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Combinations of rational double points
on the deformation of quadrilateral
singularities ITI

by Tohsuke Urabe

§0. Introduction

In this Part III we would like to study the hypersurface quadrilateral singularity W; 5. In
addition to two kinds of transformations of Dynkin graphs — an elementary transforma-
tion and a tie transformation— (Urabe (2], [3], [4]), the notion of obstruction components
(Urabe [4]) plays an essential role. We give a proof of following Main Theorem, which
have been announced in Part I (Urabe [4]). Every algebraic variety is assumed to be
defined over the complex number field C. As for the exact definition of Dynkin graphs,
see Part I.

We study a set of Dynkin graphs PC = PC(W, ) in this article. Recall that a
Dynkin graph G with components of type A, D, or E only belongs to PC' if and only if
there exists a fiber Y in the semi-universal deformation family of a singularity of type
W10 satisfying the following two conditions depending on G.

(1) The fiber Y has only rational double points as singularities.
(2) The combination of rational double points on Y just corresponds to the graph G.

Main Theorem. A Dynkin graph G belongs to PC(W, o) if and only if G can be made
from one of the following essential basic Dynkin graphs with distinguished obstruction
components by elementary or tie transformations applied 2 times (We can apply 2
different kinds of transformations once for each, or can apply 2 transformations of the
same kind.), and G contains no vertex corresponding to a short root and no obstruction
componeint.

The essential basic Dynkin graphs:
E8+BI+G2) E7+BB+G1y B9+G2, All
(The component A,; is the obstruction component.)

Recall that by results in Part I that the “if” part under the condition (2) is true.
Thus in this Part III we show the “only if” part.

Let A3 denote the even unimodular lattice of signature (19, 3), and P be the lattice
associated with W; o. (See Part I.) P has rank 7. Let Q(G) be the root lattice associated
with a Dynkin graph G with components of type A, D or E only. By the results in Part
I, the proof of the “only if” part can be reduced to showing only the following.

Proposition 0.1. Assume that G € PC(W, ). Then, with respect to some full em-
bedding Q(G) — A3 /P without an obstruction component Ay, there exists a primitive
1sotropic element u in A3 /P In a nice position, i.e., such that either u is orthogonal to
Q(G), or there is a root basis A C @Q(G) and a long root a € A such that §-u =0 for
every f € A withf#aanda-u=1

To show this proposition we use the theories developed in Part II (Urabe [5]).
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Now, if G € PC, then we have an embedding S = P & Q(G) — A3 come from an
actual deformation fiber Y. The embedding satisfies Looijenga’s conditions {a) and (b}
and the induced embedding Q(G) < Az /P is full.

Also we have an elliptic K3 surface @ : Z — C corresponding to the embedding.
By & = {e¢1,...,¢:} we denote the set of critical values of ®. By F; with 1 <:¢ <t we
denote the singular fiber (I)_l(c;). The elliptic surface Z — ' has a singular fiber Fy
of type I} in our situation by definition. Moreover it has two sections s¢,8; : C — Z
whose images Cs = 3¢(C) and Cg = 31(C) are disjoint. The union IF = F; UCsUCj is
called the curve at infinity. The lattice P has signature (6,1) and it is defined associated
with the dual graph of components of IF. The union £ of smooth rational curves on
Z not intersecting I'F' coincides with the union of components not intersecting IF of
singular fibers of Z — C. The dual graph of £ is G by definition.

We use the same division of the case into three subcases as in Part II.

((1)) The surface Z — C has another singular fiber of type I* apart from F;.
((2)) Z — C has a singular fiber of type II* III* or IV*.
((3)) Z — C has no singular fiber of type I*, II* III* or IV* apart from F}.

For each case we apply the theory in Part II. However, in the case Wy o IF contains
2 of images of sections, and the theories in Part II are not sufficient to treat W; o. Thus
in the first step of the proof we write down the list of possible Dynkin graphs, and then
we check each item G in the list case by case. We show either G can be made from one
of the basic graphs by two transformations, or G ¢ PC. To show G ¢ PC we apply the
theory of symmetric bilinear forms, the theory of elliptic surfaces, and the theory of K3
surfaces, etc.

The case ((i)) is discussed in section i.

Assume that a Dynkin graph G with components of type A, D or E only can be
made from one of the essential basic graphs by elementary or tie transformations applied
twice and G has no obstruction component. Then we can construct a full embedding
Q(G) — A;/P without an obstruction component of type A;; which has a primitive
isotropic element in a nice position. This is a consequence of the theories in [2], [3], [4].
(See Theorem 1.1 in [3], Theorem 4.4 etc. in {4].) Of course, the constructed embedding
may not be equivalent to the given embedding. However, we can use this to show

Proposition 0.1 without any problem. Note moreover that under the assumption we
have G € PC(X) by the “if” part of Main Theorem.

§1. Two singular fibers of type I*

By G we denote a Dynkin graph belonging to PC(W, 0) with the number of vertices r.
By ® : Z — C we denote the corresponding elliptic:
K3 surface. We assume that apart from the singular
fiber F of type I, F; is of type I'* in this section. ‘ €1

We have an embedding S = P ® Q(G) — A;
satisfying (a) and (b). Recall that the lattice P has a
basis eg, ey,...,es whose mutual intersection num—'l
bers are descnbed by the dual graph in the ﬁgure
associated with the curve at infinity IF.

€4 €s
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The bilinear form is denoted by a dot .. We set
up=2ey+e +ex+e3teq, vo=-—uy—es, f=es—es— 2up.

u? =02 =0, ug-vyg=1, P=P & (Zup + Zvg), and P’ has a basis ey, €1, €2, €3, f.

By Proposition 1.2 in Part II there exists an element u € Aj satisfying the following

conditions.

(1) wu is isotropic.

(2) u is orthogonal to Q(G).

(3) u is orthogonal to ey, €1, ez, €3, €4, and es.
(4) u-e6 2 0.

Set m =u-eg =u-f. If m =0, then the lattice S has an isotropic element in
the orthogonal complement in Az, and it is in a nice position. Thus in the following we
consider the case m # 0. The element u is orthogonal to Zug + Zvg. Set M = P' + Zu.
M has signature (5,1).

Lemma 1.1. Assume that M is not primitive in Az and u-eg # 0. Then, the primitive
hull M of M in A3 contains an element u' also satisfying the above conditions (1)-(4)
and such that u-eqg > u' - eg > 0.

Proof. By wy,...,ws,z we denote the dual basis of eg,...,e3, f. In particular z =
(2e0 + e1 + ez +2e3 +2f)/6. Set £ = m(2e0 + €1 + €2 + 2e3 + 2f) — 6u. One knows
that £ € M, £, =0(0<:<3),€-f=0, £-u=2m? and €2 = —12m?*. The
element yo = £/12m? satisfies yo - £ = —1 and u = mz — 2m?yy = m(z — 2my,). Set
N=P @Z{ Wehave NCM C M C M*C M*C N*. (Recall that by * we denote
the dual module.) Consider the discriminant group N*/N = P"™/P' @ Zyy/Z{. On this
group we can define the discriminant bilinear form b and the discriminant quadratic
form ¢. For z € N* we denote T = 2 mod N* € N*/N. Set I = M/N. It = M*/N is
the orthogonal complement of I with respect to b. I is generated by a unique element
U = mz — 2m?y,. On the other hand P'* /P’ is a cyclic group of order 12 generated by
Wy, and 7 = 2. (Recall w? = 13/12 and thus @? = 13/12 mod 2Z). Since

ma + %b mod Z,

=

b(2mT; — 2m*g,, o + b7,) =

ay + by, € It & ma+b=0 (mod 6). Choose an element T € ]\hff/N with Ty ¢ I =
M/N. Since it is contained in I1, we can write Ty = a(@W, — m¥,) + 6¢7,. Moreover,

_ .2
0= q(z0) = a® + “3C od 2z,

m

In particular ¢ = am(am +¢) (mod 2), and c is even. We set ¢ = 2d.

First we would like to show that there is 7, € H/N with Z; ¢ I in the form either
T; = 2A(W; — mY,) (In this case no restriction on m.), or T = 24(W; + m¥,) and
m =0 (mod 3).

O Case 1. am —12d #0 (mod 2m).

Set Ty = mZTp. Since 12my, = —12(W, — m¥,), we have T} = am(W; — mY,) +
d(12my,) = a'(w; — my,) for a’ = am — 12d. The assumption a’ # 0 (mod 2m)
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implies Ty ¢ I. Since 0 = ¢(Z1) = @'2 mod 2Z, we can write a’ = 2A. This T, satisfies
the condition.

O Case 2. am —12d =0 (mod 2m).

Set 12d = am+2me. Ty = aw; +2mey,. Then ¢(To) = 0 mod 2Z & 13a% —4e? =
(mod 24). We can write a = 24" and we have (A" +€)(A' —e)=0 (mod 6).

fA'+e=0 (mod 3),set 3C = A'+e. We have C? = C(24'-3C)=0 (mod 2).
C is even. Thus T; = Ty = 24'(wW, — m7,) + 6mCY, = 2A(W, — m7,) for A = A’ — 3C.

IfA'—e=0 (mod3),set 3C =—A4"+e. Wehave C*=0 (mod 2). C is even.
Thus 71 = Ty = 24'(W; + m¥,) + 6mCq, = 24(w1 + my,) for A=A"+3C. fm=0
(mod 3) we are done. Thus we can assume m # 0 (mod 3). Since 7; € I+, Am =0
(mod 3), and thus A =0 (mod 3). Then 7, = 24(—w; + m7y,) = 2(—A)(W, — mT,),
since 6w, = —6w;.

Next, we consider the case Ty = 2A(w; —mY,). If we write A=Cm+B (0< B <
m), then B # 0, since Z; ¢ I. The element T3 =7, — 2Cm(W; —my,) = 2B(w, — m¥,)
satisfies T, € M/N and To ¢ I.

On the other hand we can check that u' = Bu/m is an element in N*, u'? = 0,4’ #
0,u -¢;,=0for0<i<bandm=u-eq > B =u'-es. Moreover u’ € M since @' = T,.
We have the desired element.

The case ; = 2A(W; + mY,), m =0 (mod 3) is remaining. In this case 2mw; =
—2mW, since W; has order 12. If A is a multiple of m, then &, = 24(@, +m7T,) = (—A4)-
2(w, —mF,) € I, which is a contradiction. Thus we can write A = Cm+B (0 < B < m).
Setting T = 2B(W; + m¥,) = T1 — 2Cm(W, + my,) = T1 + 2Cm(W1 — mT,), we have
T, € M/N, T, ¢ I.

On the other hand setting v" = B(z + 2myy) = B(2z — (u/m)), we can check
u"? =0,u" #£0,u" -, =0(0<t<5),u" up=u"vo=0,and v - f =u"' e = B.
Since u” € N* and since @' = F,, one knows u” € M. This u" is the desired element.

Q.E.D.

By induction on u - e we can assume that u satisfies the following (5) in addition
to (1)-(4).
(5) M = P'+ Zu is primitive in Aj.

Then, of course, M @ (Zug + Zvg) = P + Zu is also primitive in Aj.

Proposition 1.2. Assume that we have an element u € Aj satisfying above (1)-(4)
and (5).
1. If u-eg = 0, then the orthogonal complement of P @ Q(G) contains an isotropic
element.
2. Ifu-es = 1, then G is a subgraph of the Coxeter-Vinberg graph T of the lattice
Q(D12) ® H (H denotes a hyperbolic plane. ).
3. If u-eg > 2, then G can be obtained from a subgraph of the above I' by one
elementary transformation.

Proof. 1 is obvious.



2. Setting v = f — 2u, one has
= (Zeo + Zey + Zeg + Z(ez — u)) & (Zu + Zv),

and v =v2 =0,u-v=1 Thus P+ Zu = Q(D4) @ H @ H. For their discriminant
quadra,tlc forms we know gp4zu = qQ(D.)-

Let L be the orthogonal complement of P+ Zu in A3. L has signature (13, 1). The
discriminant quadratic form of L is —~qp+zu = —q@(p,) = 9Q(Ds)- Since Q(D12) & H
and L have the same signature and the same discriminant quadratic form, they are
isomorphic by Nikulin [1] Theorem 1.14.2 and Corollary 1.9.4. In particular the Coxeter-
Vinberg graph of L coincides with I'. Since Q(G) is full in L, G is a subgraph of T".

3. Assume that m = u-eg > 2.

By L we denote the orthogonal complement of R = P + Zu in A;. We have a
natural isomorphism R*/R 2 L* /L which preserves discriminant quadratic forms up to
sign.

Set uy = u/m and Ry = R+ Zu;. R, is an even overlattice of R with index m, and
is isomorphic to P + Zu in the case of m = u - eg = 1. In particular the discriminant
quadratic form of R; is the same as that of Q(Dy).

By the above isomorphism one knows that L has an overlattice L; with index
m whose discriminant quadratic form is ¢q(p,) = —qq(p,)- By reasoning in 2 L; =

Q(Diz) @ H.

Let Q; (resp. Q) be the primitive hull of @(G) in Ly (resp. L). The Dynkin graph
of Q; is a subgraph of the Coxeter-Vinberg graph T' of L;. Since Q1/Q C L,/L =
Z/m is cyclic, the Dynkin graph of @ is obtained from that of él by one elementry
transformation. Besides, by the fullness the Dynkin graph of @ is G. Q.E.D.

Now, we would like to draw the Coxeter-Vinberg graph I' of Q(D4,) ® H.

Set K = Zl 2o Zv; where vg,...,v13 is a free basis with v = —1,v? =1 (1 <
1 £ 13),v; -v; = 0 (¢ # 7). The sublattice L = { :fom v; € K | z-—o z; € 2Z} is
isomorphic to Q(D12) @ H. We use vg as the controlling vector. We can take

Yi = =V + Vit (1 <:< 12)
Y13 = ~(v1z + v13) '

as a root basis for the ortﬁogona.l complement of vy in L. By Vinberg’s algorithm we
get succeedingly;

T4 = Vo + V1 +v2+ U3
715 = 3vo + vy +vg + -+ + vpa.
Drawing the graph for these 15 vectors, we get the following graph. This has no dotted

edges, no Lannér subgraph and any extended Dynkin subgraph is a component of an
extended Dynkin subgraph of rank 12. Thus this is T.
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The Coxeter-Vinberg graph T for Q(D12) @ H

Lemma 1.3. There are 26 kinds of maximal Dynkin subgraphs of T with 13 vertices.
The following is the list.

(1) Dis (2) D12+ 4y (3) Do+ A2+ Ay
(4) Dg+ Ay (5) Dg+ Ds (6) D7 + Eg
(7) E7; + Ds (8) Eg+ Ds (9) Ao+ 34,

(13) Ag + Ay + 34, (14) Dy + As + 34, (15) Ee + Ay + 34,
(16) Er + As +34; (17) Fs + Az +34;  (18) Ag + Dy

(19) Dy + D, (20) As + Dy + Ay (21) Ag+ Dy + A+ A
(22) As + Ag+ Dy (23) Ds+ Dy + Ay (24) Eg + Dy + As

(25) B+ Dy + Ay (26) Eg + Dy + Ay

We consider the following two conditions here.
(1) The Picard number p = 7+ r.
(2) The orthogonal complement of Pic(Z) in H%(Z, Z) does not contain an isotropic

element.

Note that 74 r = rank (P @ Q(G)) and it is also equal to the rank of the subgroup
S of Pic(Z) generated by classes of components of IF and all components of singular
fibers not intersecting IF. In particular, if r = 13, then the above (1) and (2) are
automatically satisfied. Moreover, by Theorem 1.2 in Part I (Urabe [4]) we can always
assume the condition (1). It implies that Pic(Z) is the primitive hull of S. On the
other hand, under the condition (1), the condition (2) is not satisfied if and only if the
arithmetic condition in Part I Theorem 0.5 [II](A) holds. By Part I Theorem 0.5 we
have nothing to verify, if (2) is not satisfied. N

Thus we assume the above (1) and (2) in the following.

Lemma 1.4. Under the above assumptions, G has a component of type D, has 11, 12,
or 13 vertices, and can be obtained from one of the 26 Dynkin graphs in Lemma 1.3 by
one elementary transformation. Besides, the group E of sections of ® has rank 1 and
only one component of the singular fiber F; intersects IF for every 2 <1 <.

Proof. For 2 £ ¢ £t by n(F;) we denote the number of components of F; not intersect-
ing the curve I'F' at infinity. The equality Z:=2 n(F;) = r holds. Thus by the equality
(2) in Part II section 1 and by assumption we have

1+Y n(R)=a+> (m(F)-1),

i=2 1=2



since m(Fy) = &.

Assume a = 0. Then all elements in F have finite order. In particular the element
u in Part II Proposition 1.2 is orthogonal also to the class of Cg = 3,(C). Thus u
is orthogonal to the subgroup S generated by the classes in the union of the set of
components of IF and the set of components not intersecting I'F' of singular fibers. On
the other hand by (1) rank S = rank Pic, and Pic is the primitive hull of S. Consequently
u is orthogonal to Pic. This contradicts the assumption (2). Thus a > 0.

Since n(F;) < m{F;)—1, by the above equality we have ¢ = 1 and n(F;) = m(F;)-1
for 2 < ¢ < t. In particular only one component of F, intersects IF. Note that the
intersecting component has multiplicity 1. The dual draph of components of F; without
intersection with I'F is of type D and it is a component of G. By Proposition 1.2 and
Lemma 1.3 we have the characterization of G in terms of elementary transformations.

Since p < 20, r < 13. If » < 10, then the orthogonal complement of Pic in H? is an
indefinite lattice with rank> 5. In this case by Meyer’s theorem it contains an isotripic
element. Q.E.D.

For every singular fiber F; with 2 < ¢ < ¢, let G; be the Dynkin graph defined
as the dual graph of components of F; not intersecting Cs. Note that by Lemma 1.4
G=53 G;

Lemma 1.5. (1) v(A)+2v(D)+ 2v(E) < 18 — r, where v(T) denotes the number of
components of G of type T.
(2) Ifr =13, then G has no component of type Dy.

Proof. (1) In our situation we can substitute p = 7 + r, and @ = 1 into the equality
(3) in the beginning of section 1 in Part II. Moreover, by the note just above one has
t—t1 =14 v(D)+v(E)+v(ID+v(II) +v(IV), t) = v(A)—v(IID)—v(IV)+v(I}).
The inequality (1) follows from these ones.

(2) First assume that the functional invariant J is constant. Then ¢, = 0 in the
equality (3) section 1 Part II, since J has never poles. Since p = 20, and a = 1 under
our assumptions, we have 2t = 7, which is a contradiction. Thus J is not constant. We
can apply the inequality (4) in the beginning of Part II section 1. We have the claim,
since Fy is of type Iy and v(I5) > 1. Q.E.D.
Lemma 1.6. (1) Q(G) is primitive in Aj.

(2) Let S be the primitive hull of S = P @ Q(G) in A;. Then, the restriction to 5/S of
the projection $*/S = P* /P & Q(G)*/Q(G) — P*/P is injective.

(3) (§/5), = 0 for any prime p > 5, where M, denotes the p-Sylow subgroup of a finite
abelian group M.

(4) l((g/S)p) <1 for p =2, 3, where l(M) denotes the minimum number of generators
of an abelian group M.

Proof. (1) Let Q(G) be the primitive hull of Q(G) in A3. We will deduce a contradic-
tion, assuming that Ig = Q(G)/Q(G) # 0.

Let P be the sublattice of rank 6 in P generated by €g, €1, .., €5. Set S =PaQ(G)
and S be the primitive hull of S in Az. Note that J = 5/ can be identified with the
group of sections of finite order. Since I C J, we have an image C' of a section
corresponding to a non-zero element @ in Ig. In J = P /P @ Q(G)*/Q(G), @ is
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contained in the direct summand Q(G)*/Q(G). It implies that C' and Cs intersect Fy

on the same component. Thus C’ = Cj since the homomorphism from 5/S to the group
F# of the singular fiber Fj is injective, and every component of F; contains at most
one point of finite order. We have @ = 0, a contradiction.

(2) K it 1s not injective, then (.5'/5) N (Q(G) /Q(G)) = Q(G)/Q(G) is not zero, which
contradicts (1).

(3), (4) By (2) I = §/S is isomorphic to a subgroup of P*/P = Z/12. Since I(I,) <
I((P*/P),), I(I,) <1if p=2or 3, and it is zero if p > 5. Q.E.D.

From here for a while we consider the case where G has 13 vertices. We can easily
list up all the Dynkin graphs which can be made from each one of the above 26 graphs
by one elementary transformation.

(1) Dys

(11) D13 (12) D11 -+ 2A1 (13) DlO + Aa (14) Dg + D4

(1.5) Dg + D5 (16) D7 + Dg

Among these 6 graphs (1.1) and (1.5) can be made from an essential basic Dynkin
graph A, by tie transformations repeated twice. (By the first transformation we can
make Dj,.) Thus these graphs belong to PC = PC(W, ).

On the other hand (1.4) can never be realized by Lemma 1.5. We can show that
the remaining three graphs (1.2), (1.3), and (1.6) do not belong to PC by considering
discriminant quadratic forms.

Consider the case (1.2). Let G = Dy + 2A4;. Assume that we have an embedding
S = P ® Q(G) — Aj satisfying Looijenga’s condition (a) and (b}. By S we denote
the primitive hull of S in A3, and by T the orthogonal complement of S in A;. The
discriminant group of S can be written S*/S =X Z/4 D Z/4D Z/2® Z/2® Z/3, since
P*/P=Z/A4BZ[/3, Q(D11)*/Q(D11) =2 Z/4, and Q(A1)*/Q(A;1) = Z/2. The discrim-
inant quadratic form can be written

g(a,b,c1,c2,2) = —%az + sz + %(Cf +c2) - 2332 mod 27
for an element (a,b,¢1,¢c2,7) € (Z/lﬂ:)2 & (Z/2)* ® (Z/3) of the discriminant group.

I((S"/S)g) = 4. Since S'/S ~ T/T, 2 = rankT > I(T"'/T) = I(S"‘/S) >
1((5*/S)2). Thus we have an element @ = (a,b,¢1,¢,,0) € (§/5); with @ # 0. It
satisfies g(@) = 0 mod 2Z.

By solving the congruence equation, one knows that @ = (2,2,0,0,0),(2,0,1,1,0)
or (0,2,1,1,0).

fa=(22000), S contains an element in the form a = ¢ +w with £ € P*,
w € Q(D;1)* and w? = 1. The image of & by the quotient morphism A3 — A3/P has
self-intersection number 1 (= wz), and it 1s a short root. This short root is contained
in the primitive hull of Q(G) in A3/P. It contradicts the fullness of Q(G).

In the case @ = (2,0,1,1,0), we can also conclude that the primitive hull of Q(G)
contains a short root, which is a contradiction.

When @ = (0,2,1,1,0), we have an element o € S with a? = 2 such that ags,
which also contradlcts tbe fullness.

Thus we can conclude Dy, + 24, ¢ PC.
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For the cases (1.3) and (1.6) we can deduce a contradiction by the same argument
as in (1.2).

(2) Dizt+ 4

(2.1) Dyp + A4 (22) D1p+34; (23)Dg+ A3+ A, (24) Dg+Dy+ Ay

(2.5) D7+ Ds + Ay (2.6) 2Dg + A,y

For the case (2.1) G = D2 + A, we can make it from a basic graph A;;. Thus it
belongs to PC = PC(Wi ).

For the other 5 cases the Dynkin graph G is not an element of PC. For the case
(2.4) it follows from Lemma 1.5. For the cases (2.3) and (2.5) by essentially same
arguments as in the case (1.2) we can show it. (In these cases that we can choose an
element of order 2 as the corresponging element to @ in the above. Under this note the
argument becomes simpler.)

We can apply Lemma 1.6 to the cases (2.2) and (2.6).

We consider case (2.2). Set G = Dyg +34,. By S, S, T we denote the same lattice
as above. Now, we have (§*/S), X Z/4DZ/20Z/2®Z/2® Z/2 ® Z/2. Note that
22 1{(S*/S)2) 2 W(S*/S)2) — 21((S/S)2) = 6 — 2I((S/S)2). We have I((5/5)2) = 2,
which contradicts Lemma 1.6.

The case (2.6) is similar.

(3) Do+ A2+ Ay

(3.1) Dio + A2 + A4 (3.2) Dg+ A2 +34; (3.3) D7+ A3 + Az + A,

(3.4) Dg + Dy + Az + Ay (3.5) 2Ds + A, + 44

Among these graphs we can make (3.1) Dyo + Az + A; from A,;. Thus it belongs
to PC. The graphs (3.2), (3.4), (3.5) cannot be elements in PC because of Lemma 1.5.
The graph (3.3) does not belong to PC| either. If it is in PC, we can show an extra
root contradicting the fullness as in case (1.2).

(4) Do+ Ay
(41) Dy + Ay (42) D7 + A4 + 24, (43) Dg + Aq + Aj (44) Ds+ Dy + Ay
The graph (4.1) can be made from A;;. Thus it is in PC. The graph (4.4) cannot
be in PC because of Lemma 1.5. For the remaining two cases (4.2) and (4.3), we can
show an extra root contradicting the fullness by calculation on the discriminant group
as in case (1.2), if they are in PC.

(5) Ds+ Ds
(5.1) Dg + Ds (5.2) Dg + Ds +2A;  (5.3) 2D5 + A
(5.4) 2D4 + Dy (5.5) Dg + A3 + 24,  (5.6) Dg + Az + 44,

(5.7) Ds + 245 + 24, (5.8) 2Dy + A3 + 24,

The graph (5.1) is equal to (1.5), and we can make the first graph (5.1) from A,;.
It is in PC.

We can apply Lemma 1.5 to (5.2), (5.4), (5.6), (5.7), (5.8), and they are not in PC.

For the case (5.5) we can apply Lemma 1.6 as in (2.2). (5.5) is not in PC), either.

Here we explain the case (5.3). Set § = P @ Q(2D5s + A3). We can consider only
the 2-Sylow subgroup of the discriminant group $*/S = Z/4 P Z/4DZ/4DZ/4DZ/3.
For an element (a, by, b2,c) € (Z/4)* = (5*/S); the discriminant quadratic form can be
written

1 3 3
g(a, b, by, c) = —za2 - Z(b% + b2) + Zc2 mod 2Z.
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A solution of ¢ = 0 is one of the following; (0,0,0,0), & = (2,0,0,2), @ = (0,2,2,0),
63 = (2,2, 2,2), 54 = (2, {2,0},0), 55 = (0, {2, 0},2), g = (:i:l,{2, ﬂ:l},O), a7 =
(2,{2,£1},£1), @y = (0,{%1,0},+1), @y = (£1,{=%1,0},2). Here {z,,z,...,2x}
stands for z4(1), To(2),- - - To(x) for some permutation . Among these, @g, @7, as, and
@y have order four. The group I = §/S contains one of &;,1 = 1,2,3,4,5. We can see
that if the contained element is @;,7 = 1,2,4, 5, the induced embedding Q(G) — A3/P
is not full. Thus I contains @3 = (2,2,2,2). On the other hand since 2&; # @, for
i = 6,7,8,9, one knows that I is generated by (2,2,2,2). Let I be the orthogonal
complement of I with respect to the discriminant bilinear form b on $*/S. By easy
calculation one knows I(I1) > 4. Thus 3 < I(I1/I) = I(5*/S) = I(T*/T), where T
is the orthogonal complement of S in A;. However, I(T*/T) < rankT = 2, which is a
contradiction. Thus 2Dys + A3 ¢ PC.

(6) D7+ Es
By Lemma 1.5 we can omit graphs with a D4-component.
(6.1) D7 + Es (6.2) D7 + As + A,y (6.3) D7 + 34,

We can make (6.1) from A;;. Thus the graph (6.1) is in PC.

The others are not in PC. For (6 4), (6.5), and (6.6) it follows from Lemma 1.5.
For (6.3) we can show an extra root in the primitive hull. In this case an extra short
root with length 1/2/3 appears.

To treat (6.2) we have to use a p-adic method. (Nikulin [1] Theorem 1.12.2 etc.)
Set S = P& Q(D7 + As + A;). Assume that we have an embedding S — Aj; satisfying
Looijenga’s conditions (a) and (b). We will deduce a contradiction. By S we denote
the primitive hull of § in A3, and by T we denote the orthogonal complement of S.
Consider the discriminant group $*/S 2 Z/4® Z/4A S Z/20 Z/2B Z/3 D Z/3. The
first component Z/4 and the fifth component Z/3 are associated with the lattice P.
The second Z/4 is associated with the component D7. The third Z/2 and the last
Z/3 are associated with As, and the fourth Z/2 with A,. We have a non-zero element
@ = (a,b,c,d,z,y)inI = §/S. For the discriminant quadratic form g,
%c:’ + %dz - g(mz +y?) = 0 mod 2Z.
@ is one of the following; &, = (0,0,1,1,0,0), & = (2,2,0,0,0,0), @ = (2,2,1,1,0,0),

= (*1,+1,0,1,0,0). ¥ @ = @, then S conta.ms a long root orthogonal to P such

that it is not in S. It contradicts the assumption. If @ = @,, then S /P contains a
short root with length 1, which is a contradiction. If @ = @y, then I contains 2@, = @,
and we can reduce the problem to the second case. Thus we can assume that I is a
cyclic group of order 2 generated by @;. Set #, = (2,1,0,1,0,0), 8, = (1,0,0,1,0,0),
¥, =(0,0,0,0,1,0), and 7, = (0,0,0,0,0,1) € S*/S. We can check that the orthogonal
complement I 1 of I with respect to b is a direct sum of I and 4 cyclic groups generated
by these 4 elements. f; (i = 1,2) generates a cycllc group of order 4, and F; (z = 1,2)
generates a cyclic group of order 3. We have S"‘/S IYIZZ/4BZ/4Z/3DZ/3.
Here note that ﬂl, B, 71, and v are mutually orthogonal with respect to b, and
q(B,) = —3/4, ¢(B,) =1/4, ¢(F,) = —2/3 mod 2Z (i = 1,2). Thus we can compute the

(@) =~ (e + 1) -
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discriminant form of §. Reversing the sign of the discriminant quadratic form on §"/ S
we get the discriminant form ¢y on T*/T. We have

3 1 2
gr(a,b,z,y) = Zaz - sz + §(x2 + y%) mod 27Z

for (a,b,2,y) EZ/4BZ/4ADZ/3DZ/3.
Now we consider the lattice T, = T @ Z; over 2-adic integers Z;. Note that

Ty /T2 = (T*/T),. Thus the discriminant quadratic form of T} has the form 3a?/4—b% /4.
This implies that T3 is equivalent over Zs to the lattice whose intersection form is defined
3-2¢2 0

0 —2?
satisfles D = —3- 2* mod Z3?. However, on the other hand, |D| = the order of T*/T =
the order of 5*/S = 32 . 2%, and moreover D = |D| since T has signature (0,2). One
knows that there exists an element £ € Z% = Zy — 2Z, with 3 = —£2. It implies 3 = —1
(mod 8), which is a contradiction..

(7) Er+ D¢

We can omit a graph with a D4-component and a graph without a component of
type D.

(7.1) E7 + Dg (72) 2D5 -+ Al (73) D¢ + 245 + Al

(74) Dg + As + A, (75) Ds + A4

We can make the graph (7.1) from Ay;. Thus (7.1) belongs to PC.

The others are not in PC. The graph (7.2) is equal to (2.6).

For (7.2), (7.3), we can apply Lemma 1.6 as in (2.2). For (7.4) the method in
the case (1.2) can be applied and we can show extra roots by considering the 3-Sylow
subgroup. To (7.5) we can apply a 2-adic method and we can deduce a contradiction
similarly as in the case (6.2).

by the matrix ) Therefore we can conclude that the discriminant D of T

8) Es+Ds
We can omit graphs without a component of type D.
(81) Eg + Dsg (82) E;+Ds+ A, (83) Ee¢ + Ds + A,
(84) 2Dys+ A, (8.5) D5+ 244 (8.6) D5 + As + Az + A
(8.7 Ar+Ds+ A (8.8) Dg+ Ds (8.9) Ds + As

(810) Ds +2A3 + 24, (811) Dg + A3 + 24, .

Note that (8.4) is equal to (5.3), (8.8) is equal to (1.5)=(5.1), and (8.11) is equal
to (5.5), which have been previously discussed above.

Among them we can make the graph (8.1) from the graph Ay, (8.2) from Eg +
By + G2, and (8.8)=(1.5)=(5.1) from A4;;. (8.1), (8.2) and (8.8) belong to PC.

On the other hand, the others do not belong to PC. For (8.4)=(5.3) and (8.11)=
(5.5), we have shown it in the above. For (8.10) it follows from Lemma 1.5. For (8.3)
and (8.6) we can apply similar arguments to those in (1.2). By a similar argument as
in (5.3) we can conclude it for the case (8.7).

For the remaining (8.5) and (8.9) we apply a p-adic method.

Here we discuss (8.9) Ds+As. Assume that there is an embedding § = POQ(G) —
A3 satisfying Looijenga’s (a} and (b) for G = D5 + A3. We will dedice a contradiction.
The induced embedding Q(G) — A3/P is full. By S we denote the primitive hull of S
in Az, and by T we denote the orthogonal complement of S. rank T = 2.
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First assume that m =[S : §] is prime to 3. Then (T™/T); = (.S"/S")a = (5"/S)s.
Here note that (§*/S); ® Z/3® Z/9. The first Z/3-component of (S*/S); corresponds
to the lattice P and the second component Z/9 corresponds to the Ag-component of G
respectively. The discriminant quadratic form on (5*/S)3 can be written

g3 = —%:1:2 + gyz mod 2Z.
The discriminant quadratic form on (T*/T); is —gs.

We consider the lattice T3 = T ® Z3 over 3-adic integers Z3. Since Ty /T3 =
(T*/T)s, the discriminant quadratic form of T3 coincides with —g;. This implies that
T3 is equivalent over Z3 to the lattice defined by the diagonal matrix whose diagonal
entries are 6, —72. Thus the discriminant D of T satisfies D = —2* - 3% mod Z}2. On
the other hand, |D| = #(T*/T) = #(5*/5) = #(5*/S)/m? = 2* - 33/m? (By #M we
denote the order of an abelian group M.), and D > 0 since T has signature (0,2). In
conclusion we have —2* - 3% = 2%. 3% /m? mod Z32. It implies that z2 = —1 (mod 3)
has an integral solution, which is a contradiction. _

Now, we can assume that there is a non-zero element @ € (5/5); C (5*/5)s. Since
g(@) = 0 mod 2Z, one knows @ = (0,+3). Then, S contains an element « with a? = 2
which is not in S. This contradicts Looijenga’s condition {a) and the fullness.

Thus we can conclude Dy + Ag ¢ PC.

The case (8.5) is similar. We consider p = 5 in this case.

All the graphs in the remaining cases (9)—(26) turn out that they do not belong to
PC.

(9) A +34,
From this graph we can make no graph with a D-component by elementary trans-
formations.

(10) D]O + 3A1

(10.1) Dy + 34, (10.2) Dg + 54,  (10.3) D7 + A3 + 34,

(10.4) Dg + D, + 3A; (10.5) 2Dy + 34,

We have already treated the case (10.1)=(2.2). It is not in PC. For (10.2)—(10.5)
by Lemma 1.5 one knows that they are not in PC.

(11) Ag + 44, (12) A7+ Ap + 44, (13) Ae+ Ay + 34,
Obviously we cannot make a graph with a component of type D from any one of
these three graphs (11)-(13).

(14) Dy + As + 34, (15) Eg + Ay + 34, (16) E; 4 Ay + 34,
(17) Eg+ A2 + 34,

Let G be a graph with 13 vertices and with a component of type D made by an
elementary transformation from one of the above 4 graphs (14)-(17). G has the form
G =G+ Ar + 34, with k > 2. By Lemma 1.5 one knows G ¢ PC.

(18) Ay + Dy (19) D¢+ Dy (20) Ag+ Dy + A,
(21) Ag+ Dy + Ay + 44 (22) As+ A4+ Dy (23) Ds+ Dy + A4
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(24) E¢+ Dy + A (25) E; 4+ D4+ Az (26) Eg+ Dys+ A4

Omitting graphs without a D-component or with a D4-component, only the fol-
lowing items remain for these cases (18)-(26).

(231) Ds + Ay +4A,

(25.1) Dg + Az + 54,4

(26.1) Dy + As + 54, (26.2) Dg + 54,

By Lemma 1.5 one knows that all of them cannot belong to PC.

By the above we complete the case of the number of vertices 13.

We would like to proceed to the case of 12 vertices.

Let G be a Dynkin graph with components of type A, D, or E only. For simplicity
by €,(G) and by d(G) we denote the Hasse invariant €,(Q(G)) and the discriminant
d(Q(G)) of the root lattice Q(G) of type G respectively.

In the following we assume further that G has 12 vertices and has a component
of type D. Here recall our assumption (1) and (2). By assumption (1) p = 19. By
assumption (2) €,(G) # (3,d(G)), for some prime number p.

Let G’ be the sum of components of G of type A or E. The number of vertices of
G’ is less than or equal to 8. Then we have

e(G') # (3, d((}."))_lJ for p =3,5,0r 7.

In what follows we explain this assertion.

Here recall that d(Gi + G2) = d(G,)d(G2) and €,(G1 + G2) = €,(G1)ep(G2) -
(d(G1),d(G2)), for Dynkin graphs G;, G2, and that for p # 2,00 (a,b), = 1 if integers
a, b satisfy p f a and p [ b. Besides, (a,b?), = 1 for every a, b, p.

Let G" = G — G' be the sum of components of type D. Note that d(G") = 4™
for some m, and €,(G") = 1 for every prime p. We have €,(G) = €,(G")e,(G") -
(d(G"),4™), = ¢,(G"), and (3,d(G)), = (3,4™),(3,d(G")), = (3,d(C"),.

Thus €,(G') # (3,d(G")), for some prime p.

If p > 3 and pJ d(G"), then €,(G') = 1, since €,(As) = (—1,d(A)), and €,(D;) =
¢p(Em) = 1. Moreover, if p 2> 5 and pJ d(G"), then we have (3,d(G")), = 1. Therefore
if p > 5 and p)d(G'), then ¢,(G') = (3,d(G")),. Thus we can consider only the case
where p = 2,3 or p | d(G'). Here note that d(A) = k+ 1, d(En) = 9—m and G’
has at most 8 vertices. Thus p = 2,3,5 or 7, if p | d(G'). Consequently we can assume
p=23,5o0r7. ‘

Finally we can omit p = 2 further, because of the product formula:

I «@)=1 ]I G, =1

p,incl.oo p,incl.co

(€co(G") = 1 since Q(G") is positive definite. (3,d(G'))co = 1 since d(G') > 0.)

Assume that €;(G") # (3,d(G"))7. (We omit the lower index p = 7 in the following.)
We can write G’ = Ag+G) since 7| d(G'). G1 = Aq,24,, A or . In any case 7 [ d(G,),
and thus (3,d(G")) = (3,d(A4s))(3,d(G1)) = (3,7) = —1. Calculating ¢(G") for the four
possible cases, one has G' = Ag + A,.

Assume that e5(G') # (3,d(G’))s. (We omit the lower index p = 5 in the following.)
We can write G’ = A4 + G1. GG has at most 4 vertices.
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Case 1. 5] d(G))
G' = 2A,. However in this case ¢(G') = 1 = (3,d(G")).

Case 2. 5} d(G,)

(3,d(G')) = —1. We have only to check whether (A4 + G1) = (5,d(G1)) is equal
to 1. This is equivalent to d(G;) = £1 (mod 5). Among the 11 possibilities only the
following 6 graphs satisfy ¢(G') = 1.

Ay + 244, A4+4A1,\ As+ Az, As+ A+ A, As+24, As

Assume that €3(G') # (3,d(G"))s. (We omit the lower index p = 3 in the following.)
Note that in this case we cannot conclude 3 | d(G").

Case 1. 3} d(G")
In this case ¢(G') = 1. Thus the assumption <= (3,d(G")) = -1 < d(G') =
—1 (mod 3). G’ has at most 8 vertices and its component is either 4;, A3, A4, A,
Az, Eq, or Eg. We can pick up the following 15 graphs satisfying the assumptions from
34 possibilities.
Eq Aq Ag+Ay Aj+4A; Ag+ Ay Ag+24; Ay 2434+ 4
A3 +54; A3 +34; Az + A TA 54, 34, Ay

Case 2. G’ contains As.
G' = Ag. €(Ag) = (—1,9) = 1. (8,d(As)) = (3,9) = 1. This does not satisfy the

assumption.

Case 3. G' contains Fj.
There are only 4 possibilities for G'. Only the following three satisfy the assump-
tion.
E¢ +2A;, Es+ A1, Es.

Case 4. G' contains As.
There are only 7 possibilities for G'. Among them only the following six satisfy the
assumption.

As + Az, As+ Ay, As+34;, As+24,, As+ A4, As.

Case 5. G’ contains just 4 of A,.
G' = 4A,. In this case e = 1 = (3,d). It does not satisfy the assumption.

Case 6. G contains just 3 of Az.

We can write G' = 342 + G with 3 f d(G;). Then we have ¢(G') = (3,d(G,)), and
(8,d(G")) = —(8,d(Gy)). Thus every possibility automatically satisfies the assumption.
There are three possibilities.

3A2 +24,, 3A,+ Ay, 3A,.

Case 7. GG contains just 2 of A4j.
Writing G' = 24; + Gy, one knows € # (3,d) < d(G1)=1 (mod 3). Only the
following four among possibilities satisfy the assumption.

24, +44,, 2A;+ As, 242+ 24;, 2A,.
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Case 8. G contains just one of A, and it does not contain As and Es.

We can write G' = A; + G; with 3[d(G;). We have ¢(G') = —(3,d(G,)) and
(3,d(G")) = —(3,d(G,)). Thus the assumption is never satisfied in this case.

We have the following proposition.

Proposition 1.7. Let G be a Dynkin graph with components of type A, D, or E
only. We assume that G has 12 vertices and it contains a component of type D. If
ep(G) # (3,d(G)), for some prime p, then G is one of the following 40.

(1) D+ 4

(4) D7+ As

(7) Dg+ As + A;
(10) Ds + Ag + Ay
(13) Ds + As + As
(15) Dy + 34,4

(18) D¢ + 344

(21) Dy + Eg + 24,
(23) Dg + Az + 34,
(25) Ds + 2A3 + Ay
(26) Dg + 24,

(29) Dy + Ae + A2
(31) D7 + 54,4

(34) 2Dy + A4

(37) Dy 4+ Ay + 44,

(2) Ds+ A
(5) D¢+ Ds + Ay
(8) Ds+ Az
(11) Ds + Eg + A,

(14) Ds + As + A2 + A4

(16) D7 + D4 + Ay
(19) D¢ + 24, + 24,
(22) Dy + As + A;
(24) Dy + As + 34,

(27) Dy + As + Ap

(30) Dy + Ay + 24,
(32) Ds 4+ Dy + 34,4
(35) 2D4 + As + A,
(38) Dy+ Ay +5A,

(3) Ds+ Az + A,
(6) Dg 4 Eq
(9) Ds+ E;
(12) Ds + As + 24,

(17) Dg + Aq + 24,
(20) Ds + 342 + A,

(28) Dy + Az + 2A4A4

(33) Ds + A,
(36) 2D + 24,
(39) Dy + 342 + 24,

(40) Dy + 2A4 + 44,

Among the above, 14 items (1)-(14) can be made from one of the essential basic
Dynkin graphs by elementary or tie transformations repeated twice. (For example we
can make Dy, from a basic graph A;; by one tie transformation. From Dj;; we can
make the graphs (1)-(14) by the same transformation.)

Lemma 1.8. In addition to our assumptions on the elliptic K3 surfaces we assume
that the number r of vertices of G € PC(W,) is 12. Then G has at most only one
component of type Dy.

Proof. If G has 2 or more components of type Dy, then the functional invariant must
be constant. (See Lemma 1.5.) One has p =19, a =1, ¢t; = 0, and ¢t = 4 by assumption
and by the equality (3) in Part II section 1. Thus the combination of singular fibers
must be 415 and G = 3D4. However, then, €,(3D,) = (3,d(3D4)), for every p, which
contradicts the assumption. : Q.ED.

The ten items (31)-(40) do not satisfy the condition in Lemma 1.8 or Lemma 1.5
(1). Thus they do not belong to PC.

Items (15)-(30) are remaining. For (15)-(22) we can apply a similar argument to
that in the case (1.2), r = 13 in the above. Only by solving the congruence equation
g = 0, we can conclude that they are not in PC.

For (23) and (24) we can use the method applying Lemma 1.6 explained in the case
(2.2) in the above. To (25) we can apply. the method in the case (5.3) above.
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To (26)-(30) we can apply the same method as in (8.9). Namely, first by the p-
adic method, we show that S = P @ Q(G) has no primitive emdedding into Aj. Next
assuming S /S # 0 by solving ¢ = 0 we can deduce a contradiction from the fullness.

Anyway we can show that any one of the items (15)—(40) does not belong to PC.

We complete the case of 12 vertices.

Now, the last remaining case is the case of 11 vertices. Also in this case we use the

abbriviations d(G) and €,(G).

Proposition 1.9. Let G be a Dynkin graph with 11 vertices with components of type
A, D, or E only. Assume that G has a component of type D and satisfies the following
condition Q.

For some prime number p, 3d(G) € Q;* and €,(G) # (—1,3),. Q

Then, G= D5 +E3, D5 + A5 -+ Al or D5 +3A2

Proof. Let G' be the sum of components of G of type A or E. G’ has at most 7
vertices. One knows easily that Q is equivalent to the following ©'.

For p =2,3,5 or 7,3d(G") € Q;z and €,(G') # (—1,3),. Ve

In the first step we determine all the pairs (G',p) such that ,(G') # (-1,3),,
where G’ is a Dynkin graph with at most 7 vertices with components of type 4 or E
only, and p = 2,3,5 or 7. We can omit the calculation in the case p = 2 thanks to the
product formula.

We do not present the result here. However, the list of such pairs contains 33 kinds
of Dynkin graphs, and each graph corresponds to just 2 prime numbers. The two graphs
Ag + A; and Ag correspond p = 3 and 7. The three graphs A4 + 34,, A4 + A and
A4 + A; correspond to p = 3 and 5. The others correspond to p = 2 and 3.

Next, we check whether each item satisfies 3d(G") € Q;2 or not. (Note that an

integer p™a with pJ a belongs to Q;2 if and only if m is even and (E) = +1 (whenp

is an odd prime number. (-} is Legendre’s quadratic residue symbol.), m is even and

=1 (mod 8) (when p = 2).) Then, one knows that only three graphs satisfy the
condition, and we have the above three graphs. Each of the three satisfies the condition
for p = 2 and 3. Q.E.D.

If © is not satisfied, then there exists an isotropic element in a nice position by
Theorem 0.5 {II] in Part I (Urabe [4]). Thus we can assume . Consequently we can
consider only the above three graphs.

For Dg + E¢ and Dg + As + A; we can make them from the basic graph A;; by tie
transformations repeated twice. Thus they belong to PC = PC(W, ;). Indeed we can
make D;, from A;; easily. From D,, we can make them.

On the contrary, the third graph Ds + 34, does not belong to PC. To see this we
can apply the same method as in (8.9) above.
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We can complete this section. We have shown Proposition 0.1 under the assumption
((1)) in the introduction.

§2. A singular fiber of type II*, III*, IV*

Let G be a Dynkin graph belonging to PC(W; o) with r vertices. Throughout this
section we assume that the corresponding elliptic K3 surface ® : Z — C has a singular
fiber of type II*, III*, or IV*, which is denoted by F.

Proposition 2.1. (1) G is a subgraph of the Coxeter-Vinberg graph of the unimodular
lattice of signature (14, 1).
{2) G has a component of type E.

Proof. (1) We have the associated embedding P @ Q(G) — Aj; satisfying Looijenga’s
conditions (a), (b). Let P denote the sublattice in P of rank 6 which has a basis
€o,...,es corresponding to Cs and 5 components of Fy. This P is isomorphic to P
defined in the case J3 o. It is easy to check that the induced embedding P Q(G) — A3
also satisfies the conditions (a), (b). Thus the embedding Q(G) — A;/P is full. By
Proposition 2.1 in Part II the orthogonal complement of Q(G) in Aj /P contains an
element ¢ with €2 = —4. (Though we can write £ = 27 in A3/P, we do not use this
fact.) The orthogonal complement L of Z£ in A3 /P is a unimodular lattice of signature
(14,1), and Q(G) is full in L. The claim follows from these facts.

(2) Consider the dual graph G, associated with the set of components of F> not inter-
secting JF'. The dual graph of all components of F;, minus 1 or 2 vertices corresponding
to components with multiplicity 1 is G.

Assume that G, is not of type E. We will deduce a contradiction. One knows
immediately that F) is of type IV* and G, is of type Ds.

For 2 <1 £ t, let n(F}) denote the number of components not intersecting I'F of the
singular fiber F. n(F;) =5 and r = $i_, n(F}). Recall that we can assume p =7 +r
without loss of generality. Then, by the equality (2) in the beginning of section 1 in
Part II, we have 3°{_, (m(F;) —n(F;) — 1) +a = 0, since m(F}) = 5 and m(Fy) = 7. We
have a = 0 and m(F;) — 1 = n(F;) for 3 < ¢ < t. In particular the group E of sections
is finite.

Here we recall that we denoted by Tor M the subgroup of an abelian group M
consisting of all elements of finite order.

In our case the section s, corresponding to Cg belongs to Tor E = E. We consider
Fi# = F; N Z# for i = 1,2. Recall that they carry the group structure. Since F} is of
type I3, TorFl# & Z/2 + Z/2. One knows that s; has order 2 in E since E — Tor F¥
is injective. Thus Tor F§’ has an element of order 2, since E — Tor F¥ is injective.
However, Tor Ff =~ Z/3, since F; is of type IV* It is a contradiction. Q.E.D.

Here recall Proposition 3.5 in Part II, which claims that if a Dynkin graph G
can be obtained from a basic Dynkin graph G by elementary or tie transformations
applied twice, then any subgraph G’ of G can be obtained from G, by elementary or
tie transformations applied twice.

By the concrete form of the Coxeter-Vinberg graph in Part II section 2, one knows
that a Dynkin graph G satisfying the conditions (1) and (2) in Proposition 2.1 is a
subgraph of Eg + Eg or 2E;.
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By Theorem 0.5 in Part I [4] we can treat only the case r = 13,12 or 11.
The first case is » = 13. Then G is one of the following 18 graphs.

(1) Eg+ Ay + A (2) Eg + Dy (3) E; 4+ Ag

(4) E7+ Ds (5) E74+Ds+ 4, (6) 2Eg+ Ay

(7) E¢+ D

(8) Es+242+ A (9) E¢+Ai+ A+ A1 (10) Eg + Ds + A,

(11) Es + As (12) E7 + 45 + A4 (13) E7 + A3 + Ay + Ay
(14) E; + Ay + Ay (18) E; + E; (16) Eg + A7

(17) Eﬁ -+ As + A, (18) Es + A4 + A3

The 7 graphs (1)-(7) can be made from one of the essential basic Dynkin graphs
by tie transformations repeated twice. The following shows an example of the initial
basic graph.

(1) = Bs+B1+ Gz (2) « By +Gs (3) — Br + By + Gy

(4) = Er+Bs+G1 (8)«— Eg+B1+G2 (6) — Eg+DB1+ G

(7) — By + G,

The other 11 graphs do not belong to PC = PC(W, o).

For (8), (9), and (10) we can use the method explained in (1.2) in section 1 to show
it. We can construct an extra root for each non-zero solution of ¢ = 0.

For 7 graphs (11)-(18) we apply the p-adic method for p = 3, and argue as in the
case (8.9) Dy + As.

Let us proceed to the case of r = 12. Thanks to Proposition 3.5 in Part II, we
can assume that G is not isomorphic to a subgraph of the above (1)-(7) of case r = 13
in addition to the conditions in Proposition 2.1. It is not difficult to see that a graph
satisfying the conditions is one in the following list.

olo Eg + 24, 020 FE7 4+ 24, + A4

030 Eg+Az+ Az + A odo Eg+ Ay + Ay

It turns out that all of these 4 graphs do not belong to PC.

For these graphs we can apply the p-adic method for p = 3. By arguments similar
to the case (8.9) Dy + Ag, we can show that any one of them is not in PC'.

Lastly we consider the case r = 11. However, in this case every graph satisfying
the conditions in Proposition 2.1 is isomorphic to a subgraph of the above (1)-(7) in
the case r = 13. By Proposition 3.5 in Part I we can complete the proof.

We have shown Proposition 0.1 under the assumption ((2)) in the introduction in
this section.

§3. Combinations of graphs of type A

In this section we consider under the assumption ((3)) in the introduction. As in
the previous sections G' denotes a Dynkin graph in PC(W; ) with r vertices. The
corresponding elliptic K3 surface ® : Z — C has ¢ singular fibers Fy,..., F}; and one
of them, say Fy, is of type I§ and the others are of type I, II, III] or IV. The union
IF = F; UCs Uy is the curve at infinity. By Co, ..., C4 we denote the components of
IF. We assume that Cy has multiplicity 2, Cs intersects Cy, and Cs intersects C3. Let
Ap,; be the dual graph of the set of components not intersecting Cs of a singular fiber
F; for 2 <1 < t. (Ao stands for an empty graph 0.)
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Lemma 3.1.(1) f p=r+ 7 thena =0o0rl Ifp =147 and a = 1, then every
singular fiber F; with 2 < ¢ < ¢ has only one component intersecting IF. If p=r + 7
and a = 0, then G = 245 + G for some Dynkin graph G;.

(2) r <13. If r =13, thena = 1.

(3) v(G) L18 —r.

Proof. (1) For 2 < i < t by n(F;) we denote the number of components of F; not
intersecting I F. By definition r = Z:=2 n(F;). By the equaliy (2) in Part II section 1,
we have 1 —a = Z:-=2(m(F,~) —n(Fy) — 1). Obviously m(F;) > n(F;)+ 1 by definition,
and a < 1. .

If a =1, then m(F;) =n(F;)+ 1for all 1 with 2 <2 < ¢,

Assume a = 0. There is a unique singular fiber, say Fj, different from F; such
that Cs and Cg hit different components of F,. Let S; be the subgroup of Pic(Z)
generated by the classes of components of F; not intersecting Cs. We can write [Cs] =
[F] +m[F 4 Cs] + w3 + x, where wg € ST, x € 55 and m € Z. We have m = 1, since
(Cs)- [Cs] = 0.

Under the isomorphism S} = Q(D4)* w3 corresponds to the fundamental weight
associated with the vertex of the Dynkin graph D, with one edge corresponding to the
component C3 of Fy. In particular w? = —1.

On the other hand, under S = Q(An,)* x corresponds to the fundamental weight
associated with the vertex of A,, corresponding to the component of F; hit by Cs.

However, by injectivity of E = TorE — F,f , the image of x in the quotient
Q(An,)*/Q(A,,) has order 2. Thus n, is odd, and x corresponds to the central vertex
of An,. In particular x> = —(ng +1)/4. We have —2 = [C;]? = 2 ~ 1 — (n2 + 1)/4.
Thus ny = 11. G contains the graph A;; minus the central vertex, i.e., 245.

(2) Since 20 > p > 7 + r, the first claim is obvious.

Assume r = 13. Then p = 20 = 7+ r. We have a > v(I) > 1 by the inequality
(4) in Part II section 1 when J is not constant.

Thus we can assume moreover that J is constant. Then ¢; = 0 in the equality (3)
in Part II section 1, and we have 2(t — 1) =4 4+ a < 5.

On the other hand, every component of G is of type A; or A; under our assumption,
since every singular fiber except F) is of type II, IIT or IV. Therefore we have 7 <
¥(G) <t -3 <2, which is a contradiction.

(3) We can assume without loss of generality that p = r+7. If a = 0, then the inequality
obviously holds by (1). Thus we assume moreover a = 1. We apply the equality (3)
in Part II section 1. First obviously ¢t — t; — 1 = v(II) + v(III) + v(IV) under our
assumption. Secondly t; = v(G) + v(I) by (1) above. The claim follows from the
equality (3) in Part IIL Q.E.D.

Note that by Lemma 3.1 (1) G =3 A,, fp=r+7and a=1.

Let P be the lattice associated with the singularity W o. rank P = 7. Recall that
€o, ... ,¢es denote the basis of P which has a one-to-one correspondence with the compo-
nents C;’s of IF. The surface Z defines an embedding P @ Q(G) — A; satisfying Looi-
jenga’s conditions (a) and (b). The induced embedding Q(G) «— A3/P is full and has
no obstruction component of type Ay, i.e., if G has a component G, of type A;;, then
[P(Q(G1),A3/P): Q(G1)] < 12. Here recall that we have denoted the primitive hull of
a submodule M in L by P(M, L) = {z € L | For some non-zero integer m, mz € M}.
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We regard P @ Q(G) as a submodule of Aj via the induced embedding.
Proposition 3.2. PC(W, ) C PC(J3,).

Proof. Let P be the sublattice of rank 6 in P generated by eg,ei1,...,es. This P is
isomorphic to P defined in the case of J3 .

If G € PC(W;p), then we have an embedding P & Q(G) — Aj; satisfying the
conditions {a), (b). It is easy to check that the induced embedding P Q(G) — A;
also satisfies (a) and (b). It implies G € PC(J3,). Q.E.D.

Proposition 3.3. Assume that p=r 47 and a = 1.

(1) Q(G) is primitive in Aj.

(2) For every element @ € P(P ® Q(G), A3)/(P ® Q(G)) with order 2, there is a subset
TCN2)={i|2<i<t, ni+1=0 (mod 2)} satisfying } ;cr(ni+1)=12and@
can be written @ =% + ) ;c7X;, where G € P*/P, and X; € Q(4Ax,;)"/Q(An;) 1 € T)
have order 2.

Proof. (1) The proof is same as in Lemma 1.6 (1).
(2) We can write @ =@ + Y.;_, X:, where @ € P*/P 2 Z/12,
and ¥; € Q(An )" /Q(An) 2 Z/(ni+1)for2<i <t

Set T={:|2<1<t7¥; #0}. I¥; #0it has order 2 by assumption, and n; 1s
odd.

If @ = 0, we have a contradiction by above (1). Thus @ # 0. By assumption &
has order 2. It can be checked that the element of order 2 in P*/P is wy mod P where
wo = (e1+e2)/2+e9+e3 € P* and thus it is contained in (P*ﬂ?*){-P/P = (P* ﬂ?*)/ﬁ.
Namely, we can regard @ as an element in (P @ Q(G))*/(P & Q(G)). Thus we have a
section 8’ : C — Z whose image q = s'(C) represents the class @. Since for every point

a € C the homomorphism from §/5 to the group F# of the fiber over a is injective,
C'-Cs =0. Let S; be the same group as in the proof of Lemma 3.1 (1). We can write

[C'] = [F]+[F+Cs]+w+ Y _ xi,
€T

where F' denotes a general fiber, x; € S! is the fundamental weight associated with
the central vertex of the Dynkin graph A,,. In particular x? = —(n; + 1)/4. The
element w € S} corresponds to wy € Py* & Q(Dy4) under S 5 Pj*. We have -2 =
[C']? = ([F] + [F + C5))? + w? + 3 ;cr(ni + 1)/4. Therefore §;cp(ni + 1) = 12, since
([F]+ [F + Cs))* = 2 and w? = —1. Q.E.D.
Corollary 3.4. We consider a Dynkin graph G = 3 ;. Ax; € PC = PC(W; ) under
the condition ((3)). Assume moreover that p=r+7anda=1. Set S = P®Q(G) and
S =P(S, Ay).

(1) For any prime p withp > 5 (§/S)P = 0. (M, denotes the p-Sylow subgroup of M).
(2) Forp =2, 3, l((g/S)p) < 1. (I(M) denotes the minimum number of generators of

Proof. The proof is same as that of Lemma 1.6 (3), (4).
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First we consider the case r = 13. Then, we have p = r + 7 = 20 and by Lemma
3.1 (2) we have a = 1.

By Lemma 3.1 (3) items to be checked are graphs corresponding to the division of
13 into 5 pieces. By Proposition 3.2 we can assume moreover that the graph belongs to
PC(J3,0). Recall that there are 25 kinds of such graphs. 24 graphs of 25 was explained
in paragraph A in Part II section 3 and we can make them from Eg 4+ Fy by two tie
transformations. The last one is (57) 343434242, 343 + 24,. The following is the list
of 25 graphs. We use the numbering in Part II section 3.

(1) Ais (2) Ajp + Ay (3) A1 + Az

(5) Ag + A4 (6) As + As (8) A + 24,

(9) Ao + A2+ A1 (10) Ay + Az + Ay (11) Ag + 24,
(12) Ag + As + A1 (17) 246 + A, (18) Ag + As + A,
(20) 245 + A; (21) A5 + 244 (23) Ay + Ay 4+ 24,4

(26) A7 + Ay +24A; (27) Ar+As+ A2+ A; (30) Ag + Ay + Az + Ay
(32) Ag + Az +24s  (34) As + Ag + Ay + A (43) A7 + 24, + 24,
(47) 245 + 34, (40) As +24s + 24, (53) 244 + 24, + A,
(57) 343 + 24,

(a). For (1) and (2) we can make the corresponding graph G from the essential basic
Dynkin graph A;; by two tie transformations. Thus G € PC.
In the other 23 cases the corresponding graph G is not a member of PC.

(b). Consider the case (3) G = Ay; + A;. Note the obstruction component Aj;.

Set S = P ® Q(G). We assume that there is an embedding 5 — A3 satisfying
Looijenga’s {a) and {b). By S we denote the primitive hull of § in A;. We set I = g/S’
T denotes the orthogonal complement of S in A3z. D is the discriminant of T'.

We have S*/S = (Z/4)* @ (Z/3)®. The first Z/4-component and the third com-
ponent isomorphic to Z/3 correspond to P, the second and the fourth correspond to
Aj1, and the last fifth Z/3-component corresponds to A;. We have D = 2% - 33 /m? for
m=[5:8]

Assume that m = [S : §] is odd. (T*/T); = (§*/S);. Since the discriminant
quadratic form on ($*/S); = (Z/4)® can be written —a®/4 + b2 /4, D = —2% mod Z32.
Thus we have —3° = m? (mod 8), which is a contradiction. One knows that m is even.

Assume that m is not a multiple of 4. Then, by Proposition 3.3 (2) I, is generated
by (2,2) € (§*/8S)2. One can check that the finite quadratic form on (§/§)2 >[I, =
Z/2 + Z/2 can be written ab for (a,b) € Z/2 + Z/2. Thus one has D = —2? mod Z3?
and —3* =m'? (mod 8) for m’' = m/2, which is a contradiction. Thus m is a multiple
of 4.

Next, we consider p = 3. 3-2{(I3) = {((§*/5)s)—-2I(I3) < l((g*/g)g) <rankT =2
and we have I(I3) > 1. Let @ € I3 be non-zero element. The discriminant quadratic
form on ($*/S)3 can be written g3 = —22%/3 + 2(y} 4 y2)/3. Thus @ is equal to either
@ = (£1,£1,0), or @ = (£1,0,%1). If @ = @y, S contains an element o = X +w where
X € P*,w € Q(A2)* and w? = 2/3. The image of o under A3 — A3 /P defines a short
root in the primitive hull of Q(G). It contradicts fullness. Thus @ = @;. Note that the
third component of @; = (£1,+1,0) is 0. It implies that ((P(P & Q(A;1), A3)/(P &
Q(An1)))s #0.
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In conclusion one has [P(P @ Q(A11), As) : P® Q(An1)] = 12. It implies that Ay,
is an obsrtuction component with respect to Q(G) — A;/P. Thus Ay, + A, ¢ PC.

(c). Consider (8) G = Ayy + 24,. We define S = P @ Q(G), S T,D, and I as above.

In this case we have S*/S = (Z/4)* ® (Z/2)* & (Z/3)? The first Z/4-component
and the fifth Z/3-component correspond to P, the second and the sixth to Ayq, and the
middle third, fourth Z/2-component correspond to 2 of A;.

Since I((S*/S);) =4 > 2, I, # 0. Assume that I, has order 2. Then (2,2,0,0) €
(8*/S), is the generator of I, and I(I3) > 4. One has 3 < I(I}+/L;) = 1((5*/8),) =
I((T*/T)2) < rankT = 2, a contradiction. Thus I, is cyclic of order 4. Let @ =
(a1,b,c1,c2) € (5*/S)2 be the generator. Note that 2& = (2,2,0,0). Since the discrim-
inant quadratic form g on ($*/S), can be written —a?/4 + 4% /4 + (¢ + ¢})/2, solving
g2(@) = 0, one has @ = (£1, %1, 0,0).

On the other hand, by considering T ® Z3 one knows I3 # 0.

In conclusion [P(P @ Q(A1n), As) : P® Q(A11)] 2 12, and A;; is an obstruction
component. Thus A;; + 24, ¢ PC.

(d). For (47) and (49) the division of 13 consists of 5§ odd numbers. Thus the corre-
sponding graph is not a member of PC. Indeed, {((5*/S)2) = 6. By Corollary 3.4(2)
l(g/S) <1. Thus 4 < l((g/g)z) = l((T*/T)2) < rank T' = 2, which is a contradiction.

(e). For the following 7 cases we have I((S*/S)s) > 3. Thus (5/S)s # 0. For every
element in the 3-Sylow subgroup (5*/S); at which the discriminant quadratic form
takes 0, one can construct an extra root with length \/2% or /2 in the primitive hull
of Q(G) in Az/P. Thus the corresponding graph G ¢ PC.

(6), (11), (18), (32), (43), (53), (57).
(f). In the following 6 cases, by computing D by the 3-adic method, one can show

(§ /S)s # 0. However, for each non-zero solution of ¢ = 0 in the 3-Sylow subgroup, we
can construct an extra root in the primitive hull.

(9), (12), (23), (27), (30), (34)-
(g)- If we can conclude (§/S5), # 0 for p = 5 or 7 by calculating the discriminant of

T ® Z,, then it contradicts Corollary 3.4 (1). Thus the corresponding graph G ¢ PC.
We can apply this method to the following 3 cases.

(8), (17), (21).
(h). The remaining cases are the following 3. For each one of them I((5*/S5)2) 2 3.
Thus I, = (§/S)2 # 0. By Proposition 3.3 (2) we can easily find an element @ € I of
order 2. However, for every element 3 € (5*/S)2 26 # @, and thus I, is generated by
@. Computing the discriminant quadratic form of S and computing the discriminant D
in two different ways, one can deduce a contradiction. Thus the corresponding graph

G ¢ PC.

(10), (20), (26).
Let us proceed to the case r = 12. We can assume p =r + 7 = 19. By Lemma 3.1
(1)a=0or 1.
If a =0, then G is either 245 + A or 245 + 24; by Lemma 3.1 (1). Now, we can
make 245 + A; from a basic graph A;; by a tie transformation. From 245 + A; we can
make both of them by a tie transformation. In particular, 245 + A,, 245 + 24, € PC.
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In the following we assume a = 1 and p = 7+ 7 = 19. By Lemma 3.1 (3) it is
enough to examine the divisions of 12 into 6 pieces. Recall that there are 57 kinds of
them. We use the numbering [1]-[57] in Part II section 3.

1) 12

[5] 8+4

[9] 94241
(13] 74342
[17] 5+542
(21] 8+2+1+1
[25] 643+2+1
(20] 543+3+1
[33] 3434343
[37] 642424141
[41] 4+4424+1+1
[45) 343434241
[49] 54341414141
[53] 44242424141

2] 11+1

(6] 7+5
[10] 8+3+1
[14] 645+1
[18] 5+4+3
(22] 7+3+1+1
[26] 6+2+2+2
[30] 5434242
[34] 8+141+41+1
[38] 5+4+1+1+1
[42] 443+3+1+1
[46] 343+24242
[50) 5+2+2+1+1+1
[54] 3+3+3+1+1+1

[3] 1042

[7] 646
[11] 8+2+42
[15]) 6+4+2
[19] 4-+4+4
(23] T+2+2+1
[27] 5+5+1-+1
[31] 44-4+3+1
[35] T4+2+1+1+1
(39] 54+3+2+1+1
[43] 44+3+2+2+1
[47] T4+1+1+141+1
[51] 4+4+1+141+1
[55) 3+3+2+2+1+1

[4] 943

(8] 104-1+1
[12] 7+4+1
[16] 6+3+3
[20] 9+1+4+1+1
[24] 64+44+141
[28] 5+4+2+1
[32] 4+-3+3+2
[36] 6+3+1+1+1
[40] 54+24+2+2+1
[44] 44+2+2+2+2
[48] 6+24+1+1+1+1
[52] 4+3+2+14+1+1
[66] 34242424241

[57] 24242424242

[a]. For some of 57 the corresponding graph is a subgraph of a graph which can be
made from one of the essential basic Dynkin graph by tie transformations repeated
twice. Thus we can apply Proposition 3.5 in Part II.

(1], 8]-{7]

v

A subgraph of A;3

> A subgraph of A12 + Al [8], [9], [10], [12], [14]
> A subgraph of E; + Ag (18], [25]

> A subgraph of Dy + Ay (18]

> A subgraph of Dho + A4 [20]

> A subgraph of Eg + Ay + A1 [24], [31], [41]

> A subgraph of Dyg + A2 + A;  [39]

[b]. Some of them can be constructed from a basic graph by two transformations. Below
every arrow except the left one at the bottom three lines indicates a tie transformation.

(2] A11 + Ay — Ay — A
[11] Ag + 24, —  As+ A+ A — Eg + B1 + G,
[13] A7 + Az + A, — A7+ A3+ A — E; + By + Gy
[17) 245 + A, — 245+ A, —  Apn
[21] As + A2 + 24, —  Azg+ A2+ Ay — Eg + B, + G,
[22] A7 + A3 + 24,4 — A+ A3+ Ay — E; 4+ B; + G,
[27] 245 + 24, — 245+ A — Ay
[30] As + A5 + 24, VB 4 By+ Gy, —  Er+By+ Gy
(45 343 + Ao + A1 Y B 4 By + Gy «—  Er+Bs+ Gy
[50] As + 24z + 34" Y By 4 By + G, — B+ Bi 4Gy

Note that in the case [2) Ay; + A;, the component Ay, is not an obstruction.
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[¢]. The following 13 items do not belong to PC(J3,0). (The 13 items treated in para-
graph [A] in Part II section 3.) By Proposition 3.2 we can exclude them from our
consideration.

[16], [321, (33], [34], [36], [40], [44], [47], [48], [51], [52], [56], [57].

In what follows we define S = P @ Q(G), §, I= §/.5', T and D corresponding to
the graph G under consideration similarly as in the above paragraph (b).

[d]). For the following two items the division of 12 consists of 6 odd numbers, and thus
the corresponding graph G ¢ PC.

[49], [54].
Indeed, by Corollary 3.4 (2) {(I2) < 1. Thus we have 5 = 7~ 2 < [((5%/5)2) —
2(I) <U((S*/S)2) = l((T*/T)2) L rank T = 3, a contradiction.
[e]. For the following 3 cases we have I((5*/S)3) > 4. Thus we can apply reasoning like
the one in the above paragraph (e), we can conclude G ¢ PC.

[26], [46}, [53].

{f]. In the following 6 cases, we can apply the 3-adic method as in the above paragraph
(f) and we can conclude G ¢ PC.

[23], [28], [37], [39], [43], [55].

(g]. We can conclude (§/S),, # 0 for p = 5 in the case [19] by calculating D in 2 ways.
Thus by Corollary 3.4 (1) G ¢ PC.

[h]. In the cases [29], [38], [42] we have [((5*/S5)2) > 4, and by the same argument as
in the above paragraph (h) we can infer G ¢ PC.
In the following we proceed to the last case r = 11.

Proposition 3.5. For every division (ki,kg,...,k7) of 11 = Z:=1 ki Into a sum of 7
non-negative integers ky > ko > --- > ky > 0 consider the Dynkin graph G = 5 Ag,,
the root lattice Q = Q(G) of type G, the discriminant d(G) = d(Q) of @, and the Hasse
invariant €,(G) = €,(Q) of Q, where p is a prime number. The arithmetic condition in
Part I Theorem 0.5 [IT] (A) (2)

3d(G) ¢ Q;? or ¢,(G) = (-1,3),
is not satisfied if and only if G and p are one in the following list:
p=3, As + A4 + 241, As + A3 + 34, Ay + 34, + As, Az + 34, + 24,. (4 items;)
pP= 2, A5 + A3 + 3A1, A3 + 3A2 + 2A1 (2 items.)

Proof. It is not difficult to make the list of p and the division (k;,...,k7) such that
ep(G) # (—1,3),. We can omit the calculation for p = 2 by the product formula. We
do not present the list here but it contains 36 kinds of graphs, and each graph in it
corresponds just 2 prime numbers. Ag + A3 + 24, and Ag + 54, correspond top = 7
and 3. Ac +2A2 +A1 COI‘I’CSpOIldS to pP= 7 and 2. A',' +A4, A5 +A4 +A2, A4 +2A3 +A1
and A4 + Az + A2 + 24, correspond to p = 5 and 3. Ap + A, and Ay + 24, + 34,
correspond to p = 5 and 2. The other 27 graphs correspond to p = 3 and 2.

Checking whether 3d(G) € Q;z for each item, we get the proposition. Q.E.D.

By Theorem 0.5 [II] in Part I, we can consider only the 4 graphs in the above
proposition.
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Obviously As + A4 and As + A3 + A; are subgraphs of Ay;. Thus we can make
As + Ay + 24, and As + A3 + 34, from A, by tie transformations repeated twice. In
particular they are members in PC.

Next, let us consider G = A4 + 342 + A;. By using 3-adic integers Z3, we can
show (5/5)s # 0 for every embedding S = P @ Q(G) — Aj. Any element @ € (5/5)s
satisfies ¢(&) = 0 mod 2Z, where ¢ is the discriminant quadratic form of S. However,
for every non-zero element @ € (5*/S); with ¢(@) = 0 we can construct an extra root
not in @(G) but in the primitive hull of Q(G) in A3 /P. It contradicts the fullness. Thus
Ay + 34, + A, ¢ PC.

By the same method we can show Az + 34, + 24, ¢ PC.

In this section we have shown Proposition 0.1 under the assumption ((3)) in the
introduction. We can complete this article.
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