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1 INTRODUCTION = . - - S | 3
1’ Intro_duction

In this paper we 1nt1oduce a topology on symbol classes of type 1, 0 for pseudo—dlfferentlal
operators which we call the weak symbol topology. This topology seems to be of general.
1mportance in questions concerning the continuity of pseudo-differential operators due .
to its striking linear- -topological prope1t1es Here we put the emphasis on vector-valued
symbols and tensor product, techniques. : v

Our 1ntent10n,'1n ‘this contribution is'to give rigorous proofs for some relevant properties

. of the weak symbol topology. In a further section we indicate how this.topology can

be utilized for verifying continuity of pseudo-differentia] operators. The notation as weak
symbol topology is justified by a notion of Hérmander (cf. (7, Definition 18.4.9}) who called
functionals, as it turns out, in the dual of a symbol class equipped w1th the weak symbol y
.topology weakly continuous. Our initial motivation for constructmg the weak symbol

topology was to establish a pseudo—dlfferentla.l calculus for non-classical operators with

certain non-smooth symbols for which an analytic tool for est1mat1ng the remainders.was -
-required. This calculus has been announced in [14, Sect10n 4.2); details will be publlshed

t elsewhere

The weak symbol topology is deﬁned as follows: Coxlsldel the space S"‘( ™ of_consta,nt
coefficient symbols on R™ of order m. Denote for the moment ) '

Lm(R") ={® € S™(R")'; “the restriction of & to any bounded set in. |
S™(R™) is continuous for the C*-topology}.

-Tt turns out that £™(R") is a complemented subspace of Sl"(lli")’ In particular, (R
- contains all oscillatory integrals acting as linear functionals on constant coefficient sym-
~bols. In fact, these functionals form a dense subset.in £™(R"). Thus loosely speaking,
"""(]R") comprises exactly those analytic expressions that proved to be_ most important
in the theory of pseudo-diflerential operators. It.makes sense to investigate the dual pair
(S™(R™), E™(R™)). As a matter of fact, S™(R") = (S™(R"), B(S™, ™)), but Sm(R").
equipped with- its strorgest locally convex topology yleldlng Em(R”) as dual -space has

the de31red properties. -

o1 1' Definition. The weak symbol topology, T, is deﬁned as the Mackey topology on
©S™(R") with respecl to the dual pair (S™(R"), E"‘(]R")),

ST (RY) = (S™(R™), 7(5™, ”f))_ : .' o (D

From now ‘on, we use the notation S"‘(]R")’ instead of £™(R™). Further we adopt the
convention to consider m € R, n € N as be given and fixed. They will not explicitly
appear in the statements of results. '

Propertles of S™(R™) are studied by’ 1nvest1gat1ng its stlong dual S”‘(]R“) for the lat-

ter we provide a representation as topological quotient of the Banach space.direct sum

E|q|>0 B(m_|a|+ﬂ/2)(R ), where ' B(y_|aj4n/2)(R") is the Fourier image of the Besov space
H(m_101+n/2)(R ) (cf. Subsection 2.2). By means of this descrlptlon of S;"(]R”), it is

possible.to state that S™(R") is.a Schwartz space. The decisive property for that is to

show that’ cr((S"‘)’ S™)-compact sets in S’“(R“)’ are actually compact That:in turn is

furnished by proving that : -
‘ ) ‘ (@k,ak) =0 as k‘—} 0C3 ‘ ' (12)

‘
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is valid for all o(S™, (S7))-null sequences {ax}32, in S™(R") and all o((S*)’, 5™)-null
sequences {9}, in SP*(R™). Eventually note that S™(R"), ST*(R") have the same
bounded sets and that on these hounded sets the r-topology coincides with the C°-
topology. In particular, convergent sequences in S7*(R™) are identified in this way.

Symbols for pseudo-differential operators with coefficients in certain function spaces shall
be considered as vector-valued symbols. Then, for the symbol class S™(R"; £), where £
is a complete lcs, the relation

S™R" E) = ST(R™)®.E. | (1.3)

‘holds (cf. Theorem 2.29). Here subscript 7 indicates the weak symbol topology and (1.3)
is understood as natural identification of two linear spaces, where the right-hand side
defines the topology for the left-hand side. An independent definition of SP*(R"; £) will
be given in the text. ' .

Property (1.3) is fundamental for proving continuity of pseudo-differential operators. As
we shall see, S*(R") is not a nuclear space. Thus it is in general impossible to replace .
“the injective tensor product in (1.3) by the projective tensor product. This causes some
complications if one tries to check that certain bilinear forms on S'(R") x £ are integral,
i.e., belong to the dual of ST"(R™)®./Z. Here the functional-analytic properties of the
“coeflicient space” I which can be assumed to be good in some sense come into play. For
applications in this paper, the situation is kept by the fact that for every « € H'*™(R")
there is an absolutely convex, closed 0-neighbourhood U in S)*(R™) such that the conti-
- nuous mapping S*(R") — HY(R"), a = a(D)u, factors through the local Banach space
ST (R™){yy such that the resulting operator

SPMR )y = H'(R), a+ker| oy~ a(D)u, | (1.4)

where || ||y is the continuous semi-norm associated with U/, is 2-nuclear (cf. Theorem

2.23).

" Now we describe the content in more detail. Section 2 is in the heart of the paper. Here
we study several properties of the weak symbol topology. In Subsection 2.1, we define
the symbol classes S™(R™; £) and give examples. Then, in Subsection 2.2, we recognize
5™ (R™) as the strong bidual to $™(R™), where S™(R™) is the closure of S(R™) in S™(R™),
and derive the mentioned representation of ST*(R")’ as a quotient of a direct sum of Banach
spaces. This is accomplished by noting that symbols in S™(R") are precisely the Fourier
transforms of distributions on R" conormal to the origin of order rn+n/4 leading to certain

“short exact sequences of Fréchet spaces. In an appendix to Section 2, we prove that the
spaces S™(R"), So'm(]R”) are quasi-normable providing the topological exactness of the
dual sequences. These observations lead to the definition of the weak symbol topology
as SP(R") = (S™(R™), 7(S™(R"),$™(R"))). In Subsection 2.3, we study oscillatory
integrals as main examples of functionals in ST*(R™). Further, we characterize functionals
in S™(R"Y that belong to S7*(R")". Next, in Subsection 2.4, we describe weakly compact
sets in 301,150 Bim—lal+n/2)(R") and prove that every weakly compact set in S7*(R™) is
compact. In addition, we investigate point functionals in S*(R™)’. In Subsection 2.5, the
linear-topological characterization of S™(R") is completed. Especially, we demonstrate
that S7'(R") is a complete, separable Schwartz space which is not nuclear, specify the
weak symbol topology on bounded subsets of S™(R") and perform some consideration
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arourid (1.4). In Subsectlon 2.6, we turn to the.investigation of vector-valued symbols.
We define the weak symbol. topology on S"‘(R" [7), obtain .the relation (1.3) and show"
that the bounded sets in S™(R™; E), S™(R"; E) are' the same.- ‘Moreover, we 1dent1fy

ST E) = L(SPRSE) o _(1.5)'

as llnear t0polog1cal spaces, where ~ st‘.ands for the topology of umform convergence on
precompact sefis of STHR™Y.

Then Section 3 is ‘devoted to applications to pseudo—dlffercntla,l operators We provude
two examples, namely pseudo-differential operators with coefficients in C§° (R™) and in
H*(R™), where s > n/2, and discuss continuity between Sobolev spaces. Of course,
these examples were known for a long time,-but they mainly serve us to demonstrate
the flexibility in verifying continuity of pseud&d1ﬂerent1al operatOIS established by the
weak symbol topology and the use of tensor prociuet techniques. In Appendix A, for quick
reader’s reference we present some auxiliary material on locally convex spaces that is used
" in the paper. In Appendix B, we give further information on Banach operator ideals and
tensor products needed in the applications to pseudo-differential operators. This matter
is)partly organized in a way making it applicable to other- circumstances, e.g., when‘
éoefficients are chosen in Besov and Bessel- potential spaces.. [t should be mentloned once
.again that the proposed method for verifying continuity of pseudo—dlﬂ'erenhal operatms
" was originally invented for dealing with such more difficult situations. '
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. -2. The Weak Symbol Topology

v

We give a thorough description of the weak symbol topology, 7, on symbol classes
S™(R™; ). The main results are the characterization of ST*(R™) as a complete, sepa-
rable Schwartz space having the same bounded sets as S™(R"), the identification of the
T-topology on the bounded sets of S™(R"), further providing a substitute for the non-

" nuclearity of SP*(R™) in Theorem 2.23, and, for E being a complete lcs, recognizing
S™(R™; E) as the completed tensor product ST(R")®.E. Moreover, it is shown that
S™R™ E), L(ST(R™), E) can be identified as linear spaces.

2.1 Vector-Valued Symbol Classes

We introduce the space S™(R"™; E) of symbols on R" of order m with values in E.

' 2.1 Definition. Let E be a complete les. Then S™(R™; E) is the space of all functions
a € C(R"; E) satisfying ’

sup (€) 7| 9ga(€)]] < o0 | N RY
¢ER o
Jor all multi-indices o € N™ and all continuous semi-norms || || on E.

The left-hand sides in (2.1) give rise to a fundamental systém of semi-norms for a locally
convex topology on S™(R"; E). In the sequel, S™(R"; F) carries that topology when it
comes equipped with a topology not explicitly mentioned. The weak symbol topology on
S™(R™; I7) to be introduced later shall be indicated by subscript 7. :
The space S™(R™; I) is complete. If E is a Fréchet space, then S™(R™; B is a Fréchet
space. We employ the standard notation S™(R™) = S™(R;C). If E undergoes an interpre-
tation as coefficient space, then S™(R") is the space of symbols with constant coefficients.
Note that the space S™(R"; E) = [,,cp ™ (R"; E) of symbols of order —co is not dense
in S™(R"; E). We denote its closure in S™(R"™; E) by ém(R”; E). Asymbola € S™(R™; )
belongs to S™(R™; £) if and only if ’

€ Heloga(e)] = 0 as|él o0 L (22)

holds for all multi-indices & € N* and all continuous ‘'semi-norms || || on E.

It is useful to recognize the space S~°(R"; F) as the space S(R"; E) ol Schwartz functions
on R™ with values in E. Notice that

S™®(R* E) = ST°(R")®, L, e (2.3)

which is easily proved téking into account the nuclearity of §~ (R™).

2.2 Example. In applications, although by no means necessary, F often stands for
the coefficient space. For instance, if £ = C{°(R"), then we obtain Hérmander’s symbol
class S™(R" x R™) with global space variable estimates. If E = C*°(Q2), for @ C R" an
open set, we get ST%(€ x R™) with local space variable estimates. Another interesting

example is £ = S™(R"); in that case we obtain the class S™™ (R" x R") of symbols
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sa,tlsfymg exit conditions'in the space variables at 1nﬁmty (see, €. g [11, Deﬁmtmn 1.2. 31])
Concernmg pseudo-differential operators with non-regular symbols,’ one is, e.g., interested

in E = H*(R™), where the exponent § > n/2 is sufficiently 1arge Jhe resultmg symbol.
cla.ss should be dcnoted by H"S’"(R" x R™). -

2. 2 Basw Short Exact Sequences

The sta,rtlng pomt in mtroducmg the weak symbol topology on S”‘(R") is the fact that

S™(RY) is the strong bidual of S"‘(R”). In proving that fact we invoke certain short
exact sequences of Fréchet spaces and their dual sequences. These sequences are found
by exploiting the observation that symbols in' Sm(R”) are exactly the Fourier fransforms
of distributions on R" that are conormal to the origin of order m + n/4. '

, Introducc the corlespondlng set-up. The 1*0111‘101 transfoun is
Fu(€) = a(¢) = /e'i”fu(m)dm,.- :

whe1e integration is over IR", such tha’c the inverse Fourier transform becomes u(z) =

- [e*ta(€) dE. The space I™™/4(R™, {0}) of distributions on R™ conormal to the
._ orlgm of order m + n/4 is introduced as follows: Put Ag = {£ € R™; |¢] < 1}, A; = ={te
LR 2L 6] € Y forj =1,2,... The Besov space ? H;(R" Y, t,p€R, 1 <p < oo,
consists of all u € §'(R") satlsfymg e LE (R, . .

AP oY, € 1 SR

Note: that PH(,)(]R“) is. Hormander’s notation (see {7, Definition B.1. 1]), a more common
one is B ;(R™). The notation used here will be convenient for us in Subsection 2.7. Then

["‘+"/4(R" {0‘}) is defined as the space of all u € S'(R") satlsfylng - .
9% € H(_m-np)(R ) o e

for a,}l a, € N, |a| > |B|- The followmg well-known result may be found ‘e.g., In [7
: .Proposmon 18.2. 2] ’ , _

2.3 Proposmon Let a, u € S’(R") be related by a= Fu Then u € I"‘*’”“(R” {0})
and only zfa € S™(R™). S

P 1'o0‘f»: Condition (2:4) is equivalent to
zu € f{(_m+|a|_n/2)(R ) _ .
f01 all @ € N™. In the Fourier image, the lattel read Baa(f) € L,oc( R™),

1
.

sup R—z(m*lal+n/2)/ |a€a(&)|2 d¢ <o o (2.5).

. R R<lél<2r o C
for all & € N*. Now, if a € S™(R"), then (2.5) follows from the symbol estimates.
Conversely, if u € I”‘*"“(R" {0}), then, mtroducmg an(f) = a(RE)/R"‘ for R >1, (2.5)

~ implies™

HB aRan A < Cc,, R > 1,



8 | | 2 THE WEAK SYMBOL TOPOLOGY

where A = A, is as above, for o € N* with certain constants C, > 0. By Sobolev’s
embedding theorem, that means that {ar; 2 = 1} forms a bounded set in C*°(A) which
shows that a belongs to S™(R"). B =

Remind the functional analysis of the spaces ? H(y»(R"). pH(.,_)(]R") dre Banach spaces. For
1 < p < oo, S(R") is dense in PH(,(R"). Denote the closure of S(R") in *H,y(R™) by
“[;’(t)(]R”). Then u € ® H,y(R™) belongs to mrﬁ[“)’(R") if and only if {27 ||2t||£2(a;)}520 €
co. For 1 <p < oo, the dual space to PH,y(R™) is * H(_y(R"), p' = p/(p—1), with respect

to an extension of the L2-duality. The dual space to wfol(,)(R") is LH(_yy(R™). Notice that
"H-1)(R") can be identified with a complemented subspace of * H,)(R™)',

©Hy(R™) = "H_y(R") & * H (R, (2.6)

where the polar is taken with respect the dual pair (®Hp(R™),* Hy(R?)). For future
reference, let PB)(R") be the space consisting of the Fourier transforms of functions

belonging to P H(,y(R™). Likewise, °°]§(t)(R”) is the closure of S(R") in ® B, (R™).

Further, the closure of S(R") in [’“""‘/“'(R“ {0}) shall be denoted by freni4(R™,{0}).
This closure is characterized by requiring z%0%u € °°H(_m n/2)(R") instead of (2.4).
Prop051t1011 2.3 continues to hold with S™(R") and I’"*““(R" {0}) replaced by §™(R™)
and f"‘*"/"(]R" {0}), respectively.

As a corollary to Proposition 2.3 we obtain:

2.4 Corollary. Let a € C®(R"). Then a € S™(R") if and only if
0f @ € * Bemlal-n/2)(R")

‘for all @ € N*. The same stalement is truelif'S”‘(R”) and ® B(_pt|a|-n/2) (R™) are replaced
by .§'"‘(]R") and “é(_m+|a|_"/2)(R"), respectively.

From Corollary 2.4 we get an embedding

sm (R") — H B(—m+la|—n/2)(R ), (LH{é)“a}GENﬂ, ~(2.7)

aEN®
realizing S™(R") as a closed subspace of H - B(_,n+|a|_n/2 R™. Subsequcntly, S™(R")
should be identified with its ‘image in HaEN" B(_mtla]-n/2) (]R ). Under this identi-
fication, $™(R") becomes S™(R"™) N []* B(_m+|a|_.n/'2)(R ), i.e., a closed subspace of
T1°B(emsjal-nsn)(R"). Notice that []%B(_isjaln/z(R™), H“B(~m+la|—n/2>(R")'are
Fréchet spaces.

Employing (2.7) and its analogue for ,’;'m(R"), we reach the exact sequences mentioned
above: In order to formulate them compactly, introduce the following abbreviations: -

1m®) = I[ “Bremsiarnn®) TR = [ =Bemtiolonsa(®),

aENT agN™®

EM(RY) = D Bimojajen)(R"),

@ENT
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where we have used E as substitute for @, and o .

A™(R™) = {{fa}aew- e | Y (=1)F1oE s = (’,‘}.’.

aGN"

where the derlva.tlves are understood in the cl1str1but10nal sense. For further reference
introduce’ o AP .

- ST(R ) {0 € ®Blom-n/n)(R"); 0 € B(_m+.a._n,2 (R") for o € N, |a1<L},

e T(R") = Z B(m_|a;+n/2 (R™),

|a|<L ‘ : ‘ ' L
“ A"‘(]R“) = {{fa}a € 57 ( K") )Y (- Iala8 fo = 0}
» le|<L
Notice the’rela.tion : ‘ ' N
‘ Z™(R") = ind llIIl E"‘(]R")

where the mductlve limit is extended as L, = oo, such that Zm(R") becomes a strict:
(LB) -space. . B - ) :

'2.5 Lerﬁma. The Spa’ces .S"_“(R“), .§'"‘(R") a’re queei-nomnable.

The proof will, be glven in an appendnc to this SCCthI‘l smce acldltlonal notion of no further
use have to be 1ntroduced '

N

| 2.6 Proposition. The following sequenc_esvm‘e‘topologica[ exact: . - o
0 — $m(R™) — TIm(R™) — [m(RY)/S™(RY) =0, (28)

0— A™R") — IR — $P(RYY — 0,0 - (29)
0 — S™(R™) — HM(R’*)-—,;H_'"(R")/S'*(R“) -f-> 0, (2.10)

0 — A™(R™) @ (S"‘(IR") ﬂ H”‘(R“) ) — E"‘(R“) & H"‘(R") - _

__) Sm(Rn) Hm(Rn) /(Sm(Rn) H’”(Rn,) ) — 0, E (211) .

Thereby, (2.9), (2.10), and (2.11) are the dual sequences to (2.8), (2.9l), and (2.10), 're-'

. spectively.” In (2.11), polars ave taken with respect to (II™(R"), [I™(R")'). : -
Proof: (2.8), (2.10) are topo'logicall'y exact as short exact seqeences of Fréchet spaces.
Because ™ (R™) is the strohg dual to'TI™(R™) and TI™(R™) is the strong dual to ™ (R™),

- (2.9) is the-dual sequence to-(2.8), as some partial integration shows. ‘Furtherniore, we

conclude that (2.10) is the dual sequence to (2 9) by the same argument The topologlcal
. exactness of (2 9) and of the sequence '

0 — ST(R")" H"‘(R“) IRY/SHRY 50 (212
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are consequences of Proposition A.l and the observation made in Lemma 2.5. That the
latter sequence coincides with (2.11), i.e., (2.9) is a direct summand in (2.12), can easily
be verified using (2.6) _ . O

.

Before we proceed we make out some of the properties of spaces appearing in (2.8)-
(2:.11). " S™(R"), ,,Sn"”(R'i) are [réchet spaces. Thanks to Proposition A.9 we obtain
that .So""(]R".)’ is a complete barreled (DF)-space, i.c., a complete (LB)-space. Especi-
ally, B(($™Y, 8™) and ,H((So'm)’,S"‘) coincide on §"‘(R")’. The same is trivially true for
B(S™,(S™)Y), B(S™,(5™)) on S™(R™). As a further consequence we get:

2.7 Proposition. S™(R") is the strong bidual of S™(R").

Proposition 2.7 makes it possible to speak about the dual pair (S™(R™), $™(R™)"). This
allows to define the weak symbol topology on $™(R") as follows: -

ST (R™) = (S™(R™), 7(S™, (5™))). - | (2.13)
In Lemma 2.12 we shall see that this definition agrees with Definition 1.1 prex;iously given.

2.8 Lemma. S7*(R") is complete.

Proof: This follows from Lemma A.7. . O

2.9 Lemma. S™(R"), S7*(R") have the same bounded sets.

Proof: This follows from Proposition A.8 applieci to £ =SMR*, F=C. o

In Lemma 2.20 we shall characterize the weak symbol topology on the bounded sets of
S™(R™).

2.3 Oscillatory Integral.s as Weakly Continuous Functionals

Here we discuss the canonical embedding g"‘(R")’ C S™(R™)"in more detail. Functions
v € S(R™) can be viewed as functionials on $™(R™) via the identification .So""(R") Saw—

S a(€)v(€) dE.
2.10 Lemma. S(R") is densc in S™(R™Y.
-Proof: By (2.9), elements in ‘..‘:'”‘(R”)" can be written in the form

§r®yzam 3 [ rooza) i | (2.14)

lo<L
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with f* € 'Bin—jaj+n/2)(R") for la| < L and some L € N. If fa € S(IR") for |a| < L
then the functional in (2.14) can be rewritten as

SR 3 ] S (1))

|a|<L :

o . -

where zlaISL(‘—'-li)hl_@?f“(E) € S(]R“) by, partlal 1ntegrat1on The proof is concluded
remarking that, for £ € R, S(R") is dense in LBy (R™). " S .o

. The prototype of functionals in SO'"‘(R”)’.are oscillat'o;ry in'l:egré,ls regarded as linear func- |
tionals on symbols. Such an oscillatory integral is a formal integral expression of the

. kind -+ . . , , W
| . / e=8q(z, E)u(z) dzdE, . o (215)

where ¢ € C=(Q x (R*\ 0)) is a phase function, a € ST(Q x R"), and u € C(N), with
2 C R some open set. Being a’ phase function means that ¢ is real-valued, positively
homogeneous of degree 1 in €, and V, ¢¢(z,£) does not vanish on the conical support, of-
a. For a € S7%(Q x R™) with m'< —n, the mtcglal in (2.15) is absolutely convergent. In
general, integrals of the kind (2.15) can be regularized by a partial integration procedure
(for details, see [7, §7.8]). The value then assigned to (2.15) is usually denoted by I4(au).

Another possibility for computing (2.15) consists in the followmg Choose x ‘e S(R™),
x(0) = 1. Then, for e>0, ,

[ e#=Ox(et)ata, o) dad,
- is absolutely convergent,’ and we have

' Ty(au) = lim Ty(a W), - L (2.16)
. 'c-+0 v ) ) . v

]

where we have set dc(f) = X(ef)q(é). _
Now coming back to functionals in .§'m(lR“)’. Cleé,rly, )
$™(RY) 5 ars hau), o (2.17) -
- where ¢ 1 is a phase function, e. g qb(as §) =z f, r:md u € C”(R") defines an element in
S’“(R") ‘
] : ' . ‘~ /'

2.11 Proposition. Let® € §m(R“) Then the extension of@ to a functional on S™(R™)
according to Proposmon 2. 6 is gzuen by . . -

((I)a) Eél(@ 4,) (218

where the limit exists imfepeﬁdehtly of the choice of the fu;”z'ctz‘on'x with the properties
" stated above. Moreover, for I being a complete lcs, every a € S”"(]R“ E) defines a
mapping belongmg to E(S"‘(R“) E) via formula (2.18).° '
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Proof: By Lemma 2.10, functionals of the kind (2.17), i.e., oscillatory integrals viewed as
linear functionals on constant coefficient symbols, form a dense subset in .§"”(]R")’. (To see
this, write [ a(&)v(€) dé as (27)~" [ €' ®%a(€)d(a) dadE, where v € S(R™), © € C(R™).)
Then either from the regularizing procedure or the topology given on .Sn'"‘(R”)’ it 1s clear
that the approximation of ® by such oscillatory integrals can be performed uniformly
" on bounded sets in S™(R™). Therefore, by (2.16), the limit (2.18) exists and gives the
desired extension of @ to-a functional on S™(R"), since it is valid for functionals of the
. kind (2.17).
Furthermore, the same reasoning realizes a symbol a € S™(R"; E) as a linear opera-
tor from So'm(IR“)’ to £ that is readily seen to be continuous providing the embedding

S™(R"; B) C L(S™(R"Y, E). o - O

Let us point out that Proposition 2.11 allows us to recover the fact that $™ (R™) becomes
identified with a complemented subspace in $™(R")". For that the mapping from gm (R™)’
into Sm(R”)’ defined by (2.18) is seen to be continuous. When identifying ,So'”‘(]R")' with
its image in S™(R")’, a continuous projection in S™(R")" onto S™(R™) is given by first
projecting S™(R™)" onto S™(R™)’ using the dual of the embedding S™(R™) < S™(R™)
and then applying the mapping from .f';‘""(R“)’ to S™{R")" just defined.

From now on $™(R") shall be regarded as the complemented subspace in S™(R™) as
recognized in Proposition 2.11. As a characterization for elements in 5™(R"™)" belonging

to S™(R") we get:

2.12 Lemma. Let ® € S™(R"™)'. Then ® belongs to §’“(IR“)’ if and only if the restriction
of ® to any bounded sct in S™(R™) is continuous for the C®-topology. '

Proof: Each oscillatory integral defined by (2.17) obeys the property mentioned in the
lemma. Thus each element in .Sn"“(]Rn)'. does.

To conclude the proof it suffices to notice the obvious fact that any functional in S™({R")’
the restrictions of which to bounded sets in S™(R") are continuous for the C°-topology
and which at the same time vanishes on S™(R™) is 0. 0

Further, by our consideration above, ST(R"), 5'"‘(R”)' coincide as topological vector

spaces. From now on we will write S7*(R")’ instead of §m(R”)’.

2.13 Remark. Functionals in S™(R")" actually belonging to ST*(R™)" are said to, be
weakly continuous. This notion was introduced in a more general context by Hérmander
(see [7, Definition 18.4.9]), who observed the importance of such functionals in questions
. ‘related to the continuity of pseudo-differential operators.

2.4 Properties of ST*(R")

In this subsection we continue to studying the properties of S7*(R™)". So we shall re-
cognize that every weakly compact set in ST*(R") is compact. Especially, this implies
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- that the weak syrnbol topology on S™(R™) is the topology of uniform convergence on.the
precompact sets of S7*(R"). ' S

But prevnously we make the statement that S"‘(R”) is a (LB)-space more precise. - For
definition of bounded retractivity, see Append1x A5, o

2.14 Lemma. S';"(]R")’ is the znductwe limit of the Banach spaces Z‘”‘(IR")/A"‘(]R"),
- S™(R") = indlim E”‘(R“)/Am(R”), o (2.19)

where the limit is extended as L — oo, The inductive limit is boundedly retractive.

,Proofl: Under the natural identification L7 C om we have AE‘ =37 ﬂ AZ;H and -
ST/AL = Em/(zm n AL+1) = (37 + A?H)/ALH L+1/AL+1 .

Aforall L € N with.a norm- decreasmg embeddmg Thus E’”/A"‘ becomes a dense subspace

of X7 /AL4,- Notice that-S(R") as a subspace of If' is dense in LT /AT for each
L e N. Obviously, L™ (R")/A™(R") = 1ndl|m$’"(R")/A"‘(]R") Now (2.19) follows,
sice SP(R") = Em(R")/A’"(R“) by the topologlcal cxactness of the sequence (2.9):

Usmg Lemma A.3 and’ P10p051t10n A1 we conclude first that' S"‘(R") satisfies the strict
Mackey convergence condition and.then that the regular 1nduct1ve llrnlt ind lim &7 /AP
is boundedly retractive. =~ _ Lo . o O

In the sequel we shall sometimes make use of the fact that the spaces appearing in the ..
second short exact sequence-in Proposition 2.6, .i.e., in (2.9), are separable. This has
the usual consequences , e.g., if a Ics: £ is separable, then equi-continuous sets in L' are
separable and metrizable for o(£’, E). Notice that the spaces appearing in the third short
“exact sequence in Proposition 2.6, i.e., in (2.10), are not separable they are, however

+,- separable for the weak topologies comlng from the second ShOlt exact sequence i.e., from

(2.9).

In the following resuit weakly compact sete in Z|n|>o ' Bim—ja4n/2)(R") are cnaracterizeciz

2.15 Lemma. Let D C ¥™(R") be: bounded Then D is 1clatwe[y J(E’” II™)-compact if
and only if

?gg 223 m—Ial+n/2)||f0||Lz A ) -0 as P 300 - . o (2..20)‘
: i>p ‘

for all a € N" where f* is the ath component off Furthernwre D C Em(R") 1
relatively compact if and only if, in addztwn, for all P € N and o € N*, the sels

{f IU’ s fED}C L“(UJ_O ;) _ o (2.21)
are relatz'vely coinpact. -
Proof: SIIICC DC E"‘(R") is bounded, D EL (R”) for some L € N. Moreover, if D is

relatively ‘weakly compact in Z™(R"), then it is relatively weakly compact in. E7(R"), if
D is relatively compact in X™(R"), then it is relatively compact in LF(R"). Therefore,
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if suffices to characterize relatively weakly compact sets and relatively compact sets’in
'Bwy(R"), t € R, by properties (2.20) and (2.20), (2.21), respectively, with m — |a| 4 n/2
replaced by £ and f“ replaced by f. Especially, property (2.20) then reads

sup 3ot ||f||L2 0 as p — oo. (2.22)

J>P

To start with we prove that every weak Cauchy sequence { [ }72, in ! By (R™) obeys (2.22).
Going over to a suitable difference sequence {fx — fi} for &, [ — o0, if necessary, we may
assume that {f;}72, is a weak null sequence. Suppose that (2.22) with D = {fi; k € N}
is not satisfied. Then we construct a function v € ®B_y(R") fulfilling (fx,v) 4 0 as
k — oo as follows (this is the sliding-hump technique, see, e.g., [9, §22, 4.(4)]): The
function v shall be found by defining it successfully on A; for j = 0,1,2,... through
functions v; € L%*(A;). By our assumption, we find a § > 0, an increasing sequence
{pi}2y C N and a subsequence {fi, }2, C {fi}2, such that

D2 ullzaayy 2 46

>m

for all [ € N. Possibly choosing a further subsequence we equally assume that

S Py 235 Y P ullen) <4,

n<igmyr - CIPPI4
and, moreover, if the functions v; for j = 0,1,...,p; have already been constructed,
| Y Uewidiaay| <6 ' (2.23) °
0<5<pr ! '

since { fi| s A 1720 converges weakly to 0 in L*(Lfi_, Aj). Here (, )r2(aj) is the scalar

product in LQ(A ). _

Now assuming all that, choose v; € Lz(Aj) for j = pi+1,...,piy1 to satisfy the conditions

[0l £2(a ;) = 2%, : '
(fk;avj)LQ(AJ) = 2% ”fk;”L?

Choose v; € L(A;) for j = D, s Po to satisfy (2 23) for [ = 0. Then setting vja, = v;
for j € N, v belongs to ®°B(_,(R"), since sup,,,, 277||v||12¢a,) = 1, and

/;nfk.(f)v(f)dﬁ > Z (frr, 0) L3¢ A,)——‘ Z fk“ v)ra(a 12 (frer v) 13(A

P<iEPi41 0<is<m - I>PI4

> 36-8-86=24.

for all { € N. This contradicts the weak convergence of {1}, in 'Bp)(R") to 0.

To conclude the proof of (2.22) for D C 'By)(R™) being relatively weakly compact use
the fact that D is at the same time weakly metrizable. Thus D is relatively weakly
sequentlally compact: Now, if (2.22) were not be satisfied, then D would contain a weak

Cauchy sequence violating propel ty (2.22) which is not possible as we have seen. Hence,
D fulﬁlls (2.22).
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§

C‘anersely, if D C 1B(,)(.R") is bounded and satisfies (2.22) we show that D relatively .

weakly sequentially compact and, therefore, relatively weakly compact by Eberlein’s theo-
rem. Let {f1}52, € D be a sequence. By a diagonal procedure, we choose a-subsequence
{320 C {fx}il, such that {f"flﬁ }2o € L2 (AJ-) is- weakly convergent for all 7 € N.

" Introduce h € IB(t)(R") as been defined on A; as the limit of all these sequences, i.e.,

f‘Lf|A — hjp; as | — o0 weakly in L(A;). From Y iop Pk = hllzacay) < 28, where
4, = Sup rep S isp 2 Hiaajy, p €N, we infer that fi, — has{ — oo'weakly in 1B(t (R ),
since .

Ui =1 € | 0 = b | + 25 500 25l
> .

i<p ) o
for all { € N and a € ®B(-(R™). Thus D is relatively. weakly sequentially compact.

Finally, if D C ' By)(R") is relatively compact, then t_llle analogues of the conditions stated
n {2.20), (2.21) are obviously fulfilled. Vice versa, if these conditions are satisfied for a

subset D C 'B(t)(]R") then D is 1ela.t1ve1y compact in B{t)( R") by a construction similar.

-to that one just given.

The lemma is complete_]y.proved. _ o ‘ _ L, _ .. ' D

s
L
v

. 2.16 Lemma. Fvery weak null sequence in Sm(R") can be lifted to a weak null sequence
in E’"(R") : X : S

Proof: Let {®;}52, be a weak null sequence in S™(R™). By Lemma 2.5 and Lemma A.2,
- {@k}i‘;or,is a weak null sequence in £7 /AT for some L € N. (Notice that the absolutely

. convex closed hull of {®x; & € N} in S™(R™) is D reo 2P Dopeo [Ak| < 1}, which is
a(S™, S™)-compact.) For k € N, replesent (I>k as '

(85, a) Z/fk ele) e o € SR,

R |a[<L !

" where {f,‘j'}?:o C ' Blm—|aj4n/2)(R" ) may be assumed to be bounded for o € N*, |a| < L.

" .Now using the fact that S(R") C 'By)(R"), t € R, is dense, we find sequences {gk 32, C .

© S(R™ such that |
UL = 8By 0 85 k2 0

for all @€ N*, 0 < |o| < L. Set gf = — Lo paicr(=1)"95 € S(R™), 0= (0,...,0) € N".

Then {¢;}aj<z € AZ such that {f§ — g7 }aic € EF is in the preimage of <I>k Moreover
. the sequence {f? — g9} C ' Bimtn/2)(R™) is bounded. For a in the image of SP(R") in
©SP(R"), we have . : _ .

. SR -ghe)r0ask—oo. (2.24)
- Then (2. 24) holds forall a € S"‘(R"),‘i.e.,'f,? — gp = 0 weakly in ' B(y4n/2)(R"). Thus
the asscxtlon follows. ~ . ‘ K , ‘ o O

" 2.17 Proposition. Every weakly compact set in ST(R") is comﬁact,, Furthermore, every

compact set in S7(R™)' is the canonical image of « compact set in E™(R™).

~
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Proof: To start with we show thas p1opetty (1.2) holds, i.e., for every o (S, (SI*)')-null
sequence {a;} 2, and every o((S7*), S7*)-null sequence {q)k}k=o we have

(Pr,ax) = 0 as k — oo.

To see this, for some L € N, represent the functionals @, in accordance with Lemma 2.16
as

@)= [ X fr(08ale)de, a e S™RY)

1 la|<L
- where {f2}12, C B(m_la|+n/2)(R") are 0(' Bim—(al+n/2)s © B(=m-+]aj-ns2))-null sequences.
For o € N*, |o| < L, we have

sup Z 2ilm=lal4n/2) | fEllz2a;) = 0 as p = oo

k ;
N i>p

" thanks to Lemma 2.15. )
Fix some e > 0. Since the o(S7, (S7*))-null sequence {ax} is bounded in ST*(R"), it is
bounded S™(R"), i.e . :

sup 2(-m+lat-n/2) |1a‘*ak||p(,\ ) < C
j&N

for o € N™ and some constant C > 0, and all £ € N. Choose p € N so large that
’ Z 9i(m— Ia!+n/2) ”fk l|2¢a,) (QCQ(IL)'_la
- i>p -

for o € N*, |a| € L, and all £ € N. Here d, is the nuinber of & € N™ with |a| < L. Then
decomposing the expressnon for (@, ax), :

‘I’;.,ak Z z / fe(€ 6501. )dé + Z Z §) o¢ ak(f)d5:
jaj<L0Li<p |a|<L 3>p
we find for the second summand

ZZ] £2(8) 03 an(6) e

la|<L 7>p
< Z Zga(m—lélﬁlz) Hfg”bgmj)2j(—m+la|—n/2) 10 axll2ay) <-€/2,

AolLL 3>p

while the first summand, 32,07 2 ocjcp fAJ_ fE(&) Of ax(€) d€, tends to 0 as k& — oo by
Lebegue’s convergence theorem. Notice for the latter that f(£) d¢ax(§) converges to 0
a.e. in { € R" as & — oo, since S™(R”) 3 a = Gfa(f) defines a weakly continuous
functional. Thus, for k large enough, we obtain

|(‘I’k,ak)f <e

To conclude the proof that weakly compict sets in ST*(R™)" are compact we make use
of the results of Subsection A.5. Weakly compact sets in S7*(R™)’ belong to the class &’
defined with respect to the dual pair (ST*(R™), S™(R")'), since they are weakly metrizable.
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- Therefore, by Pioposmon A.6, they belong to the class L', i.e., they are hmlted with
respect to the same dual pair. That means that they are p1ec0mpa.ct in S™(R ")', since
S7(R™) contains a countable weakly total subset. Thus weakly compact sets in S”‘(R“)
are compact. )

- Finally, if C € SP(R™)' is comp'a.ct' then ccyp /A is compa,ct for some L.€ N. Thus
C is the canomcal image of some compact set ’D C Xp. . ‘

The proof i is ﬁmshed ) . o (]

)
!

Next we consider functionals used in the proof of Proposition 2.17 in more detail. Let .
£ € R", a € N*. Denote the linear functional '

's (R")aav—)( logae) | (2.25)

, by 8“55 In view of Lemma. 2 12 3"55 € S’"(R") '

' 2.18 Lemma Let £ € R*, a.€ N*. Then the functzonal Baéf belongs to 2n+|a|/An+|a|
Purihermore the estimate . : ) '

- 6)lgm  jam < Cma molel - (226
|| .‘E”E +|aJ/An+|a| b ’ o ('S) " . ‘ ‘ ' ( )

is true with some cdnstaﬁt Cona >0 not depending on E eR".‘Fork e N, ‘the functwn
Yo defined by Ya(€) = 6“’65 belongs-to C* (R" :~+-|a|+k/An+|a|+k) where

[

a‘%pa(é)_ (- 1)""3‘“”5& . . | - (2.27)

.{OT-T E'NRJ ITI S ‘l‘:

PIOOf Fnst we prove (2. 26) Suppose m < |aj. Represent-§°8; as follows: if & >
7' ’fn _>_ 0 R : - ' ' '

(0°6,a) = (<1l x ' C | (2
S s en)( .a,,,,a:; @) dna,

* while, for general £, for those 7 for which ¢; < 0 holds we replace the expressien H(n; — Ejj
under the integral sign by —H(£; —n;). Here H is the Heaviside function, i.e., H(1) =
fortZO,H(t):Ofort_{O." : ‘ . ~

A calculation shows that H((sgn{l)nl — &) .. .,1—]((sgr1§,,)n,‘1 — i) as a function of N R
belongs to ! Bim—|a|-n/2)(R™). More'precisely, we have ; - ' '

| H( sgnfl)n,—|§l|) H((sgng,, — &0 < Crin (e

‘B(m la=n/2)

with some constant Cp, o > 0 mdependent 0f§ Therefore 0% e n+}o!/An+|a| and
305 n o m m=|a| '
” f”}: o/ B = ™ (§> :

provided that m <|a. . ' o ' » ) ;
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I'or general m € R, denote for the moment the functional 97d¢ acting on S™(R") by @7,
Then, for arbitrary m, m’ € R, we get by induction on |e| that

™ > e o7 M, (2.29)
y<a )
for suitable ¢, € Z, d, € S—m'=bl(R™). Especially, ey =1, dy = (§>‘m' for [y| =0.
Here d, stands for the multlpllcatlon operator and {£)™ is multiplication by a constant.
Since multiplication by a function in S#(R") realizes a bounded operator from ' B, (R")
to !B (R"), t € R, we obtain '

197 allz

: —m' |y}
A S 5 m’ m—m/—|y]; , m—m’i—|:
"*""/."“ ! ) 1(20” G “E Ny
< )m Z C el =, —'y( )m—m f—|ex]
YL -

with some constant' €' > 0 if m’ > m — || This lmplies (2.26).

To verify (2.27) it suffices to treat the case y = ¢;, j = 1,...,n, where ¢; is the multiindex
of length 1 having 1 at the jth place. By symmetry, suppose that j = 1. Further suppose
that 7 < |a| +3/2. Replace the representation.(2.28) by

(076,a) = (=1)rFli! o
/ / (m —&)H(m ~&).. ( n— &a)(02 Oy - - 3,,,,(93a)(77)d7)1...d77n

if & > 0,...,& > 0, and the analog expression with (m — & )H(m — &) replaced by
—(&—m)H (& —m) if §1.< 0 and H(n;—€;) replaced by H(é;—n;) if €< 0,7 =2,...,n
We have to consider 8%8¢qpne, — 0°8 + hO* 6 as h = 0. Incase § 2 0,...,&, > 0 we
obtain

(86esney = "0 + h O+ 80,0} :—' |
(=1)mHek f / (m—&—h)(Hip =& —h)— H(p — 51))
H(ng = &) H(nn — &)(07 by O - - O, O a) () dipy . .. dg,

and an analog expression in the general case. For the function under the integral-sign in
front of 32 0y, ... 0y, 050, i.e, (sgnéy)(n — & = h)(H((sgné1)(m — & — b)) — H{(sgn&i ) —
|§l|))H((s‘gn§2)ng —1&]). .. H((sgné,)n, — €,]), as a function of n € R™ we get, for 2 € R,
the estimate A
| (m = & — h)(H((sgnés)(m — & ~ h)) — H((sgné1)m — &) x

F((sgnéals = 16al) - H((sgnéalma = 1aDll
for some constant Cy, o > 0 independent of €, h as long as |h| < |€], since [& — | < A
- on supp(H((sgné&)(m — & — k) — H((sgnér)m — 1611)).
In particular, for £ € R" fixed, it follows that

0% 8eshe, — 098¢ + h 8+416;

Cm N (£>m—|a|—3/2 |h|3/2

—|a|=t—n/2)

= o(lh|) as |h| = 0.

”E mrlal+1/ Bntlaltl

- For general m € R, the same estimate can be obtained by considerations similar to those
above using formula (2.29). This yields J¢;1a(€) = —0°%%8; for j =1,... n. O
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2.5 Line;ar-To'i)olbgical Characteﬁzat’ion of Sm(]R.”)

We proceed with providing relevant functional- analytlc propertles of Sm(R”) From.Pro-
position 2.17, by Lemma A.10, we already know that hounded sets in S™(R™)-are pre-
compact. But even more 1s true: : :

2.19 Proposition. Sf‘(R“) is, a-complet'.s, separable Schwartz space.

Proofl: _We-show first that any convergent sequence in S"‘(R") is equi-continuously con-

vergent. " Let {®x}20 C SP(R") bega convergent sequence. We may suppose tha.t {Pe}52,
+"converges to 0: By Lemma 2.14, {®,}2, is contained and convergent to 0 in"S7 /AT for
some [ € N. Further there exists a sequence {px}2, of positive reals with py — co as

k — .00 such that {ps®;}52, converges to 0 in &7 /AT and therefore in ST*(R™)’ (see [8,- :

10.1.3, 10.1.4]). Then U = {pkiu, ke N} is 0 nelghbourhood in S"‘(lR”) and we have

sup [{P, a)| 0 as k — 00,
GEU. ' .

since |{(®y,a)| < p;! for k € Nand a € U. Therefore, {®}32, converges uniformly on U.
Now let C C. S™(R") be compact. It suffices to show that C is contained in the clo-
“séd absolutely convex hull of some equi-continuous null sequence {®;}%, in ST(R™).
C is contained and compact in the Banach space LT /AT for some. L € N. Hence,
C C{X, M®i; T4 [Ael < 1} for certain null sequence {®4}52, in F/AT. But C.C
{3 M®r; 3o [Ak] < 1} is the closed absolutely convex hull of the sequence {‘I’k}k o In
S’"(R") , while {®x}72, equi-continuously converges-to 0. o

i . . [ ) " y .
Notice further properties of S;"(R’"'). Since bounded sets in S7*(R") are relatively com- - .

pact, -S™(R") is a semi-Montel space. S*(R") is not quasi-barreled, therefore, neither
bornological nor- bax reled, since otherwise S™(R™) would be a Montel space, i.e. reﬂexwe
The associated’ bornologlcal space to S™(R™) is S™(R™).

The fact behind the next lemmais tha,t the weak symbol topology is actually the strongest
locally convex topology on S”‘(R") which agrees on the bounded sets.with the weak |
topology o(S™,(57)') (see, e.g., {8,.9.3.7]).

2.20 Lemma. On the bounded sels of'S""-(R"), thé T- topollogy coincides with any of the
following topologies: the topology -of point-wise convergence, the Cm-topology, and’ the
: topology induced by S™ (R”) for m' > m. '

Proof: By a classic&l_result (see [6, p. 88]), the latter three topologies are the same

on bounded sets of S™(R"). Moreover, each of these topologies is weaker than the 7-
topology. Now the result follows, since closed bounded sets in S™(R™)-are compact' for

the 7-topology and a bijective a.nd continuous ma,ppmg from a compact space onto a -,
Hausdorff space is a homeomorphlsm v - o : o,

2.21° Remark. WNote the strong analogy of the situation under consideration to the

" sequence spaces co, !, and [®, and their non-reflexivity. Here 5°.m(Rn5)1 ,50'”"'(]R’-‘)', and

]
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. 5™ (R™) correspond to cq, I, and I°°, respectively. For instance, every weakly compact
set in ! is compact, and & = (I°°,7({*,1')) is a universal complete, separable Schwartz
space. :

Next we discuss nuclearity for S™(R™). We will see in a moment that S7*(R") is not
a nuclear space. The property by which in the applications we have in mind the non-
nuclearity of S7*(R") is absorbed is given in Theorem 2.23 below.

- 2.22 Lemma. For every t € R, the mapping
S™(R™) = L, (H*™(R™), HY(R™)), a+ a(D) (2:30)

18 conlinuous.’

Proof: For u € H*™(R"),

a |la(D)ullgr = sup
“U“H—.fsl

/a(D)u(a:)v(:c) dz

is a continuous semi-norm on ST(R™), since the set {®,; {|v]|g-c < 1} € S7*(R™Y, where
we have set (®,,a) = [a(D)uvdz, is weakly compact for the weak compactness of the
unit ball in H7H(R"). ' " o O

For the notion of local Banach space used in the next theorem, see Appendix A.1.

2.23 Theorem. For cach u € H'*™(R"), there is an absolutely conves, closed 0-neigh-
bourhood U in ST*(R") such that the mapping ST(R") — H'(R"), a — a(D)u, factors
through .S’;’.”(R")E“U) in @ way such that the resulting operator

SRy = HYR™), a+ker| ) = a(D)u (2.31)

is 2-nuclear.

Proofl: We can reduce to the case m = ¢ = 0. Since then {ll@llr2(a;)} € 13, there is a
sequence {v;} € cg of positive reals such that

Y ¥t illZ2¢a;) < o0 (2.32)

3=0

v

(see [8, p. 27]). Fixsome L € N, L > n/2,set §; = 7;/2 for 7 € N, and define the absolutely
convex, compact set C € SP(R™) as the union of the absolutely convex, compact set in
S2(R™)" given in the proof of Lemma 2.22 as the set of all functionals @ +—+ [ a(€)@(£)v(€) dE
with ||[v]||z2 <1 and the absolutely convex, compact set in S2(R™)" which is the image in
SR™)’ of the weakly compact set D C L9 (R™) given by requiring

o0
sup 32 ) < 5y
i=p
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for all p € N and all o« € N", |0 <L (see Lemma 2.15j'. Set further V = C°. Then the
mapping Sp(R") —=-L*(R"), a — a(D)u, factors through the continuous mapping
K 'S%Rﬂ&fﬁﬂﬂkﬂ a+mqm ) = a(D)u. . ‘-@3@

We prove tha.t this mappmg is 2-integral. By Prop031t10n B.1; 1t sufﬁces to show that the ’

mapping S%(R "y L*(R") induced by SY(R") — L2(R“) a— atl, is order bounded, -

i.e., there is an h € L*(R™) such that , : \ ‘ '
o |()(’)I<h()ae£eﬁ" L 234y

for'all @ € V. For that end, we derive anestimate of the rnodulus of functlons in V.
Clearly, given o€ N*, |a| < L, 7 € N, elements {f?} € ZO(IR") with fP = 0ifl § # o,
foa, = 0if k # jand ]|f ||L2(A ) < 2-"“"'1 ~"/2) §; belong to D Therefore, for a €V we
obtain _

- Nogallizqn, € PHS

From that, using a rescahng argurnent and. Sobolev’s embeddlng theorem as in the proof
* . of, Proposition 2.3 we arrive at the estimate ’

‘ L la(e)l < C6; ,gemp

which holds for a € V and .7 € N with some constant C>0 1ndependent of a, j. Now
by (2.32), in (2.34) we may put ' -

¥

1E) = OB a(e), €€ s '_i'-;

Having shown the 2-integrality of the operator (2.33), we choose an absolutely convex,
closed 0-neighbourhood U in SO(R“) absorbed by .V such that the canonical mapping
SURM)wy — S Ry is ‘compact and get, by Proposition B.2, that the operator

:5$(R"hU)—*l7(R”L akerll )+ o D)

is 2-nuclear. . ‘ ' : _ . o
I

.2.24 Proposition. Let u € H&"‘(R”). “ Then the mapping, SMR™) = HYR™, a = .
a(D)u, is nuclear if and only if u € ' Hyymj(R"), where H(t.,_m)(]R") is the Besov space.
considered -in Subsectlon 2.2. Moreover, an equivalent condition is that there exists an

_absolutely convew, closed 0-neighbour hood U of S™(R™) such that the mapping STH(R™) —

" HY{R™), a+ a(D)u, Jactors through ST (R™)y,, with the 1esuftmg operator S’“(R“)(U)

- H (]R") being 1- summmg , .

Proof: Assume again m =1 = 0. Suppose that there exists-an absolutely convex, c]dsed, ‘
‘0-neighbourhood U of S™(R™) such that the mapping S™(R™) — H'(R"),-a — a(D)u,
factors through ST (R™){y with the resulting operator S"‘(R“)(U) — H'(R") being 1-
summing. Let {x;}32, be a dyadic decomposition of unity on R", i.e., x; € C&(R™),
- suppya C {6 € RN < € <2}, x4(6) = a(27€) for j 2 1, and 3%, x;(6) = L.
It is easy to see that the sequence {x;}j2, is unconditional summa,ble in ST”(R"), in
particular, uncondltlona,l weakly summable Therefore, by our assumption, we must have

~
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> izolIX(D)ul|rz < co. By a modification of this example we further see that we:get
Zjo:[] ”ﬁ”L“(A,‘) < 00, i.e., u € lf{(o)(Rn) :

Vice versa, sﬁppose that u € "Hio)(R™). Then there is a sequence {v;}%2, € co such
_that 3222077l 2y < oo Choose a orthonormal basis {v;}%2, in L*(R") as follows:
0;(&) = ¢; if € € A; and D;(€) = 0 if £ ¢ A;, where the constant ¢; is determined by the
condition ||vj||zz = 1. In particular, ¢; behaves like 279*/2 times some constant as j — co.
Represent.the operator SYR™) = LE(R™), a = a(D)u, as

a+ Z’Yj—l||ﬂ||m(r\,-)(¢’j,a)vj, o : (2.35)
- j=0 .

where the functional ®; € SP(R"Y is given by (®;,a) = ’)’j”ﬁHEzl(Aj)Cj fAJ. a(§)(£) d¢ for
a € S°(R™). Now we see that (®;,a) — 0 as j — oo for all a € S°(R"), since ’

A

(@5, )| < vjeiliallia,

and sup,ey c;|a

12(a;) < 0. This yields that (2.35) is a nuclear representation. o
Notice that in the proof of Proposition 2.24 we have actually shown that the sequence .

{x;j}%2, appearing in a dyadic decomposition of unity on R” is unconditional summable,
but not absolutely summablein S}(R"). Especially, we have obtained:

2.25 Corollary. S7*(R") is not a nuclear space.

2.6 Tensor Product Representation

‘In this subsection the vector-valued symbol classes :S'”‘(]R" [7) are studied. In particular,
it is proved that S”‘(]R“ E)= S”‘(R")@cf holds for any complete lcs £.

2.26 Definition. Let E be a complete lcs Then the weak symbol Lopology on Sm(R" E)
is given by the semi-norm system

S™(R" E) 3 a - supl|(2,a)], (2:36)
deC , _
where C is any weakly compact set in ST(R™) and |||| is any continuous semi-norm on

E. S™R™ L) equipped with this topology is denoied by ST*(R™; E).

From Proﬁosition 2.11 recall that functionals belonging to S*(R™) can be applied to
functions in ST*(R™; E) yielding elements in £. For E = C, Definition 2.26 agrees with
the definition previously given for S”‘(]R”)

2.27 Proposition. Let L be a completc les. Then the space ST'(R™; ) ts complete.

Proof: Suppose that {a,} is a Cauchy net in ST(R"; E) Since STHR™; E) — C°(R™; E),
there is an @ € C*(R"; E) such that {a,} converges to a in C*(R"; E). For every ¢ € E',
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{(eﬁ;a )} is a Cauchy net in S™(R"). By Lemma 2.8, {($,« )} converges' to (¢, a). in
STHR™), thereby, uniformly on equi-continuous sets in F sle, 0 -

/ -

for every equl contmuous set H C E’ and any 0- IlelgthUlhOOd Uc S"‘(R") Especially,
. we have '

supll(cb,a)|l(U)<oo._ e S (2.38) . .
geH - : : /

1

Property (2.38) means that, for any eqei-.continuous set H: C E', {(¢,a); ¢ € H} is.

bounded in S™(R"). Now S™(R"), S7*(R") have the same bounded sets. It follows that

(2.38) holds also for 0-neighbourhoods U < S$™(R"). - Consequently, a € C“(R“ E)
belongs to S™(R"; E), and {a.} converges to a in S"‘(R" E) by (2.37).° =}

Before stating the next result’ we need:

2.28 Lemma. Let E be a complete lcs Further let a G S”‘(R“ E). Then the convergence
in (2. 18)

holds unzfm mly for ® in compact sets in S’“(R")

Proofﬁ Rega.rding acfor 0 < € < 1 as Iinear mappings in L(S™R™Y, E), we see that

{a; 0 < € < 1} is a bounded set in L(S™(R")', E) for the simple topology. Moreover,

- {ac} converges to a as € — 0% in £, (ST(R™Y, E) by (2.18), therefore, in L,(S7*(R™), E) -,
by the Banach-Steinhaus theorem. This is the assertion. ‘ : ' oo

N

2.29 Theorem Let E be a complete les. Then

SR = SPRVBE . (240)

" Proof: We ﬁrstlsh‘ow that S”‘(R”)@E:in the topology induced by ST*(R"; E) is S;"(R")@C

. E. For that it suffices to notice that for C being a compact- set in S’“(]R") and'U being

‘a 0- nelghbourhood of E we have :

v_supH ch@aj

del

‘Z(éa a;)(® aJ

for all o; € E, a_.; € S™(R™) and -k € N.’ (On the rlght ha,nd side thele st;ands the genenc

(U ¢®¢eC®U°

" semi- norm of S’“(]R” EY, on the left-hand side the generlc semi-norm of S*(R") ®, E.)

It remains to prove that ST(R")® E is'dense in S™(R™E). First, S'W(]R" E) is sequen-
tially dense in S™(R™ E) by Lemma 2.28. (Choose X € C&(R™) in' (2.39).) Therefore, it
" is enough to show that $~°(R™)@ £ is dense in $~(R"; E) when §2(R"; E) carries the
W eak symbol topology mduced by S7(R™; E). But this holds, since by (2. 3) “RY)QE
is dense in §™°(R"; £) in an even stronger topology. : . O

sup||<¢»,a¢>_< )II(U)—>0 | (s

- (9, ac) ((I) a) in E ae ¢ — 0, | E v(-2.39).

-
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Using Lemma 2.18 we now derive another representation for ST*(R"; F).

2.30 Proposition. Let £ be a complete les. Then for every H € L{ST(R™Y, E) there
ezists an a € S™(R™; E) such that '

H(®) = (®, a) (2.41)

holds for all ®.€ ST(R"). In this.way,'Sm(]R"; E), L(S™(R™Y, E) are identified as linear
spaces. Under this identification, : :

SP(R™ B) = L,(ST(R™Y, B), | (2.42)
where subscript v stands for the topology of uniform convergence on al! precompact sets

in SP(R"Y.

Proof: By Proposition 2.11 we already know that every S’"(R";E) gives rise to an
operator in L(ST(R™), E) via formula (2.18). Thus the other direction has to be proved.

Let H € L(ST*(R"), E). Define the function a(£) on R™ with values in £ by
a() = H(3),
where & is the functional given in (2.25). Then « belongs to C'°“’(R"; E), where
- Galf) = (-1 )'C"H(aaé )
in view of (2.27), and, further, to S,’,"(R’;; E) in view ol (2.26).

We show that a satisfies (2.41). Let ® € S™(R")". Represent ® according to (2.9), i.e

(9,8) = ] PO RN &, be SR, (2.49)

JalgL

for some f* € lB(m_|a|+n/2)(R") and L € N. Then

@)= 3 () [ (€ b) de = { 3 (-1 f o 0vseab).

|a|<L |a1<L

This is permitted, since [ f*(£) 0é¢ d¢ exists as Bochner integral in X7 /AT by

(2.26). We obtain
o= Y (-1 [ e ondeds
|x| <L ' .
and

H(®) = 1)kl / £7(€) H(876¢) d€ = [ £°(6)9¢a(€) de = (9,0).

|a|<L lal<L

“Thereby, the Iatter equality is anothel possibility to define the value of (®,a) for ® €
S™(R")" having the representation (2.43). '



2.6 Tensbf Product Representatioﬁ e - N \ - . "-25

Thus we have identified S’"(R‘"; E), L(ST(R"), E) as linear spaces. Theri (2.42) follows

in advance, since, for C being a compact set in SP*(R")" and U an absolutely convex, -

closed 0-neighbourhood of Sm(R™), the semi-norm on L, (S7(R™), E),

H = sup || H(®) ||
®eC ]
is the same as in (2.36). o o , - o =

It is seen that under 'the identification in Proposition 2.30 we also have that
SPRYGE)=Ly(SPRY,E). (249

. topologlca.lly Further property (2. 42) means that S™(R"; E) is the e-product of S™(R™)
and E Thus by Proposition A. 5 as another corolla.ry to Proposition 2.30 we get '

[ [}

2.31 Corolléry. S;“(R"), has the approzimati.o‘n propcrty.‘ ‘
- Now we take advantage of (2.42), (2.44) to derive the following results:

2.32 Lemma Let E be a complcte Ics Then S™(R™; E), ST(R"; E) have the same
bounded sets. . . C .

Proof: Every bounded set in L L(ST(R™Y, E) is bounded for the topolog’y,' of pointwise
~convergence and, therefore bounded in Eﬁ(S”‘(R“)’ E) by ‘P‘roposition A.8. : o

: We also obtain a description of the bounded sets in S™(R"; E) as follows: H C S’"(]R" E)
is bounded if and only if the sets {((’D a);a € H,® € C} are bounded in E for all compatt
. sets C C 5,’."(R“)_ : ' ‘ ' . :

" Sometimes it is useful to know:

2.33 Lemma. Let E be a complete lcs. Then the canomcal embeddzng

57 (R )CS’“(]R" B (2.45)

i

is conitinuous for m’ > m.

Proof: For B.C S""(R") bei.ng bounded, C the image of B under the natural -map-

ping ST (R™). — SM(R™, and U a 0- -neighbourhood in E,"the 0-neighbourhood {a €
S™(R™; E); (®,a)’€ U for all ® € B} of $™(R™; E) contains. the 0-neighbourhood {a €
S™(R™; E); (®,a) € Ufor all ® € C} of S™(R"; E). The latter is a 0-neighbourhood, since
C is relatively wea}kly compact in ST(R"). ; . T =

-1
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2.7 Appendix: Proof of Lemma 2.5

We come to the proof of Lemma2.5. But prehmmary we study the spaces I™t*4(R", {0}),
frent(R, {0}).
Reca,ll that IR {0}) is the space of all u € §'(R™) satisfying

' 2%u € P H(—m+tlat-n/2)(R") o (246)
for all @ € N, Similarly for ["‘*"/“(]R" {O}) _m+|al_n/2)(Rn).
From (2.46) we infer that
1 —w] IR, {0)) = [1 = w] IR, 0)) = [1 - w] S(RY). (2.47)

Here [1 — w] I™**/4(R",{0}) denotes the closure of {1 = w)u; u € I™4R", {0})} in
™+ 4(R™, {0}); the space [1 — w] I™F/4(R™, {0}), [1 — w] S(R™) is similarly defined.
.w € C§°(R™) is a cut-off function which equals 1 close to 0.

Thus it remains to describe the behaviour near 0. Introduce the following function spaces:

Let Y be a closed compact manifold, dimY =n~1,and {,p e R, 1 <p < oo. Then
PHy(R % Y) denotes the space of all u € S'(R; ”HU)(Y)) such that & € L} (R; *Hy(Y)),

“u”pH(,'](va) = {i(//\ .‘ |'|R‘(§)ﬁ( pH(o) (¥) 'f) }1/” < 0o (2.48)
j=0 % :

(modification for p = 0o). The annuli A; are defined in Subsection 2.2 (now in the one-
dimensional case), R‘(A) € LL(Y; R,).is a parameter-dependent order-reduction, i.e.,
a parameter-dependent family of elliptic pseudo-differential operators such that R'()) :
PHy(Y) = PH)(Y) realizes an isomorphism for all A € R For p = 2 we also write
H(t)(R X Y) H t)(R X Y) -

Starting from (2.48); one can show tha.t;font, to, h €R, 1 <p<Loo,0<b<],
[Hio) (R x V), Huy(Rx Y)], = PHy(R x V) (2.49)

holds provided that ¢t = (1 = 0)ig+ 0. Here [, ]o,, denotes the real interpolation functor
(see [1]). . .
Next introduce corresponding Besov spaces over the open cone Ry x Y. On Ry, replace
the Fourier transform by the Mellin transform, i.e.,

Mv(z)=6(z)=/0°° =1y(r) dr.

The variables r, z in resp.- R, and R and the corresponding cova,na,bles z, € in resp. the
Mellin and FOUI‘ICL 1mage are supposed to be related by

vz =logr, z=n/2—z£

Moreover, introduce the mapping @ that assigns functions v on Ry X Y to functions u on
R x 'Y via the formula
Qu=v iff u(z)= 1'"/2p(r).
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_ Under these h)lfpotheses, it is seen that
(Fu)(€) = (MU)( ) if du=v,

' The space PH (R4 xY) is explained as the image of ™ PHU)(R x Y) under @, where
T is muimpllcatlon by this functlon A norm on ”H(;),,,(IR+ X Y) is given by -

. ‘ ' p12) /7 .
”U||P'H(:)I.Y(m.+x)’) = {Z (/R":"/? - ” Rt(hT].Z) ( )||pH(0) (Y) dZ) } Y (25'0)
' ' j—O Imz€A{ ‘ .

(modiﬁcatjon for p = o0). Espec:lally, we have PH ) (R4 x° Y) = JPHU)(;(]IL. X Y)
Denote Hy ARy x YY) =2H t)ﬂr(]R.*. x Y). From (2.49) it follows that .

L M (Re X V), H (6)om (Re x V)], , ="Hyq(Ry x ¥)

if £ = (1= O)to + O, 7_(1_9)70+‘971,0<0<1

For Y = S™! being the unit sphere, also write PH t)a,(R") 1nstead of ”'H(t (R+' x S™1),
: tblnklng of (r,y), where y is the coordmate on Sn=1 as 1ntrodgced as polar-coordinates
in R™. ‘ '

Al
¢

2.34 Remark. For a thorough discussion of Besov spaces on- complete Riemannian
. manifolds with positive injectivity radius and bounded geometry, see [13, Chapter 7]. -
The approach to the sPaces PH, J(Ry X Y) via tlie 1ntegra,l (2.50) in"case p =2 is taken

- from [11] : oo

Forte R, |t| -—n/2 ¢ N, mt;oduce ‘

T( )(Rn = { {w Z|0r|<t nj2 do 2%} U € C} t>nf2
{E|a]<|z|_ﬂ/2 o 6 (z); ay € C}, t< —n/2

where é(z ) is the Dirac measure. For |t| < 71/2 set, Tt)(]R“) = {0} Notlce that T(t ( ™)
is finite-dimensional. -

2.35 Lemma Lettp€R1<p<oo Then zf|t|—n/2¢N )

[w]? ey (R™) = [w]mu( "+ T(RY. Co@s)

Proof: For p = 2, (2.51) may be found in [2, Theorem AA.7] if t > 0. (For a proof ’
in a similar situation using pseudo-differential techniques and Mellin expansion, see [11,
Theorem 2.1.39].) Then, for p = 2 and ¢ <0, (2.51) follows by duality and, for general p,
" t, by interpolation. ' o : , : \ .. .. 0O
For the next lemma, denote *H(cc) (R ) ﬂ:en ?{(t)ﬂ( ) ’H(m),,,( ") = Mien
OOH(”"Y(R“)'. . ' ‘
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2.36 Lemma. Letm € R\ Z, |m +n/2| <n/2. Then

.er+n/4(Rﬂa {0}) [w] OOH(N),—m—n/E(Rn) + [1 —. w] S(Rn)’ (252)
f”"*“/"‘(R", {0}) = [w]®°H(so)m-nsa(R") + 1 - w] S(R). (2.53)

Proof: We only show (2. 52) The proof of (2.53) is similar. Let s = —m —n/2. First, -
m ¢ Z implies |s + k| — n/2 ¢ N for all k € N. Further, from | +n/2| < n/2 we infer
that T(,(R") = {0}.

Let u € I™t/4(R™ {0}). Using (2.46) and Lemma 2.35 we see that @ wu = WVs + Wa f01
@ c N» , where v, € ©H (s+lal)s+lal (R™) and wa € Tiyiap(R™). Writing k= Zlal=k Yol
for certain x, € C*(S™!), k € N, we obtain wu = r‘kguvk—l-r“k Ew;k XaWa, Where v €
OH (sik) o bk (R?), e, 77 v € ©H(yyp) ,(R?). Now it is easy to see that r=* 2 jaj=k NaWa &
°°’H (s), S(R”) unless w, = 0 for all || = k. Therefore, wu € ®Hy14),,(R") for all k£ € N,
ie., wu € ®Hie)(R?). ’

Using (2.47) we get e (R {O}) C [w] ®*H (o) s(R?)+[1—w] S(R™); the other direction
is obv10us . .o

Note that using Lemma 2.35 one can equally prove that, for m € R\ Z,

AR {0)) = [w] ®Hioo)—mensz(R*) + [1 — W] S(R™) + Ticmmnszy (R™).

Proof of Lemma 2.5: It is énouéh to verify Lemma 2.5 for some m € R, since
S™R™) = (£)™S°(R"), and similarly f01 S™(R™). In the sequel we shall assume that
m & R\Z, |m+n/2| <n/2. 3

By Proposition 2.3, it is enough to verify that I™t*/4(R™ {0}), [m/4(R, {0}) are
quasi-normable. Then, by Lemma 2.36, it is sufficient to prove that ®°H (o), —m—n/2(R"),
Wﬁ(w’),_m_ﬂ/g([&") are quasi-normable, since the direct sum of two quasi-normable spaces
and the quotient of a quasi-normable space is quasi-normable again (see (5, p. 177]), and
S(R") is a nuclear space. :

We show that the spaces WH(DO)(R xY), mf}(m)(R xY), with Y being a closed compact
manifold, are quasi-normable and apply it to Y = §™~!. On R x Y, there exists a family of
pseudo-differential operators {J;; 0 < ¢ < 1} C L=®(RxY'), with global symbol estimates
. in R-direction, such that {J.;; 0 < € < 1} is a bounded set in L°(R x Y), Jou — u in
PHy(RxY)ase— 0t forue PHy(RxY),{,peR,1 <p<oo,and

[0 = Jeullorymxyy S Cip € ullong,, @xy), (2.54)

[eullprymxyy < Cor e [lellon ., @xy) (2.55)

for some constant Cy, > 0 provided that » > 0. (For a construction in a similar situation,
see [12, Lemma 1.3.A].)

Now let U = {u € ®H()(R xY); ||u||,x,”k (Rxyy < 1} be a given 0-neighbourhood in
*® Hco)(RXY) for some k € N. Put V = {u € ©Ho)(R x ¥); Hu“""H(w:)(RxY) < 1}. Now
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et A> 0. Then; by (2.54), u = Jou € /\U for e = C'“,\ a.nd uE V whereas (2 53) implies

" that, for u € V, Jou belongs to a bounded set M in ® Hieo) (R x Y) Thus V C M + AU

‘which shows that m[f(m)(R X Y‘) is quasi-nor mable. The proof forf_’OH(w)(R x Y) is

concluded notmg that Jﬁ, 0<e< 1 maps S(R; Coa()f)) and, therefore, °,°f}(t)(]R ><Y)

into itself. , - ¢ O
A ‘ N : . y
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3 Applications to Pseudo-Differential Operators;
Examples -

As one application of the weak symbol topology introduced in the previous section we
verify Sobolev space continuity of pseudo-differential operators in the following situations:
first we consider pseudo-differential operators with symbols in §™(R™ x R"), after that
pseudo-differential operators the symbols of which have coefficients in H*(R"). Charac-
teristic for the first case is that good order reductions are at our disposal, while in the
second case multiplication by a coefficient is controlled in a special manner. '

3.1 The Case of Smooth Coefficients

In this subsection we demonstrate the use of tensor product techniques in the verifica-
tion of continuity of pseudo-differential operators if one is concerned with the “standard
situation”. This means that we are going to prove continuity of the mapping

S™(R™ x R™) = L(HY™(R™), H'(R™)), a — a(z, D). | (3.1)

In the next proposition, S7*(R" X R") stands for _S';"(IR"; C(R™)).

)

3.1 Proposition. Let m,t € R. Then the mapping
S™MR" x R*) = L, (HT(R™),H' (R™)), a~ a(z, D) (3.2)

15 continuous.

Proof The assertion can be reduced to the case m = 1 =0. We have to show that, for
each u € LY(R"), the mapping ‘

SAR"™ x R"),— L*(R™), aw a(z, D)u
is continuous. By completéness of L*(R"), it suffices to show that the mapping
o 'Cf(R") ®c S2(RY) = L*(R™), a®aw— a(z)a(D)u (3.3)

is continuous, since, obviously, ¢(z, D)u — 0 in S(R") as a — 0 in SO(R™ x R").
Fix some u € L*(R"). We show that the bilinear form

CP(R™) x SYRM = C, (a,a)— fa(m)a(D)u(w)v(m)ldm (3.4)

belongs o (CE(R™) @, SO(R™Y, i.e7, is integral, and runs through an equi-continuous set
in (C5°(R") ®, SY(R™)) if v runs through the closed unit ball in L*(R").

First we show that that, for v €- L*(R"), the bilinear form given in (3.4) is integral.

According to Theorem 2.23 there exists an absolutely convex, closed 0- neighbourhood
.U of S°(R™) such that the mapping S%(R*) — L*(R"), « — a(D)u, factors through
SH(R™){yy in a way such that the arising operator SY(R")g;) — L*(R") is 2-nuclear. Let
vy denote its 2-nuclear norm. As an easy calculation shows, the multiplication operator’
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- LR — Ll(lR"), w > vw, is absolutely summing with 1 summlng norm ||UHL2 Thus we
obtain that the composed operator SO(]R")( 0y = LHR™), a = (¢(D)u)v, is nuclear with

1-nuclear norm not exceeding v, ||v|| ;2. In particular, by Proposition B.1, the image of the
" closed unit ball of SO(R")(U) is order bounded in L‘(R ), .e., there exists a non-negative

- function h € LI(R”) such that™

|a( )u(m)v($)| < h,( ) ae z€ IR“"

holds for a,ll acU. Thereby, h can be chosen to satlsfy A < % ]|v]|La It follows that
the mapping 57 Ry = L2(RY h(z)dz), a = A™ '(a(D)u)v, is continuous, where we -

" "have set A7 (z)a(D)u(z)v(z) = 0if h(z). = 0. Further, the regular Borel measure h( )dz
‘is finite on R™. Thus we have found an integral representa,tlon, -

.LW(R") x‘S'S(]Rn)(NU) '—F C, (a,d) 5 /a(m)h(x)fla(D)u(m)v(mj h(z)dz.

At the same time we have seen that for llolls < 1, these bilinear forms belong toa
bounded set in (LW(R") e SO(R“) ) , Therefore, these bilinear forms belong ‘to an

équi-continuous set in (C2°(R") ®. SO(R“))
Thus continuity of (3.3) is proved. N - . A ) a

"Now continuity of the'mapping (3.1) is concluded as follows: Under the continuous map-
ping SP(R™ x R*) — L,(H™*™(R"), H{(R")), a + a(z, D), bounded sets are mapped
into bounded sets: Further, S™(R™ x R*), S™(R" x'R") and L(H+™(R™), H'(R™)),
L, (HH™(R™), HY(R™)), respectively, have the same bounded sets. Consequently, the
" mapping (3.1) also maps bounded sets into bounded sets and, therefore,.is continuous,
~ since S™(R™ x R") is a bornological space.

3.2 Coefﬁcie;its from Sobolev Spaces’
Next we are concerned with the conltinui‘t;y of the mapping _
H*S™(R™ x ]R") = LU (RY), HRY), arva(e,D) (3.5)

for s, ¢ c R, 5> n/2, |t| < s. Whereas in the example in Subsection 3.1 the mtegrahty
of certain bilinear. forms was dlrectly shown, here we take into account Imea1 topological
properties of the coefficients space to “raise” the 1n_|ect1ve tensox product.

3.2- Lemma. Let s, t€ER, s>n/2, 0 <t < s, andv € H™ (R") Then the operator
H’([R") - H (]R"), a - au . . (3.6)

©is 2-summing. Moreover, its 2- -summing norm does not exceed C||v||H () wheve the con-
stant C > 0 only tlepends on s, t. o .

Proof:' It sufﬁces to prove tha.t the opera.tcu in (3:6) is a Hilbert-Schmidt operator In
fact, given' v € 7R ) the ope1at01 H’(]R“) - HHR™), o o, is Hilbert-Schmidt

'I
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as the composition of the isorﬁetry H*(R") = LYR"), o = (£)*&(€), the Hilbert-Schmids
operator '

PR = PR, we @n) [ ete - oty G

and the isometry L#(R") —» H~YR"), w — Ff__]z(({f)‘z‘u). In order to see that the operator
in (3.7) is Hilbert-Schmidt we show that its kernel belongs to L*(R™ x R™). )

- Up to a constant, the kernel of (3.7) equals (£)7*(n)*5(€ —n). Its L?-norm is finite, since

(n)** =2t 001(2 < sup (- (W)ﬂ N=2t500)|2 oo
[ =g st e < s ([ ) [ i <
fgr sup,cgn [ (M¥(E —n)~2 ()2 d¢ < 00 because o.f s>n/2,0 St<s. o

As before continuity of (3.5) is implied by the following observation:

3.3 Proposition. Let m € R. Further let s,t € R, s > n/2, [t| < s. Then
H*SMR™ x R") = L,(H*™(R"), H{R")), a > a(z,D) (3.8)

18 conlinuous. -,

Proof: Again, it suffices to show that, fo'r cach u € H"™(R"), the mapf)ing
HYRY) @, SP(RY) - HY(RY), a®awr a(z)e(D)u
is cbntinuo.us. By Proposition B.4, for tlh.at is enou‘ghv to show that the nilapping
H'(R™) ®; S™(R") = HY(R"), a@a s ofe)a(D)u (3.9)

is continuous.

Fix some u € H'"*™(R"). Treat the case t < 0 first. Then, by Lemma 2.22 and Lemma
3.2, the mapping : _

SP(RY) = TL(H'(R), H'(R), @ (- alz)a(D)u),

where Il; denotes the Banach ideal of 2-summing operators, is coﬁtinuous, since the 2-
summing norm of the operator H*(R") — H!(R"), o — a(z)a(D)u, does not exceed
Clla(D)u||y: and a '+ ||a(D)u| g is a continuous semi-norm on S7*(R"). According to
Theorem 2.23 there exists an absolutely convex, closed 0-neighbourhood U of S2(R™) such
that the mapping S2(R™) — LYR"), a = a(D)u, factors through SHR™)iyy) such that
the arising operator SE(R”)E“U) — L*(R") is 2-nuclear. This operator is then 2-summing
which implies the. desired estimate: ‘

le(z)a(D)u|| g S C||;1(D)u||;jr{‘/’;‘ _|(u,a)!2dy(‘u)}lf2.

C {/[Jo|(‘1),t})|2du(;1>)}1/2 {fB l\(UaC‘l)VdV(U)}W

VAN

H=2



3.2 Coefficients from Sobolev Spaces . ‘ S S .33. -

~ for suitable proba,blhty measures g and ¥ on resp. U° and BH-, .where U° is the polar
to U in ST(R™)" and By-s is the closed unit ball in H”’(R”) The assertion follows from’
Proposition B.3: :

In case t > 0, we argue by duallty Let.v € H“(IR"). Then, by Propdsiton B.3, the :
bilinear form :

H(R")xSm(R“)—}C (a a H/ (D)uavdz, | S .(3.105'_.

is an element of (H’(R“) ®2 S™(R™)Y, since we have the estxmate

‘/ D)uav dz

and both operators Sr (]R“)(U = H', a + ket| |lw) = a(D)u, for a suitably chosen
absolutely convex, closed 0- nelghbourhood U of ST(R™), and H*(R™) — H4R"), &

av, are 2-summing. Furthermore, it is seen that the bilinear form in (3.10) runs through
an equi-continuous set in (H*(R") ®; SP(R"))! if v runs tlnough the closed unit ball in:
H-*(R"). This implies continuity of (3.9). . _ : o .

< fa(DYulle fewwllm=,

t

1
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A Facts on Locally Convex Spaces

In this appendix we provide some general facts concerning locally convex spaces. It is
not intented as a self-contained introduction into the theory of locally convex topological
vector spaces; for that purpose we refer to standard text books on that topic, e.g., [5],
[8], [9]. Instead of we briefly present the necessary prerequisites for understanding the
constructions leading to the weak symbol topology and ‘deriving its properties.

A.1 Some Notation .

We shall employ standard notion from the theory of locally convex spaces. Locally convex
spaces (henceforth abbreviated as lcs) are always assumed to be Hausdorff. If we wish to
indicate the topology 7 on a lcs E explicitly, we write (F, 7). For a les [7, i = Ug denotes
a fixed basis of 0-neighbourhoods consisting of absolutely convex, closed sets. Eventually
Bg is a basis for the bounded sets:in E. For U € U, the associated local Banach space
is E), i-e., the completion of E(U), where Ey = E/ker|| ||y is canonically normed and
I| [}y denotes the continuous semi-norm on E associated with U, i.e., |[ul/yy = inf{A > 0;

u € AU} foru € E. For a disk B C E, i.e., B is absolutely convex and weakly bounded,

Ep ““‘UnEN nB is the natural normed ]mear span of B. Recall that, for any U € Ug, we
have (E(U))' > [, as Banach spaces. Here £’ is the dual to E and U° C E' is the polar
to U, l.e., U° ={¢ € E'; [{$,u)! <1 for v € U}. If no otherwise stated, £’ is assumed to
carry the strong topology. The dual pair between linear spaces E, F' is denoted by (E, F).
Then o(E, F), 7(E, I}, and B(E, F) refer to the weak, Mackey, and strong topology on
E, respectively, with respect to the dual pair (E, FF).

For I, F being lcs, L(E, '} denotes the space of linear continuous mappings from £
into F. Then L,(E, F), L,(E, F), Lg(E, F) is this space equipped with the topology of
uniform convergence on all finite subsets of £, on all precompact sets of &, and on all
bounded sets of F, respectively.

A.2 Short Exact -SAequences'

By a short exact sequence we mean a sequence of locally convex spaces E, F, G,
0— E—F—G—0, S (A.1)

which is algebraically exact and for which all mappings are continuous. (A.l) is called
topologically exact, if, in addition, £ and G-carry the induced and the quotient topology,
1espect1vely A shorL exact sequence of Fréchet spaces is always topologically exact.

For a short exact sequence (A.1) the dual sequence
0—G m F— E'—0 tA.Z)

is exact. Recall that in (A.2) the spaces G’ and E’ may be identified algebraically with .
E° = {¢ € F'| (¢, E) = 0} and F'/E°, respectively.

We-have the following result (cf. [10, Satz 26.17]);
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. A.1. Proposition. Let E be a Fréchet space. Then E is quasi-normable if and only if for. .
any short ezact sequence (A.1) of Fréchet spaces the dual sequence (A.2) 18 topologically
< ezact : .

A.3 Quasi-Nofmobie Les and Schwartz spaces

Recall that a lcs F is called qua31 -normable if for every U € U there is a V € U contained
in U such that the topologies induced on U° by resp. E' and FEj. are the same. An
equivalent characterization is that for every U € U we find a V € U such that for every
d>0 there isa M G BE satlsfylng :

} VCM+<5U. T sy
We need the following leminas (cf. [5 Chap. 4, Part 4, Sect. 1 Exel 2], [5',.'.>Chap.‘ 4,
Part 4, Sect. 3, Thm. 2]): .

A?2 Lemma. Let E‘ be a quasi-normable les. Let A C E be equi-continuous, absolutely
- convez and o(E', E”) -compact. Then there exists a equi-continuous, absoiutely convezr and
weakly closed subset B C E contammg A such that A is weakly compact n EB

A.3 Lemma. Let E be a quasi-barreled lcs. Then E is quasi- normab[e zf and only if zts.
strong dual F' satzsﬁes the strict Mackey conoergence condition.

r

A les E is called a Schwartz space if for every U € U there is a V € U contained in U
such.that U® is compact in Ej,. An equlvalent characterization is that every mapping in
L(E, F) into an arbitrary Banach space F' is compact. A lcs E is Schwartz if and only
~if it is quasi- -normable and its bounded sets are precompact. A sequénce {¢}i2, in £’
is said to be equi-continuously convergent or £-convergent to 0 if {{¢x,u)}, converges
to 0 uniformly in"uw € U for some U € Ug. The- topology on a Schwartz space £ is
the topology of uniform convergence on the E-null sequences in E’. Moreover, for an
arbitrary lcs (2, 7), the topology of uniform convergence on the S-null sequences in E'is"
the stlongest Schwa.ltz topology on K which is weaker than T S

Further details on quasi-normable lcs and Schwartz ¢ spa.ces may be found, e. g in [5,
’Chap 4, Part 4], [8 104 10.7)). ‘

A.4 - The e-Product

[

We recall some basic facts concerning the injective tensor product, the e—product and the
approximation property. For the apprommatlon property, we follow the presentatlon in
[8, Chapter 18]. ‘

Let B, F be les. A’ fundamental system of semi-norms for the topology, €, , of the mJectWe
tensor product on E® F' is given by

Iollwymre = sup - Zj(as, u;)<w,vj>

yelo@Ve
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where.w = 377 | u; ® v; € E @ F and the expression on the right-hand side does not
depend on the representation chosen for w. It is the weakest locally convex topology on
" E ® F for which E' @ I is contained in the dual space and, for all / € Ug, V € U,
U°®@V° C E'® F'is an equi-continuous set. The completion of E &, I' shall be denoted
by EQ.F

We need a characterlzatlon of the dual to £ @, F (see e.g., [8, 17.4.’1.]):

A4 Proposition. Let E, F be lcs. Further let B be a conlinuous bilinear form on
E x F. Then the associated linear form to B on E @ F is continuous for the e-topology
if and only if there exist a finite measure p on a locally compact space X and mappmgs

| ‘Se;:(E L=(u)), T € L(F; L>()) sich that

‘B U, v =V/)'(55'u(ﬂ:)Tv‘(m)d#($.) | (A.4)

holds for all u € F, v € F.

In Proposition A.4, the finite measure g is supposed to be a regular Borel measure and
we write L*°(u) instead of L%°(X, u). Bilinear forms having the property described in the
proposition are called integral. It is readily seen that the space of all integral bilinear

forms on £ x F'is the dual to £ @, F. ‘ _
The e-product EeF of I, F' is L.(E!, F), where E! is the dual to E equipped with the

topology of uniform convergence on all precompact sets in £ and e stands for the topology
of aniform convergence on all equi-continuous sets in F'. F @, F' is a subspace of Fe¢F'.

Moreover, EcF is complete if and only if F' is complete. In this case, LR F is a closed
subspace of Iel'. If I, F' are both complete, then EeF = FeF canonically.

Alcs [Z is said to have the approximation property if '@ E, i.e., the space of all continuous
finite-rank operators in E, is dense in £,(E).  Here £L,(E) = L£,(E, E). (Grothendieck’s
original definition is that £’ ® F is dense in £,.(F), where pc stands for the topology of
uniform- convergence on precompact sets in E. In case E is quasi- complete both concepts
c01nc1de )

For the next result, see [8, 18.1.8]:

A.5 Proposition. Let F' be a lcs. Then F possesses the approzimation property if and
only if £ @ F is dense in EeF for any les . In this case, we have

. E@F = L(E., F) - . (A5)

if F' is complete.

A.5 Precompact Sets and Limited Sets

‘We provide a frame for discussing property (1.2)." It was found in [5, Chap. 5, Part 3,
Supp. Exer., Exer. 3-4]. o

t



A.6. Miscellaneous Topics - | o : 37-

Let £ be a lcs. A subset A C E is called limited if every weakly convergent sequence in
E’ converges unifor mly on A. An equivalent condition. is that Als precompact for the.
topology of uniform convergence on the subsets of £ for which every sequence contained .
possesses a subsequence which is weakly Cauchy. Denote the latter class of subsets of £
by S§’. Denote further the class of limited subsets of E by £. Since these constructions
only depend on the dual pair (£, E'), we have adequate notions for the dual pair (E’, E)
and corresponding classes S, L of subsets of resp. £, ‘. Bach 7(E, E')-precompact set in
E is'limited. Conversely, if E contains a countable weakly total subset, then each limited
set is 7(E, E')-precompact. Notice, however, that in [*® there are weak Cauchy sequences
which are not weakly convergent supplying examples of llmlted sets in a Banach space
that are even not rela.twely weakly compact.

A.6 Pr‘oposition. Let E be a les. Then § C c if and on:!y if
(dnyor) =0 ask— o0, . (A.6)

" for every o(E, E)-null s.equence‘{a:k} in E and every o(E', E)-null séqﬁence {qfak} in B,

" The conditions in Proposition A.6 aré also equivalent to &' C £'. A further equivalent
condition states that every weakly convelgent sequence in £ is limited. By (5, Chap. 2,
Sect. 18, Exer. 4c], a separable Banach"space £ satisfies these conditions if:and only if

every weakly compact set in £ is compact
]

A.6 Miscellaneous Topics

Here we collect reniaining'facts ﬁiso.needed in the main body of the p{a.per. o
For the first result, see [9, §28, 5.(1)]: _

A7 Lemma Let E be a sequentzally complete bornologzcal les. Then E’ (E’, T(E', E))
8 complete v S , L

The next result follows from the Banach—Mackeyl theofen.i (see [9, §39, 2.(3)]): '

A.8 Proposntlon Let E, I be !cs Suppose that E is sequentzally complete Theln every
subset- of E(E F) which is bounded fov Lo(E, F) is bounded for Lg(E, F). '

The following proposition. is found in [9, §29, 4.(2), (3)], [10, Corollar 26.18]:

A.9 Proposition. Let E be-a metrizable lecs. Then its s;irong dual E' is a complete
(DF)-space. The associated bornological space to D’ is (E'; B(E', E")). Especially, E' is
. barreled if and only if E' is bornological. : '

Moreover, these conditions are satisfied if E is a quasi-normable Fréchetl space.

- We also make use of (see [5, Chap. 2, Sec. 18, Thm. 12, Cor. 5]):

’ .
A t
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A.10 Lemma. [et E be a les. Then the bounded scts in E are precompact if and only
if the equi-continuous sets in E' are relatively compact.-

Finally recall the notion of a boundedly retractive inductive limit." Let {£:}52, be an
increasing sequence of linear subspaces of £ = ind lim Ej, where the limit is extended as
k — oo, with continuous embeddings Fy C FEjy for all £ € N. Then the inductive limit
ind lim [ is said to be boundedly retractive if each bounded set B C E is contained and
bounded in Ej for some k € N and the topologies induced by resp. E and E} coincide on
B. We have the following result: '

A.11  Proposition. Let F = indlim Ey and {E¢}32, as above. Suppose that the induc-
tive limit ind lim Ey, is regular. Then the inductive limit indlim By, is boundedly retractive
if and only if E satisfies the strict Mackey convergence condition.
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B Further Tools |
Statements about locally convex spaces can often be traced back to statements about
Banach spaces. In that respect, in connection with the continuity of pseudo-differential
operators, Banach operator ideals and tensor norms are of special interest. Here we
introduce into these sub Jects only as far as it is necessary for the intended apphca.tlons
in Sectlon 3.

B.1 Banach Operator Ideals - o | | )

Throughout this subsection, let £, F be Banach spaces with norms resp. || ||z and || ||r.
We use Bg to denote the unit-ball in E. For dual spaces E’, By shall often be considered -
as a(E’ E)-compact Hausdorff space. Details on Banach opera.tor ideals may be found
e.g. in [3}, [4]. i

An operator T E L(E,F)is called 1-summing {or absolutely summing) if it maps weakly
summable sequences into summable sequences. It is called 2-summing if it maps weakly 2-
summable sequences into 2-summable sequences. A sequence {ux}32, C E is called weakly
summable summable, weakly 2-summable, and 2'summable, if } ;. ; (¢, ux)| < oo for .
all g € E', 2 huelle < o0, Sps (@, ur)|? <'oo for all g € B/, and S22, |luxliy < oo, -
réspectively. . Equivalent conditions for T € L(E, F') being 1-summing and 2-summing are

DTl < Csup{Zlqﬁ,uu ¢eE’ I¢lle < 1},
k=0 ’

k_O

- Y | _
(STul) ™ < ¢ supt(3 16u) '™ b€ B Il < 1),

k=0 k=0

respectively, for ‘all finite sequences {ux}i_y, C E. The infimums over all constants C > 0
therein are the 1- summing norm 7y(T') and 2-summing norm m5(7'), respectively. Every
1-summing operator is 2-summing. By the Pietsch domination theorem, T € L(E, F') is
2-summing if and only if there exists a probability measure u (as always assumed to be a
regular Borel measure) on BEr such that for every u € E

/2

resc{ [ Kewraw} (B.1)
-4 )

holds with some constant C > 0. The infimum over all C for all possible 4 is the 2-

summing norm m(T") (see [4, Theorem 2. 12]) An operator T € L(F, F) between Hilbert

spaces E, F'is 2-summing if and only if it is a Hilbert-Schmidt operator with c01nc1dence

of the correspondmg norms (see [4, Theorem 4.10}). '

Anoperator T € L(E, F) is called 1- mtegra.l (or integral) if there are a probablhty measure
p and operators R € L(E, LY(u)), S € L(L®(u), F") such that we have the factorization
' ke-T=8-vy R, , _ (B.2)

where kp : F =& F " is the isometric emB_edding and 1; denotes fhe canonical mapping
_from L'(u) into L™(u) (see also Proposition A4; T € L(E, F) is integral if and only
if the bilinear form E x F’ = C, (u,9) = (¥, Tu), is integral). The l-integral norm
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t1(T) is inf [|R||||S||, where the infimum is-‘extended over all possible factorizations (B.2).
An operator T € L(FE, F) is called 2-integral if there are a probability measure p and
operators R € L(E, L*(u)), S € L(L*®(u), F) such that we have

A | "T=8-1-R, . (B3

where 13 is the canonical mapping from L*(y) into L*®(u). The 2-integral norm ¢3(7T') is
inf || R|| ||S||, where this time the infimum is extended over all possible factorizations (B.3).
Every l-integral operator is 2-integral. The l-integral operators are always l-summing.
The 2-integral operators and 2-summing operator are the same.

. Next we state a sufficient condition for an operator T' € L(E, L?(1)) to be 2-integral. For
that we make use of the Banach lattice structure of L?(u). Recall that a set M C L*(u)
is called order bounded if there exists a function h € L*(y), h > 0, such that

[f(z)] < h(a:) p-a.e. '

* for all f € M. Then the set {|f|; f € M} has a supremum in L*(x). Similar results apply
to the space L'(u), but this time the condition to state that an operator T' € L(E, L*(u))
is 1-integral turns out also to be necessary. A proof of the followmg proposition may be
found in [4, Proposition 5.18, Theorem 5. 19] '

B.1 Proposition. Let TeL(E, Lz( )) Then T is 2- :ntegral if T(Bg) is order bounded
in L¥(u). In that case,

) < ” sup |Tul HL,(").
IfT € L(E,LYu)), then T is l-integral if and only if T(Bg) is order bounded in Lly).
In that case, 1(T) = ||supyep, |Tu|||[,1(,,)f

An operator T' € L(E, F) is called 1-nuclear {or nuclear) if there are sequences {¢x } 320 C
E', {ve}2-C Fand {A\}2, € {* such that {¢x}52, is bounded in E’, {v;}32, is bounded
in I and o .
T=Z:\h (;‘)k@‘uk, . (B.4)
: k=0 :
where the series converges in L(E, F'), Here, for ¢ € E', v € F, ¢ ® v denotes the rank-,
one operator E = F, u — (¢, u)v.. The 1-nuclear norm ul(T is inf {3, | Ae| supy |[¢klle -
. supy ||vk||F }, where the infimum is extended over all possible representations (B.4). An
operator T € L(E, F).is called 2-nuclear if there are sequences {¢x }5oq C F', {vr}ioo C F
and {\:}22, € { such that {¢}$2, is bounded in E', {{,vx)}i2, € {2 for all ¥ € F” and,
again, (B.4) is satisfied. In this case; the 2-nuclear norm is inf {(3, [A[*)'/* supy || x| &/
' SUPIMMFKI(E;«' ¥,vx)|?)/? }, where the infimum is extended over all representations
(B.4). Every l-nuclear operator is l-integral, every 2-nuclear operator is 2-integral. Fur-
thermore, every 1-nuclear operator is 2-nuclear. The composition of an 2-nuclear-operator

S and a 2-summing operator T is 1-nuclear w1th 1-nuclear norm not exceeding ﬂg( )ia(S)
- (see [4, Theorem 5.29)). :

We need the followmg result (see (4, Theorem 5. 28])

B.2 Proposition. Let S € E(E F), T € L(F,G), where G is a further Banach space.
Suppose that S is compact and T i3 2- mtegral Then the opemtor T-S is2- nucz’ear
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The ideals of 1-summing, 2-summing, l-integral, 2-integral, 1- nuclear, and 2-nuclear Opei
rators are denoted by I1,(E, F), II(E, F), I,(E, F), T,(E, F), Nl(E F), and Ny(E, F),
respectively. These spaces equlpped with the corresponding norms.are Banach spaces. .
Moreover, they obey the ideal property, e.g., R € L(Ey, E), S € IIi(E, F), T € L(F, Fy), o
where Eo, Fy are Banach spa,ces, implies that T R - § € I1,( Eo, o). -

B.2 2-Tensor Product ,

A . \
He1e we introduce a certain tensor product used in Subsectlon 3.2, For further deta,lls on.
tensor products, see [3]. ‘

LetE Fbelcs Then foerE@F

: 1/2
Jloy@rer =inf  sup {Zw,uj } {Zw,vj } |

¢®¢EU°®V°

where the infimum is extended over all finite 1epresentations w = E" u; @ vj, :uj €k,
vj, € F, defines a semi-norm on £ ® F'. The space E @ I' equipped wnth the semi-norm
system {]| llw),(vyiee; U € Us,V € Ur} is denoted by E ®; I and is termed the- 2-tensor
. product of E, F. Its completion is denoted by E®2F

.In the following statement in particular, the dual space to £ ®; I is described:

B 3 PropOSItlon Let E, F G be Banach spaces with norms I, || ||p, and || l|g,
respectively. Further let T : E® F = G be linear. Then T € L(E ®; F,G) if and only if

there are probability measures p, v on resp. B and Bp: such that for the bdmear form -
B: E x I' = @ associated wzth T the following estiinate is valid:

nB(u,v)ncsc{ / ;I|<¢,u>|23u(¢)}.m{ L |<¢,v>|2¢%/(¢>}’/2'7 @

' fo1 allu € E, v € F and some constant C > 0 Thereb’t, the infimum over all-possible C
in (B. 5) is the norm of T in E(E ®2 F,G).

A proof of this result for G = C may be found in [3, Theorem 19.2]. It carriés over to -
the case of general G. Notice that, By the Pietsch domination theorem, an equivalent
condition for (B.5) is that there exist 2- summing operators £ € L(E, Eg) S e L(F, Fy),
where Eqy, Fy are a,rbltra,ry Banach spaces, such that ‘ :

- 1B(w,v)lle < | Rul ”SUHFO . (B.6)

for all‘u € E, v € F . For the next result see [3 Corollary 35.4]'.

B.4 Prop051t10n Let E be a lcs. Then E is Hzlbertzzabie . e its topoloyg} is'gz’v-en by
a system of Hilbert semi-norms, if and only zf o T

E®cF=E®2F

holds topologically for any lcs F.
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