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Picard-Lefschetz theory für the universal coverings of
c0111ple111ents tü affine hypersurfaces

Ichiro ShiIl1ada.

§o. Introd uction

Let r denote thc vector space r(IP" , CJ( d)), and r x the space r \ {O}. \,Ve aSSluue that
n 2:: 2 and cl 2:: 3. Let Ir*(r) stand for thc projective space r x je x: anel pr : r x --t Ir*(r)
thc natural projection. This spacc Ir* (f) panuneterizes all projective hypcrsurfaces of
clegree d in r n

• \~Te fix a hypcrplane at infinity H OCJ in Ir11 , anel consiclcl' the affine spacc
A" := r n

\ HOCJ' \'\Te define U c Ir* (f) t.o bc the locus of all projective hypersurfaces of
elegree d which are non-singular anel intersect H OCJ transversely, allel definc U to be thc
pull-back of U by thc projection:

U c

Für u E r x , let fu dcnotc the corresponcling h01110gencous polynoillial of degree d. \'\Tc put

Thcn we have thc n10nodrolny reprcsentation

p (0.1 )

\vhere b E U is a base point and LEU is the point pr(b). This rcpresentation has been
\vell invcstigatcel by thc dassical Picard-Lefschetz theory.

Thc purposc of this paper is to const.ruct. a certain kind of defonnation of this classical
luollodro1l1Y representa.t.ioll.

Thc iden. is to consielcr thc 111iddle hon10logy group Hu (Fb ; Z) of the universal covering

ofthe cOlnplcrnent Eil. "\Te cannot, howcver, definc thc action Of7fl(U,b) on H,,(Fb;Z) in
a na,ive way, because the universal coverings Pu --t Eu cannot be constructecl nniversally
over U. In order to construct thc universal faluily of Pu, it is nccessary to enlargc thc base
space U to U = pr- 1(U).

Since Gal (Fu j Eu) ~ 1r1 (Eu) is an infinite cyclic group, wc can considcr Hn(Pu; Z) HS

a l110dule over the ring of Laurant polynornials Z[fJ, fJ- 1], where the luultiplication by q is
identificd wi th the action of a generator of Gal (Pli j Eu) ~ Z on H ll (Fu ; Z). This action is
also defined globally over U.
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Thcreforc, wc get a lIlonoclrOlllY rcprcscntation

p (0.2)

of 7r1 (U, b) on the Z[q, q-I ]-lIloclule H,,(Fb ; Z).

This representation p cal1 be rcgareled as adefonnation of the classical 1110noclrorny p

in (0.1), because there is an isolllorphislIl

(0.3)

of Z[q, q-I ]-lIlodules such that thc hOlIlolIlorphislll Hf/(Fb;Z) --t H n - I (.X"b; Z) obtainecl
frolll (0.3) eOlllbillecl \vith thc hOlll011l0rphisnl Hn-1(.Yb;Z) 0 Z[q,q-l] -t Hn-I(.YbiZ)
givcn by q r--+ 1 is JrI(U,b)-cquivariant (sec Theorellls 6.1 anel 7.1). Here Jrl(U:b) <:lets 011
Hn(Fb; Z) by p, and Oll H 71 - 1(_Yb; Z) by p eOlllposcd with thc natural surjeetive henIlornor
phisIll 7f1 (U , b) --+ 7fl (U, b) indueeel by the projection pr : U --+ U.

Supposc that \ve are given a 110n-zero C0111plcx IHunber 0'. \Ve can consider C as a
Z[q, q-J ]-lllOclulc by identifying q with a. Then thc isolllorphislu (0.3) iluplies the iSOl110r
phisIll between cOlllplex vector spaces

Evaluationg p at q = 0' Hncl usillg this isolllorphislll, we obtain a representation

anel thus wc get a falnily of represcntations {p(ü)} panl.111eterized by all 110n-zero c0111plex
nUlnbers. The propert:y of the isoll1orphisln (0.3) illlplies that p( 1) is nothing but thc
cOlllplexifieel classical rcpresentatioll p 0z C C0111posecl with thc hOlllo1110rphisll1 7f1 (U) -1

JrI(U),

The Inain theorelll of this paper is as follows. Let Q(q) clenote the quotient field of
Z[q,q-l].

Irreducibility Theorenl. The 11lonoclrOln.y represclltatioll oE Jrl (U, b) 011 tllc 1/cctOl'
spacc H ll (Pb; Z) 0Z[q,q-l J Q( q) induccd ti'Olll f} is ahsolu tel,}' irrcducible.

Corollary. IE 0" is general enouglJ, tlJen p( 0:) is irrcduciblc.

This sho\vs that our defonuation is non-trivial, becausc thc classical rcprescntation p 0z C
is not irrecluciblc. In fact, p 0z Q is COlllposed of thc follo\ving two represc11tations Oll thc
prilllitivc parts of 111iddlc COhOlllOlogy groups:

Po

Poo

7fdU, b)

7rdU, b) -+

AutQ (H,~ri~1(.Y b; Q)),

Aut Q (H,/;ril~1 (YPb; lQ));

anel

that is, therc exists an cxact scqucnce

2



whi~h is preserved by the Il1onodrorny action of lTl (U, b). This cxact scquenee fo11ow8
frOll1 thc iSOl110rphisnl H 71 - 1 (.Yb ; Q) s:: H,,-l (_Y b, 1/~b; Q). It corresponds to the wcight.
filtration of the nlixcel Hoelge structurc on thc nlielelle ternl, allel hellee is prescrvcel by thc
nlonodroluy action. Thc olcl Picarel-Lefsehctz thcory teIls U8 the following:

Theorenl. Botl] of Po alld Poo are absolutely irrcducible.

Therefore, our defonuation fuses these two irrcducible rep1'esentations into one big irre
ducible representation.

Thc eonlplcnlcllt r x \ U COllsists of the following two irrcdueible divisors:

Va .- { 'U E r X

'000 .- { 'U E r x

_Y u is singular}, and

_Y u clocs not intcrscet H (X) t1'ansvcl'sely}.

The IUa.ln tool of the p1'oof of Ir1'eclucibility Theorelu is the Picard-Lcfscllctz f0r111tlla.,

which describes thc localluonoelroluy action on Hn(Fb ; Z) along 8iIuplc loops around these
divisors. RDughly speaking, we proceecl as fo11oW8. First, we define a boundary 8Fu of Fu ,

anel Cl. ~~hernlitian" intersection pairing

in appropriate ways. Let [,-tl E 7f 1(U 1 b) be the hOluotopy dass of a SilUPle loop around Va
01' '000 ' Then therc exists a pair of 'U[,] E H 71 (Fb ; fl) anel vV(,] E Hn(Fb, 8Fb; fl) such that
the action of [--tl * on H lI (Fb; fl) is given by

This is a natural gcneralization of the classical Picarel-Lefschctz fOl'Iuula with fl replaced
by fl[q, q-l]. The hOluology dass v[,] is the v(JJlislling c,Yc1c associated with [,].

lvloreovcr, we have thc following two facts:

(1) As a luodulc ove1' thc group ring fl[q,q-l][lTt(U,b)], Hn(Fb;fl) is generated by one
clenlellt v[,o L \vhe1'e "'10 is an arbit.ra1'Y sirnplc loop a1'ouncl '0 0 •

(2) Let "'(00 be a sinlple loop around D oo . Then there exists a siluple loop ,0 around Va
such that

(0.5)

The first fact jl1st corrcspollds to the classically known fact that the space of vanishing
cydes in the sense of [6; §3] is generated, as a. rnodule ovcr thc gronp ring of the luonodrolny
group, by onc vanishing cycle for a sill1ple loop, if the coefficients of the hornology groups
are in Q (sec [6; §7]).

On the othcr hand, thc second fact canses the crucial eliffcrence bebvcen the classical
rcprcsentation panel our reprcsentation p. Indccd, für thc classical rnonodrolny p( 1), the
inequality (0.5) does not hold; that iS l \ve alway have

. nlod q - 1
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for arbitrary siluple loops fO anel fCO around Da and Dco , respectivcly. This equality
luodulo q-I gurantces the stability of thc sllbspace H

j

1;ril;1 (1"-b; Q) of H n - 1(Xb; Q) under the

luonoclronlY action, because this subspace is gcnerated by vanishing cyclcs v[fco]ul0dulc q
1 associated \vith silnplc loops "'(co around D co .

The idea to look at the universal covering of thc eonlplelnent eOlnes frenu [5]. In this
paper, Givcntal' considcreel the versal defonnation fanlily of a hypersurface singularity, anel
studied thc nlonodronlY action on thc nüddle hOluology group of thc universal covering
of the cOlnpleluent to the fvlilnor fiber. In thc ease of sill1ple singularity, thc fundanlental
group of thc conlplclncnt to thc discrinlina,nt locus in thc base space of thc versal defor
luation fanüly is known to be isolll0rphisc to the generalizecl brajd group corrcsponding
to the Dynkin cliagnuu of the silnple singularity. \,Vhat he obtainecl is a representation of
the Iwallori-Hceke a.lgebra, which connects thc cla.ssical rcprcscntations on the Inoclule of
vanishing cycles in oeld dinlcnsions anel in even diluensions.

A siInilar investigation had been done in [10] in a Inore general setting than ours.

Let C C 1P2 bc an irrcducible planc curve, und let L C p2 bc a general line. \\Tc
put ){ := 1P2

\ (C U L). Let ~Y --+ ..Y be the infinite cyclic covering corresponeling to the
Hurwicz luap 7rl (){) --+ H 1 (~Y"; Z) ~ Z. Then the first hOluology group H 1 (_Y j Z) of ..Y,
as a Z[Ci, q-l ]-nloc1ulc, plays an iluportant role in the study of singular plane curvcs [8J.
Here in this paper, wc treated H2 ( ..}.:j Z) when C is non-singular. Thus we hope that it
woulcl be interesting to study thc structure of H n (Fb; Z) as a Z(q, q-l ]-nlodule when the
hypersurface Xl! is singular.

This paper is organizecl as fo11ows.

In §l, we construct the universal fanüly of thc universal covcrings Pu --+ Eu of the
conlplclnent Eu = An \ .Yu over the cxtendec1 basc space U c r x . \,Ve sha11 show that thc
deck transfonnation Tu : Pu --+ Pu over Eu corresponding to a generator of Gal (Pu / E 1I ) ~

Z is also constructec1 universa11y ove1' U. Thus wc obtain the rcp1'escntation p.

In §2~ \ve investigate t.he polynolnial nlap ~u : A Tl --+ C which defines the affine
hypersurfaee ~Y"11; that is: ..Y" u .= ~~ 1(0) ancl Eu = ~~ 1(C X). \Ve sha11 stucly thc cri tical

points of Ju anel thc behrwior of thc fibc1's J;l (t) "at infinity". \Ve introeluce a Zariski

open dense subset UN CU, over whieh the topology of thc polynolniallnaps cPu cloes not
va.!"y 10ca11y.

In §3: \ve introelucc a continllous function [ : U --+ ~>o whieh is "s111a11 enough" : and
dcfine two boundaries ooE lt anel oooE ll of Eu as cP~I(.6X(O)) anel <p~I(.6X(OO)), wherc
.6 X(O) := {z E C; 0 < Izl ::; [(u)} anel .6 X(oo) := {z E C; Izl-I ::; [('lI)}. \Ve then dcfinc
two bouncla,ries 00 Pu anel ocoFu of Pli as thc pu11-backs of thc bOllndaries of Eu by thc
covering nutp Pu --+ Eu. It turns out that the relative hOlnology groups Hn(Pll , 00 Fu)
anel H" (Fu : oooFu ): both of which are also Z[q: q-I ]-nlodules, are casier to cleseribc than
H II (Ft1 ). The pleasant feature of this theory is that there is a eertain kind of dun.lity
between H il (Fu,00 Fu) anel H n(Pu, ocoFlI)'

In §4, we review the classical theory of Lefschetz [7], anel fix sonle notion anel notation
about vanishing cyclcs anel· thinlblcs. In this paper, a vanishing cycle'in ~yu, for exarnple,
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is defined as a honlotopy dass of continuous Iuaps froll1 SIl-1 to _X"u \vhich satisfies certain
condi tions, ancl a thiIllble in (Eu, Go E 11 ): for exanlpIe, is clefined as a honl0topy dass of
continuous ll1aps froll1 the pair (CSn

-
1 , 5 11

-
1 ), whcre CS n - 1 is the COllC ovcr 5 71

-
1 , to

(Eu; 00 Eu) which possesses certain propertics.

In §5, \Vc invcstigate thc hOlllOlogy groups Hn-1( ..\u), Hfl(E IL ) a,ncl Hn(Eu,ooEu)'
The nlain results are that, if 1l E UN, then thc honlology dasses of the vanishing cyclcs
corresponcling to the cri tical p oints of ~ Il fonn a basis of H'II -1 (_X"u), ancl thc honl0logy
classes of the associatecl thilllblcs fonn a basis of Hn (Eu, 00 Eu). In particular, Hn - 1 (~X"Il)

anel Hn(Eu, 00 Eu) are canonicallf' isoillorphic, anel the rank of thelll is cqual with the
n11nlber of the critical points of cPu. Thesc facts seellI to bc well-known. However, we
present theIn \vith cOlllpletc proofs in order for thc paper to bc self-contained.

111 §6 anel §7, we stucly thc structure of H,,(Fu ) anel H 1I (Fu,00FIl ), Hn(Fu,oooFu ).

vVe show that Hn (Fu ) is cInbcdelccl in Hn (Fu , Go Fu ) allel Hn (Fu , oooFu ) by the natural
hOlll0ll10rphislllS. \-Ve also show that that thc hornology dasses of the thilnbles lifted froln
(Eu: Go E t1 ) (resp. (Eu, GooEu)) farIn a set of basis of Hn(Fu,00 Fu) (resp. H n (Pu, oooFu ))

over Z[q, q-l]. In particular, we obtain isolnorphislllS

Hn (Pu, 00 Fu) r-v Hn (Eu, aoEu) 0z Z[q, q-l] ~ Hr~-I (_\u) ®z Z[q, q-l], anel

Hn(Fu, aOOFt1 ) ~ H lI (E t1 , aooEu) 0z Z[q, q-l].
(0.6)

These isornorphisrns are, hawever, not canonical by any llleans, because there is anlbigllity
of the \vay of lifting of a given thiInblc in (Eu, 00 Eu) (resp. (E ll , DooEu)) up to (Fu,00 FlI )

(rcsp. (Pu, ocoFu))' In orcler to statc the isolnorphisnls (0.6) precisely, we havc to rcstrict
ourselvcs to a snlallcr locus UJv C UN, aver which a canonical lifting can be assigned to
each thilnble in (Eu 1 aoEu) 01' in (Eu, 000 Eu ). Howcvcr, U \ UIV is a. real selni-algebraic
subset of real codiIllension 1, anel UNis not path-connected. Hcnce these iseHllorphisrns
cannot be Jrl (U )-equiva.riant. (Otherwise, \ve \voulel get a contradiction to Irreclucible
Theormll above.)

In §8, we introelllce two hennitian intersection pairings betwccn the two relative ho
1l10logy groups Hn(Fu,aoPu) anel H n (Fll , DCXJFu), which take valllcs in Z[q, q-l], and prove
that they are non-degenerate. The ielea of these pa.irings is also duc to [5].

In §9, we fornnl1ate anel state the Pica,rd-Lefschetz fonnula. Let fO bc a sinlplc loop
arouncl Da, anel fCXJ a silnplc loop arounel D oo . Thc precise definition of sirnplc loops is
given in §9.1. \~Te elcscribe the action of ['0] E 1rl (U , b) on Hn (Pb, DooPb) in Theorenl 9.2.1,
ancl the action of [/CXJ] E Jrl(U,b) on HIl(Fb , DoFb ) in Theorclu9.2.2: with the help ofthe
hennitian intersect.ion pairings c1cfinec1 in §8. As is seen fronl thc proofs, \vhich are given in
§9A allc1 §9.7 respectively, this is alllore appropriate way to statc Picard-Lefschetz fonnula
than to describe thc action Oll Hn(Fb ). Thc actioll on H ll (Fb ), ho\vever, can be elerivcel
frOlll these bvo thcorelns, because H lI (Fb) is ernbedded in Hn(Fb,OCXJFb ) and Hn(Fb,ooFlJ)
by thc natural honloll10rphis111S.

As can be gucssec1 frorn thc fact that thc basis of H n (Fb, aooFb) 01' Hn (Fb, aoFb) ovcr
Z[q, q-l] consists af·thc hOlllology dasses of lifteel thilnbles, each of which corresponcls to
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a critical value of <Pb in a bijcctive :vay, thc nuün ingredient of thc proof is to study thc
nlovcnlCIÜS of thc critical values of <Pu when lf l11akes a round trip along ,0 or 100' In thc
case of 10 : it is quite easy to see how the critical values Inoves on thc cOlnplcx plane. On
the contrary, it takes the vli,hole subscction §9.6 in the CRse of '"'/00'

Thcre is one 1110rc itnportant rcslllt in §9. In §9.5, we givc a proof to Thcorcl11 9.5.1,
which statcs that H ll (Pb) is generated, as a n10clule over the group ring Z[q, q-l ][JrdU, b)],
by one "vanishing cyclc" v[,o] associatccl with an arbitrary sitnplc loop ,0 arounel D o.

By Zariski's hyperplane scction thcoren1: Jrl (U) is gcncl'atcd by the hon10topy classcs
of silnple loops around D o and D oo . Hence, using the results in §9, we can prove Irre
ducibility Theorelu in §10.

Acknowledgnlent. The author woulcllike to thank Ivlax-Planck-Institut für Nlath
cnuüik in Bonn for provicling hiln with stinlulating research envirOlllncnt.

Conventions.
(1) The sYlubol I always clcnotcs thc closccl interval [0, 1] C IR.
(2) A path I ---+ V on a Coo-nulnifolcl 11 is always asslunccl to be piecc-\visc Sl11ootl1.
(3) Let a : I ---+ V anel ß : I ---+ 1/ be two paths on a topological space V. \\'e clefine

the order of the procluct of paths in such a way that 0: . ß is wcll-elcfincd if anel only if
ß(l) = 0:(0).

(4) Let VI anel 1/2 bc topological spaces, or pairs of topological spaces. Then [V1 , V2 ]

denotes the set of hOlnotopy classes of continuous luaps fron1 V1 to '/2'

(5) Let V·, Hl anel Hl' bc topological spaccs, anel f : V ---+ Hl, g : Hl' ---+ Hl continuous
Inaps. \-\Te say that f is locally trivialover g : vV' --+ Hf (ar silnply over vV') if thc pull-back
Hl' x \v 17 ---+ Hl' of f by g is locally trivial.

(6) Let _Y1 aud _Y2 be cCHl1plcx nU'lnifolcls, anel let h : -\'"1 ---+ -\"2 bc a hololuorphic
11lap. \-Ve say that h is locally trivial if it is locally trivial in thc catcgory of topological
spaces allel continuous Inaps.

(7) In this paper, we work with hOlllology groups in Z-coefficicnts unless othcrwisc
stated, and we onüt Z in the notation.

§1. Construction of the universal falnily

Our first task is to construct the universal falnily of thc univcrsal coverings Pu ---+ Eu
over thc extcndcd base space U.

Thc conlplcll1ent lP.(f) \ U consists of two irreducible divisors D o and D001 wherc
D o consists of all singular hypersurfaces: while D oo consists of a11 hypersurfaces whose
intcrsections \vith Hoc are not transverse. Thcn a. genera.l point of D o corresponcls to
a hyperSll1{ace possessing oue ordinary double point. as it.s only singularity, while a gen
eral point of D 00 corresponds to a non-singular hypersurfacc _\" such that Hoc n .Y is a
hypersurface in Hoc possessing only OllC ordinary double point as its singularity.

Thcn the divisors D o anel Doo of r x c1efined in 111troduction are thc pull-backs of D o
and D oo , respectively, by the natural pl'ojection f x ---+ Ir* (f).
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\-Ve choose h E r(pll, 0(1)) which elefines the hyperplane H oo = {h = O}, anel fix it
t.hroughollt this paper. Thcn hd E r x . Recall that 111 denote the hOlllogeneous polynolllial
of elcgree r1 corresponding t.o u E r x . Using the fixeel hOlllogeneolls polynoluial h d defining
t.he luultiple hyperplane d· H oo , we get a luorphislll

which is the restriction of the polynoluial luap

to Eu = ~;1 (reX). The follo\ving lell1lna. is easy to prove by using Zariski's hyperplane
section theorenl [11L anel thc theorenl of Deligne-Ful ton on Zariski' s conjecture ([2], [3L
[4]):

LenUlla 1.1. Supposc that '/l EU. Tl1en cPlt induccs an isolnorpl1isll1 7f] (Eil) ~ 7f1 (C X)
on t]le fundaJneIltal grou])s. 0

Let e : C -t C X be thc universal covering given by z f---t exp z. (Vle distinguish bvo
conlplex planes <C anel C. This distinction will help to avoiel confusions.) For every u E r x :

\ve define a cOll1plex space Pu by the fiber proeluct

Pu
c

Eu-t

~ul 0 1fu
C -t C X

•
c

(1.1 )

If u EU, then Lenuua 1.1 iluplies that the covering e: Pu -t Eu is the universal covering of
E 11 whose Galois group is canonically isolnorphic to 7fdC X). Let Tu : Pu -t Pu denote the
deck transfornlation over Eil corresponding to thc counter-clock\vise generator of rr l (C X).

The construction of the universal covcring Pu -t Eu can be carrieel out univcrsally over
thc base space U. Let ,-1' C All X U denote thc universal falllily of the affine hypcrsurfaces
{ -)[u ; lL EU}, with the natural projection ,1:' --+ U, aJlel let E: stanel for the cOluplenlcnt
(AU x U) \ .1', which is the universal fctll1ily of { Eu ; '/l EU} with the natural projection
[ --+ U. By putt.ing cPll : E ll --+ C X t.ogether, we get a rnorphisnl

which lnaps (P, u) E t: to 4>11 (P) E C X
• Let F bc thc fiber product E xcx C: \vhere

C --+ C X is given by thc exponcntiallllap e. Thcll this F with the natural projection onto
U is the universal farnily of { Pli ; U EU}. Again, the natural 111ap F --+ t: is the Galois
covcring with the Galois group 7f} (eX). Let T: F --+ F be the deck transfonnation over [:
corrcsponding to thc counter-clockwise generator of ?Tl (C X). Then the restriction of 'T to
a fiber Pu C :F over u E U gives thc deck traJlsfonllation Tu : Pu --+ F u '

Now i t is easy' to see that the fanülies .1' --+ U, E --+ U and hence F --+ U are alliocally
trivial. Therefore we obtain'a natllralluonodroluy rcpresentation of 1Tl (U, b) on Hn(Fb ):
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where b E U is H, base point. Since the deck transforrnations Tu are defineel globally over
U, we get the following:

Lenll11a 1.2. Tbc 111onodro111'y action of Jr) (U ~ b) on H ll (Fb) conllnutes nrith the auto
Inorphis111 Tb* : Hn (Fb) -t H ll (Fb) illduccd b'y tbe deck transfonnation. 0

\·Ve fix an isolnorphisnl betwcen thc gronp ring Z[?TI (eX)] aJlel the ring of Laurant poly
nOIuia.ls Z[q, q-I] by identifying the counter-clockwise generator of 7f1 (C X) \vi th q. Then
Hn (Fit) beconlcs a Z[q, q-I ]-nloelulcs for cach u EU, in which the rnultiplication by q is
nothing hut the autoillorphisnl Tu. : Hn(Fu) -t Hn(Fu). Lenulla 1.2 iIllplies that the Illon
odrolny representation of Jr] (U, b) on H'II (Fb) is a representation on the Z[q, q-1 ]-rnodule,
anel thus we get

(1.2)

This nlonoclrolny representa.tion is the centnd thenlC of this cu:ticle.

The natural projection U -t U is a CX-bundlc. Henec thc kernel of 7f] (U) -t ?Tl (U)
is generatcel by an cleinenteE 7f 1(U ), whieh is the eounter-clockwise generator of the
funclcunental group of the fiber rv C X

• It is obvious that c is contajnecl in the center of
7fl(U),

Proposition 1.1. Tbe action of C 011 Hf} (Pb) is equal witll t11e 11lldtiplicatioll by q.

Proof. The clerllcnt c E ?T [ (U , b) is represented by the loop {f[ B] ; () EI} in U, where

.f[(}] := e21r .;=TfJ.fb. Let E[8] c ft/' be thc eonlplelncnt to the affine hypersurface dcfinecl by
f[B] = O. Then E[B] does not cha,nge evcn when f) varies. The function 4>[8] : E[B] --t CX

on it, however, varics as 4>[8] = e21r J=19 4>[0]. This is equivalent to rotate Eb (>ver Cx onee
in the counter-clockwise direction. Thercfore it inchlces thc deck transfonnation Tb on Fb ,

and hence the nntltiplication by q on H 1l (Fh). 0 .

This proposition justifies us in \vorking, not with ?Tl (U), but \vith 7f] (U). Later on, we
8ha11 prove that H ll (Fb) is torsion free as a Z[q, q-l]-Illodule (Coro11ary 6.1 ). Hcnce c has
an infinite order in 7f1 (U ,b); that is, the kerncl of 7f1 (U) --t 7ft (U) is isornorphic to Z.

§2. Structure of the POIYllolllial luap ~u

Let Ver x denote the locus of all points u E r x such that. ){ tt does not contain
H co as an irreclucible cOlllponcnt. It is obvious that U c V. If 'lL E V, thcn thc IllOrphis111
~1t : All -t C is expl'cssed as a polynolllial of clcgrcc d in tenns of affine coordinates of A 11 •

In this scction, we ahvays aSSUIllC 'Il E V.

COllvention. \·Ve da not distinguish a point on rand the eorrcsponding hOll1oge
neous polynoll1ial Incticulously. Fol' exalnple, \Vc usc both of thc notations HEr a,nd
fu E r in the saine rncaning.

Let Cr('ll) C C denote the set of critica.l values of ~ll' For t E C, we have

t ~ Cr(u) ~ ~-;;l(t) is non-singular.

8
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'~Te write by (J co E IP*(r) thc point corresponcling to cl· H o::J' Let [,U c r x clcnotc the affine
line {fu - t . h d ; tEe}, anel let Lu C IP* (r) clcnote the projeeti \'c line spanncel by fJ o::J

ancl the point pr(ll) E IfD*(r) corresponcling ){ u' Vvc put

Thcn thc projcction pr: r x --+ 1P*(r) inchlces an iso1l10rphislll betwccn Lu and L~. Thcrc
(l,re natural para.n1eterizations

l'll : C ---==-+ Lu, anel l:u:= pr 0 ('11 : C ---==-+ L~

givcn by ~ll(t) := fu - t· hd . The following reillark will bc used frequcntly throughout this
paper.

Rell1ark 2.1. By definition, the 1110rphis111 epu : An --+ C is nothing but thc pull-back of
tbc universal fan1ily ,y[~ --+ r x by

tu

where ,t'r := { (P: 1l) E An x r x ; P E ){u }, and ,Yr --+ r x is the second projectiol1.

Proposition 2.1. lEu E U, thcn ~11 : AU --+ C is loca11y trivial over C \ Cr(u).

Proof. By (2.1), it is enough to show that JlI is locally trivial "at infini ty" over the
cOlllplex pla,ne Ci that is, if u EU, then, for 3011 t E C, the projeetive conlpactification of
thc affine hypersurfacc ~;;l (t) is non-singular at cvery point of the intersection with H co ,

anclnl0reover, thc intcrsectioll is transverse. This follows dircctly fronl two Lenll11as below
anc! RenHlrk 2.1. D

Note that L 1I C V beeause of thc assurnptioll 'U E V. Note also th30t

)( w n H o::J = ){unHo::J for all w E Lu, (2.2)

by the elcfini tion of L 11 •

Leulula 2.1. Supposc tlHlt .~ w is non-singular at a point P E X tv n H o::J for one w E Lu.
TlJell _~ w' is non-singular at P for a11 w' E Lu.

Leullua 2.2. Supposc tlJat .~ 10 intcrsects H o::J trallsversely at a point P E -~ w n H o::J far
aue tu E [,11' Thcn ){ w' intersects Hco transverscly at P far all w' E [,11'

Frool 01 Lcmrf/.,a,'l 2.1 and 2.2. Let (Zl , ... , zn) be an affine eoorclinatc systcrn on (Ln affine
open subset AH I of pli wi th the origin P sneh that H co = {z 11 = O}. Suppose that .~ 1/ is
defined by

lu(ZI"" ,Z1I) = 0

in A'U, whcre fu(Zl"'" zn) is an inhcnnogcneous polynolnial of clegree cl with zero const3ont
tenn. If w = ~lI(t), thcn, after replacing ZII with Q'Zn where Q' is an appropriate non-zero
eonstant, an inholl1ogcncous polynornial clefining .~ w is given by

fw(ZI, ... ,Zn):= lu(ZI:""ZlI)-t.z~.
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The projective hypersurface )( IV is non-singular at P if and only if the hOlnogeneous part

ft~J (Z1 , ." .• , zn) of degree 1 in f w( ZI , •.• , Z /1) is non-zero. Since cl 2: 2, if it holds for one
w E [,u, thell it bolels for 3011 w E [,u' Tbe conclition tbat the intersection of X w anel H00 is

transverse at P is equivalent to tbe conclition tbat fUJ (ZI, ... ,2n -l, 0) is non-zero. Again,
since cl 2: 2, if it holels for one w E 'cu, then it bolels for a11 w E Lu. 0

These two 1elnn1as ünply the fo11owing:

Proposition 2.2. If"U tf; D oo , tlJen ,cu n Doo = 0. If 'lJ, E '000 , thcn [,U C Doo . 0

Prop osit io 11 2.3. If _y 1t is non-singular at cvcry poil] t of ..Y 11 n H 00, tl1cn Cl' (tl) C C is
equal with {.~1 (Lu n Da) Bond \\'ith '-"u- 1(L~ n Da). 0

Corollary 2.1. If'U EU, tllcn 'cu n Doo = 0, allel Cl' (u) = {_;1 ([,u n Da). 0

Let J11 (x 1 ; •.. : XII) be thc polynonlial of degree d expressing Ju : A 11 --+ C in tenns

of affine coordinates (Xl, ... ,.'r n ) of AU. The critical points of JlI are then givcn by thc
solutions of

aJu = ... = aJu = o.
aXl a;l:n

Hcnce, if'U E U is chosen genera11y, thc nurnber of thc distinct critical points of Ju is

JV := (d - 1)11 .

Definition 2.1. Let UN C U dcnote the locus of all u E U which satisfies the following;
(i) Cl' (u) consists of distinct J\T valucs, anel (ii) over each p E Cl' (u), Ju has only Olle
critica1 point and that critical point is non-degcnerate.

Since both of (i) anel (ii) are algebraically open conditions, the locus UN is a Zariski open
subset of U. It is easy to see that UN i=- 0. Hcnce UN C U is densc.

Note that lV is the nUl.Xin1al nt11nbc1' which can be attaincel by the ntunber of elen1ents
of CI' ( ll). Hcnce Corollary 2.1 in1p lies t he followi ng:

Proposition 2.4. If 1]. E UN, then ,cu intcrsects Da traJlsvcrsely at distinct IV points of
tllc non-singular locus of Da. 0

Lellllua 2.3. Let u be Cl. point 011 UN. Then we llave 'cu \ Da = 'c11 n UN.

Proo/. Let w bc an arbitrary point on 'cu. By definition, thc affine Ene [,W is cqua.l with
[,u, anel \ve write this affine line sirnply by [,. By R,cll1ark 2.1 , we have

(2.3)

as a n1orphisll1 froln A ll to ,c. In particular, the l11orphisll1 ~w also satisfies the conditions
(i) and (ii) in Definition 2.1. This in1plies that, if 'IV E U, then w E UNo On the othcr
hand, because of Corollary 2.1, we havc ,c n '000 = 0 and hence [, \ Da = [, n U = ,C nUN.
o
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Suppose that u E UN . Let p E C bc Olle of the critical va.lucs of ~u' anellct q E An
be thc critical point of Ju on ~; t (p). Thcn thcre exists an analytica.lly local coorclinate
systenl (Wl, . .. l10 11 ) on asnlall neighborhoocl of q in An with the center q such that JlI is
givcn by

(2.4)

locally around q. Let € be a snla11 positive real nUlnber. \Vc put

Lenl111<tS 2.1 anel 2.2 iInply thc fo11owing (cf. [6; §3. Ehresluann 's Fibration Theorenl]):

Proposition 2.5. Let 17 be a positive realnl.unber snndl CnOl.lg11 COlJlparcel with E, and
let ~ c C be tlle c10scel disk 'tvith the center p Allel ofradius 17. (1) By the restrictiol1 of

Ju, tlle pair ( <p; I(~) \ B, <p;;l (C:i.) n oB ) is a. tri'trial fiber spacc wi th boundalY ovcr .6.
(2) lvloreover, <p;l(p) is a. strong defonna.tion rctract Ofep;;l(.6).

Pruu/. Thc situation ncar H oo can bc chcckcd by Leffiluas 2.1 anel 2.2. The situation near
the point q can be stuclicd by thc explicit fonnula (2.4) of Ju. D

§3. Boundaries of Pu

In this section, we a.lways aSSluue u EU.

Note that 0 rf:, Cr(u) by (2.1), anel Cr(u) = ,,;1 (.cu n '00 ) by COl'ollary 2.1. These
irnply that

i(u) luin { Ipl, Ipl-1
; p E Cr(u) } (3.1)

defines a continuous function i : U , lR>o. Suppose that 6 : U , lR>o is a. continuous
function which satisfics

c:(u) < i(ll) for 0.11 II EU. (3.2)

BI? := { Z E C X
; 0 < lzl ~ e(u)}, anel Br::= { z E C X

; Izl~l ~ 6(U)},

each of which is a puncturccl closcd disk on }pI = C u {oo}. vVe also put

anel
e- 1(ooEu )

e- 1 (OOOE 11 )

= 7jJ;:l(e-t(BI~))

'1jJ ;: 1 ( e- 1(B~ ))
c
c

(See (1.1) for the definition of eanel 'l/J1l') Note that the(set of critical valucs of 'l/Ju : Pu ---t C
1S

Cr(1t) := e- 1 (Cr(1t)),

11



anel that 7/;11 : F u --+ C is locally trivialover C \ C'('ll) by Proposition 2.1. By the definition
(3.1) of E anel the conelition (3.2), therc are no critical points of "ljJu : F u --t C in Go F u anel
in GooFu . tvIoreover, each of the subspaces

C \ e- I (B ~) c C J C \ e- I (B~) c C J auel C \ (e- I (B~ ) U e-1 (B~)) c C

is a strong elefonnation retract of C. HCllCC cach of the subspaces

is also a strong elefonnation retract of Pli' Therefore, we can eall aoPu and aooFu the
boundal'ies of Pu' In particular, since aoFll n oooFu = 0, the intersection pairing

between thc relative hOI110logy groups is weIl elefined.

It is 0bvious that cach of thc pairs (FlI , Go Fll ) anel (Fu , aoo Fu ) fonns a locally tri vial
fal11ily over U whe11 II varies. rvIoreover, the eleck transfonnation Tu : Fu --t Fu induccs
autolllorphis111S of 00 F u anel GooFu. Hence H I1 (PU , 00 Pu) anel Hn(Pu, oooFu) can be re
gareleel as Z[q, q-l ]-nloelules in the salne way as H n (Pu)' Therefore cach of H,,(Fu,aoF u )

anel H ll (Pu l oooFll ) fonns a locally constant systcln of Z[q, q-l ]-1l1oclules over U. \-\Te thus
obtain natural 1110noclrolny representations

which are c01l1patible with (1.2) via the natural honl0111orphisl11S H ll (Fb ) --+ Hn(Fb , aoFb )

anel H ll (Fb) --t Hn(Fb,aooPb) of Z[q,q-l]-nloelules.

Reluark 3.1. The hOlneolnorphisll1 types of all spaccs (Eu, ao Eu), (Eu, Goo E ll ),

(Pu, Go Pu), (Pu, 000 Pu ), anel so on, 01' of the Inaps between theIn are independent of the
choice of the function c, provicled that (3.2) is fulfilled. In oreler to nlake the argull1ent
concrete, we put

C := 6/2, (3.3)

anel use this E unless otherwise statecl. SOlnetiInes, however, we pick up a sufficiently SIllall
positive realnl1111ber T, anel use

E' := llün{l/2,1'} = rnin{E,.,.}

instcad of E, so that E' is EI. constant functio11 in a lleighborhoocl of a given point of U.

§4. Vanishing cycles and thilnbles

In this section, we fix notion anelnotation concerncel with vanishing cycles for orelinary
double points anel associatcel thilllblcs. For thc proofs of the facts statcel in this scction:
\ve refer thc reader to [6].
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Let S1l-1 be an oricntcd (n - 1)-sphcre, ancl let 7' E [S11-I, sn-I] be thc honlotopy
dass of oricntation rcvcrsing sclf-h0111COnlOrphislllS . Note that 7'2 E (SIl-I, sn - [] is the
honlotopy dass of thc iclentity. For a topological spaec T and a hornotopy dass .f E
[S1I-1, Tl, wc writc by -.f E [5n

-
1

, T] thc hOlllotopy dass f 0 1'. Note that, since S7I-1 is
orientecl, we have a natural 11lap [SII-1, T] --+ H n - 1(T).

\Ve clenote by Csn -1 thc conc ovcr S 11 - I; that is, thc space obtainecl fron1 I x sn-1
by eont1'acting {I} X SII-] to a point, \vhieh is the vertex of the cone. \~TC equip CSn - 1

with thc oricntation inclucecl fron1 that of the product space I X sn-I. Hence we have

aCSn - 1 = _S1l-1.

Thcreforc, for a pair (T, S) of a topological space T aud its subspaee S, thc1'e is a nat
ural lllap [(CS 11 -1 1 S" -1 ), (T, S)] --+ H" (T, S), whieh nlHkes the following cliagnl.ln anti
COll1111utative;

[(CSll-1,sn-l),(T,S)] ----t

1
Hn(T,S)

la (4.1)

Thc1'c is a uniquc dass "~ E [(CSlI-l,sn-I),(C5 11
-

1,5n - 1 )] which is rcpresentecl by an
oricntation 1'evc1'sing sclf-hon1coll10rphisl11. For .f E [(CS n - l , S'l-I), (T, S)], we write by
- f thc honl0topy dass f 0 1-:.

Now we consicler the following situation. Let Hf be a non-singular eonnected cOlllplex
n1anifold of din1cnsion 11, Z a R.ieluann surfacc, ancl 9 : Hf --+ Z a surjective holoillorphic
111ap. For a point z E Z 1 let lVz denote thc fiber g-1 (z). Supposc that the following
conditions (wz-1)- (w2-3) are satisfiecl.

(wz-1) Thc 111ap 9 has only one cri ti cal point q E Hf, whieh is nOll-degcncrate.
(v'lz-2) ~10reover, 9 is locally trivial ovcr Z \ {p}, wherc ]J = g(q).

Because of (\v2-1), there exist local analytie coordinates (Wl , ... 1 w n ) on Hf with the center
q anel an analytic eoordinatc t on Z with the center ]J such that 9 is given by

( 1U1, .•. ,W Il ) t----t (4.2)

\Ve ehoose asnlall positive real rnunbcr E and a. positive rea.! nUlnber 7] which is sll1all
cnough even eOll1pa1'ed wi th E, and put

The thirel eonelition wc illlpose is thc following;

(wz-3) thc restrietion of 9 to ( g-I (.6. 1,) \ B l , g-I (.6. 11 ) n aBc ) is trivialover .6.".

The Incaning of (wz-3) is that, "at infinity" 1 9 is locally trivial cven over the critical value
p.
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The cases we are going to apply the facts explaineel in this section are, for exalllple,
as follows. Let'fl. be a point on UN, anel p E C a value in Cr(u). Then thc situation

z = c x
\ (Cr(u) \ {p}), HI = Eu \ U eP-;;l(p'), anel 9 = ePulHI

1/ E Cr(u)\{p}

satisfies the eoncli tions (wz-1)- (wz-3) because of Proposi tions 2.1, 2.5 anel the elefini tion
of UN. \·Ve will also eonsicler the follovling situation. Let u be as abovc, ancl let p E C bc
a value in Cl' ('ll- ). Thcn thc data

z = C \ (Cr (u) \ {p}), HI = Pu \ UljJ;:l (1/), anel 9 = 'Ij)u! \--v
1" E Cr(u)\{p}

satisfy the conditions (wz-l )-(wz-3) because 7/Ju is thc pull-back of cPu by thc 6talc covcring
e:C--+C x

.

Now \Vc go back to thc general situation.

Definition 4.1. Let Cl bc a point on Z\ {p}, anellet Pa be the spacc of all paths w : I -t Z
fronl a to p such that p tf:. w([O, 1)). \Ve equip Pa with the eOlllpact-open topology, anel
let ( Pa ] dcnote the set of path-connected eornp onents of Pa. For w E Pa, let [w] E [ Pa ]
dcnote the path-eonnccted cornponcnt eonta.ining W; that is, thc hOlllotopy dass of paths
in Pa rcprescntcel by u.,l.

Proposition 4.1. For Cl point a E Z \ {p} anel a h011l0tOP'y dass [w] E {Pa], there
exists Cl. h0111otOP'y dass a[w] E [5 11

-
1, H/a ], ulliql.lc up to sign, l",hich satisnes the following

propertics. (i) Let a' be another point on Z \ {p}, allel T : I -+ Z \ {p} a path fron1 (1,' to
a. Tl1en wc havc

a[w· T] = ±[T];l(a[w]),

H"}1ere [T]* : [sn-I, lVnl] --+ [5n- 1, Hla] is the bijcctive n1ap induccd fr01n tllC triviality of
g: Hi -'t Z OFer T: I -'t Z \ {p}. (ii) Suppose tllat a E ~'l \ {p} anel w(I) C 6". Then
a[w] E [S71-1, Hin] is rcprcsentcd b.y Cl. continuol.1s 111ap

such that tllc nlap 5,,-1 -+ Er; n Hia ineluces a 1101110top'y cquiFalence.

Sketch 0/ Proof. Let a bc a point on 6" \ {p}. Thc fact that BE n lVa is hOlnotopically
equivalent to S1l-1 follow5 fronl (4.2). Hcnec a[w] E [5n

-
l , vVa ] is uniquely detennincd,

up to sign, by the property (ii), when w is a, path in 6 ,/, For an arhitrary a E Z \ {p} anel
an arbitrary w E Pa, there exists t E (0,1) such that w([t, 1]) C 6". \~Te eleconlpose w into
W2 . w, at t; that is, Wl (8) = W(t8) anel W2(.~) = w(t + 8(1 - t)). By thc above a,rgluncnt,
we have a[w2] E [sn-I, Hiw(t)]. Thc dass a[w] E [5 n

-
1,l'Va ] is clerived fronl U[W2] via the

bijcctivc lllap between [5 11
-], Hin] anel [sn -I , vVw ( t)] ineluccel by the triviali ty of 9 ovcr w1,

using property (i). 0
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Definition 4.2. Vle eaU the dass a[w] E [sn-I: Hla ] the vB.nisl1ing cyc1c for [u.:]. Let
ij [(;..,,] E H Tl - I (l'Vn ) denote the eOlTesponcling hOlllOlogy dass.

Relllark 4.1. TraditionaUy, the hOlllOlogy class o-[w] has been callecl the vanishing cyclc
for [~'].

Reillark 4.2. Therc are usually t\VO vauishing cydes 0'[(;",'] anel -0'[(;",'] = O'[u.,l] 0 ,. for a,

given [0.:].

Let H/ x z I"", be thc pull-back of g : H/ ---t Z by w : I ---t Z, _where !.J..,' E Pa. Then the
elubedding llVp y Hl X Z 1:.-.1 inchlces a hOlUOtOpy equivalence becaU8e of (wz-2) anel (wz-3).
COlnbining the elnbedcling Hi(t Y l'V X Z I:...: with thc hOlllOtOpy inverse Hi x z 1:...: ---t 1,Vp1

wc get a conti'action llJElP
C:...l : Hin ----t Hip

along u':. Let ( : 1 ---t Z \ {p} be Cl. loop frolu a to a as fo11ow8; ( goes along u..' froln (I. to Et

point p' := ""-'( 1 - ,,\) E .6.,1' where ,,\ is a positive real ntunber sinall enough, clraws a circle
in the pUllcturccl clisk .6." \ {p} [rolu p' to p' in a counter-clockwise direction: anel goes
back to Cl alollg u..: -1 .

a

Figure 1

Then we have the luonoclromy action

illcluced by ((l E trI (Z \ {p}, Cl), The classical theory of Lefschetz states the fallowing
theoreln.'

Theorenl LI. (1) The kenJel ofCw * : Hn-dl'Va ) ---t Hn_l(vVp ) is gencrated by the
IJOllJO]Og.,\,- dass a[u,l] oE H vanislJing c,vcle tor [w]. (2) The iInage of thc cndolnorphisnJ
Id - [(]" of H,,-dl'Va ) coincides with tbc kernel ofCw*. 0

Now we describe thc nation of thiInbles. Let

p : CS"-1 -----+ I

be the natural projection induceel froln the first projection I x SIl-I, -+ 1,

Proposition 4.2. _Suppose that (l E Z \ {p} and u,' E Pa are givcn. Suppose.fl,lso tha,t tl1C
sign oE the 1nnislJillg c'ycle a[u..'] is spccined. 'Then tllcre exists a ·unique IJOlnotopy c1aBs

B([wL a[wJ) E [(CS Il
-

1
: sn-1 L(vV, Hl(l)]
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'with tlle following propertics. (i) Tllc ilnage of 8([w], a[wD by tllC na.turallIH1p

is a[w]. (ii) The hOlll0topy c1ass B([wJ,a[w]) is rcprcsenteel by a continuous Inap T
C5 11

-
1 -+ l17 whic11 11lakes the follon,·ing cliagranl conunutati\TC

C5 1l
-

1 ~ Hf

I
w

---+ Z,

ällel wllich l1lapS tllC vertex of the cone C5 n
-

1 to the critical point q.

Sketch of Proof. Suppose that a[u.1] E [5 11
-

1
, Hfa ] is represelltecl by So : 5 n

-
1 -+ Hfa • Thcn

So defonus continuously to .5t : 5,l-1 -t Hfw(t) for t E [0,1]. \,Ve sec that SI is hOlnotopically
equivalent to thc constant luap 5 n - 1 -+ {q} Y Hf1, , becausc Er; n Hfp is contractiblc by
(4.2). Therefore, by challging the defornuüion St hornotopically, wc rnay aS$urne that SI is
the constant ruap through {q}. The cnntinunus ruap T is cons tructed by put ting these oS t

together. 0

Definition 4.3. \\Te call the hOluOtOpy class 8([w], a[w]) thc thilnble for [w] starting
fronl a[w]. \Vhcn the orientation elocs not neeel to be specifieel, we w1'ite this thiluble
siruply B([w]). (Note that B([w], -a[w)) = -B([w], a[w]).) 'vVe eIenote its hOl11nlogy class by
B([w], a[wD E Hu(T'V Hfa).

T
---+C5u- '

Definition 4.4. Supposc that w' E Pa is (1, path represellting a honlotopy dass [w] E [Pa ].
\Ve say that a cOlltillUOUS nlHp T : G'5 11

-
1 -+ vV represents thc thilnble B([w], a[w]) over

tllC path w' , if thc eliagranl

I

I ~ Z

is cOllunutativc (in particular, T({O} X 5 n
-

1) is contained in Hfa ), anel if T represcnts
8([w], a[w]) in [(C5n~\5 11

-
1
), (I'V, Hln)J.

It is obvious that, for any w' E [w], there exists a continuous lllap T : C5 1l
-

1 -+ Hf which
represcnts the thinlble B([w], O"[w]) over w' .

Definition 4.5. Let ~ be a. sllb-path of w; that is, there is a cOlltinllous increasing l11ap
i : I -t I such that ~ = w 0 'i. Let T : C 5 71

-
1 -t lV be a continllous lllap reprcscnting

the thi111ble 8([w], a[wD over w. The l'cstriction Tle of T to ~ is the C0111position of 7 ;
(OS"-I) X I I -+ CS n - 1 anel T, where 2is the pun-back of '1: by p : C5 n

-
1 -t I. If 'i(l) = 1,

then Tle is a continuous nlap fronl G'5"-1 to I'V, which represcnts the thilllble B([~D ove1'
the path r If -;(1) < 1, thcn Tle is (1, 111np frol11 I X 5 n

-
1 to Hf.

NO\V we choose bvo points 0 anel u' in 6 11 \ {p} such that the two raelii of the clisk
0." passing through 0 anel a' ,. respectively, are elistinct. Let w anel w' be thc paths frorn
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(l anel a': respect.ively~ to the center p along the radius of the disk ~'I' Let l.+ anel l._ be
t.he paths in ~I} \ {p} fronl (l to ([' described as follows; the path l.+ (resp. {,-) start froln
U, goes to a point on thc boundary 8~" along the radius: draws an arc on 8D.,} in the
counter-dockwise clirection (resp. in the clock\',,-ise direction) to thc end point of the radius
passing through (1.' ~ anel thCll goes t.u (I' along this radius.

I~\, aal
I I
\ I
\ I

~---- ..
., .,. .... ....

" '"'" " I "a' \
I \ I \,

I

a~
\

/ \I I
I I II,

P I I P J

\ I \
I

\ I \
I

I , I
\ .. , I, , .,.

'-_.-- .... _- _ ...

W w'

Figure 2

,,'",

a

",
\

a'

\
' .....

~---

I

'".,.

Suppose that a vanishing cyc1c O"[w] E [sn-l, vVaJ for [w] is chosen fronl among the two
possibilities. VVe put

both of which are vanishing cycles for [w'J, because [w . &+1] = [0.) . &:1] = [w']. Then we
have

0"+ [w'] = (-1 r' 0" _'[w'] In [sn-I, I/Val].

Let T~ T+ anel T_ be continuous Inaps from G'sn-l to Hf which represent the thilnbles
8( [wl: 0" [~ll)' 8((0..:'], 0"+ [w ' ]) anel 8((u/], a _ [c..,/] Lrespectively, over w: w' anel w' , respectively.
\Vith thc orientation of CSll-1, \ve can consider these lnaps as n-chains in vV.

Lenulla 4.1. ""e ean cll00se the Inaps T, T+ al1d T_ in such a way that the n-chains T
and T+ (resp. T anel T_) intersect at only one point q transversely with the intersection
number (_1)n(n-l)j2 (resp. (_1)n(n+l)/2).

Proof. This leuuna can bc checkeel by elirect calculation using thc explicit form (4.2) of
g. 0

In r.his sectioll, we always aSSUlne that II EU. VVe define two points

(t~ := s(71),

on C X
• and eonsidcr the fibers

vO '-l( 0)
~-\. U := <P 'l (tu l

anel

anel .
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By dcfinition (3.3) of e : U -t lR>o, there are no critical values of ~1I on the interval
[0, e(u)] C IR. Hence, by Proposition 2.1, therc is a diffeonl0rphisl11, uniqnc Hp to honl0topy,

(5.1)

which is induccd by the path frolll 0 to e(1l) along IR. It is obvious that /Tl (U 1 b) acts also
on H ll - 1 (Xb

O
) and H n - 1();;;). Thc Le11u11a bclow follows inu11ediatcly fron1 thc definition

of c.

Leullua 5.1. Tl]e iSOllJOrphisn] H Il - 1erb) ~ H ll - 1 ()(bO ) induced by (5.1) is Jrl (U, b)
equi",·ariaJ]t. 0

Since a~ rt. Cr(u), Proposition 2.1 inlplics that .X"1l aJlel .Yl~ are also eliffeen11orphic. How
evcr thc hOll10tOpy dass of the diffeen11orphisl11 is not lluiqucly eleten11ineel, anel we cannot
expcct that H lI - 1 (_Yb) ""V H,,-l(-Yb ) is /Tl (U,b)-cquivariant by (1,ny 111eans.

Note thc following:

Theorenl L2 (Lefschetz Hyperplane Section Theorelu). TllC llornology groups
Hi()(u) ~ Hi(.Yu

O
) ~ Hi(.Y':') are zero for 'i > 11. - 1.

PTOOf. See, for eXRJnple, [9]. 0

Definition 5.1. For a point a E C X
\ Cr(u) anel ]J E Cr(u), let Pu(a,p) elenote

thc space of all paths w : I -t C X which satisfy the following; (i) w(O) = a, w(l) = p,
anel (ii) w([O, 1)) n Cr(u) = 0. \,Ve equip Pu(a,p) with the c0111pact-opcn topology. Let
[Pu(a,p) ] denote the set of path conncctecl cOlnpollents of Pu(a,p). For w E Pu(o,p), let
[w] E [ Pu (Cl, p) ] clellote the path connccted cOlnponent containing w; that is, [w] clcnotes
the hOlnotopy dass of paths in Pu ((1., p) reprcscnted by W.

SllPPOSC that II E UN. Thcll Cl' (11.) consists of distinct lV values {PI, ,PN}.

Definition 5.2. Supposc that a E C X
\ Cr (1l) is given. A set of paths{~ 1, , ~N }, where

~ i E P 1l ( a: pd, is calleel a regular sys tel)) of patlls froln a if the follo\ving are satisfieel; (i)
eaeh ~i : I -t C X is injectivc, and (ii) ~i(I) n ~j(I) = {a} if i =f. j.

Since 1l E lAIV, the nlorphislll <Pu has only one critical point qi ovcr cach ]Jj. 110rcover,
these critical points arc all non-degcncrate. Therefore, if we are givcn a rcgula,r systell1
{~I, ... ,~N} of paths froll1 a, we obtain vanishing cycles ±(j[~i] E [5 11

-
1, 4>~l(a)] for each

[~iL anel the associated thilnbles

VVe are going to use regular systcnls of paths froln a~ anel fronl a~ exclusivcly. It is
obvious that there ahvays cxist regular systelllS of paths frolll a~ anel frolll a~ for every
11, E UNo

Proposition 5.1. 5-uppose that 1l E UN .
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(0) SllppOSe tl1a.t {~?, ... ,~Rr} is a regular SystCll1 of patl1s frol11 a~. vVe cboose a
vallislJing cyc1e (J[~?] E [5 71

-
1
,){~] for eac11 [~?] frolll alnong tllC t\\!O ]Jossibilities. Then

thc 1101l10logy classes O'[~?], , 0'[~1~] fonn a set of basis for tbe free Z-l11odule H II - 1C5l~).

(00) SllPPOSC that {~~, ,~N} is a regular sys teIn of paths frorn a~. vFe dl00SC
a vallislJing cyc1e (J[~i] E [5 11

-
1

, ){~] for each [~i] [1'0111 anl0ng t]lC two possibilities.
Tllcn the 110111010gy c1asses O'[~r], ... , Ö'[~N] fonn a set of basis for the frec Z-l1]odule
H n - 1 ()(';').

P7'OOf. Since these two assertions can bc proved in cOlupletely parallel ways, we prove
only the assertion (0).

Let ~ i C C x be a small closcd disk wi th the center Pi. Since {~? ,... ,~Rr} is a regular
systell1 of paths, the union Ut~l (~? (1) U 6.i) is a strong dcfonnation retract of C: and it
cont ains Cl' (ll) in its intcrior. By Proposition 2.1, thc space

N

~;I(U(~P(I) U 6i))
i=1

(5.2)

is also a strong defonnation rctract of An. Hcncc A is contractible. \\Tc deC0111pOSC A into
the union of the two paJ:ts

N

~-;;l ( U~? ([0,1/2]) ),
i=l

anc1 A2

N

~-;;1( U (~P([1/2,1])U6.;) ).
i=l

By applying thc NIayer-\Tietoris sequcncc to this deconlposition of thc contractible space
A, \ve obtain an isornorphisnl

(5.3)

inclucccI by the inclusions. Using Proposi tions 2.1 and 2.5(2), WB have canonical hOluOtOpy
equivalences

anel

Al I"'V )(0
.' lt 1

A 2 I"'V 11~1 <jJ;I(6.d

Al n A2 IJN )(0
- 1l

(the clisjoint union of jV copies of ){,? ):

through which the iSOl110rphisnl (5.3) is written as follows;

N N

s EB (Cl EB ... EB CN) : E9 H 1l - 1(·)(2) ~ H/~-l (~Yt~) EB E9 H"-l (<jJ~1 (Pi)),
i=1 i=l

whcre s : EB~l H"-l (~y~) ~ Hn - I (~Yl~) is the sunullation (Xl, ... , XN) f---t Xl + ... + XN,

anel Ci : Hn- 1(..Y2) ~ Hn-d cjJ-;;l (pd) is thc homOlllorphisnl illcIucecl by thc contraction
lllap ){~ ~ 1;; 1(Pi) along ~p. Thus we get an isol110rphisnl

N

Hll-I(.Yl~) I"'V E9I\:cr Ci:

i=l
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By Theorcnl LI: thc kernel of Ci is generated by thc honl010gy dass 0' [~?] of a vanishing
cycle for [~P). Hencc a11 wc havc to da now is to show that the Z-nl0dule H n - 1(Xl?) is
torsion free of rank lV j th30t is,

(5.4)

This is a wc11-known fonnula. D

Next we sh3011 investigatc Ha (Eu) and H 71 (Eu, 80 Eu).

Proposition 5.2. Suppose tllat 'll EU.
(1) Therc is an isonlorpllisnl betlNeen H Il - 1(){~) anel H n (80 Eu)'
(2) Tbe indusion 80 Eu Y Eu ineluccs an isolll0rphislll Hn (80 Eu) .:::, Hn (Eu)'
(3) Tllc natural h01110nl0rphis111 Ha(Eu ) -+ Hn(Eu,80 Eu) is a. zero Inap.
(4) Tbe boun dar'y 110nl0I1l0rphisll1 H ll (E lt : 8 0 Eu) -+ Hn-l (80 Eu) is an isoll10rphisnl.
(5) The indusion ){I~ Y 80 Eu induces an iso1110rphisI11 H"-l (){~) ..:; Hn-l (80 Eu)'
(6) 11;10rco1'er, whcn u = b, 0.11 the iS01110rphisll1S nbo1'c bctwccn tllC hOlll01ogy groups a.rc
?T I (U, b)-equivariant.

The assertions can be sUlnnul.rized in the fo11owing diagraul Of?TI (U, b)-equivariant h01110
11lorphislllS:

H n(80 E b)
"'-'

Hn(Eb) R Il (Eb, 80 Eb)-----t -t
incl. zero

I1 all
H Il - 1 (){bO

)
"'-'

Hn- 1 (80 Eb),--t
incl.

where incl* nIeans thc honlon10rphisnls inducecl by the inclusions.

P1·OOf. Since thc isoillorphisins in (2), (4) and (5) are definecl by natural topological
operations, t.hey are obviously 7fl (U)-cquivariant. The renuüning isornorphisrn in (1) being
?TI (U)-equivariant can be seen froln thc construction below.

Let D.€(1l)(0) C C be thc closed disk of radius 6('ll) with thc center O. '~Te have

B~ = D.€(lt)(O) \ {O}.

Since there are no critical valucs of Ju : ATl -+ C on ~e(u) (0), Proposition 2.1 inlplies that
there is a cliffeonl(Xphisnl

(5.5)

over .6.€(u)(O) which illduces the idelltity on ~X~. Ey restricting it, we obtaill a diffeonlor
phisln

(5.6)
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over B~. Eaeh of these diffeolllorphislllS is ullique up to hOlllOtOpy. Using Thcoreln L2
aud Künncth forrnula, wc obtain eanonica.l isornorphisms

fren11 (5.G). The sccond iSOl110rphisnl of (5.7) is indueed froln thc inclusion )C
t
? Y 80 Eu.

Thus (1) anel (5) are proveel. Using thc exeision property of hOI11ology groups a,nd thc
diff"eol11orphislll (5.5), we get

\,Ve ean casily see that this isonlorphisln coincides \vith thc eonlposition of thc boundary
nlap fronl Hn(Eu, Go Eu) to Hn- 1 (BoEu) and thc sceonel isoillOrphis111 of (5.7). Hence (4)
is provecl. The assertion (3) is a conscquenee of (2) anel (4). Thercfore only (2) renlaüls
to be provcel.

It is cnough to prove (2) when H. is a point of UN, because each of H 1l (Da Eu) anel
H II (Eu) fonus a locally constant systenl over U when 1l varies. Let .6. i C C X be a saudI
closed elisk with the center pj. \Ve ean take a regular systeIl1 {~?, ... 1 eJ~r} of paths froin
(L~ in such a way that

(5.8)

Then the space
N

Bl~ U U(e? (I) U .6.;) C C X

i= I

is a strong elefonnation retract of C X
, anel it contains Cr(ll) in its interior. Henee thc

spa,ce
N

cjJ;l( B~ U U(~?(I) U .6.i) )
i=1

is also a strong defonnation retract of Eu by Proposition 2.1. ThllS H,l(Eu) is eanonieally
isonlorphic to Hf! (A X). We elecoinpose A x into the union of A in (5.2) anel Da Eu =
~;;1 (B~). Becallse of (5.8): we have

R,eeall that A is contractible. Hence thc Ivlayer-Vietoris sequenee for this dccoinposition
is written as follows;

---+ H n (A X)

Bccallse of the second isoinorphisIl1 in (5.7) anel bccause of H ll ()(~) = 0 by TheoreiTI L2,
we see that the inclusion BoEu Y A x inchlces a.n isol110rphis111 bctwcen Hn(Bo Eu) anel
Hf! (A X) 2:: Hn(Eu). D
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As in Proposition 5.1 , \ve will clescribe gco111etrically a set ofbasis for the free Z-n10dule
H ll (Eu 100 Eu) \vhen u E UN.

Proposition 5.3. Suppose tllat II E UN. Let {~? 1 ••• 1 ~Rr} bc a regular systelll of patlls
frOll] a~. Let O'[~?] E [SIl-l,_\'"~] be a vanishing cycle for [~?L Bllel let

be tlle thiInblc for [~?] starting froll] 0' [~? ]. Tbell tlle homology classcs B( [~P ], 0' [~? ]), ... ,
B([~Rr]' O'[~Rr]) fonn a set of basis for H lI (Eu 100 Eu).

P1'OOf. Notc that , by tohe isonlorphisll1 frol11 HlI(Eu1ooEu) to Hn-l(~\'"~) given by t,he
COlllpositioll of the isoll10rphisrns of (4) auel (5) in Proposition 5.2, thc hOl11ology dass
B([(p],a[~p]) is l11apped to -a[~p] because ofthe allti-C0111111utativity of (4.1). Hence the
assertion follows fi'Olll Proposition 5.1. 0

Now we fix a base point b EU. \Ve shall review the classical theory of Lefschctz about
l11onodron1Y representations, auel study the structurc of H n - 1 (~\'"bO) as a 1T] (U: b)-I11odule.
Again, we rcfer the reader to [6] for the proof.

Let ~\'"bo C IP71 be the projcctive cou1pactification of the affine hypersurface ~'!(bO C An.
Taking Renul.rk 2.1 into account, we sec that ~\'"bo is non-singular fron1 Lenllna 2.1 and thc
definition of (L~. Nloreover , the intersection H co n ~'!(l~ coincicles with }'~b := H co n ~\'" b fron1
(2.2). There is a canonical isol11orphisrIl

(5.9)

\Ve put
.- Ker (H 'I - 1(){bO)~Hn-l (1"i,)): and

.- eoker (Hn-2()(bo)~Hn-2(Yb)),

\vhere l' is thc restrietion hOl1101110rphis111. Thcl1, froll1 (5.9), we obtain an exact scquCl1ce

o H 11 ~ 2 (y~) ---+ H ( Y °) H n ~ 1 ( Y 0 ) ---+ 0---+ pl'lm b 11 - I ~ b ---+ pr! 11'1 - b . (5.10)

Thc fundall1cl1tal group 1f1 (U 1 b) acts on this cxact sequencc. The action 011 H tl
~2 (Yb )prim

factors through thc natural hOl11ornorphisll1

Notc that H/;ril~l(~ybO) ®z Q coincides wi th the Poincare dual of ::the l110dule of vanishing

cycles" in H I~ -1 (~ybO) ®z Q in the sense of [6; $3J. Hence the classical theo1'Y of Lcfschetz
teIls us thc following:
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Theorenl L3. Let]J be a vaiue in Cl' (b), and let w be a patll in Pb (a~ ,p). Let o-[w]' E

HI~'~'~1 (..:Y bO) denote the ünage of the 110IlJology dass o-[w] E H n - 1(.YbO) of a vfl,nishing cyc1c

a[w] for [wJ by tiJe l10nl01]]Orphisn] in (5.10). TlJen HII~r~I~JXbO) 0z Q is gcncratcd by o-(w]'
as a Inodulc o'''er tbc group ring Q[7rl(r*(r) \ Do:b)). 0

In order to state thc luain thcOrCll1 of this section: we neecl two definitions. First, we
put

ur; := { u E UN ; Cr('U) n lR::;o = 0}.

The cOluplel11ent r \ UNis areal senü-algcbraic subset of real coclirnension 1 in the affine
space r. Second, we define the autoI11orphisn1

for 'U E U as follows. \\'e set

{ z E C ; Izl = c('/t)}, anel { z E C ; Izl = 1/t:('U)}.

Note that Jll has no critical valucs on thc circle C~. Thcn} is clefincd as thc n10noclrolny
on H n-l ( ...Y~) along thc loop frOlli a~ to a': which clraws thc circle C~ in the countcr
clockwise clircction.

Theorenl 6.1. (1) If u EU, tllcn the naturalll0111011JOrpbisJ}]s HI/ (Fu ) -t H ll (Pu, 00 Fu)
alld Hn(Fu ) -t Hn(Fu,oooFu ) are in}eetivc. (2) Suppo,sc that u E UN0 Then therc is a
canonica.l iSD1110rplüsnl

ofZ[cl:Q-l]-ll1odules througll lvlliclJ tlJe i111age of HII(Fu ) y. H II (Fu ,ooFlI ) is identificd
,,··itll H n - 1 (.Y1?) 0 (1 - q), nrllcrc (1- q) C Z[q,q-l] is tlle principal ideal generatcd by
1 - q. Tllcrc also exists Cl. canonical isoJnorphis111

of Z[q,q-1J-l11odules tllrougb which tllC ilnagc of H ll (Fu ) y. HI/(Fu,oooFIl ) is idcntined
l,vitl] the ilnagc of the CndOIlJOrplüS111 Id - j 0 q of H f1 - 1(..X~) 0 Z[q, q-l].

Since each of thc Z[q,q-l]-nloelules H ll - 1 (Xt?) 0 Z[q,q-J], Hn-l(.Y~) 0 Z[q,q-1L
Hn(Fu , 8o F lI ), Hn(Fll,oooFu ) and Hn(Fu ) f01'1118 a locally constant systmll of Z[q,q-l]_
1110dules over U: Theol'Cnl 6.1 anel Proposition 5.1 iluply the following:

Corollary 6.1. For an arbitraJT 1.1. E U, eac11 of Hn (Fu ,ooF11 ), Hn(Fu,aooF1J) allel
H fl (Fu ) is a frec Z[q, q-l ]-ll1oc1ulc of rank iV.
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Reillark 6.1. The assertion that the ison10rphis111S w~ and \lJ~ are canonical for
'U EU;::; 111e3ons that: whcn u 1110ves Oll UN' they fonn isolllorphisIl1S between the corre
sponding locally constant systen1s restricted aver U;;. EVCIl though UNis dense in U,
these is01110rphis1l1S of locally constant SYStC111S canIlot bc cxtcnclcd to thc whole space U.
Othenvise, thc ison10rphis111S 'lJ ~ and q,~ would bc is01110rphisrlls of 1r1 (U )-l11odules, hut
this would contradict to Irreducibility Theore111 in Introduction, which will be proved in
§10. In particular, thi s argul11cnt shows that UNis 11,0 t path-connected.

Bcfore starting the proof, we prcparc SOl11e notation. Supposc that lt E tl. Note that
the circles C2 anel er:: are disjoint fron1 Cr (1t). ""lc define thc loops

Jl~ : I ---+ C X
\ Cr(ll), and J~ : I ~ C X

\ Cr(u)

\vith the base point a~ anel a~, respectivcly, by

Renlark 6.2. Thcll the a,uto1l10rphis1l1 j : H ll - 1 (~\'"~) ---+ H/I-l (~\'"~) is llothing but the

lllollodromy operator [O~]*. On the other hand, since ~u : AU ---+ C is locally trivial on

{ z E C ; 0:::; Iz I ::; e('Il )} = B 1~ U {O},

the 11l01l0elro111Y action [o~]* : H n - 1 ():~) ---+ H n - 1(~Y~) is trivial by Proposition 2.1.

\,Ve put

anel

\vhcrc e : C -+ C X is the exponential lnap. For each 11 E Z, we put

a~ (IJ) := loge(u) + RI/ E z2: anel aC;:(u):= log eell )-1 + Ru E Z~.

\~TC also put

Thcll \ve havc the natural iscHllorphisn1s

l.. r 0 f"..J "\r 0 ( )
~''\. 11 = ~''\. U 1/, (G.l )

ineluccd fro111 thc covering lllap e: Fu ---+ Eu ..
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No\v suppose that v' E UN' For each I) E Z, there cxists a uniquc connectccl componcnt

which contains a~ (v) anel a~(I/). Let {rh: ... ,PN} bc the set Cr(u), which is eonta,inccl
in C \ nt~o. For each 1/ E Z, let Pi(I/) elenote the unique point on (C \ lR:::;o)(v) which is
rnappecl to Pi by e. Thereforc, wc havc

Cr(u) = II Cr(u)(v),
vEZ

whcre
Cr(u )(1/) := { ]);(1/) ; i = 1 ... ,lV}.

Note that -Jr < arg Pi< 7f for i = 1, ... , lV. Vo/e put

'1](U)
1 .'2 n11n { 7f - arg Pi, 7f + arg Pi ; 'i = 1, ... , lV}. (6.2)

Thcn "] : U;; -t IR>o i8 a eontinuous function on UN' Vve put

!{u := { z E C X
; E(U)::; Izl ::; E(U)-l, and - 7f + 'l](U) ::; arg z ::; Jr - 1](U)},

anel

!C,(V) := the uniquc connectccl conlponent of e-l(!(u) containing a~ (1/) and a~(l/).

Thcn, for cach v, thc cxponential 111ap e : C -t C X incluees an iSOl1l0rphisnl bctween
!(u(l/) anell(u, anel e-I(!(u) is the elisjoint union of a11 !(u(v). Nloreovcr, cach Cr(u)(l/)
is containccl in the intcrior of !e, (1/). \Vc put

A1u
o .- e-1 (I(u U G'2) = (II !(u (v)) U R~ C C and

vEZ

1\1~ .- e- 1 (!{u U C:') = (II !(u (v)) U Rr;: c C.
/IEZ

\Ve also put
li\r O .- I'· n C'o
• U .- \.lJ u ,

both of which are ares in C X
• Each ](u (1/) is a rectangle in C, whose vcrtical sielcs are

givcn by

Then we havc

e- 1 (lV,?) = II lV2 (1/), anel e- 1 (lVI~)
vEZ
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K~(l/ + 1) k a~(l/ + 1)

N~ (v - 1) {,"--K_~_(_V_-_l)--.y a;:O (v - 1)

f
I

}N~(V+l) i
I

} N~(v)

}N~(V-l)

~ K~ (1/ + 1)

!

"I K~(v)

I
K~(v-1),~

t-

a~ (1/)

Figure 3

Proo/ 0/ Theorem. 6.1. \Ve will give a proof only to the assertions concerneel with
Hn(Fu,oeoFu) anel qJ~. The assertions concerneel with Hn(Fu,DoFu) anel qJ~ can be
proved cOluplete1y in the salne way. All wc have to da is just to rep1ace every 00 appearillg
in the argulnent with n. anel to notice that the ll1allodrolny action on H"-l ()ll~) associated
to the loop 6~ is the iclentity. (See R.enlark 6.2.)

Since H lI (Fu ) anel H n (Fu , DooFu) fann 10ca11y constant systenls over U: anel H n (Fu ) -+
H n (Fu , DcoFu ) is natural: it is enough to prove thc injectivity of H n (FII ) --+ H TI (Pli, oeoFu)
for one u. Thus we aSSlllue II EU;::; throughout the proof.

By Proposition 2.1, the ho10111orphic Inap '1/;/1 ; Fit -+ C is locally trivialover C \
Cr (u). On the other hand: the inclusion (~11~': R~) y (C: e- 1(B~)) induce a hOIIlOtopy
equivalence. Since C1' (u) is contailleel in the interior of Jll,C;:\ th~ inclusion

(4!;; [(lilIe:' ), 4'1~ 1(R~ )) y ( Pu , Deo F lI )

also indl1ces a hOlllotopy eql1iva1ence. Hcuce there exists astrang defonnation reh'action

(6.3)

which is tohe hOluOtopy inverse of the inclusion. Note that the deck t.ransfonnation Tu
on (Pu. Deo Fit) ind11 ces an HUt.olnorphisnl of the pai r of subspaces ('IjJ;; 1 (11,11~ ), ',p;; 1 (Re: )).
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Thus both of H ll Ct/J;;l (11,111':')) anel Hn ('t/J;:J (l"I~), '1/;;; 1(R':)) can be consiclered as Z[q, q-l]_
11lOdulcs, anel wc obtain a COllllllutative diagranl of Z[q, q-l ]-lllodulcs;

(6.4)

By the excision property of horllology groups, \ve havc

H n (1/;;";1 (111~), <1jJ;:1 (Rr:::)) r-.J H ll (1/;;] (Il !(u (lJ)), 1/;;] (Il lV:: (1/)))
vEZ vEZ (6.5)

~ EBH n ( 1/;;; 1(!(u (V) ): '1jJ;: 1(lV~ (V) )).
IIEZ

On thc other hand, thc deck transfonnation Tu on (Pu, oooFu ) inehlccs isoul()l'phislllS

for a11 IJ E Z, and these isennorphisrns are conlpatiblc \vith thc iS0l1l0rphislllS

(6.6)

given by the rcstriction of the covering lllap e : Pu ---+ Eu. Hellce the Illtl1tiplicatioll by q
in the decornposi tion (6.5) into thc clircct SUlll is giyen by thc shirt of the ntunbering (1/);

H 11 ( 1/J::1 (!.; II (V) ), 't/J l~ 1 (lV~ (IJ ))) ~ H n ('t/J;: 1(!( u (IJ + 1)), '1jJ;: I (lV~ (IJ+ 1))),

which conllllutcs with thc isolllorphislllS

for {l = IJ anel /1 = 1/ + 1 incluccd by (6.6). Thcrcforc, we gct an iSOlnOl'phisrn

of Z[tJ, q-l ]-nloclules.

Oll the othcr hand, since !(u C C is a strong clefonnation retract of C, which conbÜllS
a11 of thc critintl valucs Cr('ll) of ~u : A. u ---+ C in its interior, thc pu11-back cP;;l(!(u) =
~;;1 (I';u) is also a strong clcfonnation retract of A" by Proposition 2.1. Cornbining this
with thc iSOl110rphislllS (6.6), we sec that

This illlplies that we get iSOl1l0rphislllS

(6.8)

H n (4);: 1 (!(u LcP;: I (lVtc;o))

H l1 ('Ij;;; 1 (!(u (IJ) ), 1/J;; I (lV
1
C;O (v) ))

')"
"""{

~ Hn-l(cP;;l(1V~)) allel

~ H n - 1(1/;;;1 (IV
1
C: (11)))

(6.9)



incluced by the bounelary hOlllOl110rphisl11S. COlnbining these with (6.5) anel (6.7), we
obtain the isonlorphisnls

H n (1/;1-: 1O\;Jl~)' 't/J;; 1(fl.r:)) ~ E9 H n - 1 (~\-: 1OV1~ (1/)))
IJEZ

~ HH-l (<p;;1 (JV1~)) (3) Z['I, q-l]

(6.10)

of Z[q, q-l ]-nloelules. Lastly, since <Pu and 'I/Ju are loca11y trivialover the arc lVt~ C C X

anel the line segnlent l\Tt;(I/) C C, rcspectively, the inclusions

inchlce hOl110tOpy equivalcnees. Thcrefore (6.10) can be written as

H n Ct/J;: 1O'11~)' 'tP 1-: 1(fl,r:)) ~ E9 H 1I - d~Yl~ (1/))
IJEZ

~ Hn-d~Y~) (3) Z[q, 'I-I].

(6.11 )

(6.12)

Conlbining this wi th (6.4), we get. thc hoped-feH' isol11orphislll 'lJ~ of Z[q, q - 1]-1110 clules.
Note that thc honleonlorphisnl types of a11 spaces anel continuous Inaps whieh have ap
peareel in the course of the construetion of w~ do not change when II varies continuously
in a. path-conl1ected conlponent of UN' Henee the isolllorphisnls w~ with u E U jV yielcl
an isolllorphislll between thc corrcsponding loca11y const.ant syst.enls over U;;.

No\v \vC sha11 calculate Hn (Pu) ::: Hll Ct/J;; 1(j'1~)) by applying ~IIaycr-\Tietoris sequencc
to the deconlposi tion

1/;;; I (M;:') = ,tP;;·l (II J(1/ (1/)) U 't/J;; I (Rr:).
IJEZ

Note that
1/;;: [(II !(u (1/)) n ,tP~l (R,~) = II '1jJ;: I(1V~ (1/)).

IJEZ IJEZ

Since '1/J;;1 (JeI (11)) is contractible for cach 11 E Z by (6.8), the NIayer-Vietoris sequence is
of thc fonll

-t EB Hll CI/J;;l (lV~ (1/)))
vEZ (6.13)

-t EBHn - 1(1/;;:1(lV1;(I/))) -+ HIl-ICt/J;:l(R~)) -+
a IJEZ

Since '!j;u : P tl --+ C is 10c3011y trivial over R.~ c C anel R.~ is contractible, thc inclusion
of ~Y~(lJ) into 1/;;;1 (R~) inchlces a hOlllOtOpy cquivalence for eaeh 11. By Theorelll L2 anel
thc isolllorphislll (6.1), \Vc havc
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Thercfore the boundary 111ap [) in (6.13) is injective. R,ecall thc cons t ruction of thc iso
lllorphisnl (6.10). It follows fronl (6.5) through the bounclary lllap (6.9). Then it can be
easily checked that the following diagranl is conul1utative;

H u CifJ;; 1 (1111~))

(6.4) 11

H n (Fl1 )

8 in (G.1:1)
---+

the natu ral map

---+

EB H n _ I ('ifJ;; 1
(lVl~ (1/) ))

vEZ

(6.10)1 I

Hn (Fu , 8(X)Fu ).

Hencc the natural h0l1l01110rphisnl H n (Fu ) --+ H n (Fu , 8ooF u ) is also injcctive. 1vIoreover
the il11age of this injectioll is iclentified, via (6.10), with the kernel of the hOl11011l0rphislll

I, : EBH 71 - J (-lj;;:- 1 (JV~ (1/) )) ---+ H 11 _ 1 (-l/;;; 1 ( R:~: ))
vEZ

in (6.13) inducccl by the inclusion8. Recall that the inclusion ..Y~ (0) Y 'IjJ;: 1(R.C:) inchlCCS
a hOlllOtopy equivn..lencc. Let

(6.14)

i8 a continuous lllap which reprcscnts the hOlllOtOpy inverse of thc inclusion. Consiclcr the
COlllposi tion

~,.-oo
...-'\- u ~ ..Y':(lJ)

(6.1 )
---+ ...\'"~ (0)

(6.1.1 )

.......

---+
(G.I )

'''-00
-''\- 1t ,

of cOlltillUOUS 111aps, cach of which illChlCCS a hOl110tOpy equivalence. Thc inclucecl autolllor
phislll Hn-1( ...\'"~) --+ Hn-l("Y~) is nothing but the 1110110clro111Y operator j-V, because the
path Oll C frolll aC: (lJ) to a~ (0) along R~ is 111apped to the loop (o~) - v Oll C X by e.

Thcrefore, through thc isolIlorphislll

EBH n - 1('lj;;: i (lVl~ (lJ) )) ::: Hn -1 ( ...\'"lc;o) @ Z[q, q- 1] ( 6.15)
vEZ

by the hOl110tOpy equivalencc induced frolll (6.11) anel the iSOl110rphislll (6.1), anel the
isonlorphislll

by thc hOl110tOpy cquivalence inelucecl fronl (6.14) anel thc isolllorphislll (6.1), we can
iclentify I, in (6.13) with L : H n - i ( ...Y~) 0 Z[q, q-l] --+ H lI - 1 ( ..\'"r:) given by

Z ( L (:c v @ qV) ) = L j-I)(:/;V), wherc a;v E Hll - 1 ( ...\'"r:).
vEZ vEZ

Then it can be easily checked that the kernel of this Z coincides with the ill1age of the
enelol11orphislll Icl - j C9 q. Since \lJ~ is given by (6.15) cOlnbined with (6.10) anel (6.4):
we corl1plcte thc proof. D

By looking back at thc con8tructions, we can elescribe thc isolllorphisnls W~ anel W~ in a
geol11etric \vay.
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Corollary 6.2. Let A be an (n - 1)-cyc1e ill ..Y~ (resp. )(~), allel let r bc an n-chain
in </;-;;1 (I{u) such that or = A. Let r(l/) be the n-chain in 7/;;;1 (](u (1/)) corrcsponding to r
via tl1e iso1110rphis1J1 'I/;;; 1(](u (lJ)) ,....., </;-;;1 (](u). Then

(res]). [r(l/)]

l101cls in HlI (F1l , 0o Pu) (resp. in Hn (Fu , oooFu)). 0

Relllark 6.3. Since cjJ-;; 1(l\.·u) is contractible l there always exists an n-chain r c cjJ-;; 1(](ll)
such that ur = A für any ('11, - 1)-cycle A c ..Y~ (resp. A c );~).

Corollary 6.3. Suppose, the otller ~vay around, tllat 1ve are given an n-cyc1e r In

(Fu,ooFu) (res]). in (Fu,uooFu ))' Let r' be the iInagc ofr by tllC retraction

wlJic11 is thc 1101notopy inverse of the inclusion. vFe put r~ := r' n 7/;;;1 (](11 (v)). Tl1cn,
since ar' C1;;;l(R,~) (res]). or f c '1;;;l(R~)), we bave ur~ c 7/;;;1 (lVuO(V)) (rcsp. or~ c
7/;;;1 (lV~(I/) )). Let Av C );~ (rcsp. Av c );~) be the ünage of ur~ by tl1e continuol1s
111a])

1;~ I (jV~ (IJ)) ::: rjJ~ 1 ( lV2) ",.-0----+ j\ u ,
1'1

(resp.

whcre rt i5 the hOl110tOP'y inverse of tl1e inc1usioll. Thcn

[f] = 'lJ ~ ( L ((A v ] 0 qV) )
vEZ

(rcsp. [f] = '?~( L ([A v ] 0 qV) )
vEZ

holds in Hn(FII,ooFu) (rcsp. in Hn(Fu,oooFlI )). 0

Frolll nüw Oll, we cOllsider H lI (Fu ) as Z[q, q-l ]-sul)lllodules of Hn(Fu,00 Fu) and of
H 7J (Fu , ocoFu)' For u E UN' we define

q := w~ 0 (j 0 q) 0 (W~)-l

Then we havc

(6.16)

The following LenlnUl. 6.1 will bc usecl in §10.

Lenulla 6.1. Suppose u E UN0 SU])POSC that an clelnent /\ E H Il - 1 ( ..\~) i8 given. Tllen
tllcl'e exist elc111ents Al, /\2 E H n - I ()l~) such that

(l-q)W~(A01)

holds in Hn (Fu ).
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Proo/. First \ve sha11 describe an n.-cyde in Pu whieh represents thc hOIl1ology dass

Let A C )':1? be an (n - l)-eyde whieh reprcsents '\ and let 1\{v) C )(~ (1/) be the lifting
of A by (6.1). By RCll1ark 6.3, \ve have an n-chain f in (/>"";;1 (](11) such that its lifting
f (1/) cljJ;: I (](11 (v)) satisfies 8f(1/) = A (1/) for 3011 I/ E Z. Rcca11 that there exists a
diffeonlorphislu

..J..-1(C O ) '""-J CO vO
t.p 11 U = 1l x ....'\. 1l (6.17)

over the eirde CI? \vhich induccs the iclcntity on );~. (Sec (5.6).) Such a cliffeornorphis1l1
is unique up to honlotopy. By taking thc covering of (6.17), wc gct a diffeornorphisrn

,,1.- 1(R o ) '""-J RO va
lf'11 'u = 'u X 4·'\.11 ,

which inchlces the isoluorphisIl1 (G.l) over cach point a~ (z;) E R~. Let

be the conlposition of the eliffeornorphislu (6.18) with

52 (1/ + 1) x inclusion : ] x 1\ -t R~ x )(~

(6.18)

where 82 (1/ + 1) : I --+ R,~ is the lifting of the path 82 such tha,t 81?(v + 1)(1) = (l~ (1/ + 1).
Then we have

8.1(1/) = 1\(1/ + 1) - 1\(1/) = 8(f(IJ + 1) - f(1/)).

Hence
T II := .1(u) - r(l/ + 1) + f(1/)

is an n-cycle in Pu. Since .1(v) is contained in 80 Pu: wc see frolu Coro11ary 6.2that

anel henee

Notc that thc n-cycle Ta in Pu is contained in the subspace _1/;;;1 (I{OOl) of 1/;1-;1 (Ji11~)' whcrc

Consider thc eOlllposition

(6.19 )

of the inclusion anel the ret.raction (6.3), both of which inchlce hOluotopy equivalenee. Thc
Inaps in (6.19) are liftings of thc continuous Iuaps on the base space

;'1 0
L-\ C --+ ;'1,001\ u ---, 1V. lt
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which are the inclusion and a rctraction. By choosing an appropriatc retraction, we can
aSSlllUC that ]>;g1 C ll/Il~ is luappcd to

by (6.20), whcre 6~(1)(!) is the segluent of R~ bebveen a~(O) and a~(l). Hencc the
n-cyclc Ta C 't/;;1 (](001) is nlapped by (6.19) to an n-cycle T~ containcd in 1/;1-: 1(I{gf). In
particular, we have

Hencc Corollary 6.3 iU1plies that t.he hOluology dass [Ta] = [T~] E Hn(Fu) is written in thc
fonn \lJ~(/\1 0 1 + /\2 0 q) by sonle )'1, /\2 E H ll - 1 ()l~). 0

In this section, wc will dcscribe cxplicitly n,-cyclcs reprcscnting the basis of the frcc
Z[q, q-I ]-nloelulcs H II (Fu ), H II (Pu, 80 Fu) and H ll (Fu , 8ooF u ). Throughout this section, we
aSSlune u EU;;;.

First wc dcfine thc notion of a !(-regula.r systenl of patbs. Rccall that we havc defincd
the closed subset ]{u of C X for 1l E UN.

Definition 7.1. Suppose tlutt. a point a E ](u \ Cr(1l) is given. A regular syst.elll
{~l, ... 1 EN} of paths fronl a (see Definition 5.2) is said to be I{ -regulaJ' if anel only if ~i (!)
is contained in ]{u for i = 1, ... , lV.

It is obvious that a ](-regular systenl of paths frolll a always exists for evcry u E Uj~

anel every a E 1(1/ \ Cl' (u).

Ncxt, wc fix sonlC notation conccrned with thc lifting of objccts on C X and Eu by the
etale coverings e : C --+ C x and e: Fu --+ Eu.

Recall that (C\IR:5o)(v) is the unique connccted cOlllponent of e- 1 (C\IR:5o) containing
]{u ( v) . Recall also that, for a pointeE C \ IR <0, c( 1/) clenotcs the int.ersection p oint of
e- 1 ( c) ancl (C \ IR <0) ( lJ ). -

Definition 7.2. Supposc that a point a E C \ Cr(71) is givcn. For ]Ji\lJ) E Cr(u), let
P,;- (a, Pi (v)) denote the space of an paths w : 1 --+ C which satisfy the following; (i) !J) (0) =
(l, w(l) = Pi(I/), and (ii) w([O, 1)) n C1'(U) = 0. \\Te equip this space with thc conlpact
open topology, anel denote by [ Pu'"'"' ((f, Pi (v) )] the set of path-connectccl COlllponents of
Pu'"'"'(a,pi\v)). Für a path w E Pu'"'"'(a,Pi\lJ)), let [w] E [Pu'"'"'(O,]Ji\V))] denote the path
conncctccl conlponent of Pu'"'"' (Cl, ]Ji \ 1/)) containing w; 01' cquivalcntly, thc hOlllotOpy dass of
paths in Pu'"'"' (a, Pi \ lJ)) rcpresented by w.

Definition 7.3. Suppose that a path w : ! --+ C X with w(l) E C \ lR<o is givcn. Thcn
w(lJ) : I --+ C is thc unique lifting of w to C by e : C --+ C X such that -
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Note that, if w E Pu ((l" Pi) with a ~ IRso is giveu, then we have

w(lJ) E Pl~(a(lJ + ~l),Pi(V))

for a.ll IJ E Z \vith a fixed integer p. E Z. 1\IIoreover, if [w tl
[w 1 (1/)] = [W2 ( V )] i 11 [Pu'" ((l (V + ~), Pi (IJ ) )] •

For the path w as above, \ve have a. vanishing cycle

for [w], unique up to sign, anel the thinlble

B([wJ, er[wJ) E [(CSn
-

1
, 5 11

-
1
), (Eu, cf;;;1 (a))]

for [w] starting frcHn er[w].

Definition 7.4. Für eaeh IJ E Z, thc vanishing eycle er[w] lifts uniquely to a vanishing
cyclc

er[w](1/) E [5 11
-
1, VJ~l (a(1/ +~))],

whieh is oue of the two vanishing cycles for [w (v)] E [PI'; (a( IJ +~l), Pi (V) )]. Also the thinlble
B([w], er[wJ) lifts uniquely to the thilllble

B([w], er[w])(v) := B([w(v)], er[w](lJ)) E [( CS Il
-

1
, 5 n

-
1
), (Fu , VJ;;l (a(IJ+ rl)))]

for [w(lJ)] starting fronl er[w](lJ). Hs hfHllology dass is deuotcd by

8([w], er [wJ)(1J) E H 71 ( F lI , 'tP;-; 1( a(v +p.) )).

As beforc, whcn thc orientation is irrelevant, we write sinlply 8([w])(v) and 8([w])(lJ).

\Vhen a = a~ (resp. (l = a~), then these hCHll010gy dasses ean bc cOl1siderecl as
elelncnts in H11(Fu,8oFu) (resp. in H11(Fu,8ooFu)), which will be denoteel by thc salne
SY111boI8([w],a[w])(lJ). By definition, wc have

q8([w] ,a[w])(l/) = 8([w], a[w])(lJ + 1) (7.1 )

In the Z[q,q-l]-l11oclule HIl(Ftl:8oFu) (resp. H II (Fu,8oo Fu))' ?vIoreover, suppose that
w(I) C !(u. Then we have W(IJ)(!) C !(II(lJ), anel therefore, the starting point of u..1(IJ) is
w(O)(lJ). Hcnee thc thilnble 8([w])(lJ) is an elel11ent of [( Csn-I, su-1), (Fu , ~Y2 (v))] (resp.
of [(CS n

-
1,Sll-I), (Fu,~Y~(lJ))]). VVe apply these eOllsiderations to the caSe when w is a

ll1el11ber of a !(-regular sys teIll of paths frOll1 a ~ (resp. fro111 a~) .

Proposition 7.1. Suppose that u E U/:;.
(0) Let {~?, .. . ,~R,} be a !(-regl.llar systelll of patlls fronl a~, alld let a[~p] E

[S'Il-1 , ~"Y2 J bc Cl. vanishing cyc1c for (~P]. T1ICll tlle llollI0logy c1aBses

8([~~], a[~p ])(0),
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of tllC Jjfteel tlliJnblcs fonn n set of basis for tbe free Z[q, q-1 ]-111odule H n (Fu , aoFu ).

(00) Let {~~, ... :~N} bc a ](-regular syste111 of patbs fr01Jl a':; allel let O"[~i] E
[5"- 1

, )[~] be a vanisbing cycle for [~i]. Tben thc homology c1asses

1 8([~N], a[EN'])(O)

of tllc lifted thiInbles fonn a set of basis for the free Z[q, q-l ]-ll1odule H n (Fu, DcoFu).

Prooj. Let rp :Csn -1 ---+ Eu be a continuous lnap rcprescnting thc thirnblc e([~F]'a[EF])
over thc pat.h ~? Since EP(]) C ](u by the aSS11111p tion of thc ](-regulari ty, r~ can be
considered as an n-chain in 4>;1 (](u)' Let. r~ (v) C 'lj;;;l (](u (1/)) be the lifting of rp by the
iso1110rphis111 'lj;;; 1 (]{u (v)) :: 4>-;;1 (](u)' Then we havc

in Hn (Fu , Da Fu ) by the definition of lifting. On thc other hand, the ('11. - 1)-cyclc arp
in ~)[t~ reprcscnts -a[~?] E H1l-1(~)[2) by the anti-cornnllltativity of (4.1). Hence, by
Corollary 6.2, wc get

(7.2)

By the Sa111C arglu11cnt, wc ha,vc

(7.2)'

Sincc {E~, ... ,ER,} is regular, Proposition 5.1 in1plies that a[E P]' ... , a(ERr J fonn a set
of basis of thc free Z~I11odulc H n - 1 (-)[1~ ). Hence thc assertion (0) fo11o\v8 frorn (7.2) anel
Theoren1 6.1 . The assertion (00) can bc proveel by the sal11C argurnent. 0

Theoreul 7.1. Let b E U be a. base point l"hich is containcel in U1V ' Thc hOll10111or

pllislll
(7.3)

,,,hich is tlle COlllpositioll of t1le inversc of 1lJ~ allel the 11 0111 0111 orp1Jislll Hn-I(.YbO) 0
Z[q,q-l] ---+ H/I_l(~)[bO) giYCll by q MI is 1rl(U,b)-cquivariant.

Proof. \"'\Te will prove this theorenl by showil1g that (7.3) is cqual with thc composition
lllap

Hn (Pb, Ua Fb) -----+ H ll (Eb: DoE b ) ---=::..r H II _ d-)[bO), (7.4)
e. (A)

whcrc e* is thc hon10111orphisn1 induccd frenn thc covering nutp e : Fb ---+ E b and (A) IS

obtained frenn thc isolnorphisn18 in Proposition 5.2 (4) ancl (5). It is obvious that C* 15

71"1 (U , b)-equivariant. By Proposition 5.2 (6), (A) is also 1r] (U 1 b)-equivariant.

\llle fix a ](-regular systen1 {(? , ... , ~.Rr} of pat.hs frolli a~ and, for cach i = 1, ... , lV,
wc choose a vallishillg cycle O"[~?] E [5 11

-
1'~YbO]. vVe put
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\~Te havc ap(v) = qVap(O) for 3011 v E Z. By Proposition 7.1, the set

-0 .
{ (} j (11) ; 11 E Z anel 1, = 1, ... , N}

fon11 a set of basis for the free Z-ll1odules of H'l(Fb , 00 Fb ). Thercfore, it is enough to
show that thc two hOlllonlorphisnls (7.3) anel (7.4) l11ap each ap (v) to a sanle clell1ent in
H11 - 1 (~YbO).

By (7.2), the hOlll011l0rphislll (7.3) lllaps ap (IJ) to -ale?]. On the other hand, e.
l11aps to ap (11) to aUe? J, a[e?]) E H n (E", Uo E b ) because of the definition of thc lifting. By
thc bounelary nlap H 1, (Fb, Uo Fb) ~ H lI - 1(80 Eu), this elenlellt is luappeel to

bccause of the anti-cOllUl1utativity of (4.1). anel this hOl11ology dass can be regarelecl as
already containecl in Hn - 1(_ybO). Hencc (7.4) also ll1aps B? (IJ) to -a[~?] E HlI - 1(.Yb

O).
o

Re 111ark 7.1. The isol11orphisl11 (0.3) in Intro eluetion is ob tai nec! as follows;

Hn(Fb ) ~ H71 (Fb,OoFb ) ~ Hn - 1 (.YbO) ~ Hll - 1{-Yb),
(8) (i.3}=(i.4) (C)

where (B) is the n1ultiplication by (1 - q) (see (6.16)), anel (C) is ineluceel fron1 (5.1).
Through Theorenl 7.1 anel Lernl11a 5.1, we see that (0.3) hös thc requireel property.

As in [5], we introcluce hcn11itian interseetion fonus

)0 HlI (Pu, OOOF11 ) X Hll (Pu, 00 Pu) ----t Z[q,q-l], a,nel

)00 H J, (Pu, Uo Pu) X H n (Pu, oooFu ) ----t Z[q, q-l],

for u E U. Note that the usnal interseetion fon11

( , ) Hn(Fu,oooFIt ) x Hl/(Fu,ooFll ) ----+ Z

(x,y)o := L(:/:,qVy)(/' E Z[q,q-l].
vEZ

Let * : Z[q, q-l] -+ Z[q, q-l] bc the ring autol11orphisn1 given by *q = q-l. It is obvious
that (qV x, qV y ) = (;z;, y) for a11 TJ E Z. Thcrefore, for arbitrary a, a', b, b' E Z[q, q-l], wc
ha,ve,

(ax + (I' ~;', y) 0 = a( x, y) 0 + a' (x' , y) 0 , anel

(x,'by + b'y')o = *b(x, y)o + *b'(x;'Y')o.
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\,Vc define t.he hennitian forn1 ( , )00 by

(x, Y)00 := * (y, ;1: ) 0 .

Rell1ark 8.1. For any [,] E Jrj (U, b), we have ([---!J*x, [,]*y)
this with LCIluna 1.2, wc get

(;c, y). Cornbining

This itnplics that ( , ) 0 ancl ( , )00 are hcnnitian intcrsectioll fonus bct.wccn the loea11y
eonstant systcn1s on U corresponding to H ll (Pb, 00 Pb) and H ll (Pb, OooPb).

Lenll11a 8.1. Suppose that 11 E UN0 Let 0: ;uld ß be eleUlents of H n - 1 (-Yl~) a.nd
H n - 1 (~y~): rcspectivc1y. Then the integer (w~(a 0 (/'), W~ (ß 0 qJl)) is zero unless 1/ = /1.

Praaf. By Coro11ary 6.2, W~ (0' (9 qV) is representcd by an n-chain r 0 (1/) contained in
'l/J;; 1 (](u (1/) ), \vhile W1~ (ß 0 q11) is represented by an '11.- ehain r ß(f./.) containcel in -ljJ;;] (](u (/1) ).
If 1/ -# fl, thcn](u(u) n ](u(p) = 0, anel henee ([r0(1/)], [rß(p)]) = o. 0

CCHl1bining Len1Il1a. 8.1 \vith (8.1), \Vc get thc following fornlllla. Let 0: v (1/ E Z) ancl ßIl
(li E Z) be eleillents of Hn-l(~Y~) anel H,,-l("\[t?)' respectively, such that aln10st 3011 of
thC111 are zero. Thcll

( W~(2= O'v 0 (/1) : w~ (l:= ßIl (9 qP) )0
vEZ IIEZ

=L:(
kEZ

L: (w~(oJl01),w~(ßIl01)) ).qk.
1)-11=1.'

(8.2)

Lenuna 8.2. Suppose that 'If E UN' Let]J alld p' bc valucs in Cl' (u), find let ~o allel
~oo be paths in Pu(a~ ,p) anel Ptt(a':',p'), respectively. Suppose that ~O(]) C ](u anel
~oo(]) C ](u. (1) Suppose tha.t p = p' and ~o (1) n ~oo(]) = {p}. Then

(2) Suppose tl1at p -# p' anel ~o (1) n ~oo(]) = 0. Then

P1'OOf. By (8.2) and (7.2), (7.2)', we sce t.bat ( B([~oo])(1/) , B([~O] (fl,) ) 0 is 30 Inultiplc of
qV-Jl by tbc intcger (B([~oo])(O) , 8([~0](0)). Let T O : CS71-1 --+ Pu and Too : CSll-1 --+
Pu be continuous Inaps rcprescnting thc thilnble e([~O ])(0) over ~o (0), ancl thc thilnblc
B([~OO])(O) over ~OO(O), respectivcly. By thc aSSUll1ptions on thc paths ~o and ~oo, we havc

~o (0)(1) n ~OO(O)(]) {
ip(O)} in thc casc (1)~ ancl
YJ 'in the- case (2).
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In the ease (1), using Lenllna 4.1, we eRn choose the n-chains T O anel T oo in such a way

that they intersect only at the eritical point. of 'l/Ju aver ])(0), anel that the intcrsection
is transverse. Hence ([TOCL [TO]) = (ä([~OO])(O), B([~O ](0)) = ±l. In the ease (2), the
n-cahins Too and Ta are disjoint. Hence ([TOCL [Ta]) is zero. 0

Now \Vc sha11 prove the fo11owing:

Proposition 8.1. The interseetion 101'111S ( 1 )0 anel ( , )00 a.re non-elegencrate.

Here the non-clegeneracy of ( , ) a Ineans that thc rnap

given by y H ( ,y)° is a bijection.

Praof. By Rmuark 8.1, it is enough to prave Proposition 8.1 nuder thc assluuption that
u EU;:;. \Ve cau takc ](-regular systcnls {e?, ... ,~RT} anel {er,··· '~N} of paths fronl
a~ and fronl a':, respectively, \vhich satisfy the fo11owing;

By LenlllHl. 8.2, we have

~? (1) n ~j(I) = { ~p;} if i #- j, and
if 'i = j.

Thus, in tenns of thc basis {ä([~P])(O) ; 'i = 1, ... ,1'/} of HH(Fu, 00 Fu) over Z[q, '1- 1
] anel

{ B( [~i])(O) ; 'i = 1: ... , JV } of Hn (Pu, oooFll ) over Z[q, q-I], the interseetion fonn ( , )°
is expresscel by a eliagonalluatrix with diagonal coefficients ±l. 0

Definition 8.1. An clernent:1: E Hn(Fu,ooFu ) (resp. y E Hn(Fll,oooFu )) IS

calleel prilnitive if anel only if there cxists an elcrnent x' E Hn(Fu,oooFu ) (rcsp. y' E
Hn(Fu,Da Fll )) such that (x',x)a = 1 (resp. (y',Y)oo = 1).

Definition 8.2. Let U(Z[q, q-l J) denote thc group of thc units {±qV j 1/ E Z} of
thc ring Z[q, q-l]. \,Ve say that two elernents x anel x' in a Z[q, q-l ]-nlodule is saiel to be
equalll1oelulo U(Z['1, q-l]) anel \vrite ;c =x', if there exists a unit (l E U(Z[q, q-1]) such
that x = a~;'.

Für cxanlple, if x is a prinlitive elenlcllt of H lI (Fu , 8ooF u ) and x = x', thcn .1;' is also
prinlitive.

§9. Picard-Lefschetz foruuila for loeal 111onodrolnies around Da and Doo

§9.1. Definition of sitnple loops and loeal 111onodrolnies

\\Te fix a base point b EU.

Definition 9.1.1. A loop -I : I ---+ U with the base point b is called Cl. siInple loop around
Da (resp. Doo) if t.he fo11owing arc satisfiedj (i) there cxist a non-singular point c on
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'Do \ ('D o n 'Doo ) (resp. Doo \ (D o n D oo )) anel a sl11a11 closed clisk .6. in r wi th the center
c \vhich intersects 'Do U D oo transversely at only one point c, (ii) therc is a path ß on U
frol11 b to a point b' on the boundary fJ.6. of .6., anel (ii i) the path , starts frol11 b, goes to b'
along /1, draws a circle 8.6. in a countcr-clockwisc elircetion, anel gocs back to b along ß- 1

•

Definition 9.1.2. Let,: 1 ---7 U bc H. simple loop arOlll1el Da (resp. 'Doo )' Then the
nlonoelromy action ["'!l* on va..rious sets 01' groups are ca11ed a loeal nlonodronl.Y Bround Da
(rcsp. 'Deo)'

Proposition 9.1.1. Lct D denote 'Da 01' 'Poo . Let b aJlel b' be two base points on Z),
anel let -I : 1 ---7 U allel " : 1 ---7 U be sünplc 100])8 ill'ound V l,vith tlle base points b allel b',
respec ti vely. Tllen tl]erc exists n. patl] 0' : 1 ---7 U fron] b to b' suel] tllat [0'-1,'0'] = ["'tl in
Jr] (U, b).

Proo/. Since both of the hypcrsurfaccs Va and Voo are irreduciblc, ea,eh of thc non-singular
loci of Da \ (Va n D oo ) anel V oo \ (Da n Deo) is also irrecluciblc. D

§9.2. Picard-Lefschetz forlllula

Now we shall state our rnain theorcn1s.

Theoren19.2.1. Let [,0] E Jrl (U, b) bc the hOlnotop'y dass of Cl. simplc 100]) n.rouncl D o.
Tl1crc exists a pair

(9.2.1)

1\10r80ver: suel] a pair (v ["'10 Lv
Y ['0]) is unique up to U(Z[q, q-l ]), aJ](l vY ['0] is ])rÜn1 t1VC.

1Ve also havc
(9.2.2)

Theorenl 9.2.2. Let ['00] E 7["1 (U , b) be thc hOlllotOP'y dass of a. silllple 100p arounel
'Poo . There eX1sts a pair

(9.2.3)

lVIorcov~r, such a pair (v [,oo}, v~ ['00]) is unique up to U(Z[q, q-l]), allel v~ ['00] i5 prll11itil,'c.

Relllark 9.2.1. COI11paring Theorcll1s 9.2.1 anel 9.2.2, \vc can see that there is a cer
tain kind of elualit.y between "0" allel "00". This eluality, howevcr, is not perfeet. Contrary
to the case in Theorern 9.2.1, the hOlnology class V["'loo] E H" (Pb, 80 Pb) in Theol'en1 9.2.2
is not containeel in Hn(Fb)' This cliffercnce cornes froll1 the fact that: while the action of
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['0] * on H Il - 1(_Yb ) is trivial (cf. Clailll 2 in the proof of Proposition 9.4.1 bclowL thc
action of ['co] * on H n-1 (4Yb

O
) is non-trivial (cf. Proposition 9.7.1). NIoreover, thc relation

bctween v~[,oo] anel v[/'oo] is not so sil11ple as (9.2.2). A detailcel description of '0[/'00] is
givcn in Proposition 9.7.2.

Renlark 9.2.2. Vlc put [JFb = DoFb U DooFb' Using (6.16) and the natural honl0
1110rphisnl H ll (Fb~ DoFb) ---+ H ll (Fb,8Fb) 01' H'l (Fb, 800 Fb) --t (Fb, 8Fb), we can define the
hC1'1nitian il1tcrsection pairing

freHU ( ~ ) 0 01' ( , ) 00' Using (6.16) again, we can derive thc statenlcllt (2q) in Int roduction
freHn Theorcnls 9.2.1 and 9.2.2.

Before starting thc proof, wc Inake hcrc scvera.l rcnuU'ks (Rernarks 9.2.3, 9.2.4: 9.2.5:
anel §9.3), which nlake thc proof llUlCh easier.

Rel11ark 9.2.3. Thc ulliqueness of (v[,o], 'O~ [/'0]) in Thcorelns 9.2.1 follows easily frolll
thc property (9.2.1) anel the prilni tiveness of V~ [/'0]' Suppose that (9.2.1) holels for a11
x E Hn(Pb~800Fb) \vith S0111e pair ('O[,oJ,v~[,o]), and that v-[,o] is priluitive. Then thc
iInage of thc enclolllorphisll1 Icl- [/'0]* of H n (Ph , DooFb) is a frcc Z[q, q-l ]-nloclule of rank
1, anc1 hence its generator v[,o] is detern1incd uniquely 1110dulo U(Z[q, q-l]). Supposc
that a generator v ['"'fa ] is fixed. Thcn the endol11orphisln Iel - [,a] * is written in the fon11
x H l(x)· '0['0] by SCHne Z[q~ q-l]-linear fonn I : Hn(Fb, oooFb) --t Z[q, q-l]. Thcn '0-['0] E
H ll (Fb,ooFb ) is uniquely detennincd by thc non-degencracy of ( , )0 (Proposition 8.1).
Thc ulliquencss of thc pair (v(,ooJ, v~[,oo]) 111oclulo U(Z[q, q-l]) is also cleriveel frol11 (9.2.3)
anel the priluitiveness of V~['CO] in thc sanle way.

Re111ark 9.2.4. Suppose that Theorel11 9.2.1 holels for one sünplc loop /'0 around D 0

with the ba.se point b. Thcn it holels for an arbitrary sünplc loop f~ arounel Da with thc
base point b' arbitrarily chosen. Indceel, by Proposition 9.1.1, thcre exists a. path 0' : I ---+ U
fro111 b' to b such that

[ 0: -] "'f a 0'] = h~] In 7rl(U,b').

Let
""[0']* Hn(Pbl , DooFbi) ---+ H n (Pb, [JooFb) , and

[0']* H n (Fbl , Da Pb, ) "" H n (Fb , [Ja Fb)---+
bc the isonlorphislns induced by thc path 0:. Then

By R.clnark 8.1~ we have

for a11 x E H lI (Pbl, 800 Fb, ). Hence tohe fornlula (9.2.1) holels for [,~ J* if we set

(9.2.4)
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It is obvious that if VV ['0] is prilnitive, thcn SO is [0];-1 ('0- [,0]). Thc relation (9.2.2) also
rernains truc for thc pair (v[t~], v~[,~]) defincel by (9.2.4).

Sanle argulnent is valiel for Thcorenl 9.2.2.
It is therefore cnough to provc eaeh of Theorenls 9.2.1 anel 9.2.2 only for one suitably

chosen silnple loop.

Relnark 9.2.5. Note that the conlplement U \ UN is of conlplex codirnension 1 in U.
Note also that thc cOlnplcnlent U \ U;::; is of real coelinlension 1 in U. COlnbining these
with Renul.rk 9.2.4, we lnay aSSlllne that thc base point b is eontaineel in UiV , anel thc
sinlple loops ,0 <tnel '00 are eontaineel in UN.

§9.3. Deforlnation of thilnbles

By thc definition of UN, the funchunental group 7fl (UN, b) aets on the sets Cl' (b) c C
anel C1' (b) c C. For an elenlcl1t [,] E 7fl (UN, b), let ["!l* : Cl' (b) -4 Cl' (b) ancl [t] * :
Cr(b) -t Cr(b) elenote its aetions. For u E UN, we put

CrCu)UZ~UZ~ C C,

where Z2 = {al~ (IJ ) i v E Z} anel Z~ = {a;;='(v); v E Z}, anel eall it the set of clistin
guisl]ed points. Let, ; I -4 UN be a. loop with the ba.se point b. Then the points of 5,(1)

1nove on C continuously whcn t varics, anel any two elistinet points da not eollide elnring
this 11lovcnlcllt bccause of the definitions of UN a,ncl Z2, Z~. Hence wc can dcnotc this
rnovelnent by the eontinuous lnap

It is obvious that

(1) J\;f, (0, 8) = 8 for all sESb ,

(2) jV1~f(l,p) = [,].(p) for ]J E C1'(b),
(3) JV1,(l,a~(v)) = a~(1J), J\!t,(l,ur(v)) = flr(V) for an,J E Z, and
(4) JV1,(t,') : Sb -t C is injcetive for all t E I.

Thc last property ilnplies that the hOlnotopy type of the pair (C, M,(t, Sb)) cloes not
change when t varies in I. \Ve consequently obtain, for each critical value p E Cr(b), thc
bijectivc Inaps of the sets of hOlnotopy classes of paths

[Pb'" (a~ (IJ), p) ]

[Pb'" (Clr (lJ ) , p) ]

[Pb"'(a~ (IJ ), [,]*(p))]

[Pb"'(ar(v), [,]*(p))]

anel
(9.3.1)

inducccl by thc nl0VCl1lent JV1 i' of thc points in Sb.

Now supposc that we arc given a. path w E Pb'" (a~ (1/),]J), \vhe1'e]J E Cr(b). \~Te ehoose
a vanishing eyde 0' [w] E [5 11

-
1

, ~X"bO(11)] for [w] froll1 al110ng thc two possibili tics of thc
signs, ancl consider the thil11ble

B( [w J; (J" [w J) E [(C'5 n - 1, 5 Tl -1 ), (Fb, ~X"b
O(IJ) )]
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for [w] E [Pb'"'"'(ar (v),p)] starting fronl a[w). Note that [,] E ?TI (UN: b) also acts on thc sets
[S"-1, ){bO (v)] auel [( CS12-1, 5"-1), (Fb, )(bO (1/))] in a natural way, because over thc path "
both of ~}(2(1J) anel (Fu,){~(II)) are locally trivial. By definition, we see that [,].(a[w]) E

[sn-l:_}(bO(v)] is oue of the vanishiug cydcs for [,].([w]) E [Pb'"'"'(a~(v),[,].(p))], anel we
have a fonnula,:

(9.3.2)

In particltlar, we have

(9.3.3)

By Proposi tion 7.1; H ll (Fb, 80 Fb) is geuerateel by thc hOlllOlogy classes of thil11bles für paths
fronl ar (0). Hence fornntla (9.3.2) enahles us to calculate the action of (,]. on Hn (Fb,80 Fb)
by looking at the action of [,]. on [Pb'"'"'(a~(v),]J)] for p E Cr(b) anel on [sn-l'~\'l?(v)].

Note that thc action on [sn -I , ~)(bO(v)] is equivalcnt to the action on [S1l-1: X bO] by the
isolnorphislll (6.1).

Sarllc arglunent holels whcn 0 is replaccel with 00.

In oreler to invest.igate thc llUtpS (9.3.1), wc introduce thc notion of h0l110tOpy cquiv
alcnce of lllovelnents of points on C.

Definition 9.3.1. Let )\110 : 1 x 5 -+ C allel Jvh : 1 X 5 -+ C be two nlOVClucnts of a sct
of points 5 on C such that
(i) A·-1o(O, s) = }.Jt 1(0, 8) for all s E 5,
(ii) J\;10(1,8) = )vt 1 (1,.5) for a11 .5 E 5, allel
(iii) for all t, both of thc lllaps frorll 5 to C given by s f----t Mo (t, .5) anel by s f----t )\-1 I(t, s)
are injective.
These two nlovenlents are saiel to be h0111otopicall.y equivalcnt if there exists a continuous
lllap J\I1 : 1 x 1 x 5 -+ C such that the 11l0VClncnt.s )\;1 (T) := )\-1 (T, " .) : 1 x 5 -+ C satisfy
thc following;
(1) )\11 (0) = )\11 0, )\11 (1) = )\11 I ,

(2) )\;1(7)(0,8) = )\11 0 (0,8) = )\..11 (O,s) for all TEl allel sE 5,
(3) Jvt(T)(l, s) = M o(l,.5) = J\..1 [(1, s) for all T E 1 anel s E 5, anel
(4) Jvt(T)(t,') : 5 -+ C is injeetivc for all (T, t) E 1 x 1.

It is obvious that thc lnaps (9.3.1) elepenel only on the honlotopy dass ofthe luovenlcnt J\..1...,..
Thereforc, wc will find a sin1pler lllovelllcnt in the henllotopy cquivalcncc dass containing
)\..1,.

Reduction 1. Note that, for all p E C1'(b) anel for all t E 1, thc point A-1,(t,p) rCluains
on the right-hand siele of thc vcrtical line R.~( l)' which contains the points a~(tJ (v) =
)\11...,.( t, a~ (11) ), a,nd on the left-hand siele of the verticalline R:;( t)l whieh eontains thc points
a:;(t) (lI) = )\I1...,.(t, ab'(1/)). Hencc thc nlovenlent )\11...,. is ahvays hOluotopically equivalent to

a luovenlclÜ M~ such that

)vt~(t, a~ (v)) = a~ (v) anel )vt~( t ,ab (v))
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Reduction 2. Suppose that, by the l110venlent along " the valne Pi E Cr(u) C C X

draw8 1:1 loop which i8 hCl1llotopically trivial in C X
. Then each of its lifts to C is also a

loop /0,(1 x {Pi(II)}) on C for evcry 1/ E Z. Supposc also that this loop J\!t,(1 X {Pi(1/)})
is disjoint fronl thc trace J\!t, (1 X {p j (p) }) if (i, 1/) =f=. (j, ~t). Then J\!t..." i8 hOl11otopically
equivalent to a l11ovel11ent JV1; which 8atisfies, in addition to (9.3.4), thc property

J'vt...,,(t,pi(V)) = Pi(1/) for a11 tEl and 1/ E Z.

§9.4. Proof of Theorenl 9.2.1

(9.3.5)

Suppose that u is a point of UN.

Recall that L 11 c r x is the affine Ene {.fu - t . hd
; tEe} with thc paral11eterization

1'11 : C.:::, Lu given by t H fu - t . h cl • Let 'W be an arbitrary point on L 11 • By definition, thc
affine Ene Lw i8 equal with .cu, anel we write this affine Ene sinlply by .c. By Coro11ary 2.1
anel Le111111a 2.3, we have

(9.4.1)

Let Cl, .•. , CN be the intersection points of .c anel Da. Then, by Coro11ary 2.1, the critical
values of Jw are accorelingly nun1bered;

The point 10 is on L n Da =.c \ UN if and only if one of PI (w), ... , ]JN (10) i8 zero.

Lenulla 9.4.1. ',Fe llHVC Pi(1O) = Pi(U) + 8w for ,j = 1, ... , lV, where .sw := l,~I('U) =
_l,~J (10). In particular, Pi(U) - pj(u) = PiCW) - Pj(1O) holds for a11 'U, 10 E .c.
Prao/. The two paral11eterizations /'11 : C --+ .c anel "w :C --+ .c eliffcr only by translations;
anel an easy calculation shows that 1,~1 0 l,"(.~) = S + 8 w . 0

This Lell1111a shows tha.t, thc set Cl' (V)) C C nlOVC8 by parallel tra118fonnatioll whcn 'W

nl0ve5 Oll L.

Let r be a positive real nun1ber which is sufficiently slna11, anel let p be a cOlnplcx
number such tha,t Ipl = 2,1' anel p t/:. IR. ",..re chao5e thc point

as the base point. Since r is sufficicntly 8111all ancl 1111 p =I- 0, \ve luay aSSUlne that

b E UN0

(9.4.2)

(9.4.3)

In particular, \ve have !(b C C X anel the iSOl1l0rphislllS \lJ~, \lJb'. By Lelnlna 9.4.1, we have

Pi(b) ='Pi(lI)-PI(U)+P,
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In particular, we have PI (b) = p. 1/Iorcover, since l' is slnall enough, we nUty assurne that

(9.4.5)

whcre 1Vf is a large natural nll1llber, say 10. Again, since l' is sufficiently SIIIall , we have
e(b) = l' by the definition (3.3). Hence we have a? = r.

Now we consider a closed disk

on .c \vith the center Lb(PI (b)) = Cl and of radius 27'. Since 7' is sIllall enough, the intcr
scction 6. n Va consists of only one point Cl. Nlorcover, since '/l E UN, .c intersects Da
transversely by Proposition 2.4. The loop , : ! --+ 86. c .c given by

(9.4.6)

is therefore a Sil11p lc loop around Va wi th the base point b. By (9.4.1), we have

(9.4.7)

(9.4.8)

(9.4.9)

Let D1 C C be the closcd disk with thc center 0 and of radius 2'1'. Thc critical value
PI (b) = p is located on thc boundary of this disko V'le see fronl (9.4.5) that D1 n er (b)
consists of only one point p.(b). Note also that !(b n D I is siluply connccted. Thereforc,
therc exists a. unique hOlUOtOpy class [~?] E [Pb( a~ ,PI (b)) ] of paths which is represcntcd
by a path ~p such that

Now, fronl Reluarks 9.2.3 anel 9.2.4, Thcorenl 9.2.1 follows frolu the following Proposition.

Proposition 9.4.1. Let

be tllc 1l0111010gy eiass of tl1C lifted tllill1ble e([~p])(O), wllere [~P] E [p,,(a~ ,P1(b))] is
thc unique 1101110tOP:V eiA""S of pa.ths clHlracterizcd by (9.4.8). vlfc definc tllc elellJcnt v of
H//(Fv) b.y

using (6.16). Thon, v- is prilnitive, allel the ]ocall110nodro111'y action [,]* 011 Hn(Fb , 8oo F 1!)
around Da is gi\TCll by

x f-f:/; + (x, v~) 0 . v.

Proof. By LClllllU\, 9.4.1 anel (9.4.6), wc havc
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This n1ean5 that: when t rnoves fnHll 0 to 1: cach Pi C",(t)) draws a circlc of the ra.elius
21' with the center Pi(b) - P in thc counter-clockwise clirection. Let Ci elenote this circle,
anel Di thc clisk cirClUllscribed by Ci. Note that D 1 coincieles with the D i which we have
clcfined just before thc state1nent of Proposition 9.4.1. Since l' is sufficiently sn1all, we can
sec that

anel thus

(L~(t) = T, anel 0':;(,) = I/T for all t E !. (9.4.12)

By (9.4.7), [,]* a,cts on the set Cr(b). By (9.4.3), each value in Cr(b) is written in thc fonn
pi(b)(v), where i = 1, ... ,fl anel!) E Z. VVe see fron1 (9.4.5) that

if 'i =1= 1. (9.4.13)

On the othcr hand, D, :1 0, anel thc circlc Cl traverses lR<o in the positive direction.
Hence we have

if i =1= 1, anel
if i = 1.

(9.4.14)

By (9.4.3), \ve have a !(-regular systeln {~r 1 ••• : EN} froln ab' \!lle see froln (9.4.5) that

It is thcrefore possiblc to take the !(-regular systeln in such a way that

(9.4.15)

if 'i "# 1, and
if 'l = 1.

(9.4.16)

No\v \ve choose a vanishing cyclc (Ji := (J[~i] E [5"- 1
, .Yb ] for cach [~i] fro01 arnong

thc two possibilities, anel considcr thc lift. of thc associatccl thilnblc

which is thc thin1ble for [~i(O)] stal'ting frolll the liftecl vanishing cycle (J,;(O) on Xb'(O).
Siace the hOlnology classes 8~ (0) , ... , iJN(0) of these thilnbles fOrIn a set of basiS of
H,,(Fb: accFb) by Proposition 7.1, it is enough to provc (9.4.10) when x runs through the
set of these classes.

The intcrsection nlunber (iJi (0), v-) 0 E Z[q, q-l] is calculated as follows;

Clailn 1
if i "# 1, ancl
if l = 1.

Proof. Because of (9.4.8) anel (9.4.16), ,ve can elerivc Clailn 1 frorn Leillina. 8.2. 0

This clai In, in particulaJ.·; .shows that v ~ is priIni t ive.
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\'\Tc choose thc sign of thc vanishing cycle ar for [~r] in such a way that

(9.4.17)

Clahll 2. The 1110110droIJ1'y action [I]. on [5 n
-

1
, -\'"b] is trivial.

Proof. vVc see that

cf; ~(It) (a';( t»)

1J~/t) (1/ l' )

cPbio {,bI
O {, i' ( t) ( 1/ r )

cPf: 1(1/1' + P - pe2rr yC"T/)

by (9.4.12)

by (2.3)

by (9.4.6) ;

that is, the fall1ily { ~X"~t) ; tEl} over 06 is isoll10rphic to thc restriction of <Pb : Eb ---+ C X

to thc circle G'eo of ra.dius 21' with the center 1/r +p. Since l' can be takcn arbitrarily slnall,
this circlc can be far away fron1 0 as ruuch as wc want, On the othcr hand, thc critical
values Cr(b) have to reluain bounded \VheU1' tcnds to 0 because of (9.4.4). Thus \ve ca.n
conclude that the elisk Deo circuluscribcel by Coo eloes not contain any critical vallles of
~b. Hencc ela.ü11 2 follows [1'0111 Proposition 2.1. 0

Clainl 3. [,]. ([~i(O)]) = [~i(O)] far i = 2, ... ,lV.

Proof. By (9.4.13), (9.4.15) and Rcchlction 2 in §9.3, the rnoven1cnt A1/ of thc clistin
guished points Sb is hOl11otopically equivalent to a n10vcn1cnt )\;1~ which rernains a~ (v),
Ub(v) fixcel for all lJ E tE, anel pi(V) also fixed for 'i = 2, ... , 1V anel for a11 v E Z, whilc it
l110ves PI (b) (lJ) to PI (b)( v + 1) a.loug thc vertical line log 1pi + J=IIR. = e-1 (aD 1 ). If i # 1,
then the path ~r (lJ) is elisjoint frol11 this vertieal line because of (9.4.16). Thcreforc wc
obtain thc clai111. 0

Applying Claü11s 2 anel 3 to thc fOl'lnula (9.3.2), we obtain

[,].(8i(O))=8i(O) for i=2, ... ,1V.

\-\Te put

By Clai111 1, the choice of sigl1 (9.4.17), auel (9.4.18), \ve see that

(9.4.18)

No\v \vC sha11 prove that v' is equal with (-1) n( 11 -1) /2 (q - 1)v- E H n (Fb), anel prove
(9.4.9). First rClnark that Cla.iln 2 il11plics t.hat thc thilnbles Br(1/) anel [f'].(er(lJ)) sta.rt
\Vi th the sarne vanishing cycle a 1 (v) E [S 11 -} , ~-X-b (1/) ]. In pa,rticular, we have
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anel henee
(9.4.19)

On the othcr hanel, by the fonuula (9.3.2) anel thc reluark above, we have,

(9.4.20)

Note that, by (9.4.14), the hOll10topy dass [/J*([~i(I/)]) of paths is an clcl11ent of

[ Pb'" (ar(IJ) 1 PI (b) (IJ+ 1)) ].

Now \ve shall clesel'ibc paths whieh l'eprcscllt this hOI110tOpy dass.

By thc elescl'iption of the luoveluent jvt~ in thc proof of Clail11 3, thc h01110tOpy class
[/]*([~l(I/)J) is l'eprcscntcd by a path e(l/) defincd as follows. Note that by (9.4.16), the
path ~r (v) is on thc right-hand siele of the vertieal line

Ao := log 21' + J=lIft.

Note also that
PI (6)(1/) = log 2'1' + J=l(IJ + arg p),

\vhere -1r < arg p <rr, Then e(IJ) starts fron1 ab (IJ), goes to a point JA (1/) := PI (6) (IJ) +r;,
along ~r(1/): \vhere I'l. is a suffieiently Slllall eOll1plex llluubcr with Re K. > 0, draws a.n are
in thc countcr-cloekwisc direction to the point pr(b)(IJ ) + J=l1K.1 on thc line Ao along the
circle of radius 1r;,1 with the ecnter PI (b)(IJ), and gocs to PI (6)(IJ + 1) along Ao .

Let ~iO(1/) be thc path on C\ Cr(b) fron1 01:(1/) to a~ (1/) defined as fo11o\vs. Note that,
by (9.4.8), thc path eP (1/) is on the left-hand siele of the verticalline Ao. Then thc path
erO(v) starts frol11 ar(lJ), goes to p~ (1/) along ef'(I/), elraws an are on thc eircle of radius
1h: 1 with thc center ]J I (b)(IJ) in thc eountcr-cloekwisc di reetion to the p oint ]J 1 ( b) (IJ) - 1,,' on
eP (v)(1), where K.' is a eertain cOluplex lllu11ber with 11i'1 = IK:I, anel gocs to a~ (1/) along
eP (V)~l. It. is easy to see that

\~Te put

Thcn, frol11 (9.4.20), \ve have

\Vc eleeolupose the path ei(O) into two parts at p~ (0); that is, we write er(O) = "12 . '1]1,

W herc 1/1 is thc path frenn ab (0) to p~ (0) along e1 (0), ancl 1]2 is the rel11aining part. Then
ejO (0) also clecolnposes into 1]3 . "/1 .
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fram a;:='(O)
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fram a;:='(O)

ag (0) +-

I k
PI (b)(O) ,

e(l) f(l)

Figlll'C 4

Let
T : CS TJ

-
1 ---+ Pb, anel Ti : CS n

-
1 ---+ Pb

be contillllouS lllaps representing er (0) over ~r (0) anel [""tl,. (er (0)) over f (1), respectively.
Since e~ (0) and [""tl *(er (0)) start with the same vanishing cyde ur (0) by Clairn 2, we
can choose T alld TI in such a way that th~ir restrictiollS to the sub-path Tll coinciele;

(9.4.21 )

(See Definition 4.5 for the definition of the restrietion to a sub-path.) Let T' be the restrie
tion of T to the sllb-path 1]2, anel T~ the restrietion of Ti to the sllb-path EP (l)J~ (1)'1]3,
Then we h1.'1,ve aT' = aT~, anel hence we obtain an n,-cyc1e

T" := T~ - T' : CSn
-

1 U (-C sn-I) --+ Fb

over the path ~? (1)5~ (1 )'/73172 I froln ]J I (b)( 0) to pdb)(1). Its hOlllOlogy dass is

[T"] = [T~J - [T'] = [TIJ - [TJ = h'],.(O~(O)) - Or(O) = v
f

•

Here we have used (9.4.21). This again shows that v' E H n (Pb). The restrietion T(q) of
this n -cyde T" to the sub-path EP (1) represents a thilnble for [~P (1)]; that is e( [~P ]) (1)
01' -e([~~]) (1). Hencc its hornology dass i8 either qv- 01' -qv-. Let T( l) be the restrictioll

of -T" to the sub-path '1]217;1. Sillce [1]217;'J = [~P(O)] in [Pb-(a~(O).pdb)(O))],T(I)

represents a. thirnble f<.H· [E. P(0) ]. Hcncc its hOI11010gy dass is ci ther v~ 01' - V~. Since the
rernainillg part of T" after cleleting T( (I) anel - T(l) i8 contained in 80 Pb, \ve have
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Since v' E HJl(Fb) by (9.4.19); wc obtain

v'=(q-1)vY

, 01' v'=-(q-1)v-,

fronl (6.16). Thc sign is eletennincel by the conclition (9.4.17) anel LeillIlla4.1. 0

As in RJ~nlarks 9.2.3 and 9.2.4, we get thc follovling:

Corollary 9.4.1. Let, a.lld,' be silnplc loops around 'Do lvith tbe bRSC point band
b', rcspectivc1y. Let 0' be a. patl1 fron1 b to b' in U such that [0']-1 ['''/][0'] = [,] llolds in
'TrI (U, b). Then vve havc an cquality (v[,']' v-[,']) == [0']* (v[,], vY

[,]) 1l10dulo U(Z[q, q-l]) in
Hn(Fb' ) X HII(Fbl,aoFbl). 0

§9.5. A generator of H'l (Pb) as a Jr] (U)-nl0dule

Let Z[q, q-I ][JrI (U, b)] be thc group ring of 'TrI (U, b) with cocfficicnts in Z[q, q-l]. vVe
can consider H" (Fb ), H" (Fb , ao Fb) anel H n (Pb, acoFb ) as Illoduies ovel' this ring in a natural
\Vay.

Theorenl 9.5.1. Let '/ : ! ~ U be a. SiIllplc 100]) ;ll'ound 'Da with the base point b.
TllCll vY['''d in Tlleorenl 9.2.1 generates the Z[q, q-] ]['Trl (U, b)]-ll1odule H" (Fb , 00 Fb ), allel
v[,] generates the Z[q,q-l][Jrl(U,b)]-Inoelulc Hn(Fb ).

Befol'e proving Theore111 9.5.1, we necel S01118 prcparatio11.

Rell1ark 9.5.1. Fron1 now on to the enel of this subsection, we use c' = ruin{c, r}
instead of E, where T is a sufficiently sln8011 positive real nllnlber. In particular, \ve ahvays
aSSUIne that a~ = T for a base point b given at the olltset of each argU111cnt.

Definition 9.5.1. Vle define U1~r C Ur; to be the locus of all u E Ur; such that, if
Pi a.nel Pi are elistinct. vailles in Cr(u), thcn larg Pi - arg pjl is not 0 nor 7r.

It i5 obvions t.hat. r \ UNis H, real seIni-algcbraic subset of real coelüncnsion 1.

Lenuua 9.5.1. Let b be apoint ofU~r, and let Cr(b) be {PI, ... ,]JN}. Let,\p : I -t C be
tllC patll gi ven by t I---f (1 - t)1' + t . pi, nrhere .,. is tlle S1118.11 posi ti ve real 11t1I11 bel' in RClnark
9.5.1. TlJen ,\? is 8.n clclnent of Pb ((l~ ,pj). lvIoreovcr, therc cxist patlls ~F E Pb(a~ ,pd
far'i = 1, ... ,I\l such that [eF] = [,\?] in [Pb(a~,pj)] fareacll i, anel tllat {~p, ... ,el~} is
a !'lP-regular syste111 of patlls frOI11 a~ .

P1'oof. By thc definition of U/:..r , the path t i--t t .Pi on C fron1 0 to Pi does not pass through

any critical valucs of Jb other than Pi. Sincc'" is slua11 cnough, A? i8 also disjoint froin
Cr(b) \ {pd. Hence ,\? E Pb(a~ ,pd. \Ve Pllt

!(; := ](b U { z E C ; Iz I ::; c (b) , ancl - Jr + 17(b) /2 ::; arg (z - 1') ::; Jr - 'I] (b) /2},

where 1] is the function defined by (6.2). Thcn each ,\? is containcd in ](;. It i5 easy to
see that there is a continllolls Iuap 9 : Je; ~ !(b v.rhich satisfies the following; (i) 9 is a
hOlllcon10rphislll, (ii) 9 is a horllotopy invcrscof the inclusion !(b Y !(; , anel (iii) g(Pi) = Pi
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for a11 Pi E Cr(bL and g(([~) = (l~. \~Te put ~p := go I\? Then we have (~?] = [/\?] in
[Pb (a~ ,Pi) ]. Thc paths I\? : ... , 1\ Rr are injective, allel they satisfy I\? (I) n I\J (I) = {a~}

if i i= j. Hence, by (i) <.tnd (iiiL the systelll {~p, ... ,~Rr} of paths froIu a~ is 1(-regular.
D

K;
Figure 5

Then TheoreIll 9.5.1 fo11ows froln the following:

Proposition 9.5.1. Suppose that b E UN0 Let p hc a value in Cr(b). and let ,..\ 0 : 1 -t C
be the patll fronl a~ -= 1" to P given by t I-t (1 - t)1' + t . p. Then there exists a siInple loop
"/0 in U with the base point b such that v~ ['"'/0 J =8( (/\ 0 D(O) in H n (Fb:aoPb).

Proof of Theorem 9.5.1. First, we clerive Theoreln 9.5.1 frol11 Proposition 9.5.1. Since
u['"'r] = ±(1 - Cf)v~ h'] anel H ll (Pb) = (1 - q)HIl (Pb, aoPh), the seconcl assertion follo\vs fronl
the first.

It is enough to prove this theorerll uuder the assurnption that b EU;:';. \Ve put
Cr(b) = {PI,'" ,PN}, ~tnd let I\? : 1 -t C denote the path given by t I-t (1 - t)r + t· Pi.
By Lenuna 9.5.1, there exists a 1\..- regular systelll {~p, ... 1 ~J,r} of paths frynl a? = ,.
such that [~?] = [/\?] in [Pb( a~ ,Pi) ]. In particlllar, we have e([~? ])(0) = ±8((/\P])(0) in
Hn(Fb,aoFb) fori = 1, ... ,lV. By Proposition 7.1, \ve see that B([~~])(O), .... B([~Rr])(O)

generate H n (Fh , ao Fh) as Z[q, q-l ]-ll1odule. Hence, by Proposition 9.5.1. there exist sinlple
loops '"'/l, ... ~ I'N arounel ~Do with the base point b such that V

v h'IL ... ~ VV['"'/N] generate
H ll (Fb~ ao Fb) as Z[q, q-l ]-I11oclule. On thc other hand, by Proposition 9, 1.1 ~ there exists
[0';] E 111 (U ~ b) for each ,: such that [O'd- 1 ['"'/i][O'd = ["/], where '"'( is the silnple loop givcn
in the staten1ent of Theorclll 9.5.1. By Curo11ary 9.4.1. we have ·v- h'd == [O'd *v~ (,]. Hence 
'V~['"'!] generates HII(Fh~aoFb) as a Z[q:q-l][7fl(U:b)]-nlodule. 0

P1YJOf of P1'o]>ositioH 9.5.1. \-\Te llse the following notation; for two values tu,:; E C.
we elenot.e by 1\( W, .:] : 1 -t C thc path givcn by t I-t (1 - t)w + tz 1 and b:v A[w. zJ its inutge
I\[W, .:](1) C C. -

Let. {c I , •••• CN } be thc intersect.ion points of L 11 Cl,nd 'Do. For u E Lll1 we put Pi (1.L) :=
L~I(C;). \Ve have er('n) = {pdu)' ... ,PtV(U)}. By rcnulnbering CI: .... CN, \ve aSSUl1lC
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that the point p E Cr(b) given in the statcl11ent of Proposition 9.5.1 is PI (6). In particular,
wc have ,,\ a = "\[1', PI (b)]

Since b E U1~T, we have

(9.5.1)

Let L3.j C C clenote the closccl elisk \vith the center pj (b) anel of raelius 21' for i = 1, ... : 1V.
Since T is sufficiently sl11a11, there exists a point PI (b) - p on the boundary fJ6. 1 such that

A [p I ( b) - p, 0] n .6 i = {~]J I ( b) - p} if·i = 1, anel
if i -# I,

(9.5.2)

where p is a COll1plcx nUll1ber with Ipl = 21'. :Nloreover, we l11ay aSSll111e that

hn p> 0

Irn p = 0 ancl R,e p > 0

Iln p < 0

if hn PI (b) > 0,

if h11 PI (b) = 0,

if h11 PI (b) < O.

anel (9.5.3)

(Note that if In1 pj (0) = 0, thCll Re PI (0) > 0 because of bE U1V ') Vve put

anellet f~ bc the counter-clockwise loo}) along f-h (a~d with the base point b'. Since l' is
S1113.11 enough, anel b E UN' (9.5.3) il11plies that

b' E UN0 (9.5.4)

Since Lb intersects "Da transversely by Proposition 2.4: anel r is sufficiently sn1a11 , '""/~

is a siInple loop arounel "D a . V/e have ]J j (b') = p by Lenl1113. 9.4.1. Let D~ C C be
the closccl clisk with the center 0 anel of radius 21·. Since l' is sl11a.11 enough, we have
D~ n Cr(b') = {PI (b')}. \\Te also have E'(b') = E(b') = r. Therefore, there is Cl path ~?

f1'OI11 a~, =.,. to pj(b') = p which represcnts the horllotopy class (A[r,p]] in (Pb,(a~,,]Jl(b'))]

anel is containecl in ](b' n D~. Hence [A[r, p]] = [~?] is the unique hOll1otOpy class in
[ Pb' (a~I,]J I (v')) J charact.eri2eel by (9.4.8). Using Proposition 9.4.1, we have

(9.5.5)

Let ß be a path on Lb frorfl b' to b givcn by

By (9.5.2), this path eloes not pass through any point of Lb n Da, anel hence it is a path
in U. \Ve put
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Since '"'/~ is Cl. silnple loop around Da: so is thc loop '"'1o. \~Te sha.ll show that this ,0
is the hopcd-for loop; that is, v-['"'Io] is equal with 8([1'\°])(0) in Hn,(Fb,DoFb) n10clulo
U(Z[q, q-l]). By Corollary 9.4.1, we havc

(9.5.6)

Con1bining this with (9.5.5), it is cnough to prove

(9.5.7)

By LelnnUl. 2.3, \Vc havc Lb \ V o C UN. Hence we havc a nutp [ß]* : Cr(b' ) --+ Cr(b).
Thc value PI (ß (t)) elraws a straight path 1'\ [p, PI (b)] on C by Lerl1rl1a 9.4.1. Because of thc
assulnption (9.5.3), this path docs not traverse 1R::;0. Hcnce we have

(9.5.8)

Now consider the bijcctive Inap

(9.5.9)

By (9.5.8), a lifting of (9.5.9) up to C is givcn by

In order to to prove (9.5.7), it is cnough to show that

(9.5.10)

In fact: (9.5.10) with (9.5.8) ilnplies that

(9.5.11)

Since 8([1'\°])(0) is a thin1ble for [1'\°(0)], whilc B([.\[r,p]])(O) is a thiinble for [..\[r,p](O)],
(9.5.11) and the fonnula (9.3.3) iInply (9.5.7).

In order to provc (9.5.10), wc investigate the rnoven1ents of a~(t) and pi(ß(t)) when t
varies fron1 0 to 1. Thcre exists a large closcd disk B on Lb with the foUowing propcrties;

N

B => ('b( A[]h (b) - p, 0]), and E' (u.) = 'I' for all 'll E B \ Ul'b(.~~i).
i=l

(9.5.12)

Indccd, a point u on Lb such that c:'(u) < 7' is either containecl in f,b(.6.i) far son1C 'i, 01' in the
union of Aj := f-b( { z E C; Iz - p.i(b)1 > (21')-1 }). Sincc l' can bc taken RJ'bitrariIy sn1all,
Lb \Uf=l A j can be so largc that it contains a closed ball B \vhich contains Lb(A[pl(b)-p, 0]).
By (9.5.2) anel (9.5.12), we have c:'(ß(t)) = .,. for aU tEl. This ilnplies that

a~( t) . = l' for a11 tEl. ' .
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On the other hand, by Lenuua 9.4.1, \ve see that pi(ß(t)) draws the path A[Pi(b'),p;(b)],
anel that Pi(b') i5 given by Pi(b') = p;(b) - PI (b) + p. The track of the Inovernent of thc
encling point P1 (b') = p of A[1', p] is given by A[p~PI (b)]. \\Te shall see that

(9.5.14)

Ineleeel, the two line segnlcllts A[O,pl(b)] anel A(zJi(b) - PI(b),pi(b)] arc parallel: but: if
·i =I- 1, they a,re not on the salne linc because of b E U~7' Hence t.he~y are clisjoint. Since l'

1S srnall enough anel Ipl = 21', WB sec that A[1', p] U A[p,PI (b)] a,nel A[Pi(b) - P1 (b) + p,Pi(b)]
are still elisjoint if i =I- 1. Hcnce (9.5.14) holels, This irnplies that the pa.th A[7', p] strctches
to A[p] (b), p] . /\(1'~ p] by thc Inovcrnent of thc eneling point P1 (ß( t)) of the path nri tlJou t
beillg affccted b'y tlle l1]OVenlent of iiJl'y otl]cr points ])2 (ß (t)), ... , PN (ß (t)). COlubining
this with (9.5.13), wc havc

(9.5.15)

It is casy to see froln (9.5.3) that thc tri angle (01' the Ene seglnent if it degencra tes )
spanneel by thc three points PI (b), p and r eloes not contain 0. IvIoreover, since r anel
p are sufficiently 81na11, (9.5.1) ilnplics that t.his trianglc cloes not contain any points of
Cr(b) \ {pl(b)}. Hcnce we have

COlnbining this with (9.5.15), we gct (9.5.10). 0

§9.6. The behavior of CI' (u) near Deo

In this subsection, wc shall investigate ho\v the set of the valucs CI' (u) of J11 bchaves
when 'U approache8 a point of Deo. Thc result. will bc usecl in thc proof of Theorcrl1 9.2.2.

\~Te choose a general affine linc A in r. Let c be an intersection point of A anel Deo.
Since A is general, c is a non-singular point of Deo, anel the intersection of A anel Deo is
transverse at c. Let 6.. bc a sufficicntly sIllall closed disk on A with the center c. Wc choose
a. base point b on the boundary 86.., and let '"'I : I -t Adenote the counter-clockwise loop
frOln b to b along a~. Since ~ is slna11 enough, / is a silnple loop around Deo. Since A is
general anel ~ is slnall, we lnay assurnc that

lvIoreovcr: by choosillg b gcncrally wc n130y also aSSlune that

bE UN0

By (9.6.1 L ['"'I] * 30cts on the set CI' (b).

Proposition 9.6.1. (1) The action of [,],. on CI' (b) ·is trivial.

(9.6.1 )

(9.6.2)



This assertion with (9.6.1) enables us to put

Cr(ll) = {PI (ll), ... ,PNeU.)} for II E fl \ {c},

\vhere PI (u), ... ~ PN( u.) are continuous function clefined ovcr fl \ {c}. By Proposition 2.3,
they are in fact holol11orphic functions.

Proposition 9.6.1 (colltinueel). (2) Tbere cxists Olle allel on1y Olle fUllCtioll 8.lnollg
{pJ(u), ... ,PN(1t)}, Sny PN(ll), wllic11 hAB a pole of order cl - 1 at u = c. (3) Tl1e otl1cr
functions PI (u), ... , PN -1 (u) CHll be extcllded 1l0101110rplJically ove1' u = c. (4) Tbe valucs
PI (c), ... , PN-l(C) are distillct to eac1] other. (5) lVIoreover Pi(C) -I 0 for 'i = 1, ... , IV - 1.

Proof. Hccall that ).;e C A 1l is the affine hypcrsurface corresponding to C, anel )[ e C pli
its projcctive c01l1pactification. Since A is general, we have the following;

(xc-I) ~){e is non-singular,
(xc-2) ~Y c is tangent to H co at a point P, anel
(xc-3) ...'C c n H co lu'ls an ordinal'Y elouble point at P as its only singularity.

Since .6. is locateel on the affine Ene A, thc polynoluial fu E r corresponding to 'U E .6. is
written in thc fOrIll

fu = je + t(u)g, (9.6.3)

where t : A -t Cis an a,ffine coorelinatc such that t(c) = 0, anel 9 i8 a certain polynonüal in
r. \Ve consider thc punctured affine Ene An UN. The critical values of ~u anel tbe critical
points of ~ll yield llHdti-va,luec1 algebraic functions on An UN to C anel to A J

\ respectively,
when II lUOVC8 on A n UN. Let VV be a 8n1a11 open neighborhoocl of b on A n UN which
is siIuply-connected. The critical values anel tbe critical points becolne single valueel when
they are restricteel on Hl. Let

]Ji : Hl -t C, anel Cfi: Hl -t All (i = 1, .. . ,f\l)

dcnote thosc single valued functions on Hf sucb tbat the critical point (li(W) E All of Jw is
nUlpped to Pi(W) E C by ~w : AU --t C for a11 W E Hf. The fundaluental group Jrl (AnUN, b)
acts on the set Cl' (b), anel bence we get a na.tural bOnl01110rphisl11

111. : 7f 1(A nUN, b) -----+ 6 (er(b) ),

whcre 6(Cr(b)) is the perrnutation group of thc set Cr(b). Let

p' : (C',b') --+ (A n UN,b)

be tbe finite etalc Galois covering corrcsponeling to rn. The Galois group is isonl0rphisc
to the inlage of Tn.. Let Hl' C C' be thc unique connecteel COll1pollcnt of p,-I (Hf) which
contains tbc base point b'. Tben tbere cxist single valuecl algebraic functions

]J~ : C' ---+ C 'for 'i = 1, ... , Ar
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such that pi(w') = Pi(p'(W')) for w' E Hl', ancl there also exist algebraic l1l0rphis111S

C' ---+ An for i = 1, ... ,lV

such that Cj~(w') = Cji(p'(W')) for w' E l,F'. These functions pi anel q; are eletennineel
uniquely because C' is connecteel. Then, for all y E C', the point q;(y) E An is a critical

point of ~ pi ( y) lying ovcr the cri ti ca.l value pi Cu). Let

p:C ---+ A

be the finite nlorphisrl1 extencling the etale covering p' : C' ---t A n UN, ancl let Li be the
connecteel cornponent of p-l(.6) containing b'o There exists a unique point c E A such
that p(c) = c. The InorphislllS qi : C' ---t All naturally extenel to

anel the algebra.ic functions pi : c' ---t C naturally extenel to Incronlorphic functions

fJi : C ---+ pI = Cu {oo}.

Clailn 1. There is one aJlel only one nlorphisln alnong {Ql, . .. ,(lN}, say qN, such that
iJN(C) is containeel in H oo . 1\110rcovcr we have i}N(C) = P, whcre P is the point at which
)( c is tangent to H00'

Proof. vVe choose an affine part An' of pu which cont ains eh (c), ... , i}N (c) und P. Let
(ZI , •.. , zn) be affine coordinates on A71' such that

H 00 = {z IJ = O}, anel P = (0, ... , 0).

\~TC express the hOlnogcneous polynonlials Je anel 9 as inhoillogencous polyncnuiaJs in tenns
of (ZI: ... : zn), and \ve write theIn by fe(Zll ... ,zn) and g(Z1, ... ,Zn), respectively. Note
that these inholllogencous polynolnials are dctcnnined uniquely only up to lllultiplications
by non-zero constants. By choosing theIll sl1itably, wc can writc the nttional function
" I ,

4>11 = lu /hl on An as follows;

.tu (Z 1 1 ••• , Z 11 )
4>u = -...:......----~

')'d
~n

Let flvl (ZI" .. ,zn) denote the honlogeneous part of degree v of fu (Z1, ... 1 zn). Then thc
propcrties (xc-l)- (xc-3) iluply that

(fe-I) I!Ol = 0,

(fc-2) !pl = az n , \vhcrc a is a. non-zero constant, anel

(fc-3) IJ2l (z 1 , ... , Zn -1 , 0) is a non-elegencratc quadratic ·fornl of ZI, ..• , Zn-I.
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\~TC define polynonüa.ls h t (1l;Zl, ... ,Zn), ... , hnCniZI, ... ,Zn) of Zl, ... , Zn as fo11o\vs;

for 'i = 1, ... ,n - 1, anel

hll (1li Zl",.:Zn) :=
d+l a~u

Zn ~ =
UZ n

By (fe-I) anel (fc-2), \ve see that

ahn-a (c, 0, ... ,0) = ° for i = 1, ... ,11,- 1 anel
Zi

C0111bining these with (fe-3), \ve obtain the fo11owing;

aahn
(c,O, ... , 0) = (1- d)a -# 0.

Zn

[
ahi ]

elet azj(c,O, ... ,O) i,j=I, ... ,n -# 0. (9.6.4)

Let H i ('Il) C A 1/! denote the affine hyperst11-[aee defined by h i (lL, Z1 , ... , Zn) = 0. Because
of the properties (fc-l)-(fc-3), none of H;(c) contains Hoc; as an irreducible cOlllponent.
Since .6. is sl11a11, the set of critical points {(li (tu), ... ,qN (1o)} of ~ fJ( 10) rClnains containcd

in the affine part A U1 for a11 w E Li. Hencc the set {(li (w), ... ,qN(W)} coincielcs with thc
intersection

I(p(w)) := H1(p(w)) n··· n Hn(p(w)).

\Ve will prove thc fo11owing two asscrtions;

Sub-claiIll 1; I(c) n Hoo consists of only one point P, and
Sub-clainl 2; cach of H\ (c), ... , Hn(c) is non-singular at Panel thcy interscct trans
versely at P.

Indeed, t.he coordinates of a point in I(c) n Hoo are the solution of

Z/l = fc(Zl:' .. , Z/l-l, 0) = 0, anel

afc(ZI, ... ,Zn-l,O) =0a for i = 1, ... , n - 1.
Zi

Since fc(Zl, . .. ,Z/I-l, 0) = Odefines the hypersluface ...Yc n H 00 on H 00, the solution lUllst
be the coordinates of a singular point of 4Y c n H 00, w hich rnust bc P = (0, ... , 0) by
the propcrty (xc-3). Sub-claiIn 2 follows fronl the non-degencracy (9.6.4) of the jacobian
nlatrix of the dcfining equations of the hypersurfaces at P.

Lct 11 C AU! bc a 811H).11 open neighborhood of Hoc; n A Tu
. Thell thc (l,bovc two

assertions il11ply that, if'll E ~, thcn 1/ n l(u) cOl1sists of only one point, say P(u), such
that P(c) =: P, because ~ is sl11a11 cl1ough. (No new points COl1le into AU! fro111 the infinity
bccause (li (c), ... , ilt...r(c) are already containcd in A 1I !.) Thus Clainl 1 is shown by putting
(lN(w) = P(p(1o)). 0
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Claün 1 ilnplies that thc action of [,]* on {ql(b), ... ,qN(b)} lnaps fJN(b) to qN(b).
Hcnce thc corresponding critical valuc]JN is singlc-valucd on 6. \ {c}; that is, there exists
a single-valuecl function P~r : 6. \ {c} --+ C such that PN ILi \ {ci} = p* ]J~r.

Note also that Clailll 1 iluplies that the values ill (10), ... , PN -1 (-w) are containcd in
a boundcd donuün of C whcn 10 n10VC8 on ~. Thereforc, the assertion (3) of Proposition
follows fronl the assertion (1).

Clahn 2. Thc function PIV has a pole of order cl - 1 at 1f, = c.

Pr'vof. Lct ((1CU), ... , (n(U)) denote thc coordinatcs of thc point fjN(U) = P(u) in tenns
of (Zl , ... 1 Z /1) above. Then

each (i (u) has a zero of order 1 at U = c. (9.6.5 )

Indeed, when 1L is elose enough to c, the solution ((1 (ll), ... , (TI (U)) of hdu; z)
hnCu; z) = 0 near the origin is obtained approxinli:ttely by looking at the tenns of degree 0
anel 1 in (ZI" .. ,zn). Becausc A is chosen gencl'a11y, wc lllay aSSUlnc that

fJg fJg
-fJ (0, ... ,0), ... , -fJ (0, ... ,0) anel g(O, ... ,0) are general con1plex nun1bers, (9.6.6)

Z1 Zn

where 9 (z 1, ... 7 Z /1) is an inhonlogeneous fonn of the polynonüal gEr which has appcared
in (9.6.3). Using (fe-I) and (fc-2), we cau calculate thc tenns of degree 0 as fo11ows;

{

t('/f) . ~(O, ... 10)
hj(u; 0, ... ,0) =

-d· t(u). g(O"" ,0)

if i #- 1'/.,

if i = n.

and
(9.6.7)

Obviously, each of then1 has a zero of order 1 at u = c. On thc other hand, the n x n
Inatl'ix ( Dh j / fJz j (u; 0, ... , 0) ) of thc coefficicnts of thc degrce 1 tenns of thc polynoillials
h i l'elnain non-degcnerate even when u = c by (9.6.4). Cornbining this with (9.6.6) anel
(9.6.7), \vC see that (9.6.5) holds. Since

If () 1 ( () ) fu ((1 (II ), ... , (n (U ) )
PN U = '-Pu (}N U = ( (' )d '

_ 71 U

the propcrty (fc-l) in1plies that p'fv Cu) has a pole of order ::; cl - 1 a.t. ·u = c.

In order to see t ha.t thc order is cl-I, we consider the variety W of a11 pairs ( fe (Z ) , 9 (z ))
of inholnogcneous polYllollüals of dcgrce ::; cl such that fe (z) has the propertics (fc-l)- (fc-3).
It. is easy to see that W is irrecluciblc. By looking back at thc proof, we can see that sub
clailn 2 holels for evcry pair (fr; (z), g(z)) E W. Hcnce thc point P(u) = ((I (u), ... ,(11 (u))
of I(u) is wcll-definccl. Vve have just seen that the locus WIe W of all pairs (fe (z): g( z))
for \vhich (9.6.5) holds is Zariski open dense. Now let W 2 C W 1 be thc locus of a.ll
(fe (z), g( z)) such that P~ZT (ll) has a pole of order cxactly cl -1. Uncler (9.6.5), this conclition
is obviously open, anel hcnce W 2 C W I is Zariski open. vVe can casily check that if we put
f~(z) = Zn + zf + ... + Z~_l anel gO(z) = 1 - 2z1 - .. :" - 2z 11 - 1 : then (~(z),90(Z)) E W 2.
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Hence W 2 C W is a Zariski open anel dense subset. Now Clairu 2 fo11ows froln the
generali ty of the affine line A; that is, the genera.li ty of the pair (Je (Z ), g(z) ). D

Next we sha11 prove the assertions (1) anel (4). Reca11 that L~ C IP*(f) is the affine
line Lu \ {()ocJ. The property (xc-I) ilnplies that ){ u is non-singular for a11ll E 6.. Hence
Proposition 2.3 ilnpEcs that.

Cr(u) = [:",;1 (L~ n Do ) for all II E 6..

V/hen u E 6. \ {c}, L~ intel'sccts Do a.t distinct lV points transversely by Proposition 2.4
anel (9.6.1). ClaiIns 1 anel 2 show that, when u approaches c, one of the int.crsection points
tends to the point f) 00 E L 1l, while the othcr lV - 1 points renuün aloof from fJ 00 • The
assertions (1) anel (4) are equivalent to the fact that these N - 1 points remain elistinct
even whcn II = c. In order to sho\v this fact, it is enough to prove the following:

Clahn 3. At evcl'Y point of L~nDo, Do is non-singular, anel L~ intersects Do transversely.

Proof. First note that D oo has a structure of the cone with the vertex f)oo E D oo , anel
Lc is thc Ene containcd in Doo passing through this vertex by Proposition 2.2. Hence we
have L c n D o c D o n Doo .

Definition 9.6.1. \·Ve define the subset Dooo of D o n Deo to be the locus of all ){ E
D o n Deo such that H eo is disjoint frol11 the singular locus of )(. It is obvious that Dooo
is a Zariski open subset of D o n Doo .

Relnark 9.6.1. If v E Deo is general, then .Y 11 is non-singular, anel hence L~ nDo c Dooo
because of Lenuua 2.1.

Lenuna 9.6.1. The locus Dooo is il'l'cduciblc.

\-\Te postpolle proving Lenuna 9.6.1, anel COIllplcte tbe proof of Proposition 9.6.1 first.

Let 1; be a point. of IP*(f) anel let x be a point of r x such that pr(i) = ,1;. Since
Li: c IP*(r) does not depend on the choice of X, we can write L~ insteael of L~. Considcl'
tbe loc.us 9 of a11 points x E Deo \ {l)oo} such that, at every point of L~ n D o , D o is
non-singular, anel L~ intel'sects D o tl'ansvcrscly. This locus 9 is obviously Zariski open in
Deo \ {f)ocJ. By the generality of the position of c in D OOl it is enough to show that 9 is
non-elnpty. Using Lenuua. 9.6.1 anel RCluark 9.6.1, we ca,n rechlce the clainl 9 =1= 0 to the
following; there exists at least one point y E Dooo such that D o is non-singular at y anel
tbat L~ intersects D 0 trallsversely at y.

Let (lP lI rdenote the dual projective space of IP", anel let Ver : (lPll r-t IP* (r) be the
1110rpbisnl given by H r-+ rl . H. Note that Ver is projectively equivalent to the Veronese
elnbedding of clegree d. Let. .Y w bc t.he singular projcctive hypersurfacc corresponding
to a general point W of Do, anel let .Y ~, C {Pli r be tbc clual hypersul'face of ){ w ; that
is, the closure of thc locus of all hyperplanes in IPll which are tangent to .Y w at it.s non
singular point. Because .Y w has one orelinary double point HS its only singularity, anel
because of cl ~ 3, we see tbat l for a general point H E )(~, t.he singular point of _Y w is
disjoint froIll H. Note also that the clegree of .Y ~ is ~ d + 1 because of cl 2: 3. Hence
Ver(.Yt~) is not contajned in any hyperplane of IP*(r). Note that, D o is non-singular at 'W

57



because w is general in Da. Let T w er. (r) be the tangent hyperplane of Da at w. Then
Ver (.Y~) n T w is of coclitnension 1 in Ver (.Yl~)' Hence there exists a hyperplane H 1 E .Yt~

with the following propert.ies;

(hl) Ver (Hd tI. T w ,

(h2) H 1 is tangent to )( w at its non-singular point, anel
(h3) Sing(.Y tu) n H j = 0.
No\-v we consieler the autolnorphi81n grollp PGL ('17. + 1) of IPu

. This group acts on (IPnr
aud IP.(r) in such a natural \va)' that VC1' is equivariant. Note that Da C IP.(f) is stable
under this action. Thcre i8 an elenlellt g E PGL ('17. + 1) such that g(Ht} = Hoo . Consider
thc point g (w) E Da, which corrcsponcls to the singular hypcrsurface .cl (.Y tu) C )P7/. Then
Da i8 also non-singular at g(w), anel the tangent hyperplane Tg( w) C IP. (f) to Da at
g(w) is given by g(Tw ). By (h2) auel (h3), \ve sec that g(w) E Daoo . Because of (hl),
1)00 = Ver(Hoo ) = g(Ver(HJ )) is not containcd in Tg(tu). Hence L~(lII) intersccts Da
transversely. D

The last assertion (5) of Proposition 9.6.1 follows frol11 thc generality of the position
of c in D oo . Ineleeel, if we replacc c with c' such that. lei = .Fe + a . hd for SOlnc a E C, wc
have Pi(c') = pj( c) + ({, D

Proof of Lemrna 9.6.1. For a singular projectivc space .Y E Da, we put

.y* := { H E (IP" r; H is tangent to )C at its non-singular point}, anel

_y" := { H E _y* ; H n Sing )( = 0}.

Thc dual hypersurface )C v is thc closul'c of _Y*. If X E Da i8 general, thcn ..{y •• i8 an
irrcclucible locally Zal'i8ki closecl subset of coditncnsion 1 in ()pu r, becau8e of cl ~ 3. There
are no _y E Da such that _y •• is Zal'iski open densc in (IPn r. '~Tc put

Since Da is il'l'educible, thc ahovc eonsiclcl'ation irnplies that there exists only one i1're
elllcible C0111pOnent ~t~17ax of X·· which is luapped eloluinantly onto Da by t.he first projec
tion, and Inoreovcr~ if thcre cxists any othcr irreelucible C0111pOllent ~;. of X**, thell we
have

1· -r**( 11U -~1

Now consider thc second projection

d· :r ••< Inl ~""Illax' (9.6.8)

This projection is a locally trivial fiber space in thc sense of conlplex analytic geoluetry,
because PGL ('11, + 1) aets on both of :€** anel (!Pli r in such a na.tural \Vay that pr2 is
equivariallt, aJlel because this action is transitive on (IPnr. Thc space Daoo i8 nothing but
thc fiber of 1)7'2 over Hoc E (lPltr. Since Daoo i8 Zariski open in Da n Doo , cvery irrcducible
C0111pOnent of Daoo is'of codiIncl1siol1 2 in 1P*(f). Hence every irredllcible cOlnponcnt of ~t·*
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luust have a salue dinlension. Conlbilling this with (9.6.8), we see that X** is irreclucible.
Therefore thc fiber D ooo of pr2 nllist be irreelucible because (IPn r is siIuply connccteel. 0

Renlark 9.6.2. Thc locus D o n Doo consists of two irreducible cOlnponcnts; one is
thc closure of Dooo clefinccl abovc, allel the other is the locus of a11 singular hypcrsurI'accs
){ such that Sing )[ n H00 =1= 0.

§9.7. Proof of Theorenl 9.2.2

\Ve t akc an affine line A er, a sn1<:111 closcd disk ~ c A with thc center c E A n D 00 ,

anel the base point b E aÖ. of thc siIuple loop / around D oo as in the bcginning of §9.6.
By (9.6.2), we have ](/J C C X

, anel the isoll1orphisnls \lJ ~ anel Wb'
Proposition 9.7.1. Thcrc cxist a non-zero e1C1llent e in tllC kcrnel of thc natural

hOlll011l0rpl1islll H ll - 1 (){bO ) ---1- H n - 1 (){bO ) and a Z-lincal' form 1 : H lI - 1 (){bO ) ---1- Z SUell

tllat tlle 111011odro111j' action [,,]* on Hn - 1 (~}{bO) is given hy

x 1-+ x+/(x)·e. (9.7.1)

JvIoreover the pair (e, I) is unique up to Sigll.

This proposition will be proved later togethcr with Proposition 9.7.2 below.

FrolD 110W on, wc usc c clefinccl by (3.3) agail1. Since ö. is srn30ll enough, Proposition
9.6.1 iIl1plies that

(9.7.2)

hold for a11 tEl. Considcr the donlain

~2.!(b)(OO) := { z E Cu {oo} j jzl ~ 1/2E{b)}.

It is obvious tha.t 1(b n ~2e(b)(OO) is siluply connected anel its intersection with Cr(b)
consists of only PN(b) bccause of (9.7.2). Thcrefore, therc cxists a unique honlotopy dass
of paths

which is represented by a path CiV such that

(9.7.3)

Now by Relua.rks 9.2.3 anel 9.2.4 in §9.2, Theorclu 9.2.2 fo11ows fro111 the following:

Proposition 9.7.2. Let

bc tlle bOTl1010gy dass of the liftcd t11iInble e([eN']) (0). Then v- is pl'inütivc, f:lnd there is
an clenJent V2 E Hn{Fb ) SUdl tlJat tllc 1110nodrol11'y action [,]* on H 7I (Fb , ao Pb) is giVCl1 by

(9.7.4)
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wllere e E H 11 -1 (.YbO) is the elenlen t in Proposi tion 9.7.1. Let 0' (~N] E [5 11
-

1
, .Yb ] bc tlle

vanislling cycle froll] wllicll thc tllllnblc 8( [~N]) starts, so tlul.t v- = - Wb (O'[~NJ ® 1). Tllcn
V2 i5 written as [0110"1\'5;

(± -d+l + -d+2 + + -1) -- q a-d+2q ... a-tCJ . v
(9.7.5)

wlJere U-d+2, ... , U-1 are ceTtain integers, a.llel 'W E H n - t (_Yb ) is a. ceTtain h01]]olog~y

class.

Renlark 9.7.1. Thc fact that thc cocfficicnt of q-d+l in (9.7.5) is 1 01' -1 plays an
ilnportant role in the proof on Irreclucibility Theorcrn in thc next scction.

Relnark 9.7.2. '""Te can detenninc neithcr the cOlnbination of signs in (9.7.4) anel
(9.7.5),1101' thc values of thc intcgcrs a_d+2 ... , a_t. Wc would like to fill up this unsat
isfactory part of the theory in future.

Proo! 0/ P1'opositions 9.7.1 (Lnd 9.7.2. ''''Te writc the set Cl' (b) silnply by {PI, ... ,PN }
ins tead of {PI (b) 1 ••• ,PN (b) }. Thc nlovenlcllt A1, of the dis tinguishccl points SfJ : = er (b) U
Zbo UZb in C along the loop -f is hOlllotopically equivalent to the nlovelnent )\;f~ : I X Sb ---+
C describecl as follows; thc points a? (11) a.nel Ur(lJ) relnain fixed, the points pi(V) also
renlain fixed if 'i I- lV, anel they stay left-hand sielc of thc vcrticallinc

while thc point PN (11) nloves do\vn to PN (11 - cl + 1) a.long the ver t ical line A(X). This
can bc scen as follows. Let Pi (.6) C C U {oo} bc thc inlagc of thc Ineromorphic funetion
.6 ---+ Cu {oo} corrcsponeling to thc 1'-th criticaI valuc. Sincc.6 is snutll enough, Proposition
9.6.1 irnplies that

(9.7.6)

anel
(9.7.7)

The nlOVe1nents of a~ (lJ) anel 01:(11) are hennotopically equivalent to the 11011-1110VCluent
by Rechlction 1 in §9.3. By (9.7.6) anel (9.7.7), if -i I- lV, then the Inovelllent of [Ji(lI) is
also hOlllotopically equivalent to the 11011-IllOvcrnent by Rechlction 2 in §9.3. On the other
hand, Proposition 9.6.1 (2) ilnplies that ]JN E C X Inakcs rounel trips arounel 00 in the
clockwisc clirection (d - l)-tilues. COlnbining this with (9.7.7), the traee of the InOVClllent
of PN (lJ ) ean be deforlllccl to thc scgIllent of 1\00 between PN(lI) anel PN(V - d + 1) without
affecting thc 1110vclllcrIts of the othcr elistinguisheel points.

Thcre exists a ](-regular systeill {~p, ... ,~Xr} of paths froln a~ whieh satisfies the
following property;
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\\Te choose a vanishing cycle

° [ta] [5 11
-

1 v· O ]ai := a..."jE,-''\. b

for each [~P]. By Proposition 5.1, their hOlllology classes af ,... , a.l~ fonn a set of basis of
the free Z-nloelule H n - 1()(bO). \·Ve elefine a Z-linear fonn I : H ,I - 1 ()(bO) --+ Z by

1( -9).= {O ifii-l'l,and
a 1 • 'f . - I"1 1 1. - .:, •

(9.7.9)

By Proposition 9.6.1 (1) and (9.6.1), [,] * acts on the set [Pb( a~ ,Pi) ], anel if·i i- 1>/, i t also
acts on [Pb'" (a~ (11), ])i(11)) ] by the elescription of jvt~ above. Frolll (9.7.6) and (9.7.7), we
CRJ1 easily see that

(9.7.10)

and, by the description of thc Inovernent M~, which is hOll1otopically equivalent to M··tl
we have

(9.7.11)

Since [,]*(ap) E [5"-1'-'YbO] is a vanishing cycle for [,]*([~?]), (9.7.10) ilnplies that, if
i i= 1V, then [,]*(a?) is either ap 01' -a? vVe sha11 show that

(9.7.12)

anel tha.t
(9.7.13)

First note that the action of [,]* on H7/(.~bO) is trivial. Ineleecl, since .6. is sn1a11 enough,
the property (xc-I) in §9.6 ilnplies that [--!l* acts on H71 - 1 (_Y b ) triviall~y. By Lelnn1H. 5.1,
[,]* acts on HII-1(.YbO) also trivia.lly. This, in p3orticular, in1plies (9.7.13). Seconcl, note
that the iln30gc ap, of aPby the natural h011101norphis111 Hn - d_YbO) --+ Hn -1 (-YbO) is non
zero for i = 1, ... ,lV. Inelcccl, thc in1age of Hn - 1(_YbO) ---1 Hn - 1(){l?) is, by definition,
H 7/-:-1 (){bO) in the exa,ct sequence (5.10). Thcorcll1 L3 teIls us that, for each i, the eIenlent

pl'llll

a?' generates H;;;iI~l(.YbO) e> Q as a Q[Jrl (U)]-lnodulc. Thercfore, a?' is not zero for c30ch

i = 1, ... , 1V. Cornbillillg these two facts, we see that [,]*(ap) call110t be -ap. Therefore,
[,]*(ap) cannot be -ap. Hcnce (9.7.12) is provccl. \\Te sha11 show that c defincd in
(9.7.13) is non-zero. 111 it \vere zero, then [,]* wOllld 30ct on H n - 1(_ybO) trivially because of
(9.7.12). However, since Yb = .J{ bn H 00 = ){l~ nH oo has an ordinary double point at P, the
action of [,]* on the non-zero SUb-lllochlle H~ril;l(Yb) of H n- 1(_ybO) is non-trivial, bccause

HI~I~I~I(Yb) 0 Q coincides \vith the Poincan~ dual of the Inodule of "vanishing cycles" in

H n - 2 (Yb) 0 Q in thc sense of [6; §3].

Then, by (9.7.12) anel thc definitions (9.7.9) and (9.7.13), we obtain

(9.7.14)
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This fonnula bcing cstahlishcd, e i8 charactcrized as a generater of the inlagc of thc en~

dOlnorphisnl Id - [,]. on H Jl - 1(XbO), whieh is a frec Z-nlodule of rank 1, anel henee e is
uniqucly eletenllineel up to sign. Thcrefore the pair (e,l) is also unique up to sign. Thus
Proposition 9.7.1 is proved.

Let

denote the thiInble for [~?] starting froln a? , and let

B?(I/) E [(CS n - 1,SII-1),(Fb'){bO(11))]

denotc its lifting, which is thc thilnblc for [~F(lI)] E [Pb"'(a~(v),Pi(lI))] starting froln
aF(11). By Proposition 7.1, thc hOlllOlogy classes 8f (0), ... , B?J (0) in Hn (Fb, Go Fb) fonn
a set of basis over Z['1, '1- 1

]. Hence it is enough to prove (9.7.4) when x runs through the
set of these classes. By (9.7.8), the paths ~F and CiV are disjoint if i f=. 1V, anel the paths
~j~ and Efj have a con11non cnding point as thcir only interscction. Hcnce, by Lemuul, 8.2,
we have

if 'l #- 1V, anel
if ,; = 1V.

(9.7.15)

In particalar 1 thi s shows that 'V~ is prilni tive.

\~re eall allel \vi11 choose the Sigll of a l~r in such Cl. way that

(9.7.16)

On thc othcr ha,nd, frenn the fonnula (9.3.2), the results (9.7.11) anel (9.7.12) ilnply that

COlnbining this with (9.7.15) anel (9.7.16), wc see that the action [i]. on Hfl (Fb , 80 Fb ) is
given by

wherc

Now we sha11 sho\v that this hOll10logy clas8v' is equal, up to Sigll, \vith - w~ (e01 )+V2 ,

wherc 'IJ2 is an clelnent in Hn (Fb) which ean bc writtcll in thc fonn (9.7.5) in thc stateInent
of Proposition 9.7.2.

Froill thc deseription of the l1lovcnlent J\;f~ of thc: clistinguished points Sb on C, we sec
that [i].([~Rr](11)), which is an element of [Pb"'(a~ (11), PN(1I - d +1)) ], is reprcsentecl by a
path E"(1I - cl + 1) as follows. Note that ~lZr(II)(I) is on the left-hand siele of the vertieal
Ene 1\00 = log IPN I+ AIR because of (9.7.8). Then the path ~"(II - d + 1) starts froln
a~ (1I), goes to H, point p~v(II)·:= PN(JI) - K.' along ER,(II) where K' is a sufficiently snlall
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conlplcx nlllnbcr with Re ri,' > 0, goes down to PN(l/ - d + 1) = PN(V - cl + 1) - ",' along
thc verticallinc parallel to Aoo , and then reaches to PN(V - cl + 1) along ~Rr(1J - d + 1).

\l\/e deHne thc path e~OO(v) frolll (L~ (v) to ub(I/) as follows. Note that efl(v)(1) is
on thc right-hand siele of thc vertieallinc Aoo bceausc of (9.7.3). Then e~OO(1/) goes fronl
a~ (1/) to p~v (1/) along eRr (1/), clraws an are on thc ci rclc of l'aclius 1"" Iwi th thc center ]J N (1/)
in the countcr-clockwise eli reetion to a point p~Zr (1/) := ]J N (1/) + "," on eN(1/) (1): where ","
is a cOlllplex nunlbcl' such that IK'I = lK"1 anel Re /i."," > 0, anel then goes to ar(1/) along
eN(I/)-l. Note that eCfvOO(lJ) is a path in 1(,,(1/).

\'Ve put

anel elefinc a loop T fronl ab to ar in <C x \ Cl' (b) HS follows; r gaes frOlll ab to p'Jv along
eN' draws a circle of radius IpN - PN 1 wi th thc center ]JN in thc counter-clockwise direction,
anel thcn goes back to ab along (e/V)-I. Note that r is a path in !(b. No\v we are going
to be interestcel exelusively in the ease I/ = O. It is easy to see that

\vhere ( := (' . eRF(O) anel

(' .- (N (- d + 1) . (Jr (- cl + 1)) -1 . (r (- d + 2) . (Jr (- d + 2) )- 1) ....
.... (r(-3)· (Jr(-3))-I). (r(-2). (Jr(-2))-I). (r(-l). (Jr(-l))-I).

(Sec Figure 6 on the next page.)

\Vc put

This is a vanishing eyele for [C] in ~"Ybo (0), and by fonnula (9.3.2), we have

In orcler to cIeternüne its hOlllOlogy class, we ehoosc a eontinuous lllap T : Csn-l ~ Pb
\vhich represcnts B([(], a*) over the path (. Let Ta alld Tl denote the restrictioIlS of T to
thc sub-paths e~OO(O) anel (' of (, respcctively. As n-chains in Fb , we havc T = To +TI.
Then Ta is a continuous lllap fron1 ! XSIl-l to 'I/J;;l (I(b(O)) because of ~~F(O)(I) C ](b(O).
Hs boundary is given by

fJTo = - s* + S',

\vhe1'c S* : 5 11
-

1 ~ _)(bO (0) represents the vanishing cycle a* = [i]*(aRr(O)), and S' :
5 n -I ~ ~"Y~ (0) l'cpl'esents a vanishillg cycle for [(']. Sinee 'lj;r; 1(](b(0)) is contracti blc (cf.
(6.8)), there are n-ehains r* and r' in ifJ'b 1 (!(b(O)) such that ar* = S* allel ar' = 5'. The
sunl Ta +r* - r' is an n-cyclc in 'l/Jr;l (!(II(O)), which is obviously hOIl1010gous to zero.
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~ PN(-1) ;*aN(-l)
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~ P'N(-2) ,
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J I

j

fram a~ (0)

J

)( PN(O)
I

ROO
b

*arJ (0)

r

I
I

drOO(O) t
I

fram a~ (0)
1(-1) 1

7(-2) I

~
t

I

)

J!c aN(-d + 2)

," J

PN(-d + 1) ~ a'N(-d + 1)
. I

the path t' (-d + 1)

Figure 6

Hence we have

T(-d + 2) I

I

~j:{(-d + 1)

the path (

Note that f' + Tl is an n-cycle in Pb. \~Te put

First let llS describe the hOlllOlogy dass [- f*] in H n (Fb , DoPb). Since thc hOlllOlogy
dass of t.hc bOllndary Df* = 5* in _Yb

O (0) is a* = h'l *(aRT (0) L it is 111apped to h'l *(aJ~ )
by the iSOl110rphisIll H"-l (-\bo (0)) 2:;; H,I-l (}("O) induced froln (G.1). By the definition of
c (cf. (9.7.13)). we have ["'I)*(al~r) = a~~, + c. Since f* is contained in '1/J"b1(]{,,(0)L we see
fr0111 Corollary 6.2 that.
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On the other hand, \ve have

becallse of (7.2). Hcncc \ve obtain

Next, we cxpress v; := (r' +Td E H1J (Fb ) by Incans of wb' 1 anel show that it is exprcsscd
in the fonn (9.7.5). For p = -1, -2, ... , -d + 2, lct T(,t) elcnote the restrietion of TI to
the sub-path T(p) of C', anel let T( -d+ I) clenotc the restriction of Tl to thc cnding piece
~N(-d + 1) of ('. Since the restrietion of Tl to (Ob (rL) )-I is contained in 800 Pb for all J-L,
we have

\Vc clefine wEH11 _ 1(.Yb) t.o bc the itnage of t.he hOl110logy dass

[8r'] = [5'] E H71 -r(.yr (0))

by the isol11orphisrl1 Hn -1 ( ..1{bO (0)) ~ Hn _ d.YuD) inclucecl frenn (6.1). Since f' is containecl
in '1P"t: 1 (!(b(0)), we sec frolll Corollary 6.2 that

[f'] = wr(w ® 1). (9.7.18)

The continuous 111ap T(-d+l) : C5"- 1 -t '1j;"b1(!(b(-d + 1)) rcpresents a thil11ble for
[~N( -d+ 1)] over t.he path CN( -d+ 1), which is cither 8([eiV])( -d+ 1) 01' -8([eN'])( -d+ 1).
Thereforc wc havc

(9.7.19)

For J-l. = -I, ... , -d + 2, thc boundary of the n-chain T(Jt) : ! x sn -I -+ 'Ij;"b I (1(b (p)) is of
thc fonn -SJt + S;n where 5 1t anel S;t are continuous lllaps fronl 5 71

-
1 to )Cb(J-L). Their

hOlnology classes are rclatccl by

By Theorcl11 LI (2), t.he cliffcrcnce

is a. nnll tiple of thc hOl11010gy dass of a vanishing cycle in .Yr (I'.) for [er (J.l )]; that is, it
is written as (l./lO"[eN](p.) by 80111e integer aJl" The dass a[eN](p.) is Inappccl to u[eN] by
thc iS01110rphisrl1 H"-l (.yr(p.)) ~ H,,-l (_Yb') inelucecl fronl (6.1). Since T(J-L)(!) C !(b(IL):
T( It) is cantained in 'Ij;b1(1(b(1'-) ). Thercfore, we sce fronl Corollary 6.2 that.

(9.7.20)
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COlnbining (9.7.17)-(9.7.20), wc gct

I ,T 0 ( 1) (± - d+1 - d+2 - 2 - 1 ) ~U2 = 'J! b 'W 0 - q + Cl-d+2q + ... + a-2q + (I-I q . V ,

anel henee we get (9.7.5). 0

Again, by R,enlarks 9.2.3 anel 9.2.4, we get thc following:

Corollary 9.7.1. Let, and '"'/ bc siInp1e 100ps around 'Doo nritlJ the base point band
b', respcctive1y. Let n be a. patJl fronl b to b' in USUell t}lat [0:] -1 [,'][0:] = [,] ho1ds in
Jr](U,b). Thell we hnvc an cCJuality ('U[,'J,'U~[,']) - [a]*(v[,],v-[,]) luodulo U(Z[q,q-l])
in H n (Fb l , 00 Fb,) X H 'l (Pbl, oooFfJl). 0

§10. Irreducibility of the 1110nodroluy representation

Let b be a. base point on U. In this section, we deal with thc vector space

over the quotient fidd Q(q) ofZ[q, q-l]. Forbrevity: we clenote this spaec by Hn(Fb)®Q(q).
Let Q(q) be the algebraic closure of Q(q). A representation on H Il @0 Q(q) is said to be
absolutcly irrcducible if t.he inducccl rcprcscntation on H u (Fb ) (8) Q(q) is also irrccluciblc.
The purpose of this scction is to provc the following:

Irred ucibility Theorenl. Tlle lnonodrOlll'y rcprescntatioll of 7fl (U, b) 011 H n (Fb) ®Q(q)
is a.bsolute1y irreducible.

Proof. First relnark that the natural injection Hn(Fb) Y HIJ(Fb,ooFb ) inchlces an iso
11lOl'phisnl

(10.1)

becausc Hn(F,,) is iclcnt.ificd with (1- q)Hn(Fb,ooFb ) by (6.16).

Let x be an arbitrary non-zero elcillent of HIl(Fb ) (8) Q(q), allel let 111 be thc subspace
of Hn (Fb ) (9 Q(q) gencrateel by the set {[0:] * (x)ill E Ir] (U , b) }. It is enough to show
that Ai coincicles with the total space H n (Pb) 0 Q(q), and for this purpose, it suffices to
provc that 1\1 contains an elmllcnt v[,] E HIl(Fb), where , is a siInple loop arouncl 'Da,
becausc of Theoren1 g. 5.1.

''''e consicler the vector space r = r(rll
l O(cl)) as an affine part of a Pl'ojcctive space

r dimi
, ancllet 1-1. be thc hyperplane r dimi \ r. Then U is thc cOlnplclnent to a reducible

projcctive hypcrsul'facc 'Da U 'Doo U 1-1., where 'Da ancl '000 denote thc c10sures of 'Da and
'Doo , respectivcly. Hencc, Zariski's hyperplane seetion theorcrn [11] ilnplies that 7fl (U, b)
is gcncratecl by the hOlllotopy classes of siInplc loops around 'Da anel 'Doo . In particular,
the gencrater c E 7f1 (U , b) of thc kcrncl of the natural honlolllorphisnl Jr] (U) ---t Jrl (U) is
written as a Pl'oeluct
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\vhere each -ti is a sinlple loop arounel Da 01' Doo , anel Si is ±1. By Proposition 1.1, \vC
have

c. (a:) = q:c =J x.

Hence there cxists at least one cle111cllt aillong h'l), ... , [,k], say [-tl], such that [,tl.(x) f :c.

By Theorelns 9.2.1 and 9.2.2, we havc

where a is a non-zero clclnent of Q(q). Hence fi.1 contains v[,Ll. Therefore, if I{ is a siIuple
loo}) arouncl Da, then the proof is COlllplctecl.

Now suppose that Il is a si1uplc loop arouncl Doo . (Note that in this case: v[J'tl is
containcel in H ll (Fb,ooFb), hut not in Hn(Fb)' However, by (10.1), wc ean still say that
v[,tl is COlltaincd in lvJ.) Thc h01no topy class [J' tl E 7T" 1(U , b) is reprCSCllted by a loop of
the fol'lu (}'-I_t/O', whcrc 0' is a path fro1u b to a point b' which is locatccl in a sufficiently
sll1allllcighborhood of a non-singulaJ.· point C of D oo \ ('Da n 'Doo ), and ,{ is a loop fronl
b' to b' alollg the bounelary 86. of a sn1a11 clisk 6. with the center c. As is §9.6, we n1ay
aSSU1UC that 6. is situatccl on an affine line A intersccting Deo at c transversely. 1v10reovc1':
pe1'tu1'bing -tl if necessary, we can aSSU1ue that

b' E U~r C UN0 (10.2)

In particula1', wc have 1(b' C C X anel the iS01l10rphis11l 'lJb? \Vc write {zh, ... , PN} for
Cr(b').

By Proposition 9.6.1, there cxists a. critical value ]JN of Ju l : AU -+ C such that

Let EN be an eleluent of Pb' (ab? ,]JN) such that

(10.3)

wherc 6.~(b') := {z E Cu {oo} ; Izi 2:: (2t:(b'))-I}. By Proposition 9.7.2 anel (7.2)', \ve
can put

anel

v [,.'f{] = 'IJ~,(e 0 1) + tlJ~(w 0 1)

+ tlJbi'( a[EiV] 0 (±q-d+l + (l_d+2q-d+2 + ... + 0-1 q-l) )

= 'IJ~,(e 01) + tlJb?(w 01)

+ (±q-d+ I + (L_d+2q-d+2 + ... + ([-I q-l) . v~[,{]

E H lI (Pb" 80 Fb l )
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by sonle e E Hn - J C':(b~)' 'tU E Hn - I (~:(~) allel SOllle integers ([-I,"" {l-d+2. Consieler the
elel11cnt

'ur,n := (1 - q)v[,;] E Hn(Fb' )'

By Lel11nla 6.1, we can write (1 - q) 'iJ ~, (e ® 1) E H n (Pbl) as W~(el ® q + eo ® 1) by S0111e
el,eO E HJI()(~)' Putting this illtO (10.5), we see that 'v[,;] is writtcn in thc fonn

where 0:1, ... , 0:-d+2 are cleluents of H'l-l(~:(~)'

Let /\R, be thc path horn a~, to PN givcn by

/\~(t) := (1 - t)a~, + t· PN.

(10.6)

(10.7)

By (10.2) anel Le111111a 9.5.1, /\Rr is an eleI11ent of Pbl(a~/,PN). By Proposition 9.5.1, there
is a silnple loop ß' aroulld Do with thc base point b' such that

(10.8)

Here we uscel (7.2) again. (Note that [/\~] is representcd by a. path contaillcd in ](b' by
Lenuua 9.5.1.) \~Te sha11 prove that

(10.9)

Note that since ü[,f] E Hll (Hb,) C Hn (Pb': 800 Pb' ), we cau apply Theoreln 9.2.1 to thc
calculation of [ß')*(ü[,,'1;]). By Theoren1 9.2.1: in order to provc (10.9), it is ellough to show
that (-U[,;],'I/[ß'J)o is not ~cro. By (10.8), thc Laurant polynennial (ü[,;J,v-[ß'])a is cqual
with (-v [,;], 8([/\Rrl)(0)) a nloc11110 U(Z[q, q-1]). Using thc clescription (10.6) of ü["'1;] anel
(10.8) of e([/\~])(O), anel applying the fOlllula (8.2), thc coefficicnt of q-rl+1 in the Laurant
polynolnial (ü[,;],B([/\Rr])(O))o is thc integer

(10.10)

By (10.3) anel (10.7), the paths ~N anel AR, have a COll11nOll enclillg point PN as their only
intcrsectiou point. Hencc Leu1lna 8.2 in1plies that thc integer (10.10) is ±1. Thus (10.9)
is proved.

No\v wc put ß := 0:-
1ß'0:, which is a silnplc loop arounel Da with the base point b.

Vr/c also set
v[,d := (1 - q)v["'fl] E H ll (Pb) n 1'1.

(R.ecall that v [,d is containecl in lVI.) Since iJ [,d == [0']:; 1(D [,;]) by Corollary 9.7.1: (10.9)
in1plics that

This ill1plies that v[ß] E j\1. D

68



References

[1] Deligne, P., Theorie de Hodge, 11, Publ. NIath. IHES, 40 (1971), 5~58.

[2] Deligne, P., Le gl'Opupe fondmJ1cntal du conlpenlent d'une courhe plane n 'ayant que
des points douhles ordinaires est abf5lien, Lecture Notcs in NIath., 842, Springer
Verlag, Berlin, 1981, 1-10.

[3] Fulton, \\T., On the fundalJlental grou]J oE tl1e cOlnplC111cnt oE a l10dal curve, Ann.
NIath., 111 (1980), 407-409.

[4] Fulton, \V. anel Lazarsfelel, R., COl1nectivity allel its applicatiolls in aigebraicgeollletry,
Lecture Notes in IvIath., 862, Springer-Verlag, Berliu, 1981, 26-92.

[5] Givental': A. B., Twisted Picard-Lefsc11ctz fOl'llllllas, Funct. Analy. Appli., 22 (1988),
10-18.

[6] Lanlotkc, IC, Tllc topolog~yof cOll1plex ])l'oJectürc va.l'ietics aftcr S. Lefsc11ctz, Topology,
20 (1981), 15-52.

[7] Lefschetz, S., L'analysis situes et 130 gconletric algebrique, Gauthier-Villars, Paris,
1924.

[8] Libgober, A.; A.lcxander invariants of plaJ1e algcbraic Cllrves, Prac. SylUp. in Pure
IvIath., 40 Part 2 (1983), 135-143.

[9] rdilnor, .J.: rvlorse Theory, Annals of wlath. Studies, 51 Princeton Univ. Press, 1963.
[10] Phanl, F., Fonllules cle Picard-Lcfschetz generalisees et ral11ification de intgrales, Bull.

Soc.luath. France, 93 (1965), 333-367.
[11] Zariski: 0., A thcorenl on t}le Poin care grou]) ofan algcbraic hypcrsurfa.cc, Ann. Math.

38 (1937), 131 - 141.

adelrcss

IvIax-P lanck-Insti tut für IvIathclnatik
Gottfried-Claren Strasse 26
Bonn 53225, Gcnnany
shinlacla@nlpin1-bonn.nlpg. cle

honle address
Departnlent of lvIathenlatics
Faculty of Science
Hokkaiclo University
Sapporo 060, .Japan
shilnada@u1atl1.hokllclai.ac.jp

69


