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Abstract

For a fixed rational number g 6∈ {−1, 0, 1} and integers a and d we consider
the set Ng(a, d) of primes p such that the order of g modulo p is congruent
to a(mod d). Under the Generalized Riemann Hypothesis (GRH), it can
be shown that the set Ng(a, d) has a natural density δg(a, d). Arithmetical
properties of δg(a, d) are described and δg(a, d) is compared with δ(a, d):
the average density of elements in a field of prime characteristic having
order congruent to a(mod d). It transpires that δg(a, d) has a strong ten-
dency to be equal to δ(a, d), or at least to be close to it.

1 Introduction

Let g 6∈ {−1, 0, 1} be a rational number. For a rational number u, let νp(u)
denote the exponent of p in the canonical factorisation of u (throughout the
letter p will be used to indicate prime numbers). If νp(g) = 0, then there exists
a smallest positive integer k such that gk ≡ 1(mod p). We put ordp(g) = k. The
number k is the (residual) order of g(mod p). We let Ng(a1, d1; a2, d2) be the
set of primes p with νp(g) = 0, p ≡ a1(mod d1) and ordp(g) ≡ a2(mod d2). By
Ng(a1, d1; a2, d2)(x) we denote the number of primes p ≤ x in Ng(a1, d1; a2, d2).
For convenience Ng(0, 1; a, d)(x) is denoted as Ng(a, d)(x). By GRH we denote
the Generalized Riemann Hypothesis. By (a, b) and [a, b] we denote the greatest
common divisor, respectively lowest common multiple of a and b.

Theorem 1 [M-2]. (GRH). The density δg(a1, d1; a2, d2) of the set of primes
Ng(a1, d1; a2, d2) exists. Moreover,

Ng(a1, d1; a2, d2)(x) = δg(a1, d1; a2, d2)
x

log x
+Og,d

(

x

log3/2 x

)

.
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Our primary interest is in δg(a, d) = δg(0, 1; a, d), but in studying this quantity
it turns out to be fruitful to consider Ng(a1, d1; a2, d2)(x). Theorem 3 for ex-
ample is obtained from Theorem 4. By Ks,r (with r|s) we denote the number
field Q(ζs, g

1/r), where ζs = exp(2πi/s). The density δg(a1, d1; a2, d2) can be ex-
pressed in terms of the degrees [Ks,r : Q] and certain intersection coefficients
(with (b, f) = 1),

cg(b, f, v) =

{

1 if σb|Q(ζf )∩Kv,v= identity;
0 otherwise,

where σb is the automorphism of Q(ζf) that sends ζf to ζbf .

Theorem 2 [M-2]. (GRH). We have

δg(a, d) =
∞

∑

t=1
(1+ta,d)=1

∞
∑

n=1
(n,d)|a

µ(n)cg(1 + ta, dt, nt)

[K[d,n]t,nt : Q]
. (1)

In the proofs of various results below the determination of the intersection coef-
ficients cg(b, f, v) plays an important rôle. Obviously Q(ζf ) ∩ Kv,v is a subfield
of the maximal abelian subfield, Kab

v,v, of Kv,v. It turns out, see [M-3], that Kab
v,v

is of the form Q(ζv,
√
γ) or of the form Q(ζv, ζ2v

√
γ) for some integer γ that can

be explicitly given, where the latter case does not arise if g > 0. Of course, the
action of σb on Q(ζf) ∩Kv,v = Q(ζf) ∩Kab

v,v, which equals Q(ζf ) ∩ Q(ζv,
√
γ) or

Q(ζf) ∩ Q(ζv, ζ2v
√
γ), is easily determined.

The distribution of the order over congruence classes in case d - a seems to
have been first studied by Chinen and Murata [CM] for d = 4. In case d|a
the problem is much easier and unconditional results have been obtained, see
[M-0, W-1, W-2]. In this case the density is always a rational number. Chinen
and Murata restricted themselves to the case where g is positive and not a power
of an integer. In their method δg(a, 4) (for a is odd) is initially expressed as the
sum of two fourfold sums. On making everything explicit, they obtained a long
formula (distinguishing six cases) for δg(a, 4) which was subsequently simplified
by Zagier [Z]. The author expressed δg(a, 4) as a single sum (see Theorem 4),
which on evaluation gives a compact formula for δg(a, 4) similar to Zagier’s. In
this formula an Euler product Aψ appears. We put, for any Dirichlet character
χ,

Aχ =
∏

p

χ(p)6=0

(

1 +
[χ(p) − 1]p

[p2 − χ(p)](p− 1)

)

.

The constants Aχ turn out to be rather basic in this setting (cf. Theorem 11). A
table of numerical values of Aχ, with χ a Dirichlet character of modulus ≤ 12, is
given in [M-0]. We let G be the set of rational integers that can not be written
as −gh0 or gh0 with h > 1 an integer and g0 a rational number. Note that almost
all integers g are elements of G.

Theorem 3 [M-1]. (GRH). Let D(g) denote the discriminant of the field Q(
√
g).

Let g ∈ G. Then δg(±1, 4) = 1/6 unless D(g) is divisible by 8 and has no prime
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divisor congruent to 1(mod 4), in which case we have

δg(±1, 4) =

{

1
6
∓ sgn(g)

Aψ
8

∏

p|D(g)
8

2p
p3−p2−p−1

if D(g) 6= ±8;

7
48

∓ sgn(g)
Aψ
8

if D(g) = ±8
,

where ψ denotes the non-trivial character mod 4.

Remark 1. We have, on invoking Theorem 12, Aψ = 0.643650679662525 · · ·.
Remark 2. Let ε1(n) = 1 if 8|n and 0 otherwise. Then we can write, using e.g.,
Theorem 2 of Moree [M-0], for 2 - a:

δg(a, 4) =
δg(1, 2)

2
+ ε1(D(g))sgn(g)Aψ

(−1)
a+1
2

8

∏

p|D(g)
8

(1 − ψ(p))p

p3 − p2 − p− 1
.

An explicit expression for δg(a, q
s) (in terms of Aχ’s) with q a prime and g ∈ G

is obtained in [M-2], but is omitted here for reasons of space.
Theorem 3 can be obtained from the following result (with s = 2):

Theorem 4 [M-1]. (GRH). We have, for a odd and s ≥ 1,

Ng(1, 2
s; a, 4)(x) =

δg(1, 2
s; 1, 2)

2

x

log x
+Og(

x

log3/2 x
),

and Ng(3, 4; a, 4)(x) = #{p ≤ x : p ≡ 3(mod 4), ( g
p
) = 1}/2

+(−1)
a−1
2

∆g

4

x

log x
+Og(

x

log3/2 x
),

where

∆g =
∑

√
−2∈K2v,2v

2-v

hψ(v)

[K2v,2v : Q]
−

∑

√
2∈K2v,2v

2-v

hψ(v)

[K2v,2v : Q]
,

with hψ the Dirichlet convolution of ψ and the Möbius function, i.e., hψ(n) =
∑

d|n ψ(d)µ(n/d).

Remarkably, despite its arithmetic complexity δg(3, 4; a, 4) satisfies some easy
properties.

Theorem 5 [M-1]. (GRH). Write g = ±gh0 , where g0 is positive and not an
exact power of a rational number.
1) If g > 0 and h is even, then δg(2, 3; 1, 3) ≤ δg(2, 3; 2, 3), otherwise δg(2, 3; 1, 3) ≥
δg(2, 3; 2, 3). We have equality iff Q(

√
g0) = Q(

√
3) and ν2(h) ∈ {0, 2}. The same

result holds with δg(2, 3; ∗, 3) replaced by δg(∗, 3).
2) If δg(3, 4; 3, 4) 6= δg(3, 4; 1, 4), then sgn(δg(3, 4; 3, 4)− δg(3, 4; 1, 4)) = sgn(g).
3) If g ∈ G and 2 - a, then δg(3, 4; a, 4) + δ−g(3, 4; a, 4) = 1/4.

Let δ(p; a, d) denote the density of elements in F∗
p having order congruent to

a(mod d). It is not so difficult to show that the average density δ(a, d) of ele-
ments of order congruent to a(mod d) in a field of prime characteristic exists.
I.e., we have limx→∞

∑

p≤x δ(p; a, d)/π(x) = δ(a, d), where π(x) denotes the num-
ber of primes p ≤ x. The quantity δ(a, d) can be studied by fairly elementary
methods, but nevertheless turns out to exhibit behaviour similar to δg(a, d). An
interpretation of δ(a, d) is that it is the g-average of δg(a, d):
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Theorem 6 [M-3]. (GRH). We have

1

2x

∑

|g|≤x
δg(a, d) = δ(a, d) +O(

1√
x

).

In some sense, if one takes out the Galois theory and degree aspects of formula
(1), one obtains δ(a, d). More precisely, if one sets cg(1 + ta, dt, nt) = 1 and
[K[d,n]t,nt : Q] = ϕ([d, n]t)nt (this is the maximal degree possible), then it can be
shown that one obtains δ(a, d) out of δg(a, d) ([M-Av]). One has δ(odd, 4) = 1/6.
It is not difficult to prove that for most integers g with |g| ≤ x we have that D(g)
has a prime divisor congruent to 1(mod 4). (Indeed, the size of the exceptional
set is bounded above by �g x/

√
log x). Thus from Theorem 3 we infer that for

almost all integers g with |g| ≤ x we have, on GRH, δg(odd, 4) = δ(odd, 4) = 1/6.
If δg(a, 4) 6= δ(a, 4), then the difference will be small in absolute value as is
also obvious from Theorem 3. It turns out that these phenomena hold true in
general. In case d equals a prime power it is still possible to write down an
explicit formula for the density δg(a, d) from which the latter two properties can
be similarly inferred [M-2]. For general d this seems to be difficult. Nevertheless,
the following two results can be proved (where k(d) =

∏

p|d p is the squarefree

kernel of d):

Theorem 7 [M-3]. (GRH). Let d be fixed. There are at most Od(x log−1/ϕ(k1(d)) x)
integers g with |g| ≤ x such that δg(a, d) 6= δ(a, d) for some integer a. In partic-
ular,

(δg(0, d), . . . , δg(d− 1, d)) = (δ(0, d), . . . , δ(d− 1, d))

for almost all integers g, where

k1(d) =

{

k(d) if d is odd;
4k(d) otherwise,

and k2(d) =

{

k(d) if d is odd;
(4, d/2)k(d) otherwise.

Theorem 8 [M-3]. (GRH). Suppose that g ∈ G. Set D1 = |D(g)/(D(g), d)|.
Then

∣

∣

∣
δg(a, d) − δ(a, d)

∣

∣

∣
<

3 · 2ω(D1)+2

ϕ(D1)D1

,

where ω(n) denotes the number of distinct prime divisors of n.

The following basic result reduces the study of δg(a, d) to that of δg(a, k2(d)).

Theorem 9 [M-3]. (GRH).
1) If q is an odd prime dividing d1, then δg(a, qd1) = δg(a, d1)/q.
2) If 8|d1, then δg(a, 2d1) = δg(a, d1)/2.
That is, we have δg(a, d) = δg(a, k2(d))k2(d)/d.

It is easy to see that δ(a, d) satisfies a similar and slightly stronger property:
δ(a, d) = δ(a, k(d))k(d)/d.

In Theorem 4 it is seen that there is a difference in behaviour of ordp(g) when
p is restricted to those primes with p ≡ 1(mod 4), respectively p ≡ 3(mod 4). A
similar phenomenon (having a Galois theoretic explanation), is seen to hold in
general.
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Theorem 10 [M-3]. (GRH). Suppose that (a, d) = (b, d) = 1.
1) If d is odd, then δg(1, k(d); a, d) = δg(1, k(d); b, d).
2) If d is even, then δg(1, 2k(d); a, d) = δg(1, 2k(d); b, d).

On the other hand, if (a, d) 6= (b, d) then it seems that rarely δg(a, d) = δg(b, d),
cf. Theorem 3 with the first part of Theorem 4.

2 On the computation of δg(a, d)

As in Theorem 3, in general δg(a, d) can be expressed in terms of linear com-
binations of the constants Aχ with coefficients coming from certain cyclotomic
fields:

Theorem 11 [M-3]. (GRH). Let a and d be arbitrary natural numbers. Then
there exists an integer d1|k1(d) such that

δg(a, d) =
∑

χ∈Gd1

cχAχ with cχ ∈ Q(ζoχ),

where cχ can be explicitly computed, Gd1 denotes the group of Dirichlet characters
modulo d1 and oχ the order of χ in Gd1 .

The following result allows one to evaluate the constants Aχ easily with ten
decimal digit precision and hence, by Theorem 11, the density δg(a, d).

Theorem 12 [M-Av]. Let p1(= 2), p2, . . . be the sequence of consecutive primes.
Let χ be any Dirichlet character and n ≥ 31 (hence pn ≥ 127). Then

Bχ = AL(2, χ)L(3, χ)L(4, χ)S(n)R1,

S(n) =

n
∏

k=1

(

1 +
χ(pk)

pk(p2
k − pk − 1)

) (

1 − χ(pk)

p3
k

) (

1 − χ(pk)

p4
k

)

,

Bχ =
∏

p

(

1 +
[χ(p) − 1]p

[p2 − χ(p)](p− 1)

)

= Aχ
∏

p|d

(

1 − 1

p(p− 1)

)

,

A =
∏

p

(

1 − 1

p(p− 1)

)

= 0.3739558136 · · · , and
1

1 + p−3.85
n+1

≤ |R1| ≤ 1 +
1

p3.85
n+1

.

The factor AL(2, χ)L(3, χ)L(4, χ) in the latter result is the beginning of an ex-
pansion of Bχ in terms of special values of L-series:

Theorem 13 [M-Av]. One has

Bχ = A
L(2, χ)L(3, χ)

L(6, χ2)

∞
∏

r=1

∞
∏

k=3r+1

L(k, χr)λ(k,r), with λ(k, r) ∈ Z.

This formula can be used to approximate Bχ (and thus Aχ) with even higher
numerical precision. The integers λ(k, r) are related to so-called convoluted Fi-
bonacci numbers, see [M-Fi], and exhibit certain monotonicity properties in both
the k and r direction ([M-Fi]). These monotonicity properties are valid in a much
more general setting, see [M-Wi].
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3 On similar results for the index

The index, [(Z/pZ)∗ : 〈g(mod p)〉], of the subgroup generated by g(mod p) inside
the multiplicative group of residues mod p, is denoted by rp(g) and called the
(residual) index mod p of g. For this quantity similar questions can be asked
with ordp(g) replaced by rp(g). The results under this replacement turn out
to be rather similar, see [M-1, M-2, M-3, P], however, they are much easier to
establish. A reason for this is that in the latter case intersection coefficients do
not appear. It was in this context that the constants Aχ were introduced by
Pappalardi [P].

4 On the proofs of the results

For reasons of space we can only give a small sample here. We sketch the proof
of Theorem 2.
Sketch of proof of Theorem 2. On noting that rp(g)ordp(g) = p − 1 we obtain
that Ng(a, d)(x) =

∑∞
t=1 Vg(a, d; t)(x), where

Vg(a, d; t)(x) := #{p ≤ x : rp(g) = t, p ≡ 1 + ta(mod dt)}.

In this infinite sum the terms with t ≥
√

log x are less easily individually com-
puted, but since they are small they can be taken together to form an error term,
which can be estimated by O(x log−3/2 x). If (1+ ta, d) > 1, then there is at most
one prime counted by Vg(a, d; t)(x) and this prime has to divide d. In this way
one obtains that

Ng(a, d)(x) =
∑

t≤
√

log x, (1+ta,d)=1

Vg(a, d; t)(x) +O(
x

log3/2 x
). (2)

Note that Vg(a, d; 1)(x) counts the number of primes p ≡ 1+a(mod d) such that,
moreover, g is a primitive root modulo p. This function, and indeed Vg(a, d; t)(x),
can be estimated by a variation of Hooley’s classical argument [H]. However, we
need to carry this out with a certain uniformity in t which forces us to keep track
of the dependence on t of the various estimates. Furthermore, as will be explained
shortly, the additional condition p ≡ 1+ ta(mod dt) is responsible for bringing in
the Galois theoretic intersection coefficients cg(1 + ta, dt, nt). By inclusion and
exclusion we find that

Vg(a, d; t)(x) =
∞

∑

n=1

µ(n)#{p ≤ x : p ≡ 1 + ta(mod dt), nt|rg(p)}. (3)

The counting functions in the latter sum can be estimated by an effective form
of Chebotarev’s density theorem, cf. Theorem 3 of [M-1] and the discussion im-
mediately following that theorem. Namely, we are interested in those primes
p ≡ 1 + at(mod dt) that split completely in Knt,nt := Q(ζnt, g

1/nt). These primes
must have a Frobenius σ in K[n,d]t,nt with the property that σ|Q(ζdt) = σ1+ta and
σ|Knt,nt =id. If such a σ exists then certainly we must have σ1+ta|Q(ζdt)∩Knt,nt =id,
i.e. cg(1+ ta, dt, nt) = 1. Indeed, such a σ turns out to exist iff cg(1+ ta, dt, nt) =
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1. On applying Chebotarev’s density theorem one then finds, assuming the Rie-
mann Hypothesis (RH) holds for the field K[d,n]t,nt, that

#{p ≤ x : p ≡ 1 + ta(mod dt), nt|rg(p)} =
cg(1 + ta, dt, nt)

[K[d,n]t,nt]
Li(x) +O(

√
x log x).

Again there is a problem with the tail in the series in (3), but again it can be
reasonably estimated and one obtains that

Vg(a, d; t)(x) =
∑

P (n)≤(log x)/6

µ(n)#{p ≤ x : p ≡ 1 + ta(mod dt), nt|rg(p)} +E(x),

where P (n) denotes the greatest prime factor of n and E(x) is the estimate for
the tail. On combining the latter two displayed estimates, one then arrives at a
usable estimate for Vg(a, d; t)(x). On combining this with (2), the proof of The-
orem 2 is then easily completed. 2

Working with the sharpest known unconditional version of Chebotarev’s den-
sity theorem leads to an error term which is too weak for our purposes. Actually,
as is clear from the above sketch it is not required to assume GRH. It suffices
to assume RH for the number fields involved in the proof. So for Theorem 2 it
suffices to require RH for the number fields K[d,n]t,nt with n squarefree, (n, d)|a
and (1 + ta, d) = 1.

5 Numerical experiments

The problem considered here allows for numerical experiments. We give here a
small sample of data so obtained. In the cases studied, the numerics seemed to
agree well with the theoretical predictions.

Table 1: Experimental and theoretical densities for d = 5

δ\a 0 1 2 3 4
δ(∗, 5) 0.208333 0.235421 0.177993 0.234003 0.144248

≈ δ−11(∗, 5) 0.208347 0.235422 0.178007 0.233974 0.144250
δ−11(∗, 5) δ(0, 5) δ(1, 5) δ(2, 5) δ(3, 5) δ(4, 5)
≈ δ−5(∗, 5) 0.208348 0.264146 0.194858 0.233282 0.099365
δ−5(∗, 5) δ(0, 5) 0.264135 0.194865 0.233294 0.099371
≈ δ2(∗, 5) 0.208333 0.240673 0.178706 0.229270 0.143017
δ2(∗, 5) δ(0, 5) 0.240681 0.178691 0.229264 0.143029

≈ δ5(∗, 5) 0.208348 0.232581 0.292840 0.054488 0.211742
δ5(∗, 5) δ(0, 5) 0.232585 0.292848 0.054493 0.211737

If an entry is in a row labelled ≈ δg(∗, 5) and in column a, then the number given
equals Ng(a, 5)(x)/π(x) rounded to 6 decimals with x = 2038074743 (and hence
π(x) = 108). The theoretical values are given with 6 digit precision, with a bar
over the last digit indicating that if the number is to be rounded off, it should be
rounded upwards. The density δ(0, 5) = 5/24 (unconditional result).
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