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In [W] Witten posed the following question:

Can one deform the vector bundle Ty @Oy to a stable vector bundle whose restriction
to all rational curves is nontrivial?

Here Tx is the tangent bundle ol a Calabi-Yau threcfold X and Oy is the trivial
line bundle on it. He showed that such deformations are of significance in string
theory (existence of flat directions in the superpotential). This problem and certain
generalizations of it were also formulated in problem 77 in Yau’s recent problem list
[Y.

This paper grew out of the attempt to understand the problem in algebro-geometric
terms and to use the available techniques in deformation theory to derive some first
results in special cases. In particular we prove:

- Let X be embedded as a hypersurface and assume that it can be deformed in
the ambient space to another Calabi-Yau threefold X' not isomorphic to X with
XNX' #0(eg X isacomplete intersection). Then Ty & Ox can be deformed
to a stable bundle (1.3).

- For the generic quintic X' C Py there exists a stable deformation of Tx @ Ox
whose restriction to all lines, i.e. rational curves of degree one, is not trivial (3.3).

For a fixed (—1, —1)-curve on a quintic it is easy to find a stable deformation of Tx ®Ox
with non-trivial restriction to this curve. Since Clemens’ conjecture [C] is still open,
we can only prove

- For any quintic and a fixed rational curve Py — X C Py of degree< 20 the
bundle Ty @ Oy admits a stable deformation with non-trivial restriction to this
curve (3.3).

*Max-Planck-Institut fur Mathematik, Gott['ried—Claren-S‘tr. 26, 53225 Bonn 3, Germany, e-mail:
huybrech@mpim-bonn.mpg.de




The infinitesimal deformations of Ty @ Ox are parametrized by the vector space
HY (X, End(Tx & Ox)) = H'(X,End(Tx)) & H'(X,Qx) ® HY(X, Tx).

The spaces H'(X,Qyx) and H!(X, Tyx) have been intensively studied in the famework
of mirror symmetry, whereas, in general, nothing seems to be known about the third
space H(X,End(Tx)) on the right hand side. The ”"worst” possible structure of the
deformation space of Ty & Oy could be the union of three subspaces realizing the three
components as their tangent spaces.

We try to attack the problem by introducing a new vector bundle F. Choosing an
ample line bundle £ on X, or a K&hler metric w, we can define a vector bundle F' by
means of an extension

0 —=0x — F—Tx —0

given by ¢;(£) € H'(X,Qx) (resp. [w] € H'(X,Qx)). If F is associated to £ it admits
also the interpretation as F' = D!(L), the sheaf of diflerential operators of order one
on L. The above sequence in this situation can be identified with the symbol sequence.
The vector bundle ¥ can be considered as a natural bundle associated to the Kahler
manifold (X,w). It can also be regarded as a deformation of Ty @ Oy and, in fact, any
neighbourhood of Ty @& Oy in its deformation space contains F'. In particular, small
deformations of F' also represent deformations of Ty @ Oy itself. Then we define a map
=: Def(F) — Def(X) between the space of deformations of F' on X and of X itself
whose tangent map £ : HY(X, End(F)) — H'(X, Ty ), under an additional assumption
(9), is shown to be surjective. For complete intersections Z itself is surjective. This
excludes the possibility for the structure of Def(Ty @ Ox) conjured up above. Easy
arguments in deformation theory (cf. Appendix B) show that Ty & Oy admits a stable
deformation if the image of = is of positive dimension. The surjectivity of £ says that
Tx @& Oy infinitesimally deforms to a stable bundle.

An analogous problem was treated in [Ti2] in the case of a Fano n-fold- which is
Kahler-Einstein. Tian showed that the extension

0 >0y —2F —0Ty —0

given by ¢ (X) admits a Hermite-Yang-Mills metric. Such a metric cannot exist in
the case of a Calabi-Yau manifold but after deforming the holomorphic structure of
F'. This is essentially the above question. We will not approach the problem {rom the
analytic side.

In §1 we consider the special case of a Calabi-Yau threefold deforming as hypersurlace.
Here F is described in terms of the sheaf of logarithmic differential forms. §2 is devoted
to the study of the deformations of Ty and Ty @& Ox in the general case. The results
will be applied to complete intersections and compared with §1 in the case of a quintic
hypersurface. The problem of how to control the restriction of deformations of Tx ®Oyx

2



to rational curves contained in the Calabi-Yau manifold is dealt with in §3. The
appendices collect some facts about the deformation theory of manifolds and bundles
which are used in §§1-3. Some of the results there might be of independent interest
(A3, B.1, B.7). For readers not familiar with deformation theory Appendix A may
also serve as an introduction.

Notation: A Calabi-Yau threefold in this paper will be a (mostly projective) three
dimensional manifold X with trivial canonical bundle and vanishing F'(X,Ox). Fre-
quently, we will use the vanishing of H*(X, L") (i = 1,2) for any ample line bundle £.
This follows from Kodaira’s vanishing theorem.

1 Logarithmic differentials

We start out with an arbitrary smooth manifold Z and a smooth irreducible hyper-
surface X’ C Z. The sheafl Qz(X’) of differentials with logarithmic poles along X' is
locally generated by dz,/x,,dz,, ..., dz,, where (21, ..., z,) is a local chart and z; =0 is
the equation for X’. The sheal Q4 (X’) is in fact locally free and [its into the following
two exact sequences.

00— Qz — Qz()\”) — O,\'J — 0 (1)

0 — Qz(X") — Qz(X) — Qx(X')— 0 (2)

The homomorphism Qz(X’) — Oy is locally given by ¥ fide; — (2 - fi)|x:. The
surjection in (2) is by definition the canonical homomorphism Q7 — Qz|x — Qx:

twisted by Oz(X’).

Let X be another smooth irreducible hypersurface in Z. How do the sequences (1)
and (2) restrict to X7 We treat the cases X = X’ and X # X’ separately.

First, let X = X’'. Then (1) ® Oy splits into the two short exact sequences
0 — Ox(~X) — Qz|x — Qx — 0 (3)
and
0 — Qx — Qz(X)|x — Ox — 0. (4)

Use Torz(Ox,0x) 2 Ox(—X) and the local description of the homomorphism ; —
Qz(X'). Analogously, (2) ® Oy splits into

00— QJ\' — Qz(}(ﬂ,\' — O)( — 0 (5)
and

00— OX — Qz()\’)L\' — QX(X) — 0. (6)
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Obviously, (3) and (6) @ Ox(—~X) are just the dual of the normal bundle sequence of
X C Z. It is also easy to verily, that (4) and (5) as extensions of Ox by {1x are given
by ¢, (Ox (X)) € H'(X,Qx) (up to multiplication by non-zero scalars).

Now, let X # X’. Then the restrictions of (1) and (2) to X remain exact (use
Torz(Ox:,Ox) = 0). They fit into the commutative diagram

0 0
1 1
00— Qz|x —_— QZ(X’”X e O,\'ﬂn)\' — 0
=l ! !
00— Qzlx — QzX)lxy — Qz(X)xnxy —0
b 4
Qu(Xx —  Qo(X)|x
1 +
0 0
Equivalently, we have
0 0
L 4
0— Qz|x —  Qz(Xxy — Oxpnx —0
1 4
Qz(X)lxy = Qz(X)Ix
{ +
0 — Oxinx — Qz(X)ixnx — Qx(X')|xnx — 0
l 4
0

In particular, Qz(X')|x is isomorphic to the kernel of the composition Qz(X")

Qz(X)|xmx = Qx(X')

x —

xnx. As X' approaches X the second homomorphism degen-

erates to the restriction to X’ N X of the canonical homomorphism 2z — Qx twisted
by O(X’). For this to happen, O(X) and O(X’) must be isomorphic. This gives rise
to the following definition.

Definition 1.1 The sheaf G(X', X)) on X is defined as the kernel of the composition

Qz(X)x — Qz(X)xnxy — Qx(X)|xnx.



G(X', X) replaces Qz(X")

x in the diagram above at the limit point X’ = X. Using

0

Qx
4

0— Ox — Q(X')[x — (X))  —0
=l il

0— GX,X) — Q2z2(X)|x — Qx(X)|xnx —0
'
0

we can write G(X', X) as an extension
0 — Ox — GX',X)— Qx — 0. (7)
In particular, G(X', X) is locally free. Everything together we have

Proposition 1.2 Let L be a line bundle on Z and f, [’ be sections of L defining two
distinct hypersurfaces X', X C Z. Then there exist two families of vector bundles {G,}
and {G}} on X with the following properties:

i) Gy =G fort £ 0.

i) Go and G} are the extensions of Qx by Ox given by §(f'|x) € H' (X, Tx) and of
Ox by Qx given by c;(Ox(X)) € H'(X,Qx), resp. Here & denotes the boundary
homomorphism HO(X,O(X)) = H'Y(X, Tx).

Proof: () for all ¢ is defined as Qz{X;)|x, where X; is the hypersurface given by
tf' + (1 —t)f. We define G, as the kernel of the surjection

QZL\' —» Qx.|x —r QX,lX‘nX

twisted by O(X’). In particular, G = Qz(X)|x, Go = G(X',X) and G, = G| for
t # 0. It remains to prove that (7) is the extension given by §(f'|x). First, we dualize
the diagram above and obtain
00— 7:\'(—‘\”) —_ Tz(—.x’)lx — Ol\' — 0
4 4 =4
0— Ty — GX,X) — Ox —0

Thus the extension class 1 ol the second sequence is given by the image of 1 €
5(=X") S
H°(X,Ox) under H®(X,0x) — HY X, Tx(-X")) = HYX,Tx). The commu-

tativity of the diagram

5(=X")
HYX,0x) —— H'Y(X,Tx(=X))

Sl -flL
HOX,0x(X) S HV\(X, Tx)



implies 6(f'|x) = 7. )

Let us apply this to the case of Calabi-Yau manifolds. Let X be a three-dimensional
Calabi-Yau manifold. As explained in the introduction, we try to obtain stable defor-
mation of Ty @ Ox by deforming a non-trivial extension

0— Oy —=F—Ty —0

given by a Kahler class w € H'(X,Qyx). As Ty and Oy are stable vector bundles of
the same slope the bundle F'is semistable. Moreover, in order to deform F to a stable
bundle it is sufficient to find a small deformation I of F' with H%(X, F’) # 0. Here we
use the fact that O has no deformations ({or this kind of arguments cp. Appendix B).

Corollary 1.3 Let X be a Calabi- Yau manifold as a hypersurface embedded in a mani-
fold Z such that

- 0# a(O(X)Ix) € H'(X,Qx)
- 81 HO(X,O(X)

x) = HY(X,Ty) does nol vanish.
Then Ty @ Ox deforms to a stable bundle.

Proof: Choose f' € H°(Z,0z(X)) such that 6(f/|X) # 0 and apply 1.2. Consider G¢*
as a deformation of F'. Since H°(X,G5) = 0, we have H°(X, (%) = 0 for small ¢ # 0.
Hence, for small ¢ # 0 the bundle G7 is a stable deformation of F'. a

Remark: o) In most of the cases Z will be a "ano fourfold with K = Oz(X).

i) Examples of Calabi-Yau threefolds satisfying the assumptions of the corollary are
all complete intersections in products of projective spaces.

i) From the proof we can also see that the rank four bundle z{X;) on Z is stable
with respect to Q(X). This has the flavour of [Ti2} Th.5.1.

Note that the two non-trivial extensions
0—Qxy — F"—0x —0

and
0 — Oy — GX,X)— Oy —0

both define simple vector bundles. Under the assumptions of the corollary they define
non-separated points in the moduli space of simple bundles. In this vein, Ty @& Ox
deforms to a stable bundle if two extensions of the above form define non-separated
points in the moduli space of simple bundles. By a result of Norton [No| lor non-
separated points there exist non-trivial homomorphisms ¢ : G(X', X) — F~ and ¢ :
F* = G(X',X) with oo = 0 and £ o = 0. These, obviously, always exist for
extensions of the form above, e.g. take the composition G(X', X) — Qy — F™ and
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I* = Ox = G(X',X). But in general the existence of such homomorphisms is not
enough to conclude that they define non-separated points in the moduli space. We
want to emphasize once more that the stable deformations of Ty @ Ox we obtained
are given as Qz(X')*

x, where X’ is a non-isomorphic delormation of X. In Section
2 we will elaborate this idea and explain how deformations of X itself induce, at least
infinitesimally and under an additional assumption, stable deformations of Ty @& Oyx.
It seems that under this additional assumption the unobstructedness of a Calabi-Yau
manifold helps to prove the existence of stable deformations of Ty & Oy.

2 Deformation of 7y and Ty & Oy of a Calabi-Yau
threefold

Since a Calabi-Yau manifold has unobstructed delormations it is ouly natural to ask if
vector bundles living on the manifold have special deformational properties, too. The
most natural bundle on any manifold is the tangent bundle. For a Calabi-Yau manifold
it is a stable bundle of degree zero [Mi], [Ts]. The tangent bundle of a K3-surface,
which could be considered as a two-dimensional Calabi-Yau manifold, has unobstructed
deformations. This is due to the vanishing of H*(X,Endy(Ty)) = HO(X, Endo(Tx))".
Almost nothing seems to be known about the deformational behaviour of Ty for a
Calabi-Yau threefold. In [EH] and [DGKM] the dimension of H'(X,&End(Tx)) was
computed for a quintic hypersurlace, it is 224 in this case, for a bi-cubic hypersurface
in P x P, here it is 176, and for some other complete intersections in the product of

two projective spaces. The following questions seem to be interesting in this context.

Questions:

i) Is there a Calabi-Yau threefold with FY(X, End(Ty)) = 07

i) Is dim HY(X, End(Ty)) invariant under deformation of X7 Even for surfaces [

do not know the answer.
iit) Is there a Calabi-Yau threelold such that Def(7y) is not smooth?

Let X be a projective Calabi-Yau threelold with an ample line bundle £. We formu-
late the following two conditions which will be assumed for most of the things in this

section.

uci(£)
The homomorphism H'(X, 7Tx) — H*(X, Tx ® Qx) vanishes. (8)

Uci{L£)
The homomorphism H'(X, D'(£)) — H3(X,DY(L) ® Qx) vanishes.  (9)
Remark: Since for Calabi-Yau manifolds the homomorphism H'(X,D'(L)) — H' (X, Tyx)
is surjective, (9) implies (8). For complete intersections it is easy to verify (9). In fact,



the map in (9) factorizes through H?(X, D' (L)@ Qp, |x), since ¢; (L) = ¢ (O(1)

xX) €

HY(X,Qp,|xX). We claim that this space vanishes. Using the diagram
0 0
T T
0 - Ty = Tpylx - Nyp, — 0
T T T

0 — D](f,) — EBN'HO,\'(I) — NA’/PN - 0

o= G-
I
o — G —

we get the exact sequence

HI(X7 QPNlA' ®M\'/PN) — [{2(/\’:@1 (‘C) ®QPN|X) — Hz(X: ®N+1QPN(1)

J\’ )'

H*(X,Qp,(1)|x) is zero by Kodaira’s vanishing theorem. H'(X,Qp,|x @ Nx/p,) is
zero, since HO(X, @Vt Ny p,(—1)) —» HO(X,Nyp,) and H'(X, Ny /p,(~1)) =
0.

Other examples satislying (9) are provided by double coverings of P3 ramified along
a smooth octic.

Choosing a high power £" of the ample line bundle £ we obtain a projective embed-
ding X C Py with £™ = O(1)|x. We want to use the normal bundle sequence

0— Ty _'>TPN

x — Nypy —0

to construct deformations of Ty by deforming the quotient 7p,|x —» M\-le. Note
that HY(X,End(Tp, |x)) = 0. In fact, the next proposition shows that under (8), at
least infinitesimally, all deformations of Ty are obtained in this way.

Lemma 2.1 [f H*(X,Tx @ L™") = 0 and (8) holds true, then Hom(Ty,Nxp,) —
HY (X, End(Ty)) is surjective. This is the tangent map of the locally defined morphism
of the Quot-scheme parametrizing all quotients of Tp|x with fixed Hilbert polynomial
X(Nx/py) to the deformation space Def(Tx) of Tx.

Proof: The surjectivity is equivalent to the vanishing of the homomorphism

x))-
By Serre duality it is enough to show that H2(X, Hom(Tp, |x, Tx)) — H*(X,End(Tx))

vanishes. The natural homomorphism

HY X, End(Tx)) — H' (X, Hom(Tx, Tp,

HY (X, Ty) — H*X, Hom(Tp, |x,Tx)),
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which is given by applying Hom( ,7x) to the Euler sequence
0— Ox — "ML — Tpylx — 0

is surjective, since the cokernel ol this map is contained in @N+! HA(X,Tx @ L™™).
Therefore, it is enough to ensure that the composition F' (X, Tx) — H*(X, End(Tx))
is the zero map. This is exactly (8). O

Since for a complete intersection X C Py the normal bundle My/p, is isomorphic
to @ L™, where £ = Op,(1)|x, we get

Corollary 2.2 If X is a complete intersection Calabi-Yau threefold, then the tangent
bundle Ty has unobstructed deformations.

Proof: We know that H°(Pxn,Op,(1)) = H®(X,L) is surjective. By Serre duality
we see that H3(X,L*) = H3(X,®V*' Oy) is injective. Hence H*(X,Tp,|x ® L*)
vanishes. So we can apply 2.1. Since M\-/pN = @ L™, the normal bundle itself is a
rigid bundle on X, i.e. Ext'(My/p,,Nx/p,) = 0. Hence all the deformations of the
quotients Tp, |x — Nx/p, are induced by changing the maps only. In particular, the
corresponding Quot-scheme is smooth. Hence by 2.1 the deformation space Def(Tyx)
is smooth. )

Remark: This lemma has an interesting global aspect. Most of the moduli spaces of
stable vector bundles on a K'3—surface are not unirational. Whereas in our situation
the moduli space parametrizing deformations of the tangent bundle is unirational, since

it is dominated by the space of all homomorphisms of Tp,|x to Ap,/x.

We want to come back to Witten’s question and ask for deformation of Ty & Oy.
First, we would like to sec if there are stable deformations at all. [t might be interesting
to look at this in a more general setting and to construct stable deformations of a sum
of two stable vector bundles on an arbitrary manifold. This problem is dealt with in
Appendix B.

Let F' be the semistable vector bundle of rank four and degree zero defined as an
extension of Ty by Oy by a Kahler class. It encodes information about the Calabi-Yau
manifold.

- HY(X,F)= HYX,Tx) and H3 (X, F) = (HY(X,Qx)/wC)

- A smooth rational curve ¢ C X is a (=1, —1)-curve if and only if [ = (O(1) &
O(-1))¥%, (Use that w|c does not vanish.)

- The infinitesimal deformation space H!(X,End(F)) of the bundle F naturally
relates FI'(X,7x) and H'(X,Qx) by the following diagram of exact sequences.



0

1
HY(X,Qy)/wC
i)
0 — H'(X,Hom(Tx,F)) — H'(X,End(F)) = H'(X,Tx)
¢
HYX,End(Tyx))
The first two properties are easily derived from the definition. The diagram is produced
by applying Hom( , F) to the short exact sequence defining F and using H'(X, F) =
HY(X,Tx). The cokernel of ¢ is the image of the homomorphism H'(X,End(Tx)) —
H'(X,Qy) which is dual to F'Y(X,Ty) = HYX,Qx ® Ty). If [w] is a Hodge class
¢1(L) such that (8) holds true , then the vertical sequence can be completed to a short
exact sequence, i.e. £ is surjective.

The space H'(X,End(F')) parametrizes all infinitesimal deformations of the bundle
F on X, ie. it is the tangent space of Def(F). The cohomology group F'(X,Tx)
parametrizes the infinitesimal deformations of X itself (cf. A). Since a Calabi-Yau
manifold has unobstructed deformations, £ : H'(X, End(F)) — H'Y(X,Tx) induces a
natural map = : Def(F') — Def(X) between the corresponding deformation spaces,
which has ¢ as its tangent map. At the first glance this map seems to be quite artificial,
but it explains the phenomena of §1. As a consequence of (B.7) one can prove

Corollary 2.3 If the image of = is positive dimensional, then Ty @& Ox deforms to a
stable bundle. 0

Using the map = one can reformulate condition (9).

Lemma 2.4 [f [w] is a Hodge class satisfying (9), then = is a submersion, i.e. € is
surjeclive. 0O

We say that Ty @ Oy deforms infinitesimally to a stable bundle if £ does not vanish.

Remarks: i) Under the assumptions of {1.3) the map = has positive dimensional
image. In fact, dim Im(Z) > rk(4), since d(Z(Qz{(X:)|x))/dt = 6(f).

i1) For complete intersection one can do better. On a complete intersection the
bundle I has unobstructed deformations. To verify this assertion one first shows that
for any Calabi-Yau manifold Hom(F,Ny/p,) — H'(X,End(F)) is surjective, i.c.
all infinitesimal deformations of F' are obtained as the kernel of a map @V*+'L™ —»
Nx/py- Of course, we assume n 3> 0. This is in analogy to (2.1), but here we do not
need (8) or (9). For complete intersections the normal bundle Ayx,p, is infinitesimal
rigid and the vanishing H'(X, F(—1)) holds true (cf. (2.2)).

i1i) Moreover, for complete intersections the bundle Ty @ Ox has unobstructed de-
formations, since h'(X,End(Txy & Ox)) = (X, End(F)) + 1 and the image of the
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map C\ {0} x Def(F) = Def(Tx & Ox), induced by (,0) — [tw], is of dimen-
sion 1 + dim Def(F). (We use that Def(Ty & Oy) is still complete at the point [tw]
which corresponds to £.) Thus one could also apply (B.1) in this case to conclude the
existence of stable deformations of Ty @& Oy.

iv) Obviously, (2.2) and #) go through for Calabi-Yau threefolds X C Py with rigid
normal bundle satisfying (9) and H*(X,Tx(-1)) = H*(X, F(—1)) = 0. Along the
same line one can treat complete intersections in the product of projective spaces.

To conclude this section we want to present some further calculations in the case of
a quintic hypersurface. In the exact sequence

0— F—a°L —L—0

the surjection @°L — L% is given by the restriction of the map

@501)‘(]) (3]/31.’0....,3)‘/81:4)) OP4(5)’
where X is defined by f € H°(P,,Op,(5)) and the z; are coordinates of P4. Obviously,
this map is also surjective. Hence F is isomorphic to the restriction of a vector bundle
F; on Py which is defined as the kernel of (3//0z;). For any other [ € H°(Py4, Op,(5))
defining a smooth quintic X’ we also get a bundle Fy on P4. Its restriction to X
can be regarded as a deformation of F. In this way we can locally define a map
|Op, (5)| — Def(F). Note that F,; = Fy for o« € C°. Less geometrically, it can be
described as follows. As we have seen there is a map Hom(&°L, £L%) — Def(F) which

is locally defined near (3f/dz;). The natural surjection Hom(&°Op, (1), Op,(5)) —
Hom(Op,, Op,(5)) has a section f' — (0f'/dz;), which induces the above map |Op, (5)] —
Def(F).

Lemma 2.5 Let |Op,(5)] — Def(X) be the locally defined natural map associating
to a quintic its underlying manifold. Then the following diagram commutes

|Op,(5)] — Def(F)

N
Def(X).

Proof: Ths is a consequence of the commutativity of the following two diagrams.

Hom(®°L,L%) — Hom(F, L?)
il 4
HO(X, L5 5 HOX,L%)
and
Hom(F, L%) — HY(X,End(F))
1 {
HYX, %) — HY (X, F)
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The first one is induced by the injection of Oy into G°L resp. I and the second one
by the hboundary operator of

00— F—o ' L—L—0.

a

Note that |Op,(5)] — Def(F') does not induce a section of =. It is not hard to
see that the above map |Op,(5)| = Def(F) coincides with the one in the first section
X' Qp (X)x, ie. Qp,(X)

* N "
X E fyp

3 Restriction to rational curves

In the theory of Calabi-Yau maniflolds it is important to know if there are rational
curves on the manifold, and if, how many. Since h%(X,Ng/x) — R} (X, Ng/x) = 0
by Riemann-Roch, one expects a rational curve C' on a Calabi-Yau manifold X to be
isolated, i.e. C cannot be deformed in X (cf. Appendix A). Clemens conjectured that
the generic quintic in P, contains only rational curves with normal bundle isomorphic to
O(-1)eO(—1) (cf. [C], [K1]). The conjecture has been verified for curves of degree< 9
([K1],[IKJ),IN]). In particular, (=1, —1)-curves satisfy #'(C,Ng/x) =0, i.e. they are
infinitesimal rigid. Note that H'(C,Ng,x) = 0 is equivalent to H'(C,Tx|c) = 0. We
start with the following result.

Theorem 3.1 For the generic Calabi-Yau threefold X, t.e. generic in ils Kuran-
ishi family, and any rational curve ¢ : Py — X, the restriction map H'(X,Ty) —
H' (P, ¢*(Tx)) vanishes.

Proof: Let X — T be the Kuranishi family of X. By [Ka, R, Ti, To] the base space T
is smooth (cf. A.1). Let Hilb*(X — T) be the relative Hilbert scheme (or the Douady
space) of morphisms of P, to the fibres of X' — T of degree d. Pick an irreducible
component H of Hilb*(X — T). As we are only interested in the generic Calabi-Yau
manifold, we can assume that H dominates T'. Let U C H,.q be a nonempty smooth
open subset, such that U — 7" is smooth. Denote A’ xp U by &'. The sequence

0—)7}/U—>7},——>pr;7'u—>0
restricts on X := Aj to
0— Tx — Telx — Tup® Ox — 0. (10)

We denote the corresponding extension class by n € Ext'(Ty0®Ox, Tx). This sequence
is in fact the pull-back of the universal extension of Oy by 7Ty under the Kodaira-
Spencer map Tyo — H'(X,Tx). Since U — T is smooth and X — T is a complete
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family, the Kodaira-Spencer map is surjective. Therefore, it is enough to prove that (10)
splits on every rational curve p : Py = X. Let o : Py xU — X be the universal curve.
By N, and N; we denote the cokernels of the natural homomorphisms 7p, — ¢*(7Tx)
and Tp, = @"(T3), resp. If ¢ is an embedding, NV, and N are the normal bundles of
@©(P,) in X and of ¢(P,) in X, resp. Thus we obtain the commutative diagram

0 0
i '
Tp, = Tp,
i '
0 = ¢ (Tx) = & (Tz) = Tvo®Op, — 0
ul 1 =4
0 = N, = Ny = Tuo®Op, — 0
4 4
0 0

The sequence on the bottom, as an extension of Tyo ® Op, by N, is given by the
image of u.(¢*(n)), where w. : Ext' (70 ® Op,, 0" (Tx)) = Ext'(Tuo ® Op,, N,) is
induced by u. Since H'(P,,Tp,) = 0, the map u. is injective. Thus it is enough to
show that w.(¢*((77)) = 0, i.e. that the bottom sequence of the diagram splits. The
homomorphism Tp, xu|p,x{o} = ¢*(T;) induces a natural map Np, «0y/p,xv — N
Since Np,x (o3P, xu = Tuo®Op,, we can take this map to define the desired splitting.0

Remark: Of course, if Clemens’ conjecture holds true for X the assertion of the
theorem is obvious. On the other hand, one can try to attack the conjecture with
the help of this result by proving that the above restriction homomorphism is always
surjective. For a quintic this is true if and only if for a curve ¢ : Py = X C Py,
where X is defined by f, the space H°(P;,¢"O(5)) is spanned by " (H®(P4, O(5)))
and Y7, HO(Pl,t,o*O(]))go*(a%e). In the cases of a quintic, of a complete intersection
of type (3,3) and of a complete intersection of type (2,4), (2,2,3) or (2,2,2,2), this
can be easily verified for curves of degree d <7, d <5 and d < 4, resp.

We come back to the restriction problem. Not every stable deformation of Ty @ Oy’
is equally interesting for physicists. They ask for deformations whose restriction to
a rational curve is not trivial, i.e. not isomorphic to O%4. Every vector bundle on
P, can be written as ®O(«;) and (ay,...,a,) is called its splitting type. For vector
bundles with trivial determinant, (ay,...,a,) = (0,...,0) is the generic splitting type.
So we are interested in stable deformations of Ty @& Ox with non-generic splitting
type on each rational curve. First of all, we recall that neither Tx & Oy nor £ can
have generic splitting type on a rational curve. Let ¢ : P; — X be a non-constant
morphism. Then the injection Tp, < ¢*Tx excludes the triviality of ¢*Ty, and hence
of o*(Tx ® Ox), since Tp, = Op,(2). The pull-back ¢*w € H'(P,0p ) of the Kahler
class defining F' can be interpreted as a non-trivial extension class giving rise to the
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exact sequence
0 — Op, — Op,(1)®Op,(1) — Op,(2) — 0

Therefore, there is an injection Op, (1) @ Op, (1) — F being part of the commutative
diagram

0— Op, — Op,(1)®0p,(1) — Op,(2) —0
= L n
0— Op, — 2 — ¢"Tx  —0.

Again, this excludes the triviality of ¢*F. In general, there is no obvious reason why
not every deformation of 7y or /" should be trivial. In fact one can prove the following.

Proposition 3.2 If X s a smooth quintic hypersurface in Py, then the generic defor-
mation of Tx @ Ox has trivial restriction to any given rational curve p : P; — X.

Proof: Of course, 1t is enough to produce a deformation of Ty & Oy or I, resp. that
restricts trivially, i.e. the pull-back under ¢ is isomorphic to the trivial rank four
bundle. The idea is to use p,(X’)|x as a deformation of F'~, where X’ is the union of
the coordinate hyperplanes Hg, M1, ..., Hy. As in Section 1 we have an exact sequence

0 — Qp, — Qp (X'} — @O0y, — 0.
Analogously to the Euler sequence there also exists
0— Qp4 ()\”) — @SOpq — Op4 — 0

locally given by d(zi/z0)/(wi/®0) — €; — €o. Hence Qp, (X') = 40p,. In particular,
@™ 0p,(X’) = 40p,. Unfortunately, Qp,(X’)|x does not represent a deformation of F*
if X’ is not smooth. Instead of Qp, (X')|x consider a (O xinyx) where a : Qp (X')|x —
®On;|x and Oxnyx: is considered as a subsheaf of ®Oy,. The sheal ™' (Oxinx) is a
flat deformation of F™, though not locally free, and if the coordinates z; are chosen
such that o(Py)NH; N H; =0 (1 # ), then p*a ™ (Oxiny) = ¢*Qp,(X')|x £ 40p,.0

More in the vein of Section 2 one can also argue as follows. The bundle F' lives in
fact on P, and is there isomorphic to the kernel of
/o

(_3—1,_.) c@°0(1) — O(5).

This degenerates to (O(zoz1222324)/0x;). Via (ao, ..., a3) —r (e, ..., ¢33, (—ag— ... —
a3)z4) its kernel is isomorphic to 40. As above, it needs a slight modification to obtain
a flat deformation of F.
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Comparing the results of (3.1) and (3.2) in the case of a generic quintic we see that
in the commutative diagram

HY X, End(F)) —»  HYX,Tx)
l 4
HY Py, End(@*(F))) —» HY Py, 0™ (Tx))

the vertical arrow on the left hand side, which describes the tangent map of Def(F) —
Def(¢*(F)), is never zero, whereas the one on the right hand side always vanishes.

Theorem 3.3 i) For the generic quintic hypersurface X C Py the bundle Tx & Oy
can be deformed to a slable bundle whose restriction to every rational curve of degree
one, i.e. a line, is non-trivial.

ii) For any quintic X C Py and a fized curve ¢ : Py — X of degree d < 20, the
bundle Ty © Ox admils a stable deformation, such that the pull-back under ¢ is not
trivial.

Proof: i) Let ¢ : P; — X C P, be a non-constant map of degree d. By the
argumentation before proposition 3.2 we have the following diagram

Op,@0p, C ¢ (F)-1) C &°0Op/(d-1)
{ s 1
Te,(=1)  C ¢ (Tx)(=1) C & (Tp,)(-1).

Thus we obtain two sections sy,s; € H(P,8°Op,(d = 1)). 1l d = 1, there is a
non-trivial linear combination a;s; + azsy (¢; € C), an element of &*H°(P;,Op,),
whose first component vanishes. Deforming the equation f of X to f' = f + Az} will
change the isomorphism type of X, if X was chosen generically. In particular, the
restriction of the associated bundle /'y to X defines a stable deformation of /. Since
@ ((8f'/9z:))(ars1 + azs2) = @™ ((8f[0wi))(ars1 + azs2) + " (5ag)(wis1 + azs2)y = 0,
@151 +azs; is in fact a section of @™ (Fy)(=1) C @°Op, too. This contradicts ¢*(Fy) =
0%, _

ii) Let C be the image of p and I be the ideal sheafl of C' in P4.. Using the exact
sequence

0 — HYPy, Ic(5)) — H(P4,0(5)) — H(C, 0p(5)) —

we have h°(Py, I¢(5)) > h%(P4, O(5))—h°(C, Oc(5)) > AP, O(5))—h° (P, Op (5d)) =
126 — (5d +1). On the other hand, 2°(X,Tp,|x) = 24 and 24 < 126 — (5d + 1) — |
by assumption. Hence H°(Py, [c(5)) under the restriction map HO(P4, O(5)) —
H°(X,0x(5)) cannot be completely contained in the subspace H®(X,7p,|x) which
is the kernel of HO(X,Ox(5)) = HY(X,Tx). Thus we can find a small non-isomorphic
deformation X’ of X, such that C is still contained in X’. As we have seen, Qp, (X"}
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restricts non-trivially to any rational curve contained in X’. On the other hand
Qp,(X')*|x is a stable deformation of F. O

Remark: Yet, there is another way to attack the restriction problem in the case of
the quintic. We want to mention it briefly. As shown, all small deformations /" of # are
given as the kernel of a surjection @*Ox (1) = Ox(5). If F" = Qp,(X'}]x, where X’
is a smooth quintic near X, this homomorphism was given by (9f/0z;). One can use
these derivatives to define a morphism ¢ : X — Py. Then F’ = *(Qp, (1)) @ Ox(1).
In particular, the restriction of F to a rational curve ¢ : Py — X of degree d is trivial
if and only i (¢ 0 ¢)*(S2p,(1)) = 50p,(—4d). Let the numbers «; be defined by (¢ o

) (p, (1)) = @&O0p,(—a;). Then La; = 4d and 0 < a; < ... < a4 ([Ra]). The general
philosophy says that (a,...,a4) # (d,...,d) il ¥ 0 » maps P, to a special hypersurface,
e.g. 1t maps to a hyperplane if and only if ¢, = 0. To construct deformations of /"' with
non-trivial restriction to all rational curves it would be convenient to find a deformation
X’ of X such that the associated morphism 3 : X — P, has an image which is special
enough.

Example: Let X be the singular quintic Ho U ... U Hy = Z(zoz1222324) and let X’
be defined by f' = t- 2]+ 2921222324. Let yo, ..., ys be the coordinates of P, such that
YUy = —‘f— Since X C Z(—L —L) the image of % is contained in the union of the two
hyperplanes defined by and y2. Thus for any rational curve ¢ : P; — X the bundle
(o) (p,(1)) ® Op,(d) is never trivial.

A Deformation theory of manifolds and bundles

In this section we want to collect some general facts about the deformation of varieties
and vector bundles. Some of them we used tacitely throughout the text.

Let X be a compact complex manifold. Its infinitesimal deformations are parametrized
by the vector space H'(X,7x). The obstructions live in H?(X,Ty) and the ver-
sal deformation space Def(X), which always exists, is isomorphic to x3'(0), where
¥ HY(X,Tyx) — H*(X,Tx) is the locally defined Kuranishi map (cf. [I<o])

An analogous theory exists for deformations of X as a submanifold of Y. The infinites-
imal deformations can be identified with the elements of H°(X, Nx,y), where Ny,y is
the normal bundle of X in Y. Again, there is an obstruction space which can be iden-
tified with H'(X, Mx,y) and a Kuranishi map ry;y : HY(X, Nxjy) — HY (X, Nxv),

~

such that Def(X C V) = n{\/y(O) These two deformation spaces are related as
follows. If
0— Ty — Ty

x — Nyyy —0

is the normal bundle sequence of X in Y, then the boundary maps induce the commu-
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tative diagram (the Kuranishi maps are locally defined)

HO(X,N',\'/)’) —  HY(X,Tx)
~xivd rxd

Hl()\’,M\'/y) —_ f[z(z\’,ﬂ)

The Kuranishi description of Def(X) and Def(X C Y') shows that they are smooth if
the obstrucion space H*(X, Tx) resp. H'(X, Nx/y) vanishes. We shall say that X (the
embedding X C Y') has unobstructed deformations if Def(X), the versal deformation
space of X (Def(X C Y) the versal deformation space of the embedding X C V)
is smooth. This is equivalent to dim Def(X) = h'(X,Ty) and dim Def(X C Y) =
h°(X, Nx/y), resp. In general, we only have dim Def(X) > A} (X, Tx)—h*(X, Ty ) and
the corresponding formula for Def(X C Y). In many cases X may have unobstructed
deformations, even though the obstruction space does not vanish.

Theorem A.1 i) If X is a Kihler manifold with K§" = Oy for somen # 0, then
X has unobstructed deformations [Ka, R, To, Ti].

it) Let X be embedded in a compact Kihler manifold Y. Then X C Y has unob-
structed deformations, if the embedding is semiregular [B]. 0O

From this one can conclude the following very easily:

Corollary A.2 For every embedding of a Calabi- Yau manifold X in Py the embedding
X C Py has unobstructed deformations.

Proof: One has to use the following trivial fact: If X has unobstructed defor-
mations and X is embedded in Y, then X C Y has unobstructed deformations if
HY(X,Nx;y) — H*X,Tx) is injective, e.g. if H'(X, Ty |x) = 0. This can be applied
in our situation, since H'(X,7p,|x) = 0, which follows from the Euler sequence and
HY(X,0x(1)) = H}X,0x) = 0. m

The infinitesimal deformations of a vector bundle ££ on a fixed compact manifold
X arc measured by H'(X,End(E)) and the obstructions live in H?( X, End(E)). The
existence of the Kuranishi map kg : H'(X, End(£)) — H*(X,End(E)) gives a lower
bound for the dimension of the versal deformation space Def(E) by Al (X, End(E)) —
h3(X, End(E)). In fact, the image of the Kuranishi map is contained in H*( X, Endo(E)),
where Endy( E) is the sheaf of traceless endomorphisms [K].

Example: [f E is a stable vector bundle on a surface, then h°(X, End(E)) = 1. The
Riemann-Roch formula in this case shows dim Def(E) > 4e; ~ ¢2 — 4x(Ox) + 1.

Unfortunately, nothing like this holds for a vector bundle on a Calabi-Yau threefold.
Serre duality here gives h' (X, End(E)) = h*(X, End(E)), i.e. potentially there are as
many deformations as obstructions.
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We say that E has unobstructed deformations, if Def(E) is smooth. This is equiv-
alent to dim Def(E) = h'(X,End(F)). The only effective smoothness criterion for
Def(E) known to me is the vanishing of H*(X,Endo(£)). In [R] and [Ka] a more

general smoothness criterion is given, but it is very hard to check in cases where

H*(X, Endy(F)) does not vanish.

It might also be interesting to consider simultaneous deformations of a variety X and
a vector bundle /£ on X. It is not hard to see that in this case the tangent space ol the
versal deformation space Def(X, E) is naturally isomorphic to H'(X,Dg(E)). The
obstructions take values in H*(X,D)(E)). Here D}(E) denotes the coherent sheaf of
differential operators on If of order < 1 whose symbol is contained in the image of the
diagonal map Tx — Tx @ End(F). Using the symbol sequence

0 — End(E) — DY(E) — Ty — 0
we get the exact sequence

— HY(X,End(E)) — HY(X,D){E)) — HY (X, Ty) —
— H¥(X,End(E)) — HY(X,D}E)) — H*(X,Tx) — .

The maps between the involved tangent and obstruction spaces naturally commute
with the Kuranishi maps. Following an idea of Wilson [Wi] about the deformation of
rational curves in the Kuramshi family of X one can prove

Proposition A.3 Let X be a Calabi-Yau threefold and IJ a vector bundles on X which
does not move on X, i.e. dim Def(FE) =0, then E deforms with X in the Kuranishi
family X — Def(X), i.e. Def(X, ) — Def(X) is surjective.

Proof: Since a Calabi-Yau manifold has unobstructed deformations, i.e. the Kuranishi
map ky : H'(X,Ty) — H*(X, Tx) vanishes, the Kuranishi map

R(X.E): Hl(‘X'JD(l)) — HZ(X:D(;(E))

has values in the image of H2%(X,End(E)) — H*(X,D}(F)). By the above exact
sequence, and using H°(X,Tx) = 0 we get

dim Def(X, E)

> Y X, DI(E)) — (R*(X,End(F) = dim Im(H" (X, Tx) — HY(X,End(E))))

= hYX,End(E)) + K" (X, Tx) — R*(X, End(E))

= hN(X,Tx) = dim Def(X)
Since Def(X, E) — Def(X) has zero dimensional fibre over the origin, it is in fact
surjective. a

In [Grl]} Prop.3 Grothendieck proves that, if £ is an vector bundie on an arbitrary
X, such that H%(X, End(E)) = 0, then E deforms with X in the Kuranishi family. For
a Calabi-Yau threefold H*(X,End(E)) = 0 is equivalent to H'(X,End(E)) =0, i.e. E

is infinitesimal rigid.
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B Deformation of sums and extensions of stable
vector bundles

Let X be a projective manilold with an ample divisor H. The slope pu(F') of a sheaf I
of positive rank is defined as the ratio (c;( /). H¥™X-1)/rk(F). A vector bundle £ is
called polystable if £ can be written as a direct sum F,@...@ E, of stable vector bundles
E; of the same slope. One could ask, under which condition such a polystable bundle
deforms to a stable bundle. By the phrase 'E deforms to a stable bundle’ we mean
that there is a connected curve C' and a vector bundle £ over C' x X such that for some
point 0 € C we have £ = £y, x and for some other point ¢ € C the corresponding
bundle £y is stable. We will restrict here to the case of polystable vector bundles
£ which are sums of two stable vector bundles. The general deformaftion theory for
such an £ provides us with the existence of the semi-universal deformation space
Def(E) and a natural isomorphism between its tangent space and H'(X,End(E)) =
HY (X, End(E))) ® HY (X, End(ER)) ® HY(X, Hom(Ey, E2)) & HY(X, Hom(E,, E1)).

Proposition B.1 Let £, and Fq be lwo stable vector bundles of the same slope, such
that the dimension of Def( [, @ E;) can be strictly bounded from below by

dim Def(Ey) + dim Def(F,) + max{h'(X, Hom(E,, E2)), h* (X, Hom(E2, E))}.

Then E\ & FE, deforms to a stable bundle.

Proof: We abbreviate we denote Def(L), @ Ez) by D. If € over X x D is the semi-
universal family, such that & = £, @ F,, then we can assume that & is semistable
for all ¢ € D, for semistablity is an open property. If & is not stable, then there
exists a stable subsheal 0 # F C & with w(F) = p(FE;) and torsionfree cokernel &£,/ F.
For ¢ = 0 such a subsheaf is automatically isomorphic to one of the summands of
Eo = Ky & L. First, we recall, that there exist finitely many projective schemes M,,
My,...,M, all of which are moduli spaces parametrizing semistable sheaves, such that
every stable subsheaf F' of £ corresponds to a point of the union UM;. Furthermore, we
can require, that [y and F, only correspond to points in M; and M,, resp. This is in
fact an application of a result of Grothendieck [Gr2], which says, that the set of Hilbert
polynomials of subsheaves 0 # I C & with given slope and torsionfree cokernel &/ F is
finite. In particular, there are finitely many projective moduli schemes parametrizing
all stable sheaves with these Hilbert polynomials [Ma]. Then we use the incidence
varieties Z; = {(F;,1) € M; x D| Hom(F,&,) # 0}, which are closed in M; x D. Since
for i > 2 the image of Z; under the second projection M; x D — D does not contain
0, we can assume, by shrinking /2, that whenever I’ is a stable subsheafl of & with
torsionfree cokernel and p(F) = p(L;), then F' corresponds to a point of the union
M; U M,. To finish the proof we only have to show that under our asumptions the
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maps Zi=; 2 — D are not dominant. We will do it for ¢ = 1. Il Z; — M, is the
first projection, then the fibre over [E4] € M, is {t € D|Hom(E4, &) # 0}. Since any
nontrivial homomorphism E, — & is injective, & is in fact given as an extension of
the form

0— £ — & — &EJE — 0.

In addition, for ¢ = 0 we necessarily have F, = &/F,. Hence, locally around 0 €
D, the sheaf &/F, is a delormation of E;. Thus the dimension of the fibre {t €
D|Hom(£,, &) # 0} at the point ¢ = 0 is bounded by

dim My + 1 (X, Hom(Eq, Ey)).

Finally, dim Z; < dim M, + dim My + WYX, Hom(E,, E|)) < dim D. a

Some immediate consequences are listed in the next corollaries.

Corollary B.2 If X is ¢« K3-surface, then Ty @ Oy deforms to a stable bundle. O

Corollary B.3 [f £, and E, are stable bundles such that their sum has unobstructed
deformations and both spaces H'(X, Hom(Ey, [5;)) and HY (X, Hom(f,, Ey)) do nol
vanish, then Fy\ @ Fy deforms to a stable bundle. 0O

Notice, that F, and E, have unobstructed deformations if £, @ E; has. The following
is well-known.

Corollary B.4 If X is a curve of genus g > 1, and E; and Ey are two stable vector
bundles of the same slope, then E) @ I3 deforms to a stable bundle.

Proof: On a curve any vector bundle has unobstructed deformations. Thus it is
enough to check that H'(X,Hom(E, E2)) # 0. By Riemann-Roch its dimension is
bounded by rk(£,) - rk(£;)(g — 1) > 0. O

Corollary B.5 Let X be a projective variety with h'(X,0x) > 4h*(X,Ox), then
Ox & Oy deforms Lo a stable vector bundle.

Proof: By assumption dim Def(Ox&Oyx) > 4h' (X, Ox)—4h*(X,0x) > 3h1(X,0x) =
2dim Def(Ox) + R'(X,Ox) 0

More generally, the sum F& F, where F is a stable vector bundle, deforms to a stable
vector bundle if h1(X, End(F)) > 4h*(X, End(F)).

Instead of deforming the sum F; & E; directly one could first construct a non-trivial
extension
00— b — F—E —0

given by an extension class n € Ext'( £, ;) \ {0} and then try to deform the bundle

F.



Definition B.8 For every deformation of F' over a parameter space D we define the
map € : Tpo — Ext'(E,, E)) as the composition

Tpo = Ext'(F, F) = Ext'(F, Ey) — Ext'(£,, ),

where the last two maps are induced by the above extension.

Proposition B.7 If £, and F; are two stable bundles of the same slope bul with
rk(£)) # rk(E2) and if F admits a deformation over an one-dimensional parameter
space D such that £ # 0, then E, @ E, deforms to a stable bundle.

Proof: As in the proof of B.1 it is enough to show that all small neighbourhoods
U of 0 € Def(E, @ E;) contain a point ¢ € U, such that the corresponding vector
bundle F} does not admit any non-trivial homomorphisms £} — F, or £} — F, for
small deformations £} and £} of [Z; and Ej, resp. By the assumption about the rank
we can assume that Hom(E], F') = 0 for all small deformations £} of E,. Hence, after
shrinking D, one may as well assume that Hom(£{, /') = 0 for all deformations I’
of F' parametrized by D. Since every open neighbourhood U contains a point ¢ with
Fy 2 F, we can regard such an F' also as a deformation of Iy @ E;. If Hom( £, F') =0,
then F" is stable. Otherwise, it can be written as an extension

0— L), — F'— B — 0, (*)

where ] and £} are deformations of £, and Ey, resp. Note that there is only one
(up to scalars) homomorphism F, — F'. Thus it is enough to show that £ : Tpy —
Ext'(E,, F,) vanishes, where P is the space parametrizing all the extensions of the
form (*). This can be easily concluded using the exact sequence

EXtI(El, EQ) — TP,(J — Eth(El, E]) &b Eth(Eg, Eg)

and the following commutative diagram.

Tro — Ext'(By, £s)
!

Ext'(F,F) — Fxt'(f, F)
l 1 l

Ext'(E, E) — Ext'(F,E) — Bxt'(L,, E)) O
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