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On representation of large integers by integral ternary
positive definite quadratic forms

B.Z. MOROZ

A few years after the famous work of C.L. Siegel’s, [14], on represen-
tation of integers by a genus of quadratic forms had appeared Yu. V.
Linnik, [7], initiated a study of representation of integers by an in-
dividual ternary quadratic form. Due to the efforts of many authors
(cf., for instance, (8], [9], [1]), ([12], [16], [6], [3] and references

therein), we may now claim a success. lLet f(x) = % z aijxixj be

1<1i,3¢3
a positive definite quadratic form with integral rétional coeffi-~

cients, so that a4 = ay4, 2y € Z, zlaii for 1< i, § {3, and let

re(n) = card {ulu € Z3, £(u) = n} be the representation number of n
by f£; let D= det(aij).

Theorem 1. Suppose that n€ Z, n 2 1 and g.c.d.(n,2D) = 1, Then

re(n) = r(n,gen f) + o(nl/27¥

) for ¥ > 1/28 , where r(n,gen f) de~
notes the number of representations of n by the genus of f aver-
aged in accordance with Siegel’s prescription, [14]. Moreover, if n
is primitively represented by f over the ring of p-adic integers for
each rational prime p then =r(n,gen f) >> nl/2-e
f,e

for e > 0.

Proof. Let N be a positive integer such that 2D|N and 8|N, and

let ¢ € 30(3/2,N,x) with x(d) = [gg , suppose furthermore that

¢ € ﬂl, in notations of [12]. Thus ¢ is a "good" cusp-form of weight
3/2 (and character x) which does not come from a 8-series. Therefore
an argument due to H. Iwaniec, [6], and W. Duke, (3], supplementéd by
the considerations going back to G. Shimura, [13], and B.A. Cipra,
(2], leads to an estimate for the PFourier coefficients of ¢ (cf.

also [(4]), and on writing ¢(2) = E a(n)ezvinz we obtain:
n=1
1/2-% 1
a(n) << n as soon as (n,2D0) = 1 and vy < 38 ° By (12, Korollar
P, 7
3], it follows then that re(n) = r(n,spn f) + O(nl/z-*) for

(n,2D) = 1 and ¢ < %E’ where r(n,spn f) denotes the representation
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Introduction.

The aim of this paper is to study the topological Euler-Poincaré characteristic (or, Euler
characteristic, for short) of degeneracy loci associated with various bundle homomorphisms.
Recall that for a given morphism ¢ : F' — E of vector bundles on a variety X the r-th

degeneracy locus 1is the set
D.(p) = {z € X| rank ¢(z) < r},

r=0,1,... ,min(rankF,rankE)—1. This concept overlaps a large family of interesting
varieties (the set of zeros of a section of a bundle being a very particular case).

Several authors have worked on explicit formulas for the Euler characteristic of D, ()
in terms of different cohomological and numerical invariants (see [Pa-Pr] for a survey
concerning this subject).

In the present paper, in Section 1, we give an explicit formula for the Euler characteristic
x(Dr(¢)) in terms of the Chem classes of E, F and X, under the assumption that ¢ is a
general holomorphic morphism of vector bundles.

In Section 2 we extend the quoted formula to singular varieties using Chern-MacPherson
classes (still for a general morphism ).

The formula does not hold for a generic (i.e. of the expected codimension of a de-
generacy locus) but nongeneral morphism, even in the case of a generic set of zeros of
a holomorphic section of a line bundle. We investigate this case in details in Section 3.
The difference between the Euler characteristic of a nongeneral hypersurface and the ex-
pected polynomial in Chern classes is measured with the help of topological invariants of
singularities including some generalizations of the Milnor number and Chern-MacPherson
classes.

The present paper gives an answer to the problem posed in [Pr1] (8.6).



Notation_and conventions

For a complex variety X by x(X) we denote its (topological) Et_Jler characteristic, by
H.(X;Z) (resp. H*(X; Z))-its singular homology (resp. cohomology) groups, by Ax(X)-
the Chow group of k-dimensional cycles modulo rational equivalence and A.(X) =
BrAr(X).

For a given element z € H.(X;Z), X compact (resp. z € A.(X), X complete) by
Jx z we denote the degree of the 0-th component of z.

By dimX we mean always the complex dimension of X. If X is a nonsingular complex
manifold, then the canonical orientation allows one to identify (by Poincaré Duality) the
elements of H;(X;Z) with elements of H2#mX—i(x. 7).

If E is a vector bundle on X and f : Y — X is a morphism of varieties, then Ey
denotes the pull-back bundle f*E.

For a given vector bundle E on X by ¢i(E), : = 1,... ,rankE, we denote the i-th
Chern class of E. The top Chern class of E will be denoted by c,op(E). By sp(E) we
denote the k-th Segre class of E i.e. the k-th complete symetric polynomial in Chern roots
of E satysfying s;(E) = (—1)’¢;(—E) (Note that this convention differs from that used
in [F], where s;(E) = c;(—E)). We assume also s;(E) = ¢i(E) =0 if i < 0.

By ¢(E) =1+ c1(E)+ ...+ ciop(E) we denote the total Chern class of E.

For a manifold X, we denote by TX the tangent bundle of X and by cx(X) the k-th
Chern class of TX. We put ¢x(X) =0if k < 0.

In topology, the Chem classes ¢;(E) of a vector bundle E on a variety X are located
in H*(X;Z),i=1,...,rankE. In algebraic geometry, the Chern classes are operators
cG(EYN = Ap(X) — Ag—i(X) (see {F]). However, if X is smooth, then one usually
identifies ¢;(E) with ¢;(B)N[X] € Agimx—i(X) =~ A'(X)- the i-th graded component of
the Chow ring of X. In Section 1, we use frequently this identification.

3



The notation for different morphisms between Chow groups is borrowed from [F].

In Section 3 we will use some notation from differential geometry. Let X be a complex
manifold and let L be a holomorphic line bundle on X. The norm of a vector in L will
be denoted by |lv||. By ﬁ, C C" (resp. S?"~! C C™) we denote the open ball (resp.
the sphere) with center at the origin and the radius ¢, and by |c| the absolute value of a

complex number c.



1. The Euler characteristic of a degeneracy locus of a general holomorphic vector .

bundle morphism.

Let X be a complex compact manifold and let ¢ : ¥ — E be a holomorphic morphism
of complex holomorphic vector bundles on X. Let D, C Hom(F,E) stand for the
universal (tautological) degeneracy locus (the fibre of D, over z € X is equal to {f €
Hom(F(z), E(z)); rank f < r}). A morphism ¢ : F — E induces the section s, :
X — Hom(F,E). We say that ¢ is general if s, is transverse to all Dy C Hom(F, E)
k = 0,1,... ,min(rankF,rankE) — 1. Through replacing ¢ by ¢ + E = F,if

necessary, we can assume for all in this (and the next) section, that
m=rankF > n=rankFE.

To state the main result of this section we need some definitions.

By a partition we mean a sequence of integers I = (iy,... ,ix), where ¢; > 12 > ... >
ig > 0. We write I(I) for card{p;ip, # 0}, |I| for 32¢p, I = (§1,J2,...) for
the conjugate partition with j, = card {h; ix > p} and (:)* for (i,... ,i) (k-times). For
two partitions I, J we write I D J if i3 > j; for each k. Moreover, given two finite
sequences I = (1,12,...),J = (J1,J2,...) we write I + J for (31 + j1,%2 + j2,...) and
I,J for (i1,%2,... ,J1,72y- . )

Fix k, 0 < k < n. For two partitions I, J such that I(I) < n — k, I(J) < n — k define

ko tptjgt+tm+n—-2k—p—gqg o
DI,J_Det[( z,,—i—n—k—p , 1€p,¢<n k.

Finally, given two vector bundles E, F on X and a partition I = (41,... ,%) we define

in H2V1(X; Z) the class

si(E = F):=Det [si _p4qo( E—F)], 1<p,q<k,
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where
i

Si(E—F) =Y (=1)"Psp(E)ci—p(F).

p=0
In particular, if F = 0 then s;(E) = Det [si,_p+,(E)], 1 < p,q < k; if E = 0 then
s1(=F) = (=)/!ls;~(F).
The following formula describes the topological Euler-Poincaré characteristic of the

degeneracy locus D,(¢) = {z € X|rank¢(z) < r}.

Theorem 1.1. If ¢ is general, then

o) = [ 3 o (T et

Here,

g(k) =Y (-D)MHVIDY ;s gynerir g~ (B = FYeamjp-10(X),

where d = dimD, (p) (= dimX — (m — r)(n — r)) and the sum is over all partitions

I,J such that l{I) <n—Fk, {(J) <n-—k.

Remark 1.2. Under the assumption D,_;(p) = @, the above formula reads x(D,(¢) =
¢(r). This result was established in [Prl] as a particular case of an algorithm for compu-

tation of the Chern numbers of smooth degeneracy loci.

The proof of Theorem 1.1 requires several preliminary definitions and results. Let
i : D-{¢) — X be the inclusion and let 7, : A.(D,(¢)) — A.(X) be the induced map of
the Chow groups. Following [Pr1] we say that a polynomial P(cq,... ,¢n,€},...,Cl,),
where {c;}, {c}} are independent variables, describes in a universal way a cycle supported

in D.(p) if P(c1(E),...,cn(B),c1(F),... cm(F)) € Im(i,) for every variety X and
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every morphism ¢ : F' — E of vector bundles on X, such that rank F = m, rank E = n,

we have

P(ci(E),... ,ca(E),a1(F),... ,cm(F)) € Im(i.).

The following fact is a consequence of Lemma 2.5 in [Pr2] (see also Theorem 5.3 (i)

in [Pr3]) and the main Theorem 3.4 of [Prl].

Proposition 1.3. No nonzero Z[c.(E)] = Z[ci(E),...,cn(E)]-combination of the
si(E — F) with I 2 (m — r)"~7 describes in a universal way a cycle supported

in Dy(¢).

We need the following property of g(r) in the sequel. Let & : D.(0)\Dr—1(¢)—D.(¢p)
be the open imbeding and let K (resp. C) be the kernel (resp. cokernel) bundle of ¢

restricted to D, () \ Dr—1(¢p).

Lemma 1.4. There exists an element a € A.(D.(p)) such that i.(a) = g(r) and

k*(a) = cq ((z‘k)‘TX k'@ c).

Proof. The proof is a combination of several facts proved in [Prl]. Let 7g : G,.(E) —
X (resp. mp : G"(F) - X) be the Grassmannian bundle parametrizing r-subbundles of

E (resp. r-quotients of F"). Moreover, let
0— Ry — E G =0
E Gup) 2 Qp =

0= R = Eg,im — Q¥ — 0
be the tautological sequences on G,(E) and G"(F'). Consider the following fibre product
of Grassmannian bundles
TF X1 TE
7:G=G"(F)xx G(E) — G (E) — X.
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The morphism ¢ induces the section s, of Hom(F'; E) and thus the section 3, of
\
Hom(F,E)¢/Hom(QF,Rr). Let Z be the subscheme of zeros of 35,. The restriction p

of = to Z factorizes through D, (). We put

a = peca((r)'TX - (Rr ® Q5)lz)

Now, the first assertion follows from a calculation analogous to the one in [Pr1], Proposi-
tion 5.7; the only difference being the use of Proposition 3.2 instead of Lemma 5.1 from

loc.cit.. The second assertion is immediate as Rr|z restricts (via k) to K and Qg|z to C.

L]

At the end of the list of preliminary results we record the following consequence of the

Littlewood-Richardson rule.

Lemma 1.5. Let I,J be two partitions such that I{(I") < k, I(J) < I. Then the

nonzero coeflicients Bk occuring in

s1(F)-ss(F) =Y Bx sk(F)
are indexed by partitions K 2 (I + 1)*+1,

Proof. We use the terminology and formulation of the quoted rule as in [M] (1.9).
Recall that the diagrams of K for which Sx # 0 are obtained by adding to the diagram
of I boxes coming from the diagram of J according to certain rules. One of these rules
implies that the number of new boxes added in a single column cannot be greater than
{(J). Our assertion now follows from the observation that the (k+1)-th column of the
diagram of K, for which S # 0, cannot contain (I + 1) boxes because i; < k + 1 and
HEARS
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Consider now the following geometric construction. Fix a general morphism ¢ and

write D, = D,(¢p), for short. Consider the variety Z,

Z, = Zeros(Fo ——— Eg — Q) <» G = G,(E)
(1.1) | |~
D, _— X
where G.(E) is the Grassmannian bundle of r-subbundles associated to £ — X, and @
is (n — r)-bundle given by the exact (tautological) sequence 0 - R — Eg — Q — 0 on

G. The key information for the purposes of this section is contained in:

Proposition 1.6.

x(Z.) = /X g(r).

Proof.  Our proof is rather conceptual than computational, and will use the main

theorem of [Prl]. The proof will be divided into several steps.

Step 1 We claim that the following identity holds:

(1.2) X(Z2) = /X 7 {S(m)"-,(Q —Fg)ea(m*TX +R ©Q—Fu® Q)} .

First, we know arguing as in [Po] that for general ¢, the variety Z, is smooth of pure
dimension d and its fundamental class is evaluated to be crop(Fir ® Q).

Then
x(Zr) =/ TeJu(Ctop(Zr)) (see [H] 1.4 for example)
X

= / T {Cto_;»(Fg; ® Q)Cd(zr)}
X
= /:Yﬂ,. {S(m)n-r(Q - FG)cd(Z")}

(by, for instance, [Pr1] Lemma 1.3).



Using the exact sequence
(1.3) 0—TZ — TGz, — Fs ® Qiz, — 0

and the well-known presentation of the class of TG in the Grothendieck group K(G):
[TG)] = [=*TX + R’ ® Q] (see e.g. [F] B.5.8) the latter expresion can be rewritten in the
form stated in (1.2).

It follows from the formula for Gysin push-forward in Grassmannian bundle (see [Pr1]

Proposition 2.2, for example) that x(Z,) has the form

d
(1.4) x(Z.) = ]X > Pi(c.(E),c.(F))ei(X),
1=0

where Pi(c.(E), c.(F")) are elements of H*(X; Z), given by certain polynomial expressions

in the Chern classes of F" and E.

Step 2 We claim that in order to compute the polynomials P;(c.(E), c.(F)) in (1.4), one
can use the Chow groups set-up instead of the (co)homology groups one, and restrict to
the case of algebraic varieties.

The first claim follows from the fact that the formulas for Gysin push-forward in Grass-
mannian bundles are the same for (co)homology H*(—;Z) and Chow groups A,(-).

To see that we can assume X to be algebraic consider the generic degeneracy locus
D,(u,v) C X, described in construction (13) of [Pr1]. We claim that if for fixed : we
write Pi(c.(E), c.(F)) =3 az,81(E)s ;(F), then for v,w > 0 the coefficients a; ; com-
puted in the above situation for £ = E,, ,,, F = F,, ,, are the same as the universal ones in
question. This follows from the property that the vector bundles £ = E, ,,, F' = F, ,, have
generic Chern roots if v,w — co (i.e. every finite set {s7, (E)s;,(F),... ,s5.(E)ss(F)}
I(Ip) £n, I(Jp) £m, (Ip,Jp) # (I, Jg) if p # ¢, becomes a family of Z-linearly inde-
pendent elements for v, w — o0).
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Observe that since 7.7« = tu74 (see [F] 1.4), each Pi(c.(E), c.(F)) describes a class of

a cycle supported in D, . Fix ¢ and let P = P;. Express P as
(1.5) P(c(E),c(F)) =) _ai(c(E))si(E - F),
I

where the sum is taken over partitions, and «; depend only on ¢.(E) and do not depend

on c.(F') (This is possible by the linearity formula, see e.g. [Pr1] Formula 4).

Step 3 We claim that I 2 (m —r + 1)"~"! if a; # 0. To prove it, let us look at (1.2)

and analyse for which partitions L the following property holds: if

P(c(E),c(F)) = Y Bu(c(E))sL(F),

where g1, € Z[c.(E)), then A, # 0.

Note first that every s;(F) appearing in the decomposition of s(y,yn-+(Q — Fg) as
a Z-combination of sy (Q)-s;(Fg) satisfies I(I") € 7k Q = n — r (see e.g. [Prl]
Formula 2). Moreover, every s ;(Fg) appearing in the decomposition of ¢;(—Fg ® Q) =
(—1)'si(Fs @ Q) as a Z-combination of the s1(Q)-s(Fg) satisfies I(J) < n — r (see
e.g. [Pr1] Lemma 5.6). But, by Lemma 1.5, if (I )< n—-rand {(J)<n—r <m -,

then the nonzero Bk occuring in

si(F)s;(F) = Z)BKSK(F) (Br € Z)
K

are indexed by partiions K % (m — r + 1)"~"*'. Consequently, using the property
that sy (—F) = tsg~(F) and the linearity formula decomposing s;(E — F) as a Z-
combination of the sp(E)sn(F) , we easily obtain that if in (1.5) a; # 0 then I 2

(m — 7+ 1)"~+1 as claimed.

11



Step 4 We claim that m,j.(ca(Z,)) = g(r).

We have the following commutative diagram

kt

Ad(Z)) —— A(Z.\ 7Y (Dr_1))

e n. J"—‘

At(DI‘) L’ At(DT \-Dr—l)

. “f
e ll‘
~

k‘

AuX) ——  AJ(X\ Do)

where 7', k1, k2, k3 are the inclusions and 7’ is the restriction of n (the commutativity of
this diagram follows from [F] Proposition 1.7). Let K (resp. C) be the kernel (resp.
cokernel) bundle of ¢ restricted to D, \ D,_;. Then, by the pull-back property of Chern

classes
Ena(ca(20)) = k3 (cal"TX + R © Q- Fg ® Q) = cal (R)'TX - K" © C) .

On the other hand, it follows from Lemma 1.4 that ¢(r) € A,(X) is the image by 7, of

an element a € A.(D,) satisfying the property k3(a) = ca((ik)*TX — K~ @ C). Thus
kffg(r) = maju(ca(Z,)] =0 .
By the exact sequence (see [F], Proposition 1.8)
Ad(Dr_1) :—> A.(X) il—» A(X\D,y)—0,

where 7 : D,—; — X is the inclusion, we know that g(r) — m.j.(ca(Z,)) is contained in
Im(i,) and describes in an universal way a cycle supported in D,_;. In fact, the same

applies to the coefficients (depending on ¢.(E), c.(F)) of the ¢;(X) in this element.

12



By Step 3 we know that all the coefficients of ¢;(X) in g(r)—7.jx(ca(Z,)) are Z[c.(E)]-
combinations of the s;(E — F), where I # (m—r+1)"~"*1_ In virtue of Proposition 1.3

with r replaced by r — 1, this forces g(r) = m.j«(ca(Z)), which proves the proposition.

O

Lemma 1.7,

X(Z) =Y G I

k=0

Proof. Let Z* = n~1(Dy). Then Z*\ Z*~1 is a locally trivial fibration over D} \ Di_;

with the Grassmannian Gr_k(C"‘k) as the fibre. Thus

X(2) =X x@\ 2 = 3 (17 ) x(Di\ Dica)
k=0

-0 (725 - (72E )]
-5 (7Aoo,

which is the required result.

Lemma 1.8. For every positive integers a, k, the following equality holds

(1) -2 ()60

p=1

Proof. The assertion is a consequence of the following two equalities:

(0]

p=0

and

13



()6 = (37620

(p=1,...,k), a verification of the latter being straightforward.

Proof of Theorem 1.1. Recall that we want to prove

x(Dr(p)) = /X g (- (“ Trhke 1) g(r ; k).

We use induction on r. For r = 0, the equality x(D,) = ¢(0) is true by [Pr1] Proposition

5.7. Assume that the formula is correct for every &k < r — 1. We have

x@)=xz)~ [ X ("I )xde)  yLemmarn)

p=0

=/,§{9(T)—i( —r4p- )!Z( 1)q( r+§+q—1)g(r_p_q)]}

p=1

(by Proposition 1.6 and the induction assumption)

/XkZO( 1)t r—-k)[z_:( 1! ("_r:”_l)(n“;fﬁ_l)]

=[Ykz;(_1)k("—r:k-1)g(r_k)

(by Lemma 1.8 witha=n-r—1) .
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2. Generalization to singular varieties.

In this section we allow the ambient space X to have singularities and to be a compact
complex pure dimensional analytic space. Let us fix a Whitney stratification X of X
(see, for instance [G-M]). Let ¢ : F' — FE be a holomorphic morphism of complex
holomorphic vector bundles on X. Assume that ¢ is general i.e. the induced section
s, : X — Hom(F, E) is transverse (on each stratum of X’) to all tautological degeneracy
loci D, ¢ Hom(F, E). We extend the formula of Theorem 1.1 to this case. Since for
singular varieties the tangent bundle is not defined we use instead of the Chern classes of
TX the Chern-MacPherson classes.

The Chern-MacPherson class ¢,(X) € H,.(X;Z) was introduced (for an algebraic X)
in [McP]. It equals, via the Alexander isomorphism, to the M.H. Schwartz class [S],[B-S]
and can be in fact defined for any analytic space.

Let us first recall briefly MacPherson’s definition.

Assume first that X is embedded in a smooth variety M. Then the tangent bundle to
the nonsingular part X,., of X defines a section over X,., of the Grassmannian bundle
Ga(TM) (where n = dimX). By the Nash blowing-up v : X — X of X we mean the
closure X of the image of this section together with a map v induced by the restriction
of the projection of G,(TM) on M. We denote by T' (or Tx) the restriction to X of the .
tautological bundle over G,(TM). Note that T'|,,-1( X,op) 18 isomorphic to v*T X .,. All
the above data are analytically independent of the embeding and so defined for all analytic
spaces. The Chern-Mather class of X is defined (in H,.(X;Z) or A.(X)) by

er(X) = wale(T) N [X]).
We may define cpr for any analytic cycle > n;V; of X by
CM(Z niV;) = Z ni (tncli)wer (Vi)

where incl; is the inclusion of V; in X.

15



In [McP] MacPherson defined the local Euler obstruction Eux(z) of X at z € X.
The function Eux is constructable with integer values (see e.g.[L-T] ). Let 7 : X - X
be a blowing-up of v~1(z) and let Y be the exceptional divisor. Then Eux(z) can be

expressed by the Gonzdlez-Verdier formula (see [Go] [L-T] or (F} Ex. 4.2.9).

Eux(x)=LCn—1(f*T—§)a

where ¢ is the normal bundle to Y. Here are some properties of the local Euler obstruction

which we use in the sequel.

Lemma 2.1.
(1) Eux(z) is constant on the strata of (any) Whitney stratification of X.
(2) Eux(z)=11ifz € Xrey.
(3) Assume that X is locally imbeded in CV and a nonsingular subspace W C CN

is transverse to a Whitney stratification of X. Then, Euwnx(z) = Eux(z)

forzre WnNX.
(4) Buxxy(z,y) = Bux(z)-Buy(y) .

In [McP] MacPherson defined an isomorphism T between the space of analytic cycles
on X and the space of constructable functions with integer values on X by: T(> n;V;) =
>- n;Euy;,. Let us call T~ (Idx) the Chern-MacPherson cycle of X. The Chern-
MacPherson class of X is defined in H,(X;Z) (or A.(X)) by

eu(X) = em(T7'(Idx)),

and satisfies good functorial properties (see [McP] or [F] Ex. 19.1.7.). In particular

@.1) XX = [ a)=Fn [ env).

Theorem 2.2. If ¢ is general, then

x(Dr () = L g (—1)k("’ TrAks 1)g<r — k).

16



Here,
g(k) = D (-DHHVIDE s s(m_iyn-ry1,0~ (B = F)Nen(X),

where the sum is over all partitions I, J such that (I} <n—k, (J)<n—k.

Proof. We will show how to extend the proof in the nonsingular case to the present
situation.

Let us consider first the case of a holomorphic section of a holomorphic vector bundle.
So, let E be a holomorphic vector bundle over X and let Z be the zero set of a holomorphic
section s of E transverse to the zero section (i.e. transverse on each stratum of X'). The
image of the fundamental class {Z] of Z by i. (where i : Z — X denotes the inclusion)

is dual to the top Chern class c¢op(E) of E in the sense that
u([Z]) = crop(E) N [X].

In the nonsingular case the normal bundle to Z is isomorphic to F|z and consequently the
total Chern class of Z equals :*¢(TX — E). Hence the topological Euler characteristic of

Z can be expressed in terms of the Chern classes of E and X as follows

2.2) X(2) = A ctop(E)-c(X)-c(E)" .

To prove the similar formula for the singular case we note that by the properties of Whitney

stratification and Lemma 2.1 we have easily:

Lemma 2.3. Let E, X and Z be as above. Then:

(1) X induces on Z a stratification Z which is also Whitney.
(2) The Nash blowing-up of Z is induced by v i.e. equals Z = v='(Z) — Z and

on Z we have an exact sequence of vector bundles
(2.3) 0— Tz — Tx|; — v*(E|z) - 0.

(3) If > n;V; is the Chern-MacPherson cycle for X, then 5 n;V; N Z is the one
for Z.
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By (2.3)
c(Tz) = z"'u"'c(E)_1 -i*c(fx) ,

and consequently
em(Z) = va(c(T2) N [Z]) = va(i* v e(B) i e(Tx ) N [Z])
= v (' B)™ e Tx) cuop(v* E) N [X])

= C(E)‘1 Crop(E) Nem(X).

Let Y be a subspace of X given by a union of strata of A". Then, since Z is transverse to

A, by the same argument as above
eM(ZNY) =c(E) 1 ciop(E) Nep(Y) .
Therefore, by (3) of Lemma 2.3, we get the following formula.
Proposition 2.4. Let X, E, s and Z be as above. Then
co(2) = c(E) ™ crop(B) N ca( X) .
In particular,

(2) = /X (E) " -crop(E) N ca(X).

To prove Theorem 2.2 in the general case we follow completely the proof of Theorem
1.1 and we simply show that all the steps are allowed.
Consider the construction given by (1.1) and note that, as in the nonsingular case, it

suffices to prove

(2.4) x(Z,) = /x g(r)

for all . Fix rand let Z = Z..
First observe that since m : G — X is a locally trivial bundle with nonsingular fibre we

have by Lemma 2.1:
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Lemma 2.5.

(1) A Whitney stratification X of X induces a Whitney stratification of G by
taking strata of the form n~*(S) for S € X.

(2) The Nash blowing-up of vg : G — G of G is canonically isomorphic to the
fibre product of v and .

(3) For any z € G Eug(z) = Eux(w(z)) and if 3_n;V; is the Chern-MacPherson
cycle for X then ¥ n;w~1(V}) is the one for G.

Let # : G — X be the induced map (by (2) of Lemma 2.5). By (2.3) we have an exact
sequence

0= Tz = Tolz = v5(Fa ® Q) — 0

and [Tg] = [#*Tx + v(R’ ® Q). This implies
LCM(Z) = V.7 (S(m)n-r(Qé - Fé)cd(fr*fx + Rvé ® Q(; - Fé ® Qé) N [é]) ,

where d = dimZ. By the formula for Gysin push-forward in Grassmannian bundle we

have again

d
/ZCM(Z)zfx (ZPf(C-(Ex'),C-(Fx))Ci(TX)) N [X]

1=0

d
-/ (zpf(c.w),c.(m)nm(m) ,

i=0

Repeating the proof of Theorem 1.1 we get

fz cx(Z) = L (1) D sm_iyn-sir, i~ (B = F) Nen(X)) .

As in the proof of Proposition 2.4 we may proceed similarly for any subspace ¥ of X
which is a union of strata of X’ in paricular for the cycles V; occuring in (2.1). By (3) of
Lemma 2.5 this gives the required formula x(Z) = [, c.(Z) = [ g(r), which ends the

proof.

m
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3. The Euler characteristic of a nongeneral hypersurface.

Assume now that X is a connected compact n-dimensional manifold and L is a holo-
morphic line bundle over X. Let s € H°(X, L)\ {0} be a holomorphic section of L and
consider the zero set Z of s.

We define the number u(Z, X) as follows

w2, X) = (-1)"(x(2) - x(X, L)),
where for a vector bundle E, x(X,E) = [, Y o(—=1)" " ci(X)sn—i(E) denotes the
Euler characteristic of a zero set of a section transverse to the zero section (for a line
bundle L, sg(L) = c1(L)*). Usually, we will write u(Z) instead of u(Z,X).
The aim of this section is to give a formula for x(Z) in terms of local invariants of Z

and the topology of Sing(Z).

Remark. The methods we use in this section are different to that in previous ones. Our
considerations are based on differential geometry (general reference [G-H]), differential

topology and stratifications of real and complex analytic sets (see e.g. [G]).

Example 3.1. Assume that Z C X is a hypersurface defined by a section s of a line bundle
L and that Z has only isolated singular points. In local coordinates z = (23, ... , z, ) around
z € Z the hypersurface Z is defined by a holomorphic function f. We may assume that
z is the origin in C” and f is defined in a neighbourhoud of z. For small positive ¢ and
§ (and 0 < § << ¢) the intersection f~1(§) N ]ci has the homotopy type of a bouquet of
spheres S*~1 v ... v "~ of real dimension n — 1, where the number of spheres u is

called the Milnor number of X at z (see [Mi]). Since Z N ]?L is contractible
Q Q
X(ZNB) = x(fTH(HNB) = (=1)"u.
It 1s not difficult to see (cf. [Pal] for instance) that if Z has only isolated singularities,

then

w(Z)=x(Z2)-x(X,L)=(-D)"* Y u(Zxz),
r€Sing(Z)
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where p(Z, z) denotes the Milnor number of Z at z.

The Milnor number of z admits several interpretations. At first

p = dimc C{z}/(8f/0z1,--- ,0f/0zn).

Secondly, by a theorem of Mather there is a holomorphic change of coordinates A near the
origin such that foh is a polynomial mapping. Thus we may assume that the gradient 3 f =
(8f/8z1,... ,0f/dzn) of f has polynomial components. We have u = card{(8f)~!(y)},
for v in an open dense subset of a neighbourhood of the origin. The gradient map gives
also the following approach. Since df has no zeros in a punctured neighbourhood of the
origin we can define (for small £ > 0) ¢ : 82*~1 — S2"~1 by ¢(2) = Af(2)/||0f(2)|,
where S2"=1, Then, u equals the topological degree of g.

We refer to [O] for more detailed informations about the Milnor number.

Let z be an arbitrary point of Sing(Z) and assume that in local coordinates around z the
hypersuface Z is the zero set of (the germ of) an analytic function f : (C",0) — (C,0).
Let € be a small positive number and let Ds = {z € C;|z| < §}. Then, ifonly 0 < § < ¢,
f restricted to ]%,, N f~1(Ds — 0) is a locally trivial fibre bundle and the topological type
of the fibre does not depend on the choice of ¢ [Mi]. We call this fibre the Milnor fibre

attached to z and will denote it by F.

DEFINITION. We define u(Z,z) = (=1)" " (x(F) = 1).

Example 3.2. If z is a nonsingular point of Z, then u(Z,z) = 0. If « is an isolated
singularity, then u(Z,z) = (—1)"-1(1 + (=) dimQH" N (F,, Q) — 1) = 4, the

usual Milnor number of Z at z.

By the existence of ’good” stratification of Z (see e.g.[H-L] Theorem 1.2.1 or [H-M-S]
Theorem 7.1.1)) we see that ¢ — pu(Z,z) is a constructable function on Z. Let us recall

below briefly the definition of ”good” stratification.
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”Good” stratification. A stratification 2 of Z is called to be "good” if it satisfies
the following local condition (which is independent of the choice of local coordinates).
Assume that as above Z is described locally as the zero set of f : C" — C. We say that
Z is a "good” stratification of Z if for each sequence zx € C" \ Z convergingto z € Z
and such that the sequence T, (f~*(f(z))) of the tangent spaces to the fibres of f has

a limit T (in P"~1), T contains the tangent space to the stratum containing z. If this

stratum is given by {z; = ... = z; = 0}, then the condition above can be described as
follows

. z—0
(3.1 W(8f/0zj41(2), . .., 8f [ Bza())l , 0.

1(8f/0z1(2), ... ,8f/0z;(2))l

Let Z2 be a Whitney and “good” stratification of Z. By Thom’s First Isotopy Lemma
(see e.g. [G] Theorem 5.2) the topological type of the Milnor fibres F, at z is constant

along the strata of Z.
Notation. For S € Z we denote by ug the value of z — u(Z,z) on S.

The following result, which is a particular case of Theorem A of [N], gives an example
of a more elaborate calculation of u(Z,z), which will be important in the induction step

of the main theorem of this section. We present a proof for the reader’s convenience.

Lemma 3.3. Let Z be a hypersurface in X and let H be a nonsingular hypersurface of

X transverse to a “good” and Whitney stratification of Z. Then foreachz € ZNH
wW(ZUH,z)=(-1)"

(in the other words the Euler characteristic of the Milnor fibre of Z\U H at z is zero).

Proof. Assume that z is the origin in C™ and let Z and H be the zero sets of f and z,

respectively, so ZU H is the zero set of g(2) = z, f(z). For z € C" we write z = (', z,),
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where z' € C"~!. We assume that the line [ = {(0,z,) € C"*~! x C} is contained in the
stratum of a Whitney and “good” stratification Z of Z which contains z. Denote by G
the Milnor fibre of Z U H at the origin. We shall show that, up to homotopy equivalence,
G fibres over S! and therefore x(G) = 0, as desired. In the proof we use standard facts
of real analytic geometry which can be found in [E] and [G].

First, we consider the family of hypersurfaces Z,, in C"~! given by the equations
f(*,2,) = 0 with fixed z,. Since Z is ”good”, by (3.1), the Milnor fibres of Z,, at 0 €
C"~! are homeomorphic provided |z,| is sufficiently small. Moreover, using Xojasiewicz
Inequality {£], one may find o > 0 and m € N such that for every 0 < ¢ < &0, c € C

such that 0 < [c] < €™, and |z,| < g

F(an,c) = {z' € C" 7 |I2']| <&, f(',2n) = ¢}
is homeomorphic to the Milnor fibre F' of Z N H at the origin. Instead of the ordinary
representatives of G

o]

Gee=g"1(c)NBe ceC,0<|c|€exk1
we consider

Gee=g"(c)NU. c€C,0<]|<ex],

where
Ue = {(2',2n) € CH||2'[} < &, lzn] <&, |f(2), 20)l < €™}
(we will show below that they are homotopically equivalent). Note that the image of G‘e,c

by the standard projection 7, (i.e. m,(z) = z,) is the annulus {% < 2z, < €} and the

fibres are homeomorphic to F'. This already gives x(G. ) = 0 (since 7, restricted to

G. . can be stratified). By (3.1) and
dg = zod' f + (f + 200f /020 )dzn ,

where d'f = 8f/0z1dz1 + - - - + Of /Ozn—1dzn—1, One can prove that in fact LET I is a

locally trivial fibration.
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To complete the proof we will show that G’,,c are homotopically equivalent to G, . for
0 < |c|] « € <« 1. Consider a one-parameter family of neighbourhoods of the origin in
cn
Ve =¢7'([0,¢)),

where ¢ : C* — R is a semi-analytic function and ¢~'(0) = 0. Fix ¢ € C\ {0} and
consider the family of sets

'e,t = Q_I(tc) nve.

By the properties of semi-analytic sets there exist ¢o and m € N such that all G, , are
homeomorphic if only (g,t) € S = {(¢,1); 0 < € £ 0,0 < t < €™}. Moreover, the
homeomorphisms can be obtained by the integration vector fields (First Isotopy Lemma)
and therefore for all (e,t),(¢',t) € S, ¢ < €', G, is a deformation retract of G, ,..

Take o good for both families Be and U, and choose &; (i = 1,2,3) such that
[e] Q
B=o DUH DBGz 3Uta'

By the above for ¢t > 0 and sufficiently small G, .. is a deformation retract of G., . and
G’,h,c is a deformation retract of G',B,tc. Therefore G, ;. and é,l'tc are homotopically

equivalent. This ends the proof.

L

One may ask about a general formula for p(Z) in terms of the local invariants of the
singularities of Z. The following theorem gives such a formula in the case of a projective

variety X.

Theorem 3.4. Let X be a nonsingular subvariety of PV and let Z be the zero set of a
holomorphic section of a holomorphic line bundle L over X. Let Z be a stratification
of Z such that u(Z,*) is constant on the strata of Z. Then
u2) = 3 al8) [ (D) ne(3),
sez 5
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where a(S) = ps — P g5 55 HS'), and c.(8§) denotes the Chern-MacPherson

class of §(-the closure of stratum S).

Before we start the proof we give some examples illustrating the theorem.

Example 3.5. Assume that Y = Sing(Z) is nonsingular and that the pair (Z \ Y,Y)
satisfies Whitmey Conditions. Then, (Z \ Y,Y") is a ”good” stratification of Z ([L-S]) and
forceY

py = p(Z,2) = (-1)"p"""(2,2),

where m = dim Y and p"~™(Z, z) is the (n — m)-th Teissier number of Z at = (see [T]).

Now the theorem asserts

u(Z) = py L em(T™Y @ Lyy),

where T*'Y" denotes the holomorphic cotangent bundle of Y (see e.g. [G-H] Chapter
0 §2.). As it was proved in [Pa] the above formula holds without the assumption of
projectivity of X. The proof uses the following characterization of u(Z) (see [Pa] for the
details). Let D = D' + D" be the associated metric connection on L compatible with a
complex structure. Then p(Z) equals the intersection index of D’'s and the zero section

computed near Z.

Example 3.6, Let ¥ = Sing(Z) be nonsingular and let Z consist of 3 strata: ) =
Z —Y, 5 =Y — 53 and S3. Then the theorem gives

W(2) = s, [ V)l Biv)™ + (s, — ) [ e(Sa)elLis,)
3
In order to prove Theorem 3.4, let us first prove the following proposition (which holds

without the assumption of the projectivity of X).

Proposition 3.7. Let L be a holomorphic line bundle over a connected compact n-

dimensional manifold X. Assume that Z is the zero set of s € H(X,L) \ {0} and
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let s’ be a holomorphic section of L such that the zero set Z' of ' is nonsingular and

transverse to a "good” and Whitney stratification Z of Z. Then

w(Z)=>Y usx(S\2) = a(8)x(5\Z2").

SezZ Sez

Proof. We will approximate Z by the zero sets of Z, of the sections s, = s—ts' (t € C).
First, we note that for small |¢| all these sections are nonsingular and transverse to Z. In
fact, by Bertini’s Theorem (e.g [G-H] p.137) the singularities of generic Z, are contained
in ZNZ'. Fix zo € ZN 2Z' and investigate Z, around zo. Denote the sections s and s’ by
f and g respectively and consider them as functions. By the transversality of Z' to Z and
the fact that Z is a "good” stratification, the levels of f and ¢ are transverse with the angle
bounded from below by nonzero positive constant. In particular, d(f —tg) =df —t-dg
nowhere vanishes on Z; (for ¢ 3 0) and Z, is transverse to Z.

Let us fix a Hermitian metric on L. For |t] small enough it is easy to see that Z N Z’

is a strong deformation retract of
Zre={z € Zy; Is' ()| < €}

provided ¢ is sufficiently small.

Step 1 We claim that for a sufficiently small |¢| we can find an universal € > 0 such that

Z N Z' is a strong deformation retract of Z, ..

Proof. For ¢t = 0 and ¢ small it follows from the transversality. Assume now that
t # 0 and small. We shall show that Z; . can be retracted onto Z N Z' using the flow
generated by the orthogonal projection on Z; . of grad]|s'||%2. To prove it, it suffices
to show that the projected vector field does not vanish on Z, .\ Z N Z'. We proceed
locally in a neighbourhood of some z¢ € Z N Z'. So assume that z, is the origin in C"

and s = f-e, s’ = g-e, where e is a non-vanishing holomorphic section of L defined
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in a neighbourhood of z¢ and f, ¢ are holomorphic functions. Let D be the associated
connection and é-the connection form with respect to e. Then
d(|}'*) = (g-e, Dg-e) + (Dg-e, g-e)
(3.2) = (dlg|* + 1g1*(6 + &) ell?
= ((gdg + |9I°6) + (7 dg + 1gI6))lell*
By the assumptions z is a regular point of ¢, so we may choose such coordinates that

g(z) = zn, and for df = d'f + (0f/0zn)dzn we have by (3.1)
id' £l > C-{0f/8znl,

for some universal C > 0.
Take 2z ¢ Z U Z' and near zo and let t(z) = f(z)/g(z). We show that the levels of
||s'||* and f/g are transversal at z. For this purpose we consider the conormal vectors to

them. The holomorphic part of the conormal vector to the former, given by (3.2), equals
h(z) = §(2)dg(z) + 19(2)|*8(2) = Znden + |2a[*6(2),

and the holomorphic conormal vector to the latter

Io(2) = g(2) T ((df () — t-dg(2)) = z7*(df (2) — (f(2)/2n)dzn) .

To prove the statement it is enough to show that [, (2) and I;(z) are independent.
Assume that this is not the case ; then, for every z such that /;(2) and l;(2) are dependent
we define ¢(z) € Cby l1(z) = c¢(2)l2(2). Then, for such z, 6(2) = a(z)dzpn+b(2)df (z) =
(a(z)+b(2)3f/0zn(2))dzn+b(2)d' f. Since 6(z) is bounded so is b(z)d' f(z) and therefore
by (3.3) b(2)-9f/0z,(2) is bounded. Hence we conclude that a(z) is bounded. If we

write [;(z) and I3(z) as combinations of dz, and df(z) we get

(1) Zat a(e) loal? + o(z) 20 () = O,
(2) ¥2)z, =c(2)2n .
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This gives Zn +a(z)|zn|? +b(2)f(2)-2. = 0 which is possible (near zo) only if b(—f(z))
is close to 1.
Since @ is bounded in a neighbourhood of z, this contradicts the following inequality

due to kojasiewicz [£] §18 Proposition 1:

1(8f/8z1,...,0f[0zn)ll 2 |fI*,

for some 0 < a < 1, which holds in some neighbourhood of z¢. This completes the proof

of the assertion.

O

Fix ¢ given by Step 1 and let Y be a manifold with boundary X \ {z € X;||s'(z)| < €}.
Note that the stratification Z is transverse to JY.

One of the main properties of Whitney stratification is a topological equisingularity. It
says that if (Z,Z) is a set with Whitney stratification, then the topological type of Z
at € § € Z, does not depend on the choice of the point z on a given stratum S.
This follows from Thom’s First Isotopy Lemma, whose proof is based on the technique
of extending vector fields (the reader can consult e.g. [G] Chapter II) and requires a

construction of the system of tubular neighbourhoods of the strata (loc.'cit. Chapter II §2.).

Step 2 (A constuction of a system of tubular neighbourhoods I's of SNY in Y)

For § € Z we define I's inductively on dimS as follows:
Is={z€Y;dist(z,5) < és}U |J Ts,
S'c8\S
where ég is a sufficiently small number such that:

(1) Gs =Ts\Ug/c s Int(T's) is a manifold with corners which (as a stratified set)
is transverse to Z.
(2) Gs is alocally trivial fibration over S:=SNGs (by Thom’s First Isotopy Lemma)

We denote this fibration by 7.
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(3) S is a manifold with corners with the same homotopy type as S N'Y (which can
be shown by gluing the vector fields given by (2)).

(A more complicated system of tubular neighbourhoods satisfying the above properties

was constructed by Dubson [D] Proposition 1 1.4.2.B)

Claim: The map 7s|z,ngs : Z¢eN Gs — S is a locally trivial fibration and its fibre F%,
z € S, is homotopically equivalent to the Milnor fibre F.

Indeed, since Z is a “good” stratification , Z, (for ¢ # 0 and sufficiently small) is
transverse to the fibres of rg. In particular nsiz,nGs : Z¢e N Gs — Sisa locally trivial
fibration. Its fibre F, at £ € S is homotopically equivalent to the Milnor fibre F, by

Thom’s First Isotopy Lemma.
Finally we have
xX(2) = x(Z)=x(ZnY)-x(Z:nY)

=Y (x($) - x(2:n Gs))

SeZ

= > (x(5) = x(S)x(Fz))  (by Claim, here, z € 5)
SezZ

=(-1)" > x(S)us-

SeZ

If ¢ is sufficiently small, then x(3) = x(SNY) = x(S\ Z') for every S € Z. Therefore,

by the above we get

X(2) = x(Z:) = (-1)" Y ns-x(S\ 2')

SezZ

=(-1)" > «(5)-x(5\ 2").

Se2

This completes the proof of Proposition 3.7.
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Proof of Theorem 3.4.
Step 1 We claim that the assertion is true if L is very ample.

Take a stratification Z of Z which is ”good”, Whitney and refines Z (i.e. each S € Z
is an union of strata of Z). By Bertini’s Theorem ([G-H] and [V]) there exists a section

s' of L whose zero set Z' is nonsingular and transverse to Z. By Proposition 3.5 we have

w2)=> usx(S\Z2)=> usx(S\2"),

SezZ SEZ

where the last equality follows from the additivity of the Euler characteristic of a complex

stratification. So Step 1 follows from Proposition 2.4

S usx(5\2) = X a(§)x(3\2) = T alS) [ nea(5).

SeZ SeZ Sez

Consider now the general case. We proceed by induction on n = dimX.

Let M be a very ample line bundle on X such that L ® M is also very ample (such a
bundle exists since X is projective). Let H be the zero set of a section of M such that H
is nonsingular and transverse to a good stratification refining Z (and so also transverse to
Z). Let us stratify Z U H by taking the following strata: §\ H (for S € Z), SN H (for
SeZ)and H\ Z.

Let T be the zero set of a general section of L @ M such that T is nonsingular and

transverse to the above stratification of Z U H.

Step 2 We claim that

WZUH) = a($)[x(S) - x(5,M) = x(5,L® M) - x(5, M & (L & M))|
Sez2
(3.4) —w(ZNH)~uw(ZNnHNT)

+(-D)"x(X, Lo M) —x(X,Lo Mo (Lo M),

where u(ZNH) = p(ZOH,H)and pf(ZNHNT) = w(ZNHNT,HNT).
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Indeed, by considering the above stratification of Z U H, we have

WZUH)=> us-n(ZUH)-x(S—H-T)+ pu-z(Z UH)-x(H - Z)

SeZ
+ Y pusou(ZUH)-x(SNH—-T)  (by Proposition 3.7)
SezZ
=Y psx(S—H-T)+(-1)" ) x(SNH-T)
S5eZ SezZ

because obviously us—n(ZUH) = ps(Z) = ps, pr—z =0, and psnu(ZUH) = (-1)"
by Lemma 3.3. Thus

MZUH)=)Y asx(S—H-T)+(-1)"[x(ZNH)-x(ZNHNT)].
SezZ

But we have

X(S—H-T)=x(5)—x(5,M)—x(5,LOM) + x(5,M & (L ® M))

(~1)"X(Z N H) = —u(Z N H) + (~1)"x(H, L)

=—u(ZNH)+(-1)"x(X,L o M),

(- '(ZNHNT) = —w(ZNHNT)+ (-1 'x(HNT,L)
=—uw(ZNHND)+(-1)""'YX,LOM (LR M)).

All these equalities give (3.4).

Step 3 We claim that
s w(ZUH)=u(Z)+u(ZNH)
+ (=) [x(X, L) + x(X, M) — x(X, L& M) - x(X,L ® M)] .
Indeed, by the definition of () and the additivity of Euler characteristic, we have
MZUH)=(-1)"[x(ZUH) ~ x(X,L ® M)]
=(~1)"[X(Z) + x(H) = x(ZN H) = x(X,L ® M)]
=p(Z) + (-1)"[x(H) = x(ZN H) + x(X,L) - x(X,L® M)].
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But x(H) = x(X,M) and (-1)""'[x(ZNH) — x(X,L & M)] = u{Z N H). Thus the

above equation gives (3.5).

Step 4 For arbitrary line bundles L and M on any compact analytic variety Y, the
following equality holds

(B.6) 2x(Y, LoM)+x(Y,LM)=x(Y, L) +x(Y M)+ x(Y, Lo Mo (Lo M)).

This equation was proved in a more general framework in [H], Theorem 11.3.1.
We leave to the reader a verification of the following equality
2ab(1+a) "1+ 8" +(a+b)(1+a+b)™!
=a(l+a) ' +b61+b)"" +abla+b)(1+a) "1+ (1+a+b) .

This equality (with a = ¢1(L) and b = ¢;(M)) and Proposition 2.4 imply (3.6).

Step 5 (Inductive step) In order to prove the formula we use the induction on n = dimX.

Assume that the formula holds for y(Z N H) and u(Z N H N T)

3.7 wZNH) =Y «S)x(5M) - x(5, Lo M),
Sez

(B8) wZNHNT)=> oSS Ma(LeM)-x(5LeMa(LeM).
SezZ

It follows from (3.4) and (3.5) that

u(2) =Y ) [X(5) = x(S,M) = X(S,L & M) + x(5,M & (L ® M))]
S
~2u(ZNH)~pwZNHNT)
#(=1)" [X(X, L) + X(X, M) = x(X, L ® M)

—2x(X, L& M) - x(X,L& M & (Lo M),
the latter summand being zero by (3.6). Using (3.7) and (3.8) we thus obtain:
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w(2) =Y «(9)[X(S) — X(5, M) - x(5, L& M)+ x(5,M & (L& M)
S
+2x(5, M) - 2x(S, L& M)
—X(S,Md(LOM))—x(S,LoMa(LeM))

=) a(S)x(5) - x(5, L)),
S

by applying (3.6) once again. This gives the desired assertion.
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