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§0. Introduction

Let T" denote the vector space T(P", O(d)), and T'* the space I' \ {0}. We assume that
n > 2 and d > 3. Let P.(T") stand for the projective space I'*/C*, and pr: I'* — P.(T")
the natural projection. This space P,(I') parameterizes all projective hyperswfaces of
degree d in P". We fix a hyperplane at infinity He, in P", and consider the affine space
A" .= P"\ Ho. We define U C P.(T") to be the locus of all projective hypersurfaces of
degree d which are non-singular and intersect H, transversely, and define &/ to be the
pull-back of U by the projection:

U = pr " (U) c T*.
For u € I'*, let f, denote the corresponding homogeneous polynomial of degree d. We put
X, ={fu=0}, Y,:=X,NHe, X,:=X,\Y,, and E,:=A"\X,.
Then we have the monodromy representation
p : m(Ub) — Autz (Hn(Xp;2)), (0.1)
where b € U is a base point and b € U is the point pr(b). This representation has heen

well investigated by the classical Picard-Lefschetz theory.

The purpose of this paper is to construct a certain kind of deformation of this classical
monodromy representation.

The idea is to consider the middle homology group H,,(Fy; Z) of the universal covering
K, — E

of the complement Ej,. We cannot, however, define the action of #((U,b) on H,(F};Z) in
a nalve way, because the universal coverings F, — E, cannot be constructed universally

over U. In order to construct the universal family of F),, it is necessary to enlarge the base
space U to U = pr="(U).

Since Gal (Fy,/E,) = m,(E,) is an infinite cyclic group, we can consider H, (Fy;Z) as
a module over the ring of Laurant polynomials Z{q, ¢~!], where the multiplication by ¢ is
identified with the action of a generator of Gal (F,,/Ey) = Z on H,(Fy;Z). This action is
also defined globally over U. g



Therefore, we get a monodromy representation
ﬁ : :rrl(Z,{,b) — Alltz[q‘q—-l] (H,,(Fb,Z)) (02)

of m(U,b) on the Z[g, ¢~ ']-module H, (Fy;Z).

This representation g can be regarded as a deformation of the classical monodromy p
in (0.1), because there is an isomorphism

Hn(Fb§ Z) = Hn—l (-Yb; Z) Kz Z[q q_l] (03)

of Z[g,q']-modules such that the homomorphism H,(Fy;Z) -+ H,_1(X;Z) obtained
from (0.3) combined with the homomorphism H,_;(Xp,Z) @ Z[q,¢"'] —» Ho-1(X};Z)
given by ¢ — 1 is m (U, b)-equivariant (see Theorems 6.1 and 7.1}. Here m (U, b) acts on
H,(Fy;Z) by p, and on H,,_(X;Z) by p composed with the natural surjective homomor-
phism 7 (¢,b) = m (U, b) induced by the projection pr: U — U.

Suppose that we are given a non-zero complex number o. We can consider C as a
Z(q, ¢! ]-module by identifying ¢ with «. Then the isomorphism (0.3) implies the isomor-
phism between complex vector spaces

HN(Fb; Z) ®Z[q,q—1] C = H,., (“YbE Z) Xz C = Hn—l(i\rb; C)
Evaluationg p at ¢ = a and using this isomorphism, we obtain a representation
ple)y + m(U,0) — Autg (H.—1(X;C)),

and thus we get a family of representations {p(«)} parameterized by all non-zero complex
numbers. The property of the isomorphism (0.3) implies that p(1) is nothing but the
complexified classical representation p @z C composed with the homomorphism =, (i) —
™ (Lf) .

The main theorem of this paper is as follows. Let Q(¢) denote the quotient field of

Zlg,q ")

Irreducibility Theorem. The monodromy representation of m (U,b) on the vector
space H, (Fy; Z) Qzq,4-1) Q(¢) induced from p is absolutely irreducible.

Corollary. If « is general enough, then p(e) is irreducible.

This shows that our deformation is non-trivial, because the classical representation p @z C

is not irreducible. In fact, p ®z Q is composed of the following two representations on the
primitive parts of middle cohomology groups:

Po : m(U,b)  —  Autg (Hl')‘r_iél(fb; Q)), and
Poo : m (U, B) — Autg (HI';;;(Y[,;Q));

that is, there exists an exact sequence

0 — HMW2(VQ) — Hy(XyQ) — HI (X5Q) — 0 (0.4)

prim prim
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which is preserved by the monodromy action of 7y (U,b). This exact sequence follows
from the isomorphism H,_(X; Q) = H "‘I(Yb,)"b;t@). It corresponds to the weight
filtration of the mixed Hodge structure on the middle term, and hence is preserved by the
monodromy action. The old Picard-Lefschetz theory tells us the following;:

Theorem. Both of pg and po, arc absolutely irreducible.

Therefore, our deformation fuses these two irreducible representations into one big irre-
ducible representation.

The complement I'* \ U consists of the following two irreducible divisors:

Do := { weT™ ; X, issingular}, and

Doo == { uel”* ; :.\7“ does not intersect Hy, transversely}.

The main tool of the proof of Irreducibility Theorem is the Picard-Lefschetz formula,
which describes the local monodromy action on H,(Fy; Z) along simple loops around these
divisors. Roughly speaking, we proceed as follows. First, we define a boundary JF, of F,,
and a “hermitian” intersection pairing

(: ) : Hn(Fb;Z)XHn(Fbaan:.Z) — Z[Qaq—l]

in appropriate ways. Let [y] € =1 (U ,b) be the homotopy class of a simple loop around Dy
or Deo. Then there exists a pair of v[y] € H,(Fy; Z) and v'[y] € Hn(Fp, 0F; Z) such that
the action of [v], on H, (Fy;Z) is given by

x = o+ (z,vy]) - vu[y]

This is a natural generalization of the classical Picard-Lefschetz formula with Z replaced
by Z[q,¢”"']. The homology class v[7v] is the vanishing cycle associated with [y].

Moreover, we have the following two facts:
(1) As a module over the group ring Z[q, ¢~ '][m (U, b)], Ha(Fs;Z) is generated by one
element v|yo], where yo is an arbitrary simple loop around Dy .

(2) Let Yo be a simple loop around Dy,. Then there exists a simple loop vg around Dy
such that

role(v[vee])  #  vlveo]. (0.5)
The first fact just corresponds to the classically known fact that the space of vanishing
cycles in the sense of [6; §3] is generated, as a module over the group ring of the monodromny
group, by one vanishing cycle for a simple loop, if the coefficients of the homology groups

are in Q (sec [6; §7]).

On the other hand, the second fact causes the crucial difference between the classical
representation p and our representation p. Indeed, for the classical monodromy p(1), the
inequality (0.3) does not hold; that is, we alway have

[10le(v[ves]) = v[ves]  modg—1
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for arbitrary simple loops ¢ and 7 around Dy and Dy, respectively. This equality
modulo g—1 gurantees the stability of the subspace H I’)’r_hf](Yb; Q) of H,,—1(X}; Q) under the
monodromy action, because this subspace is generated by vanishing cycles v[yoo|module ¢—

1 associated with simple loops e around Des.

The idea to look at the universal covering of the complement comes from [5]. In this
paper, Givental’ considered the versal deformation family of a hypersurface singularity, and
studied the monodromy action on the middle homology group of the universal covering
of the complement to the Milnor fiber. In the case of simple singularity, the fundamental
group of the complement to the discriminant locus in the base space of the versal defor-
mation family is known to be isomorphisc to the generalized braid group corresponding
to the Dynkin diagram of the simple singularity. What he obtained is a representation of
the Iwahori-Hecke algebra, which connects the classical representations on the module of
vanishing cycles in odd dimensions and in even dimensions.

A similar investigation had been done in [10] in a more general setting than ours.

Let € C P? be an irreducible plane curve, and let L € P? be a general line. We
put X :=P*\ (CUL). Let X = X be the infinite cyclic covering corresponding to the
Hurwicz map = (X) — H,(X;Z) = Z. Then the first homology group H,(X;Z) of X,
as a Z[q,q~']-module, plays an important role in the study of singular plane curves [§].
Here in this paper, we treated HQ(X;Z) when C 1s non-singular. Thus we hope that it
would be interesting to study the structure of H, (Fy;Z) as a Z[g, ¢ ']-module when the
hypersurface Xy is singular.

This paper is organized as follows.

In §1, we construct the universal family of the universal coverings F, — E, of the
complement F, = A"\ X, over the extended base space & C I'*. We shall show that the
deck transformation T, : F, = F, over E, corresponding to a generator of Gal (F,/E,) =
Z is also constructed universally over /. Thus we obtain the representation p.

In §2, we investigate the polynomial map ¢, : A" — C which defines the affine

-~

hypersurface X, ; that is, X, = ¢7'(0) and E, = ¢7'(C*). We shall study the critical
points of ¢, and the behavior of the fibers ¢7'(#) “at infinity”. We introduce a Zariski
open dense subset Uy C U, over which the topology of the polynomial maps ¢, does not

vary locally.

In §3, we introduce a continuous function € : & = Ry which 1s “small enough”, and
define two boundaries 9o E,, and e E, of E, as ¢7'(A*(0)) and ¢ ' (A% (o0)), where
AX0):i={z€C;0<|z| <e(u)}and A*(o0) := {2z € C; |z]7"' < e(u)}. We then define
two boundaries 9o F, and OueFy of F, as the pull-backs of the boundaries of E, by the
covering map F, — E,. It turns out that the relative homology groups H,(F,, 00 Fy)
and H,(F,,0xFy), both of which are also Z[q, ¢~']-modules, are easier to describe than
H,(F,). The pleasant feature of this theory is that there is a certain kind of duality
between H,(F,,0¢ Fy) and H,(F,, O Fy).

In §4, we review the classical theory of Lefschetz [7], and fix some notion and notation
about vanishing cycles and thimbles. In this paper, a vanishing cycle'in X, for example,
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is defined as a homotopy class of continuous maps from $"~! to X, which satisfies certain
conditions, and a thimble in (E,, do E,), for example, is defined as a homotopy class of
continuous maps from the pair (CS*~!,5"71) where C'S™~! is the cone over $"7!, to
(Ey. 00 Ey) which possesses certain properties.

In §5, we investigate the homology groups H, ~1(Xy), Hp(Ey) and H,(E,, 0o Ey).
The main results are that, if « € Uy, then the homology classes of the vanishing cycles
corresponding to the critical points of q.?)u form a basis of H, _;(X,), and the homology
classes of the associated thimbles form a basis of H,,(E,,Jo E,). In particular, H,,—(X,)
and H,(E,,do E,) are canonically isomorphic, and the rank of them is equal with the
number of the critical points of QASu. These facts seem to be well-known. However, we
present them with complete proofs in order for the paper to be self-contained.

In §6 and §7, we study the structure of H, (F,) and H, (Fy,00 F,), Ha(Fu, 000 Fu)-
We show that H, (F,) is embedded in H, (Fy, 0 Fy) and H,(F,, OooFy) by the natural
homomorphisins. We also show that that the homology classes of the thimbles lifted from
(Ey,00 Ey) (resp. (Ey, O Ey)) form a set of basis of Hy(Fy, 00 Fy) (vesp. Ho(Fy,00Fu))

over Z[q, g~ ']. In particular, we obtain isomorphisms
1, q ;

Hn(Fu:aOFu) = Hn(EuaaOEu)®ZZ[qaq-1] = Hn—l(-Yu)®ZZ[q;q_ll; and ( )
0.6
HII(FU')aOOFu) f__\_: HH(E!t:aOOEu)@ZZ[(I;(I—l]'

These 1somorphisms are, however, not canonical by any means, because there is ambiguity
of the way of lifting of a given thimble in (B, 00 Ey) (resp. (Ey, OocFw)) up to (Fu, 00 Fy)
(resp. (Fu,0woFy)). In order to state the isomorphisms (0.6) precisely, we have to restrict
ourselves to a smaller locus Uy C Un, over which a canonical lifting can be assigned to
each thimble in (E,,00 Ey) or in (£, 0o Ey). However, U \ UY is a real semi-algebraic
subset of real codimension 1, and Uy is not path-connected. Hence these isomorphisms
cannot be (U )-equivariant. (Otherwise, we would get a contradiction to Irreducible
Theorem above.)

In §8, we introduce two hermitian intersection pairings between the two relative ho-
mology groups H,(F,, 00 F,) and H,,(Fy, 80 Fy ), which take values in Z[g, ¢~ '}, and prove
that they are non-degenerate. The idea of these pairings is also due to [3)].

In §9, we formulate and state the Picard-Lefschetz formula. Let v¢ be a simple loop
around Dy, and ve a simple loop around Dy,. The precise definition of simple loops is
given in §9.1. We describe the action of [yo] € m1(U,b) on Hp(Fp, DooF)) in Theorem 9.2.1,
and the action of [yeo] € 71 (U, D) on H, (Fy, dg F) in Theorem 9.2.2, with the help of the
hermitian intersection pairings defined in §8. As 1s seen from the proofs, which are given in
§9.4 and §9.7 respectively, this is a more appropriate way to state Picard-Lefschetz formula
than to describe the action on H,(Fy). The action on H,(F}), however, can be derived
from these two theorems, because H,, (F}) is embedded in H,(Fy, Ouo Fy) and H, (Fy, 0o Fy)
by the natural homomorphisms.

As can be guessed from the fact that the basis of H, (Fy, o Fs) or Hp(Fy, do Fy) over
Z[q,q~"] consists of the homology classes of lifted thimbles, each of which corresponds to
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a critical value of c;;Sb in a bijective way, the main ingredient of the proof is to study the
movements of the critical values of ¢, when v makes a round trip along v¢ or veo. In the
case of vg, it is quite easy to see how the critical values moves on the complex plane. On
the contrary, it takes the whole subsection §9.6 in the case of vqo.

There is one more important result in §9. In §9.5, we give a proof to Theorem 9.5.1,
which states that H, (F}) is generated, as a module over the group ring Z[q, ¢~ ')[m (U, b)],
by one “vanishing cycle” v[yo] associated with an arbitrary simple loop v around Dy .

By Zariski’s hyperplane section theorem, m(U) is generated by the homotopy classes
of simple loops around Dy and Dy,. Hence, using the results in §9, we can prove Irre-
ducibility Theorem in §10.

Acknowledgment. The author would like to thank Max-Planck-Institut fur Math-
ematik in Bonn for providing him with stimulating research environment.

Conventions.

(1) The symbol I always denotes the closed interval [0,1] C R.

(2) A path I = V on a C®°-manifold V is always assumed to be piece-wise smooth.

(3) Let @ : I = V and B : I — V be two paths on a topological space V. We define
the order of the product of paths in such a way that « - 3 is well-defined if and only if
B(1) = a(0). -

(4) Let Vi and V, be topological spaces, or pairs of topological spaces. Then [V, V2]
denotes the set of homotopy classes of continuous maps from V; to V;.

(5) Let V, W and W' be topological spaces, and f: V = W, g: W’ — W continuous
maps. We say that f is locally trivial over g : W’ — W (or simply over W') if the pull-hack
W' xw V. — W' of f by gis locally trivial.

(6) Let Xy and X, be complex manifolds, and let i : Xy — X3 be a holomorphic
map. We say that h is locally trivial if it is locally trivial in the category of topological
spaces and continuous maps.

(7) In this paper, we work with homology groups in Z-cocfficients unless otherwise
stated, and we omit Z in the notation.

§1. Construction of the universal family

Our first task is to construct the universal family of the universal coverings F, — E,
over the exiended base space U.

The complement P, (T') \ U consists of two irreducible divisors Do and Dy, where
Dy consists of all singular hypersurfaces, while Dy, consists of all hypersurfaces whose
mtersections with Ho, are not transverse. Then a general point of Dg corresponds to
a hypersurface possessing one ordinary double point as its only singularity, while a gen-
eral point of Do, corresponds to a non-singular hypersurface X such that Heo N X is a
hypersurface in Hy, possessing only one ordinary double point as its singularity.

Then the divisors Dy and Dy, of I'* defined in Introduction are the pull-backs of D¢
and Do, respectively, by the natural projection I'* — P,(T').
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We choose h € T'(P",O(1)) which defines the hyperplane H,, = {h = 0}, and fix it
throughout this paper. Then h? € T'X. Recall that f, denote the homogeneous polynomial
of degree d corresponding to « € T'*. Using the fixed homogeneous polynomial 1? defining
the multiple hyperplane d - Hyo, we get a morphism

¢u = fu/h® © E, — C*,
which is the restriction of the polynomial map
q?Ju = fu/hd A" — C

to Ey = ¢ 1(C*). The following lemma is easy to prove by using Zariski’s hyperplane
section theorem [11], and the theorem of Deligne-Fulton on Zariski’s conjecture ([2], [3],
[4]):

Lemma 1.1. Suppose that w € U. Then ¢, induces an isomorphism 7, (E,) & m(C*)
on the fundamental groups. [

Let e : C — C* be the universal covering given by z — expz. (We distinguish two
complex planes C and C. This distinction will help to avoid confusions.) For every v € ['*,
we define a complex space F, by the fiber product

F, -5 E,
”b“l ] lm (1.1)
C — C*.

If w € U, then Lemma 1.1 implies that the covering é : F,, — E, is the universal covering of
E,, whose Galois group is canonically isomorphic to m, ((CX). Let T, : F, = F, denote the
deck transformation over E, corresponding to the counter-clockwise generator of = (C*).

The construction of the universal covering F,, — E, can be carried out universally over
the base space Y. Let X' C A" x U denote the universal family of the affine hypersurfaces
{ Xy u €U}, with the natural projection X' — U, and let £ stand for the complement
(A" x U)\ &, which is the universal family of { B, ; « € U } with the natural projection
E— U. By putting ¢, : E, — C* together, we get a morphism

d : £—C",

which maps (P,u) € £ to ¢,(P) € C*. Let F be the fiber product & x¢x C, where
C — C* is given by the exponential map e. Then this F with the natural projection onto
U is the universal family of { F,; v € U }. Again, the natural map F — £ is the Galois
covering with the Galois group m (C*). Let 7: F — F be the deck transformation over £
corresponding to the counter-clockwise generator of 7, (C*). Then the restriction of T to
a fiber Fy, C Fover uw € U gives the deck transformation T, : F, — F,.

Now it is easy to sec that the families A' = U, £ — U and hence F — U are all locally
trivial. Therefore we obtaln'a natural monodromy representation of 7y (2, b) on H, (F})
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where b € U 18 a base point. Since the deck transformations T, are defined globally over
U, we get the following:

Lemma 1.2. The monodromy action of m\(U,b) on H,(F}) commutes with the auto-
morphism Ty, : H,(Fy) = H,(Fy) induced by the deck transformation. [

We fix an isomorphism between the group ring Z[r (C*)] and the ring of Laurant poly-
nomials Z[q, ¢~'] by identifying the counter-clockwise generator of 7;(C™) with q. Then
H,(F,) becomes a Z[q, ¢~ ']-modules for cach v € U, in which the multiplication by ¢ is
nothing but the automorphism Ty, : Hy(Fy) = H,(Fy). Lemma 1.2 implies that the mon-
odromy representation of my (U, b) on H, (Fy) is a representation on the Z[q, ¢7!]-module,
and thus we get

Wl(u,b) — Autz[q'q—l] HH(F},). (12)

This monodromy representation is the central theme of this article.

The natural projection & — U is a C*-bundle. Hence the kernel of 71 (U) = m (U)
is generated by an eclement ¢ € = (U), which is the counter-clockwise generator of the
fundamental group of the fiber & C*. It is obvious that ¢ is contained in the center of
Ty (Z/()

Proposition 1.1. The action of ¢ on H, (F}) is equal with the multiplication by q.

Proof. The clement ¢ € m(U,b) is represented by the loop { f[6]; 8 € I} in U, where
fl6) := e2™V=18 1 et E {6l C A" be the complement to the affine hypersurface defined by
fl8] = 0. Then E[6] does not change even when 6 varies. The function ¢[d] : E[¢] — C*
on it, however, varies as ¢[6] = ez“‘/—_‘aq!)[O]. This is equivalent to rotate Ey over C* once
in the counter-clockwise direction. Therefore it induces the deck transformation T, on Fj,
and hence the multiplication by ¢ on H,(Fy). U '

This proposition justifies us in working, not with =, (U), but with =; (/). Later on, we
shall prove that H, (F}) is torsion free as a Z[q, ¢~ ']-module (Corollary 6.1 ). Hence ¢ has
an infinite order in m (U, b); that is, the kernel of = (U) — 7 (U) 1s isomorphic to Z.

§2. Structure of the polynomial map ¢,

Let ¥V ¢ T* denote the locus of all points v € T'* such that X, does not contain
H, as an urreducible component. It is obvious that I/ C V. It w € V, then the morphism

dn : A" — C is expressed as a polynomial of degree d in terms of affine coordinates of A",
In this section, we always assume u € V.

Convention. We do not distinguish a point on I and the corresponding homoge-
neous polynomial meticulously. For example, we use hoth of the notations v € T' and
fu € I' in the same meaning.

Let Cr(u) € C denote the set of critical values of ¢,. For t € C, we have
t¢ Cr(u) <> ¢74(t) is non-singular. (2.1)
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We write by h, € P.(T) the point corresponding to d- Heo. Let £, C T denote the affine
line { fu —t-h?;t e C}, and let L, C P.(I') denote the projective line spanned by b,
and the point pr(u) € P,(T') corresponding X ,,. We put

LY = Lu\{l)oo}.

Then the projection pr: I'* — P, (T") induces an isomorphism between £, and Lj. There
are natural parameterizations

tw : C— L,, and t,:=pros, : C — LY

given by ¢, (t) := f, —t- h?. The following remark will be used frequently throughout this
paper.

Remark 2.1. By definition, the morphism q@u : A" = C is nothing but the pull-back of
the universal family A — T'* by

C = L, = T*,
tu
where Ap = { (P,u) € A" xT'*; P € X, }, and At — I'* is the second projection.
Proposition 2.1. Ifu € U, then ¢, : A" — C is locally trivial over C\ Cr(u).

Proof. By (2.1), it is enough to show that ¢, is locally trivial “at infinity” over the
complex plane C; that is, if « € U, then, for all t € C, the projective compactification of
the affine hypersurface ¢ (1) is non-singular at every point of the intersection with He,
and moreover, the intersection is transverse. This follows directly from two Lemmas below

and Remark 2.1. O

Note that £, C V because of the assumption v € V. Note also that

XoNHe=X,NHy forall weLl,, (

©
b
e

by the definition of L,.

Lemm_a 2.1. Suppose that X is non-singular at a point P € X, N Hy for oncw € L.
Then X, is non-singular at P for all w' € L,.

Lemma 2.2. Supposc that X, intersects Hoo transversely at a point P € X, N Hyo for
onew € L,. Then X, intersects Hoo transversely at P for all w' € L.

Proof of Lemmas 2.1 and 2.2. Let (z1,...,z,) be an affine coordinate system on an affine
open subset A" of P" with the origin P such that Heo = {z, = 0}. Suppose that X, is
defined by

fu(2|,...,z,,):(]

. ] R . . . )
in A" where fy(z1,...,2,) 1s an inhomogeneous polynomial of degree d with zero constant
term. If w = ¢,(t), then, after replacing z, with az, where a is an appropriate non-zero
constant, an inhomogeneous polynomial defining X ,, is given by

fw(zla'--:zn) = fu(zl,...,zn)_t.z:_



The projective hypersurface X, is non-singular at P if and only if the homogeneous part
fl[.,l](zl,.'. .yzn) of degree 1 in fu(z1,...,2,) is non-zero. Since d > 2, if it holds for one
w € L,, then it holds for all w € £,. The condition that the intersection of X ,, and H is
transverse at P is equivalent to the condition that fl[t} ! (z1,...,2n-1,0) is non-zero. Again,
since d > 2, if it holds for one w € L, then it holds for all w € £,. [

These two lemmas imply the following:
Proposition 2.2. Ifu & Dy, then L, N Doy =@. If u € Do, then L, C Doo. [l

Proposition 2.3. If X, is non-singular at every point of Xy N Heo, then Cr(u) CCis
equal with «;1 (L, N Do) and with 1, '(L2 N Dy). O

Corollary 2.1. Ifu € U, then L, NDe =0, and Cr(u) = 71 (L, N Dy). T

Let (,5,,(:1:1 ,....&y) be the polynomial of degree d expressing ¢, : A" = C in terms
of affine coordinates (@y,...,2,) of A”. The critical points of un are then given by the
solutions of A A

a¢u _ _ ad’u

5.:!"._1__'“_ 01,

=0.

Hence, if v € U 1s chosen generally, the nunber of the distinet critical points of g%u 1s
N = (d-1)".

Definition 2.1. Let Uy C U denote the locus of all u € U which satisfies the following;
(1) Cr(u) consists of distinct N values, and (ii) over each p € Cr(u), ¢, has only one
critical pomt and that critical pomt is non-degenerate.

Since both of (i) and (i1) are algebraically open conditions, the locus Uy is a Zariski open
subset of U. It is easy to see that Uy # @. Hence Uy C U is dense.

Note that N is the maximal number which can be attained by the number of elements
of Cr(u). Hence Corollary 2.1 implies the following:

Proposition 2.4. Ifu € Uy, then £, intersects Dqg transversely at cdistinct N points of
the non-singular locus of Dg. U

Lemma 2.3. Let u be a point on Uy. Then we have L, \ Do = L, N Up.

Proof. Let w be an arbitrary point on £,. By definition, the affine line £,, 1s equal with
Ly, and we write this affine line simply by £. By Remark 2.1 | we have

~

Ly O Q;u = iy 0 ¢w (23)

as a morphism from A" to £. In particular, the morphism q!ASw also satisfies the conditions
(1) and (ii) in Definition 2.1. This implies that, if w € U, then w € Uy. On the other
hand, because of Corollary 2.1, we have LN Dy, =@ and hence L\ Do = LNU = LN UN.
El .
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Suppose that u € Un. Let p € C be one of the critical values of $u. and let g € A"
be the critical point of ¢, on ¢ '(p). Then there exists an analytically local coordinate
system (wi,...,w,) on a small neighborhood of ¢ in A" with the center ¢ such that ¢, is
given by

(wi,...,we) = prwi+. 4wk (2.4)

locally around ¢. Let € be a small positive real number. We put
B = { (wi,...,wn) ; hoi]* 4+ +|wa* <€} C A",

Lemmas 2.1 and 2.2 imply the following (cf. [6; §3. Ehresmann’s Fibration Theorem]):

Proposition 2.5. Let n be a positive real number small enough compared with €, and
let A C C be the closed disk with the center p and of radius 1. (1) By the restriction of
bu, the pair ( 7 (A)\ B, ¢7(A)NOB ) is a trivial fiber space with boundary over A.
(2) Moreover, ¢ '(p) is a strong deformation retract of ¢ (A).

Proof. The situation near Ho can be checked by Lemmas 2.1 and 2.2, The situation near
the point ¢ can be studied by the explicit formula (2.4) of ¢,. [
§3. Boundaries of F),

In this section, we always assume u € U.

Note that 0 ¢ Cr(w) by (2.1), and Cr(u) = +7' (L, N Do) by Corollary 2.1. These
imply that

Ew) = min{|p|,|p|”"; p € Cr(u)} (3.1)

defines a continuous function & : Y = Rsg. Suppose that € : U — Rso Is a continuous
function which satisfies
e(u) < €(u) forall uweld. (3.2)

We put
By ={z2€C"; 0<|z[<e(w)}, and B = {zeC*; || <e(u)},
cach of which is a punctured closed disk on P' = C U {o0}. We also put
OBy = ¢, (By) CEu, OBy = &7 (BY) C Eu,

and

aoFu = é_l(aoEu) = 71[)_1(6_[('83)) C F“’

O Fyy 1= é_l(amE,,) = -gb;l(e_l(Bﬁo)) C F,.
(See (1.1) for the definition of é and ,.) Note that the‘set of critical values of 3, : F, = C
18

Cr(u) = e_l(Cr(u)),
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and that ¢, : F}, — C islocally trivial over C\ Cr(u) by Proposition 2.1. By the definition
(3.1) of € and the condition (3.2), there are no critical points of ¥, : Fy, — C in o Fy, and
in Joo Fu. Moreover, each of the subspaces

C\e '(B2) Cc C, C\e ' (B®) cC, and C\ (e (B2Yue ' (B)) Cc C

u u

is a strong deformation retract of C. Heunce each of the subspaces
F,\OF, CF,, F,\O0xuFy, C F,, and F,\ (0o F,U0F,) C F,

is also a strong deformation retract of F,,. Therefore, we can call 9y F,, and Oy F, the
boundaries of F,. In particular, since Jg Fyy N O Fy = @), the intersection pairing

(,) : H,(Fy,00F,) x Hy(Fy,00Fy) — Z

between the relative homology groups is well defined.

It is obvious that each of the pairs (Fy,do Fy) and (F,, O Fy) forms a locally trivial
family over i/ when u varies. Moreover, the deck transformation T, : F, — F, induces
automorphisms of 9¢ F, and O Fy. Hence H,(F,, 0o F,) and H,(Fy, 0o Fy) can be re-
garded as Z[q, ¢~ ']-modules in the same way as H,(F,). Therefore cach of H,(F,, 80 F,)
and H,(Fy, 8o Fy) forms a locally constant system of Z[q, ¢~']-modules over ¢/. We thus
obtain natural monodromy representations

m (U, b) — Autgg -1 (Ha(F5, 00 Fy)) and  m(U,b) — Autg, -] (Ho(Fb, 0o Fy)),

which are compatible with (1.2) via the natural homomorphisms H,,(Fy) = H,(Fs, do Fs)
and H,(Fy) = Hu(Fb, OooFy) of Z]g, ¢~ ']-modules.

Remark 3.1. The homeomorphism types of all spaces (E,,d0 Ey), (Ew, 0o E.),
(Fyu, 00 Fy), (Fu, 0o Fy), and so on, or of the maps between them are independent of the
choice of the function ¢, provided that (3.2) is fulfilled. In order to make the argument
concerete, we put

e 1= €/2, (3.3)

and use this € unless otherwise stated. Sometimes, however, we pick up a sufficiently small
positive real number r; and use

¢’ := min{é/2,7} = min{e,r}
instead of €, so that ¢’ is a constant function in a neighborhood of a given point of U.

§4. Vanishing cycles and thimbles

In this section, we fix notion and notation concerned with vanishing cycles for ordinary
double points and associated thimbles. For the proofs of the facts stated in this section,
we refer the reader to [6].



Let 8™~! be an oriented (n - 1)-sphere, and let » € [S™~!, §77!] be the homotopy
class of orientation reversing self-homeomorphisms. Note that #2 € [S"71,5"~!] is the
homotopy class of the identity. For a topological space T and a homotopy class f €
[S"1,T], we write by —f € [S"™!,T] the homotopy class f o». Note that, since S"~1 is
oriented, we have a natural map [S"™", 7] = H,—{(T).

We denote by C'S"~! the cone over $"'; that is, the space obtained from I x §7~!
by contracting {1} x S"7! to a point, which is the vertex of the cone. We equip CS"™!
with the orientation induced from that of the product space I x S"~!. Hence we have

a CrSn—l — _Sn-l.

Therefore, for a pair (7,5) of a topological space T' and its subspace S, there is a nat-
ural map [(CS" ', S" "N, (T,S)] - H,(T,S), which makes the following diagramn ants-
commutative;

[(CcS™—,8"=1H(T,5)] — H.(T,S)

l la (4.1)

[s"-1.5] — H,_(95).

There is a unique class # € [(CS"™,8"7!),(CS"~1, 5" Y)] which is represented by an
orientation reversing self-homeomorphism. For f € [(C S, 5"71),(T, S)], we write by
—f the homotopy class f o .

Now we consider the following situation. Let W be a non-singular connected complex
manifold of dimension n, Z a Riemann surface, and g : W — Z a surjective holomorphic
map. For a point z € Z, let W, denote the fiber g~!(2). Suppose that the following
conditions (wz-1)-(wz-3) arc satisfied.

(wz-1) The map ¢ has only one critical point ¢ € W, which is non-degencrate.
(wz-2) Moreover, g is locally trivial over Z \ {p}, where p = ¢(q).

Because of (wz-1), there exist local analytic coordinates (w;,...,w,) on W with the center
¢ and an analytic coordinate t on Z with the center p such that g is given by

(wi,...,wp) = t=wi4 - +w?

n*

(4.2)

We choose a small positive real munber € and a positive real number » which is small
enough even compared with e, and put

B, = { (wyy...,wn) €EW  Jwi]* 4+ -+ |w,|* <e} and A, :={teZ; |t| <n}

The third condition we impose is the following;
(wz-3) the restriction of g to ( ¢7'(A,)\ Be, ¢7'(A,) N8B, ) is trivial over A,
The meaning of (wz-3) is that, “at infinity”, ¢ is locally trivial even over the critical value

b.
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The cases we are going to apply the facts explained in this section are, for example,
as follows. Let « be a point on Uy, and p € C a value in Cr(u). Then the situation

Z=C\(Cr(m)\{p}), W=E,\ (J ¢7'0), and g=¢ulw
' € Cr(u)\{p}

satisfies the conditions (wz-1)-(wz-3) because of Propositions 2.1, 2.5 and the definition
of Un. We will also consider the following situation. Let u be as above, and let p € C be
a value in Cr(w). Then the data

Z=C\(Cr(w\{p}), W=F\ | #70), and g=v.lw
p € Cr(uw)\{p}

satisfy the conditions (wz-1)-(wz-3) because 3, is the pull-back of ¢, by the étale covering
e: C = C*.

Now we go back to the general situation.

Definition 4.1. Let « be a point on Z\{p}, and let P, be the space of all pathsw : I — Z
from a to p such that p € w([0,1)). We equip P, with the compact-open topology, and
let { Pa ] denote the set of path-connected components of P,. For w € Py, let [w] € [Py ]
denote the path-connected component containing w; that is, the homotopy class of paths
in P, represented by w.

Proposition 4.1. For a point a € Z \ {p} and a homotopy class [w] € [P, ], there
exists a homotopy class o[w] € [S" ™, W,], unique up to sign, which satisfies the following
properties. (i) Let o' be another point on Z \ {p}, and 7 : I — Z \ {p} a path from d' to
a. Then we have

olw- 7] = [r]7 (o[w]),

where [7], : [S"71, Wo] = [S"7Y, W,] is the bijective map induced from the triviality of
g: W = Z overt:I— Z\{p}. (ii) Suppose that « € A\ {p} and w(I) C A,. Then

olw] € [S"', W, ] is represented by a continuous map
st — B.NW, <= W,

such that the map S"~! — B, NW, induces a homotopy equivalence.

Sketch of Proof. Let « be a point on A, \ {p}. The fact that B, N W, is homotopically
equivalent to $"~1! follows from (4.2). Hence ojw] € [S"~!,W,] is uniquely determined,
up to sign, by the property (i), when w is a path in A,. For an arbitrary « € Z \ {p} and
an arbitrary w € Pq, there exists ¢ € (0,1) such that w([t,1]) C A,. We decompose w into
wy - wy at t; that is, w(s) = w(ts) and wy(s) = w(t + s(1 — ¢)). By the above argument,
we have ofws] € [S"7!, W), The class ofw] € [S"~!, W,] is derived from olw,] via the
bijective map between [S"~1, W.] and [S"~!, W, (] induced by the triviality of g over wy,
using property (i). O
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Definition 4.2. We call the class ofw] € [S*7!,W,] the vanishing cycle for {w]. Let
Glw] € H,—1(W,) denote the corresponding homology class.

Remark 4.1. Traditionally, the homology class #{w] has been called the vanishing cycle
tor ).

Remark 4.2. There are usually two vanishing cycles o[w] and —ofw] = ofw] o r for a
given [w].

Let W x 7 L. be the pull-backof ¢ : W — Z by w: I — Z. where w € P,. Then the
embedding W, — W x z I, induces a homotopy equivalence because of (wz-2) and (wz-3).
Combining the embedding W, — W xz [, with the homotopy inverse W xz I, = W,
we get a contraction map

Co : W, — W,

along w. Let ¢ : I — Z \ {p} be a loop from « to a as follows; ( goes along w from « to a
point p' 1= w(l — A) € A,,, where A is a positive real number small enough, draws a circle

in the punctured disk A, \ {p} from p’ to p’ in a counter-clockwise direction, and goes

back to « along w™!.

a- -

(49

Figure 1

Then we have the monodromy action

[d* : Hn—l“’vu) —)H,,_|(I'Va)

induced by [(] € m(Z \ {p},a). The classical theory of Lefschetz states the following
theorem.

Theorem L1. (1) The kernel of Cuw : Ha1(Wo) = Hao(W,) is generated by the
homology class a|w] of a vanishing cycle for [w]. (2) The image of the endomorphism
Id — [C]. of H, ~1(W,) coincides with the kernel of C,,. U

Now we describe the notion of thimbles. Let
p o CS"TY —T

be the natural projection induced from the first projection I x §"~! = I.

Proposition 4.2. Suppose that a € Z\ {p} andw € P, are given. Suppose also that the
sign of the vanishing cycle o[w] is specified. Then there exists a unique homotopy class

f(lw],olw]) € [CS"', 5" ), (W, W,)]
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with the following properties. (i) The image of §([w], o[w]) by the natural map
[(CS", 8™, (W, W,)] — [S"7', W]

is o[w]. (i) The homotopy class 8(|w],o(w]) is represented by a continuous map T :
CS"~' — W which makes the following diagram commutative

cst Low

l” l”
I = Z,

and which maps the vertex of the cone CS"™! to the critical point q.

Sketch of Proof. Suppose that ofw] € [S"~!, W,] is represented by sg : S"~! — W,. Then
so deforms continuously to s, : S*~ — W for ¢ € [0,1]. We see that s; is homotopically
equivalent to the constant map S"™!' — {q} < W,, because B, N W, is contractible by
(4.2). Therefore, by changing the deformation s; homotopically, we may assumne that s, is
the constant map through {¢}. The continuous map T is constructed by putting these s;
together. [J

Definition 4.3. We call the homotopy class 6([w], o|w]) the thimble for [w] starting
from ofw]. When the orientation does not need to be specified, we write this thimble
simply 8([w]). (Note that 8([w], —olw)) = —0({w], o{w]).) We denote its homology class by
6([w], ow]) € H, (W, W,).

Definition 4.4. Suppose that w’ € P, is a path representing a homotopy class [w] € [P, ].
We say that a continuous map T : C5"~! — W represents the thimble 8([w], ow]) over
the path w', if the diagram

cs' ILyow

lp ly
I = z
is commutative (in particular, T({0} x $"7!} is contained in ¥W,), and if T represents

6([w], o[w]) in [(C’S“"l,S”"l),(‘[f’[f', W)).

It is obvious that, for any w’ € [w], there exists a continuous map 7 : C'S"~! — W which
represents the thimble 6([w], o[w]) over w’.

Definition 4.5. Let ¢ be a sub-path of w; that is, there is a continuous increasing map
i: I — Isuchthat € =woi. Let T: CS" ' = W be a continuous map representing
the thimble §([w], o[w]) over w. The restriction T|¢ of T to € is the composition of 7 :
(CS" )y x; I — CS"Land T, where 1 is the pull-back of i by p: CS*~! — I. If4(1) = 1,
then T'|¢ is a continuous map from CS"~! to W, which represents the thimble 6([£]) over
the path €. If /(1) < 1, then T¢ is a map from [ x §*~1 to W.

Now we choose two points ¢ and ' in A, \ {p} such that the two radii of the disk
A, passing through « and «'; respectively, are distinct. Let w and w’ be the paths from
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a and o, respectively, to the center p along the radius of the disk A,. Let ¢4 and «_ be
the paths in A, \ {p} from « to @’ described as follows; the path ¢, (resp. ¢_) start from
a, goes to a point on the boundary 9A, along the radius, draws an arc on 94, in the
counter-clockwise direction (resp. in the clockwise direction) to the end point of the racdius
passing through o', and then goes to «’ along this radius.

. “\ e RN . R
; \‘ ’!‘ [4) \ al ! ’ \
‘ a\J\ ‘ ' / ‘ a r a ¢
' I ! ]
! p t p ! A "'
\ f \

\ / \ ,’ N /
\ /I A 4 \\ //
A .’ N - O -

, -
w W by L
Figure 2

Suppose that a vanishing cycle o[w] € [S"7', W,] for [w] is chosen from among the two
possibilities. We put

o] = [alofolel), and o-lw] = [-)u(olel).

both of which are vanishing cycles for W], because [w - 3'] = [w - ¢Z'] = [w']. Then we

have ) ‘
oi W) = (=1)"o_[W] in [S*T', W,

Let T. T, and T_ be continuous maps from CS"7! to W which represent the thimbles
8([w], o[w]), 8([w'], o+ [w']) and 8([w'], o—{w']), respectively, over w, w’ and w', respectively.
With the orientation of C'S"~!, we can consider these maps as n-chains in W.

Lemma 4.1. We can choose the maps T, T'y and T_ in such a way that the n-chains T
and T} (resp. T and T_) intersect at only one point ¢ transversely with the intersection
number (—1)""=D/2 (resp, (—1)*(n+1)/2),

Proof. This lemma can be checked by direct calculation using the explicit form (4.2) of

g. U
85. Structures of H,_(X,), H,(E,) and H,(E,,3q F.)
In this section, we always assumne that © € /. We define two points
ad = g(u), and ay’ = 1/e(u)
on C*. and consider the fibers
X0 = o7 a?), and® X2 = ¢7' ().

"
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By definition (3.3) of € : U — Rsg, there are no critical values of (,{5" on the interval
[0,e(u)] C R. Hence, by Proposition 2.1, there is a diffeomorphism, unique up to homotopy,

X, =¢7'0) = X2, (5.1)

which is induced by the path from 0 to e(x) along R. It is obvious that 7 (¢, b) acts also
on Hy1(X2) and H,_1(X$®). The Lemma below follows immediately from the definition
of .

Lemma 5.1. The isomorphism H,_(Xp) & H,—1(X?) induced by (5.1) is = (U ,b)-
equivariant. [

Since «$° ¢ Cr(u), Proposition 2.1 implies that X,, and X$° are also diffeomorphic. How-
ever the homotopy class of the diffeomorphism is not uniquely determined, and we cannot
expect that H,_(Xy) & H,_1(X$°) is m (U, b)-equivariant by any means.

Note the following:

Theorem L2 (Lefschetz Hyperplane Section Theorem). The homology groups
Hi(X,) = H.-(Xl?) = H;(X¢°) are zero for i > n — 1.

Proof. See, for example, [9]. U]

Definition 5.1. For a point « € C* \ Cr(u) and p € Cr(u), let Py(a,p) denote
the space of all paths w : I — C* which satisfy the following; (i) w(0) = a, w(1) = p,
and (i) w({0,1)) N Cr(u) = B. We equip Pu(a,p) with the compact-open topology. Let
[Pu(a,p)] denote the set of path connected components of P, (@, p). For w € P,(a,p), let
[w] € [Pula,p)} denote the path connected component containing w; that is, [w] denotes
the homotopy class of paths in P,(a, p) represented by w.

Suppose that u € Upy. Then Cr(u) consists of distinct N values {p,,...,pn}.

Definition 5.2. Suppose that a € C*\ Cr(u) is given. A set of paths{¢;,...,En}, where
i € Pula, pi), is called a regular system of paths from « if the following are satisfied; (i)
each & : I = C* is injective, and (ii) &(I)NE;(T) = {a} if 1 # 5.

Since u € Uy, the morphism ¢, has only one critical point ¢; over ecach p;. Moreover,
these critical points are all non-degenerate. Therefore, if we are given a regular system
{&1,...,&n} of paths from «, we obtain vanishing cycles +o[;] € [S*™!, ¢ 1(a)] for each
[£], and the associated thimbles

+6(¢],0&i]) € [(CS",8"71), (Bu, 67 ()]

for each [&;].

We are going to use regular systems of paths from «? and from «%° exclusively. It is
obvious that there always exist regular systems of paths from «?

4 and from af® for every
weE Un.

Proposition 5.1. Suppose that © € Uy.
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(0) Suppose that {€7,...,EX} is a regular system of paths from al. We choose a

vanishing cycle o[€0] € [S"7', X 0] for cach [£?] from among the two possibilities. Then
the homology classes 7[£0], ..., §[£Y] form a set of basis for the free Z-module H, _ (X 2).

(c0) Suppose that {£5°,...,ER} is a regular system of paths from «$°. We choose
a vanishing cycle o[£8°] € [S"7!, X2°] for each [£8°] from among the two possibilities.
Then the homology classes G[€5°], ..., G[€SF) form a set of basis for the free Z-module
H,_(X°).

Proof.  Since these two assertions can be proved in completely parallel ways, we prove
only the assertion (0).

Let A; C C* be a small closed disk with the center p;. Since {€7,...,£%} is a regular
system of paths, the union UY_ (€2 (1) U A;) is a strong deformation retract of C, and it
contains Cr(u) in its interior. By Proposition 2.1, the space

N

A = 7N ua) (5.2)

=1

is also a strong deformation retract of A". Hence A is contractible. We decompose A into
the union of the two parts

N N
A= gL M./2) ), and A = U € (/2D UA)).

By applying the Mayer-Vietoris sequence to this decomposition of the contractible space
A, we obtain an 1somorphism

Hn—l(Al n A2) ; Hn—](Al) ® Hﬂ.—](‘l'l?) (53)

induced by the inclusions. Using Propositions 2.1 and 2.5(2), we have canonical homotopy
equivalences

A] ~ .v\rl? )
N - N -
Ay ~ ].Ii:t ¢111(Ai) ~ Hi:j d’u ! (pi)a and
ArNAd, ~ ]_[N X0 (the disjoint union of N copies of X?),

through which the isomorphism (5.3) is written as follows;

=1

N N
s (18- @cn) + @PHa1 (X)) T Humt(X) @ D) Haa (87 (pi)),
i=1 i

where s : @fil H,_1(X2) = H,—(X02) is the summation (z1,...,25) = & + -+ + 2N,
and ¢; : Hpo(X2) = Huo1(¢p7 (p:)) is the homomorphism induced by the contraction
map X2 — ¢ (p;) along 2. Thus we get an isomorphism

H,_(X?) = @ Ker ;.
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By Theorem L1, the kernel of ¢; is generated by the homology class &[€?] of a vanishing
eycle for [€0). Hence all we have to do now is to show that the Z-module H,,—(X?) is
torsion free of rank N; that is,

b (X2) =b, 1 (Xy) =N = (d —1)". (5.4)

This is a well-known formula. 0O
Next we shall investigate H,(E,) and H, (E,,do E,).

Proposition 5.2. Suppose that v € Y.

(1) There is an isomorphism between H,_(X?) and H, (8o E.,).

(2) The inclusion 8¢ E, — E, induces an isomorphism H, (0o E,) = Hu(E.).

(3) The natural homomorphism H,(E,) — H,(Ey,,00 E,) Is a zero map.

(4) The boundary homomorphism H,(E,,00 E,) = H,—1(0o E,) Is an isomorphism.

(5) The inclusion X° < 8¢ E, induces an isomorphism H,, _ (X9 5 Ha_1(0o E,).

(6) Moreover, when u = b, all the isomorphisms above between the homology groups are
7 (U, b)-equivariant.

The assertions can be summarized in the following diagram of 71 (U, b)-equivariant homo-

morphisms:

Hn(aOEb) ‘l) Hn(Eb) — Hn(EbaaoEb)

ncl, Z€1o
Ta (9th

H,,_l(_«\’bo) l) Hr:—l(aDEb)a

incl,

where incl, means the homomorphisms induced by the inclusions.

Proof.  Since the isomorphisms in (2), (4) and (5) are defined by natural topological
operations, they are obviously my (U )-equivariant. The remaining isomorphism inn (1) being
7 (U )-equivariant can be seen from the construction below.

Let A,(,)(0) C C be the closed disk of radius e(i) with the center 0. We have

Bl? = e(u)( )\{0}

Since there are no critical values of ¢, : A" = C on Ac()(0), Proposition 2.1 implies that
there is a diffeomorphism

q—s;l(Ae(u)(O)) = L\‘t(u)(o) X 'Yr? (5'5)
over A,(4)(0) which induces the identity on X?. By restricting it, we obtain a diffeomor-
phism

OB, =¢7"(BY) = B? xX? (5.6)
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over BY. Each of these diffeomorphisms is unique up to homotopy. Using Theorem L2
and Kunneth formula, we obtain canonical isomorphisms

Hu(aOEu) = Hu—l(*'\rt?)y and Hn—l(aOEu) = Hn—l(-'\:?)g (57)

from (5.6). The second isomorphism of (5.7) is induced from the inclusion X? «— g E,,.
Thus (1) and (5) are proved. Using the excision property of homology groups and the
diffeomorphism (5.5), we get

~ ~

Hu(Ett:ai)Eu) = H,,(AT!,(;S;](AC(“)(O))) = Hﬂ-—1(¢;I(Ae(u)(O))) = H”_l(‘Xt?)‘

We can easily see that this isomorphism coincides with the composition of the boundary
map from H, (Ey, o Ev) to H,—1(90 Ey) and the second isomorphism of (5.7). Hence (4)
is proved. The assertion (3) is a consequence of (2) and (4). Therefore only (2) remains
to be proved.

It is enough to prove (2) when w is a point of Uy, because each of H, (dp E,) and
H, (E,) forms a locally constant system over & when u varies. Let A; C C* he a small
closed disk with the center p;. We can take a regular system {£2,...,£%} of paths from
a% in such a way that

EiD(I) N Ae(z:)(o) = {GB} (58)

Then the space
N

B) u [JE(Huay) c C*

=1
is a strong deformation retract of C*, and it contains Cr(u) in its interior. Hence the
space

N
A% = 7' BOU _U(E?(IJUAi))

is also a strong deformation retract of E, by Proposition 2.1. Thus H,(E,) is canonically
isomorphic to H,(A*). We decompose A* into the union of A in (5.2) and dp E, =
$71(BY). Because of (5.8), we have

ANdE, = X?.

Recall that A is contractible. Hence the Mayer-Vietoris sequence for this decomposition
15 written as follows;

— Hn(.-\’,?) — Hn(a[)Eu) — HT!(A)()
— Hu—](-’\ro) — Hn—l(aOEu) —

"

Because of the second isomorphism in (5.7) and because of H,(X?) = 0 by Theorem L2,
we see that the inclusion g Ey — A* induces an isomorphism between H, (9 E,) and

H, (A= H,(E,). O
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As in Proposition 5.1, we will describe geometrically a set of basis for the free Z-module

H,(E,,00E,) when u € Un.

Proposition 5.3. Suppose that v € Uy. Let {£7,.. fN} be a regular system of paths
from a®. Let o[€P] € [S"™1, X 2] be a vanishing cycle fo1 [€2], and let

8((67],0l€7]) € (€S, 87, (B, X))

be the thimble for [¢0] starting from o[¢]. Then the homology classes 8([£7],5[€7]), .. .,
B([€R], ol€Y]) form a set of basis for H, (Ey,do Ey).

Proof. Note that, by the isomorphism from H, (E,,d0 E,) to H,—1(X2) given by the
composition of the isomorphisms of (4) and (5) in Proposition 5.2, the homology class
8([€2],0[€P]) is mapped to —7[£P] because of the anti-commutativity of (4.1). Hence the
assertion follows from Proposition 5.1. [

Now we fix a base point b € U. We shall review the classical theory of Lefschetz about
monodromy representations, and study the structure of H,—;(X) as a 71 (¢, b)-module.
Again, we refer the reader to [6] for the proof.

Let X, 2 C P" be the projective compactification of the affine hypersurface Xbo C A",
Taking Remark 2.1 into account, we see that X0 is non-singular from Lemma 2.1 and the
definition of ¢ . Moreover, the intersection Heo N X ,,0 coincides with Y} := Hoo N X, from
(2.2). There is a canonical isomorphism

H, (X)) = H'"YX2 Y. (5.9)

We put B ‘
Hn—l (\bO) = TKer (Hu—l(‘xt?);)Hn—l(),—b)): and

prim

Hn—2 (}'b) = Coker (Hn—2(be)L>Hn—2(),}))),

prim

where 7 is the restriction homomorphism. Then, from (5.9), we obtain an exact sequence

0 — H''2(Y,) — H,oi(XQ) — H'ZL(XP2) — 0. (5.10)

prim prim

The fundamental group n1(U,b) acts on this exact sequence. The action on H [’)'l_“i(Yb)

factors through the natural homomorphism
m(U) — I\ Do) —> mi(Pe(D) \ Do),

while the action on H I};“m( Y ) factors through

7T|(Z/!) — TI'](PX\D()) — FI(P*(F)\DQ)

Note that H I')'m:](X ) ®z Q coincides with the Poincaré dual of “the module of vanishing

eycles” in Hy,—1(X) ®z Q in the sense of [6; $3]. Hence the classical theory of Lefschetz
tells us the follomng.

2
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Theorem L3. Let p be a value in Cr(b), and let w be a path in 'Pb(af ,p). Let a(w]' €

H!')'mi]( X2Q) denote the image of the homology class 5{w] € H,—(XQ) of a vanishing cycle

ow] for [w] by the homomorphism in (5.10). Then H"' (XO) ®z Q is generated by &{w)’

Prum

as a module over the group ring Q[m(P.(T') \ Do, )] D
§6. Structures of H,(F,), H,(F.,00 F,) and H,(F,, 0 Fy)

In order to state the main theorem of this section, we need two definitions. First, we
put

Uy = { nely ; Cr(u)NRgo =0}

The complement I' \ 24§ is a real semi-algebraic subset of real codimension 1 in the affine
space I'. Second, we define the automorphism

g Hy (X)) — Hao (X7
for u € U as follows. We set
C) = {2eC; |z|=¢(w)}, and CP = {2€C; |z| =1/e(u)}.

Note that ¢, has no critical values on the circle C3°. Then j is defined as the monodromy
on H,_1(X3®) along the loop from ¢ to «$° which draws the circle C$° in the counter-
clockwise direction.

Theorem 6.1. (1) Ifw € U, then the natural homomorphisms H, (F,) = H,(Fy, 00 Fy)
and Hy(Fy,) = Hy(Fy,00Fy) are injective. (2) Suppose that v € Uy . Then there is a
canonical isomorphism

00 Ha(XDYRZq, 7] =5 Hu(Fu,00F.)

of Z|q,q™!]-modules through which the image of H,(F,) — H,(F,,00 F,) is identified
with Ho_ 1 (X2) ® (1 — ¢), where (1 — ¢) C Z[q,q7'] is the principal ideal generated by
1 — q. There also exists a canonical isomorphism

lI,:io : Hﬂ—l(‘xt?o)®z[%q_l] L} Hn(Fu:aooFu)

of Z|q,q~')-modules through which the image of H,(F,) < H,(F,,0xF,) is identified
with the image of the endomorphism Id — j @ ¢ of H,—(X°) @ Z[q, ¢ ).

Since each of the Z[g,¢™'-modules H,—1(X2) ® Z]g,¢7"], Hao1(X®) ® Zlg,q7 Y],
H,(Fy,00Fy,), Hy(Fu,0F,) and H,(F,) forms a locally constant system of Z[q, ¢~']-
modules over U, Theorem 6.1 and Proposition 5.1 imply the following:

Corollary 6.1. For an arbitrary u € U, each of H,I(Fu,ao F)), Hy(Fy,0oFy) and
H,(F,) is a free Z[q, ¢~ ']-module of rank N.
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Remark 6.1. The assertion that the isomorphisms %2 and ¥$° are canonical for
u € Uy means that, when « moves on Uy, they form isomorphisms between the corre-
sponding locally constant systems restricted over Uy. Even though Uy is dense in U,
these isomorphisms of locally constant systems cannot be extended to the whole space .
Otherwise, the isomorphisms ¥2 and ¥$° would be isomorphismns of 71 (U )-modules, but
this would contradict to Irreducibility Theorem in Introduction, which will be proved in
§10. In particular, this argument shows that Uy is not path-connected.

Before starting the proof, we prepare some notation. Suppose that v € U. Note that
the circles C? and C° are disjoint from Cr(u). We define the loops

§0 ¢+ I — C*\Cr(u), and 62 : I — C*\Cr(u)
with the base point ¢ and «%°, respectively, by
§2(¢) = CQ"J:T'E(U), and &°(1) = 62"‘/__”6(11,)_1

Remark 6.2. Then the automorphism j : H,(X3°) = H, - (XJ°) is nothing but the
monodromy operator [§5°].. On the other hand, since ¢, : A" — C is locally trivial on

B, = {zeC; 0<|z|<e(w)} = B, U{0},

the monodromy action {80 ]s : Hp—) (X)) = Hp—1 (X ?) is trivial by Proposition 2.1.

We put

RY = e '(C?) =loge(u) + V1R, R® := ¢ 1(C2) =loge(uw)™! + V-1R,
and

20 1= e(al) =loge(u) + VIIZ, 22 1= e (o) = loge(w)™ + V-IZ,
where e : C = C* is the exponential map. For cach v € Z, we put

al(v) = loge(u) +vV—=1r € 20, and o) := loge(u)™ +V=1v € Z=.
We also put
XO(w) = 97 (a2 (), and XT(w) 1= 97 ().
Then we have the natural isomorphisms
X202 X004, and XS = X)) (6.1)

mduced from the covering map é: F, —» E,. -
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Now suppose that « € Uy. Foreach v € Z, there exists a unique connected component
(C\R<o)(v) C 7' (C\Rgo)

which contains af (v) and «$°{v). Let {p1,...,pn} be the set Cr(u), which is contained
in C\ R<o. For each v € Z, let pi(r) denote the unique point on (C\ R<o)(r) which is
mapped to p; by e. Therefore, we have

Cr(u) = H Cr(u)(v),
velZ

where
Cr(u){v) == { pilv) ; 1=1...,N}.
Note that —7 < arg p; < wfor7=1,...,N. We put

min { 7 —arg p;, ntargp; ; i=1,...,N}. (6.2)

o

n(u) =
Then n: U5 — Rso 1s a continuous function on Uy . We put
Ky, = {z2€C"; elu) <|z] <elu)™, and — 74 nu) <arg z <7 —nu)},
and
K,(v) := the unique connected component of e (i) containing al (v} and a$>(v).
Then, for each v, the exponential map ¢ : C — C* induces an isomorphism between
Ky {v) and I, and e™'(K,) is the disjoint union of all I, (v). Moreover, each Cr(u)(~)

is contained in the interior of IV, (v). We put

M? = N (K,UuC?) = (H Ky v))UR] C C and
vEL

(J] Euv)uRy c c.
veL

M> = N K, UC>)

We also put
N2 = K,nC2, and N := K,NC,

both of which are arcs in C*. Each K,{(r) is a rectangle in C, whose vertical sides are
given by
Ny = K W) RY, and N®(v) := K,{(v)N R,

Then we have

e Y (NP) = HNUO(U)] and e N(N®) = HN:O(V).

veZ vel
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Proof of Theorem 6.1. We will give a proof only to the assertions concerned with
H.(F,,00F,) and . The assertions concerned with H,(F,,d¢F,) and ¥° can be
proved completely in the same way. All we have to do is just to replace every co appearing
in the argument with 0, and to notice that the monodromy action on H,,_(X?) associated
to the loop 62 is the identity. (See Remark 6.2.)

Since H,(F,) and H,(F,, O Fy) form locally constant systems over U, and H, (F,) —
H,(F,,0xFy) is natural, it is enough to prove the injectivity of H,(F,) = H,(Fy,00cF4)
for one u. Thus we assume u € Uy throughout the proof.

By Proposition 2.1, the holomorphic map ¢, : F, — C is locally trivial over C \
Cr(u). On the other hand, the inclusion (M2*, R®) — (C,e™!(B2)) induce a homotopy
equivalence. Since Cr{u) is contained in the interior of M°, the inclusion

(W (M), 7 HRY)) = (Fu 0 Fu)
also induces a homotopy equivalence. Hence there exists a strong deformation retraction
(Fu,0coFu) — (¢ (M), 90 (R3°))s (6.3)

which is the homotopy inverse of the inclusion. Note that the deck transformation T,
on (F,.dsF,) induces an automorphism of the pair of subspaces (7 (AM$°), 71 (RE)).

i
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Thus both of H, (171 (M) and H, (7' (M), (RS)) can be considered as Z[q, ¢~ ']-

modules, and we obtain a commutative diagram of Z{q, ¢~']-modules;
Hy (' (MP)) — Ha(7'(MP), 47 (RY))
lz lz (6.4)
1¥n(1qJ — }Jn(ﬁlaékoIQJ-

By the excision property of homology groups, we have

Hy (7 (M), 27 (R)) = Ha( ([ K)o (T M h))

veL vEZ (6.5)

> (PHu (7 (Ku(v), 95 (N2 (v))).
velZ
On the other hand, the deck transformation Ty on (Fy, 0w Fy) induces isomorphisms

(b (Ku()), b (N2 (1)) = (b (Ku(v + 1)), 90 (N2 (v + 1))

for all v € Z, and these isomorphisms are compatible with the isomorphisis

(b (IKu (), 00 (N2())) = (807 (), 60 (V) (6.6)

given by the restriction of the covering map € : F, = F,. Hence the multiplication by ¢
in the decomposition (6.5) into the direct sum is given by the shift of the numbering (v},

Ho (" (Ku () (N2 (0) == Ha(7 (B (v 4+ 1)), 67 (NP + 1)),

which commutes with the isomorphisms

Ho(r (Ku()), 3 (N2() 2 Hu(dy ' (Ku), ¢4 (N°))

for p = v and . = v + 1 mduced by (6.6). Therefore, we get an isomorphisin

Ha(0 (M), 0 (RT)) 2 Hu($u(Wa), ¢u(N5°)) ® Z[g,¢7 ') (6.7)

of Z[q, ¢~ ']-modules.

On the other hand, since I, C C is a strong deformation retract of C, which contains
all of the critical values Cr(u) of ¢, : A" — C in its interior, the pull-back ¢71(N,) =
$71(IVy) is also a strong deformation retract of A" by Proposition 2.1. Combining this
with the isomorphisms (6.6), we see that

d7 (I,) and o (W, {v)) are all contractible spaces. (6.8)
This implies that we get isomorphisms

Ho(¢7 ' (Ku), 671 (N2)) — Haoy(67'(N3°)) and
Hy($ (K)o (N2 (V) = Hao (97 (NP (1))
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induced by the boundary homomorphisms. Combining these with (6.5) and (6.7), we
obtain the isomorphisms

Ho(p (M), 47 (R)) = @D Huoa (%71 (N (1))
veZ (610)

> H, 1 (¢7H(N®)) @ Zlg, ¢ ]

of Z[q,q~']-modules. Lastly, since ¢, and i, are locally trivial over the arc N C C*
and the line segment N§°(r) C C, respectively, the inclusions

XN° (,‘b;'(N,fo and X(v) — 'd);'(l\’fo(y)) (6.11)

induce homotopy equivalences. Therefore (6.10) can be written as

Hoy (4 (M), 07 (R)) 2 6D Huo i (XP(1))
vel (612)

= Hyo(X2) @ Zlg, g7 ).

Combining this with (6.4), we get the hoped-for isomorphism ¥ of Z[q, ¢~ ']-modules.
Note that the homeomorphism types of all spaces and continuous maps which have ap-
peared in the course of the construction of ¥ do not change when u varies continuously
in a path-connected component of Uy, Hence the isomorphisms ¥ with « € Uy yield
an isomorphism between the corresponding locally constant systems over Uy .

Now we shall calculate H,(Fy) & H, (7' (M) by applying Mayer-Vietoris sequence
to the decomposition

Y (M) =7 (] Kul)) U 7 (RD).

Note that

H K, (v)) Nyl H YT NS()).

vEZ veZ

Since 11 (K, (v)) is contractible for each v € Z by (6.8), the Mayer-Vietoris sequence is
of the form

— DH.(WI(NZ(W) — H(YU(RY) — Ha($r'(MP))

u

veZ (6.13)
-’ @an (@ (VR) — Ha (W1 (BY) —

Since 9, : Fy = C is locally trivial over RS® C C and RS is contractible, the inclusion
of X2 (v} into ¢} (R) induces a homotopy cquivalence for each v. By Theorem L2 and
the isomorphism (6.1), we have

Ho (47 (R)) = 0.
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Therefore the boundary map @ in (6.13) is injective. Recall the construction of the iso-
morphism (6.10). It follows from (6.5) through the boundary map (6.9). Then it can be
easily checked that the following diagram is commutative;

J in (6.13)

H (47 (M) - @ Ha-1 (97 (Vi)

(6.4) le (G-IO)TI

the natural map
Hn(Fu) — Hﬂ(Fu:aooFu)'
Hence the natural homomorphism H,(Fy,) = H,.(F,,0F,) is also injective. Moreover
the image of this injection is identified, via (6.10), with the kernel of the homomorphism

bt PHa T (NEW) — o (97(R))
veZ

in (6.13) induced by the inclusions. Recall that the inclusion X°(0) < ¥ (R*®) induces
a homotopy equivalence. Let

Y (RP) — X7°(0) (6.14)
1s a continuous map which represents the homotopy inverse of the inclusion. Consider the
composition

X2 =5 X2y <= $HRT) — XX S XY@

“tu

(6.1) (6.14) {6.1)

of continuous maps, cach of which induces a homotopy equivalence. The induced automor-
phism H,_;(X) = H,_1(X) is nothing but the monodromy operator 7%, because the
path on C from a«$°(v) to «$°(0) along RS is mapped to the loop (65°)™% on C* by e.
Therefore, through the isomorphism

DH (47 (N2 () = Hama(XD) © Zla, g7 '] (6.15)
veZ
by the homotopy equivalence induced from (6.11) and the isomorphism (6.1), and the
1somorphism

Hooy (91 (RY)) = Hyo(XF)

T

by the homotopy equivalence induced from (6.14) and the isomorphism (6.1), we can

identify « in (6.13) with i : H,—1(X%°) @ Zlg, ¢~ '] = H,-1(X2°) given by

i ( Z (2, ®q") )= Z 77 wy), where @, € Hypo (X°).

veZ veZ

Then it can be easily checked that the kernel of this ¢ coincides with the image of the
endomorphism Id — 7 ® ¢. Since ¥§° is given by (6.15) combined with (6.10) and (6.4),
we complete the proof. [

By looking back at the constructions, we can describe the isomorphisms TY and ¥ in a
geometric way.
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Corollary 6.2. Let A be an (n — 1)-cycle in X2 (resp. X2°), and let I be an n-chain
in ¢ (I, ) such that OU = A. Let I'(v) be the n-chain in ¥ (K, (v)) corresponding to T
via the isomorphism (I, (1)) = ¢71(K,). Then

L)) = Ti([A]@¢")  (resp.  [T{v)] = T2([A]@¢") )

holds in H,,(F,,,00 Fy,) (vesp. in H,(Fy,0c0Fy)). O

Remark 6.3. Since ¢ '(,) is contractible, there always exists an n-chain T’ C ¢ ' (K,)
such that 9T = A for any (n — 1)-cycle A C X0 (resp. A C X&°).

Corollary 6.3. Suppose, the other way around, that we are given an n-cycle I' in
(Fu, 00 Fy) (vesp. in (Fy,000Fy)). Let T be the image of I' by the retraction

(Fu, Q0 Fu) = (61 (M), 07 (RY))  (resp. (Fu, OooFu) —= (07 (M), 7 (RY))),
which is the homotopy inverse of the inclusion. We put T, := IV Ny (K, (v)). Then,
since O C 71 (R2) (resp. T C Y71 (RS)), we have 8T, C 7 (NP (v)) (resp. OT, C

P U(NS(vY)). Let A, C X2 (resp. A, C X°) be the image of O, by the continuous
map
ST TN o XS Ges #TVEW) ¥ GNE) — X2

u n o

where rt is the homotopy inverse of the inclusion. Then

C]=2( > (AJ®¢") )  (vesp. [[)=02( Y (A]J®¢")) )

vel veEl

holds in H,(F,,00 Fy) (vesp. in Hy(Fy,000Fy)). OJ

From now on, we consider H,(F,) as Z[q,¢™']-submodules of H,(F,,d F,) and of
H,(Fy,00F)). For we UY, we define

G =T70(;jQ@q)o (lIJff’)_] t Hy(Fy, 00 Fy) — Ho(Fy, 0 Fy).
Then we have

Hy(F)=(1—q@QH,(Fy,00F,), and H,(F,) =1~ §H,(Fu,0Fu) (6.16)

The following Lemma 6.1 will be used in §10.

Lemma 6.1. Suppose u € Uy . Suppose that an element A € H,_;(X?) is given. Then
there exist elements A, Ay € H,—(X°) such that

(1-q)¥,(A@1) = PN 1)+ 7 (N @q)
holds in H, (Fy).
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Proof. First we shall describe an n-cycle in Fy, which represents the homology class
1-Ti(A@q¢") € Hu(F.).

Let A C XY be an (n — 1)-cycle which represents A, and let A{v) C X2 () be the lifting
of A by (6.1). By Remark 6.3, we have an n-chain I' in ¢ 1(X,) such that its lifting
T(v) C 7 (K, (v)) satisfies OT(r) = A(v) for all v € Z. Recall that there exists a
diffeomorphism

$7(CO) = €0 x X (6.17)

u u

over the circle C¢ which induces the identity on X 2. (See (5.6).) Such a diffeomorphism
is unique up to homotopy. By taking the covering of (6.17), we get a diffeomorphisin

vi(RY) = Ry x X, (6.18)
which induces the isomorphism (6.1) over cach point al (v) € RC. Let

Jw) « IxA — ¢Pp7Y(RY)
be the composition of the diffeomorphism (6.18) with

Qv+ 1) x inclusion : I'xA — RO x X?

where §) (v +1) : I = RY is the lifting of the path §2 such that 60 (v + 1)(1) = a (v - 1).
Then we have

OJ(v) = A(r +1) — A(vy = O(T (v + 1) — T'(v)).

Hence

T, = Jv)-T(v+1) +T{v)

is an n-cycle in Fy. Since J{v) is contained in Jg Fy, we see from Corollary 6.2that
[T] = ~[Tr+ DI+ [T = —20@¢*")+¥2(A@¢") in H,(F,dF,),

and hence
T, = (1-¢)¥2(\@¢") in H,(F,).

Note that the n-cycle Tp in F, is contained in the subspace ¢71 (KQ) of 7' (M2), where
Ky o= K, (0)Us2(1NI) U K,(1).
Consider the composition
Yot (M) = Fu = gt (M) (6.19)

of the inclusion and the retraction {6.3), both of which induce homotopy equivalence. The
maps in (6.19) are liftings of the continuous maps on the base space

M) = C = M® : (6.20)
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which are the inclusion and a retraction. By choosing an appropriate retraction, we can
assume that K% C M? is mapped to

K = K,0)udP(INNHUK,(1) C¢ M

by (6.20), where 63°(1)(7) is the segment of R between a$°(0) and «$(1). Hence the
n-cycle To C ;' (K&) is mapped by (6.19) to an n-cycle Ty contained in ¢ (K§P). In
particular, we have

T O (K(W)) =0 if v #0,1.

Hence Corollary 6.3 hmplies that the homology class [To] = [T§] € Hn(Fy) is written in the
form U(A @14+ X2 @ ¢) by some A\, \; € H,—1(AS°). U

§7. Description of the basis of H, (F,), H,(F.,00Fy,) and H,(Fy,0xFy)

In this section, we will describe explicitly n-cycles representing the basis of the free
Ziq, q_']-moclules H,(F.), H,(Fy,00Fy) and H,(Fy, 0o Fy). Throughout this section, we

assume u € Uy

First we define the notion of a I{-regular system of paths. Recall that we have defined
the closed subset I, of C* for u € Uuy.

Definition 7.1. Suppose that a point a € K, \ Cr(u) is given. A regular system
{&,...,€&n} of paths from a (see Definition 5.2) is said to be K -regular if and only if &;(1)
is contained in Iy, for t =1, ..., N.

It 1s obvious that a I{-regular system of paths from « always exists for every v € Uy
and every a € I, \ Cr(u).

Next, we fix some notation concerned with the lifting of objects on C* and E, by the
étale coveringse: C > C* and é: Fy = E,.

Recall that (C\R<o)() is the unique connected component of e™1 (C\R<g) containing
Ky(v). Recall also that, for a point ¢ € C\ Rco, ¢{r) denotes the intersection point of
e 1(c¢) and (C\ Reo){v). -

Definition 7.2. Suppose that a point ¢ € C\ Cr(u) is given. For p;(v) € Cr(u), let
P (a, pi(v)) denote the space of all paths w : I — C which satisfy the following; (i) w(0) =
a, w(l) = p;(v), and (i1) w([0,1)) N Cr(u) = @. We equip this space with the compact-
open topology, and denote by [P (a,pi(v))] the set of path-connected components of
Pr(a,pi{v)). For a path w € P (a,pi(v)), let [w] € [P (a,pi{v))] denote the path-
connected component of P~ («, pi{(r)) containing w; or equivalently, the homotopy class of
paths in P (a,pi(v)) represented by w.

Definition 7.3. Suppose that a path w: J — C* with w(1) € C\ Rgg is given. Then
w{v) : I = C is the unique lifting of w to C by e : C — C* such that

wrdl) = w(){r) € (C\Rco){v) C e_l(C\]RSo).
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Note that, if w € Py (a,pi) with a ¢ R<o is given, then we have
w(v) € P (alv + p),pi(v))

for all v € Z with a fixed integer ;¢ € Z. Moreover, if [w,] = [w2] In [Pu(a, p;)], then
[wi ()] = w2 ()] in [P (a(v + 1), pi(w))]-

For the path w as above, we have & vanishing cycle
olw] € [$"7, 6y (a)]
for [w], unique up to sign, and the thimble
O([w], olw]) € [(CS"T1, 8", (Eu, 67 ' (a))]

for [w] starting from ofw].

Definition 7.4. For each v € Z, the vanishing cycle o[w] lifts uniquely to a vanishing
cycle

olwl(v) € [S"7, vy (ol + ),

which is one of the two vanishing cycles for [w(v)] € [P (a(v+ 1), pi{(v))]. Also the thimble
f([w], ow]) lifts uniquely to the thimble

O(w], olw])(v) = 8(lw(v)}, olwl(v)) € (CS"", 87N, (Fu, vy (alv + 1))

for [w(v}] starting from o[w](r). Its homology class is denoted by
O([w], olwlv) € Hu(Fu, by (alv + p1))).

As before, when the orientation is irrelevant, we write simply 8([w]){v) and 8(Jw])().

10 (resp. « = a®°), then these homology classes can be considered as
un iU 3

elemcnts_ in H,(Fy,00F,) (vesp. in H,(Fy,0xFy)), which will be denoted by the same
symbol 6([w], ow]){r). By definition, we have

When a« = «

gb([w), olw])(v) = 8(w], olw]) (v +1) (7.1)

in the Z[g, ¢7']-module H,(Fy,80F,) (vesp. H,(Fy,0F,)). Moreover, suppose that
w(I) C K4. Then we have w(v)(I) C I,(v}, and therefore, the starting point of w(r) is
w(0)(r). Hence the thimble 8([w])(v) is an element of [(CS™~! S*~ 1), (F,, X2 (v))] (resp.
of [(CS"=1, 8"~ 1), (Fy,X°(v))]). We apply these considerations to the case when w is a

menber of a K-regular system of paths from a2 (resp. from «%°).

Proposition 7.1. Suppose that v € Uy .
(0) Let {€P,...,6%} be a K-regular system of paths from al, and let o[¢?] €

u
(S, X 0] be a vanishing cycle for [£?]. Then the homology classes

B((&r], oler D), oo ,B([Ex], o [€N1)(0)



of the lifted thimbles form a set of basis for the free Z[q,q~ ' }-module H, (F,, 8¢ Fy).
(0o} Let {€5°,....&%F} be a I-regular system of paths from a$°, and let o((8°] €

[S"=1, X&) be a vanishing cycle for [£$°]. Then the homology classes

9([5?0}a0[£?0])<0)1 """"" :9_([610\?]:0[510\’0])(0>

of the lifted thimbles form a set of basis for the free Z|q, ¢~ !]-module H,(F,, 0 Fy).

Proof. LetT'? : CS"~! = E, be a continuous map representing the thimble 8([¢°], o[60])
over the path £°. Since €2 (I) C I, by the assumption of the K -regularity, I'? can be

considered as an n-chain in ¢ '(K,). Let T'? (v) C 7 (I, (v)) be the lifting of T'? by the
isomorphism ¢! (I, {v)) = ¢} (K, ). Then we have

L7 ()] = (&7, o1& )

in H,(F,,00 F,) by the definition of lifting. On the other hand, the (n — 1)-cycle ar*?
in X0 represents —7[¢°] € H,—1(X?) by the anti-commutativity of (4.1). Hence, by
Corollary 6.2, we get

B((E ] ole? D) = — T (561 @ ¢). (7.2)

By the same argument, we have

(&), oleN(v) = — TR(E(E ® o). (7.2)

Since {€7,...,€R} is regular, Proposition 5.1 implies that &[£7], ..., &[¢{R] form a set
of basis of the free Z-module H,_;(X?). Hence the assertion (0) follows from (7.2) and
Theorem 6.1 . The assertion (co) can be proved by the same argument. [

Theorem 7.1. Let b € U be a base point which is contained in Uy . The homomor-
phism

H,(Fy,00F) — H,(X0) (7.3)

which 1s the composition of the inverse of lIlE and the homomorphism H,_1(X?) ®
Zlq,q7 ') = H,— 1 (XP) given by ¢ = 1 is m (U, b)-equivariant.

Proof. We will prove this theorem by showing that (7.3) is equal with the composition
map
Hn(Fb,OOFb) é_) H:r(Eb:aoEb) (_:):’ Hu—l("\rbo)a (74)

where €, 1s the homomorphism induced from the covering map é : Fy, — Ej and (A) is
obtained from the isomorphisms in Proposition 5.2 (4) and (5). It is obvious that é. is
7 (U, b)-equivariant. By Proposition 5.2 (6), (A) is also 7 (U, b)-equivariant.

We fix a N-regular system {&7,... &%} of paths from a and, for each i = 1,..., N,
we choose a vanishing cycle o(¢]] € [S"', X?]. We put

87 (v) = B([&];0(€7])(v) € Hu(Fy, 00 Fy).
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We have 82 {v) = ¢”8? (0) for all v € Z. By Proposition 7.1, the set
{8y ; veZ and i=1,...,N}

form a set of basis for the free Z-modules of H,(F}, 0o Fp). _Thercfore, it 1s enough to
show that the two homomorphisms (7.3) and (7.4) map each 82 (v) to a same element in

Hoo1(X2).

By (7.2), the homomorphism (7.3) maps 69 () to —5[€P]. On the other hand, &,
maps to 62 () to 8([€2],0(¢P]) € Hu(Ey, Do Ep) because of the definition of the lifting. By
the boundary map H,,(Fs,do F}) 3 H,— (0o Ey), this element is mapped to

08((&7), 0le?’]) = —oled]

because of the anti-commutativity of (4.1). and this homology class can be regarded as
already contained in H,_1(X?). Hence (7.4) also maps 82 (1) to —5[£?] € H,—1(X}?).
ul

Remark 7.1. The isomorphism (0.3) in Introduction is obtained as follows;

~ ~

H.(F) «— H,(F,,00F = Ho (X2 S5 Hao (X)),
(Fy) 5 (Fy, 0o Fy) s A (X)) < 1(Xe)

where (B) is the multiplication by (1 — ¢q) (see (6.16)), and (C) is induced from (5.1).
Through Theorem 7.1 and Lemma 5.1, we see that (0.3) has the required property.

§8. Intersection form on H,(F,,00 Fy) X Hu(Fy, O Fy)
As in [5], we introduce hermitian intersection forms
(, o : Huy(Fu,0F,) x Hu(F,,00F,) — Zlg,q'] and
(e o Ha(Fu,00Fy) % Ha(Fu,000F) — Zlg,q7'],
for v € U. Note that the usual intersection form
(, ) @ Hu(Fu,00Fw) x H(Fy,00F,) — Z

is well-defined. (Sce §3.) For w € H,(Fy, 0o Fy) and y € H, (Fy, 00 F,), we put

(T.9)o = Y _(v,¢"y)q" € Zlg,q"].
velZ

Let * : Z[q, ¢ '] = Z[q,q7 ] be the ring automorphism given by *¢ = ¢~!. It is obvious
that (¢*z,¢"y) = (z,y) for all v € Z. Therefore, for arbitrary «, o', b, b’ € Z[q,q7}], we
have,

(az +d'z’,y)o = a(z,y)o +d'(2',¥)0, and (8.1)
(z:by + 'y )o = *b(z,y)o0 + V(25 )o. '

35



We define the hermitian form ( , oo by
(2, 9)oo = *(y,%)0-

Remark 8.1. For any [y] € m(U,b), we have {[vl.z,[v].y) = (z,y). Combining
this with Lemma 1.2, we get

([7]*3:) [Af]"y)o = (-’Ua‘!/)0~

This implies that ( , )o and { , )oo are hermitian intersection forms between the locally
constant systems on U corresponding to H, (Fy, 0o Fy) and H, (Fy, O Fb)-

Lemma 8.1. Suppose that u € Uy. Let o and § be elements of H,,_1(X°) and
H,-1(X?), respectively. Then the integer (¥ (o ®¢*), ¥ (6@ ¢")) is zero unless v = .

Proof. By Corollary 6.2, U$°(o @ ¢”) is represented by an n-chain I', (v) contained in
P (K (v)), while 2 (B@q*) is represented by an n-chain I'g (s} contained in ¢ (K (12)).
If v % p, then Ky (v) N K, (1) = 0, and hence ([Ca(v)], [Ta{p)]) = 0. O

Combining Lemma 8.1 with (8.1), we get the following formula. Let o, (v € Z) and 3,
(1t € Z) be elements of H,_1(X°) and H,_1(X2), respectively, such that almost all of
them are zero. Then

(TR0 w®e), T B.®d") o

veZ neL

- > (X (9o, wEe0) )

keZ v—u=~k

(8.2)

Lemma 8.2. Suppose that v € UY. Let p and p' be values in Cr(u), and let £ and
£ be paths in Py(a2,p) and P,(a%,p'), respectively. Suppose that £€°(I) C K, and
(1) C K. (1) Suppose that p = p' and £° (1) N £°°(I) = {p}. Then

(B[E=D(v), BUE 1) Yo = £¢" .
(2) Suppose that p # p' and £°(I)NEX(I) = (. Then
(BUE=Dw), B(E°14) o = 0.
Proof. By (8.2) and (7.2), (7.2)', we see that (B([E=D{), B(1E°] () Yo is a multiple of
q”~" by the integer (9([€°°])(0), 6([€°]{0)). Let T® : CS"~ ' —» F, and T : CS"~! —

F, be continuous maps representing the thimble ([¢%]){0) over £°(0), and the thimble
8([€°°])}{0) over £°°(0), respectively. By the assumptions on the paths €% and £°°, we have

£°0)(I) N E=(0)I) = . {{P<0>} in the case (1), and

? 'in the case (2).

36



In the case (1), using Lemma 4.1, we can choose the n-chains T'% and T in such a way
that they intersect only at the critical point of 3, over p{0), and that the intersection
is transverse. Hence ([T°],[T°]) = (8([¢>°])(0), B([£°](0)) = £1. In the case (2), the
n-cahins 7% and T are disjoint. Hence ([T°°],[T°}) is zero.

Now we shall prove the following:
Proposition 8.1. The intersection forms ( , )o and ( , )oo are non-degenerate.

Here the non-degeneracy of ( , )o means that the map
H,(F,,00F,) — HOlllz[q'q—l]( H,(Fy,0Fy) Z[q,q—ll )

given by y — ( ,y)o 1s a bijection.

Proof. By Remark 8.1, it is enough to prove Proposition 8.1 under the assumption that
w € UY. We can take K-regular systems {£0,...,€%} and {£5°,... ¥} of paths from

a and from a2°, respectively, which satisfy the following;

0 o 0 if 1 £ 7, and
fz‘ (I)ﬂ£j (I)_{{Pi} if’i:j.

By Lemma 8.2, we have

(6(&1)(0), B([E71)(0) Jo = (B(EFN0), BIETN0)) ) = +3i5.

Thus, in terms of the basis { 6([EPN(0Y: i =1,...,N } of H,(Fy, 80 F,) over Z[q,q~'] and
{8([e°N(0); i =1,...,N} of H\(Fy,000Fy) over Z[q,q™"], the intersection form ( , )o

is expressed by a diagonal matrix with diagonal coefficients +1. [

Definition 8.1. An clement @ € Hp(Fy,00Fy) (vesp. y € Hy(Fy,0Fy)) 1
called primitive if and only if there exists an element @' € H,(F,,0coFy) (resp. y' €
H, (Fy,00 Fy)) such that (z',2)0 =1 (resp. (¥',¥)o0 = 1).

Definition 8.2. Let U(Z[q,q™']) denote the group of the units { +¢”; v € Z} of
the ring Z[q,¢~']. We say that two elements z and 2’ in a Z[q, ¢~ ']-module is said to be
equal modulo U(Z[q,q™']) and write x = 2, if there exists a unit « € U(Z[q,q™"]) such
that z = aa’.

For example, if z is a primitive element of H,(F,,0xFy) and z = 2/, then 2’ is also
primitive.

§9. Picard-Lefschetz formula for local monodromies around Dy and D,
§9.1. Definition of simple loops and local monodromies

We fix a base point b € U.

Definition 9.1.1. A loop v: I — U with the base point b is called a simple loop around
Do (resp. Dy ) if the following are satisfied; (i) there exist a non-singular point ¢ on
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Do \ (Do N Do) (resp. Do \ (Do NDyo)) and a small closed disk A in I’ with the center
¢ which intersects Do U Do transversely at only one point ¢, (ii) there is a path 8 on U
from b to a point b’ on the boundary A of A, and (i) the path v starts from b, goes to V'
along 3, draws a circle A in a counter-clockwise direction, and goes back to b along 7',

Definition 9.1.2. Let v: 1 — U be a simple loop around Dy (resp. Doo). Then the
monodromy action [y]. on various sets or groups are called a local monodromy around Dg

(resp. Do ).

Proposition 9.1.1. Let D denote Dy or Doy, Let b and V' be two base points on U,
and let v: I — U and v' : I = U be simple loops around D with the base points b and VY,
respectively. Then there exists a path o : I — U from b to b’ such that [a™'v'a] =[] in
m (Z/{, b)

Proof. Since both of the hypersurfaces Do and Dy, are irreducible, each of the non-singular
loci of Dg \ (Do N Do) and Do \ (Do N Do) is also irreducible. [
89.2. Picard-Lefschetz formula

Now we shall state our main theorems.

Theorem 9.2.1. Let [yo] € m(U,b) be the homotopy class of a simple loop around Dy .
There exists a pair
(wlyol,vlvol) € Hu(Fy) x Hy(Fy, 00 F)

such that the local monodromy [vyo]. around Do on H,(Fy, 0w F}) Is given by
x o~ & + (z,v[vo0])o - v[vo] {9.2.1)

Moreover, such a pair (v[vo], v [v0]) is unique up to U(Z{q,q~"']), and v'|yo] is primitive.
We also have
ol10] = (~1)""D02(g = 1) 7o) (922

Theorem 9.2.2. Let [veo] € m(U,b) be the homotopy class of a simple loop around
Dos. There exists a pair

(U[’YOO]?'thOO]) S Hr!(FbaaOFb) XHﬂ(Fb:aooFb)
such that the local monodromy [veo)+ around Dy, on Hy,(Fy, 00 F}) is given by
T = ot 4+ (2,9 [Yeo))oo * ¥[Voo (9.2.3)

Moreover, such a pair (v[Yool, v'[Voo]) is unique up to U(Z[g,q™']), and v"[yeo] is primitive.

Remark 9.2.1. Comparing Theorems 9.2.1 and 9.2.2, we can see that there is a cer-
tain kind of duality between “0” and “oo”. This duality, however, is not perfect. Contrary
to the case in Theorem 9.2.1, the homology class v[voo| € H,(Fy, do Fy) in Theorem 9.2.2
is not contained in H, (Fy). This difference comes from the fact that, while the action of
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[vol« on H,—1{X§°) is trivial (¢f. Claim 2 in the proof of Proposition 9.4.1 below), the
action of Yoo« ont Hp—1 (X ) is non-trivial (¢f. Proposition 9.7.1). Moreover, the relation
between v [yo0] and v{vs] is not so simple as (9.2.2). A detailed description of v[vye] is
given in Proposition 9.7.2.

Remark 9.2.2. We put 0F, = 0o Fy U 00 F3. Using (6.16) and the natural homo-
morphism H, (Fy, 00 Fy) = H,(Fy,0F,) or Hy(Fy, 0o Fy) — (Fy, OF}), we can define the

hermitian intersection pairing
( ) ) : Hn(Fb) X Hn(Fbaan) — Z[q,q_]]

from( , Joor( , )e. Using(6.16) again, we can derive the statement (2,) in Introduction
from Theorems 9.2.1 and 9.2.2.

Before starting the proof, we make here several remarks (Remarks 9.2.3, 9.2.4, 9.2.5,
and §9.3), which make the proof much easier.

Remark 9.2.3. The uniqueness of (v[yg],v [v0]) in Theorems 9.2.1 follows easily from
the property (9.2.1) and the primitiveness of v’[yg]. Suppose that (9.2.1) holds for all
& € Hp(Fy, 0ooFy) with some pair (v[yo], v [v0]), and that v’[yo] is primitive. Then the
image of the endomorphism Id — [yo]« of H,, (Fs, 0o Fy) 15 a free Z[q, ¢~ ']-module of rank
1, and hence its generator v[yg] is determined uniquely modulo U(Z[q,¢™']). Suppose
that a generator v[yo] is fixed. Then the endomorphism Id — [yg], is written in the form
z = l(z)-v[yo] by some Z[q, ¢~ ']-linear form ! : H,(Fy, 00 Fs) — Z[q, ¢~ "']. Then v'[vo] €
H, (Fy, 00 Fp) is uniquely determined by the non-degeneracy of ( , )o (Proposition 8.1).
The uniqueness of the pair (v[veo), v"[Yeo]) modulo U(Z[q, ¢~ ']) is also derived from (9.2.3)
and the primitiveness of v'[vyo] in the same way.

Remark 9.2.4. Suppose that Theorem 9.2.1 holds for one simple loop vy around Dg
with the base point b. Then it holds for an arbitrary simple loop g around Dy with the
base point &’ arbitrarily chosen. Indeed, by Proposition 9.1.1, there exists apath o : T — U
from &' to b such that

@™ v0a] = [vo] in m(U,b).

Let
[0’], . H,;(Fbr,aooFbr) ;) H,I(F;,,E)mFb), and

[Q‘]* : Hn(Fb:,aoF;,,) L} Hn(F(,,aoFb)

be the isomorphisms induced by the path . Then
[vole = lalitovol.ofal. on  Hi(Fy, 00 F).
By Remark 8.1, we have
( lal(z), v[vo] Jo=( = [al7 (v [v0)) Jo
for all @ € H,(Fy, 0o Fi). Hence the formula (9.2.1) holds for [+ ], if we set
v[yp] = [0l (v'lvo]), - and vlyp] = [a] 7 (v[ve]). (9.2.4)
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1t is obvious that if v'[yo] is primitive, then so is [o]7 ! (v"[vo]). The relation (9.2.2) also
remains true for the pair (v[vy], v'[v5]) defined by (9.2.4).

Same argument is valid for Theorem 9.2.2.

It is therefore enough to prove each of Theorems 9.2.1 and 9.2.2 only for one suitably
chosen simple loop.

Remark 9.2.5. Note that the complement U \ Uy is of complex codimension 1 in U.
Note also that the complement U \ U5 is of real codimension 1 in &{. Combining these
with Remark 9.2.4, we may assume that the base point b is contained in Uy, and the
simple loops vg and vy, are contained in Uy.

£9.3. Deformation of thimbles

By the definition of Uy, the fundamental group 7 (Un, b) acts on the sets Cr(b) C C
and Cr(b) C C. For an element [y] € 7 (Un,b), let [y]s : Cr(b) = Cr(b) and [v]. :
Cr(b) — Cr(b) denote its actions. For v € Uy, we put

Sy = Cr(w)uzluz® c C,

where Z0 = {a{(v); v €Z} and Z%° = {«(v); v € Z}, and call it the set of distin-
guished points. Let v : I — Uy be aloop with the base point b. Then the points of S,y
move on C continuously when ¢ varies, and any two distinct points do not collide during
this movement hecause of the definitions of Uy and 29, Z2°. Hence we can denote this
movement by the continuous map

M7 : ]XS{, — C.

It is obvious that
(1) M4(0,s) = s for all s € &3,

(2) M4(1,p) = []u(p) for p € Cr(b),
(3) M4(1,a) (v)) = ad (v), M4(1,a5°(v)) = af®(v) for all v € Z, and
(4) M4(t,-) : Sp — C is injective for all t € 1.

The last property implies that the homotopy type of the pair (C, M, (t,8;)) does not
change when t varies in I. We consequently obtain, for each critical value p € Cr(b), the
bijective maps of the sets of homotopy classes of paths

e [P (whp)] = [PT(ag (), [)e(p))] and
e s PR eRvhp)] — [P (e (v), [ ()]

induced by the movement M., of the points in Sp.

(9.3.1)

Now suppose that we are given a path w € P, (ap (v), p), where p € Cr(b). We choose
a vanishing cycle ofw] € [S"71, X2 (1)] for [w] from among the two possibilities of the
signs, and consider the thimble

B(w)iolw]) € (CS™TH, 870, (Fy, Xy ()]
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for [w] € [Py (af (v),p) ] starting from o[w]. Note that [y] € m;(Un,b) also acts on the sets
[S7—1, XP (u)] and [(CS™~1, 8", (Fy, X (¥))] in a natural way, because over the path ~,
both of X2 (r) and (F,, X2 ( s)) are locally trivial. By definition, we see that [v].(o]w]) €
[S™~1, X2 ()] is one of the vanishing cycles for [y].(lw]) € [P~ (a (v), [¥]«(p)) ], and we
have a formula:

[ (8(w) olw])) = 6( V(W] [v]-(olw]) ). (9.3.2)

In particular, we have

M (8([w],elw])) = 8([3([w]); olw]), or —O([1].([w]); olw]). (9.3.3)

By Proposition 7.1, H,,(F, 0o F}y) is generated by the homology classes of thimbles for paths
from « (0). Hence formula (9.3.2) enables us to calculate the action of [y], on H,,(Fy, 9o F3)
by looking at the action of [y], on [P, (« (v),p)] for p € Cr(b) and on [S™~1, X2 (v)].
Note that the action on [S*!, X2 (v)] is equivalent to the action on [S"7*, X 0] by the
isomorphism (6.1).

Same argument holds when 0 is replaced with oo

In order to investigate the maps (9.3.1), we introduce the notion of homotopy equiv-
alence of movements of points on C.

Definition 9.3.1. Let Mp: I xS = Cand My : I x§ — C be two movements of a set
of points S on C such that

(i) Mo(0,3) = M (0, s) for all s € S,

(1) Mo(1,s) = M1(1, ) for all s € S, and

(ii1) for all ¢, both of the maps from S to C given by s = My(t,s) and by s — M,(t,s)
are injective.

These two movements are said to be homotopically equivalent if there exists a continuous
map M : I x I x §— C such that the movements M(7) := M(7,-,-) : I x § = C satisfy
the following;

(1) M(0) = Mo, M(1) = M,,

(2) M(7)(0,5) = Mp(0,5) = M (0,s) for all 7 € I and s € §,

(3) M(7)(1,s) = Mp(1 ,..) =M (L,s)forall T € I aud s € §, and

(4) M(7)(¢,:) : § = C is injective for all (r,t) € T x I.

It is obvious that the maps (9.3.1) depend only on the homotopy class of the movement M.,.
Therefore, we will find a simpler movement in the homotopy equivalence class containing

M.

Reduction 1. Note that, for all p € Cr(b) and for all ¢ € I, the point M, (¢, p) remains
on the right-hand side of the vertical line RSU), which contains the points ag(”(u) =

M, (¢, af (v)), and on the left-hand side of the vertical line Ry, which contains the points
a 1(:)(”) = M, (t,ap(r)). Hence the movement M., is always homotopically equivalent to
a movement M’ such that

ML(tap (v)) = ap (v) and ML(t,ai>(v)) = ai®(v) forallt el (9.3.4)
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Reduction 2. Suppose that, by the movement along v, the value p; € Cr{u) C C*
draws a loop which is homotopically trivial in C*. Then each of its lifts to C is also a
loop ML (I x {pi{(r)}) on C for every v € Z. Suppose also that this loop M~ (I x {pi(v)})
1s disjoint from the trace M. (I x {p;{}}) if (z,v) # (J,1). Then M, is homotopically
equivalent to a movement .f\/fif which satisfies, in addition to (9.3.4), the property

My(t,pi(v)) = pi{v) forall t€l and v e Z. (9.3.5)

§9.4. Proof of Theorem 9.2.1

Suppose that u is a point of Up.

Recall that £, C T'* is the affine line { f, —¢- h%; ¢t € C} with the parameterization
by : C5 Ly given by t = f, —1- h¢. Let w be an arbitrary point on £,. By definition, the
affine line £,, is equal with £,, and we write this affine line simply by £. By Corollary 2.1
and Lemma 2.3, we have

L\Dy = LNU = LN Uy. (9.4.1)

Let ¢y, ..., cy be the intersection points of £ and Dy. Then, by Corollary 2.1, the critical
values of ¢,, are accordingly numbered;

Cr(w) = {p1(w),...,pn(w)}, where pi(w)=3"(ci).

The point w is on LN Dy = L\ Up if and only if one of pi(w), ..., py(w) is zero.

Lemma 9.4.1. We have pi{(w) = pi(u) + sw fori = 1, ..., N, where s, 1= 13 (u) =
—i; ' (w). In particular, p;(u) — p;(u) = pi(w) — p;(w) holds for all u,w € L.

Proof. The two parameterizations ¢, : C — £ and ¢, : C — £ differ only by translations;
and an easy calculation shows that ¢! 0¢,(s) = s+ s,. O

This Lemma shows that the set Cr(w) C C moves by parallel transformation when w
moves on L.

Let 7 be a positive real number which is sufficiently small, and let p be a complex
number such that |p| = 2r and p € R. We choose the point

b= tu(pi(u)—p) € L\Dy C Un (9.4.2)

as the base point. Since r is sufficiently small and Im p # 0, we may assume that
be Uy. (9.4.3)
In particular, we have Ky C C* and the isomorphisms ¥, ¥$°. By Lemma 9.4.1, we have
pi(6) = pia) = pr () + p. (9.4.4)
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In particular, we have p1(b) = p. Moreover, since r is small enough, we may assume that
lpi(®)] > M-+ if i#1, and |pi(b) —p;(b)] > M -»r if ¢# 7, (9.4.5)

where M is a large natural number, say 10. Again, since 7 is sufficiently small, we have

g(b) = r by the definition (3.3). Hence we have a) = r.

Now we consider a closed disk
A= g(pi(d)—2rz) ; [2| <1} C L

on L with the center ¢y(pi(b)) = ¢; and of radius 27. Since » is small enough, the inter-
section A N Dy consists of only one point ¢;. Moreover, since © € Uy, £ mtersects Dy
transversely by Proposition 2.4. The loop v: I — A C £ given by

$(t) = w (pr(0) — pe2™ 1) = 4y (p (1 =2V ) (9.4.6)
is therefore a simple loop around D with the base point b. By (9.4.1), we have
v(I) C Up. (9.4.7)

Let Dy C C be the closed disk with the center 0 and of radius 2r. The critical value
p1(b) = p is located on the boundary of this disk. We see from (9.4.5) that Dy N Cr(b)
consists of only one point p,(b). Note also that K’y N Dy is simply connected. Therefore,
there exists a unique homotopy class [£0] € [ Ps(af, p1(b)) ] of paths which is represented
by a path £ such that

£2(I) ¢ Dy NK,. (9.4.8)

Now, from Remarks 9.2.3 and 9.2.4, Theorem 9.2.1 follows from the following Proposition.

Proposition 9.4.1. Let
v = B([E'0) € Hu(Fy, 00 Fy)

be the homology class of the lifted thimble 8([£2]){0), where [£7] € [Pu(al,p1(B))] is
the unique homotopy class of paths characterized by (9.4.8). We define the element v of
H.(Fy) by

v o= (=1)"TD2(g (9.4.9)

using (6.16). Then, v is primitive, and the local monodromy action [v]. on H,(F}, 0 F))
aroundd Dy is given by
o=+ (2,070 - v (9.4.10)

Proof. By Lemma 9.4.1 and (9.4.6), we have
pi(r(1)) = pilb) — p(1 = 2TV, (9.4.11)
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This means that, when t moves from 0 to 1, each p;(y(¢)) draws a circle of the radius
2r with the center p;(b) — p in the counter-clockwise direction. Let C; denote this circle,
and D; the disk circumscribed by C;. Note that D; coincides with the D which we have
defined just before the statement of Proposition 9.4.1. Since r is sufficiently small, we can
see that

e(v()) = Ip (N2 = |pl/2 = v forall tel,

and thus
CLS(,) =7, and afy=1/r forall tel (9.4.12)

By (9.4.7), [v]+ acts on the set Cr(b). By (9.4.3), each value in Cr(b) is written i the form
pi(0){v}), where: =1,... N and v € Z. We see from (9.4.5) that
Di#0 if  i#1. (9.4.13)

On the other hand, D, 3 0, and the circle C; traverses R<o in the positive direction.
Hence we have

[+ (ps(B)(v)) = {i}g)f&t 1) e 7 o (9.4.14)

By (9.4.3), we have a I'-regular system {£°,...,£%} from af°. We see from (9.4.5) that
D;ND; =0 if 1#7. (9.4.15)
It is therefore possible to take the I-regular system in such a way that

oo o if i #1, and
E(NNDy = {{m(b)} il (9.4.16)

Now we choose a vanishing cycle o8 := o[£°] € [S"~1, X°] for each [£°] from among
the two possibilities, and consider the lift of the associated thimble

67°(0) := 0([6°],0°)(0) € [(CS"™, "), (F, X5°(0))),

which is the thimble for [£7°(0)] starting from the lifted vanishing cycle o£°(0) on X§°(0).
Since the homology classes 65°(0), ..., 8%9(0) of these thimbles form a set of basis of
H, (Fy, 00 Fp) by Proposition 7.1, it is enough to prove (9.4.10) when z runs through the
set of these classes.

The intersection number (6%°(0),v7)o € Z[g, ¢~ "] is calculated as follows;
Claim 1

(620, 0)0 = (B0, BN = {9, H17 7™

Proof. Because of (9.4.8) and (9.4.16), we can derive Claim 1 from Lemma 8.2. U

This claim, in particular;shows that v is primitive.
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We choose the sign of the vanishing cycle of° for [£°] in such a way that
(67°(0),v7)o = 1. (9.4.17)

Claim 2. The monodromy action [y]. on [S"™!, X§°] is trivial.

Proof. We see that

X2y = $un(aSty)
= ¢ (1/r) by (9.4.12)
= ¢y 04y 0uyn(1/r) by (2.3)
= ¢y (1/r+p—pe2V=Th) by (9.4.6) ;

that is, the family { X0, ; ¢ € I } over A is isomorphic to the restriction of ¢y : £y — c*
to the cirele Cop of radius 2r with the center 1/r+p. Since r can be taken arbitrarily small,
this circle can be far away from 0 as much as we want. On the other hand, the critical
values Cr(b) have to remain bounded when r tends to 0 because of (9.4.4). Thus we can
conclude that the disk Do circumscribed by Co does not contain any critical values of
(;Sb. Hence Claim 2 follows from Proposition 2.1. [

Claim 3. [y].([€°(0)])) = [€5°(0)] fori =2,...,N.

Proof. By (9.4.13), (9.4.15) and Reduction 2 in §9.3, the movement M, of the distin-
guished points Sy is homotopically equivalent to a movement M’ which remains ap (v),
ag®(v) fixed for all v € Z, and pi(v) also fixed for 7 =2, ..., N and for all v € Z, while it
moves p; (b)(1) to pi (b)(r + 1) along the vertical line log |p| + V—1R = e~ (OD,). If i # 1,
then the path £7°(r) is disjoint from this vertical line because of (9.4.16). Therefore we
obtain the claim. [

Applying Claims 2 and 3 to the formula (9.3.2), we obtain
[¥].(65°(0)) = 6°(0) for ¢=2,...,N. (9.4.18)

We put ) )
v’ = [y (67°(0)) ~ 07°(0) € Hy(Fy, 0o Fh).

By Claim 1, the choice of sign (9.4.17), and (9.4.18), we see that
[(v]«(2) =+ (z,v)o -v' forall x € H,(Fb,00Fp).
Now we shall prove that v is equal with (=1)"("=1/2(4 — 1)y € H,(F}), and prove

(9.4.9). First remark that Claim 2 implies that the thimbles 65°() and [v],(65° () start
with the same vanishing cycle of°(v) € [S"71, X2°(v)]. In particular, we have

O[7].(67°(0))) = A(6°(0)) in  Huo (X5°(0)),
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and hence

v € Ker (0: Ho(Fy,000F) = Ho(0Fy)) = Hu(F). (9.4.19)

On the other hand, by the formula (9.3.2) and the remark above, we have,

[Y1(67°()) = B8([+](167°()]), 07° (#))- (9.4.20)

Note that, by (9.4.14), the homotopy class [v].([£7°(v)]) of paths is an element of

[P (a5 (), m(B)(v + 1)) |.

Now we shall describe paths which represent this homotopy class.

By the description of the movement MY, in the proof of Claim 3, the homotopy class
[¥]«([€£°(1)]) is represented by a path £'(v) defined as follows. Note that by (9.4.16), the
path £5°(v) is on the right-hand side of the vertical line

Ag i=log2r + v—-1R.

Note also that
p1(0)(v) =log2r + vV—=1(r + arg p),

where —m < arg p < m. Then &'(v) starts from aj®(v), goes to a point pj (v} := p, (b){v) +~r
along £5°(v), where & is a sufficiently small complex number with Re x > 0, draws an arc
in the counter-clockwise direction to the point py (b)(r) + v/—1|x} on the line A along the
circle of radius |«| with the center p; (b){r), and goes to p;(b)(v 4 1) along Ao.

Let £5°9(v) be the path on C\ Cr(b) from af{r) to af (v) defined as follows. Note that,
by (9.4.8), the path £?(r) is on the left-hand side of the vertical line Ag. Then the path
£9°0(v) starts from af° (i), goes to pi{r} along £5°(r), draws an arc on the circle of radius
|r| with the center pi(0){r) in the counter-clockwise direction to the point py(b)(v) — &’ on
£2(v)(I), where &' is a certain complex number with || = ||, and goes to af (v) along
£2(v)~1. It is easy to see that

(V&) = [ = [ (v + 1) - &) (v + 1) - 7)) in [P (af®(v), 1 (D)(v + 1)} ].

We put X
E(1) 1= £ (1) - 6 (1) - £7°°(0).

Then, from (9.4.20), we have

(7). (67°(0)) = B([E(L)], 77°(0)).
We decompose the path ££°(0) into two parts at p](0); that is, we write £°(0) = 92 - 11,

where 13 s the path from ag®(0) to p{(0) along £7°(0), and 1, is the remaining part. Then
£9°9(0) also decomposes into 7z - ;.
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Let
T : CS" '~ F, and T, : CS*"!' — F

be continuous maps representing 85°(0) over £2°(0) and [].(65°(0)) over £(1), respectively.
Since 65°(0) and [v].(6§°(0)) start with the same vanishing cycle o7°(0) by Claim 2, we
can choose T and T, in such a way that their restrictions to the sub-path 7; coincide;

Tlyy = Tyln,.- (9.4.21)

(See Definition 4.5 for the definition of the restriction to a sub-path.) Let T' be the restric-
tion of T to the sub-path 1, and T7, the restriction of T} to the sub-path £2(1)82 (L.
Then we have 0T = 9T, and hence we obtain an n-cycle

=T -T CS"'u(-CS* Y — F,
over the path £0 (1) (1)nzny ' from py(b)(0) to pi(b){1). Its homology class is
[T = [T3) = [T"] = [T5) = [T] = [+].(85°(0)) — 67°(0) = v".

Here we have used (9.4.21). This again shows that v’ € H,(F}). The restriction Tj,, of
this n-cycle T” to the sub-path (1) represents a thimble for [£2(1)]; that is 8([€0])(1)
or —6([£7])(1). Hence its homology class is either gv” or —qv™. Let T(;y be the restriction
of =T" to the sub-path neny'. Since [n2n5'] = [€2(0)] in [P (al (0). p1(B){O)) ], T,
represents a thimble for {€0(0)]. Hence its homology class is either v” or —v". Since the
remaining part of T” after deleting T}y and —T7y) is contained in dy Fj, we have

[T7) = [Tl —[T)]) = Ttqwtv € Hu(F,00F)
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Since v’ € H,,(F}) by (9.4.19), we obtain

vi=(¢—1w, or v =—(¢—1),

from (6.16). The sign is determined by the condition (9.4.17) and Lemma 4.1. [
As in Remarks 9.2.3 and 9.2.4, we get the following:

Corollary 9.4.1. Let v and v' be simple loops around Do with the base point b and
V', respectively. Let o be a path from b to V' in U such that {o]™'[¥'][e] = [v] holds in
m (U,b). Then we have an equality (v[y'],v'[¥']) = [o].(v[v], v [7]) modulo U(Z[g,q~")) in
H,I(Fb:) xH,,(Fbr,ang:). El

§9.5. A generator of H,(F,) as a m (U )-module

Let Z[q, q|[m1(U,D)] be the group ring of w1 (U, ) with coefficients in Z[g, ¢71]. We
can consider H,(F), H,(Fp, 00 Fy) and H, (Fy, Oco Fy) as modules over this ring in a natural
way.

Theorem 9.5.1. Let v : I = U be a simple loop around Do with the base point b.
Then v'[y] in Theorem 9.2.1 generates the Z[q,q ][m (U, b))-module H,(Fy,do Fy), and
v|y] generates the Z[q,q~ ][ (U, b)]-module H,(Fy).

Before proving Theorem 9.5.1, we need some preparation.

Remark 9.5.1. From now on to the end of this subsection, we use ¢/ = min{e,r}
instead of €, where 7 i1s a sufficiently small positive real number. In particular, we always
assume that «f = r for a base point b given at the outset of each argument.

Definition 9.5.1. We define Uy C UJ to be the locus of all u € UF such that, if
pi and p; are distinct values in Cr(u), then |arg p; — arg p;| is not 0 nor .

It is obvious that T'\ Uy is a real semi-algebraic subset of real codimension 1.

Lemma 9.5.1. Let b be a point of Uy, and let Cr(b) be {p1,...,pn}. Let A\ : I - C be
the path given by t v (1 —t)r +t- p;, where r is the small positive real number in Remark
9.5.1. Then \? is an element of Py(a ,p;). Moreover, there exist paths €2 € Py(al, p;)
fori=1,...,N such that [§2] = [\?] in [ Py(af,pi)] for each i, and that {£0,... €3} is
a N-regular system of paths from aj .

Proof. By the definition of Uy, the path ¢ = ¢-p; on C from 0 to p; does not pass through
any critical values of ¢y other than p;. Since r is small enough, A? is also disjoint from

Cr(b) \ {pi}. Hence \? € Py(af,pi;). We put
Ky =LK, U{zeC; |z]<e(), and —7 +n(b)/2 <arg (z —r) <7 —n(d)/2},

where 7 is the function defined by (6.2). Then each A} is contained in K7} It is easy to
sec that there 1s a continuous map ¢ : Ij — I which satisfies the following; (1) g is a
homeomorphism, (ii) ¢ is a homotopy inverse of the inclusion ISy — K, and (iii) g(p:) = p;
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for all p; € Cr(b), and g(«?) = a). We put £2 := go A?. Then we have [€2] = [A?] in

[Ps(a?,pi)]. The paths A?, ..., A% are injective, and they satisfy A\ (/)N AN = {ap }
if i # j. Hence, by (i) and (iii), the system {&,...,E%} of paths from @) is K-regular.
O
g
—_—
K; Ky
Figure 5

Then Theorem 9.5.1 follows from the following:

Proposition 9.5.1. Suppose that b € Uy. Let p be a value in Cr(b)., and let \° : I - C
be the path from af -= 1 to p given by t v+ (1 — t)r +t-p. Then there exists a simple loop

vo in U wiih the base point b such that v'[vo] = 8([A\°1)(0) in H,(Fy, 80 Fy).

Proof of Theorem 9.5.1. First, we derive Theorem 9.5.1 from Proposition 9.5.1. Since
v[y] = £(1 = ¢)v’[7] and H,(Fy) = (1 — ¢)Hn(F}y, 0o Fh), the second assertion follows from
the first.

It is enough to prove this theorem under the assumption that b € Uy. We put
Cr(b) = {p1,...,p~n}, and let \? : I — C denote the path given by t — (1 — #)r + ¢ - p;.
By Lemma 9.5.1, there exists a N-regular system {£0,... ’51%} of paths from af = r
such that [£2] = [A?] in {Ps(a,pi)]. In particular, we have 6([£2])(0) = £6([\?])(0) in
H,(Fy,80F) for i = 1,...,N. By Proposition 7.1, we see that 8([£2])(0), .... 8([€%])(0)
generate Hy, (Fy, o F) as Z[q, ¢~ ']-module. Hence, by Proposition 9.5.1. there exist simple
loops 7, ..., yv around Dy with the base point b such that v’[v(]. .... v [y~] generate
H,(Fy, 90 Fy) as Z[q,q~'}J-module. On the other hand, by Proposition 9.1.1, there exists
[evi] € w1 (U.b) for each i such that [a;]7[vi][a:] = [v], where ~ is the simple loop given
in the statement of Theorem 9.5.1. By Corollary 9.4.1, we have v'[y] = [ovi],v'[]. Hence
v"[y] generates H,(Fy, 0o Fy) as a Z[q, ¢~ '|[m (U, b)}-module. [

Proof of Proposition 9.5.1.  We use the following notation; for two values w.: € C,
we denote by A(w, z] : I — C the path given by ¢ — (1 —¢)w + £z, and by Afw. z] its image
Afw, z](I) C C. '

Let {¢|,....cna} be the intersection points of £, and Dg. For w € L4, we put pi(u) :=

ey M(er). We have Cr(u) = {pi(u),....,p~y(w)}. By renumbering ¢, .... cy, we assume
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that the point p € Cr(b) given in the statement of Proposition 9.5.1 is p(b). In particular,
we have A% = A[r, pi (b))

Since b € U, we have

Alp1(8),0] N Cr(b) = {p1(b)}. (9.5.1)

Let A; C C denote the closed disk with the center p;(b) and of radius 2» for i = 1,..., V.
Since 7 is sufficiently small, there exists a point p;(b) — p on the boundary 9A, such that

b - f:l and
Alpi(d) = p,0] N A; = {épl( )= p} ;f; 4 1: ant (9.5.2)

where p is a complex number with |p| = 2r. Moreover, we may assume that

Imp>0 if Im pi(d) >0,
Imp=0and Rep>0 if Imp(b)=0, and (9.5.3)
Imp<O if Im p(b) <0.

(Note that if Im p; (0) = 0, then Re py(b) > 0 because of b € Uy.) We put

b = w (p1(b) - p),

and let v be the counter-clockwise loop along ¢ (8A1) with the base point o', Since r is
small enough, and b € Uy, (9.5.3) implies that

Ve Uy. (9.5.4)

Since £ mtersects Do transversely by Proposition 2.4, and r is sufficiently small, v
is a simple loop around Dy. We have py(d') = p by Lemma 94.1. Let D] C C bhe
the closed disk with the center 0 and of radius 2r. Since r is small enough, we have
Di N Cr(V) = {p1(¥)}. We also have £'(b') = ¢(b’') = r. Therefore, there is a path €]
from a). = r to p; (V') = p which represents the homotopy class [A[r, p]] in { Py (ad, p1(¥'))]
and is contained in Ky N D|. Hence [Ar,p]] = [€?] is the unique homotopy class in
[Po (a2, p1 (V)] characterized by (9.4.8). Using Proposition 9.4.1, we have

v [vh] = 8([Mr, pID(0Y in H,(Fy,00Fy). (9.5.5)
Let B be a path on £ from V' to b given by
B 1= woApi(b) —p,0.
By (9.5.2), this path does not pass through any point of £ N Do, and hence it is a path
m . We put
Yo 1= Brpf"
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Since v, is a simple loop around Dy, so is the loop vo. We shall show that this vo
is the hoped-for loop; that is, v'[vo] is equal with @([A°])0) in H,(F}, o Fy) modulo
U(Z[q,q7']). By Corollary 9.4.1, we have
vyo] = [Bl.(v[v]) i Hu(Fy, 80 Fp). (9.5.6)
Combining this with (9.5.5), it is enough to prove
B0 = £ BL (BN AIN0)) 0 Hou(Fy B0 Fy). (9.5.7)
By Lemma 2.3, we have £y \ Do C Un. Hence we have a map [G]. : Cr(V') — Cr(D).

The value p(8(t)) draws a straight path A[p, p1(b)] on C by Lemma 9.4.1. Because of the
assumption (9.5.3), this path does not traverse R<o. Hence we have

[Ble(p1 (V) (v)) = pi(b){r) forall veZ (9.5.8)
Now consider the bijective map
(Bl = [Polag,p(V)] — [Pulag ,p(0)). (9.5.9)
By (9.5.8), a lifting of (9.5.9) up to C is given by
(BT« [P (ap(0), pi(0)(0) ] — [Py (@) (0), p1 (0)(0)) ):

In order to to prove (9.5.7), it is enough to show that

B (Al ) = [\°) i [Po(ay,pa (D)) ]. (9.5.10)
In fact, (9.5.10) with (9.5.8) implies that
[BIZ (A, 2H0)]) = [A°(0)] in [Py (ay (0), pa (0)(0)) . (9.5.11)

Since 8([A°])(0) is a thimble for [A?(0)], while 8([A[r, p}]){0) is a thimble for [A[r, p](0)],
(9.5.11) and the formula (9.3.3) imply (9.5.7).

In order to prove (9.5.10), we investigate the movements of ag(t) and p;(8(t)) when t
varies from 0 to 1. There exists a large closed disk B on £, with the following properties;

N
B D u(Alp1(b) — p,0]), and &'(u)=»r forall we B\ U t(A;). (9.5.12)

i=1

Indeed, a point u on £y such that e'(u) < r is either contained in 14(A;) for some 7, or in the
union of 4; := ({2 € C; |z — p;(0)] > (2r)~' }). Since r can be taken arbifrarily small,
x(lb\uf;"’:J Aj can be so large that it contains a closed ball B which contains ¢4(A[p, (b)~p, 0]).
By (9.5.2) and (9.5.12), we have ¢’(8(t)) = r for all t € I. This implies that

“g(r)': r forall tel. - (9.5.13)
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On the other hand, by Lemma 9.4.1, we see that p;(#(t)) draws the path A[p;('), pi(b)],
and that p;(b') is given by pi(b') = pi(b) — p1(b) + p. The track of the movement of the
ending point p; (b') = p of A[r, p] is given by A[p, p1(b)]. We shall see that

(Alr, ) U Alp, p1(B)]} N Alpa(¥),pi(D)] =0 if ¢#1. (9.5.14)

Indeed, the two line segments A{0, p1(b)] and Afpi(b) — p1(D),pi(D)] are parallel, but, if
i 3 1, they are not on the same line because of b € Uy, Hence they are disjoint. Since r
is small enough and |p| = 2r, we see that Alr, p] U Alp, p1(0)] and Alp:i(0) = pi(b) + p, p:(b)]
are still disjoint if 7 # 1. Hence (9.5.14) holds. This implies that the path A[r, p] stretches
to A[p1(d), p] - Alr, p] by the movement of the ending point p,(8(t)) of the path without
being affected by the movement of any other points p2(8(t)), ..., pn(B(t)). Combining
this with (9.5.13), we have

1B ([Al, p1) = [Alp1(8), 0] - Alr, p]). (9.5.13)

It is easy to see from (9.5.3) that the triangle (or the line segment if it degenerates)
spanned by the three points p(b), p and r does not contain 0. Moreover, since r and
p are sufficiently small, (9.5.1) implies that this triangle does not contain any points of

Cr(b) \ {pi1(b)}. Hence we have

(A1 (0), 21 - Al ) = [Alr,pr(0)]] = [\°] in [Pulay,pi(D)) ]
Combining this with (9.5.15), we get (9.5.10). O
§9.6. The behavior of Cr(u) near Dy

In this subsection, we shall investigate how the set of the values Cr(u) of ¢, hehaves
when u approaches a point of De,. The result will be used in the proof of Theorem 9.2.2.

We choose a general affine line A in I'. Let ¢ be an intersection point of A and Dq.
Since A is general, ¢ is a non-singular point of D, and the intersection of A and D is
transverse at ¢. Let A be a sufficiently small closed disk on A with the center c. We choose
a base point b on the boundary 9A, and let v : I — A denote the counter-clockwise loop
from b to b along JA. Since A is small enough, v is a simple loop around Dy,. Since A is
general and A is small, we may assume that

A \ {C} C Un. (9.6.1)
Moreover, by choosing b generally we may also assume that
be Uy. (9.6.2)

By (9.6.1), [v]« acts on the set Cr(b).
Proposition 9.6.1. (1) The action of [y], on Cr(b) is trivial.
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This assertion with (9.6.1) enables us to put

Cr(u) = {pr(u),...,pn()} for we A\{c},

where py (), ..., pn{u) are continuous function defined over A\ {c}. By Proposition 2.3,
they are i fact holomorphic functions.

Proposition 9.6.1 (continued). (2) There exists one and only one function among
{mu),...,pn()}, say py(u), which has a pole of order d — 1 at u = ¢. (3) The other
functions pi(u), ..., py—1(w) can be extended holomorphically over v = ¢. (4) The values
pi(e), ..., pn=i(c) are distinct to each other. (5) Moreover pi(¢) # 0 fori=1,...,N—1.

Proof. Recall that X, C A" is the affine hypersurface corresponding to ¢, and X, C P”
its projective compactification. Since A is general, we have the following;

(xc-1) X, is non-singular,

(x¢-2) X, is tangent to Hy, at a point PP, and

(xc-3) XN Hoo has an ordinary double point at P as its only singularity.

Since A is located on the affine line A, the polynomial f, € I’ corresponding to v € A is
written in the form

fu = fe +1(u)g, (9.6.3)

where t : A — C is an affine coordinate such that #(c) = 0, and g is a certain polynomial in
I'. We consider the punctured affine line AN Uy, The critical values of (;Aﬁu and the critical
points of qanu yield multi-valued algebraic functions on ANUp to C and to A", respectively,
when « moves on AN Uy. Let W be a small open neighborhood of b on AN Uy which
1s simply-connected. The critical values and the critical points become single valued when
they are restricted on W. Let

pi:W—oC, and ¢ :W = A" (r=1,...,N)

denote those single valued functions on W such that the critical point ¢;(w) € A" of ¢y, is
mapped to pi(w) € Chy ¢, : A" = Clorallw € W. The fundamental group =, (ANUN, )
acts on the set Cr(d), and hence we get a natural homomorphism

m : m(ANUn,b) — &(Cr(d)),
where G(Cr (b)) is the permutation group of the set Cr(b). Let

pl (CLY) — (ANUn,D)

be the finite étale Galols covering corresponding to m. The Galois group is isomorphisc
to the image of m. Let W' C C’ be the unique connected component of p'~!' (W) which
contains the base point b’. Then there exist single valued algebraic functions

pp + ¢ — C for i=1,...,N
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such that pl(w') = pi(p'(w’)) for w’ € W', and there also exist algebraic morphisms
q + C' — A" for i=1,...,N

such that ¢i(w') = ¢i(p'(w')) for w' € W'. These functions p! and ¢! are determined
uniquely because C’ is connected. Then, for all y € C’, the point ¢i(y) € A" is a critical
point of qb,, i(y) lying over the critical value pi(y). Let

p:C — A

be the finite morphism extending the étale covering p’ : C' = AN Uy, and let A be the
connected component of p~*(A) containing '. There exists a unique point é € A such
that p(¢) = ¢. The morphisms ¢! : C' — A" naturally extend to

g : ¢ — P",
and the algebraic functions p} : C' = C naturally extend to meromorphic functions

pi + C — P' =CuU{oo}.

Claim 1. There is one and only one morphism among {¢,...,4n}, say ¢y, such that
gn(¢) is contained in Ho,. Moreover we have n(¢) = P, where P is the point at which
X is tangent to He

Proof. We choose an affine part A™ of P which contains § (& , ooy gn(E) and P. Let
q q
(zl se e z,,) be affine coordinates on A™ such that

Hy ={z2, =0}, and P ={(0,...,0).

We express the homogeneous polynomials f. and g as inhomogeneous polynomials in terms
of (z1,...,2,), and we write them by fc(z1,...,2,) and g(z;,...,2,), respectively. Note
that these inhomogeneous polynomials are determined uniquely only up to multiplications
by non-zero constants. By choosing them suitably, we can write the rational function

Qb = fu/ h* on A™ as follows;

p fu-(Zl,---,Zn) _ felzy ooy z) + () - g(2y,. ..,zn)‘

¢'u = d d

~n zn
Let fll,u](zl,... zn) denote the homogeneous part of degree v of f,(z1,...,2,). Then the
properties ( -1)-(xc¢-3) imply that
(fe-1) f[°]
(fc-2) fc = az,, where « 1s a non-zero constant, and

(fc-3) f.£2](21 ye s Zn—1,0) Is a non-degenerate quadratic form of z;, ..., z,-.

4
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We define polynomials hy(w; z1,...,2,), .-, ha(u;21,...,20) of 21, ..., 2, as follows;

008y _ BOfu(z1y.-s20)

hi(u;z1,...,20) = 2, 2. = £ for 1=1,...,n—1, and
i ~1
¢ Ofu(z1,...,2n)
d 1
ho(u;ze,..0,20) z"+18—zu = 7, ("),z Gkl —d- fulz1,...520).
7t 1

By (fc-1) and (fc-2), we see that

%}—Z(C,O,...,O) =0 for i=1,...,n—-1 and g}::(c,O,...,O) =(1-d)a#0.
Combining these with (fc-3), we obtain the following;
Oh;
det[ FPACIUS) ]i,j=l,...,n. £ 0. (9.6.4)

Let H;(u) C A" denote the affine hypersurface defined by h;(u, z1,...,2,) = 0. Because
of the properties (fc-1)-(fc-3), none of H;{c) contains Hes as an irreducible component.
Since A is small, the set of critical points {¢(w),...,n(w)} of q@,,(,,,) remains contained
in the affine part A" for all w € A. Hence the set {G(w),...,dn(w)} coincides with the
intersection

I(p(w)) := Hy(p(w)) N--- N Ha(p(w)).
We will prove the following two assertions;

Sub-claim 1; I(c) N Hy consists of only one point P, and
Sub-claim 2; cach of H(¢), ..., H,(¢) is non-singular at P and they intersect trans-
versely at P.

Indeed, the coordinates of a point in I(c) N Hy are the solution of

zn = felz1,-..,2021,0) =0, and

afc(2| yoee ,Zn_l,O)
0z;

=0 for +=1,...,n—1.

Since fe(z1,...,24-1,0) = 0 defines the hypersurface X.N He on He, the solution must
be the coordinates of a singular point of X, N He, which must be P = (0,...,0) by
the property (xc¢-3). Sub-claim 2 follows from the non-degeneracy (9.6.4) of the jacobian
matrix of the defining equations of the hypersurfaces at P.

Let V. C A" be a small open neighborhood of He N A™. Then the above two
assertions imply that, if « € A, then ¥V N I(w) consists of only one point, say P(u), such
that P(c) = P, because A is small enough. (No new points come into A"’ from the infinity
because ¢, (c), ..., gn(c) are already contained in A".) Thus Claim 1 is shown by putting

in(w) = Plp(w)). O



Claim 1 implies that the action of [y]« on {q(b),...,qn(b)} maps qn(b) to qn(b).
Hence the corresponding critical value py is single-valued on A\ {¢}; that is, there exists
a single-valued function piy : A\ {c} = C such that pn|x\ (o} = PP

Note also that Claim 1 implies that the values p;(w), ..., pv~i(w) are contained in
a bounded domain of C when w moves on A. Therefore, the assertion (3) of Proposition
follows from the assertion (1).

Claim 2. The function p’y has a pole of order d — 1 at ©w = c.
Proof.  Let ((1(u),...,{x(w)) denote the coordinates of the point ¢n(u) = P(u) in terms
of (z1,...,2,) above. Then

each (;(u) has a zero of order 1 at u = c. (9.6.9)

Indeed, when u is close enough to ¢, the solution ({i1(u),...,C(a(w)) of Ay(u;z) = -+ =
hn(u; z) = 0 near the origin is obtained approximately by looking at the terms of degree 0
and 1 i (zy,...,2,). Because A is chosen generally, we may assume that

dg
5o (0,,0), .

2
" Ozy

(0,...,0) and ¢(0,...,0) are general complex numbers, (9.6.6)

where ¢g(z),...,2,) is an inhomogeneous form of the polynomial ¢ € T which has appeared
in (9.6.3). Using (fe-1) and (fc-2), we can calculate the terms of degree 0 as follows;
() - %(0, ...,0) ifi#mn, and
hi(u;0,...,0) = (9.6.7)
—d-t(u) - ¢(0,...,0) ifz=n.

Obviously, each of them has a zero of order 1 at © = ¢. On the other hand, the n x n
matrix ( Oh;/0zj(w;0,...,0) ) of the coefficients of the degree 1 terms of the polynomials
hi remain non-degenerate even when v = ¢ by (9.6.4). Combining this with (9.6.6) and
(9.6.7), we see that (9.6.5) holds. Since

_ FulCr (), .., Cn(u))
Cn('”')d ,

p'}(r(u) = gf»u(qrv('“'))

the property (fe-1) implies that p/y(u) has a pole of order < d -1 at u =c.

In order to see that the order is d—1, we consider the variety W of all pairs ( fc(z),g(z))
of inhomogeneous polynomials of degree < d such that f.(z) has the properties (fc-1)-(fc-3).
It 15 easy to see that W is irreducible. By looking back at the proof, we can see that sub-
claim 2 holds for every pair (f.(z),9(z)) € W. Hence the point P(u) = (i (w),. .., (w))
of I(u) is well-defined. We have just seen that the locus W' C W of all pairs (f.(2),g(z))
for which (9.6.5) holds is Zariski open dense. Now let W? C W! be the locus of all
(fe(2), g(2)) such that p’(w) has a pole of order exactly d—1. Under (9.6.5), this condition
is obviously open, and hence W? C W' is Zariski open. We can casily check that if we put
ey =zn+2t 4+ +2%_ and ¢°(z) =1 -2z, — - # = 22,4, then (f0(2),4%(2)) € W2
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Hence W? C W is a Zariski open and dense subset. Now Claim 2 follows from the
generality of the affine line A; that is, the generality of the pair (f.(2),g9(z)). O

Next we shall prove the assertions (1) and (4). Recall that L] C P.(I') is the affine
line Ly, \ {ho}. The property (xc-1) implies that X, is non-singular for all u € A. Hence
Proposition 2.3 implies that

Cr(u) =7, "(L°NDy) forall ueA.

When u € A\ {c¢}, L intersects Dg at distinct N points transversely by Proposition 2.4
and (9.6.1). Claims 1 and 2 show that, when u approaches c, one of the intersection points
tends to the point ) € L,, while the other N — 1 points remain aloof from h_,. The
assertions (1) and (4) are equivalent to the fact that these N — 1 points remain distinct
even when u = ¢. In order to show this fact, it is enough to prove the following:

Claim 3. At every point of L2NDg, Dy is non-singular, and L? intersects Dy transversely.

Proof. First note that Do, has a structure of the cone with the vertex h,, € Do, and
L. is the line contained in Dy, passing through this vertex by Proposition 2.2. Hence we
have L.NDg C Do N De.

Definition 9.6.1. We define the subset Dgo of Dg N Dey to he the locus of all X €
Dy N Dy such that Hy, 1s disjoint from the singular locus of X. It is obvious that Dge,
is a Zariski open subset of Do N D,.

Remark 9.6.1. Ifv € D, is general, then X, is non-singular, and hence LMDy C Dyoo
because of Lemma 2.1.

Lemma 9.6.1. The locus Dgeo is irreducible.
We postpone proving Lemma 9.6.1, and complete the proof of Proposition 9.6.1 first.

Let @ be a point of P,(T') and let & be a point of I'* such that pr(Z) = 2. Since
L C P.(I") does not depend on the choice of &, we can write L instead of L}. Consider
the locus G of all points © € Do \ {§} such that, at every point of L2 N Dy, Dy is
non-singular, and LY intersects Dy transversely. This locus G is obviously Zariski open in
Dy \ {hoo}- By the generality of the position of ¢ in Dy, it is enough to show that G is
non-empty. Using Lemma 9.6.1 and Remark 9.6.1, we can reduce the claim G # ) to the
following; there exists at least one point y € Do, such that Dy is non-singular at y and
that Lj intersects Do transversely at y.

Let (P") denote the dual projective space of P", and let Ver : (P") — P,(I') be the
morphism given by H — d- H. Note that Ver is projectively equivalent to the Veronese
embedding of degree d. Let X ., be the singular projective hypersurface corresponding
to a general point w of Dy, and let X, C (P") be the dual hypersurface of X,,; that
is, the closure of the locus of all hyperplanes in P" which are tangent to X, at its non-
singular point. Because X,, has onc ordinary double point as its only singularity, and
because of d > 3, we see that, for a general point H € X, the singular point of X, is
disjoint from H. Note also that the degree of X is > d+ 1 because of d > 3. Hence
Ver (X ) is not contained in any hyperplane of P.(T). Note that Dg is non-singular at w
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because w is general in Dg. Let T, C P.(T") be the tangent hyperplane of Dg at w. Then
Ver (X ) N Ty is of codimension 1 in Ver (X ). Hence there exists a hyperplane H, € X,
with the following properties;
(hl) Ver(H,) ¢ Tw,
(h2) H, is tangent to X ,, at its non-singular point, and
(h3) Sing(X,,)N H, = 0.
Now we consider the automorphism group PGL (n + 1) of P". This group acts on (P™)
and P,(I') in such a natural way that Ver is equivariant. Note that Dy C P.(I') is stable
under this action. There is an element g € PGL (n + 1) such that g(H,) = Hs. Consider
the point g(w) € Dy, which corresponds to the singular hypersurface (X ,,) C P". Then
Dy is also non-singular at g(w), and the tangent hyperplane T,y C Pu(T') to Do at
g(w) is given by ¢g(T,,). By (h2) and (h3), we see that g(w) € Does. Because of (hl),
heo = Ver(Heo) = g(Ver(H,))) is not contained in Tjy,,y. Hence L3, intersects Dg
transversely. [l

The last assertion (5) of Proposition 9.6.1 follows from the generality of the position
of ¢ in De. Indeed, if we replace ¢ with ¢’ such that fo = fo + - h? for some a € C, we

have pi(c') = pi(e) + . O

Proof of Lemma 9.6.1. For a singular projective space X € Dg, we put

X :={ He(P")y; H istangent to X at its non-singular point}, and
X" ={HeX ; H N Sing X = 0}.

The dual hypersurface X " is the closure of X . If X € Dy is general, then X s an
irreducible locally Zariski closed subset of codimension 1 in (P")7 because of d > 3. There
are 1o X € Do such that X is Zariski open dense in (P"). We put

¥ = {(X,H); HeX '} C Dy x(P").

Since Dy is irreducible, the above consideration implies that there exists only one irre-
ducible component X7, of £*" which is mapped dominantly onto Dg by the first projec-
tion, and moreover, if there exists any other irreducible component X]" of X™, then we
have

dim X177 < dim X, (9.6.8)

Now consider the second projection
pry @ X7 — (P

This projection is a locally trivial fiber space in the sense of complex analytic geometry,
because PGL (n + 1) acts on both of X** and (P")” in such a natural way that pry is
equivariant, and because this action is transitive on (P"). The space Doy is nothing but
the fiber of pr, over Hoo € (P"). Since Do is Zariski open in Dg N Dy, every irreducible
component of Dy, is'of codimension 2 in P.(I"). Hence every irreducible component of ¥**
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must have a same dimension. Combining this with (9.6.8), we see that ¥™* is irreducible.
Therefore the fiber Dyos of pry must be irreducible because (P™) is simply connected. [

Remark 9.6.2. The locus Dy N Dy consists of two irreducible components; one is
the closure of Dy defined above, and the other i1s the locus of all singular hypersurfaces

X such that Sing X N He # 0.
§9.7. Proof of Theorem 9.2.2

We take an affine line A C I, a small closed disk A C A with the center c € AN Dy,
and the base point b € 0A of the simple loop v around D4 as in the beginning of §9.6.
By (9.6.2), we have K} C C*, and the isomorphisms ¥ and ¥$°.

Proposition 9.7.1. There exist a non-zero element ¢ in the kernel of the natural

homomorphism H,_(X0) = H,_1(X?) and a Z-lincar form | = H,_1(X0) — Z such

that the monodromy action (v}, on H ,I_I(Xbo) is given by

T = z+l{z)- e (9.7.1)
Moreover the pair (e,l) is unique up to sign.
This proposition will be proved later together with Proposition 9.7.2 helow.

From now on, we use € defined by (3.3) again. Since A is small enough, Proposition
9.6.1 implies that

e(v(1) = Clpn(v@)) ', and  [pa(y(0) > Ipi(v(t))| for i# N (9.7.2)
hold for all t € I. Consider the domain
Agey(o0) 1= { z€ CU{oo} ; 2| 2 1/2¢(0)}.

It is obvious that K} N Ay, 4y(c0) is simply connected and its intersection with Cr(b)
consists of only pn(b) because of (9.7.2). Therefore, there exists a unique homotopy class
of paths

[€X] € [Pulai”,pn(b))]
which 1s represented by a path €3 such that

EN () C Ky N Agesy(o0). (9.7.3)

Now by Remarks 9.2.3 and 9.2.4 in §9.2, Theorem 9.2.2 follows from the following:

Proposition 9.7.2. Let

v o= B([EXIN0) € Ho(Fp, 0 F)

be the homology class of the lifted thimble 8([£5°])(0). Then v™ is primitive, and there is
an clement vy € H,(Fy) such that the monodromy action [v], on H,(Fy, 0o Fy) is given by

gy 2 E (2,0 )0 (=T (e® 1)+ va}, (9.7.4)
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where e € H,—1(X?) is the element in Proposition 9.7.1. Let o[£37] € [S"™!, X°] be the
vanishing cycle from which the thinble 8([{57]) starts, so that v = =¥ (o[(F]®1). Then
vy 1s written as follows;

ve = UP(olEF] ® (£ + acapeq™ ™ 4+ FasigTh) ) + IP(w @ 1)
(9.7.5)
= — (g a4 a7 v+ IR(w@ L),

where a—g42, ..., a- are certain integers, and w € H ,,_1(_\’§°) i1s a certain homology
class.

Remark 9.7.1. The fact that the coefficient of ¢~¢+! in (9.7.5) is 1 or —1 plays an
nnportant role i the proof on Irreducibility Theorem in the next section.

Remark 9.7.2. We can determine neither the combination of signs in (9.7.4) and
(9.7.5), nor the values of the integers a_g4+2 ..., ¢—;. We would like to fill up this unsat-
isfactory part of the theory in future.

Proof of Propositions 9.7.1 and 9.7.2. We write the set Cr(b) simply by {p1,...,p~n}
instead of {p1(b),...,pn(b)}. The movement M., of the distinguished points Sy := Cr(b)U
Z2UZg® in C along the loop v is homotopically equivalent to the movement JV{‘:’, :IxXSy —
C described as follows; the points a (v) and a§°(v) remain fixed, the points p;(r) also
remain fixed if ¢ # N, and they stay left-hand side of the vertical line

Ao = loglpn| + V=1R = e™ (84, 4)(0)),

while the point py(r) moves down to py{r — d + 1) along the vertical line Ay. This
can be seen as follows. Let p;(A) C CU {oo} be the image of the meromorphic function
A — CU{oo} corresponding to the i-th critical value. Since A is small enough, Proposition
9.6.1 implies that

pi(A) ¢ C* if i#N, {9.7.6)

and

piA)Npi(A) = 0 if i#j. (9.7.7)

The movements of «f (v) and «{°{r) are homotopically equivalent to the non-movement
by Reduction 1 in §9.3. By (9.7.6) and (9.7.7), if ¢ # N, then the movement of p;{(v) is
also homotopically equivalent to the non-movement by Reduction 2 in §9.3. On the other
hand, Proposition 9.6.1 (2) implies that py € C* makes round trips around oo in the
clockwise direction (d — 1)-times. Combining this with (9.7.7), the trace of the movement
of py(r) can be deformed to the segment of A, between py () and py (v —d+ 1) without
affecting the movements of the other distinguished points.

There exists a K-regular system {£,...,€5} of paths from @) which satisfies the
following property; :

i) if i £ N, and _
fz’o(f)ﬂ/—\?.e(b)(oo) = {{PN} 1f§ i jV_ ane (9!8)
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We choose a vanishing cycle

? = ofe?) € [, XP)

for each [€?]. By Proposition 5.1, their homology classes 3} ..., a3 form a set of basis of
the free Z-module H,_1(X2). We define a Z-linear form [ - H,, 1(\,?) — Z by
~0oy ._ [0 ifi# N, and -
uely = {9 1T (9.7.9)

By Proposition 9.6.1 (1) and (9.6.1), [v]. acts on the set [ Py(a),p;) ], and if i # N, it also
acts on [Py (ag (v), pi{v)) ] by the description of M/, above. From (9.7.6) and (9.7.7), we
can easily see that

(V.(€71) = [7] in [Po(ay,pi)] for i# N, (9.7.10)

and, by the description of the movement M, which is homotopically equivalent to M.,
we have

(€)= (€2 (n)] i [P7(a) (v),pilw))] for i N. (9.7.11)

Since [y].(c?) € [S" 1, X2] is a vanishing cycle for [y],([€°}), (9.7.10) implies that, if
i # N, then [7] (of) is either ¢f or —o?. We shall show that

[Y]e(c?) =l for i#N, (9.7.12)

and that _
e = [.(GR) -8 € Ker (Hoo1(Xy) = Hao1(XY)) (9.7.13)

First note that the action of [y], on H,(X?) is trivial. Indecd, since A is small enough,
the property (xc-1) in §9.6 implies that [vy], acts on Hy_ 1(X3) trivially. By Lemma 5.1,
[v]+ acts on H,— 1(.\ ) &lbO trivially. This, in particular, implies (9.7.13). Second, note
that the image a°' of 30 by the natural homommphlsm H,_1(X?)— Hn- 1(\ ) is non-
zero for 1 = 1,... LN Indcod the image of H,_(X2) — H,,_l(_\b) is, by definition,

[’)'l_“il( XQ) in the exact sequence (5.10). Theorem L3 tells us that, for each 7, the clement

genemtes H'" 1 (X0) ® Q as a Q[ (U)]-module. Therefore, 59

1 t
i =1,... Clombunug these two facts, we see that [v].(7?) cannot be —& . Therefore,
[¥]+(c?) cannot be —a?. Hence (9.7. 1‘7) is proved. We shall show thdt e defined in
(9.7.13) is non-zero. In it were zero, then [‘y], would act on H,—1(XQ) trivially because of
(9.7.12). However, since Yy = XN Ho = _\’ N Hoo has an ordinary cloublc point at P, the

action of [v], on the non-zero sub-module Hgmi(Yb) of Hy,—(X?) is non-trivial, bccause

H[')’m'*:l()b) ® Q coincides with the Poincaré dual of the module of “vanishing cycles” in

H,_2(Y}) ® Q in the sense of [6; §3].
Then, by (9.7.12) and the definitions (9.7.9) and (9.7.13), we obtain

" is not zero for each

[V]i(z) = v+ (z) - e. (9.7.14)

61



This formula being established, e is characterized as a generater of the image of the en-
domorphism Id — [y}, on H,—;(X{), which is a free Z-module of rank 1, and hence e is
uniquely determined up to sign. Therefore the pair (e,!) is also unique up to sign. Thus

Proposition 9.7.1 is proved.

Let
07 = 6], 00) € [(CS"1,8"7Y),(Bs, X))

4

0
P

denote the thimble for [£2] starting from ¢, and let

07 (v) € ((CS™7,8"71), (F, Xy ()]

denote its lifting, which is the thimble for [£2(v)] € [Py (ap (v}, pi(rv))] starting from
o? {1v). By Proposition 7.1, the homology classes 69 (0), ..., 92,(0) in Hy(Fy, 09 Fp) form
a set of basis over Z{q, ¢7!]. Hence it is enough to prove (9.7.4) when z runs through the
set of these classes. By (9.7.8), the paths £ and €% are disjoint if 7 # N, and the paths
£y and £ have a common ending point as their only intersection. Hence, by Lemma 8.2,
we have

g0 N — (G(1£0 O (oo _ (0 ifi# N, and
(87 (0), v)0 = (BUEPDNOLBUETDONee = {3 317 % (9.7.15)
In particular, this shows that v is primitive.
We can and will choose the sign of oy in such a way that
(6% (0),v)0 = 1. (9.7.16)

On the other hand, from the formula (9.3.2), the results (9.7.11) and (9.7.12) imply that
[71.(62(0)) = 69(0) for i £ N.

Combining this with (9.7.15) and (9.7.16), we see that the action [y]« on H, (Fs, 8o F}) is
given by

T = T+ (2,0 v,

where

o = [1].(0%,(0)) — 83(0).

Now we shall show that this homology class v’ is equal, up to sign, with — 92 (e®1)+wv,,
where vy 1s an element in H, (F,) which can be written in the form (9.7.5) in the statement
of Proposition 9.7.2.

From the description of the movement MY of the distinguished points Sy on C, we see
that {y].([X]()); which is an element of [P~ (a) (), pn(v — d + 1)) ], is represented by a
path £”(v —d + 1) as follows. Note that £3(»)(I) is on the left-hand side of the vertical
line Aoo = log Ipn| 4+ V/—1R because of (9.7.8). Then the path €”(y — d + 1) starts from

ay (v), goes to a point ply(v) := pn{(r) — &’ along £%(v) where &’ is a sufficiently small
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complex number with Re ' > 0, goes down to ply(v = d+ 1) = py(v — d + 1) — " along
the vertical line parallel to Ay, and then reaches to py{v — d + 1) along £3{v — d + 1).

We define the path £87°(v) from ap (v) to af°(v) as follows. Note that E57(v)([1) is
on the right-hand side of the vertical line Ao because of (9.7.3). Then £37°(v) goes from
ag (v) to ply(r) along 3 (), draws an arc on the circle of radius || with the center py(v)
in the counter-clockwise direction to a point piy(v) := py{(v) + " on £ (v)({), where k"

is a complex number such that |&'| = |¢”| and Re &” > 0, and then goes to «§°(r) along
£ (v)~!. Note that £37°(r) is a path in I {v).
We put

py = elpi(v)) € &F(I) c CF,

and define a loop 7 from «§° to af® in C* \ Cr(b) as follows; 7 goes from a§® to p/y along
€SP, draws a circle of radius |py —p’y| with the center py in the counter-clockwise direction,
and then goes back to af® along (£%7)'. Note that 7 is a path in K. Now we are going
to be interested exclusively in the case ¥ = 0. It is easy to see that

L ER(O)]) = [€"(=d + 1)] = [¢] in [P (a)(0),pn(—d +1))],
where ¢ := (' £87(0) and

¢ = (A1) (G—d+ 1) T (r(=d 4 2) - (52 (=d +2))7") -
(P (=8) (5(=30)7") - ((=2) - (8°(=2)7) - (

(See Figure 6 on the next page.)

We put
ot = (o3 (0))

This is a vanishing cycle for [] in X2 (0), and by formula (9.3.2), we have
(Y8R (0) = 8([¢).o™) € [(CS", 8™, (Fy, Xy (0))].

In order to determine its homology class, we choose a continuous map T : CS™~! — F,
which represents 6([(],o*) over the path (. Let Tp and T} denote the restrictions of T' to
the sub-paths £€537°(0) and ¢’ of ¢, respectively. As n-chains in Fy, we have T = Tp + 1.
Then Tp is a continuous map from I x $"~! to ;' (I(0)) because of E3%°(0)(1) C L4(0).
Its boundary is given by

0y = — S+ 5,

where §* : S"7!' = X2(0) represents the vanishing cycle o* = [],(0R(0)), and 5’ :
Sn=1 — X£°(0) represents a vanishing cycle for [(/]. Since 9, ' (K3(0)) is contractible (cf.
(6.8)), there are n-chains I'* and I in ¢; ' (K,(0)) such that O'* = S§* and O = S’. The
sum Tp + I* — T is an n-cycle in ¥, ' (K3(0)), which is obviously homologous to zero.
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- Figure 6

Hence we have
(11.(88(0)) = [T) = [-T*]+ "+ T\] in  H,(Fy, 00 Fy).
Note that IV + T 1s an n-cycle in F,. We put
vy, = [ +T\] € Ha(Fp).

First let us describe the homology class [--I"*] in H, (Fy,d¢ F}). Since the homology
class of the boundary T = S§* in X2(0) is * = [7].(%(0)), it is mapped to [7].(5%)
by the isomorphism H,,_I(Xbo (0)) = H,-, (X,,D) induced from (6.1). By the definition of
e (cf. (9.7.13)). we have [¥].(6%) = 7% + ¢. Since T'* is contained in '1/;;'([\'1,(0)), we sce
from Corollary 6.2 that

—[*] = =¥ ([7.(5R) 1) = —T(6% @) — T (ed1).
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On the other hand, we have
O (0) = - (5y ®1),
because of (7.2). Hence we obtain
v = [(ER(0) —OR(0) = — T (e@D)+ "+ D] = — T (e@1) +vy.

Next, we express vy := IV 4+ T1] € H, (Fy) by means of ¥§°, and show that it is expressed
in the form (9.7.5). For p = —1,-2,...,—d + 2, let T,y denote the restriction of T} to
the sub-path 7(p) of ¢/, and let T{_4+,) denote the restriction of Tj to the ending piece
£ (—d + 1) of ('. Since the restriction of T to (67°(n))™"! is contained in O Fy for all g,
we have

‘Ué = []._“r -+ Tl] = [P,] —+ [T(—l)] + [T(_g)] +--- 4+ [T(—d+1)] in H,,(Fb,amFb). (9717)
We define w € H,,—1(X{°) to be the image of the homology class
[0I"] = [S§'] € Hyo(X57(0))

by the isomorphism H, _; (Xbo (0)) = H,,—4 (_Xbo) induced from (6.1). Since I'' is contained
in ¢, (I5(0)), we see from Corollary 6.2 that

[T'] = 5w ® 1). (9.7.18)

The continuous map T(_g4qy) : CS"7' — ¥y ' (Ip(—d + 1)) represents a thimble for
[€37(—d+1)] over the path £32(—d+1), which is either ([£F7])(—d+1) or —O([{F])(—d+1).

Therefore we have
[Ti—arny] = HO([ERN(—d+1) = g TO([EFNO) = £¢ v (9.7.19)

For t = —1,...,—d + 2, the boundary of the n-chain T,y : I x $"7! — o, ' (K (u)) is of
the form —S, + 5}, where S, and S}, are continuous maps from S"~! to X{°(u). Their
homology classes are related by

[Su] = [Pl ([Sa]) in Hooo (X5 (10)).

By Theorem L1 (2), the difference

T} = [9) = [Su] = (Ir ()]« = D[S,]

is a multiple of the homology class of a vanishing cycle in X°(u) for [€5°(n)]; that is, it
is written as «,&[£%F]() by some integer a,. The class 7[(R7]() is mapped to G[EF] by
the isomorphism H, _; (X (1)) = H, — (X$°) induced from (6.1). Since 7{u)(I) C Ky{p)
T, is contained in ¢, Y(Ky(j1)). Therefore, we sce from Corollary 6.2 that

.
b

[T(IIJ] = ay - U alEx] ®@4") = - ay - q" é([f?\?])((]) = —au-q'-v. (9.7.20)

65



Combining (9.7.17)-(9.7.20), we get
vh = UP(w®1) — (k¢ + aarag™ ™ 4+ -+ aq T FagTh) v

and hence we get (9.7.5). [J
Again, by Remarks 9.2.3 and 9.2.4, we get the following:

Corollary 9.7.1. Let v and v be simple loops around Do, with the base point b and
Y, respectively. Let o be a path from b to b in U such that [a]™1[v][e] = [y] holds in
m (U, b). Then we have an equality (v[¥'],v’[¥]) = [o].(v]y],v"[v]) modulo U(Z[q,q~"])
mn H,,(Fb!, 80 Fbr) X H,,(Fb:,BOOFbJ).

§10. Irreducibility of the monodromy representation
Let b be a base point on U. In this section, we deal with the vector space
Hn(Fb) ®Z[q,q_1] Q((I)
over the quotient field Q(q) of Z[q, ¢~1]. For brevity, we denote this space by H,(F3)®Q(q).
Let Q(q) be the algebraic closure of Q(¢). A representation on H, (F}) ® Q(g) is said to be

absolutely irreducible if the induced representation on H,, (F;) ® Q(q) is also irreducible.
The purpose of this section is to prove the following:

Irreducibility Theorem. The monodromy representation of m(U,b) on H,(F,)@Q(q)
is absolutely irreducible.

Proof.  First remark that the natural injection H,(EF}) — H,(Fp,do Fp) induces an iso-
morphism

H,(F,) ® Q(q) = H.(Fs,00 Fb) ® Qlq), (10.1)
because H,(Fy) is identified with (1 — ¢)H,,(Fy, 9o Fy) by (6.16).

Let & be an arbitrary non-zero element of H,,(Fb) ® Q(g), and let M be the subspace
of H,(F},) ® Q(q) generated by the sct {[a].(z); [o] € m(U,]) }. It is enough to show
that M coincides with the total space Hy, (F}) ® Q(q), and for this purpose, it suffices to
prove that M contains an element v[y] € H,(F}), where v is a simple loop around Dy,
because of Theorem 9.5.1.

We consider the vector space I' = I'(P", O(d)) as an affine part of a projective space
P4 and let H be the - hyperplane PURTA\ T Then U is the complement to a reducible
projective hypersurface Dy U Do U H, where Dy and Do, denote the closures of Dy aud
Dy, respectively. Hence, Zariski’s hyperplane section theorem [11] implies that (U, )
1s generated by the homotopy classes of simple loops around Dy and Dy,. In particular,
the generater ¢ € m(U,d) of the kernel of the natural homomorphism m (U) — = (U) is
written as a product

Y 7 SRR O3
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where each 7; is a simple loop around Do or De, and §; is £1. By Proposition 1.1, we
have

co(z) = qu # 2.
Hence there exists at least one element among [v(], . . ., [v&], say [v1], such that [v].(2) # «.
By Theorems 9.2.1 and 9.2.2, we have

il () — @ = a - vly),

where a is a non-zero clement of Q(¢). Hence M contains v{v;]. Therefore, if v is a simple
loop around Dy, then the proof is completed.

Now suppose that v; is a simple loop around Dg,. (Note that in this case, v[y] is
contained in H, (Fy, 0o F}), but not in H,(Fy). However, by (10.1), we can still say that
v[yi] is contained in M.) The homotopy class [vi] € 7 (U,b) is represented by a loop of
the form a™'vja, where o is a path from b to a point b’ which is located in a sufficiently
small neighborhood of a non-singular point ¢ of Do \ (Do N Dy ), and 4/ is a loop from
b to b along the boundary A of a small disk A with the center ¢. As is §9.6, we may
assume that A is situated on an affine line A intersecting Do at ¢ transversely. Moreover,
perturbing ~; if necessary, we can assume that

b e Uy C ug. (10.2)

In particular, we have Iy € C* and the isomorphism ¥§°. We write {p1,...,pn} for

Cr ().
By Proposition 9.6.1, there exists a critical value py of ¢y : A" = C such that
ety = Clpa|)7Y, and |pi| < |pn| if 1 # N
Let £ be an clement of Py (s, pa) such that
E5(1) C AT N K, (103)

where A, = {z € CU {oo}; |2[ > (2¢(¥'))™" }. By Proposition 9.7.2 and (7.2)’, we
can put

vy = B(EFN0) = —UREERI®1) € Hu(Fy,00Fy), (10.4)
and '
o] = (@) + P(wel)

+ UR(ER] ® (£ 4 acarog™ M 4 a7
= T(e®1)+ TP (w@l) (10.5)
+ (kg™ tagpeq™ T4 as g7 o[y

€ Hn(F})’aaOFb')



by some e € H,,_, (Xbo, ), w € Hy i (X5°) and some integers a—_y,..., @—q+2. Consider the
element

oy == (L=qlv] € Hu(Fy).
By Lemma 6.1, we can write (1 —¢) ¥2(e®1) € H,(Fy) as UP(e; ® ¢+ o @ 1) by some
e1,e0 € H, (X£°). Putting this into (10.5), we see that [y;] is written in the form

Q¢+ ao®@l+a 1 @¢  + +acu2®¢TPLGEF] @ ¢T),  (10.6)

where a1, ..., a—442 are elements of H, -, (X{°).

Let A2 be the path from a) to py given by
AN = (1—t)ad +t-pn. (10.7)

By (10.2) and Lemma 9.5.1, A%, is an element of Py (ap, pn). By Proposition 9.5.1, there
is a simple loop B’ around Dy with the base point b’ such that

o8] = (A0 = —FR(E[AY] ®1) in H,(Fy,d Fy). (10.8)

Here we used (7.2) again. (Note that [AY] is represented by a path contained in Ky by
Lemma 9.5.1.) We shall prove that

(BBl # 3l (10.9)

Note that since o[y € H,(Hy ) C Hn(Fy, 050 Fp ), we can apply Theorem 9.2.1 to the
calculation of [3'),(8[v;]). By Theorem 9.2.1, in order to prove (10.9), it is enough to show
that (4[v;],v"[8'])o is not zero. By (10.8), the Laurant polynomial (&[v;], v [#'])o is equal
with (9[v], 9([A&]){0))o modulo U(Z[g,¢7'])). Using the description (10.6) of #[v] and
(10.8) of A([A]){0), and applying the fomula (8.2), the coefficient of g~9*? in the Laurant
polynomial (5[v;], 8([A%])(0))o is the integer

£ (UP(EER) @ 1), Tp(a[AR] ®1))o = £ (H(IEF]NO0), B([AR](0)).  (10.10)

By (10.3) and (10.7), the paths £§ and A% have a common ending point py as their only
intersection point. Hence Lemma 8.2 implies that the integer (10.10) is £1. Thus (10.9)
is proved.

Now we put 8 := o718, which is a simple loop around Dy with the base point b.
We also set

ol = (I —qolw] € Hy(Fp)NM.
(Recall that v[y] is contained in M.) Since 9[v;) = [a]7'(5[7;]) by Corollary 9.7.1, (10.9)

implies that
[B1+(8[]) # Blw].
This implies that v[8] € M. O : -
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