by

Pz ®¢) = (Pr) ®c,
Pa®@b@u) = [a,b ®u.

This implies that

(4) (MON)*? = M4 @ N9,

We now define the homomorphism

(5) ( | )u:(MON)* @ (MON)* - (MON),.
by

(@a@chedy =b@a®(c|dn

Then H in MON is the unique quadratic function with this crosseffect ( | )y
which is defined on generators by

©) {H(a®c) (Ha)@c+a®a® He

H([a,b)®u)=a®bQu+b®a® Tu

(8.9) Theorem. The composition products MON for square groups in (8.2) and
(8.8) coincide and hence yield a monoidal structure on the category Square with

the square group Z,;; as unit object.

(8.10) Addendum. A square ring as defined in 7.4 of [3] is the same as a monoid
in the monoided category (Square, 0, Z ).

The proof of (8.9) is unfortunately fairly long and technical. Since this proof
is only based on ideas and facts described in this paper we omit the details. It is
clear by theorem (8.3) that the monoidal structure of the category Square is well
defined; only the explicit formula for the composition product of square groups in

(8.8) has to be checked. This formula is compatible with the properties of square
rings described in [3] and therefore we obtain (8.10).
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