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The tangent bundle of a Calabi-Yau
manifold-deformations and restrietion to

rational curves

D. Huybrechts*

In [\V] Wittcn posed the following qucstion:

Gan one defo/m lhe veclor bundle Tx ffi CJx lo a slable veetor b'llndle whose restridion

to all rational C11.rves is nonln:vial?

Here Tx is the ta.ngent bundle or a Calabi-Yau threcrold X and Ox is the t~'ivial

line bundle on it. He showecl that such deformations are of significance in string

theory (existence of flat c1irections in thc supcrpotential). This problclTI anel certain

generalizations of it werc also fonnulatccl in problelll 77 in Yau's recent problen1 list

[V].

This paper grew out of the attelnpt to understand the problclll in algcbro-geometric

tern1S and to use the available techniqucs in deforl11ation theory to deri ve sOlne fi rst

results in special cases. In particular we prove:

Let X be elllbedded as a hypersurface and assun1c that it can be deformed in

thc ambicnt spacc to anothcr Calabi-Yau thl'cefold X' not iSOl11orphic to X with

)( n X' i- 0 (e.g. ); is a con1plete intersection). Then ~\ ffi 0 x cau be elefOl'111ed

to astahle buudle (1.3).

For the generic qui ntic ); C P 4 there exists a stable defor111ation of Tx ffi CJx
whose restrietion to allIines, i.c. rational curvcs of c1egrcc onc, is not trivial (3.3).

For a fixecl (-1, -1 )-curvc on a quintic it is easy to fi nel astahle defonnation of Tx ffiOX

with non-trivial restriction to this curve. Since Clelnens' conjccture [Cl is still open,

we cau only prove

For any quintic allel a fixed rational curvc PI --r X c P 4 of degrec< 20 the

bundle Tx ffi Ox adlnits a, stahle deforn1ation with non-trivial restriction to this

curve (3.3).

• Max-Planck-Institut für Mathematik, Gattfried-Claren-Str. 26, 53225 BaHn 3, Germally, e-mail:

huy brech@mpim-bann.mpg.de
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l'he infinitesinlal deforI11ations of IX EB V x are parametrized by the vector space

The spaces H 1(X, Ox) and Hl(~>';,T,) have been intensively stlldied in the fan1ework

of mirror synllnetry, whereas, in general, nothing scenlS to be known abollt the third

space FJl (X, End(Tx )) on the right hand side. Thc "worst" possible strllcture of the

deformation spacc of IX EB Gx could be thc union of thrce subspaces rcalizing the three

components as their tangent spaces.

"Ve try to attack thc problenl by introducing a new vector bundle F. Choosing an

alllple line bundle J:. on X, or a Kä,hler lnetric W, we can define a vector bundle F by

nleans of an extension

o--+ Gx --+ F --+ IX --+ 0

given by Cl (J:.) E 11 1
();, Ox) (resp. [w] E l[l (~X", Ox)). Ir F is associated to L it adnüts

also the interpretation as F = 'VI (J:.), the sheaf of differential operators of order one

on L. The above sequence in this situation can be identified with the synlbol sequence.

The vector bundle F can be considered as a natural bundle associated to the Kähler

I11anifold (-X,w). It can also be regarelecl as a elefonnation of T\ EB Ox anel, in fact, any

neighbourhooel of T'\ EB Gx in its deforn1ation space contains F. In particular, sIllall

defonnations of F also represent elefonnations of IX EB Ox itself. Then we define a Inap

:=: : Def(F) --+ DeJ(X) between thc space of defonnations of F on X and of X itself

whose tangent lnap ~ : H 1(X, End(F)) --+ H 1(X, IX), llnder an additional asslllnption

(9), is shown to bc surjective. For coo1plete intersections :=: itself is surjective. This

excludes the possibility for the structllre of Dej(lx EB Ox) conjured up abovc. Easy

argu111ents in defonnation theOl'y (cf. Appendix B) show that Ty ffi Ox aclInits a stable

defonnation if the ilnage of :=: is of positive dinlension. The sllrjectivity of ~ says that

IX EB Ox infinitesilnally deforms to astahle bllndle.

An analogous problen1 was trcateel in [Ti2] in the case of a Fano n-fold' which lS

Kähler-Einstein. Tian showcd that the extension

o --+ Gx --+ F --+ T'\ --+ 0

given by CI (X) adlnits a Hermite-Yang-Nlills lnetric. Such a lnctric cannot cxist in

the case of a Calahi-Yau lllanifold but after deforIning thc holOlTIOrphic structllrc of
F. This is essentiaJly thc above qllestion. vVe will not approach the problem fron1 the

analytic siele.

In §l we consider the specia.l casc of a Calabi-Yau thl'eefold dcfonning as hypersurface.

Here F is described in tenns of the sheaf of logarithlnic differential forms. §2 is elevoted

to the study of the defonnations of T'\ anel T'\ EB Ox in the general case. The results

will be applied to c01nplete interscctions and cornpared with §l in the case of a quintic

hypersurface. The problem of how to control the restriction of deformatiolls of Tx EBGx
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to rational curves contained in thc Ca.labi-Yau 1l1anifold is dealt with in §3. Thc

appendices collect S0l11e facts about thc defofll1ation thcOl'y of manifolds and bundles

which are used in §§1-3. S0l11e of the results there lnight be of independent interest

(A.3, B.1, B.7). For readers not fall1iliar with deforma.tion theory Appendix A l11ay

also serve as an introduction.

Notation: A Calahi-Yau threefold in this paper will be a (ll1ostly projective) three

dilnensiona.l 111anifold X with trivial eanonical bundle and vanishing 11 1 (X, tJx). Fre­

quently, we will use the vanishing of Hi(X,.c n ) (i = 1,2) for any alnple line bundle [,.

This follows fron1 Kodaira's vallishillg thcoreIl1.

1 Logarithmic differentials

vVe start out with an arbitrary SI1100th Inanifold Z and a sl1100th irreducible hyper­

surface x' C Z. The sheaJ nz(X') of differentials with logarithn1ie poles along X' is

locally genel'ated by d:Cl/XI, dX2, ... , dx n , where (Xl, .•• , x n ) is a local chal't anel Xl = 0 is

the equation for X'. The sheaf Dz(X') is in fact locally free and fits into the following

two exact sequenees.

o --* Dz(.>(') -t Dz(X') -t DXI(X') --t 0

(1)

(2)

The hOI1101l10rphis111 Dz(~\") --+ tJx ' is loeally given by "LJidxi 1-7 (Xl' fdlXI. Thc
sUl'jection in (2) is by definition thc eanonical hOl110ITIOrphisl11 Dz --+ Dzlx' --+ !lXI
twisted by Oz(X').

Let )( be another slnooth irreduci ble hypersurface in Z. Ho\\' do the sequenees (1)

anel (2) restriet to X? We treat thc cases )( = X' alld X =f=. X' separatcly.

First, let ); = )('. Then (1) 0 tJx splits into thc two short exaet sequenees

anel

o--t Ox(-X) -t nzl x -t nx --t 0

o-t Ox -t Oz(X)lx -t Ox -t O.

(3)

(4)

Use T 01'z( 0 x, Ox) ~ tJx (-X) and the loeal description of the h0J1101110rphisIl1 nz --+
Dz();'). Analogonsly, (2) 0 Ox splits into

(5)

anel

(6)



Obviously, (3) and (6) 0 0 x( -X) a.re just the dual of the nornlal bundle sequcnce of

X C Z. lt is also easy to verify, that (4) and (5) as extensions of Ox by nx are given

by c.(LJx(X)) E Il 1(X,!1 x ) (up to nndtiplication by nOIl-zero scalars).

Now, let ){ #- );'. Then the restrietions of (1) allel (2) to X ren1ain exact (tlse

T01'Z(OX " Ox) = 0). They fit into the C0111111utative c1iagranl

0 0

t t

0--+ !1 z lx --+ !1z(X')[x ---+ OXlnx --+ 0

=t t t

0--+ !1z lx ---+ Oz(X')lx ---+ Oz()(')lxlnx --+ 0

t t

OX' (.\") Ix
:;;;

nXI (.\") Ix-+
t t

0 0

Equivalently, we have

0 0

t t

o ---+ Ozlx --+ Oz(X')lx ---+ OX'nx ---+ 0

t t

nz(X')lx
:;;;

!1z(X')lx-+
t t

o---+ OX'nx ---+ Oz(·-\,')lx1nx --+ OX1(X')[xlnx --+ 0

t -!.

0 0

In particular, nz(.\")lx is isoll1orphic to the kernel of the C0111position nz(X')lx ---+
nz(X')lxlnx ---+ nXI(X')[x1nx. As );' approachcs X thc sccond homolll0rphis111 dcgen­

erates to the restrietion to .\" n ){ of the canonical h011101110rphis111 nz ---+ nx twisted

by O(X'). For this ta happen, O(.\') and O(X') 111ust be isoll1orphic. This givcs rise

to the follo\ving definition.

Definition 1.1 The sheaf G'(X', .\') on X is defined as the ke'l'nel of the com;position
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C/( X', ..\') replaces f1z(~\")Ix in the diagranl ahove at the litnit point X' = X. Using

a
.L-

f1x
.L-

a --+ Ox --+ f1z(~\")Ix --+ f1x (~\'"') --+ a
=.L- .L-

a --+ C;(X',X) --+ f1Z(.\,/) Ix ---t f1 x (.\;/) IXlnx --+ 0

+
a

we can write G(X', ~\') as an extension

a--+ 0 x ---t GC\", X) --+ f1x --+ a.

In particular, G(X', X) is locally free. Everything together we have

(7)

Proposition 1.2 Let.c be a /ine b1lnd/e on Z and f, J' be scctions of .c defining lwo

distinct hypersu'1jaces X', ~\' c Z. Then lhc'l'e exisl two fa'lni/ies 01 vecio'f' bund/es {G t }

an<! {G~} on ~\' with the following properties:

i) Gt ~ G~ for t f:. O.

ii) Go and G'~ are the extensions off1x by Ox given by o(f'lx) E Hl(X, Tx) an<! of
Ox by f1x given by cdOx(X)) E 11 1(X, f1 x )J ·resp. He1'C 8 rlcnotes the bounrla'l'Y
houLol1Lorphisnl HO(X, O(X)) --+ }-[l(X, IX).

Praof: C,'~ for a11 t is defined as f1 z (X t ) Ix, where X t is the hypersllrface given by

t/' + (1 - t)J. "\Te define Gt as the kernel of thc surjection

f1 z lx -----+7 OX t Ix -----+7 OX t IXlnx

twisted by O(X'). In particlllar, G'~ ~ f1 z(X))x, Go ~ G(~\",~\') anel Gt ~ G~ for

t f:. a. lt renlains to prove that (7) is thc extension given by o(f'lx). First, we dualize

the diagram above anel obtain

a ---t IX( -){')

.L-

a --+ IX

--+ Iz( -~\") Ix
.L-

--+ G(X',)(t

--+ Ox ---t a
=.L-

--+ Ox --+ a
Thus the extension dass '17 of thc second sequence is givell by the inlagc of 1 E

8(-X') ·f'
HOC-\,Ox) under fIO(X,Ox) ------+ H 1(X,lx(-X')) ---+ f/l(){,r,). The COlnnlU-

tativity of thc diagranl

HO (..\', Ox)

·Pt

8(-X I
)

-r fJ I (~\', IX (-~\;))

·P.L-

JJO(X,Ox(X'))
8

---+
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ilnplies 8(/'lx) = 1]. o

Let us apply this to the case of Calabi-Yau nlanifolcls. Let X be 0. three-dinlensional

Calabi-Yau 111anifold. As explained in the introduction, we try to obtain stable defor­

111ation of Tx EB 0 X by defonning 0. non-tri vial extension

o ---+ 0 x ---+ F ---+ Ix ---+ 0

given by 0. Kählcr dass wEH 1(X, f2x ). As Tx and Ox are stahle vector bundles of

the sanle slope the bundle F is scrnistable. N[oreover, in order to defornl P to a stable

bundle it is sufficient to find 0. sl11a11 defonnation F ' of F with IfO(X, F ' ) =1= o. Here we

use the fact that 0 has na defonnations (for this kind of arglllllents cp. Appendix 13).

Corollary 1.3 Lcf X be a Calabi- Yau 1nwllfold as (l hYPC'I'Su1!ace c'lnbedded in a nHlni­

fold Z such that

- 0 =1= c}(O(X)lx) E H 1()(,f2 X )

- 8: HO(X,O(){)lx) --+ 111(X,lx) does not vmüsh.

Then Ix EB 0 X defonns to a stable bundlc.

PFao/: Choose f' E [JO(Z, Oz(X)) such that 8(J' IX) =1= 0 anel apply 1.2. Consider G~*

as adeformation of P. Siuce HO(){, Go) = 0, we have HO(X, G~") = 0 for 51110.11 t =1= O.
Hence, for snla11t =J. 0 the bundle G; is astahle defol'I1lation of F. 0

Renlark: 0) In 1110St of the cases Z will be a. Fano fourfold with /{z ~ Oz(.K).

i) Exanlples of Calabi-Yau threefolels satisfying the asslllnptions of the corollary are

all cOlllplete intersections in products of projective spaces.

ii) Froll1 the proof we can also see that the rank fOllr buudle !1z(){t) on Z is stable

with respect to O(){). This has the flavour of [1'i2] Th.5.l.

Note that the two non-trivial extensions

o ---+ !1x ---+ p" ---+ 0 x ---+ 0

anel

o ---+ Ox ---+ G(X' , X) -+ !1x ---+ 0

both define siI11ple vector bundles. Uneler the assumptions of the cOl'ollary they deHne

non-separated points in thc 11l0duli space of silllple bunelles. In this vein, Tx EB Ox
deforms to a stable bundle if two extensions of the above fornl define non-separated

points in the lnoduli space of silllpie bundles. By 0. result of Norton [No] for non­

separated points there exist non-trivial hOlllolllorphislllS r.p : (;(X' , X) ---1 F" anel ~ :

F* --+ G(X' ,X) with cp 0 ~ = 0 anel ~ 0 cp = O. These, obviollsly, always exist for

extensions of the fornl above, c.g. take the COlllposition G(X', X) --+ f2x --+ F'" and

6



F* --+ Ox --+ G(X', X). Bllt in general the existence of such hOlll0l1l0rphisms is not

enough to conclude that thcy define non-separated points in the lnoduli space. We

want to enlphasize once Illore that the stable defonnations of T'\ EB Ox we obtained

are given as Oz (~)(')* Ix, whcl'e X' is a non-isornorphic defonnation of X. In Section

2 we will elaborate this idea. and explain how defol'lnations of X itself induce, at least

infinitesilnally and uudel' an addi tional assUlllption, stable defonnations of T'\ ffi 0 x.
lt seelllS that llnder this addi tional assuluption the llnobstrllctedness of a Calahi-Yall

nlanifold helps to prove the existence of sta.hle defonnations of T'\ ffi 0 x.

2 Deformation of Tx and T>.: EB 0 x of a Calabi-Yau
threefold

Since a Calabi-Yau Inanifold has ullobstructed defonnations it is ouly natural Lo ask if

vectol' bundles living on the luanifold have special clefornlational propertics, too. The

rnost natural bundle Oll any lllanifold is the tangent bundle. For a Calabi-Yau lllanifold

it is astahle bundle of degl'ee zero [lVIi], [Ts]. The tangent bundle of a K3-surface,

which could be considered as a two-dinlensional Calabi-Yau l1lanifold, has unobstructed

defonnations. This is due to the vanishing of f/ 2(X, Endo(Tx)) ~ H°(.>;, Endo(T'\))*.

Ahnost nothing seenlS to be known about the defornlational behaviour of T'\ for a

Calabi-Yau thrcefold. 1n [EH) and [DGKM] the dimension of H l(X, End(Tx)) wa.s

computed for a quintic hypersurface, it is 224 in this ca.se, for a bi-cubic hypersurface

in P2 X P 2, here it is 176, anel for SOllle other cOluplete intersections in the prodllct of

two projective spaces. The following qllestions seenl to be interesting in this context.

Questions:

i) Is there a Calabi-Yall threefold with fI1(X, End(Tx)) = 07

ii) Is dilll fI1(X, End(Tx)) invariant under defonnation of X? Even for surfaces I

do not know the answer .

iii) 1s thel'e a Calabi-Yau threefold such that Def(Tv) is not slllooth?

Let X be a pl'ojective Calabi-Yau threefold with an alupie lille bundle.c. We fornlll­

late thc following two conditions which will be assul11ed for 11l0st of the things in this

section.

ucd.c)
The honlOluOrphisl11 H1(X, Tx) ------+ H2 (X, Tx 0 Ox) vanishes. (8)

UCJ (C)
The homolllorphislll H1(X, VI(.c)) ------+ H2(X, V 1(1:) 0 Ox) vanisIH~s. (9)

Remark: Since for Calabi-Yau manifolds the h0t1101110rphisnl fl l (X, Vi (1:)) --+ /1 1 (~>;, Tx)
is surjcctive, (9) inlplies (8). For cOl1lplete intersections it is easy to verify (9). In fact,
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the 111ap in (9) factorizes through H2(X, VI (L)0f2PN Ix)~ since Cl (L) = Cl (0(1) Ix ~\'") E

f/ 1(X, OP N lxX). vVe clail11 that this space vanishes. Using tbc diagranl

0 0

t t
0 --+ Tx --+ TpNlx --+ A(xjPN --+ 0

t t t
0 --+ V1(L) --+ ffiN+IOX(l) --+ NX / PN --+ 0

t t
0 = 0
t t
0 0

we get the exact scquence

1J2C.\'",OPN(1)lx) is zero by Kodaira's vanishing theorern. H l (X,!1PN l x o NXjPN ) is

zero, since HO(X,EB N +I Nx/PN (-l)) -----1+ HO(X, JVX / PN ) and IfI(X,ffiNx/PN(-l)) =

o.
Other examples satisfying (9) are provided by double coverings of P3 raInified along

"a sl1100th octic.

Choosing a high power Ln of the cUllple line bundle L we obtain a projective enlbed­

ding)( c PN with Ln ~ O(l)lx. 'vVc want to use the nonnal bundlc sequence

to construct defonnations of Tx by defonning thc quotient Tp Nix -----1+ NXIPN ' Note

that fI I (X, End(TpNIx)) = O. In fact, the next proposition shows that undcr (8), at

least infinitesilnally, all defonnations of Tx are obtainecl in this way.

Len1nla 2.1 If 1/2
(."\'", Tx 0 L-n

) = 0 and (8) holds lrue, lhen HOln(7:\', JVX1P N ) --+
lII(X,End(7:\')) is surjective. This is the tangel1t -map of tlte /ocally defilled ntorphism
of the Quot-scherne parametrizing all quolient,s of Tp N Ix with fixed Hilbert polyn01nia/

X(JVXjPN ) to Ihe defo'1"'mation space Def(Tx ) 017:\'.

PTOOf: The surjectivity is equivalent to the vanishing of the h0l1101110rphisnl

fI l
( X, End(Tx )) ---+ fl i

( ~"\'", 1{.01n(7:\' ,Tp N Ix )) .

By SeiTe duality it is enough to show that H 2
()';, Horn(Tp N Ix, 7:'\)) ---+ IJ 2 (X, End(7:\))

vanishes. The natural honloinOrphisl11
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which is given by applying HOln( , Tx) to the Euler sequence

is sUljective, since the cokernel or this I11ap is contained in ffiN+I fI2 (X, T.x 0.c- n
).

Therefore, it is enough to ensllre that the COIllposition JJl()(, 7,) ---+ H 2 (X, E:nd(Tx ))
is the zero Illap. This is exactly (8). 0

Since for a cOinplete interscction X C P N the nornlal bllndle Arx /P N is iS0I110rphic

to ffi .cnj
, where .c ~ OP N (1) Ix, we get

Corollary 2.2 If){ is a co.,nplete int,ersection Calabi- }'a7l. th7'cefold, then the tangent

bUlld/e 7, has unobst.rucled defonnai.ions.

Proof: "Ve know that HO(PN,OPN(l)) --+ HO(X,.c) is surjective. By SeITe dllality

we see that JI3(~'>;,[,*) --+ J/3(X,ffiN+l Ox) is injective. Henee I-/ 2 (X, TpNlx 0.c")
vanishes. So we can apply 2.1. Since NXjPN ~ ffi [,n;, the normal bundle itself is a

rigid bundle on .'>;, i.e. Ext 1(Nx jPN' NXjP N) = O. Hence all the defonnations of the

quotients Tp
N

Ix --» )VXjPN are induccd by changing the nlaps only. [n particular, the

corresponding Quot-schelne is SI1100th. Henee by 2.1 the deforI11ation space De/(7,)
is sillooth. 0

Remark: This lenlJlla has an intercsting global aspect. :NIost of the mochlli spaces of

stahle vector bundles on a I{3-surface are not uni rational. "Vhereas in our situation

the I110duli space paral11etrizing defonnations of the tangent bundle is unirational, since

it is clonlinated by the space of all hOll1onl0rphisms of TpNlx to A(PNjx,

vVe want to COll1e back to vVittcn's quest ion and ask for defornlation of 7, EB Ox.
First, we would like to sec if there are stable defornlations at all. It l11ight be interesting

to look at this in a l110re general setting and to construct stable defornlations of a SUlll

of two stahle vector bundles on an arbitrary l11anifold. This probleIn is dealt with in

Appendix B.

Let F be the selllistable vector bundle or rank foul' anel degree zero defilled as an

extension of Tx by Ox by a Kählcr dass. It encodcs information about the Calabi-Yau

Inanifold.

- A slnooth rational curve C C X is a (-1, -1 )-curve if anel only if Fe 2=' (O( 1) EB
O(-I))ffi2

• (Use that wie clocs not vanish.)

- The infinitesinlal defornlation space fI 1(X, End( F)) of thc bundlc F natLlrally

relates fI I (~'>;, 7\) and Ir l (X,!1x ) by thc following diagranl of exact sequences.
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o
t

Hl C\', Ox )/wC

t
o --t J/ 1(X, 'H01n(T'\, F)) ~ H1(X,End(F)) ~ H1(X, Tx)

e+
H1(X, End(Tx ))

The first two properties a.re easily derivcd froln the definition. The eliagrmD is proeluceel

by applying HOIn( ,P) to ~he short exact sequence elefining F anel using H 1(X, F) ~
II I C\' 1 Tx ). The cokernel of e is the ilnage of the hOlnomorphislll H 1(X, End(Tx )) -t

J/1(X, Ox) which is dual to rrt(X, Tx) ~ H2(X,Ox 0 Tx). If [w] is a Hodge dass

Cl (.e) such that (8) holeIs true , then thc vertical sequcncc can be cOlnpleted to a short.

exact sequence, i.e. e' is surjcctive.

The space H I (X, End( F)) paralnetrizes alt infinitcsilnal deforIllations of the bunelle

F on X, i.e. it is the tangent space of Def(P). The COhOlllOlogy group rfI(X, Tx )
para.nletrizes the infinitesimal deformations of X itsclf (cf. A). Since a Calabi-Vau

Inanifold has unobst rllctcel defonn ations, ~ : H 1(X, End( P)) --t [f I (X, Tx ) ind lIces a

natural 11lap :=: : Def(F) -+ Def(X) bctwcen the COlTcsponding eleforlllation spaces,

which has ~ as its tangent ma.p. At the first glance this 11lap seelns to be quitc artificial,

but it explains the phenolnena of §1. As a conscqucllce of (B.7) one can prove

Corollary 2.3 [/ t.he hnage oJ:=: is posit.iue dirnensiona/J then T'\ EI? CJx deJorms to a
st.ahle bund/e. 0

Using thc map :=: olle can rcforlllltlatc condition (9).

Lemnla 2.4 If [w] is a flodge class sat.isJying (9)} then :=: 1:8 a sub'mersiollJ l.e. e is

8urjective. 0

We say that Tx ffi 0 x defonns innnitcsillH\,lly to astahle bundle if ~ does not vanish.

Ren1arks: i) Under the assUIllptions of (1.3) thc 111ap :=: has positive dinlensional

ilnage. In fact, elinllul(:=:) ~ rk(8), since d(3(Oz(Xt )]x ))/dt = 8(j).

ii) For cOlllplete intersection one can do bettel'. On a cOlllplete intersection the

bundle F has unobstructcd defonnatiqlls. To verify this assertion one first shows that

for any Calabi-Yau ll1anifold HOIn(F,A(x/P
N

) --t J-[I(X,End(F)) is surjectivc, i.c.

all infinitesitnal defonnations of F are obtained as the kernel of a tna,p ffiN+l.cn ---»
NX/P

N
. Of course, we aSSlune n »0. rT'his is in ana.logy to (2.1), but here we do not

need (8) 01' (9). For cOlllplete intcrsections the nonnal bundle JVX / PN is infinitesilDal

rigid and the vanishing f[I (X, F( -1)) holels true (cf. (2.2)).

iii) rvloreover, for cOlllpletc intersections the bundle Tx EI? Ox has unobstructed de­

fonnations, since h1(X, End(Tx EI? CJx)) = 11. 1(X, End( F)) + 1 allel the inlage of thc
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l11ap C \ {O} x Def{ F) ---1 Del(Tx EB Ox), induced by (t,O) r-+ [tw], is of dinlen­

sion 1 + diln Def{F). (\rVe usc that Def{Tx EB Ox) is still complete at the point [tw]
which corresponds to P.) Thus one could also apply (B.l) in this case to conclude the

existence of stahle deformations of Tx EB °x.

l:V) Obviously, (2.2) and ii) go through fol' Calabi-Yau thrccfolds )( C P N with rigid
nOl'lnal bundle satisfying (9) and H2(~:(,Tx(-1)) = f[2(X,F(-1)) = O. Along the
SaI11e line one caB treat cOlllplete intersections in the product of projective spaces.

To conclude this section wc want to prescnt S0J11e further calculations in thc casc of
a quintic hypersurface. In the exact sequence

the sllrjection EB 5.c -----+ .c5 is given by the restriction of the 111ap

5 (EI! j8XQ, ... ,8! j Elx4)
EB OP<t (1) ) OP4 (5),

whel'c Xis defined by fE NO(P4,OP<t(·5)) and thc Xi are coordinates ofP4 • Obviously,
this Inap is also surjective. Hence F is iS0I110rphic to the restrictioll of a vector bundle

Ff on P 4 which is defined as the kernel of(8f/8xi)' For any other I' E JiO(P 4 ,Op4 (5))
defining a SI1100th qllintic X' wc also get a bundle FI' on P 4. Its restriction to X
can be regarded as adefonnation of F. In this way we cau 10cally deRne a 111ap

IOp<t(5)1 -----+ Def(F). Note that Fa! ~ Fj for 0' E C·. Less geometrically, it can be
descl'ibed as folIows. As wc havc seen there is a nlap R0I11( EB 5 .c, .(5

) -----+ Def( F) which

is locally definecl near {8//8xd. The natural surjection HOln(EB 50p4 (1),Op<t(5))-----+

H0I11(OP<t l OP<t (5)) has a section /' -+ (al' /8Xi), which induces the above Inap IOp<t (5)1 ---1

Def( F).

Len1111a 2.5 Lcl IOP4 (5) I -----+ De/(X:) be lhe locally defincd natural nUlp associating
to a ql.lintic its 1.l1lderlying lnanifold. Then lhe Jollowing diagraIn co"rnrnllles

IOp<t(5)1 -----+ Def{F)

~ t
Def(X).

Proof: Ths is a. consequence of the C0111I11ut.ativity of the fol1owing two dia.gra111s.

HOI11( EB 5.c, (5)

+
HO(X, .cS )

-----+ H0111(F, ( 5
)

+
-=t )]°()(, .cs )

and
HOIn( F', (5)

+
/lO()(, (5)

-----+ lI t (X, End( F))

+
-----+ 1/ t (X, F)

11



The first one is induced by the injcction of 0 x into EB 5.c resp. F anel thc second one

by the boundary operator of

o

Note that 1Op4 (5) 1 --+ Dcf( F) cloes not induce a section of:=:. It is not harcl to

see that the above Inap IOP4 (5)1 ---+ DeJ( F) coincicles with thc one in the first section

)( I f-7 np4 (4~) 1X, i.e. np4 (X) I:\" ~ Fj I •

3 Restrietion to rational curves

In the theory of Calabi-Yau 111anifolds it is ilnportant to know if there are rational

curves on the 111anifold, anel if, how many. Since hO(X,Nc/x ) - h1(X,)VC / x ) = 0
by RieIllann-Roch, one expects a rational curve C on a Calabi-Yau manifolel ~~ to be

isolated, i.e. C cannot be defonnecl in X (cf. Appendix A). Clen1cns conjectured that

the generic quintic in Pol contains only rational curves with nonnal bundlc iSOlnorphic to

O( -l)EBO( -1) (cf. [Cl, [Kl]). The conjecture has been verified for curvcs of degrce:S 9

([I\1], [KJl,[N]). In particular, (-1, -l)-curvcs satisfy fll(C,Aro/x ) = 0, i.e. theyare

infinitesilnal rigid. Note that /il(C,)VC / x ) = 0 is cquivalent to III(C, 7:\"10) = O. "Ve

start with thc following result.

Theorenl 3.1 For the generic Calabi- Yau lhreeJold X, i. e. generic 'ln ils [(u'1'an­

ishi Jarnily, and any rational Cll'l've <p : P 1 ---+ .){, the restriclion 'map If l (X, ~\) ---+
H' (P1, <P*(IX )) vanishcs.

Proof: Let .1' -+ T be thc Kuranishi family of .){. By [I<a, R, Ti, To] thc base space T

is Sll100th (cf. A.l). Let flilbd(.y ---+ T) be thc relative Hilbert schenle (01' thc Douady

spacc) of I110rphisI11S of PI to the fibres of .1' ---+ T of degree d. Pick an irreducible

C0I11pOnent EI of H.zLbd(~y -+ T). As we are only iI1terested in the generic Calabi-Yau

Inanifold, we can assun1c that If dOlninates T. Let U C [[red be a nOl1Clnpty smooth

open subset, such that U -+ T is SI11ooth. Denote .l' x T U by .1'. The sequence

restl'icts on X~ := ;\:'0 to

o--+ ~\ -t Tl,lx -t IU,o 0 ()x -t O. (10)

"Ve denote the corresponding extension dass by 77 E Ext 1(Iu,000x, IX), This sequence

is in fact the pull-back of the universal extension of Ox by IX under thc Kodail'a­

Spencer I11ap IU,o ---+ H 1(X, Ix). Since {j ---+ T is SI1100th and X -+ T is a cOInplete
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fan1ily, the Kodaira.-Spencer lnap is sUl'jective. Therefore, it. is enough to prove that (10)
splits on every rational curve rp : P 1 --+ X. Let (j; : P I X U --+ ,,1' be the uni versal curve.

By Nip and NI.{; we denote the cokerncls of the natural hOlnomorphisms Tp
l

--+ rp"'(Tx )
a,nd Tp l --+ rp"'CT,f'), resp. lf rp is an en1bedding, JVtp and N<jJ are the norn1al bundles of

rp(P.) in X and of rp(Pd in "l', resp. Thus we obtain the COll1111utative diagrain

0 0

J. J.

IP I = IP t

J. J.

0 --+ rp"(Tx ) --+ 1j;"'(Tf' ) --+ IU,o 0 OP I --+ 0
uJ. J. =J.

0 --+ N- --+ Aflj; --+ Tu,o 0 OP l --+ 0tp

.l- .l-

0 0

The sequence on the bottOll1, as an extension of Tu,o 0 OP
I

by Aftp, is given by the

in1age of u*(rp*(11)), where 1l* : Extl(Tu,o 0 OPI,'P"(IX)) --+ Ext1(Tu,o 0 OP1,N<.p) is

incluceel by u. Since J/ I (P I, Tp t ) = 0, thc 1l1ap ll* is injective. Thus it is enough to

show that u*( 10'" (( 7])) = 0, i.e. that the bottom sequence of the diagrall1 splits. The

h01l10I110rphislTI Tp l xulp t x{o} --+ <p"'(~i")) ineluces a natural Il1ap )VP1 X{O}/P t xU --+ )VIj;.

Since Afp1 x{o}/P 1 xV ~ TU,000p 1 , we can take this map to elcfine the elcsireel splitting.D

Remark: Of coursc, if ClcIllens' conjecture holds truc for X thc assertion of thc

theorelll is obvious. On the other hand, one can try to attack the conjectul'e with

thc help of this result by pl'oving that the above restriction h01l10I110rphislTI is always

sUl'jective. For a quintic this is truc if anel on1y if for a curve rp : PI --+ X C P 4 ,

where )( is elefineel by /, thc space J/O(P],rp·0(5)) is spanned by rp"'(HO(P 4 , 0(5)))
anel 'Lt=o HO(Pt, rp"'O(l ))rp"'(*t). In thc cases of a quintic, of a c0I11plete intersection

of type (3,3) anel of a c0I11plete intersection of type (2,4), (2,2, :3) 01' (2,2,2,2), this

can be easily verified for Clll'VeS of degree cl :::; 7, cl ::; 5 and cl ::; 4, resp.

We COlne back to the restl'iction problcln. Not cvery stable deforma.tion of Tx EB Ox'
is equally interesting for physicists. They ask for elefonnations whose restrietion to

a rational curve is not trivial, i.c. not isoll10rphic to 0\:94
. Every vectol' bundle on

PI can be written a.l5 EBO(ai) aIld (a" ... ,ar ) is called its splitting type. For vector

bundles with t.rivial det.enninant, (all'''' a r ) = (0, ... ,0) is the generic splitting type.

So we are interested in stahle defonnations of Tx EB Ox with non-generic splitting

type on each rational curve. First of aB, wc recall that ncither Ix EB Ox HOl' F can

have generic splitting type on a, rationa.I curve. Let 10 : PI ---+ ){ be a, non-constant

morphisln. Then thc injection Tp 1 Y I.(J*Tx cxcludes the triviality of I.(J*Tx, anel hence

of 1O"'(Ix EB Ox), since IP 1 ~ OP
t
(2). The pull-back rp"'w E HI (Pt, n~l) of the Kähler

dass defining F can be interpretecl as a non-trivial extension dass giving rise to the

13



exact sequence

Therefore, there is an injection OP 1 (1) EB OP t (1) --+ F being part of the COllll11utative

diagram

--+ OP 1 (1) EB OP 1 (1)
{-

--+ <p* F

-r OP t (2)
{-

---+ <P*IX

---+ 0

--+ O.

Again, this excludes the triviality of 'P* F. In general, there is 110 obvious reason why

not every defonnation of IX 01' F should be trivial. In fact one can prove the following.

Proposition 3.2 1/ X is a sm.oolh ljuinJic hype;rS11'1jace -in P 4) lhen I.he ycneTic dcfo1'­

mation of Tx EB Ox has trivial restrictiol1 to any given rational curve 'P : PI --+ );.

Proof: Of course, it is enough to producc a dcfol'lllation of Ty EB Ox 01' F, rcsp. that

restricts trivially, i.e. the puH-back llnder <p is isoIllorphic to the trivial rank foul'

bundle. The idea is to use np 4 ()(') Ix as adeformation of F*, where ~)(' is the union of

the coordinatc hyperplanes [fa, IIt, ... , H4 • A8 in Scction 1 wc have an exact sequence

Analogously to the Euler seqllence there also exists

locally given by d(xi/xo)/(xdxa) f---7 ei - eo. Hence np4 (X') ~ 40P4' In particular,

'P*OP4 (X') ~ 40P l · Unfortunately, np4 (XI) Ix eloes not repl'esent a defort11ation of F*
if XI is not smooth. Instead of n p4 (~)(') Ix consider 0'-1 (Ox1nx) where 0' : np4 ();')[x --+

EBOHJ,'( anel Oxnx 1 is considered as a subsheaJ of EBOHj' T'he sheaf a- 1(Ox 1nx) is a

Rat elefornlation of F*, though not locally free, and if the coordinates Xi are chosen

such that 'P(Pd n Ni n 11j = 0' (i =I- j), then 'P*a- 1 (Ox 1nx) ~ <p·np4(~\,/)jx ~ 40Pl·D

More in the vein of Scction 2 one can also argue as folIows. The bundle F lives in

fact on P 4 and is there iS0l110rphic to the kernel of

This degenerates to (8(XOXIX2X3X'1)/8xi). Via (aa, ... , (L3) f---7 (aaxo, ... , (L3X3, (-(lo - ... ­
(3)x4) its kernel is isolllorphic to 40. As above, it needs a slight lllodification to obtain

a, flat deforIna,tion of F.
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COlnparing the rcsults of (3.1) anel (3.2) in thc casc of a gencric quintic we see that

in tbe cOlnmutativc diagranl

H1(X,End(F)) -»
t

111(P 1 , End(cp"'(F))) -»

111(){, Tx )

t

EIl (PI, <p"'(/x ))

the vertica.l alTOW on the left hand siele, which describes thc tangent l11ap of Def( F) ---+

Def( <.p'" (F)), is never zero, whcrcas the one on the right hanel side a.lways vanishes.

Theorenl 3.3 i) FOT "he generic quintic hypersu'ljace X c P 4 the bundle IX EB tJX

can be deformed to a stable bundle whose rcstric/.ion 1.0 evcry rational cu'rue of degree

one, i.e. a linc) is non-trivial.

ii) Fo',. any quintic X C P 4 and (l fixed curue rp : PI ---+ X 0/ degree d < 20, the
bundle Tx EB Ox adn~its a stable deformation) such tJ~at l.he pu"-b(LcJ~ under <.p is nof.

trivial.

Praa/: i) Let rp : PI -----1 X C P., be a non-constant Inap of elcgree cl. By the

argtunentation befOl'e proposition 3.2 we have the following diagranl

OP 1 EB Op, C

-i-
Ip, (-1) C

<p"'(F)(-l)

-i­
rp"'('T\')( -1)

C EB5 tJp, (cl - 1)

-i-
C cp"(/pJ( -1).

Thus we obta,in two sectiolls 5,,52 E IIO(Pl, ffi5tJp, (d - 1)). Ir d = 1, there is a.

non-trivia.l linear c01l1bination (LI SI + a252 ((Li E C), an elenlcllt of ffi5 HO(Pl, OPl)'
whose first cOInponent vanishes. Dcfornling the cquation f of ){ to f' = f + .AX~ will

change the iSOlllorphisln type of );, if ){ was chosen generically. In particulal', thc

restriction of the associateel bunelle Pp to ){ elennes a. stahle dcfonnation of F. Since

cp"'((Bf'/8x i))(aI 51 + a2 52) = VJ"'((Bf/ 8xi))(a\51 + aZ52) + !fJ-(.5x~)(a151 + (L252)1 = 0,
al 51 +aZS2 is in fact a section of cp"'( Fp )(-1) C Ef)5CJp, , too. This contradicts <.p-( FI,) ~
Offi4.

ii) Let C bc thc ilnage of cP and le be the ideal sheaf of C in p,\ .. Using the exact

sequcnce

°-----1 IJo(P 4 , 1c(5)) -----1 HO(P 4, O(5)) -t HO( C, Oc( 5)) -----1

we have hO(P4,10 (5)) 2 hO(P4,0(5) )-hO(C, tJo (5)) 2: hO(P'I' 0(5) )-hO(P 1, Op, (5d)) =
126 - (5d + 1). On thc other hand, hO(X, IP41x) = 24 allel 24 < 126 - (5d + 1) - 1
by assumption. Hcncc ljO(P4l / 0 (5)) under the restriction 1l1ap HO(P 4 , tJ(5)) ---+

fI O(X,Ox(5)) cannot bc cOlnplctely cOlltained in thc subspace ljO(X, Tp4lx) which

is thc kernel of HO(.":(, Ox(,5)) ---+ H1
(.":(, 'T'\). Thus we can find a slnallnon-isolllorphic

elefonl1ation X' of ~":(, such that C is still containcd in ){'. As we have seen, 0P4 (X')
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restricts non-trivially to any rational curve contained in )('. On the other hand

np4(X')"' Ix is a stable deformation of F. 0

Renlark: Yet, there is another way to attack the restriction problcln in the case of

thc quintic. We want to I11ention it briefty. As shown, all slnall defol'lnations P' of P are

given as the kernel of a surjection EB50x(1) -+ Ox(5). If F'• ~ np 4 (X' )!X, where X'
is a s11100th quintic ncar ~~, this h011101110rphis111 was given by (a.r / aXi)' One can use

these derivatives to dcfine a 1110rphis111 'l/J : X -+ P.I. Then F' ~ 7/)*(np~(l)) (8) Ox(l).

In particular, the restriction of F' to a rational curve cp : PI -+ ){ of degree cl is trivial

if and only if ('l/J 0 cp)"'(f1p~(l)) ~ 50P I (-4d). Let the numbcrs lli be dcfined by ('ljJ 0

cp)*(f1P4(1)) ~ EBOPI(-ai). Then ~ai = 4d and 0:::; al :::; ... :::; a'1 ([Ra}). The general

philosophy says that (uI, ... ,a4) =1= (d, ... ,d) if'l/Jocp Inaps PI to aspecia,1 hypersurface,

e.g. it Inaps to a hypel'plane if anc! only if (fl = O. To construct deforrrta.tiollS of F' with

non-trivial restriction to all rational curves it would be convenient to find a defornlatioll

_~' of )( such that thc associated 1110rphislll 'ljJ : )( -+ P 4 has a.n ilnage which is special

enough.

Exanlple: Let X be thc singular quintic lfo U ... U lf4 = Z(XOXIX2X3.L4) and let X'
be defined by /' = t· xg +XOXIX2X3X4. Let Yo, ... , Y4 be the coordinates of P 4 such that

'ljJ"'Yi = P..LaaI. Since X C Z( !!.LaGI • ~), the ilnage of 'l/J is containcd in the union of thc two
Xi XI vX2

hyperplanes defincc! by YI and Y2. Thus for any rational curve cp : PI -+ X the bundle

('l/; 0 cp)"'(np .. (1)) ® OP I (d) is never trivial.

ADeformation theory of manifolds and bundles

In this section we want to collect S01l1e general facts about the elefornlation of varieties

a.lld vector bllnc!lcs. SOITIe of theIn wc used tacitely throllghollt thc text.

Lct)( be a C0I11pact complex ll1anifold. Hs infinitesilnal defonnations are pal'anletrized

by the vector space III(X, Tx ). The obstructions live in H2
(){, 'r'\) and the ver­

sa,} deformation space Def(){), which always exists, is isolnorphic to h: XI (0), wherc

KX1
: ffI(X, Tx) --+ 1I 2 (X, Tx) is the locally defined Kuranishi 111ap (cL [1\0])

An analogous theory exists for defonnations of X as a subIl1anifold of Y·. Thc infinites­

inlal defonnations can be identified with the cleIl1ents of IIO(X, A(xjY), where JVXjY is

the nornla.l bundle of X in Y. Again, therc is an obstruction space which can be iden­

tified with f/l {-){, JVXfl~) anel a Kllranishi Inap f\,Xfl~ : fIO(X, A(x/y) --+ H 1(:K, /"''/XjY),
such that Def(){ C Y) ~ h';Xll~(O). These two defol"lnation spaces are related as

follows. lf

is the normal bundle sequence of X in Y, then the boundary Inaps induce the COlll11111-
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tati ve diagranl (the K lIranishi Illa,ps are locally defined)

l/O()(, A(x/y)

"XIY"/"

H1(X,Nxjv )

The KlIranishi descriptioll of Def(X) alld DeJ(X C' Y) shows that they are sl1100th if

theobstrucioll space f[2(X, Tx) resp. fJl(X,Afx/ y ) vanishes. 'Ne shall say that X (the

eInbedding )( C Y) has unobstructed defornlations if Def(X), the versal defornlation

space of ){ (Def(~~ C Y) thc versal dcfonnation space of the etnbedding X C Y)

is snl0oth. This is eql1ivalent to dilll Def(X) = h1 (X, Tx) and dilll Def(X C Y) =

hO(~\;, Arxj}/), resp. In general, we only have dinl DeJ(X) 2:: h1(X, Tx )- h2 (X, Tx ) anel

the corresponding forllHlla for Def(X C Y). In rnany cases X lnay have l1nobstructed

defonnations, even though thc obstrl1ction spacc eIoes not vanish.

Theorenl A.l i) If X is a I{ähle." 'mani/old lVith I{~n ~ Ox for sonw n "# 0) then

X /las unohst'rueted defonnations [I....a, R, To, Ti).

ii) Lel,.\; be e'mbedded in a compacl. !(iI:lder fnaniJold Y. Then X C Y has unob-

si'r'1lcted deJornuttions, i/ the cn~beddin!J is sen~i.,.e9'1llar [B). 0

FrOIn this one can conclude the following vcry casily:

Corollary A.2 For eveTy e'mbeddin9 oJ a Calabi- Yau .,nanifold X in P N the em.bedding

.\; c PN !las unobstructed deforrnal.ions.

Pl'oof: One has to use the following trivial fact: lf X has unobstructed defor­

Inations and .~ is elnbedded in Y, then X C Y has unobstructed defonnations if

1[I(X,Afx /y ) ----+ EJ 2(X, Tx) is injcctive, e.g. if H1(X, 7}/lx) = O. This can be applied

in our situation, since H1(~~, TpNix) = 0, which fo11ows froll1 the Euler sequence allel

Efl(~~, Ox(l)) = J[2(X, Ox) = O. 0

Thc infinitesin1al defonnations of a. vector bundle E on a fixed C0I11pact I11anifold

X are measu red by JE 1(X, End( E)) and the obst l'uctions live in 11 2(~~, End( E)). The

existence of the 1\ uranishi Inap f\, E : H I C~, End( E)) ----+ j-[2 (~)(, End(E)) gi ves a lower

bound for the dinlension of the versal defonnatiol1 space DeJ( E) by h 1(.)(, End( E)) ­

11. 2 (.\;, End( E)). In fact, the iInage of the Kuranish i I11ap is contai ned in H 2
(.)(, Endo(E)),

where Endo(E) is the sheaf of traceless elldoIllOrphisllls [K].

Exaluple: If E is a stable vector bundle on a surface, then hO(X, End( E)) = .I. T'he

Rienlann-Roch foI'tnula in this case shows ditn Def(E) 2:: 4C2 - ci - 4X(Ox) + l.

Unfortunately, nothing like this holels for a. vector bunelle on a Calabi-Yal1 threefolel.

Serrc cluality here gives h1(X, End( E)) = h2(X, End( E)), i.e. potentially there are as

nlany deformations as obstructions.
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We say that E has unobstructed deforJl1ations, if Def( E) is Sl1100th. 'rh is is cquiv­

alent to dinlDef(E) = hI(X,End(E)). Thc only effective smoothness criterion for

Def( E) known to l11e is thc vanishing of fJ2 (.X, Endo(E)). ln [RJ and [Ka] a more

general sl1100thness criterion is given, hut it is very harel to check in cases where

H 2 (X, Endo(E)) eIoes not vanish.

It might also be intcresting to consieter sinntltaneous deforl1lations of a variety X anel

a vector bunelle E on ){. It is not harel to see that in this case the tangent space of thc

versal defol'll1ation space De.f()\, E) is natu rally isolll0rphic to H I (){, D6 (E)). The

obstructions take values in H2
(){, D6 (E)). Here D6( E) denotes the coherent sheaf of

differential operators on E of order:::; 1 whose sYI1lbol is contained in the inlage of thc

diagonal 11lap Ix ----+ Ix 0 End( E). Using the sYl1lbol sequence

o----+ End( E) ----+ 'D6 (E) ----+ Ix ----+ 0

wc get the exact sequence

----+ H 1
()\, End( E)) ----+ FJ I (X~, D6 (E)) ----+ H I (X, IX) ----+

----+ H2
(.':\, End( E)) ----+ fJ 2(X, D6 (E)) ----+ H2 (X, IX) ----+ .

The lllaps betwecn the involved tangent anel obstruction spaces naturally conlll1ute

with the Kuranishi l1laps. Following an idea of V\Tilson [vVi] about the defornlation of

rational curves in the Kuranishi falllily of X one can prove

Proposition A.3 Let X be a Calabi- Yau lhreefold und E a veclo'l' bund/es on X which
does nol 'moue on X) i. e. dinl Def( E) = 0) lhen E deforms with ){ in the J{urarüshi

f(uni/y.1' ----+ Def(-~)) i.c. DeJ(.X, E) ----+ Def(X) is surjechve.

P'I'oof: Since a Calabi-Yau Inanifold has llllobstrllctecl clefonnations, i.e. the Kuranishi

lilap fiX : H 1(X, 'T'\) ----+ /I 2 (X, IX) vanishes, the K uranishi I1lap

K:(X,E) : H I
(.~, D~) ----+ H 2 (X, D~(E))

has values in the inlage of H2 (.'>;, End( E)) -t f/ 2 (X, D6(E)). By thc above cxact

sequence, and using f10(X, IX) = 0 we get

diln Def(-'>;, E)
2: h1(X, D6(E)) - (h 2 (X, End(E) - dirn Inl(lll(X, Ix) -+ II2(X, End(E))))
= hl(X, End(E)) + hl(X, IX) - h2

(){, End(E))
= h1( ~~, 'T'\ ) = cl iIn Def (.~ )

Since Def(.>':, E) ----+ DeJ(.'>;) has zero dilnensional fibre ovcr thc origin, it is in fact

surjective. 0

In [Grl] Prop.3 Grothendieck provcs that, if E is an vector bunclle on an arbitrary

X, such that H 2 (X, End(E)) = 0, thCll E c1efonns with X in thc Kuranishi fanlily. For

a Calabi-Yau threefold H2(.'>(, End(E)) = 0 is cquivalent 1;0 fI I (X, End(E)) = 0, i.c. E
is infinitesinlaI rigid.
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B Deformation of sums and extensions of stahle

vector bundles

Let X be a projective lllanifold with an arnple divisor H. The slope p(F) of a sheaf F
of positive rank is deHnccl as thc ratio (cI(F).IJdimX-I)/rk(F). A vector bunclle E is

called polystable if E can bc writtcn as a dircct SUtTI EI ffi ... ffi En of stahle vector bundles

Ei of the sanle slope. One could ask, undcl' which condition sllch a polystable bundlc

defonlls to astahle bunelle. By the phrase' E defonns to a stable bundle' wc Incan

that thcre is a connectcd curve C anel a vector bundlc E ovcr C x X such that for Süll1e

point 0 E C we have E ~ E{o}xx anel for sonle other point tEe the corresponding

bundle E{t}xx is stable. 'vVe will restrict here to thc case of polystable veetor bundles

E which are sunlS of two stahle veet.ol' bunelles. The general dcfonnation theory for

such an E provides us with the existencc of the sell1i-universal defornlation space

Def(E) anel a natural iSOll10rphislTI bctwecn its tangent space anel fJI (~"'.\, End( E)) 8='

H I (X, End(Ed) ffi fi l C\;, End(E2 )) ffi fJl (X, 1lO1n( EI, E2 )) ffi H I (X, H01n( E2 , Ed).

Proposition B.I Let, E\ und E2 be I.wo ...I.ublc vecto'J' bund/c.5 01 thc sa'mc stope) .5ueh

thaI. the di'mension 01 Def( EI ffi E2 ) ean be strictly bO'llnded fro·rn bclow by

Then EI ffi E2 defo'l"Tns t.o a stable b1l71rlle.

Proof: We abbreviate we denote Def( EI EB E2 ) by D. If E over X x D is thc sCll1i­

universal fanlily, such that Eo 8=' EI ffi E2 , then we .can aSSUllle that Et is selllistable

for all tED, for seIl1istablity is an open property. If Et is not stable, then there

exist.s a stable subsheaJ 0 =j:. FeEt with 1"( F) = Il( Ed and torsionfrce cokerncl Etl F.
For t = 0 such a subsheaf is autoI11aticaily isOtl1orphie to onc of thc SUIllI11ands of

Eo ~ EI ffi E2 . First, we rccall, that there cxist finitely many pl'ojective scheInes 111 1,

J'12 , ... ,J\tln all of which are 1l10duli spaces paranlctrizing selnistable sheaves, such that

every stahle subsheaf F of Et corresponds to a point of the union UA1i . Furthenl1ore, we

ean require, that E1 anel E2 only corrcspond to points in /1.11 allel J'12 , resp. This is in

fact an application of a result of Grothendieck [Gr2], \vhich says, that the set of Hilbert

polynoI11ials of subsheaves 0 =1= FeEt with given slope a,nd torsionfree cokernel Ed P is

finite. 1n particular, there are nnitely 1l1allY projectivc moduli schenlcs paranlctrizing

all stahle sheaves with these Hilbert polYlloInials [~'/Ia]. Then we usc thc incidence

va.riet ies Zi = {( I~, l) E kfi X D I fr 0171. (F, Et} i=- O}, wh ich are closed i11 A1i x D. Since

for i > 2 the inlage of Zi under the second projection J\li X D ---+ D cloes not contain

0, we can aSSUIne, by shrinking f), that whenever F is a stable subsheaf of Et with

torsionfree cokernel and p( F) = ll( Ed, thcn F corresponels to a point of the union

!l11 U k12 . To finish thc proof we only ha.vc ta show that under our asUlnptions the
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Inaps Zi=l,Z --+ D are not dominant. vVe will do it [or i = 1. Ir Zl --+ MI is thc

first projection, then the fibrc over [EIl E lvII is {t E DIHonl( EI, Et ) i= O}. Since any

nontrivial hOIll0l110rphisl11 EI --+ Et is injective, Et is in fact given a.s an extension of

the fonn

o--+ EI --+ Et -t EdEl --+ O.

In addition, for t = 0 we llccessarily havc Ez ~ EdEl. Hcnce, locally around 0 E

f), the sheaf EdEI is a deforIllation of Ez. Thus the diIllension of the fibre {t E

DIHoI11(E1, Et ) =j:. O} at thc point t = 0 is bounded by

di 111 kfz + 11. I CX', 1-lorn( Ez, Et}).

FinaJly, diln ZI ::; diln iVJ I +dill1 1Hz + 11. 1(X, 1-lo1n(Ez, Ed) < dinl D.

SOI11e inllnediate conscquenccs are listcd in thc next cOl'ollarics.

o

Corollary B.2 1I -<-X'" is a 1{3-su"/faceJ !.hen Tx EB 0 x deJorms 10 astahle bundle. 0

Corollary B.3 I] EI and E2 are stable b'llndles such that their S7/.'m has ullobsll'ucted

deJorrnations and holh spaces 11 1
(--)(, 'H01n(E I , E2 )) and fII(X, 1-lorn(Ez, Ed) do nol

vanish, then EI E& Ez defo1"1ns 10 astahle bundle. 0

Notice, that EI and Ez have unobstructed defonnations if EI EB E2 has. The following

is well-knowll.

Corollary B.4 11){ is a C7trVe oJ gcnus 9 > 1J and EI and Ez are two stable veetor

bundles of the same slope, then EI EB Ez deforms to a st.able bundlc.

Proof: On a curvc any vector bundle has unobstructed dcfornlations. Thus it is

cnough to check that H I (_)(,'H01n(E I , Ez)) =j:. O. By Rieillann-Roch its dilllension is

bounded by rk(Ed . rk(Ez)(g - 1) > O. 0

Corollary B.5 LeI. X he a projcctivc va'l"iety with h l
().;, Ox) > 4h 2(X, OX)J I,hen

ox EB 0 X deforms 1.0 a stable vect.or bund/co

Proo]: By aSSllll1ption dilll Def(OxffiOx) '2: 4h I (.X", 0 X )-4h2
( .X, 0 x) > 3ft 1(X, Ox) =

2 dinl Def(Ox) + hl (.X, Ox) 0

rvlorc generally, thc SUlll F EB F, wherc F is a stable vector bunclle, defonlls to astahle

vector bundle if hl(.-X'",End(F)) > 4h2 (.)(,End(F)).

Instcad of dcforming the sunl EI EB E2 dircctly one could first construct a non-trivial

extension

o-t E2 -t F -f EI --+ 0

given by an extension class 17 E Ext l (E1 , E2 ) \ {O} and then try to defol'Ill the bunclle

F.
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Definition B.ß Fo'l' eVC'1'Y delorntation 01 F OVC'1' a pa.'l'a'lneler space J) we define fhe
ntap ~: TD,o ---+ Ext1(E2 ,E1) as the composition

TD,o -r Ext l (F, F) -r Ext 1(F, EI) -r Ext l (E2 , EI)'

where the last two 'maps are indu.ced by the above extension,

Proposition B.7 [I EI and E2 a'l'e two stahle bundles 01 the sarnc slope hut wi/.h
rk( Ed f:. rk( E2 ) and if F adrnit,s a deJonnat.ion Dver an one-dinwHsional para'meter

space D such lhaf, ~ f:. 0, then EI EB Ez defo'l"1ns lo a slable b'llndlc.

P'1'oof: As in the proof of 13.1 it is enough to show that all sInall neighboul'hoods

U of °E Def(EI EB Ez) contain a. point t E U, such that the COlTcsponding veetor

bunelle Ft does not aclJnit any non-trivial h011101110rphislllS E~ -r Ft 01' E; -r Ft for

slnall defol'lnatiolls E~ and E; of EI and E2 , resp. By the assuI11ption about the rank

we can asslune that HOln(E;, F) = 0 for all sI11all deforI11ations E; of EI. Hence, after

shrinking D, one Inay as weil assurne that I-I 0111 ( E~, F' ) = 0 fol' all defonnations F'
of F para.Inetrized by D. Since every open neighbourhood U contains a point t with

Ft ~ F 1 we can regard such an F' also as a defornlation of EI EB E2 . ff HOln( E;, F') = 0,
then F' is sta.hle. Otherwise, it can be writtcn as an extension

°---+ E' --t F' ---+ E' -----t 0Z I'

where E; anel E~ are elefonnatiotls of EI allel Ez, resp. Note that there is only Olle

(up to scalars) hOll101110rphisl11 Ez -r F. Thus it is enough to show that ~ : Tp,o -----t

Exe(Ezl Ed vanishes , where P is the space pal'aInetrizing a.1l the extensions or the

fornl (*). This ean be easily concluded using the cxact sequence

anel the following COlnrl1utative diagl'all1.

Ext I (F~ F) --t

.1-

Ext I (F, Ed -----t
.1-

Ext I (EI, Et} ----t

--t Ext1 (E2 , E2 )

.1-

Ext l (Ez, F)

.1-
Ext1(Ez, Ed 0
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