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One has the following 2-cocycle on a® [KP, DJKM]:

IP(EU;EJ.)'—_"‘W(E_;,,EU)=I lf l‘éO, J)O
WE, E)=0 otherwise,

whose cohomology class generates H2,,(af, €)=C.
Another way of expressing this cocycle is the following. Given (a;)€ al , writc
f(z,w)="T a2 'w! and let '
P -
foo=Tagwl fio= % az' w7l
i50 >0
>0 jao

Both f, - and f_, are polynomials, and given
S=Zbu2"'W", (bij)ea.:a ,
we have

'l—’((aij)~(bi_j])= E::SU'—-+S+— —g-+S+-)

w=0

Pulling back the cocycle  via ¢, we geta cocycle ¢¥(y)on 2F which works out to
be .

* _ Jl_j 2
li’.(lp)(d‘-,d*)— _6,'_-1 —6"—(6ﬂ —6n+1),

P, 2)=6; -« J,
$rp) d)=—8; _n—Hilj—1-
Restricting to d' we get cocycles gX{(1) which satisfy the relation
ox()= (60" — 6n+ Nod(y). SN R}

Recall that the cohomology class of p3(y) generates HYAF, @)= C; a less well-
known fact is that H}(ZF,C)=C".

On the other hand, let n:¢—S be a family of genus g compact Riemann
surfaces and let wys be the relative dualizing sheaf of 7. Denote by 4, the
determinant line bundle of wf,s on S. Then, as observed by Mumford [Mu], the
Grothendieck-Riemann-Roch theorem for the family = gives the following relation
between Chern classes:

¢,(A)= (617 —6n -+ 1)c,(4,)- ©2)

One of the main objectives of the present paper is to ex plain the coincidence of (0.1)
and (0.2). In order to achieve thisitis therefore of central importance tousto find a
relationship between extensions of our Lie algebras and line bundles on moduli
spaces.

Let us briefly introduce the moduli spaces involved in our construction. First of
all the moduli space .#, of smooth curves of genus g, then the moduli space ;) of
triples (C, p,v) when Cis a genus g Riemann surface, p a point on C, and v a non-
zero tangent vector to Cat p. Wealso consider the moduli space %" of quadruples
(C,p.v, L), where Lis a degree h line bundle on C and (C,p,v}e .,
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Furthcrmore, we construct an infinite dimensional complex manifold M,
which is a moduli space of triples (C, p, z), where z is a local paramcter at p. Finally,
we construct another infinite dimensional complex manifold %, parametrizing
quintuples (C, p, z, L, [¢]), where C,p,z, Larc as above, § is a focal trivialization of
L at p and [¢] is the class of ¢ modulo non-zero multiplicative constants. Of
course, we have natural projections

MMy, KoM, T T

The first projection induces an isomorphism in second cohomology [actually,
Harer, Ann. Math. 121, 215-249 (1985), has proven that .#; has the same
cohomology as .#, lor g large], the remaining two are homoltopy equivalences.

By using the Kodaira-Spencer deformation theory on the infinite dimensional
manifolds .7, and 3”,_‘ we get natural Lic algebra homomorphisms

d— Vel (4,),
G- Vecl(F,- ),

where d and @ are suitable analytic analogues of d* and 2" in which 4" and " are
dense. The aliovc homomorphisms have the property that for every xe A,
(respectively %, _,) the evaluation map

pd,x:d“’?.‘t("i[g) (P.’J.x:g_’n(‘fzp-l»

is surjective.

From this one gets that the tangent bundle T(.%,) (respectively T(#,_,)) is
canonically a quotient of the trivial bundle M, x & (respectively £,_, x D). Similar
results have been obtained in [BMS].

This allows us to define a canonical homomorphism

pHAD) - 1'%, )=Ext' (T, _,0;, )

{the case of ,7[, is analogous). The definition of g is as follows. Given a central
extension

0—C—P—2—0
we can lift canonically the inclusion

@,.=:Kerpg . & 2

to an inclusion

2.4 %.
For this we use the following two facts:
i) 2,=[2,2.,
ii) 0ly, is the trivial extension.

gﬂfg the inclusion @, ¢, & we can construct an extension of the tangent bundle
(#,- ) whose fiber at x is 2/2.. Thus dualizing and passing to cohomaology
classes we pet . )




MODULI OF HYPER--KAHLERIAN MANIFOLDS II.
(TORELLI PROBLEM)
ANDREY N. TODOROV

INTRODUCTION.

This is the second part of the article
"MODULI OF HYPER--KAHLERIAN MANIFOLDS 1.

In this part we will prove Torelli type theorem for ALGEBRAIC HYPER-KAHLERIAN
MANIFOLDS. We will use the same notations as in the first part. Namely we partially
comactify the moduli space of marked polarized Hyper-Kdhlerian manifolds. Then we prove
that the period map is a proper surjective and etale. Since the period domain is simply
connected we deduce that the period map has degree one on each component of the moduli
space.

The content of this articles is exactly that of #4 announced in
»MODULI OF HYPER--KAHLERIAN MANIFOLDS I”.
The partial compactification that we propose here has a close resemblence with the article

of D. Morrison. See [8].
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#4. TORELLI PROBLEM FOR ALGEBRAIC HBYPER-KAHLERIAN MANIFOLDS.
THEQREM 3. Let

IL: IL_‘m(L;-'l'“'-rbz)
be one of the components of the universal family of marked Hyper-Kihlerian manifolds with
fixed class of polarization
1,1
LeH2(X,Z)NH " (XR)
for every tem('-'”l'“"’bz)

then there exists a universal partial compactification L fL—‘ﬁ? of

(L;71r-'r7b2)
such that
A) 4% CEp
! i
m c
(th.---‘)'bz) . (L;'Vl-n-‘sz)
and for all
tem m
€ (L;"'l"""'bz) \ (L;71""7b2)
=-1

7, (t)=X, is birationally isomorphic to a nonsingular Hyper-Kihlerian manifold, even more

for each tEEU?(LW X, is embedded in PN, where N is fixed.
LILD

.--.7b2)’

B) The period map p:!UE(L. — (L) can be prolonged to a biholomorphic isomorphism:

‘11.--.‘Tb2)

L (A R

PROOF: We will prove A) & B) simultaniously. The proof of THEOREM 3 is based on
THEOREM 1.

LEMMA 4.1. There exists a family iL—*ﬁ(L- ) such that
,11,..,7b2
a) IL C EL
| !

m _
(L;Tll""'bz)c m(L;Tl....‘sz)
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b) The périod map p:‘.m(l_ -+Q(L) can be prolonged to a surjective holomorphic map

;71""7b2)

3:!“2([—;"1----'7[32) —Q(L)

PROOF:

Construction of the family £—T, .
(L'.'-'ll'--.'bz)

def
Let HL =

{ueP(H2(X,Z)®C)| <u,L>=0} and let $—% be the Kuranishi family
of some Hyper-Kihlerian manifold X. From local Torelli Theorem it follows that we may

suppose that

%CQCP(H2(X,2)®C)
Let
The restriction of $—% to STGL we will denote by
(%) @L—biL

So (*) will be the local universal deformations of all Hyper-Kahlerian manifolds for which L is
a class of type (1,1) on each fibre of (x). This fact follows since
<wy(2,0),L>=04L is of type (1,1).
Notice that in #3 we demanded that L to be the class of an imaginary part of a Hodge
metric, which is much stronger condition than L to be just of type (1,1).
From Lemma 3.1. it follows that we can glue all families

{iL—'iL}
by identifying isomorphic marked Hyper-Kidhlerian manifolds for which L is a class of type
(1,1), so we get familiy

X CEp

! |

!D‘!(L;Tlr"r7b2) ¢ m(l—;711°°’7b2)

and all its fibres are non-singular manifolds. Local Torelli Theorem tells us that

ﬁ:m}(L;‘Yl....sz) —’Q(L)

v 1
is an etale map.
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Proof of the surjectivity of p:

In the proof of Tcorem 1 we used the fact that
Q(L)\p(m(L;71""1b2))=v
where V’ is a countable union of analytic subsets.(See 2.5.5.4.).
Let D be a disk in Q(L) such that D[V’={o}={one point}. We suppose that
*_
D _D\{o}cm(l_m'_”%)
From the arguments in #2.6. it follows that over D* we have a family $* —D* that fulfills the
conditions of THEOREM 1. and so is contained in a family $—D, where all fibres are non-
singular manifolds. Clearly for w'l(o)zxo L will be a class of type (1,1). This and the way we
constructed
¥ — M
s"_’ (L;'er"r'fb2)
proves that P is surjective. Q.E.D.
REMARK. Mukai’s elementary transformations
IL_”IR(L;'I'lt-nﬁbQ)

defines on M a non-Houssdorr topology, since over the disk D we can have

(L;‘71.~-.Tb2)
two families %—D & 9—D such that they are not isomorphic but over D*=D\{o} are
isomorphic. (See [7].)

We will construct a new family

IL_‘*m’t(L;'r]l,..,-yl.)z)

such that it induces a Haussdorf topology on Tt .
(L;.rlv-l.sz)
LEMMA 4.2. Let ﬁSL —~I_JL be the family constructed in LEMMA 4.1., where I_JLC‘.’ﬁﬂHL is a
polycylinder, then there exists a holomorphic map
! 1
U, = T
such that:
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A) Let UL={1'.€UL|1'1-’1(t)=)(t be such that L corresponds to a Chern class of a very ample
divisor on X;} and let %; —U| be the restriction of the family §.°L_'UL to Uy, then if ¢ is
the restrition of q-iLto the family %L—>UL. ¢ gives an embedding:
. N
l !
UL = Up
B) for VteUy \Uy 4 =¢, is a hol hi d birational map.
) for YteUy \ L¢L1Xt ¢, is a holomorphic an p
Proof: Let me remind You that in #2.5. we have proved that

AN, )=V
where V’ is a countable union of analytic subsets. So we may suppose that UL\UL=.A is
analytic subset in UL'
The following Proposition holds:
Proposition 4.2.1. There exists an embedding:

. N
$1,: By, CPNXU

Proof of 4.2.1.:
Let {U;} be a covering of U by polycilinders. Since UiCiL=%ﬂHL, where % is the
Kuranishi space, then it is a well known fact that

U. CHilb See 2.5.
i x/pN ( )

i.e. Ui is a polycilinder of maximal dimension transversal to the orbits of the action of

6/Go on Hilbx/PN. (See [6]) )

Since the group of the automorphisms of an algebraic Hyper-Kahlerian manifold X that
preserve the polarization class L is finite, it follows that all the orbits have one and the same
dimension. All these are standart facts. (See [6].) So this local slice exists. From this fact and

the fact that we know that we have a family over Hilb

N’ i.e.
. N X/P
D C Hilb nxP
X/P
]
Hilb = Hib . (See [SGA].
x/pN x/pN (See [SGAL)
page
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We may suppose that UiCHilbx/pN , then it follows that we have:

Il
U.=U

From here and the fact that
{Ui} is a covering of U
we obtain that we have the following embedding

. N

! 1

U, = U,
S0 4.2.1. is proved.

Q.E.D.
Cor. 4.2.1.a, Over %y, there exists a relatively very ample line bundle £ such that
and
L=¢*(0; ©0(1
Oy, ©0(1)

Cor. 4.2.1.b,

We may suppose that ULCHilbx/PN, may be after shrinking the polycylinder ﬁL'

Proof of Cor. 4.2.1.a.: This is a standart fact from Algebraic Geometry. (See [6].)

Q.E.D.
Proof of Cor. 4.2.1.b.:

From the universal properties of the family

9— Hilb
x/pN

it follows from 4.2.1.a. that there exists a map i:UL_’Hilbx/PN'

From the Proof of 4.2.1. it follows that i is locally an embedding. From the construction
of I_JL, i.e. from the fact that ULCSG, where % is the Kuranishi space, we get that all the
points of % corresponds to non-isomorphic Hyper-Kahlerian manifolds, so from here and the

definition of Hilb N 4.2.1.b. follows directly.
X/P
Q.E.D.
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Proposition 4.2.2,

The relative ample line bundle £ over 'EBL—vUL can be prolonged to a line bundle ¥ over the
family %, —U; such that ¢;(£|y )=L for every teT; .
¥y %r, L 1 lxt) Yy L

Proof:: From 4.2.1. we know that we have the following embedding:

N
! !
Uc Up

and that this embedding is given by the relative ample sheaf £ on %y .
Let o(t)eT(%;,,2) & teUyand Hy be the zeroes of o(t) on each XtCPNi.e. H, is a divisor
on X,.
We will need the following Sublemma 4.2.2.a.
Sublemma 4.2.2.a. Let {t;} be a sequence of points such that
a) theUp,

b) nli_rl‘notnzo, where OGUL\UL‘ Then téimo Hi=Ho exists, where H, is a divisor on X, and

[Ho]=L* in Hy _o(X,Z)
where L* is the Poincare dual class of L.
Proof of 4.2.2.a.;
We will use the following THEOREM of Bishop:

THEOREM (Bishop). Let X be a complex manifold and let {Y;} be a family of complex
analytic subsets in X, let on X there exists a hermitian metric {ha ﬁ} such that with respect
b

to this metric for each n
Vol(Yy ) <C(constant),

then we can find a subsegence {t, } such that_lim Y, =Y, exists as a complex analytic
k nk—»oo k

subset in X.
Proof: See [2]. Q.E.D.
First we will construct the so called Harvey-Lawson metric.

Definition. Let X be a compact complex manifolds and let (ha E) be a Hermitian metric on X.
I

Then (h -) we will call a Harvey-Lawson metric if there exists a form of type (1,0)

of

al’o such that

d(0a1’0+w1’1+301’1)=0, where Im(ha B):ul’l
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In the Apendix we will prove the following THEOREM:
THEOREM.. Let X be a compact complex manifold such that:
A) dimcH3(X,04)=1
B) On X there exists a closed non-degenerate holomorphic two form
Then on X exists a Harvey-Lawson metric.

Also in the Apendix we prove that the form

al,O wl’l-}-Bal’I _

8o+

w

defines a non zero class of cohomology [w] in HQ(X,R).
Using these two results we can conclude that on the family
G 0,
there exists a relative Harvey-Lawson metric, i.e.on each fibre there exists a closed real form
w; such that w:'l is strictly positive at each point of every fibre X, where w%’l is the (1,1)
component of w. wy depends on C*° manner on t. Now using this relative Harvey-Lawson
metric and the standart metric on the polycylinder we will get a metric which will fulfill the
conditions of Bishop’s Theorem, indeed it is easy to see that
VoI(Ht)=<Azn'l[w:'l],cl(let)>=J Azn’l[w:'l]/\cl(l.|xt)5</\Qn'l[wt],L>
X
so Vol(H,) is a bounded function on UL' So Sublemma 4.2.2.a.is proved. Q.E.D.
From Sublemma 4.2.2.a. Proposition 4.2.2. follows immediately. Since each divisor on a
complex compact manifold defines a line bundle. Q.E.D.
Proposition 4.2.3. The line bundle £ gives a holomorphic map g:
@L—-—z»PNxUL
l 1

Proof: If we prove that for any point OE?OL there exisits a section
o€l(By,L)
such that
o(0)#0
then Proposition 4.2.3. will be proved.
If oe'EBL, then Proposition 4.2.3. was proved in 4.2.1., so we may suppose that
0€X,, where tEUL\UL.

page
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Sublemma 4.2.3.1. Let o be any point on @'L such that o€X;, where tEUL\UL then there
exists UEI‘(E’“.SL,.E) such that s{0)#0.
Proof: From Cor. 4.2.1.b. we know that

Uy CHilb

so we conclude that

U, cHilb
L X/PN

where Hile/PN is a projective variety, i.e. the component of the Hilbert scheme
that contains U; and I_JL is a polycylynder such that UL\UL is a complex analytic set See
(#2.5.).

We know from [SGA] that
1) Hilb N i8 a projective variety

xX/pP

2) There exists a universal family

W N
?Jl cP ixl-hin/PN

lIilbx/PNEHi]bxle
(See [SGA].)
So from these general results it follows that we have a family over UL’ ‘TJ-->UL such
that
Yc ﬁLxPN
! !
U, =0,

So over §j we have a relative ample line bundle £ such that L restricted to the family
is just L. From the definition of the point o, i.e.
o€X; where tEUL\UL
and the fact that UL\ULis a complex analytic subset in the polycylinder UL it follows that

there exists a sequence of points {xp}€% such that
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Even more it is easy to see that we can chose {x,} in such way that in 3 we have

LM Xn=yo €Y

Since the line bundle L is a relatively very ample line bundle we can find
7eN(W,T) & 7(v0)#£0
Let o be the restriction of ¥ on %L. From Bishop’s Theorem we know that we can
continue o €T(% ,L) to a section &e[‘(‘i’:L,f;).
From the definitions of
0,7 and &

and the definition of a section of a vector bundle we get that

lim _o(xn)=_lim_7(xn)=_lim_&(xn)=7(y0)£O

So Proposition 4.2.3. is proved. Q.E.D.
Proposition 4.2.4.

Let X be a Hyper-K&ahlerian manifold such that on X there exists a line bundle £ such that L
defines a holomorphic map ¢L:X—>PN such that

then £®3(2n-1)

defines a holomorphic birational map. 2n=dimCX.
Proof: Since
dim ¢ p (X)=dimcX=2n
we can apply Bertinni’s Theorem, which says that for generic
cel(X,L)
the divisor of o (0)=Hg on X is a non-singular subvariety. (See [6].)
Repeating these arguments 2n—1 times we will get a non-singular curve
C=HoM..NHy, _;CX
From the adjunction formula we get that
®3(2n-1)
Z ]C-Bl(c
where K~ is the canonical divisor on C, Since 3K~ gives an embedding
C 5g(C)—4 C
CccP
we will get that ¢L has degree 1. So 4.2.4. is proved. Q.E.D.
From 4.2.4. it follows that Lemma 4.2, is proved. Q.E.D.
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# 4.3. THE CONSTRUCTION OF THE FAMILY: 7 : % -

(L;‘Yl.--"TbQ) ’

Proposition 4.3.1. On the family

(L;'T]_.---'sz)

there exists a line bundle £ such that

a) it gives a holomorphic map ¢:
~ N — )
IL P xfﬂ?(thw'sz)
[} !

m m
(L;71-~~-‘fb2) (L;T]_----‘sz)

b) The restriction of ¢ on I —-M

(Livgoonrp.) gives an embedding, i.e.
k] L4 2
N —
x il
lL cP lx (L;""l"""'bz)

m
= (L;‘rl.--r”rb:?)

m
(L;71.--.1b2)

c) for all te ) ¢ restricted to X is a holomorphic and
b2

(L;Tl.--.7b2) \Em(l-;‘rl.--.‘r

birational map on its image in pN.

Proof: Proposition 4.3.1. follows directly from Lemma 4.2. by glueing the line
bundles £ on all families {ETSL _"'ﬁL}

Q.E.D.

Definition 4.3.2. Let
def

— le] ~ N —
EL = ¢(3§L)CP x‘m(Lm'_”sz)
then
Fr:i i, =M
L L (L;Tl.---'sz)

we will call The partial compactification of the universal family of marked Hyper-Ki&hlerian

manifolds

'FL: EL—H’m(L;')’l,,Tb2)
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Proposition 4.3.3. The family

ILZ iL_'m(L;‘yl,,‘sz)
induces on

(L;n.--.7b2)

a Hausdorff topology.
Proof: We need to prove the following Sublemma 4.3.3.1. from which 4.3.3. follows directly.
Sublemma 4.3.3.1. Let

EBL—vU and ‘UL—-»U
be two families of marked Hyper-Kahlerian manifolds over the polycylinder U as a parameter
space 50 that both are diffeomorphically identified with a trivial family UxX and they have the
following properties:
a) All the fibres of both families are non-singular manifolds.
b) For each fibre in both families L is a class of cohomology of type (1,1), where L€H2(X,Z) is
a fixed class of cohomology
c) There exists an open and everywhere dense subset U°CU such that the restrictions of the
families

$L—+U and "'UL—'U,

%7 —U° YF —-U°
are isomorphic as families of marked polarized Hyper-Kihlerian manifolds and for each fibre in
both families over U®, L is a Chern class of a very ample line bundle on this fibre.
Then for each t€U\U® there exists a birational map
¢ Xy =Yy
such that
(¢t)*(f’t)=!‘t
where L, is the line bundle that corresponds to the class L in both X and Y,.
Remarks.
a) The existence of the line bundle £; on both X; and Y, is proved in (4.2.2.)
b) For each teU° we have a biholomorphic map
Py Xy =Yy
which preserve both the marking and the polarization class L. From here and using the C®

trivializations of the both families we conclude that
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(6" H2(X,2)—~H2(X,7)
is just the identity map, i.e. (¢¢)*=id

Proof of 4.3.3.1.;

Minilemma 4.3.3.1.a.

Let {ty} be a sequence of points such that
&) tn GUO
b) nimwtnztoEU\Uo

For teU° let Iy CXxY, be the graph of the biholomorphic map between
stated in condition c) of 4.3.3.1., i.e. ¢, preserve the marking and the polarization class.

Then

n ll;moo Ftn =rt0

exists as complex analytic subset in Xtotho.

Proof: From the THEOREM proved in the Appendix we know that on both Xto and Yto

there exist two d closed real two forms
Wy, and '

such that their (1,1) components
wYO(l,l) and wxo(l,l)

with respect to the complex structures
Xto and Yto

are positive definite at every point.

By continuity arguments we may suppose that both (1,1) components of wxo(t) and

wy (1), wy (11)(8) and wy (1,1)(t)

are positive definite at every point of X4 and

Yt for all teU. .

Let 5 be a positive definite (1,1)-form on U. The collection of (1,1) forms

iy wy (L1)(E) and wy (1,1)(t)

defines a Hermitian metric H on

BrxyVL
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Let
H be the (1,1) form on B x; Yy,
associated to the Hermitian metric H. Then the pullback of H to the submanifold
is equal to
wYO(l,l)(t)+uxo(l,l)(t)
where for notational simplicity we use
wYO(l,l)(t) and wxo(l,l)(t)
to denote their pullbacks under the projections from X;xY, to X; and Y respectively.
We want to compute the volume of (Ftn) with respect to
H on %LXUCUL
and to show that it is bounded as t; —ty so that we can apply Bishop’s Theorem to conclude

the convergence of the subvariety

Ftll in O’BLXUCUL as tn —*to.
*} Vol(I'.})<C, where I', is the graph of the biholomorphic map ¢, for VteU.
t t t

Proof of (*): It is easy to see that:
Vel(Ty)=] A2 (¢ (wy (1) +uy (1,1))
Xt
Let

(1) 1(6) 1 [ A28 (g (Do (0)
X4
We will prove that the following inequalities hold:
Vol(T', ) <f(t)<C
First we will compute
AZR (h,(2,0)+h(1,1)+5(2,00)

where
def TR
(8" (wy (DFwy () Fhy(2,0)+h(1,1)+h,(2,0)
where
h¢(1,1)=ImH and H is the Hermitian metric on X xY,

defined as above.
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Clearly

2n

2) A”(ht(2,0)+ht(1,1)+ht(2,o»=k2 (A¥hy(2,00)A(ARRy(2,0)A(A2" = 2R Ry (1,1))
=1

15

From the following Lemma:

LEMMA. If 5 is a primitive form of type {p,q), then

(p4+a)(p+g-+1)

RO D s

k)= —l——
= (Gn-pq)

where * is the Hodge star operator. See [3].
we get that
3) #(A¥ny(2,0)=(AFhy(2,0)A(A%~2hy(1,1))

where x is the Hodge star operator with respect to

ImH=h;(1,1)
From (1), (2) and (3) we get

(4) 1(6) 4 [ AB((60)* (wy (D1+wy (D)=
X4

2n
=J S (AFR 2,0 A (AR (2,0) A (A2 2K (1,1)))=

k=1
Xy

2n K 9
=kZ I ARR(2,0)]|24Vol(Ty) >0
=1

From (4) we get that
(5) Vol(T'y) <i(t)

From the definition of {(t) it follows that since
(¢)*=id

f(t) is a continuous function on U and so it is bounded. From (5) we obtain that
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Vol(T')<C VteU
So (*) is proved.
Q.E.D.
For a subvariety Z of pure codimension in a complex manifold X, we denote by [Z] the
current on X defined by Z. Now we invoke Bishop’s Theorem (See [2]) and conclude that the

current [['; ] converges weakly to a current on X; xY, of the form
n o " lo

k .
.Elmi[rl]

where m, is a positive integer and T is an irreducible subvariety of complex dimension 2n on
Xtotho.
So Minilemma 4.3.3.1.a. is proved.

Q.E.D.
The end of the proof of 4.3.3.1.

For any closed 4n-current © on X xY,, define a linear map
O4:H*(X,,C)—=H*(Y,,C)
of cohomology rings as follows. A cohomology class defined by a closed p-form & on X, is
mapped by ©, to the cohomology class defined by the closed p-current
(Pra)e (OA(pr,)*a) on Y,
where pr; and pr, are respectively the projections of X xY; onto the first and the second
factors and (pr;), and (pry)* mean respectively the corresponding pushforward and pullback
maps. By reversing the rules of X; and Y,, we define analogously a linear map
0.:H*(Y,,C)—H*(X,,C)
The map [Ftn]* defined by the 4n-current

[Ftn] in Xt"thn

clearly agrees with the map from H*(X,C) to H*(X,C) defined by
¢tn:th “"’Ytu.

Since ¢, defines the identity map on H?(X,l), by passing to limit along the sequence {tp} we
conclude that)

k .
it
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is the identity map on AHQ(X,Z)(exterior algebra of HQ(X,Z))
Let
wo(2n,0)=A"w 2,0
0(2n,0) X, (2,0)

. Q. .
be the non-zero holomorphic 2n form, which has no zeroes on Xto' Since

k .
(> my (e
i=1
is the identity map on A“HQ(X,C) it follows that the 2n-current

k .
(Prz)*(z mi[Fl]A(prl)*w0(2n,0))
i=1

on Yto(which is automatically a holomorphic 2n-form on Yto) can not be zero. Hence there
nust be some I’ which is projected both onto Xto and Yto' There can only be one such N

and moreover, mj=1 and its projections onto Xto and onto Yto are both of degree one,

because both

k . k .
(E mi[l‘]])* and (Zmi[Fl])*
i=1 i=1

must leave fixed the class in H°(X,C) which is defined by the function on X with constant

values. So IV defines a birational morphism

¢t0:xto —thO

since
o o
and the projection on both factors has degree 1. On the other hand since
n llvmm¢tn=¢to

and the fact that
(#4,)*=id, where (¢tn)*:H2(X,2)—¢H2(X,Z)

we obtain that

(¢, )*=id, where (¢t0)*:H2(X,Z)—->I{2(X,Z)

So since

*(L)=L= *e =4
(i) (LI=L= (8" 2y J=ty,
where
L and £
Xto Xto
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are the line bundles that corresponds to the class L in both Xto and Yto'
So Sublemma 4.3.3.1. is proved.
Q.E.D.
In order to finish the proof of Proposition 4.3.3. we need to show that

(4.3.3.2.) LEMMA. Acht (v y (& is the diagonal)

m
;‘Tl,...‘rb2)x (L;'rl,..,-ybz
is closed in the topology induced by the family

7:X—M
i - (L;Tlr“r7b2)

Proof of (4.3.3.2.):

We will consider two cases,
First case.
ucm
< (L;71.---’1b2)
First notice that if
Uucm
= (L;"’l""7b2)
and

Ey;—U & Yy—U

are two families of marked polarized Hyper-Kéhlerian manifolds then they are isomorphic, i.e.
there exists an isomorphism between those two families which preserve the marking and the

polarization. This follows from the universal properties of the family constructed in #3

x
Indeed let c€U and X, and Y are the fibers in
and they are isomorphic as marked polarized Hyper-Kaihlerian manifolds. Let
$0:X0—Yo
be an isomorphism that preserve the marking and the polarization class. Since the polarization

class

Len?(x,2)
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defines a line bundles

{tyh 2
on both families

%U—rU & CUU —U
and those two line bundles

{£
gives the embeddings:

%, cPNxU & Y cPNxU

| T 1

u = U U = U
Since ¢, preserve the line bundles defined by the class L, then it follows that we may suppose
that ¢o i1s induced by

g€PGL(N).

This is so since we may sﬁppose that

vl,2

o7ty 1lx, & Lo 2=ty 2ly,

gives embeddings of X, and Yg in one and the same PN,

Remember that we may suppose that both families are mapped to the universal family
9 — Hilb

x/pN

i.e. they are obtained from two different imbeddings

i,:U CHilb and i,:UCHilb
‘ x/eN ? x/PN

where i;{U) and i,(U) are transversal to the orbits of the action

PGL(N) on Hilb
) x/PN

From here we get that there exists a holomorphic map
g:U—PGL(N)
such that g induces an isomorphism between the marked polarized Hyper-Kihlerian manifolds
So the First case of 4.3.3. is proved.

Q.E.D.
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Second case.

Let
guﬁU and “TJU-+U

be two families such that
y) 79

Ucm(L;Tl...,1b2) and Uﬂ(m(L;'rl....‘er)\m(L;vl....‘7b2

and both are subfamilies of
$ —’m(L;'y]_ll“sz)

then we must show that they are isomorphic.

Let
o def
U - Un(ﬂﬁ('—;‘rl.--ﬂbz))

and let
% —U° and 9Y—U°

be the restrictions of
§U—»U and ‘l_JU —U

on U°.
Notice that
% —U° and Y —U°
are two isomorphic marked polarized families of Hyper-Kahlerian manifolds, i.e. there exists

g2:U° —PGL(N)
such that g induces the isomorphism between those two families. This is so since we may

suppose that
scPNxU® and YcPNxy®
l 1 } l
UO = UO UO = UO

From the construction of the partial compactification

5 ﬁm(";"lw-v‘sz)

it follows that
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EFcPNxU and JcPNxU

i | | |

Uu=u Uu =1U

Let me just remind You that both families $— U and 8§ — U are obtained in the following

way: Let

% —U and °U—>U
be two families of marked Hyper-Kéahlerian manifolds and all its fibres are nonsingular and in
each fibre L is a class of type (1,1). We proved that on % and 9 there exist line bundles (11)
and (£,) such that
a) cl(illxt)———L and cl(illyt)=L for all teU

b) The line bundles (.El) and (12) give a holomorphic maps

G.B—vPNxU and cT.|-+PNxU

i ! l l

Uu=u U =1U
such that for each t&U° X and Y, are embedded in PN and for teU\U® the
restriction of those two bundles on X; and Y, gives a holomorphic birational maps.
Applying 4.3.3.1. to the this situation we obtain that

g%:U% =PGL(N)

/

can be prolonged to
g:U—=PGL(N)
Indeed let {t;} be a sequence of points in U® such that

- —_ ) o]
lll_ngnootn_tc,EU\U

then

nimwgn=go

where g, is a birational map between
such that

(go)"'(f'ghgt )=11|xt
o o
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From here it is easy to obtain directly that gg induces an isomorphism between

Xto and Yto
i.e,

£o GPGL(N)

This is so since both )_(to and ‘71;0 are submanifolds in PN and go preserve the standart line
bundle OPN(I). So from here we obtain that the holomorphic map

g%:U° -PGL(N)
can be prolonged to a map

g:U—PGL(N)

and so g induces an isomorphism between

gCPNxU and ‘TJC,PNXU

1 | ! |
U= U U =10
This proves 4.3.3.
Q.E.D.
LEMMA 4.4, The period map P:M,, | — (L) is a proper map.
D L
( !71-"v7b2)

PROOQF: The proof is based on the following criteria due to Grothendieck. (See [SGA]):
{*) Suppose that

fiIX—=Y
is a holomorphic map between two complex manifolds. Let
D={teC| |t|<1} and D*=D\{O}
Then the map f will be a proper one if for each holomorphic map g:D—Y there exists a
holomorphic map
h*:D* =X
such that the following diagram is commutative one:
D*C D

h* 1 g

x5y

and h* can be prolonged to a map h:D—X such that the following diagramm is a commutative
one
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f

X =Y
hl g
D=D

We need to prove that if
¢:D—=(L)
is any holomorphic map such that the following diagram is commutative:
D* cD
| T
= p
m(L;Tl...,'rbz) - Q(L)
Then ¥* can be prolonged to a map
,'b:D_'m(L;‘T]_'“u‘sz)

such that the following diagram is commutative one:

D = D
bl T

P P

!m(L;"rl.--.'rbz)_* Q(L)

(Without loss of generality we may suppose that DCQ(L))
Since we have a family
F_®,
(Lirgormn,)
the map ¥* will induce a family
w*:g*_._D*
On the other hand the period map
p*:D*—=Q(L)
can be prolonged to a map
p:D—=Q(L)
iff the monodromy of the family
Tl)*:g*"—’D*
is the trivial one. (See [4].) So ¥*:&*—-D* has a trivial monodromy. From THEOREM 1 we
deduce that the family ¢*:%* —D*can be embedded into a family ¥:%—D, where all fibres are
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nonsingular Hyper-Kéahlerian manifolds. From 4.3.1. it follows that there exists a map

¢L:E"o—>PNxD
! l
D= D

such that
a) qﬁi is an embedding, where 45{ is the restriction of ¢L to $* —D*, i.e we have
¢%:%*CPNxD*
1 !
D*= D*
b) ¢LIXO:XO—>PN is a holomorphic and birational map. From the universal properties of
s—’m(L;711-'|7b2)
and the way we constructed
I
- (L;‘Yll*".'b )
2
we obtain the map

¢:D—+M(L;71,."‘yb2)

with the desired properties, i.e. 3 is a map such that the following diagram is commutative:

D = D
¥l RT
& P
m(l‘;"fl'“'"bz)_’ Q(L)

This proves that the map P is a proper map.

Q.E.D.
The end of the proof of THEOREM 3.

Since
Q(L)=S0(2,b,; —3)/50(2)x50(b;—3)

is a bounded domain and so it is simply connected. On the other hand

P
m(l_;.’l'”"rbz)—' Q(L)
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is a proper surjective and étale map between complex analytic manifolds, so p is an
isomorphism on any of the components of the moduli space of marked polarized Hyper-
Kahlerian manifolds.

Q.E.D.
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APENDIX.
DEFINITION. Suppose that X is a compact complex manifold such that:
1) On X there exists a closed holomorphic two form wy(2,0) such that at each point
x€X wx(2,0) is a non-degenerate skew symmetric matrix, i.e. everywhere wy(2,0) has a
maximal rank equal to ‘2n=dimCX.
2) dimH2(X,0)=1
3) dim X >4

then X will be called a holomorphic symplectic manifold.

TEOREM. Let X be a holomorphic symplectic manifold, then X admits a real closed two form

w=w2’0+w1’1+w0’2
such that
] i i '
a) w2’0=8a1’0, wo’"zc‘)al’

1,1, L . .
b} w " is positive definite at each point x€X.

PROOF:
The proof is based on the following Theorem of Harvey and Lawson:

TEOREM. (See [5].) Suppose that X is a compact complex manifold, then X admits a real

closed two form

w=w2’0+w1’1+w0’2
such that
2) w2’0=8a1’0, w0’2=801’6

1,1, - ) .
b) w’" is positive definite at each point x€X

if and omnly if X does not support a non-trivial, d-closed current which is the bidimension (1,1)

component of a boundary.

We need to check that if X is a holomorphic symplectic manifold then X satisfies the
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conditions of the Theorem of R. Harvey and B. Lawson Jr.

Let

— g ,0
,u—ﬁZp a/\g.]
be an exact real (1,1) positive current on X. Since on X we have a closed holomorphic form
wx(2,0) which is non-degenerate at each point x€X we get immediately from g an exact (2n-
1,2n-1) current 5 in the following way:
n=uL (AN TR (2ONAA" 1wk (2,0)
Definition of w% (2,0).

Since w;((2,0) is a non-degenerate closed holomorphic form, we can repeat the
arguments of Darboux Lemma (See [1].) and we will get a local coordinate system
I)
(zl,...,zn,...,z“n)

such that locally

I . .
wy (2,0) =Z dzi Adz'+"
then i=1

w3 (2,0): 0 9
x 1; o' 1+n

Let
n=dj*
Clearly
a=nl( An(wx(2,0)) A(AT (wx(0,2))=

4G* LA™ (g (2,0)) A(A™ (wy (0,2))))=dj
where « is a real two form of type (1,1) with distribution coefficients and j is also a real one
form. We can write
i=8+B
where £ is a (1,0)-form on X. Since « is of type (1,1) it follows that
a=0 f+88 and 8 F=0
So from

d8=0
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it follows that

Proposition 1. If X is a holomorphic symplectic manifold, then

H'(X,04)=0
if dimeX>4.

Suppose that dimC Hl()(,CiX )>=1.

Let HI(X,OX)=CO’, where a is a form of type (0,1) and
da=0
Consider the map:
¥ a—a A(AT LG Z0)A(A Wy (2,0))
Since wy(2,0) is a non degenerate holomorphic two form it follows that ¢ gives an
isomorphism between
H'(X,0y) and H2"1(x,021)
From Serre’s duality we know that the pairing
Hl(X,04) x B2 (x,02")—~cC
given by
(a,ﬁ)—+J. anhf
X

is a non-degenerate. On the other hand « generates Hl(X,OX) and

: H2ﬂ-1(x,92“)&CaA(A“'lwx(Q,Oi/\(/\nwx(2s0)))
Since

aAaA(AP 1O O A (AT Wy (2,0)))=0

we get a contradiction with Serre’s duality. So if X is a symplectic holomorphic manifold we

have two possibilities in case of dimX>4; either '

HY(X,0y)=0 or dimcH'(X,04 )>2.
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Case 2.
dimH'(X,05 )>2.

Sublemma. Suppose X is a holomorphic symplectic manifold and dimeX>4. Let
a, BEH!(X,0)

then
aAB=08u

where u is a (0,1) form.
Proof: Clearly
anBEHZ(X,0y)
Since
dimeH2(X,0y )=1 and H2(X,05)=Ciy (2,0)
it follows that
cr/\ﬂzcm +dp

So we need to prove that ¢c=0. Clearly we have

aABAaAB= 0=cZA2 wx( 0) +clpAw (20i+8,u/\6y
From

dimcX >4
it follows that

IaAﬂAaA,@A(A“'QuX(z,OSA(A“wx(2,0))=
X

C2J(A“J—5x(2,o )A(/\nwx(2,0))+cjE,u/\(/\n'lw_jx(ZO JA(APwy (2,0))+
X X

Iﬁ,uf\ﬁ;m( A"'2wx(2,05)A(A"ux(2,0))=0
X

From
B AN G T2 A(A wy (2,0)=d (kA (AP L g (Z0) A(A R wy (2,0))

F(uAB pA(AT 205 (20)) A(ARwy (2,0)=
A(uAB pA (AT 2L R0)) A(AR wy (2,0))
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and Stoke’s Theorem we get that

.5,11A(/\n'lwx(2,0))A(Anwx(Q,O))zo
X

. B AT pA(AY 205 (20) A(APwy (2,0))=0
So X

c2j(An__wx(2,0))/\(/\nwx(2,0))=0
X

From the fact that wy(2,0) is a non-degenerate form it follows that

J(A“wx(2,0§)/\(/\“wx(2,0))>0
X

So from

CQJ { /\nwx(2,0))/\( A“wx(Q,O))=0=>c=0
X
Q.E.D.

We know already that every element of Hzn'l(X,QQn) can be expressed as

BAA™ o B0) A(A Wy (2,0))
where ﬁGHl(X,Ox).

By Serre’s duality the pairing
(BN (AT L TET ANy (2,0)= ] a AP AN L O A (A wy (2,0)
is a non-degenerate belinear map. On the otherMand since
aAB=0pu
we get that
aABA((A" Ty BN A(A wy (2,0))=
duA(A L ox RO A(A Wy (2,0))
From Stoke’s Theorem we get
| anBAAT TR AN Ny (2,0))=
X
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|| duACAm T O A Ay (2,0))=0
X
So this is a contradiction to Serre’s duality. This proves that Hl(X,Ox)=0.
Q.E.D.
Proposition 2. Suppose that 5 is a positive (1,1) current and n=dj*, then n=0.

Proof: Let
n=dj*

a:nJ.(An(wx(QaO))A(An(“’x(o’?))=

d(* LA (wy (2,0)) AN (wy (0,2))))=dj
where « is a real two form of type (1,1) with distribution coefficients and j is also a real one
form. We can write
j=B+8
where £ is a (1,0)-form on X. Since a is of type (1,1) it follows that
. a=0p8+8f and §5=0
So from
88 =0
it follows that
BeH'(X,05)=0=2F=00
where ¢ is a (0,0) current on X. Hence
a=4-108 1, where r={-1(7 —0)
The positivity of the (1,1) current on X implies that r is a plurisubharmonic function on
X. By the compactness of X and the maximum principle we get
T=const
So
a=8dconst=0
So =0
Q.E.D.
Proposition 3.
Suppose that 5 is a positive (1,1) current and 5=(dea)(1,1)(i.e. 5 is a (1,1) component of a
boundary), then =0.
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Proof: The existence of the closed holomorphic two form ux(2,0) which is a non-degenerate
form on X shows that we may consider 1 as a form of type (1,1) on X. Since

dn=0 and n=5a1’0+8af:>6501’[):—-56&1’0_

3

and the regularity of the & operator we get that da is a holomorphic form on X, It is

easy to see that if 801’0;&0, indeed

J8&1’0/\m/\(An'l(wx(2,0))/\(A“'l(wx(0,2))>0
X

On the other hand we have
a(a0 A0a O ACAT (wy (2,0))A(A L (wy (0,2))=

92" A0 A(AT L (o (2,0)) A (AP (i (0,2))
From Stoke’s Theorem it follows that
< J' 6a1 0

Jilo_o

X

PAAT 0y (2,0) A(AT L (wy (0,2))=

AP (wy (2,00) A (AP (wy (0,2))=0

So we get a contradiction with da#0. So Ja=0.

Q.E.D.
1,0
We know that 8o’ =0 and so
n=do
From Proposition 3 we obtain that
n=0
So the conditions of The Theorem of Harvey and Lawson are fulfilled for holomorphic

symplectic manifolds.

Q.E.D.
Cor. The form w defined in the THEOQOREM defines a non-zero class of cohomology [w] ‘in

H2(X,R).
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Proof: From the computations on page 23 formula (4) it follows that
2 o 1Ak L2
J A n(w):Z | A® w]|“+Vol(X)

where the Vol(X) is defined with respect to the metric wl’l. On the other hand if
w=du

then from Stoke’s Theorem it follows that

[@n(aBLwp=] @w a2 @p)=o
X X

So [w]#0 in H2(X,R).

Q.E.D.
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