Hypergeometric function F₁ and automorphic functions

III. Case with some integer parameters

by

Toshiaki Terada

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

West Germany

•

Shiga University of Medical Science Department of Mathematics Seta Tsukinowa-cho, Otsu Shiga, 520-21

Japan

MPI/87-50

.

Hypergeometric function F_1 and automorphic functions

III. Case with some integer parameters

by

Toshiaki Terada

Introduction

We consider the hypergeometric system of partial differential equations

$$(F_{1}) : D_{ij}F = 0 \quad (i \leq i, j \leq n) ,$$

$$D_{ii} := x_{i}(x_{i} - 1)\partial_{i}^{2} + [x_{i}^{-}(x_{i} - 1) \sum_{\alpha=1, \alpha \neq i}^{n} (1 - \lambda_{\alpha})/(x_{i} - x_{\alpha}) + \lambda_{0} + \lambda_{i} - 2$$

$$+ (4 - \lambda_{0}^{-2\lambda} 2^{-\lambda_{n+1}}) \partial_{i}^{+} (\lambda_{i}^{-1}) \sum_{\alpha=1, \alpha \neq i}^{n} [x_{\alpha}(x_{\alpha}^{-1})/(x_{i}^{-x_{\alpha}})]\partial_{\alpha}^{+} \lambda_{\infty}(1 - \lambda_{i}) ,$$

$$D_{ij} := (x_i - x_j) \partial_i \partial_j + (\lambda_j - 1) \partial_i - (\lambda_i - 1) \partial_j \quad (i \neq j)$$

of n variables x_1, x_2, \dots, x_n where $\partial_i = \partial/\partial x_i$ and λ_i (i = 0,1,... n+1, ∞) are complex parameters satisfying $\sum_{\alpha=0}^{\infty} \lambda_{\alpha} = n+1$. Gauss' hypergeometric series $F(\alpha,\beta,\gamma,x)$ (n = 1), Appell's $F_1(\alpha,\beta_1,\beta_2,\gamma,x_1,x_2)$ (n = 2) or Lauricella's $F_D(\alpha,\beta_1,\dots,\beta_n,x_1,\dots,x_n)$ (n ≥ 3) is one of its solutions, where $\alpha = \lambda_{\infty}$, $\beta_{i} = 1 - \lambda_{i}$ and $\gamma = \lambda_{\infty} + \lambda_{n+1}$. (F₁) is completely integrable and has n+1 linearly independent solutions locally holomorphic on the domain

$$D := \{x \in \mathbf{C}^{n} | x_{i} = 0, 1, x_{j} (j \neq i) \}.$$

If none of λ_i are integers, (F₁) has an integral representation of Euler-Picard type:

$$\omega_{i} = \int_{0}^{x_{i}} u^{\lambda_{0}-1} (u-x_{1})^{\lambda_{1}-1} \dots (u-x_{n})^{\lambda_{n}-1} (u-1)^{\lambda_{n}+1} du \quad (1 \leq i \leq n+1)$$

from a base of solutions.

The Wronskian determinant vanishing never on D , a base of solutions of (F_1) determines a locally biholomorphic mapping ω to the n-dimensional projective space $W \cong P_n(\mathbb{C})$.

<u>Definition</u>. Given a mapping ω from D to W as above, we will say that the inverse ω^{-1} is uniformizable if there exist a domain $B \subset W$ (or $B \subset (a \mod of W))$, a compactification Y of D, an analytic subset $S_0 \subset Y$ and a covering manifold Z over $Y_0 := Y - S_0$ which ramifies only on $Y_0 - D$ such that ω^{-1} can be extended to a biholomorphic mapping from B to Z.

If ω^{-1} is uniformizable, then it defines a field a automorphic functions on the domain B ; the group is induced by the monodromy group of (F₁) and the fundamental domain is biholomorphic to Y₀.

<u>Definition</u>. We will say that the parameters λ_i satisfy Picard-Schwarz condition for all I = $\{i_0, i_1, \dots, i_p\}$ (1 $\leq p \leq n$,

- 2 -

 $i_{\alpha} = 0, 1, \dots, n+1, i_{\alpha} \neq i_{\beta} (\alpha \neq \beta)$ we have

$$\lambda_{\mathbf{I}} := \lambda_{\mathbf{i}_0} + \lambda_{\mathbf{i}_1} + \dots + \lambda_{\mathbf{i}_p} - \mathbf{p} \in \mathbf{Z}^{-1} := \{0\} \cup \{1/m \mid m \in \mathbf{Z}\}.$$

In [5], the author obtained the

<u>Theorem</u>. Given a system (F₁), if λ_i satisfy Picard-Schwarz condition and $0 < \lambda_i < 1$ ($0 \le i \le \infty$), then ω^{-1} is uniformizable.

Historically, Schwarz [3] proved it without the condition $0 < \lambda_i < 1$ but with some additional condition. Picard tried to prove and Le Vavasseur [2] found all sets of λ_i which satisfy Picard-Schwarz condition. Deligne-Mostow [1] also proved it using tools of algebraic geometry.

Now the purpose of this paper is to generalize this theorem for non-general cases (we will call general case if $0 < \lambda_i < 1$ are satisfied) in order to complete the work. Deligne-Mostow [1] has already discussed about two cases.

In § 1, we collect some basic notations, definitions and results already obtained. § 2 is devoted to some local properties of a base of solutions on singular loci. The proof and the explications of the main theorem are found in § 3.

This work was done during the author's stay at the Max-Planck-Institut für Mathematik in Bonn. He expresses his gratitude to the institute for the hospitality and comfortable condition for work.

§ 1. Preliminaries

1.1. Notations and definitions

 $X := \mathbb{P}^{n}(x_{1}, x_{2}, \dots, x_{n+1}) \quad \text{But except for defining } S_{I}$ below, we put always $x_{n+1} = 1$ and consider $x_{i}(1 \le i \le n)$ as inhomogeneous coordinates; moreover put $x_{0} = 0$ and $x_{m} = \infty$.

> $I = \{i_0, i_1, \dots, i_p\} \text{ given,}$ $\lambda_I := \lambda_{i_0}^{+\lambda} i_1^{+\dots+\lambda} i_p^{-1}, \ \#I := p+1, \ \mu_I := \exp(2\pi\sqrt{-1}\lambda_I),$

$$s_{I} := \{x \in X \mid x_{i_{0}} = \dots = x_{i_{p}}\}$$
$$s_{I}^{0} := \{x \in S_{I} \mid x_{i_{0}} \neq x_{j} \text{ if } j \notin I\}$$

X : the compactification of D that is defined by the sequence

$$\hat{\mathbf{x}} := \mathbf{x}_1 \xrightarrow{\sigma_2} \mathbf{x}_2 \xrightarrow{\sigma_3} \cdots \xrightarrow{\sigma_n} \mathbf{x}_n = \mathbf{x}$$

where X_{i-1} is obtained from X_i through Hopf's σ -process along every $S_{i,I}$ (:= the closure of $(\sigma_n \circ \sigma_{n-1} \circ \dots \circ \sigma_{i+1})^{-1} (S_I^0)$) such that #I = i+1.

$$\hat{s}_{I} := s_{1,I}, \hat{s}_{I}^{0} := \hat{s}_{I} - \bigcup_{J \neq I} \hat{s}_{J}.$$

1.2. Fundamental group of D

On the Riemann sphere U of the variable u, take n+3 distinct points $\ddot{u}_0, u_1, \ldots, u_{n+1}, u_{\infty}$. Two sets $(u_0, \ldots, u_{\infty})$ and $(u_0', \ldots, u_{\omega}')$ will be called equivalent if $(u_1, u_{n+1}; u_0, u_{\infty}) = (u_1', u_{n+1}'; u_0', u_{\omega}')$ hold for all i $(1 \le i \le n)$ where

$$(u_{1}, u_{n+1}; u_{0}, u_{\infty}) = \frac{u_{1} - u_{0}}{u_{n+1} - u_{0}} / \frac{u_{1} - u_{\infty}}{u_{n+1} - u_{\infty}}$$

is the anharmonic ratio. Put

$$x_{i} = (u_{i}, u_{n+1}; u_{0}, u_{\infty}) \quad (1 \le i \le n) .$$

Then a point of D and an equivalence class of such points is of one-to-one correspondence.

Again take n+3 points on the real axis of U such that

$$a_0 < a_1 < \cdots < a_n < a_{\infty}$$

and let

$$C_{ij} : u = u_{ij}(t) \quad (0 \le t \le 1) \quad (0 \le i, j \le \infty, i \neq j)$$

be a loop around $u = a_j$ with reference point $u = a_i$ which passes only the upper half plane and a small neighborhood of a_j , l_{ij} be the curve on D defined by

$$\mathbf{x}_{\alpha} = (\mathbf{u}_{\alpha j}(t), \mathbf{u}_{\alpha n+1}(t); \mathbf{u}_{\alpha 0}(t), \mathbf{u}_{\alpha \infty}(t)) \quad (\mathbf{u}_{\alpha j}(t) = \mathbf{a}_{\alpha}(\alpha \neq \mathbf{i}) (1 \le \alpha \le n)$$

and A_{ij} be the homotopy class of l_{ij} . Then $A_{ij} = A_{ji}$ hold and $A_{ij} (0 \le i \le j \le n+1, (i,j) \ne (0,n+1))$ generate the fundamental group of D. Put

$$A_{i_p} \stackrel{i}{=} 0^{i_1} \cdots \stackrel{i_{p-1}}{=} 1 \stackrel{i_p}{=} A_{i_p} \stackrel{i_0}{=} 0^{i_1} \stackrel{i_1}{=} 1 \cdots \stackrel{i_p}{=} \frac{i_p}{p-1}$$

and $A_{I} := A_{i_{0}i_{1}\cdots i_{p}} := A_{i_{1}i_{0}}A_{i_{2}i_{0}i_{1}\cdots i_{p}i_{p}i_{0}i_{1}\cdots i_{p-1}}$

1.3. Base of solutions and monodromy

Given a point $x \in D$, take $u_i (0 \le i \le \infty)$ such that

$$x_{i} = (u_{i}, u_{n+1}; u_{0}, u_{\infty}) \quad (1 \le i \le n) ,$$

and put

$$\mathbf{w}_{ij}(\mathbf{x}) = \left[\left(\frac{\mathbf{u}_{n+1} - \mathbf{u}_{0}}{\mathbf{u}_{\infty} - \mathbf{u}_{n+1}} \frac{1}{\mathbf{u}_{\infty} - \mathbf{u}_{0}} \right)^{\lambda_{\infty}} \prod_{\alpha=0}^{n+1} (\mathbf{u}_{\infty} - \mathbf{u}_{\alpha})^{1-\lambda_{\alpha}} \right] \int \prod_{\alpha=0}^{\infty} (\mathbf{u} - \mathbf{u}_{\alpha})^{\lambda_{\alpha}^{\perp} - 1} d\mathbf{u}$$

where the path is a double loop with respect to u_i and u_j . It does not depend on the choice of u_i . Using this expression, we can calculate explicitly monodromy matrices for a base

$$\omega_{i}(\mathbf{x}) := \frac{1}{(1-\mu_{0})(1-\mu_{i})} w_{0i}(\mathbf{x}) \quad (\text{if none of } \lambda_{\alpha} \text{ are equal to } 1).$$

- 6 -

For example,

$$B_{01...p} = \begin{pmatrix} \mu_{1} & 0 \\ 0 & \mu_{1} \\ -\tilde{\mu}_{1} & -\tilde{\mu}_{2} & -\tilde{\mu}_{p} & 1 \\ 0 & \mu_{1} & \mu_{1} \\ -\tilde{\mu}_{1} & -\tilde{\mu}_{2} & -\tilde{\mu}_{p} & 1 \end{pmatrix} \begin{pmatrix} \tilde{\mu}_{1} & = \mu_{01...i+1} (1-\mu_{1}) \end{pmatrix}$$

that is the matrice corresponding to $A_I = A_{01...p}$, which represents a loop around \hat{S}_I .

Lemma 1 ([6] Corollary to Theorem 5). Even if some λ_i are integers if neither λ_1 nor $1-\lambda_k$ is integer, then

$$w_{ki}/(1-\mu_k)(1-\mu_i)\Gamma(\lambda_i)$$
 (0 $\leq i \leq \infty$, $i \neq k, l$)

forms a base of solutions. If k = 0 and $l = \infty$, the monodromy matrix for A_{I} (I = {0,1,...,p}) is given by

$$\Gamma^{-1}B_{I}\Gamma \quad (\Gamma = \text{diag}(\Gamma(\lambda_{1}), \Gamma(\lambda_{2}), \dots, \Gamma(\lambda_{n+1})) .$$

Lemma 2. If all λ_i are real, then there exists a Hermitian matrix

$$A = (a_{ij}) = M^* \begin{pmatrix} a_1 & a_1 & \cdots & a_{a_2} & a_{a_1} & a_{a_2} & a_{a_2} & a_{a_1} & a_{a_2} & a_{a_2}$$

where $M = \text{diag}(\tilde{\mu}_1, \tilde{\mu}_2, \dots, \tilde{\mu}_{n+1})$, $a = \exp(\pi \sqrt{-1}\lambda_{\infty})$ and $a_i = (a - \bar{a}\mu_i) / (1 - \mu_i)$, such that

•

is invariant (i.e. single-valued on D).

•

§ 2. Local state of a base of solutions of (F_1) at a singular point

<u>Definition</u>. I = $\{i_0, i_1, \dots, i_p\}$ (0 $\leq i_{\alpha} \leq n+1$) given, it will be called of exponential type with respect to the system (F₁) if, at least, one of the following conditions is satisfied:

- (1) for all $i \in I$, λ_i are positive integers,
- (2) for all $i \in I$, $1-\lambda_i$ are positive integers,
- (3) for all $j \notin I$ ($0 \leq j \leq \infty$), λ_{j} are positive integers,
- (4) for all $j \notin I$ ($0 \le j \le \infty$), $1-\lambda_j$ are positive integers,
- (5) λ_{T} is not an integer.

Otherwise it will be called of logarithmic type with respect to (F_1) .

<u>Theorem 1</u>. Let ξ be a point of \hat{s}_{I}^{0} (I = $\{i_{0}, i_{1}, \dots, i_{p}\}$) and x_{I} be a part of local coordinates at ξ such that $\{x_{I} = 0\} = \hat{s}_{I}^{0} \cap \{a \text{ neighborhood of } \xi\}$. Then there exists a base of solutions on a small neighborhood V of ξ that consists of functions given below, where f_{i} are holomorphic and singlevalued on V.

(I) If I is of exponential type with respect to (F_1) , then

$$\mathbf{x}_{\mathbf{I}}^{\lambda_{\mathbf{I}}}\mathbf{f}_{1},\ldots,\mathbf{x}_{\mathbf{I}}^{\lambda_{\mathbf{I}}}\mathbf{f}_{p},\mathbf{f}_{p+1},\ldots,\mathbf{f}_{n+1}$$

- 10 -

(II) If I is of logarithmic type with respect to (F_1) , then

(a)
$$x_{1}^{\lambda} f_{1}, \dots, x_{1}^{\lambda} f_{p}, x_{1}^{\lambda} f_{p} \log x_{1} + f_{p+1}, f_{p+2}, \dots, f_{n+1} (\lambda_{1} \ge 0)$$

(b) $x_{1}^{\lambda} f_{1}, \dots, x_{1}^{\lambda} f_{p-1}, f_{p}, f_{p} \log x_{1} + x_{1}^{\lambda} f_{p+1}, f_{p+2}, \dots, f_{n+1} (\lambda_{1} < 0)$

However, if $I \supset \{0,n+1\}$, then it is necessary to multiply $\stackrel{\lambda_{\infty}}{\underset{T}{\sim}}$ to all terms.

<u>Demonstration</u>. This theorem is already anounced in [6] without proof but, if none of λ_i are integers, then it is proved in [5].

Let
$$\begin{pmatrix} 0 & 1 & \dots & n+1 & \infty \\ i_0 & i_1 & \dots & i_{n+1} & i_{\infty} \end{pmatrix}$$
 be a permutation and repeat the

same discussion in § 2, replacing every α by i_{α} : put $x_{i_{\alpha}}^{\dagger} \doteq (u_{i_{\alpha}}^{\dagger}, u_{n+1}^{\dagger}; u_{i_{0}}^{\dagger}, u_{i_{\infty}}^{\dagger})$, take $a_{i_{\alpha}}^{\dagger}$ such that $a_{i_{0}}^{\dagger} < a_{i_{1}}^{\dagger} < \cdots$ etc. Then we can reduce the problem to $I = \{0, 1, \ldots, p\}$. For example the monodromy matrix $B_{i_{\alpha}i_{\beta}}^{\dagger}$ is obtained from $B_{\alpha\beta}$ by replacing λ_{j} by $\lambda_{i_{j}}$ ($0 \le j \le \infty$) and multiplying a constant factor $b_{\alpha\beta}$, which arises from the factor

$$\left(\begin{array}{c} \frac{u_{n+1} - u_0}{u_{\infty} - u_{n+1}} & \frac{1}{u_{\infty} - u_0} \end{array} \right)^{\lambda_{\infty}} \frac{n+1}{\prod} (u_{\infty} - u_{\infty})^{1-\lambda_{\alpha}} \quad \text{in the integral}$$

representation. If $0 \le \alpha, \beta \le p < n+1$, then $b_{\alpha\beta} = 1((i_{\alpha}, i_{\beta}) \neq (0, n+1))$ and $-\mu_{\infty} ((i_{\alpha}, i_{\beta}) = (0, n+1))$; it is not so difficult to know $b_{\alpha\beta}$ for general cases, but we will not do it, because it is tedeous and not necessary at present.

Now we suppose I = {0,1,...,p} without restricting the

generality. If neither $1-\lambda_0$ nor λ_∞ is positive integer, by Lemma 1,

$$w_{i}(\mathbf{x}) = w_{01}(\mathbf{x}) / (1-\mu_{0}) (1-\mu_{i}) \Gamma(\lambda_{i}) \quad (1 \leq i \leq n+1)$$

form a base. As A_I represents a loop around \hat{S}_I , we have only to examine the matrix B_I . By explicite calculation, we see that the Jordan canonical form of $\Gamma B_I \Gamma^{-1}$ is diag(μ_I ,..., $\dot{\mu}_I$,1,...,1) or respectively the direct sum of diag(1,...,1) and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ according that I is of exponential or respectively logarithmic type with respect to (F_1) . Consequently our theorem is true for some f_i ($1 \le i \le n+1$) which are single-valued and holomorphic on $V-\hat{S}_I$ and so meromorphic according to the expression by integral. Choose $\xi_1, \ldots, \xi_{p-1}, x_p, x_{p+1}, \ldots, x_n$ as local coordinates at ξ , where $x_1/\xi_1 = \ldots = x_{p-1}/\xi_{p-1} = x_p$. Replacing u by $x_p v$ in the integral given in the introduction, we see w_i/x_p ($i = 1, \ldots, p$) are holomorphic at ξ .

For some 1 (p < 1 $\leq \infty$) and all i (p < i \leq 1, i \neq 1), define

$$w_{i1}^{!} := w_{i} - \frac{\Gamma(\lambda_{1})}{\Gamma(\lambda_{i})} w_{1} = \frac{1}{\Gamma(\lambda_{1})} (\omega_{i} - \omega_{1})$$

as following way: choose a 1 such that $1 - \lambda_1$ is not a positive integer if it exists; if all $\lambda_i = m_i$ (p < i $\leq \infty$) are non-positive integers, then choose an arbitrary 1, put $\lambda_i = m_i + t$ and take the limit, t tending to zero. All w_{i1} are

- 11 -

holomorphic at $\ \xi$. Since

•

$$\sum_{i=1}^{\infty} \widetilde{\mu}_{i} \omega_{i} = 0$$

holds ([5], p. 456), we have

(2.1)
$$\sum_{i=1}^{\infty} \widetilde{\mu}_{i} \Gamma(\lambda_{i}) \omega_{i} = 0$$

and

(2.2)
$$\sum_{i=1}^{p} \widetilde{\mu}_{i} \Gamma(\lambda_{i}) \omega_{i} + \sum_{j=p+1, j \neq 1}^{\infty} \widetilde{\mu}_{j} \Gamma(\lambda_{j}) \omega_{j1} + (1-\mu_{I}) \Gamma(\lambda_{1}) \omega_{I} = 0.$$

Therefore, if $\mu_I \neq 1$, we see, by taking a limit if necessary, that

$$w_{j}(1 \le i \le p), w_{j1}(p+1 \le j \le \infty, j \ne 1)$$

are linearly independent, which completes the proof for the case $\mu_{I} \neq 1$, for, by permutation, we can suppose neither $1-\lambda_{0}$ nor λ_{∞} is not a positive integer.

If $\mu_T = 1$, then

$$f_{p} := \sum_{i=1}^{p} \widetilde{\mu}_{i} \Gamma(\lambda_{i}) w_{i}$$

is holomorphic by (2.2) and the matrice B_I shows that ω_j (p+1 $\leq j \leq \infty$) goes to $\omega_j + f_p$ by the analytic continuation along a loop around \hat{S}_I . Now it remains the case that all $1-\lambda_i$ $(0 \le 1 \le p)$ or all $\lambda_j (p < j \le \infty)$ are positive integers. We can assume, by permutation, λ_p nor $1-\lambda_{p+1}$ is not a positive integer. Then, putting q = n-p+1,

$$w_{i} = \begin{cases} w_{p+1,i+p+1} / [(1-\mu_{p+1})(1-\mu_{i+p+1})P(\lambda_{i+p+1})] & (1 \leq i \leq q) \\ \\ w_{p+1,i-q-1} / [(1-\mu_{p+1})(1-\mu_{i-q-1})P(\lambda_{i-q-1})] & (q < i \leq n+1) \end{cases}$$

form a base of solutions. The monodromy matrix for this base is obtained from $B_{q+1}, \ldots, m_{n+1\infty}$ by replacing λ_i with λ_{p+1-i} (λ_{∞} with λ_p), because the real axis on the Riemann sphere is a circle. So the problem reduces to calculate B_J $J = \{q+1, \ldots, n+1\infty\}$. However it is easy to see $A_{01\ldots q}$ and A_J represents a same curve; so $B_{01\ldots q} = B_{q+1\ldots \infty}$ which completes the proof.

§ 3. Main theorem

3.1. Necessary condition

Let ω be a mapping (multivalued) defined by a base of solutions of (F₁), which we consider without the condition $0 < \lambda_i < 1$.

<u>Proposition</u>. In order that the inverse ω^{-1} may be uniformizable, not only Picard-Schwarz condition, but also the supplementary condition:

If $\lambda_{I} = \pm 1$ for some I, then I is of exponential type. In fact this is a consequence of Theorem 1, Lemma 9 of [5] and the explicit form of the Wronskian ([6], Theorem 4)

3.2. Solutions of Picard-Schwarz condition

In [2], Le Vavasseur obtained, for n=2, all the solutions of Picard-Schwarz condition; there exist, other than 27 cases already treated, only 10 solutions (one of them contains an integer parameter) up to permutations among λ_i ($0 \le i \le \infty$) :

	^λ 0	λ	^λ 2.	^х 3	λ_{∞}
(1)	3/4	3/4	3/4	3/4	0
(2)	1/2	1/2	1/2	1/2	1
(3)	1/3	1	1	1/3	1/3
(4)	1/2	1	1	1/3	1/6
(5)	1/2	1	1	1/4	1/4
(6)	1/2	1	1	1/2	0

(7)
$$1/m$$
 1 1 $-1/m$ 1 (m $\in \mathbb{Z}$ or m =

(8) 3/2 1/2 1/2 1/2 0

(9) 5/3 1/3 1/3 1/3 1/3

(10) 7/6 5/6 1/3 1/3 1/3

For $n \ge 3$, there exist some but none which are essentially new and satisfy the supplementary condition, except the case $0 < \lambda_i < 1$. For, if $\lambda_0 + \lambda_1 - 1 = 1$, for example, $\lambda_0 = \lambda_1 = 1$ must hold and $\lambda_i + \lambda_j - 1 = 0$ never occurs except that all $\lambda_k = 1$ (k = i,j). Therefore every solution is obtained by adding some 1 to one of the cases (2) ~ (7).

<u>Theorem 2</u>. For (1) ~ (7), the inverse ω^{-1} is uniformizable and there exist none which are essentially new if $n \ge 3$. For (1), the domain B is biholomorphic to \mathbb{C}^2 , the variety Y is biholomorphic to the projective space X, the subanalytic set S_0 is empty and the fundamental domain which is biholomorphic to $Y_0 = Y - S_0$ is compact. For (2), $B \cong (disk) \times \mathbb{C}^1$, $Y \cong \mathbb{P}^1 \times \mathbb{P}^1$ and $Y_0 \cong \mathbb{C}^1 \times {\mathbb{C}^1 - {0,1}}$.

<u>Demonstrations</u>. We attribute the proof to Lemma 13 in [5], so we have only to find a complete invariant metric on B and the variety Y_0 , and to show that ω can be extended to a locally biholomorphic mapping to B from some variety Z over Y_0 .

As to (1), in order to simplify the situation, put $\lambda_0 = \lambda_1 = \lambda_2 = \alpha_{\infty} = 3/4$ and $\lambda_3 = 0$. Then,

$$w_1, w_2$$
 and $w_3 = const.(1-x_1)^{-1/4}(1-x_2)^{-1/4}$

∞)

form a base. $|w_3|$ is evidently single-valued on D. Given a solution ω of (F_1) , let w_1^0 the projection of ω to the space generated by w_i (i = 1,2). Then the form

$$(\overline{\mathbf{w}}_1^0, \overline{\mathbf{w}}_2^0) \mathbb{A}^{0 \to t} (\mathbf{w}_1^0, \mathbf{w}_2^0)$$

is invariant with respect to monodromy where A^0 is obtained from the invariant Hermitian matrix A by eliminating the third row and column. A^0 being positive definite, there exist linear combinations g_1 and g_2 of ω_1 and ω_2 such that

$$|d(g_1/w_3)|^2 + |d(g_2/w_3)|^2$$

defines a complete invariant metric on $B = C^2$; we see (range of ω) $\subset B$ by Theorem 1. The last condition is assured by Theorem 1 and Lemma 10 in [5] (Case (a), $e_j = e_j = e_j = 1/2$ for $Y = Y_0 = X$, there existing no I such that $\lambda_I = 0$.

As to case (2), put $\lambda_1 = 1$ and $\lambda_i = 1/2$ (i $\neq 1$), so ω_i (i = 1,2,3) form a base. ω_2 and ω_3 depend only on x_2 and the space generated by ω_2 and ω_3 is invariant under the monodromy group. And the form

$$(\omega, \omega) := (\overline{\omega}_2, \overline{\omega}_3) A_0^{t} (\omega_2, \omega_3)$$

is invariant, where A_0 is obtained from A by eliminating the first row and column and is of signature (1,1) . Therefore,

- 16 -

$$[(\omega,\omega)(d\omega,d\omega) - |(\omega,d\omega)|^2/|(\omega,\omega)|^2 + L$$
,

where L is the image of $\left|\frac{\partial}{\partial x_1} \left(\frac{\omega_1}{\omega_3}\right) dx_1\right|^2$ by ω , defines a complete invariant metric on B = (disk) × \mathfrak{C}^1 , which is seen by the explicit form of monodromy matrices. The further process of the proof is quite similar.

For the cases (3) ~ (7), we can prove by similar way to above. But these are reduced to one variable case. Among the equations of the system (F_1) , $D_{12}F = 0$ comes to naught and $D_{ii}F = 0$ (i = 1,2) is Euler's hypergeometric differential equation of the variable x_i . So the problem is reduced to Schwarz' work; all domains B and Y_0 and groups are direct product.

Similarly, if $n \ge 3$, the problem reduces to one or two variable cases.

<u>Remark</u>. If n = 1, then we can always assume $0 \leq \lambda_i \leq 1 \ (0 \leq i \leq 2)$, using a permutation and the transformation: $\lambda_i \longmapsto 1-\lambda_i \ (0 \leq i \leq \infty)$. In this situation, Schwarz added the condition: $\lambda_{\infty} \in \mathbb{Z}^{-1}$ other than Picard-Schwarz condition. From our point of view, this is equivalent to the supplementary condition.

- 17 -

References

- [1] Deligne, P. and Mostow, G.D., Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. IHES, 63 (1986), 1-89.
- [2] Le Vavasseur, R., Sur le système d'équations aux dérivées partielles simultanées auxquelles satisfait la serie hypergéométrique à deux variables, Thèses, Fac. des Sci. Univ. de Paris, 1893.
- [3] Schwarz, H.A., Über diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elementes darstellt, J. Reine Angew. Math. (J. de Crelle), 54 (1973), 292-335.
- [4] Terada, T., Problème de Riemann et fonctions automorphes provenant des fonctions hypergéométrique de plusieurs variables, J. Math. Kyoto Univ., 13 (1973), 557-578.
- [5] _____, Fonctions hypergéométriques F₁ et fonctions automorphes I . J. Math. Soc. Japan, 35 (1983), 452-475.
- [6] ----, On hypergeometric function F_1 , to appear.
- [7] Barthel, G., Hirzebruch, F. and Höfer, T., Geradenkonfigurationen und algebraische Flächen, in preparation.