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Hypergeometric function F1 and automorphic functions
ITI. Case with some integer parameters
by

Toshiaki Terada

Introduction

We consider the hypergeometric system of partial differential

equations

(F;) + D,.F =0 (i<i,jsn),

ij
2 n
D, s :=xi(xi-1)3i-+[xi-(xi-1)a=1§a*i(1 =AUy X ) A A -2
‘ n
+ (4-}0—2x2-xn+1)]ai+(Ai-1)a:1§a¢i[xa(xu-1)/(xi-xa)]aa+xw(1-1i),

D, . F=ﬂxi—xj)318j-+(Aj -1)3i - (Ai -1)8j (1 + )

17
of n wvariables XqrXpreow X where ai = B/Bxi and
Ai (i =0,17,... nt1,») are complex parameters satisfying
o]
E Aa = n+1 . Gauss' hypergeometric series F(a,8,yv,x) (n = 1) ,
=0

Appell's .F1(q,81,82,y,x1,x2) (n = 2) or Lauricella's

FD(a,81,---,Bn,x1,...,xn) (n 2 3) 1is one of its solutions,



where o = Am , Bi =1 —Ai and y = A + An+1 . (F1) is
completely integrable and has n+1 linearly independent

solutions locally holbmorphic on the domain
n . .
D := {x € € [x; = 0,1,xj(3 £ 1)} .

If none of Ai are integers, (F1) has an integral representation
of Euler-Picard type:
w, = [ a0 (u-x,) (u-1) du (1 £ i £ n+1)
from a base of solutions.

The Wronskian determinant vanishing never on D , a base of
solutions of (F1) determines a locally biholomorphic mapping
w to the n-dimensional projective space W = Pn(m)

Definition. Given a mapping w from D to W as above,
we will say that the inverse w_1 is uniformizable if there

exist a domain B « W (or B € (a modification of W )), a

compactification Y of D , an analytic subset S5, Y and a

0
covering manifold Z over Y, := Y-3, which ramifies only on
YO-D such that Q_1 can be extended to a biholomorphic mapping
from B to 1Z
If w-1 is uniformizable, then it defines a field a auto-

morphic functions on the domain B ; the group is induced by the
monodromy group of (F1) and the fundamental domain is biholo-
morphic to Yy
Definition. We will say that the parameters Ai satisfy

Picard-Schwarz condition for all I = {iO'iT"°"ip} (1 s p <n,



i =20,1,...,n+1, ia # i, {a * B)) we have

S AL YU S W - pez

p

:= {0} U {1/m | m € Z} .

In [5], the author obtained the

Theorem. Given a system (F1) , 1if Ai satisfy Picard-
Schwarz condition and d < li <1 (0 £ 1 8 ) , then w_1 is
uniformizable.

Historically, Schwarz [3] proved it without the condition
0 < Ai < 1 but with some additional condition. Picard tried to
prove and Le Vavasseur [2] found all sets of Ai which satisfy
Picard-Schwarz condition. Deligne-Mostow [1] also proved it
using tools of algebraic geometry.

Now the purpose of this paper is to generalize this
theorem for non-general cases (we will call general case if
0 < li < 1 are satisfied) in order to complete the work.
Deligne-Mostow [1] has already discussed about two cases.

In § 1, we collect some basic notations, definitions and
results already obtained. § 2 is devoted to some local properties
of a base of sclutions on singular loci. The proof and the
explications of the main theorem are found in § 3.

This work was done during the author's stay at the
Max-Planck-Institut flir Mathematik in. Bonn. He expresses his
gratitude to the institute for the hospitality and comfortable

condition for work.



§ 1. Preliminaries

1.1. Notations and definitions

n .
X := E’(x1,x2,...,xn+1) But except for defining S:
below, we put always Xieq = 17 and consider xi(1 £ i £ n)
as inhomogeneous coordinates; moreover put Xg = 0 and
x = 00
[ee]
I = {iO’i1""‘ip} given,
AI 1= Ai +Ai Toootds #I := p+1 , My i= exp(2w¢-1AI) '
0 1 P
S, := {x € X | x, =...=x, }
I 1, 1p
s := (xes | x. #+ x, if 3j ¢ 1}
I I i0 J ’

X : the compactification of D that is defined by the

sequence
- o g g

_ 2 3 n _
X-—X.I >X2 —_— . > Xn—X,

where Xi_1 is obtained from X, through Hopf's o-process

L -1,.0
along every si,I (:= the closure of (cnpon_1o...oc ) (SI))

such that #I = i+1 .

i+1



1.2, Fundamental group of D

On the Riemann sphere U of the variable u , take n+3
distinct points ﬁo'u1""'un+1'um . Two sets (uo,...,uw) and

(ué,...,u;) will be called equivalent if

. = ! ' - ! ) . .
(ui,un+1,u0,um) (ui,un+1,u0,um) hold for all i (1 £ i & n)

where

_ 1
(ui,un+1,u0.um) = /
is the anharmoéonic ratio. Put

X; = (ui,un+1;u0,uw) (1 i g n) .
Then a point of D and an equivalence class of such points is
of one-to-one correspondence.

Again take n+3 points on the real axis of U such that

and let

Cij ru = uij(t) (0 =t 1) (0 £1i,j € »=,i % j)
be a loop around u = aj with reference point u = ay which
passes only the upper half plane and a small neighborhocd of

aj ’ 1ij be the curve on D defined by



(t)su g(t)ou (£))  (u s(t) = a (a*i) (1 <asn)

an+1 aj

xa = (UO'.j (t) 1

and Aij be the homotopy class of . 1ij . Then Aij = Aji hold
and Aij(O $1is3jsn+1,(i,3) # (0,n+1)) generate the fundamental

group of D . Put

. . : . A, . .
l1"°lp 11,i0 12,1011... pito

1.3. Base of solutions and monodromy

Given a point x € D , take ui(O € i £ w) such that

X, = (ui,un+1;u0,uw) (1 1% n) ,
and put
>\CO
u =u 'n+1 T=X o A--=1
1 70 1 a ]
w,.{x) = [( ne —~ ) 1T (u_-u) S (u-u ) du
* U Un+1 Yw"U0/ gm0 * @ 1" a=0 *

where the path is a double loop with respect to uy and uj . It

does not depend on the choice of u; - Using this expression, we

can calculate explicitely monodromy matrices for a base

- L .
wy (%) := (1—u0)(1-uIT wOi(x) (if none of A are equal to 1).




For example, -

' [ 1 0 W
0 .
oy
Boq...p = | THy THy ees THpoao (= ugg g ()
e 8
Uy <y .. SHp 0
L 4

that is the matrice corresponding to A , which

N

I A01...p

represents a loop around SI .

Lemma 1 ([6] Corollary to Theorem 5). Even if some Ai are
integers if neither Xl nor 1-Ak is integer, then

wki/(1—uk)(1-ui)F(li) {0 £ 1 2o, 1i#%k,1)

forms a base of solutions. If k =0 and 1 = = , the monodromy

matrix for A, (I = {0,1,...,p}) 1is given by

r’le.r (r = diag (T (A;) ,T(Ay), ..., T(A

1 ))

n+1

Lemma 2. If all Ai are real, then there exists a Hermitian

matrix
[ )
a, a .... a
a, a .. a
= = * AN
A (aij) M . M
l a ...aa 4



~

where M = diag(ﬁ1,ﬂ2,...,un+1) , a = exp(n/=TA_) and

a; = (a-aui)/(1—ui), such that

) 3y 40105

is invariant (i.e. single-valued on D ).



§ 2. Local state of a base of solutions of (F1) at a

singular point

Definition. I = {10,11,...,1p} (0 s r, < n+1) given, it

will be called of exponential type with respect to the system

(F1) if, at least, one of the following conditions is satisfied:
(1) for all i €1, ki are positive integers,
(2) for all i €I, 1—ki are positive integers,

(3) for all 3j €I (0 2 j g =), Aj are positive integers,

A

(4) for all j € I (0 5 3 w) , 1-Aj are positive integers,

(5) A is not an integer.

Otherwise it will be called of logarithmic type with respect to

(FT) .

Theorem 1. Let £ be a point of Sg (I = {10,11,...,ipT)
and Xq be a part of local coordinates at £ such that
(xp = 0} = Sg N {a neighborhood of &} . Then there exists a

base of solutions on a small neighborhcod V of £ that consists
of functions given below, where fi are holomorphic and single-
valued on V .

(I) If I 1is of exponential type with respect to (F1) ’

then



(IT) If I 1is of logarithmic type with respect to (F1) '

then
AI AI )\,I
(@) xp 74, ..0rxg fp' X1 fplog X * fp+1'fp+2" % S (AI 2 0)
AI AI >'\.I - )
{b) X1 f1,...,xI fp_1,fp,fp log Xp * X fp+1’fp+2";"fn+1 (AI <0).

However, if I o {0,n+1} , then it is necessary to multiply
A
0]

T to all terms.

X

Demonstration. This theorem is already anounced in [6]

without proof but, if none of Ai are integers, then it is

proved in [5].

b}
be a permutation and repeat the

same discussion in § 2, replacing every o by ia : put

w

xi = (u! ,ui ;ui ,ui ) , take ai such that ai < ai < e

o 0. n+1 0. " o 0 1
etc. Then we can reduce the problem to I = {0,1,...,p} . For
example the monodromy matrix Bi i is obtained from Bch by

a” B
replacing Aj by Ar (0 £ j £ ») and multiplying a constant
j

factor baB ; which arises from the factor
( A

u -u n+1 1=X

n+1 0 1 o .

I -u I =u T (u,-u ) in the integral

© n+1 o 0 o=0

representation. If 0 € a,B s p < n+1 , then
baB = 1((la'lB) + (0,n+1)) and -y ((la’le) = {(0,n+1)) ; it is

not so difficult to know bu for general cases, but we will

B
not do it, because it is tedeous and not necessary at present.

Now we suppose I = {0,1,...,p} without restricting the



generality. If neither 1—k0 nor A is positive integer, by

o

Lemma 1,

wi(x) = w01(x)/(1—u0)(1-pi)F(Ai) (1 £1i g n+1)

-~

form a base. As A represents a loop around S. , we have

I I
only to examine the matrix BI . By explicite calculation, we
-1

see that the Jordan canonical form of FBIF is

P
diag(pI,...,pI ,1¢...,1) or respectively the direct sum of

diag(1,...,1}) and (3 1) according that I is of exponential

or respectively logarithmic type with respect to (F1)
Consequently our theorem is true for some fi (1 £1i < n+t)
which are single~valued and holomorphic on V—gl and so
meromorphic according to the expression by integral. Choose

Eqreeeib

greeerX as local coordinates at & , where

p-1""p' “p+ n

x1/E1 = ... = /E = x . Replacing u by xpv in the
A

p-1 p
integral given in the introduction, we see wi/pr (1 = 1,...,pP)

Xp_,'

are holomorphic at £ .
For some 1 (p <1 $ «®) and all i (p<i 51, i % 1) ,

define

T(A,)
1 . —_ - l - 1 -
Vil T Vi T O, Y1 T T (wy=wq)

as following way: choose a 1 such that 1 - Ay is not a

positive integer if it exists; if all Ai = my (p < 1 § »}) are

non-positive integers, then choose an arbitrary 1 , put

Ai = m,+t and take the limit, t tending to zero. All w, are

il



- 12 -

holomorphic at £ . Since

nHe~-18
=
£
i}
o

holds ([5], p. 456}, we have

(vl
(2.1) LT ey =0
i=1
and
(2.2) E . T ) w, + 2 DT (A )wa+(1-u )T (Ay)wq = 0O
jo1 1771 J=p+1,3+1 j 331 I 1'71

Therefore, if up ¥ 1 , we see, by taking a limit if necessary,

that
wi(1 $isp), wjl(p+1 £ 3Jsw», =% 1)

are linearly independent, which completes the proof for the
case U ¥ 1 , for, by permutation, we can suppose neither
1—A0 nor A 1is not a positive integer.

If =1 , then

Hr

fp ’=-E

i=1

is holomorphic by (2.2) and the matrice B, shows that Wy

(p+1 £ j 8§ ») goes to Wy + fp by the analytic continuation

-~

along a loop around SI .
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Now it remains the case that all 1-Ai (0O s 1 <p) or
all Xj(p < j § ») are positive integers. We can assume, by
permutation, AP nor 1-AP+1 is not a positive integer. Then,

putting g = n-p+1 ,

)(1'Ui;p+1TD(Ki+p+1)] (1

-
A

q)

i~ wp+1.i+p+1/[(1_up+1

[T

Voot 1oqe1/070pen) Uiy g PTOG ] (@ < i 5 ned)

form a base of solutions. The monodromy matrix for this base

is obtained from B by replacing Ai with

g+1” " n+le

A (A with lp), because the real axis on the Riemann

p+1—i ©

sphere is a circle. So the problem reduces to calculate BJ

J = {g+1,...,n+1=} . However it is easy to see A, g and

Ay represents a same curve; SO B01 = B » Which

completes the proof.
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§ 3. Main theorem

3.1. Necessary condition

Let w be a mapping {multivalued) defined by a base of'
solutions of (F1) , which we consider without the condition
0 < ﬂi < 1 .

Proposition. 1In order that the inverse w 1 may be

uniformizable, not only Picard-Schwarz condition, but also
the supplementary condition:

If AI =+ 1 for some I , then I is of exponential
type. In fact this is a consequence of Theorem 1, Lemma 9 of

[5] and the explicit form of the Wronskian ([6é], Theorem 4)

3.2. Solutions of Picard-Schwarz condition

In [2], Le Vavasseur obtained, for n=2 , all the solutions
of Picard-Schwarz condition; there exist, other than 27 cases
already treated, only 10 solutions (one of them contains an

integer parameter) up to permutations among Ai (0 £ i 5 «

0 1 2 3 ®©
(1) 3/4 3/4 3/4 3/4 0
(2} 1/2 1/2 1/2 1/2 1
(3) 1/3 1 1 1/3 1/3
(4) 1/2 1 1 1/3 1/6
(5) 1/2 1 1 1/4 1/4

(6) 1/2 1 1 1/2 0
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(7) 1/m 1 1 -1/m 1 (mMmEZT or m = =)
(8) 3/2 . 1/2 1/2  1/2 0

(9) 5/3 1/3 1/3 1/3 1/3

(10) 7/6 5/6 1/3 /3 1/3

For n 2 3 , there exist some but none which are essentially
new and satisfy the supplementary condition, except the case

0 < Ai < 1 . For, if XO + A, =1 =1, for example, AO = A1 =1

1
must hold and Xi + Aj - 1 = 0 never occurs except that all

Ak =1 (k * i,j) . Therefore every solution is obtained by

adding some 1 to one of the cases (2) ~ (7).

Theorem 2. For (1) ~ (7), the inverse w is uniformizable

and there exist none which are essentially new if n 2 3 . For

(1), the domain B is biholomorphic to ¢2 , the variety Y

is biholomorphic to the projective space X , the subanalytic

set S0 is empty and the fundamental domain which is biholo-

morphic to YO =Y - S0 is compact. For (2), B = (disk) x m1 ,

Y 5191 ><IE>1 and Y, = 0:1 x {0:1‘ - {0,1}} .

Demonstrations. We attribute the proof to Lemma 13 in

[5], so we have only to find a complete invariant metric on
B and the variety Yy o« and to show that w can be extended
tc a locally biholomorphic mapping to B from some variety 2
over Y, .

As to (1), in order to simplify the situation, put

AO = A1 = Az =a, = 3/4 and l3 = 0 . Then,

Wy, Wy, and wy = const.(1—x1)_1/4 -1/4



form a base. |w3| is evidently single-valued on D . Given

a solution w of (F1) ; let wg the projection of w to the

space generated by wi(i = 1,2) . Then the form

0 -

(G1,wg)A°'t(w° 0

1l'w2}

is invariant with respect to monodromy where AO is obtained
from the invariant Hermitian matrix A by eliminating the
third row and column. AO being positive definite, there exist

linear combinations g4 and g, of w and w such that

1 2

|atgy/wy) |2+ [alg,/uy) |2

. . \ . 2
defines a complete invariant metric on B = €~ ; we see (range

of w ) @B by Theorem 1. The last condition is assured by

Theorem 1 and Lemma 10 in [5] (Case (a), = e, = 1/2

e. e.
JO Jq Jo
for Y = YO = X , there existing no I such that AI =0 .

As to case (2}, put A1 = 1 and Ai = 1/2 (i # 1) , so

w, (i =1,2,3) form a base. Wy and W depend only on x

i 2

and the space generated by W and w3 is invariant under the

monodromy group. And the form
(@rw) = (@,04) A (wy,wa)
r - 2!’ 3 0 2! 3

is invariant, where Ay is obtained from A by eliminating

the first row and column and is of signature (1,1) . Therefore,

i
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[ (w,w) (do,dw) - |(w,d0) |2/ [(w,0) % + L,

2
. . 3 (U1 .
where L 1is the image of ‘Bx1 \m3)dx1) by w , defines a

éomplete invariant metric on B = (disk) x m1 , which is seen

by the explicit form of monodromy matrices. The further process

of the proof is quite similar.

For the cases (3) ~ (7), we can prove by similar way to
above. But these are reduced to one variable case. Among the
equations of the system (FT) r Dy F = 0 comes to naught and
DiiF =0 (1 = 1,2) 1is Euler's hypergeometric differential
equation of the variable Xy - So the problem is re@uced to
Schwarz' work; all domains B and Y and groups are direct

0
product.

Similarly, if n 2 3 , the problem reduces to one or ﬁwo
variable cases.

Remark. If n = 1 , then we can always assume
0 s Ai £ 1 {(0si s 2) , using a permutation and the trans-
formation: A, —> 1-1, (0 § i s =) . In this situation,
Schwarz added the condition: A_ € 2_1- other than Picard-

Schwarz condition. From our point of view, this is equivalent

to the supplementary condition.
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