```
    Hypergeometric function F F
        automorphic functions
III. Case with some integer parameters
by
Toshiaki Terada
```

Max-Planck-Institut	Shiga University of
für Mathematik	Medical Science
Gottfried-Claren-StraBe 26	Department of Mathematics
D-5300 Bonn 3	Seta Tsukinowa-cho, Otsu
West Germany	Shiga, 520-21
	Japan

MPI/87-50

Hypergeometric function F_{1} and automorphic functions III. Case with some integer parameters

by

Toshiaki Terada

Introduction

We consider the hypergeometric system of partial differential equations

$$
\begin{aligned}
& \left(F_{1}\right): D_{i j} F=0 \quad(i \leqq i, j \leq n), \\
D_{i i} & :=x_{i}\left(x_{i}-1\right) \partial_{i}^{2}+\left[x_{i}-\left(x_{i}-1\right) \sum_{\alpha=1}^{n}, \alpha \neq i\right. \\
& \left.+\left(1-\lambda_{\alpha}-2 \lambda_{2}-\lambda_{n+1}\right)\right] \partial_{i}+\left(\lambda_{i}-1\right) \sum_{\alpha=1}^{n} \sum_{\alpha \neq i}^{n}\left[x_{\alpha}\left(x_{\alpha}-1\right) /\left(x_{i}-x_{\alpha}\right)\right] \partial_{\alpha}+\lambda_{\infty}\left(1-\lambda_{i}\right), 2 \\
D_{i j} & :=\left(x_{i}-x_{j}\right) \partial_{i} \partial_{j}+\left(\lambda_{j}-1\right) \partial_{i}-\left(\lambda_{i}-1\right) \partial_{j}(i \neq j)
\end{aligned}
$$

of n variables $x_{1}, x_{2}, \ldots, x_{n}$ where $\partial_{i}=\partial / \partial x_{i}$ and $\lambda_{i}(i=0,1, \ldots n+1, \infty)$ are complex parameters satisfying $\sum_{\alpha=0}^{\infty} \lambda_{\alpha}=n+1$. Gauss' hypergeometric series $F(\alpha, \beta, \gamma, x) \quad(n=1)$, Appell's $\quad F_{1}\left(\alpha, \beta_{1}, \beta_{2}, \gamma, x_{1}, x_{2}\right)(n=2)$ or Lauricella's $F_{D}\left(\alpha, \beta_{1}, \ldots, \beta_{n}, x_{1}, \ldots, x_{n}\right) \quad(n \geq 3)$ is one of its solutions,
where $\alpha=\lambda_{\infty}, \beta_{i}=1-\lambda_{i}$ and $\gamma=\lambda_{\infty}+\lambda_{n+1} \cdot\left(F_{1}\right)$ is completely integrable and has $n+1$ linearly independent solutions locally holomorphic on the domain
$D:=\left\{x \in \mathbb{C}^{n} \mid x_{i}=0,1, x_{j}(j \neq i)\right\}$.

If none of λ_{i} are integers, $\left(F_{1}\right)$ has an integral representation of Euler-Picard type:

$$
\omega_{i}=\int_{0}^{x_{i}} u^{\lambda_{0}-1}\left(u-x_{1}\right)^{\lambda_{1}-1} \ldots\left(u-x_{n}\right)^{\lambda_{n}-1}(u-1)^{\lambda_{n+1}-1} d u(1 \leq i \leq n+1)
$$

from a base of solutions.
The Wronskian determinant vanishing never on D, a base of solutions of (F_{1}) determines a locally biholomorphic mapping ω to the n-dimensional projective space $W \cong P_{n}(\mathbb{C})$.

Definition. Given a mapping ω from D to W as above, we will say that the inverse ω^{-1} is uniformizable if there exist a domain $B \subset W$ (or $B \subset(a \operatorname{modification~of~} W$)), a compactification Y of D, an analytic subset $S_{0} \subset Y$ and a covering manifold Z over $Y_{0}:=Y-S_{0}$ which ramifies only on $Y_{0}-D$ such that ω^{-1} can be extended to a biholomorphic mapping from B to Z.

If ω^{-1} is uniformizable, then it defines a field a automorphic functions on the domain B; the group is induced by the monodromy group of $\left(F_{1}\right)$ and the fundamental domain is biholomorphic to Y_{0}.

Definition. We will say that the parameters λ_{i} satisfy Picard-Schwarz condition for all $I=\left\{i_{0}, i_{1}, \ldots, i_{p}\right\}(1 \leq p \leq n$,
$\left.i_{\alpha}=0,1, \ldots, n+1, i_{\alpha} \neq i_{\beta}(\alpha \neq \beta)\right)$ we have

$$
\lambda_{I}:=\lambda_{i_{0}}+\lambda_{i_{1}}+\ldots+\lambda_{i_{p}}-p \in z^{-1}:=\{0\} \cup\{1 / m \mid m \in \mathbb{Z}\} .
$$

In [5], the author obtained the
Theorem. Given a system (F_{\uparrow}) , if λ_{i} satisfy PicardSchwarz condition and $0<\lambda_{i}<1(0 \leq i \leqq \infty)$, then ω^{-1} is uniformizable.

Historically, Schwarz [3] proved it without the condition $0<\lambda_{i}<1$ but with some additional condition. Picard tried to prove and Le Vavasseur [2] found all sets of λ_{i} which satisfy Picard-Schwarz condition. Deligne-Mostow [1] also proved it using tools of algebraic geometry.

Now the purpose of this paper is to generalize this theorem for non-general cases (we will call general case if $0<\lambda_{i}<1$ are satisfied) in order to complete the work. Deligne-Mostow [1] has already discussed about two cases.

In § 1, we collect some basic notations; definitions and results already obtained. § 2 is devoted to some local properties of a base of solutions on singular loci. The proof and the explications of the main theorem are found in § 3 .

This work was done during the author's stay at the Max-Planck-Institut für Mathematik in Bonn. He expresses his gratitude to the institute for the hospitality and comfortable condition for work.
§ 1. Preliminaries

1.1. Notations and definitions

$x:=\mathbb{P}^{n}\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$. But except for defining S_{I} below, we put always $x_{n+1}=1$ and consider $x_{i}(1 \leq i \leq n)$ as inhomogeneous coordinates; moreover put $\mathrm{x}_{0}=0$ and $\mathrm{x}_{\infty}=\infty$.

$$
\begin{aligned}
& I=\left\{i_{0}, i_{1}, \ldots, i_{p}\right\} \text { given, } \\
& \lambda_{I}:=\lambda_{i_{0}}+\lambda_{i_{1}}+\ldots+\lambda_{i_{p}}, \# I:=p+1, \mu_{I}:=\exp \left(2 \pi \sqrt{-1} \lambda_{I}\right), \\
& S_{I}:=\left\{x \in x \mid x_{i_{0}}=\ldots=x_{i_{p}}\right\} \\
& S_{I}^{0}:=\left\{x \in S_{I} \mid x_{i_{0}} \neq x_{j} \text { if } j \not q I\right\} \\
& \hat{X}: \text { the compactification of } D \text { that is defined by the } \\
& \text { sequence }
\end{aligned}
$$

$$
\hat{x}:=x_{1} \xrightarrow{\sigma_{2}} x_{2} \xrightarrow{\sigma_{3}} \ldots \xrightarrow{\sigma_{n}} x_{n}=x,
$$

where X_{i-1} is obtained from X_{i} through Hope's o-process along every $S_{i, I}\left(:=\right.$ the closure of $\left.\left(\sigma_{n} \circ \sigma_{n-1} \circ \ldots \circ \sigma_{i+1}\right)^{-1}\left(S_{I}^{0}\right)\right)$ such that $\# I=i+1$.

$$
\hat{S}_{I}:=S_{1, I}, \hat{S}_{I}^{0}:=\hat{S}_{I}-\underset{J \neq I}{U} \hat{S}_{J} .
$$

1.2. Fundamental group of D

On the Riemann sphere U of the variable u, take $n+3$ distinct points $\ddot{u}_{0}, u_{1}, \ldots, u_{n+1}, u_{\infty}$. Two sets $\left(u_{0}, \ldots, u_{\infty}\right)$ and (ú, ..., us will be called equivalent if $\left(u_{i}, u_{n+1} ; u_{0}, u_{\infty}\right)=\left(u_{i}^{\prime}, u_{n+1}^{\prime} ; u_{0}^{\prime}, u_{\infty}^{\prime}\right)$ hold for all $i(1 \leq i \leq n)$ where

$$
\left(u_{i}, u_{n+1} ; u_{0}, u_{\infty}\right)=\frac{u_{i}-u_{0}}{u_{n+1}-u_{0}} / \frac{u_{i}-u_{\infty}}{u_{n+1}-u_{\infty}}
$$

is the anharmonic ratio. Put

$$
x_{i}=\left(u_{i}, u_{n+1} ; u_{0}, u_{\infty}\right) \quad(1 \leq i \leq n) .
$$

Then a point of D and an equivalence class of such points is of one-to-one correspondence.

Again take $n+3$ points on the real axis of U such that

$$
a_{0}<a_{1}<\ldots<a_{n}<a_{\infty}
$$

and let

$$
c_{i j}: u=u_{i j}(t) \quad(0 \leq t \leq 1) \quad(0 \leq i, j \leq \infty, i \neq j)
$$

be a loop around $u=a_{j}$ with reference point $u=a_{i}$ which passes only the upper half plane and a small neighborhood of $a_{j}, l_{i j}$ be the curve on D defined by

$$
x_{\alpha}=\left(u_{\alpha j}(t), u_{\alpha n+1}(t) ; u_{\alpha 0}(t), u_{\alpha \infty}(t)\right) \quad\left(u_{\alpha j}(t) \equiv a_{\alpha}(\alpha \neq i)(1 \leq \alpha \leq n)\right.
$$

and $A_{i j}$ be the homotopy class of $1_{i j}$. Then $A_{i j}=A_{j i}$ hold and $A_{i j}(0 \leq i \leq j \leq n+1,(i, j) \neq(0, n+1))$ generate the fundamental group of D. Put

$$
A_{i_{p}} \vdots i_{0} i_{1} \ldots i_{p-1}:=A_{i_{p}} i_{0} A_{i_{p}} i_{1} \ldots{ }^{A_{p}} i_{p-1}
$$

and $A_{I}:=A_{i_{0} i_{1}} \ldots i_{p}:=A_{i_{1}} ; i_{0} A_{i_{2}} ; i_{0} i_{1} \ldots A_{i_{p}} ; i_{0} i_{1} \ldots i_{p-1}$.

1.3. Base of solutions and monodromy

$$
\begin{aligned}
& \text { Given a point } x \in D, \text { take } u_{i}(0 \leq i \leq \infty) \text { such that } \\
& x_{i}=\left(u_{i}, u_{n+1} ; u_{0}, u_{\infty}\right) \quad(1 \leq i \leq n),
\end{aligned}
$$

and put

$$
w_{i j}(x)=\left[\left(\frac{u_{n+1}-u_{0}}{u_{\infty}-u_{n+1}} \frac{1}{u_{\infty}-u_{0}}\right)^{\lambda_{\infty}} \prod_{\alpha=0}^{n+1}\left(u_{\infty}-u_{\alpha}\right)^{1-\lambda} \alpha\right] \prod_{\alpha=0}^{\infty}\left(u-u_{\alpha}\right)^{\lambda \dot{\alpha}^{-1}} d u
$$

where the path is a double loop with respect to u_{i} and u_{j}. It does not depend on the choice of u_{i}. Using this expression, we can calculate explicitely monodromy matrices for a base

$$
\left.\omega_{i}(x):=\frac{1}{\left(1-\mu_{0}\right)\left(1-\mu_{i}\right)} w_{0 i}(x) \quad \text { (if none of } \quad \lambda_{\alpha} \quad \text { are equal to } 1\right)
$$

For example,
that is the matrice corresponding to $A_{I}=A_{01 \ldots p}$, which represents a loop around \hat{S}_{I}.

Lemma 1 ([6] Corollary to Theorem 5). Even if some λ_{i} are integers if neither λ_{1} nor $1-\lambda_{k}$ is integer, then

$$
w_{k i} /\left(1-\mu_{k}\right)\left(1-\mu_{i}\right) \Gamma\left(\lambda_{i}\right) \quad(0 \leq i \leqq \infty, i \neq k, 1)
$$

forms a base of solutions. If $k=0$ and $l=\infty$, the monodromy matrix for $A_{I}(I=\{0,1, \ldots, p\})$ is given by

$$
\Gamma^{-1} B_{I} \Gamma \quad\left(\Gamma=\operatorname{diag}\left(\Gamma\left(\lambda_{1}\right), \Gamma\left(\lambda_{2}\right), \ldots, \Gamma\left(\lambda_{n+1}\right)\right)\right.
$$

Lemma 2. If all λ_{i} are real, then there exists a Hermitian matrix
where $\quad \mathrm{M}=\operatorname{diag}\left(\tilde{\mu}_{1}, \tilde{\mu}_{2}, \ldots, \tilde{\mu}_{n+1}\right), \quad a=\exp \left(\pi \sqrt{-1} \lambda_{\infty}\right)$ and $a_{i}=\left(a-\bar{a} \mu_{i}\right) /\left(1-\mu_{i}\right)$, such that

$$
\sum a_{i j} \omega_{i} \bar{\omega}_{j}
$$

is invariant (i.e. single-valued on D).
§ 2. Local state of a base of solutions of (F_{1}) at a singular point

Definition. $I=\left\{i_{0}, i_{1}, \ldots, i_{p}\right\}\left(0 \leq i_{\alpha} \leq n+1\right)$ given, it will be called of exponential type with respect to the system $\left(F_{1}\right)$ if, at least, one of the following conditions is satisfied:
(1) for all $i \in I, \lambda_{i}$ are positive integers,
(2) for all $i \in I, 1-\lambda_{i}$ are positive integers,
(3) for all $j \notin I(0 \leq j \leq \infty), \lambda_{j}$ are positive integers,
(4) for all $j \notin I(0 \leq j \leq \infty), 1-\lambda_{j}$ are positive integers,
(5) λ_{I} is not an integer.

Otherwise it will be called of logarithmic type with respect to $\left(F_{1}\right)$.

Theorem 1. Let ξ be a point of $\hat{S}_{I}^{0}\left(I=\left\{i_{0}, i_{1}, \ldots, i_{p}\right\}\right)$ and x_{I} be a part of local coordinates at ξ such that $\left(x_{I}=0\right\}=\hat{S}_{I}^{0} \cap\{a$ neighborhood of $\xi\}$. Then there exists a base of solutions on a small neighborhood V of ξ that consists of functions given below, where f_{i} are holomorphic and singlevalued on V.
(I) If I is of exponential type with respect to $\left(F_{1}\right)$, then

$$
x_{I}^{\lambda} I_{f_{1}}, \ldots, x_{I}^{\lambda} I_{f_{p}, f_{p+1}}, \ldots, f_{n+1}
$$

(II) If I is of logarithmic type with respect to (F_{1}) , then
(a) $x_{I}{ }^{\lambda} I_{f_{1}}, \ldots, x_{I}{ }_{I_{f}}, x_{D_{I}} I_{f_{p}} \log x_{I}+f_{p+1}, f_{p+2}, \ldots, f_{n+1}\left(\lambda_{I} \geq 0\right)$;
(b) $x_{I} I_{f_{1}}, \ldots, x_{I} I_{f_{p-1}}, f_{p}, f_{p} \log x_{I}+x_{I}^{\lambda} I_{f_{p+1}}, f_{p+2}, \ldots, f_{n+1}\left(\lambda_{I}<0\right)$.

However, if $I \supset\{0, n+1\}$, then it is necessary to multiply $\mathrm{x}_{\mathrm{I}}^{\lambda_{\infty}}$ to all terms.

Demonstration. This theorem is already anounced in [6] without proof but, if none of λ_{i} are integers, then it is proved in [5].

Let $\left(\begin{array}{ccccc}0 & 1 & \cdots & n+1 & \infty \\ i_{0} & i_{1} & \cdots & i_{n+1} & i_{\infty}\end{array}\right)$ be a permutation and repeat the
same discussion in § 2 , replacing every α by i_{α} : put $x_{i_{\alpha}}^{i}=\left(u_{i_{\alpha}}^{\prime}, u_{i_{n+1}}^{\prime} ; u_{i_{0}}^{\prime}, u_{i_{\infty}}^{\prime}\right)$, take $a_{i_{\alpha}}^{\prime}$ such that $a_{i_{0}}^{\prime}<a_{i_{1}}^{\prime}<\ldots$ etc. Then we can reduce the problem to $I=\{0,1, \ldots, p\}$. For example the monodromy matrix $B_{i_{\alpha} i_{\beta}}^{\prime}$ is obtained from $B_{\alpha \beta}$ by replacing λ_{j} by $\lambda_{t_{j}}(0 \leqq j \leqq \infty)$ and multiplying a constant factor $b_{\alpha \beta}$, which arises from the factor

$$
\left(\frac{u_{n+1}-u_{0}}{u_{\infty}-u_{n+1}} \frac{1}{u_{\infty}-u_{0}}\right)^{\lambda_{\infty}} \prod_{\alpha=0}^{n+1}\left(u_{\infty}-u_{\infty}\right)^{1-\lambda_{\alpha}} \text { in the integral }
$$

representation. If $0 \leq \alpha, \beta \leq p<n+1$, then
$b_{\alpha \beta}=1\left(\left(i_{\alpha}, i_{\beta}\right) \neq(0, n+1)\right)$ and $-\mu_{\infty}\left(\left(i_{\alpha}, i_{\beta}\right)=(0, n+1)\right)$; it is not so difficult to know $b_{\alpha \beta}$ for general cases, but we will not do it, because it is tedeous and not necessary at present. Now we suppose $I=\{0,1, \ldots, p\}$ without restricting the
generality. If neither $1-\lambda_{0}$ nor λ_{∞} is positive integer, by Lemma 1,

$$
w_{i}(x)=w_{01}(x) /\left(1-\mu_{0}\right)\left(1-\mu_{i}\right) \Gamma\left(\lambda_{i}\right)(1 \leq i \leqslant n+1)
$$

form a base. As A_{I} represents a loop around \hat{S}_{I}, we have only to examine the matrix B_{I}. By explicite calculation, we see that the ${ }_{p}$ Jordan canonical form of $\Gamma B_{I^{\prime}} \Gamma^{-1}$ is $\operatorname{diag}\left(\mu_{I}, \ldots, \dot{H}_{I}, 1, \ldots, 1\right)$ or respectively the direct sum of diag $(1, \ldots, 1)$ and $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ according that I is of exponential or respectively logarithmic type with respect to $\left(F_{1}\right)$. Consequently our theorem is true for some $f_{i}(1 \leq i \leq n+1)$ which are single-valued and holomorphic on $V-\hat{S}_{I}$ and so meromorphic according to the expression by integral. Choose $\xi_{1}, \ldots, \xi_{p-1}, x_{p}, x_{p+1}, \ldots, x_{n}$ as local coordinates at ξ, where $x_{1} / \xi_{1}=\ldots=x_{p-1} / \xi_{p-1}=x_{p}$. Replacing u by $x_{\lambda_{p}} v$ in the integral given in the introduction, we see $w_{i} / x_{p} \lambda^{\prime}(i=1, \ldots, p)$ are holomorphic at ξ.

For some $1(p<l \leqq \infty)$ and all $i(p<i \leq l, i \neq 1)$, define

$$
w_{i l}^{\prime}:=w_{i}-\frac{\Gamma\left(\lambda_{1}\right)}{\Gamma\left(\lambda_{i}\right)} w_{1}=\frac{1}{\Gamma\left(\lambda_{i}\right)}\left(\omega_{i}-\omega_{1}\right)
$$

as following way: choose a 1 such that $1-\lambda_{1}$ is not a positive integer if it exists; if all $\lambda_{i}=m_{i}(p<i \leqq \infty)$ are non-positive integers, then choose an arbitrary 1 , put $\lambda_{i}=m_{i}+t$ and take the limit, t tending to zero. All $w_{i l}$ are
holomorphic at ξ. Since

$$
\sum_{i=1}^{\infty} \tilde{\mu}_{i} \omega_{i}=0
$$

holds ([5], p. 456), we have

$$
\begin{equation*}
\sum_{i=1}^{\infty} \tilde{\mu}_{i} \Gamma\left(\lambda_{i}\right) \omega_{i}=0 \tag{2.1}
\end{equation*}
$$

and
(2.2) $\sum_{i=1}^{p} \tilde{\mu}_{i} \Gamma\left(\lambda_{i}\right) \omega_{i}+\sum_{j=p+1, j \neq 1}^{\infty} \tilde{\mu}_{j} \Gamma\left(\lambda_{j}\right) \omega_{j l}+\left(1-\mu_{I}\right) \Gamma\left(\lambda_{1}\right) \omega_{1}=0$.

Therefore, if $\mu_{I} \neq 1$, we see, by taking a limit if necessary, that

$$
w_{i}(1 \leq i \leq p), w_{j l}(p+1 \leq j \leq \infty, j \neq l)
$$

are linearly independent, which completes the proof for the case $\underline{\mu}_{I} \neq 1$, for, by permutation, we can suppose neither $1-\lambda_{0}$ nor λ_{∞} is not a positive integer.

$$
\text { If } \mu_{I}=1 \text {, then }
$$

$$
f_{p}:=\sum_{i=1}^{p} \tilde{\mu}_{i} \Gamma\left(\lambda_{i}\right) w_{i}
$$

is holomorphic by (2.2) and the matrice B_{I} shows that ω_{j} $(p+1 \leq j \leq \infty)$ goes to $\omega_{j}+f_{p}$ by the analytic continuation along a loop around \hat{S}_{I}.

Now it remains the case that all $1-\lambda_{i}(0 \leq 1 \leq p)$ or all $\lambda_{j}(p<j \leq \infty)$ are positive integers. We can assume, by permutation, λ_{p} nor $1-\lambda_{\mathrm{p}+1}$ is not a positive integer. Then, putting $q=n-p+1$,

$$
w_{i}^{\prime}=\left\{\begin{array}{l}
w_{p+1 . i+p+1} /\left[\left(1-\mu_{p+1}\right)\left(1-\mu_{i+p+1}\right) \Gamma\left(\lambda_{i+p+1}\right)\right](1 \leqq i \leqq q) \\
w_{p+1} \quad i-q-1 /\left[\left(1-\mu_{p+1}\right)\left(1-\mu_{i-q-1}\right) \Gamma\left(\lambda_{i-q-1}\right)\right](q<i \leqq n+1)
\end{array}\right.
$$

form a base of solutions. The monodromy matrix for this base is obtained from $B_{q+1} \cdots{ }^{\prime} n+1 \infty$ by replacing λ_{i} with $\lambda_{p+1-i}\left(\lambda_{\infty}\right.$ with $\left.\lambda_{p}\right)$, because the real axis on the Riemann sphere is a circle. So the problem reduces to calculate B_{J} $J=\{q+1, \ldots, n+1 \infty\}$. However it is easy to see $A_{01 \ldots} \ldots$ and A_{J} represents a same curve; so $B_{01 \ldots q}=B_{q+1 \ldots \infty}$ which completes the proof.

§ 3. Main theorem

3.1. Necessary condition

Let ω be a mapping (multivalued) defined by a base of solutions of (F_{1}), which we consider without the condition $0<\lambda_{i}<1$.

Proposition. In order that the inverse ω^{-1} may be uniformizable, not only Picard-Schwarz condition, but also the supplementary condition:

If $\lambda_{I}= \pm 1$ for some I, then I is of exponential type. In fact this is a consequence of Theorem 1, Lemma 9 of [5] and the explicit form of the Wronskian ([6], Theorem 4)

3.2. Solutions of Picard-Schwarz condition

In [2], Le Vavasseur obtained, for $n=2$, all the solutions of Picard-Schwarz condition; there exist, other than 27 cases already treated, only 10 solutions (one of them contains an integer parameter) up to permutations among $\lambda_{i}(0 \leq i \leq \infty)$:

λ_{0}	λ_{1}	λ_{2}	λ_{3}	λ_{∞}
$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	0
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1
$1 / 3$	1	1	$1 / 3$	$1 / 3$
$1 / 2$	1	1	$1 / 3$	$1 / 6$
$1 / 2$	1	1	$1 / 4$	$1 / 4$
$1 / 2$	1	1	$1 / 2$	0

$1 / \mathrm{m}$	1	1	$-1 / \mathrm{m}$	$1(\mathrm{~m} \in \mathbb{Z}$ or $\mathrm{m}=\infty)$		
$3 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	0		
$5 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$		
$7 / 6$	$5 / 6$	$1 / 3$	$1 / 3$	$1 / 3$		

For $n \geq 3$, there exist some but none which are essentially new and satisfy the supplementary condition, except the case $0<\lambda_{i}<1$. For, if $\lambda_{0}+\lambda_{1}-1=1$, for example, $\lambda_{0}=\lambda_{1}=1$ must hold and $\lambda_{i}+\lambda_{j}-1=0$ never occurs except that all $\lambda_{k}=1(k \neq i, j)$. Therefore every solution is obtained by adding some 1 to one of the cases (2) ~ (7).

Theorem 2. For (1) ~ (7), the inverse ω^{-1} is uniformizable and there exist none which are essentially new if $n \geq 3$. For (1), the domain B is biholomorphic to \mathbb{C}^{2}, the variety Y is biholomorphic to the projective space X, the subanalytic set S_{0} is empty and the fundamental domain which is biholomorphic to $Y_{0}=Y-S_{0}$ is compact. For (2), $\mathrm{B} \cong$ (disk) $\times \mathbb{C}^{1}$, $Y \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $Y_{0} \cong \mathbb{C}^{1} \times\left\{\mathbb{C}^{1}-\{0,1\}\right\}$.

Demonstrations. We attribute the proof to Lemma 13 in [5], so we have only to find a complete invariant metric on B and the variety Y_{0}, and to show that ω can be extended to a locally biholomorphic mapping to B from some variety Z over Y_{0}.

As to (1), in order to simplify the situation, put $\lambda_{0}=\lambda_{1}=\lambda_{2}=\alpha_{\infty}=3 / 4$ and $\lambda_{3}=0$. Then,

$$
w_{1}, w_{2} \text { and } w_{3}=\text { const. }\left(1-x_{1}\right)^{-1 / 4}\left(1-x_{2}\right)^{-1 / 4}
$$

form a base. $\left|w_{3}\right|$ is evidently single-valued on D. Given a solution ω of $\left(F_{1}\right)$, let w_{i}^{0} the projection of ω to the space generated by $w_{i}(i=1,2)$. Then the form

$$
\left(\bar{w}_{1}^{0}, \bar{w}_{2}^{0}\right) A^{0} \cdot t\left(w_{1}^{0}, w_{2}^{0}\right)
$$

is invariant with respect to monodromy where A^{0} is obtained from the invariant Hermitian matrix A by eliminating the third row and column. A^{0} being positive definite, there exist linear combinations g_{1} and g_{2} of ω_{1} and ω_{2} such that

$$
\left|d\left(g_{1} / w_{3}\right)\right|^{2}+\left|d\left(g_{2} / w_{3}\right)\right|^{2}
$$

defines a complete invariant metric on $B=\mathbb{C}^{2}$; we see (range of $\omega) \subset B$ by Theorem 1. The last condition is assured by Theorem 1 and Lemma 10 in [5] (Case (a), $e_{j_{0}}=e_{j_{1}}=e_{j_{2}}=1 / 2$ for $Y=Y_{0}=X$, there existing no I such that $\lambda_{I}=0$. As to case (2), put $\lambda_{1}=1$ and $\lambda_{i}=1 / 2(i \neq 1)$, so $\omega_{i}(i=1,2,3)$ form a base. ω_{2} and ω_{3} depend only on x_{2} and the space generated by ω_{2} and ω_{3} is invariant under the monodromy group. And the form

$$
(\omega, \omega):=\left(\bar{\omega}_{2}, \bar{\omega}_{3}\right) A_{0}^{t}\left(\omega_{2}, \omega_{3}\right)
$$

is invariant, where A_{0} is obtained from A by eliminating the first row and column and is of signature (1, 1). Therefore,

$$
\left[(\omega, \omega)(d \omega, d \omega)-|(\omega, d \omega)|^{2} /|(\omega, \omega)|^{2}+L\right.
$$

where L is the image of $\left|\frac{\partial}{\partial x_{1}}\left(\frac{\omega_{1}}{\omega_{3}}\right) d x_{1}\right|^{2} \quad$ by $\quad \omega$, defines a complete invariant metric on $B=($ disk $) \times \mathbb{C}^{1}$, which is seen by the explicit form of monodromy matrices. The further process of the proof is quite similar.

For the cases (3) ~ (7), we can prove by similar way to above. But these are reduced to one variable case. Among the equations of the system $\left(F_{1}\right), D_{12} F=0$ comes to naught and $D_{i i} F=0(i=1,2)$ is Euler's hypergeometric differential equation of the variable x_{i}. So the problem is reduced to Schwarz' work; all domains B and Y_{0} and groups are direct product.

Similarly, if $n \geq 3$, the problem reduces to one or two variable cases.

Remark. If $n=1$, then we can always assume $0 \leqq \lambda_{i} \leq 1(0 \leqq i \leq 2)$, using a permutation and the transformation: $\lambda_{i} \longmapsto 1-\lambda_{i}(0 \leq i \leqq \infty)$. In this situation, Schwarz added the condition: $\lambda_{\infty} \in \mathbb{Z}^{-1}$ other than PicardSchwarz condition. From our point of view, this is equivalent to the supplementary condition.

References
[1] Deligne, P. and Mostow, G.D., Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. IHES, 63 (1986), 1-89.
[2] Le Vavasseur, R., Sur le système d'équations aux dérivées partielles simultanées auxquelles satisfait la serie hypergéométrique à deux variables, Thèses, Fac. des Sci. Univ. de Paris, 1893.
[3] Schwarz, H.A., Uber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elementes darstellt, J. Reine Angew. Math. (J. de Crelle), 54 (1973), 292-335.
[4] Terada, T., Problème de Riemann et fonctions automorphes provenant des fonctions hypergéométrique de plusieurs variables, J. Math. Kyoto Univ., 13 (1973), 557-578.
[5] , Fonctions hypergéométriques F_{1} et fonctions automorphes I . J. Math. Soc. Japan, 35 (1983), 452-475.
[6] , On hypergeometric function F_{1}, to appear.
[7] Barthel, G., Hirzebruch, F. and Höfer, T., Geradenkonfigurationen und algebraische Flächen, in preparation.

