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Hypergeometrie function F 1 and automorphic functions
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Toshiaki Terada

Introduction

We consider the hypergeometrie system cf partial differential

equations

(i ~ i,j ~ n) ,

2 n
D, . ': =x, .( x. - 1 ) a, + [x. - (x. - 1) L (1 - A ) / (x, - x ) + A0 + A1.' - 2

1.1. 1. 1. 1. 1. 1. 1 -. a 1. a
0= ,0*1.

n
+ '( 4- A0- 2A2- A 1 ) ] a. +' (A, -1 ) L [x (x -1) / (x ,-x )] a +A (1 ~A.) ,

n+ 1. 1. 1 ' a 0 1. a. a. co 1.
0= ,0*1.

D. , : = (x. -x . ) a, a, + (A, - 1 ) a, - (A, - 1) a. (i * j)
1.J . ~ ] 1. J ] 1. 1. J

of n variables where and

Ai (i = 0,1, ... n+1,co) are complex parameters satisfying
co
L A = n +'·1 . Gauss l hypergeometrie series F(a.,ß,y,x) (n = 1) ,

a=O a.

Appell's . F 1 (~,ßi,ß2,y,x1,x2) (n = 2) or Lauricella's

FD(a,ß" ... ,ßn,x" ... ,xn ) (n ~ 3) is one of its solutions,
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where () = A , ß. = 1 - A.
00 1 1

completely integrable and has n+1 linearly independent

solutions locally holomorphic on the domain

D : = {x E ern Ix. = 0, 1 , x . (j * i)} .
1 J

If none of Ai are integers, (F 1 ) has an integral representation

of Euler-Picard type:

W.
1.

x. AO-1 A1-1
= f 1 u (u-x

1
)

o

A -1 A-1
(u -x ) n (u -1) n +1 du (1 ~ i ~

n
n+ 1 )

from a base of solutions.

The Wronskian determinant vanishing never on D, a base of

8olutions of (F
1

) determines a locally biholomorphic mapping

w to the n-dimensional projective space W ;;:; P (ao
n

Definition. Given a mapping /.LI from D to W as above,

we will say that the inverse -1
w i8 uniformizable if there

exist a domain B c W (or B c (a modification of W)), a

compactification Y of D, an analytic subset So c Y and a

covering manifold Z over Yo : = Y - So which ramifies only on

such thatYo - D

from B to Z.

can be extended to a biholomorphic mapping

If -1
/.LI is uniformizable, then it defines a field a auto-

morphic functions on the domain B; the group is induced by the

monodromy group of (F,) and the fundamental domain i5 biholo­

morphic to YO ·

Definition. We will say that the parameters Ai sati5fy

Picard-Schwarz condition for all I = {iO,i 1 , ... ,ip } (1 ~ p ~ TI,
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i 0. = 0, 1 , · · · , n + 1, i 0. * i ß (0. * ß» we have

AI := Ai + A. +
o 1.1

-1 I+ A. - P E Z-· : = {0 } u {1 Im mEZ}.
1. p

In [5], the author obtained the

Theorem. Given a system A.
1.

satisfy Picard-

Schwarz condition and

uniformizable.

o < A. < 1 (0 :;;; i :S 00 ) , then
1.

-1w is

Historically, Schwarz [3] proved it without the condition

o < A. < 1 but with sorne additional condition. Picard tried to
1.

prove and Le Vavasseur [2] found all sets of A. which satisfy
1.

Picard-Schwarz condition. Deligne-Mostow [1] also proved it

using tools of algebraic geometry.

Now the purpose of this paper is to generalize this

theorem for non-general cases (we will call general case if

o < A. < 1 are satisfied) in order to complete the work.
1.

Deligne-Mostow [1] has already discussed about two cases.

In § 1, we collect some basic notations~ definitions and

results already obtained. § 2 "is devoted to sorne local properties

of a base of solutions on singular loci. The proof and the

explications of the main theorem are found in § 3.

This work was done during the author's stay at the

Max-Planck-Institut für Mathematik in. Bonn. He expresses his

gratitude to the institute for the hospitality and comfortable

condition for work.
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§ 1. Prelirninaries

1.1. Notations and definitions

nX := F (x 1,x2 , ... ,xn +1) . But except for defining

below, we put always xn +1 = 1 and consider x. (1 ~ i
1

as inhornogeneous coordinates; rnoreover put Xo ~ 0 and

x = co
co

Ar : = A. +A. +..• +A. , 01 : = p+1 , 1:11 : = exp (2TTI=TA I ) ,
J. O 1 1 1

P

SI : = {x E X I x. = •• • =x t }
J. o 1

P

sO . - {x E SI I x . * x. if j ~ I}I J. O J

X the cornpactification of D that is defined by the

sequence

an
--> X ~ X ,

n

where is obtained from X.
1

through Hopf's a-process

along every

such that

S. I (:= the closure of
J.,

#1 = i+1 •

-1 0
(O?O 1° ••• 00 . 1) (SI))n n- 1+
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1.2. Fundamental group of D

On the Riemann sphere U of the·variable u, take n+3

distinct points üO,u1, ... ,un+1'uoo. Two sets (uO, ... ,uoo ) and

(uO, ... ,u~) will be called equivalent if

hold for all i (1 ~ i ~ n)

where

U.-u
/ J. 00

un+ 1-uoo

is the anharrnonic ratio. Put

Then a point of D and an equivalence class of such points is

of one-to-one correspondence.

Again take n+3 points on the real axis of U such that

••• < a < an 00

and let

Ci j u;;: u i j (t) (0 ~ t :;; 1) (0 ~ i, j ~ 00, i * j)

be a loop around u = a. with reference point u = a. which
J J.

passes only the upper half plane and a srnall neighborhood of

a
J
, , 1.. be the curve on D defined by

J.J
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x = (u . (t),u +1 (t) iU 0 (t),u (t»a aJ ~n 0 0 00

be the homotopy class of . l.. . Then A.. = A.. hold
1.J 1.J J1.

i ~ j :S n+1, (i,j) * (0,n+1)) generate the fundamental

and A ..
1.J

and A .. (0 ~
1.J

group of D. Put

A.
1.

P
.- A .. A.. A. i

1. 1. 0 1. 1. 1 ••• 1. 1P P P p-

and

1.3. Base of solutions and monodromy

Given a point x € D , take u.(O:S i ~ 00)
1.

such that

x. = (u., u 1 ; U o' u )
1. 1. n+ 00

(-1 ~ i :;;; n) ,

and put

where the path is a double loop with respec,t to U.
1.

and u .• It
J

does not depend on the choice of u .. Using this expression, we
1.

can calculate explicitely rnonodromy rnatrices for a base

(if none of A
~

are equal to 1).
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For example,

o

o

B =
01 ••• p ll01 '.;..1 (1-11·))

••• 1.- 1.

'1

o

that is the matrice corresponding to A = A , which
I 01 ••• p

represents a loop around Sr .
Lemma 1 ([6] Corollary t? Theorem 5). Even if some A. are

1.

integers if neither Al nor 1-Ak is integer, then

W
k

. / ( 1-11
k

) (1 -ll . ) r (A .) (0 S i :s 00, i :I: k, I)
1. 1. 1.

forms a base of'solutions. 1f k = 0 and I = 00 , the monodromy

matrix for AI (I = {O,1, ... ,p}) is given by

Lemma 2. If all Ai are real, then there exists a Hermitian

matrix

a ....

a a

A = (a .. ) = M*
1.) ,

,
- "l a ... a a n + 1
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where M = diag(~1'~2' ... '~n+1) , a = exp(~I=1Aoo) and

a. = (a -a].1 • ) / ( 1 -].1 .) , 5 ueh that
111

L a .. W.fJ).
1J 1 J

is invariant (i.e. single-valued on D).
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§ 2. Local state of a base of solutions of (F 1) at a

sing~lar point

Def ini tion . I = { i O' i 1 ' ... , i p } (0 ~ 1:u ~ n + 1 ) given , i t

will be called of exponential type with respect to the system

(F 1 ) if, at least, one of the following conditions is satisfied:

(1) for all i E I , A. are positive integers,
1.

(2 ) for all i E I , 1-A. are positive integers,
1.

(3 ) for all j ~ I (0 :;;; j :;;; 00) , A. are positive integers,
J

(4 ) for all j tt I (0 ~ j :;;; 00) , 1-A. are positive integers,
J

(5 ) AI is not an integer.

Otherwise it will be called of logarithmic type with respect to

.... 0
Theorem 1. Let t; be a point of SI (I = "{i O' i 1 ' ... , ipr)

and XI be apart of local coordinates at ~ such that
.... 0

(xI = O} = SI n {a neighborhood of E;.} • Then there exists a

base of solutions on a small neighborhood V of t; that consists

of functions given below, where

valued on V.

f.
1.

are holomorphic and single-

(I) If I is of exponential type with respect to (F 1) ,

then
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(11) If I is of logarithmic type with respect to (F 1 )

then

(a)
AI AI AI

f p +1 ,fp +2 '··· ,fn +1 ( AI ~ 0)xI f 1 ' • • • , xI f p' xI fplag xI +

AI AI ~I ..

(b) xI f 1 ' · .. , xI f p_1,fp ,fp log xI + xI fp+1,fp+2'·~·'f n+1 (AI <.0) ..

.However, if I ~ {0,n+1} , then it is necessary to multiply
Aoo

xI to all terms.

Demonstration. This theorem is already anounced in [6]

without proof but, if none of

proved in [5].

A. are integers, then it is
1.

Let n+1
i n+1

be apermutation and repeat the '

etc. Then we can reduce the problem to

same discussion in § 2, replacing every a by

such that a~ < a! < •••
J.

O
1.

1

I = {0,1, ... ,p} . For

.<-

x! ==
J.

a
(u! ,u! ;u~ ,u! )

1. 1 1 J.a n+1 o. 00

, take a~
1.

a.

i o
put

example the monodromy matrix

replacing A
j

by Ai'. (0 .~ j
J

B!. i5 obtained from Ba.B by
J. 0 1 ß

~ (0) and multiplying a constant

factor baß' which arises from the factor

(l un +1-uO
u -u

00 n+1
in the integral

representation. If 0 S a,B ~ p < n+1 , then

and -lJ ( (i ,i B) = (0, n +1 )) ; i t i5
00 CL

not so difficult to know baß for general cases, but we will

not da it, because it is tedeous and not necessary at present.

Naw we 5uppose I = {0,1, ... ,p} without restricting the
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generality. If neither 1-A O nor Aoo is positive integer, by

Lemma 1,

form a base. As AI represents a loop around Sr' we have

only to examine the matrix BI . By explicite calculation, we

see that the Jordan canonical form of rB r- 1 is
p I. '

diag(~I' ... '~ ,1, ... ,1) or respectively the direct SUfi of
. - I

(01 11)diag(1, ... ,1) and according that I is of exponential

or respectively logarithmic type with respect to (F 1 )

Consequently our theorem is true for some f. (1 S i ~ n+ 1 )
~

which are single-valued and holomorphic on v-S
I

and so

rnerornorphic according to the expression by integral. Choose

~1' ... '~ 1'x,x +1'···'x as local coordinates at ~ , wherep- p p n

x1/~1 = ... = x 1/~ 1 = x . Replacing up- p- p

integral given in the introduction, we see

are holomorphic at ~ .

by x v in the
A p

w./x I (1 = 1, ... ,p)
~ p

For some 1 (p < 1 ~ 00) and all i (p < i ~ 1, i * 1) ,

define

w.
~

1

as following way: choose a 1 such that 1 - Al is not a

positive integer if it existsi if all Ai = mi (p < i ~ 00) are

non-positive integers, then choose an arbitrary I , put

Ai = mi+t and take the limit, t tending to zero. All wil are
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holomorphic at ~ . Since

L lJ,W, = 0
i=1 J. J.

holds ([5], p. 456), we have

( 2 • 1 )

and

(2 .2)

00

L 11"~ r (A ' ) w, = 0
'1J. J. 11=

I ll, r (A , ) w' +, 1, llj r (A ' ) w '1 + ( 1-lJ r) r (A 1) w1 = 0 •
i=1 J. J. 1 J=p+1,]*1 J J

Therefore, if lJ r * 1 , we see, by taking a limit if necessary,

that

are linearly independent, which comp1etes the proof for the

case ~I * 1 , for, by permutation, we can suppose neither

1-1.. 0 nor

If

A is not a positive integer.co

lJ =1 , then
-I

f p := I ~,r(A.)W,
'11. 111.=

is ho1omorphic by (2.2) and the rnatrice BI shows that wj

(p+1 :s j ~ co) goes to W, + f by the analytic continuation
J P

along a loop around Sr
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Now it remains the case that all 1-Ai (0 ~ 1 ~ p) or

all A. (p < j ~ 00) are positive integers. We can assurne, by
J

permutation, Ap nor 1-Ap +1 is not a positive integer. Then,

putting q = n-p+1 ,

w~ = wp + 1 . i+p+1 /[( 1-llp +1) (1-lli~p+1)-r-(A i +p +1 ) ] ( 1 ~ i ~ q)
].

W i-Q-11(1-llp+1) (1-ll i - Q_1) rt Ai -q-1 ) ] (q < i ~ n+1 )p+1

form a base of solutions. The monodromy matrix for this base

is obtained from B 1'···' +1q+ n 00
by replacing A.

].
with

Ap )' because the real axis on the RiemannA 1 . (A wi thp+ -]. 00

sphere is a circle. So the problem reduces to calculate

J = {q+1, ... ,n+1 00 } • However it is easy to see A01 and
..• q

A
J

represents a same curve; so B = B which01 ... q q+1 ... 00

completes the proof.
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§ 3. Main theorem

3.1. Necessary condition

Let LU be a mapping (rnultivalued) defined by a base of'.'

solutions of (F 1 ) , which we consider without the condition

o < "'X. < 1 •
1.

Proposition. In order that the inverse -1
LU may be

uniformizable, not only Picard-Schwarz condition, but also

the supplementary condition:

If A = ± 1I
for some I , then I is of exponential

type. In fact this is a consequence of Theorem 1, Lemma 9 of

[5] and the explicit form of the Wronskian ([6], Theorem 4)

3.2. 'Solutions of Picard-Schwarz condition

In [2], Le Vavasseur obtained, for n=2 , all the solutions

of Picard-Schwarz conditioni there exist, other than 27 cases

already treated, only 10 solutions (one of them contains an

integer parameter) up to permutations among Ai (0 ~ i ~ 00)

AO A1 A2 . A3 A00

( 1 ) 3/4 3/4 3/4 3/4 0

(2 ) 1/2 1/2 1/2 1/2 1

(3) 1/3 1 1 1/3 1/3

(4 ) 1/2 1 1 1/3 1/6

(5 ) 1/2 1 1 1/4 1/4

(6 ) 1/2 1 1 1/2 0
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( 7 ) 1/m 1 1 -1/m 1 (m E ~ or m = 00)

(8 )

( 9 )

( 10)

3/2

5/3

7/6

1/2

1/3

5/6

1/2

1/3

1/3

1/2 0

1/3 1/3

1/3 1/3

For n ~ 3 , there exist some but none 'which are essentially

new and satisfy the supplernentary condition, except the case

o < Ai < 1 • For, if AO + 1.. 1 - 1 = 1 , for example, AO = A1 = 1

roust hold and At + A~ - 1 = 0 never occurs except that all
1. ]

Ak = 1 (k * i,j) . Therefore every solution is obtained by

adding some 1 to one of the cases (2) ~ (7).

Theorem 2. For (1) ~ (7), the inverse
-1

LU is uniformizable

and there exist none which are essentially new if n ~ 3 . For

(1), the domain B is biholomorphic to ~2 , the variety Y

is biholomorphic to the projective space X, the subanalytic

set So is empty and the fundamental domain which is biholo­

morphic to Yo = Y - So is compact. For (2), B ~ (disk) x ~1

y ~ JP 1
x lP 1 and Y0 ;;:; a: 1 x {CI: 1 - {O, 1 }} •

Demonstrations. We attribute the proof to Lemma 13 in

[5], so we have only to find G complete invariant rnetric on

Band the variety YO ' and. to show that w can be extended

to a locally biholomorphic mapping to B from some variety Z

over Yo •

As to (1), in order to simplify the situation, put
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form a base. Iw31 is evidently single-valued on D. Given

a solution W of

space genera ted by

°(F
1

) , let w
i

the projection of

w. (i = 1, 2) • Then the form
1.

w to the

(-0 -O)AO -t( ° 0)w
1

,w
2

w
1

,w
2

is invariant with respect to monodromy where AO is obtained

from the invariant Hermitian matrix A by eliminating the

third row and colurnn. AO being positive definite, there exist

linear cornbinations and of and such that

defines a complete invariant metric on
2

B = ~ ; we see (range

of w) c B by Theorem 1. The last condition is assured by

Theorem 1 and Lemma 10 in [5] (Case (a), e. = e.
J O J1

for Y = YO :::; X , there existing no I such that

As to case (2), put A1 = 1 and A. = 1/2 (i
1.

:::; e. = 1/2
J2

AI :::; ° ·
* 1) , so

and the space generated by w2

monodromy group. And the form

w. (i = 1,2,3)
1.

form a base. w2
and

and

depend only on x 2

is invariant under the

(w, w)

is invariant, where AO is obtained from A by eliminating

the first row and colurnn and is of signature (1,1) . Therefore,

/
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2 2
[ (w, w) (dw, dw) - I (w, dw) I / 1(w, w) I + L ,

by w, defines awhere L is the image of I-d (~)dX 1

2

dX 1 \w
3

1

complete invariänt metric on B = (disk) x ~1, , which is seen

by the explicit form of monodromy matrices. The further process

of the proof is quite similar.

For the cases (3) ~ (7), we can prove by similar way to

above. But these are reduced to one variable case. Arnong the

equations of the system (F,) , D12F = 0 comes to naught and

D.. F = 0 (i = 1,2) is Euler's hypergeometric differential
~~

equation of the variable xi . So the problem is reduced to

Schwarz' work; all domains Band Yo and groups are direct

product.

Similarly, if n ~ 3 , the problem reduces to one or two

variable cases.

Remark. If n = 1 , then we can always assume

o ~ A. ~ 1 (0 ~ i ~ 2) , using apermutation and the trans­
~

formation: ),.. ~> 1-)". (0 ~ i :;; 00) • In this s±tuation,
~ ~

Schwarz added the condition:),. E ~-1 other than Picard-
00

Schwarz condition. From our point of view, this 1s equivalent

to the supplementary condition.
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