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Abstract

In our recent work with Rogers on resolving some of Boyd’s conjectures on
two-variate Mahler measures, a new analytical machinery was introduced to write
the values L(E, 2) of L-series of elliptic curves as periods in the sense of Kontse-
vich and Zagier. Here we outline, in slightly more general settings, the novelty
of our method with Rogers, and provide two illustrative period evaluations of
L(E, 2) and L(E, 3) for a conductor 32 elliptic curve E.

1 Introduction

A period is a complex number whose real and imaginary parts are values of absolutely
convergent integrals of rational functions with rational coefficients, over domains in Rn

given by polynomial inequalities with rational coefficients [5]. Without much harm, the
three appearances of the adjective “rational” can be replaced by “algebraic”. The set of
periods P is countable and admits a ring structure. But what is probably most exciting
about the set — it contains a lot of “important” numbers, mathematical constants like
π [2] and ζ(3) [11].

The extended period ring P̂ := P [1/π] = P [(2πi)−1] (rather than the period ring
P itself) contains many natural examples, like values of generalised hypergeometric
functions [1] at algebraic points and special L-values. For example, a general theorem
[5] due to Beilinson and Deninger–Scholl states that the (non-critical) value of the
L-series attached to a cusp form f(τ) of weight k at a positive integer m ≥ k (cf.

formula (2) below) belongs to P̂ . In spite of the effective nature of the proof of the
theorem, computing these L-values as periods remains a difficult problem even for
particular examples; it is this odd difficulty which lets us refer to the property of being
a period as “period(d)ness”. Most such computations are motivated by (conjectural)
evaluations of the logarithmic Mahler measures of multi-variate polynomials.

∗This work is supported by the Max Planck Institute for Mathematics (Bonn, Germany) and the
Australian Research Council (grant DP110104419).
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With the purpose of establishing such evaluations in the two-variate case, Rogers
and the present author [8] have developed a machinery for writing the L-values L(f, 2)
attached to cusp forms f(τ) of weight 2 as periods, the machinery which is different
from that of Beilinson. In this note, we give an overview of the method of [8, 9] on a
particular example of L(E, 2) in Section 2, and then attempt in Section 3 to describe a
general algorithm behind the method. In Section 4 we present an example of evaluating
L(E, 3) as a period, a computation we failed to find in the existing literature. Finally, in
Section 5 we demonstrate that the two particular evaluations discussed can be further
reduced to a hypergeometric form; such reduction is not expected to be available for
general special L-values and so far is known for very few instances. In the examples
of Sections 2, 4 (and 5), E stands for an elliptic curve of conductor 32. There are at
least two reasons for choosing this conductor. First of all, it is not discussed in our
joint work [8, 9], and secondly, the modular parameterisations involved are sufficiently
classical and remarkably simple.

Throughout the note we keep the notation q = e2πiτ for τ from the upper half-plane
Im τ > 0, so that |q| < 1. Our basic constructor of modular forms and functions is
Dedekind’s eta-function

η(τ) := q1/24
∞∏
m=1

(1− qm) =
∞∑

n=−∞

(−1)nq(6n+1)2/24

with its modular involution

η(−1/τ) =
√
−iτη(τ). (1)

We also set ηk := η(kτ) for short.
For functions of τ or q = e2πiτ we use the differential operator

δ :=
1

2πi

d

dτ
= q

d

dq

and denote by δ−1 the corresponding anti-derivative normalised by 0 at τ = i∞ (or
q = 0):

δ−1f =

∫ q

0

f
dq

q
.

In particular, for a modular form f(τ) =
∑∞

n=1 anq
n, whose expansion vanishes at

infinity, we have

L(f,m) =
1

(m− 1)!

∫ 1

0

f logm−1 q
dq

q
=
∞∑
n=1

an
nm

= (δ−mf)|q=1 (2)

whenever the latter sum makes sense.

The generalised hypergeometric function is defined by the series

k+1Fk

(
a0, a1, . . . , ak
b1, . . . , bk

∣∣∣∣ z) =
∞∑
n=0

(a0)n(a1)n · · · (ak)n
(b1)n · · · (bk)n

zn

n!
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in the disc |z| < 1; here (a)n := Γ(a+ n)/Γ(a) =
∏n−1

m=0(a+m) denotes Pochhammer’s
symbol. Details about the analytic continuation and integral representations of the
function can be found in Bailey’s classical treatise [1]; relevant references are made
explicit in Section 5.

2 L(E, 2)

For a conductor 32 elliptic curve E, the L-series is known to coincide with that for the
cusp form f(τ) := η24η

2
8.

Note the (Lambert series) expansion

η48
η24

=
∑
m≥1

(
−4

m

)
qm

1− q2m
=
∑
m,n≥1
n odd

(
−4

m

)
qmn =

∑
m,n≥1

a(m)b(n)qmn,

where a(m) :=

(
−4

m

)
, b(n) := n mod 2,

and
(−4
m

)
denotes the quadratic residue character modulo 4.

Then

f(it) =
η48
η24

η44
η28

∣∣∣∣
τ=it

=
η48
η24

∣∣∣∣
τ=it

· 1

2t

η48
η24

∣∣∣∣
τ=i/(32t)

=
1

2t

∑
m1,n1≥1

a(m1)b(n1)e
−2πm1n1t

∑
m2,n2≥1

b(m2)a(n2)e
−2πm2n2/(32t), (3)

where t > 0 and the modular involution (1) was used.
Now,

L(E, 2) = L(f, 2) =

∫ 1

0

f log q
dq

q
= −4π2

∫ ∞
0

f(it)t dt

= −2π2

∫ ∞
0

∑
m1,n1,m2,n2≥1

a(m1)b(n1)b(m2)a(n2)

× exp

(
−2π

(
m1n1t+

m2n2

32t

))
dt

= −2π2
∑

m1,n1,m2,n2≥1

a(m1)b(n1)b(m2)a(n2)

×
∫ ∞
0

exp

(
−2π

(
m1n1t+

m2n2

32t

))
dt.

Here comes the crucial transformation of purely analytical origin: we make the change
of variable t = n2u/n1. This does not change the form of the integrand but affects the
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differential, and we obtain

L(E, 2) = −2π2
∑

m1,n1,m2,n2≥1

a(m1)b(n1)b(m2)a(n2)n2

n1

×
∫ ∞
0

exp

(
−2π

(
m1n2u+

m2n1

32u

))
du

= −2π2

∫ ∞
0

∑
m1,n2≥1

a(m1)a(n2)n2e
−2πm1n2u

×
∑

m2,n1≥1

b(m2)b(n1)

n1

e−2πm2n1/(32u)du.

The first double series in the integrand corresponds to∑
m,n≥1

a(m)a(n)n qmn =
∑
m,n≥1

(
−4

mn

)
n qmn =

∑
n≥1

n

(
−4

n

)
nqn

1 + q2n
=
η42η

4
8

η44
,

while the second one is∑
m,n≥1

b(m)b(n)

n
qmn =

∑
m,n≥1

qmn

n
− q(2m)n

n
− qm(2n)

2n
+
q(2m)(2n)

2n

=
1

2

∑
m,n≥1

2qmn − 3q2mn + q4mn

n

= −1

2
log
∏
m≥1

(1− qm)2(1− q4m)

(1− q2m)3
= −1

2
log

η21η4
η32

,

hence

L(E, 2) = π2

∫ ∞
0

η42η
4
8

η44

∣∣∣∣
τ=iu

· log
η21η4
η32

∣∣∣∣
τ=i/(32u)

du.

Applying the involution (1) to the eta quotient under the logarithm sign we obtain

L(E, 2) = π2

∫ ∞
0

η42η
4
8

η44
log

√
2η8η

2
32

η316

∣∣∣∣
τ=iu

du.

Now comes the modular magic: choosing a particular modular function x(τ) :=
η42η

2
8/η

6
4, which ranges from 0 to 1 when τ ranges from 0 to i∞, one can easily verify

that
1

2πi

x dx

2
√

1− x4
= −η

4
2η

4
8

η44
dτ and

(√
2η8η

2
32

η316

)2

=
1− x
1 + x

.

Thus, we arrive at the following result.

Theorem 1. For an elliptic curve E of conductor 32,

L(E, 2) =
π

8

∫ 1

0

x√
1− x4

log
1 + x

1− x
dx = 0.9170506353 . . . .
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3 General L-values

To summarise our evaluation of L(E, 2) = L(f, 2) in Section 2, we first split f(τ) into
a product of two Eisenstein series of weight 1 and at the end we arrive at a product
of two Eisenstein(-like) series g2(τ) and g0(τ) of weights 2 and 0, respectively, so that
L(f, 2) = cπL(g2g0, 1) for some rational c. The latter object is doomed to be a period
as g0(τ) is a logarithm of a modular function, while 2πi g2(τ) dτ is, up to a modular
function multiple, the differential of a modular function, and finally any two modular
functions are connected by an algebraic relation over Q.

The method can be further formalised to more general settings, and it is this ex-
tension which we attempt to outline in this section.

For two bounded sequences a(m), b(n), we refer to an expression of the form

gk(τ) = a+
∑
m,n≥1

a(m)b(n)nk−1qmn (4)

as an Eisenstein-like series of weight k, especially in the case when gk(τ) is a mod-
ular form of certain level, that is, when it transforms sufficiently ‘nicely’ under τ 7→
−1/(Nτ) for some positive integer N . This automatically happens when gk(τ) is
indeed an Eisenstein series (for example, when a(m) = 1 and b(n) is a Dirichlet
character modulo N of designated parity, b(−1) = (−1)k), in which case ĝk(τ) :=
gk(−1/(Nτ))(

√
−Nτ)−k is again an Eisenstein series. It is worth mentioning that the

above notion makes perfect sense in the case k ≤ 0 as well. Indeed, modular units,
or weak modular forms of weight 0, that are the logarithms of modular functions are
examples of Eisenstein-like series g0(τ). Also, for k ≤ 0 examples are given by Eichler
integrals, the (1 − k) th τ -antiderivatives of holomorphic Eisenstein series of weight
2− k, a consequence of the famous lemma of Hecke [12, Section 5].

Suppose we are interested in the L-value L(f, k0) of a cusp form f(τ) of weight
k = k1 + k2 which can be represented as a product (in general, as a linear combination
of several products) of two Eisenstein(-like) series gk1(τ) and ĝk2(τ), where the first
one vanishes at infinity (a = gk1(i∞) = 0 in (4)) and the second one vanishes at zero
(ĝk2(i0) = 0). (The vanishing happens because the product is a cusp form!) In reality,
we need the series gk2(τ) := ĝk2(−1/(Nτ))(

√
−Nτ)−k2 to be Eisenstein-like:

gk1(τ) =
∑
m,n≥1

a1(m)b1(n)nk1−1qmn and gk2(τ) =
∑
m,n≥1

a2(m)b2(n)nk2−1qmn.

We have

L(f, k0) = L(gk1 ĝk2 , k0) =
1

(k0 − 1)!

∫ 1

0

gk1 ĝk2 logk0−1 q
dq

q

=
(−1)k0−1(2π)k0

(k0 − 1)!

∫ ∞
0

gk1(it)ĝk2(it)t
k0−1 dt

=
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∫ ∞
0

gk1(it)gk2(i/(Nt))t
k0−k2−1 dt
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=
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∫ ∞
0

∑
m1,n1≥1

a1(m1)b1(n1)n
k1−1
1 e−2πm1n1t

×
∑

m2,n2≥1

a2(m2)b2(n2)n
k2−1
2 e−2πm2n2/(Nt)tk0−k2−1dt

=
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∑
m1,n1,m2,n2≥1

a1(m1)b1(n1)a2(m2)b2(n2)n
k1−1
1 nk2−12

×
∫ ∞
0

exp

(
−2π

(
m1n1t+

m2n2

Nt

))
tk0−k2−1dt;

the interchange of integration and summation is legitimate because of the exponential
decay of the integrand at the endpoints. After performing the change of variable
t = n2u/n1 and interchanging summation and integration back again we obtain

L(f, k0) =
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∑
m1,n1,m2,n2≥1

a1(m1)b1(n1)a2(m2)b2(n2)n
k1+k2−k0−1
1 nk0−12

×
∫ ∞
0

exp

(
−2π

(
m1n2u+

m2n1

Nu

))
uk0−k2−1du

=
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∫ ∞
0

∑
m1,n2≥1

a1(m1)b2(n2)n
k0−1
2 e−2πm1n2u

×
∑

m2,n1≥1

a2(m2)b1(n1)n
k1+k2−k0−1
1 e−2πm2n1/(Nu)uk0−k2−1du

=
(−1)k0−1(2π)k0

(k0 − 1)!Nk2/2

∫ ∞
0

gk0(iu)gk1+k2−k0(i/(Nu))uk0−k2−1 du.

Assuming a modular transformation of the Eisenstein-like series gk1+k2−k0(τ) under
τ 7→ −1/(Nτ), we can realise the resulting integral as cπk0−k1L(gk0 ĝk1+k2−k0 , k1), where
c is algebraic (plus some extra terms when gk1+k2−k0(τ) is an Eichler integral). Alter-
natively, if gk0(τ) transforms under the involution, we perform the transformation and
switch to the variable v = 1/(Nu) to arrive at cπk0−k2L(ĝk0gk1+k2−k0 , k2). In both cases
we obtain an identity which relates the starting L-value L(f, k0) to a different ‘L-value’
of a modular-like object of the same weight.

The case k1 = k2 = 1 and k0 = 2, discussed in [8, 9] and in Section 2 above, allows
one to reduce the L-values to periods. As we will see in Section 4, the period(d)ness
can be achieved in a more general situation, based on the fact that Eichler integrals
are related to solutions of inhomogeneous linear differential equations.
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4 L(E, 3)

To manipulate with L(E, 3) for a conductor 32 elliptic curve, we use again L(E, 3) =
L(f, 3) with f(τ) = η24η

2
8 and write the decomposition in (3) as

f(it) =
1

2t

∑
m1,n1≥1

b(m1)a(n1)e
−2πm1n1t

∑
m2,n2≥1

b(m2)a(n2)e
−2πm2n2/(32t).

Then

L(E, 3) = L(f, 3) =
1

2

∫ 1

0

f log2 q
dq

q
= 4π3

∫ ∞
0

f(it)t2 dt

= 2π3

∫ ∞
0

∑
m1,n1,m2,n2≥1

b(m1)a(n1)b(m2)a(n2)

× exp

(
−2π

(
m1n1t+

m2n2

32t

))
t dt

= 2π3
∑

m1,n1,m2,n2≥1

b(m1)a(n1)b(m2)a(n2)

×
∫ ∞
0

exp

(
−2π

(
m1n1t+

m2n2

32t

))
t dt

(here we perform the change of variable t = n2u/n1)

= 2π3
∑

m1,n1,m2,n2≥1

b(m1)a(n1)b(m2)a(n2)n
2
2

n2
1

×
∫ ∞
0

exp

(
−2π

(
m1n2u+

m2n1

32u

))
u du

= 2π3

∫ ∞
0

∑
m1,n2≥1

b(m1)a(n2)n
2
2e
−2πm1n2u

×
∑

m2,n1≥1

b(m2)a(n1)

n2
1

e−2πm2n1/(32u) u du.

Furthermore, ∑
m,n≥1

b(m)a(n)n2qmn =
∑
m,n≥1
m odd

(
−4

n

)
n2qmn =

η82η
4
8

η64
,

∑
m,n≥1

b(m)a(n)m2qmn =
∑
m,n≥1
m odd

(
−4

n

)
m2qmn =

η184
η82η

4
8

,

so that

r(τ) :=
∑
m,n≥1

b(m)a(n)

n2
qmn = δ−2

(
η184
η82η

4
8

)
. (5)
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Continuing the previous computation,

L(E, 3) = 2π3

∫ ∞
0

η82η
4
8

η64

∣∣∣∣
τ=iu

· r(i/(32u))u du

(we apply the involution to the eta quotient)

=
π3

8

∫ ∞
0

η44η
8
16

η68
r(τ)

∣∣∣∣
τ=i/(32u)

du

u2

(we change the variable u = 1/(32v))

= 4π3

∫ ∞
0

η44η
8
16

η68
r(τ)

∣∣∣∣
τ=iv

dv.

This is so far the end of the algorithm we have discussed in Section 3. In order
to show that the resulting integral is a period we require to do one step more. As in
Section 2 we make a modular parameterisation; this time we take the modular function
x(τ) := 4η42η

8
8/η

12
4 which ranges from 0 to 1 when τ goes from i∞ to 0. Then

δx =
4η122 η

8
8

η164
, (1− x2)1/4 =

η42η
2
8

η64
, s(x) :=

(1−
√

1− x2)2

x(1− x2)3/4
=

16η104 η
8
16

η82η
10
8

.

Furthermore, the substitution z = x2(τ) into the hypergeometric function

F (z) := 2F1

(
1
2
, 1

2

1

∣∣∣∣ z) =
2

π

∫ 1

0

dy√
(1− y2)(1− zy2)

results in the modular form

ϕ(τ) := F (x2) =
∞∑
n=0

(
2n

n

)2(x
4

)2n
=

η104
η42η

4
8

of weight 1. Because F (z) (along with F (1−z)) satisfy the hypergeometric differential
equation

z(1− z)
d2F

dz2
+ (1− 2z)

dF

dz
− 1

4
F = 0,

it is not hard to write down the corresponding linear second order differential operator

L := x(1− x2) d2

dx2
+ (1− 3x2)

d

dx
− x

(in terms of x) such that Lϕ = 0.
With this notation in mind, we obtain

L(E, 3) = π3

∫ ∞
0

η104 η
8
16

η82η
10
8

ϕ(τ) r(τ)δx

∣∣∣∣
τ=iv

dv

=
π3

16

∫ ∞
0

s(x(τ))ϕ(τ) r(τ)δx

∣∣∣∣
τ=iv

dv, (6)
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and at this point we make an observation that the function h(τ) := 4ϕ(τ)r(τ) solves
the inhomogeneous differential equation

Lh =
1

1− x2

(
which is nothing but [10, 13]

δ2r

δx · ϕ
=

η244
4η162 η

8
8

)
,

so that it can be written as an integral using the method of variation of parameters:

h =
π

2

(
F (x2)

∫
F (1− x2)

1− x2
dx− F (1− x2)

∫
F (x2)

1− x2
dx

)
=
πx

2

∫ 1

0

F (x2)F (1− x2w2)− F (1− x2)F (x2w2)

1− x2w2
dw.

This implies that

L(E, 3) =
π2

128

∫ 1

0

s(x)h(x) dx,

an expression which can be clearly transformed into a (complicated) real integral.
The recipe of expressing Eisenstein series of negative weight via solutions of non-

homogeneous linear differential equations is standard [13] and applicable in any sit-
uation similar to the one considered above. The Eisenstein series (5) of weight −1
however possesses a different treatment because of a special formula due to Ramanu-
jan [4, eq. (2·2)]:

r(τ) =
∑
m,n≥1
m odd

(
−4

n

)
qmn

n2
=
x̃ G(−x̃2)
4F (−x̃2)

,

where x̃(τ) := 4η48/η
4
2, F (−x̃2) = η42/η

2
4 and

G(z) := 3F2

(
1, 1, 1
3
2
, 3

2

∣∣∣∣ z) =
1

4

∫ 1

0

∫ 1

0

(1− x1)−1/2(1− x2)−1/2

1− zx1x2
dx1 dx2.

The latter integral also gives the analytic continuation of the hypergeometric 3F2-series
to the domain Re z < 1 (see [6, Lemma 2]); the change y = (1−x1)1/2, w = (1−x2)1/2
translates the integral into the form

G(z) =

∫ 1

0

∫ 1

0

dy dw

1− z(1− y2)(1− w2)
.

Rolling back to the modular function x(τ) = 4η42η
8
8/η

12
4 and noting that x̃ =

x/
√

1− x2 we may now write (8) as

L(E, 3) =
π3

64

∫ ∞
0

s(x(τ))x(τ)

1− x(τ)2
G

(
− x(τ)2

1− x(τ)2

)
δx

∣∣∣∣
τ=iv

dv.

After performing the modular substitution x = x(τ) we finally arrive at

Theorem 2. For an elliptic curve E of conductor 32,

L(E, 3) =
π2

128

∫ 1

0

(1−
√

1− x2)2

(1− x2)3/4
dx

∫ 1

0

∫ 1

0

dy dw

1− x2(1− (1− y2)(1− w2))

= 0.9826801478 . . . .
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5 Hypergeometric evaluations

A remarkable feature of the integrals in Theorems 1 and 2 is the possibility to reduce
them further to hypergeometric functions [3].

Theorem 3. For an elliptic curve E of conductor 32,

L(E, 2) =
π1/2Γ(1

4
)2

96
√

2
3F2

(
1, 1, 1

2
7
4
, 3

2

∣∣∣∣ 1

)
+
π1/2Γ(3

4
)2

8
√

2
3F2

(
1, 1, 1

2
5
4
, 3

2

∣∣∣∣ 1

)
, (7)

L(E, 3) =
π3/2Γ(1

4
)2

768
√

2
4F3

(
1, 1, 1, 1

2
7
4
, 3

2
, 3

2

∣∣∣∣ 1

)
+
π3/2Γ(3

4
)2

32
√

2
4F3

(
1, 1, 1, 1

2
5
4
, 3

2
, 3

2

∣∣∣∣ 1

)
+
π3/2Γ(1

4
)2

256
√

2
4F3

(
1, 1, 1, 1

2
3
4
, 3

2
, 3

2

∣∣∣∣ 1

)
. (8)

Proof. In the integral representation for L(E, 2) in Theorem 1, write

log
1 + x

1− x
=

2

3
x3 2F1

(
3
4
, 1
7
4

∣∣∣∣ x4)+ 2x 2F1

(
1
4
, 1
5
4

∣∣∣∣ x4)
and change the variable x4 = x0 to get

L(E, 2) =
π

48

∫ 1

0

(
x
1/4
0 2F1

(
3
4
, 1
7
4

∣∣∣∣ x0)+ 3x
−1/4
0 2F1

(
1
4
, 1
5
4

∣∣∣∣ x0))(1− x0)−1/2dx0

=
π3/2

48

Γ(5
4
)

Γ(7
4
)
3F2

(
3
4
, 5

4
, 1

7
4
, 7

4

∣∣∣∣ 1

)
+
π3/2

16

Γ(3
4
)

Γ(5
4
)
3F2

(
1
4
, 3

4
, 1

5
4
, 5

4

∣∣∣∣ 1

)
;

the representation (7) now follows from application of Thomae’s transformation [1,
Eq. 3.2.(1)] to the both 3F2 series.

In the integral of Theorem 2, let x0 = x2, x1 = 1− y2 and x2 = 1− w2:

L(E, 3) =
π2

1024

∫ 1

0

x
−1/2
0

(
(1− x0)−3/4 − 2(1− x0)−1/4 + (1− x0)1/4

)
dx0

×
∫ 1

0

∫ 1

0

(1− x1)−1/2(1− x2)−1/2

1− x0(1− x1x2)
dx1 dx2.

First consider the integral (see [1, Eqs. 1.5.(1) and 1.4.(1)])∫ 1

0

x
−1/2
0 (1− x0)a−1

1− x0z
dx0 =

Γ(1
2
) Γ(a)

Γ(a+ 1
2
)

2F1

(
1, 1

2

a+ 1
2

∣∣∣∣ z)
=

Γ(1
2
) Γ(a− 1)

Γ(a− 1
2
)

2F1

(
1, 1

2

2− a

∣∣∣∣ 1− z
)

+ Γ(a) Γ(1− a) (1− z)a−12F1

(
a− 1

2
, a

a

∣∣∣∣ 1− z
)

=

√
π Γ(a− 1)

Γ(a− 1
2
)

2F1

(
1, 1

2

2− a

∣∣∣∣ 1− z
)

+
π

sin πa

(1− z)a−1

za−1/2

10



for z = 1− x1x2. Secondly,∫ 1

0

∫ 1

0

(1− x1)−1/2(1− x2)−1/22F1

(
1, 1

2

2− a

∣∣∣∣ x1x2) dx1 dx2

= 4 4F3

(
1, 1, 1, 1

2

2− a, 3
2
, 3

2

∣∣∣∣ 1

)
and ∫ 1

0

∫ 1

0

xa−11 (1− x1)−1/2xa−12 (1− x2)−1/2

(1− x1x2)a−1/2
dx1 dx2

=

(
Γ(1

2
) Γ(a)

Γ(a+ 1
2
)

)2

3F2

(
a, a, a− 1

2

a+ 1
2
, a+ 1

2

∣∣∣∣ 1

)
= 2π1/2Γ(a)Γ(3

2
− a) · 3F2

(
1
2
, 1

2
, 3

2
− a

1, 3
2

∣∣∣∣ 1

)
,

where Thomae’s transformation [1, Eq. 3.2.(1)] is used on the last step.
The computation above means that if we take

I1(a) :=
π5/2Γ(a− 1)

256Γ(a− 1
2
)

4F3

(
1, 1, 1, 1

2

2− a, 3
2
, 3

2

∣∣∣∣ 1

)
,

I2(a) :=
π7/2Γ(a) Γ(3

2
− a)

512 sinπa
3F2

(
1
2
, 1

2
, 3

2
− a

1, 3
2

∣∣∣∣ 1

)
,

then
L(E, 3) =

(
I1(

1
4
)− 2I1(

3
4
) + I1(

5
4
)
)

+
(
I2(

1
4
)− 2I2(

3
4
) + I2(

5
4
)
)
.

For I2(
3
4
), the Watson–Whipple summation [1, Eq. 3.3.(1)] results in

3F2

(
1
2
, 1

2
, 3

4

1, 3
2

∣∣∣∣ 1

)
=

Γ(1
2
) Γ(5

4
)

Γ(3
4
)

,

so that I2(
3
4
) = π5/1024. Furthermore,

I2(
1
4
) + I2(

5
4
) =

π7/2Γ(1
4
) Γ(5

4
)

256
√

2

(
3F2

(
1
2
, 1

2
, 5

4

1, 3
2

∣∣∣∣ 1

)
− 3F2

(
1
2
, 1

2
, 1

4

1, 3
2

∣∣∣∣ 1

))
=
π7/2Γ(1

4
)2

1024
√

2

∞∑
n=0

(1
2
)2n ·
(
(5
4
)n − (1

4
)n
)

(1)n(3
2
)nn!

=
π7/2Γ(1

4
)2

1024
√

2

∞∑
n=1

(1
2
)2n(5

4
)n−1

(1)n(3
2
)n(n− 1)!

=
π7/2Γ(1

4
)2

1024
√

2 · 6 3F2

(
3
2
, 3

2
, 5

4

2, 5
2

∣∣∣∣ 1

)
=

π7/2Γ(1
4
)2

1024
√

2 · 6
Γ(1

2
) Γ(1

4
) Γ(7

4
)

Γ(5
4
)2

=
π5

512
,
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where again the Watson–Whipple summation was applied.
To summarise, L(E, 3) = I1(

1
4
)− 2I1(

3
4
) + I1(

5
4
), which is exactly equation (8).

Theorem 3 produces amazingly similar hypergeometric forms of L(E, 2) and L(E, 3).
In the notation

Fk(a) :=
πk−1/2Γ(a)

23k−1Γ(a+ 1
2
)
k+1Fk

( k times︷ ︸︸ ︷
1, . . . , 1, 1

2

a+ 1
2
, 3

2
, . . . , 3

2︸ ︷︷ ︸
k − 1 times

∣∣∣∣ 1

)
,

relations (7) and (8) can be alternatively written as

L(E, 2) = F2(
5
4
) + F2(

3
4
) and L(E, 3) = F3(

5
4
) + 2F3(

3
4
) + F3(

1
4
). (9)

In view of the known formula

L(E, 1) =
π−1/2Γ(1

4
)2

8
√

2
=
π−1/2Γ(1

4
)2

24
√

2
3F2

(
1, 1

2
7
4

∣∣∣∣ 1

)
= 2F1(

5
4
),

we can conclude that, for k = 1, 2 or 3, the L-value L(E, k) can be written as a (simple)
Q-linear combination of Fk(

7
4
− m

2
) for m = 1, . . . , k. However this pattern does not

seem to work for k > 3.
The formulae (9) in turn can be transformed into the period representations of

L(E, 2) and L(E, 3) which differ from the ones in Theorems 2 and 3:

L(E, 2) =
π

16

∫ 1

0

1 +
√

1− x2
(1− x2)1/4

dx

∫ 1

0

dy

1− x2(1− y2)
,

L(E, 3) =
π2

128

∫ 1

0

(1 +
√

1− x2)2

(1− x2)3/4
dx

∫ 1

0

∫ 1

0

dy dw

1− x2(1− y2)(1− w2)
.

An interesting problem is identifying the (linear combination of the) hypergeomet-
ric series involved in the right-hand side of (8) with a linear combinations of 3-variable
Mahler measures. There are related results in [7], although not written hypergeomet-
rically enough.

A crucial ingredient in deducing the integral representation in Theorem 2 is the
hypergeometric form of an Eisenstein series of negative weight given in [4]. Are there
other results of this type?
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