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Abstract

A topology on ~ymbol c1asses of type 1,0 for p~eud~dÜferential o'perator~ is introduced:
I ' This topology indicated by subscript T is well:'behaved 'under the formation of tensor

products, 'e.g., "S~(IRn; E) = S.;.n(IRn)@cE fOl; any complete les "E." Here symbols taking
their coefficients i~ 'certain function spaces are rega~ded a.s vector-v~lued ones. The rela­
tion just lnen~iolled allows to prove continuity of pseudo-differen~ial operators in different I

situations by considering the functional-analytic ·properties" of E. .
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1 lNTRODUCTION 3

l' Intro.duction

In this paper we introd~ce a topology 'on symbol ,dasses ,of type 1,0 for pseudcrdifferential
operators y..rhich we call the weak symbol topology. This topology seems to be of general·,
iinportan~e in questions concerning the ,ccintinuity, of pseudo-differential operators due
t9 its striking linear-:-top'ological properti~s. Here we put the emphasis on ve,ctor-valued
syn1bols and' tensor product.. techniques. '

Dur intenti~n(inthis contribution is' to giv~ rigoro'us praofs for soine relevant proper~ies
of the weak symbol topo,logy.. ·ln a further secti'on we indicate how this, topol?gy cC\;n
be utilized for verifying continuity of pseu1o-differentia) oper~tors'. The notation aB weak
"symbol topology ,is justifi~d by a notion of Hönnander (cf. [7, 'Definition 18~4.9]) who called
fU;lctionals, as it' turns out, 'in the dual of a symbol dass equipp"ed with tbe 'weak sy~bol

. . , ." l ,

.topology weakly continuous. Dur ~nitial motivation for constructing, ,~he weak symbol
topology was to establish a pseudo-differential calculus for non-daßsical operators with
c'ertain non-sInooth symbols for which an analytic t~ol for estimating the remainders.was"

"required. This c~lculus·.has been anriounce~ in [14,' Section 4:2]; details will be p~lblished
elsewhere.

, '

"

• ~ 1,. .....

TIle weak synlbol topology is defiJ.led as.foIiows: Consider "the space sm(IRn) ofconstant
~6effici'ent symbols on Rn of orde", m.. Üenote for th,e m~Inent . .

-~m 'oRn) ::;:: {<I> E sm (IR~)' ;. thc restriction of <I> to any bounded s~t in.

sm{lRn) is continuous for tl.1e COO-top~logy},

" - '>, -

, It turns out that ~rn(IRn) is a complenlented subspace of sm(IRn
)'. In particular, ~m(lR.n)

contains all ostillatory integrals acting as linear f\lllct_io:nals on constant coefficient syn1­
bois. In fact, these funct ionals forn1 a dense subset. in Ern (IR.n ). Thus l loosely speaking,
t m(IRn

) comprises exactly those analytic expressions that proved to be most important. ,
in the 'theory of pseudo-differential operators. It ,nlakes sense. to investigate the dual pai"r
(sm(IRn), tm(IRn)). As amatter of fact, sm(IR~) = (sm(IR.n),ß(sm, tm)), but sm (IRn) ,
equipped with· its 'strorig~st locally convex' topology yielding' tm(IRn) as du~l"space has
the desired properties.

1.1.,'Definition. The ~eak symbol topologYJ" 7 J is defined as t.he Afacke~ topology on ,
. sm(Rn } with 'resped to 'the d7.tal pair (sm (IR.n),.ijm(IR.n))J i.e.,

.'I '

(1.1)

, \

(1.2), .

From now 'on, \ye üse the notatioq S~(IRny instead of ijm(IR.n)., Further we adop~ the
cOI!vention to consider nl. E ·IR; n E' N as be given and fixed. They will not explicitly
appeal' in tbe statements of results. '

Prop'erties of $.;.n(IRn) 'ar'e studiecl by' investigating its s"trong dual S.;.n(Rny. Für the lat-:­
tel' we pl~ovide a representation as topological quotient of tbe Banach space. djrect surn

Llal~O 1
1B(rn-lal+n/2) (IR.nL ,where 1B(m~lal+n/2)(R~) is the Fou~ier image of the 'Besov space'

1H(m-lal+n/2)(IRn) (cf. Subsection 2.2). ,By Ineans of this description of S.;.n(IR.n)', it is
\ possible. to .state tha~'S,;.n(IRn

) is ,a: Schwartz space. The decisive property for that is to
show th'at'o-((S.;.n)', Sm)-compact sets iü S.;.n(lRn

)' are actually compact." ThaLin- turn is
furnishecl by proving that ." -
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is valid for all a(sm, (s~Y)-null sequences {ak}~o in sm(JRn) and all a((S~)', sm )-null
seqllences {<Pk}~o in s~n(lR.n)'. Eventually note that sm (IRn

) , s,;n(IR,n) have thc saln~

bOl1ll~ed sets and that on these bounded sets the r-topology coincides with the Coo_
topology. In particular, convergcnt scquences in S~ (IRn

) are identified in this way.
I

SYlnbols for pseudo-differential operators with coefficients in certaill function spaces shall
be considered as vector-vaJuecl sYlnbols. Thcn, for the symbol dass sm(IRn; E), where E
is a complete les, the relation

(1.3)

'holds (cf. Theorem 2.29). Here sübscript r indicates tbe weak symbol tqpology and (1.3)
is understood as natural identincation of two linear spaces, where the' right-hand side
defines ~he topology far the left-hand side.'An independent definition af S~'(IRn; E) will
be given in the text.

Property (1.3) is fundamental for p~roving continuity of pseudo-differential operators. As
we shall see, S:; (IRn

) is not a nuclear space. Thus it is i11 general inlpassi ble to replace,
, the injective tensor product, in (1.3) by the projective tensor product. This causcs sOIPe
complications if O~le tries to check that certain bilinear fo'rms on S.:.n(IRn

) x E are integral,
i.c., belong to the dual of S;'(lR.n)®,.)~. Herc the functional-analytic properties of the
"coefficient space" E which can be assumed to be good in some sense come into play. For
applications in this paper, thc situation is kcpt by the fact that fOT every u E Ht+m(IR:.n

)

there is an absolutely convex, closed O-neighbourhood U in s~n(IRn) such that thc contj­
nllous Inapping S~(IRn) -t Ht(IRn

), a H- a(D)u, factors through the Iocal Banach spacc
S.;n (IRn )(u) sllch that th~ resulting operator

(1.4)

where 1111(u) is the continuous semi-norm associated with U, is 2-nuclear (cf, Theoren1
2.23).

Now we describe the content in more detai1. Section 2 is iq the heart of the paper. Here
we study several properties of the weak syn1bol-topology. In Subsection 2.1" wc define
the symbol classes sm(IRnj E) and give exalnples. Then, in Subsection 2.2, we recognize

sm(IRn) as the strong bidual to §m(IRn), wher~ §m(IR.n) is the dosure of S(IR.n)' in sm(IRn),
anel derive the lnentioned representation of S~(IRn)' as a quotient of a direct SUln of Banach
spaces. This i~ accon1plished by noting that sYlubols in sm(IRn

) are precisely the Fourier
transforms of distributions on IRn cononnal to thc origin of order m+n/4leading to certain
short exact sequences of Frechet spaces. In an appendix to Section 2, we prove that ,thc

spaces sm(IRn
), Sm(lR.n) are quasi-normable providing the topological exact~ess 'of the

dual sequences. These observations lead to the definition of the weak symbol topology

as S;' (Rn) = (sm(lRn
), r(sm(lRn), Sm(lRny)). In Subsection 2.3, we' study oscillatory

integrals as 1uai!l examples of functionals in S;'(IRn
)'. Further, we characterize functionals

in sm(IRn
)' that belong to S~ (IRn y. Next, in Subsection 2.4, we descri be weakly cOlnpact

sets in Llo l2:o 1B(m_lo l+n/2)(IRn
) and prove that every weakly compact set in S.;.n(IRn

)' is
c9mpact. In addition, we investigate point f unctionals inS;' (Rn)'. In Subsection 2.5" the
linear-topological characterization of. S~(l~~n) is cOll1pleted. Especially, ,we deluonstrate
that S;'(IRn

) is a complete, separable Schwartz space which is not nuclear, specify the
weak symbol topology on bounded subsets of sm(IRn

) and perform sorne consideration
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arourid (1.4). In Subsection 2.6, we turn to. the. investigation of vecto~,-valued symbols.
We define the wea:k syn:bol. topology on sm(IRn

; E), obtain .the relation (1.3) and show"
that the bounded sets in sm(IRn

; E), S;n(IR."n; E) are' the salne.' Moreover, we identify .

,(1.5)
I t • •

as linear topological spaces, \vhere I stands for the topology of uniform convergence on
preco~pac~ set~of S;n(IRn

)'.
. .

Then Seeti.on 3 is 'devoted to applications to pseudo-differential operators. ,We -provide
two examples, naInely pseudo-differential operators with coefficieu'ts in Cr(IRn

) and, iIi
H~(IRn), where' s > n/2, and di~el{ss continuity between Sobolev spaces. Of c~~rse,
these, exalnples were know1l' for a long time, .hut they tnainly sefve' us to den10nstrate
the fiexibility 'in verifying continuity of ps~udo-differentialoperät6r~ established by the
weak symbol topology and the use oftensor pro'duct techniques. In App~n'dix 'A, for quick
reader's reference we present some auxiliary material on locailSr convex spaces that is used

'. in the paper. I~ Appendix. B, we give further information on ~anach operator ideals anel
tensor produets 'needed in the applications to pseudo-differential operatbrs. This matter
is,! partly organized in a way ma~ing it, applicable to other> eircumstances, e.g., when,
coefficients are chosen in Beso,' and Bessel-potential spates .. It should be mEmtioned onee

,again that the proposed method for ,verifying ~ontinuity 'ot p~euda:..differential op"~rators
. was originally invEmted for dealing witli suc~ lllore difficult situ,ations. .

"
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·2· The Weak Symbol Topology

"VVe give a thorough descrip'tion of thc weak sYlnboi topology, T, on SYlnbol c1asscs
S'm(IRnj E). The main results are the characterization of S',;.n(JRn

) ' as a cOll1plete, sepa­
rable Schwartz spacc having thc same bounded sets as S'm(IRn

), the identification of thc
T-topology on tbe bounded sets of S'm(IRn), further providing a substitute for tbe non­
nuclearity of S'~(lRn) in Theorem 2.23, and, fol' E being a complete les, rccognizing
S',;n(lRn jE) as· tbe completed tensor product S';>(IRn)0fE. Moreover, it is shown that
S'm(IRnj E), 'c(S~(IRn)', E) can be' idcJ)tified aß linear ~paces.

2.1 Vector-Valued Symbol Classes

We introcluce the space sm(IRnj E) of symbols' on Rn of order m with values in E.

I 2.1 Definition. Let E be a camp/eie l~s . .Then sm(IRnj E) is ihe space 0/ all funetiolls
CL E coo(JRnj E) satisfying .'

sup (~)-m+IQlllaea(~)11 < 00
eelli

f07' all' multi-indices a E Nn and alt conlüluouS sC7ni-n~r1ns 1111 on E.

(2.1 )

'fhe left-hand sides in (2.1) 'give rise to a fundamental syst~m of selni-norms'for a locally
convex topology on sm(IRnj E). In the sequel, sm(IRn

; E) carries that topology when it
COIlles equipped with a topology not explicitly 111entioned. The w~ak symbol topology Oll

sm(IRnj E) to be introduced tater shall he indicated by subscript T.

The space sm(IRn
; E)' is complete. If E is a Fre~het space, then sm (IRn

; 8) is a. Fn5chet
space. "VV6 elnploy the standard notation Srh(IRn

) ~ sm(IR; C). If E uncIergoes an interpre­
tation as coefficient space, then S~(IRry.) is the space of symbols with constant coefficients.

Note that the sp~ce S-OO(IRn
; E) = nmE~ sm (IRnj E) of symbols of order -00 is not dense

in sm(IR1l
; E). We denqte its closure in S'm(IRn; E) by sm(IRnj E). A symbol a E sm(IRnj E)

belangs to sm (Rn; E) if and only if '

(2.2)

holds for all multi-indices a E Wand all continuous 'semi-norn1s 11I1 on E.

It is useful to recognize the space S-OO(IRn
; E) as the space S(lR.n

; E) or Schwartz functions
on !Rn with values in E. Notice that

(2.3)
. .

which is easily proved taking iuto aCCOltnt the lludearity of S-OO(IRn
).

2.2 Example. In applicatiolls, although by 110 means necessary, E often stands for
the coefficient space. For instance, if E = 9r(lRn

), then we obtain Hörmancler's symbol'
dass sm(IRn

X IRn
) with global space variable estin1ates. If E = COO(f!), for f! ~ IRn an

open set', we get Sr~o(f! x IRn
) with Iocal space yariable estimates. Another interesting

example is E = sm l

(IRn); in that case we obtain the dass sm,m
l

(Rn X Rn) cf symbols



,,

.2.2 Basic Short Exact. ßequences

satisfying exi t condi tions"in the space variables at 'infini ty (se~, e.g., [11, Defirii tion 1.2.31]).
Conce~ning pseudo-differential operators with non-regul"ar synlbols,"one is, e.g.,·'in.terested

. in E = l!"(fR.n~), where th"e exponeilt' S > n/2 is sufficiently large. rl~h'e resulting symb~l,.

dass should be denoted by .HlJ s.m(lRn
. x .IRn).. '

> ,

, 2..~ Basic Short -Exact S~quences

Tbe starting point' in introducing the weak symbol topology on sm(IRn
) is the fact that

S~(IR,r") 'is the strong bidual of Sm,(IRn). 1ft proving that fact 'we inv'oke "certain short
exact s~quen~es of Frec~et spaces and their dual sequences. These sequences are found

, by exploiting the observation -that sy"mbols iI!'. sm (IRn
) al:e exactly th'e Fou~'ier transfornlS

of distributions on Rn that are ~onol'mal to tbe origin of order m +n/4.
t ~ r .. I

I~troduce the correspondirig set-up. 'The FOllf~er tran'sform is

Fu(~) '" um = I e-iX'u(~) dx,·

wJ"tere integr.ation is over IRn
, such that ·the inverse Fourier transform' 'becon1es u(x)

- (27r )-n Jeixeu(~) d~. The space ]m+n/4(JR", {O}) of ~istribution~ on 1Rn: cono~mal ~? the
, origin of order 1n + n/4 is introduced as follows: Put' Ao = {~ E IR"; 1~1 ::; I}, Aj = {~ E
'.IRn j·2j - 1 ::; I~I ~ 2j } fOl;-j = 1,2, ... Thc' Besov space PH('t)(IR,n)', t, pE IR, 1 ::;.p::; 00,

consists of all 'll E S'(Rn
) satisfying f/ E L;oc(l~~.n), "

. {2 jt Ilftl!L:l(!\j}};:o E [p.

Note· that PH(t} (IRn
) iso Hörm·and.~r's notation (see' [7, Definition B.l.l]), a, more common

one is B~,p(lRn). The notation used here will be convenient for us in Subsecti'on 2.7. Then .

]m+n/4(1R", {o}) is defined as the space ~f all ,u E S'(IRn
) satisfying , .

(2.4)
, .

for all Q, ß E ,f:in , lai ~ IßI: The followipg well-known result ~ay' be foun'd, ·e.g., in [7,
,Prqposition 18..2.7]. ~

2'.3 Proposition: Let a, u E S'(IRn) be' rela'ted bya = 'Fu. Th~n 1L E [m+n/4(IRn, {O}) i/,
und only 'if a E sm(IRn ). ~" ' ,

Proo'f: Condition '~2A) is 'equivalent to

xCl"u E 00 !f(-m+Ia-I-n/2} (IR") .

for all a E N~. In the F~urier image, the'lattel: read aea(~) E L;oc(lRn
),

sup W2(m~IaI+~f2) r Iß('a(q-W d~ < CXJ

R::l } R:5lel:52~ ., ,',
'"I .#-

. ,
, '

,
(2.5).

.'
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where A = Al is 'as above, for a E W with certain constants Ca > O. By Sobolev's
enlbedding t heorelll, t hat means that {aR; R 2:: I} form s a baunded set iil C00 (A) which
shows, that a belangs to sm (IRn). ' , 0,

Relnind the functional analysis of thc spaces PH(t)(IRn). P[f(t-) (IRn
) are Banach spaccs. Foi:

1 ~ p < 00, S(lRn) is dense in PH(t)(lRn). Denote the closure of S(lRn) in 00 H(t) (IRn
) by

00 [f(t) (}Rn). T'hen u E 00 H(t) (IRn) b~]ongs to oo'H(t)(IRn) if and only if {2jt IlttIIL2(Aj)}~O E

Co. For 1 ::; p < 00, the dual space to PH(t)(lRn
) is pIH(_t) (IRn

) , p' = p/(p-l), with respect

to an extension of the L 2-duality. The dual space to 00 H(t) (IRn
) is 1H('_t} (IRn

). Notice that
I H( -tl (IRn

) can be identified with a complemented subspace of 00 H(t) (IRn
)',

(2.6)

where tbe polar is taken with r'espect tbe dual pair (00 H(t)(~n),00 H(t)(IR~)'). ,For future
reference, l~t P B(t)(IRn

) be, the space consisting of the Fourier transforms of functions

belor:ging to P IJ(t) (Iftn). Likewise, 00 B(t)(Iftn) is the closure of S(Iftn) in 00 B(t)(IRn).

Further, the closure of S(lRn) in [m+n/4(lRn, {O}) shall be denoted by jm+n/4(IR.n, {O}).
This closure is characterized by req{liring Xa_a~1t E 00 H(-m-n/2) (IRn

) instead of (2.4).

Proposition 2.3 continues to hold with sm(IRn ) and [m+n/4(JRn, {O}) replaced by §m(IRn )

anel fm -t-n /
4 (ntn

, {O}), respectively.

As a corollary to Proposition 2.3 wc obtain:

2.4 Corollary. Let Cl E COO(IRn
). Then a E -sm (IRn

) if and onty if

afa E 00 BC..,m+lol-n/2) (Rn)

J01' alt a E W. The same state1nent' is true'ijsm('Rn) and 00 B(-m+lal-n/2) (IRn
) are replaced

by ,~m (IRn
) a~d 00 B(-m+lcrl-n/2) (IRn

), re~'Peetively.

Frorn Coroll~ry 2.4 we' get an embedding

Sm (~n) --+ rr 00 B( -m+lcrl-~/2) (IR
n

), Cl r-+ {Oe a}aENn '
aENn

(2.7)

realizing sm (IRn
) ,as a closed subspace of TIaENn 00 ß(-m+lal-n/2) IRn

. Sub~equently, sm (IRn
)

should be identified with its 'image in, TIaENn 00 B(_m+lal_n/2)(lR'n). Under this identi-

fication, §m(IRn) becOInes sm(lRn) n n00 B(_m+lal_n/2)(IRn), i.e.', a closed subspace oe
'TI co B(_m+lal_n/2)(IRn). Notice that TI 00 B(_m+lal_n/2)(IRn), TI 00 B(_m+lal_n/2)(Iftn) ' are
Fnkhet spaces. '

Employing (2.7) and its analogue for sm(IRn
), we reach the exact sequences mentioned

above: In order to formulate them'compactly, introduce the following abbl'eviations: '

~m(IRn) = L 1B(m_lal+n/2)(lRn),
aENn



,.

2.2 Ba'sic Short Exact Sequences

wherc we have. used I: as substitute' for ffi, and

~m,(IR")~~ {{!o}oENn E tm(~n) J .L (-:1)10 1DeJo =O}':
oENn '

9

wliere the derivatives are understood in the clistributional sense. For further'·reference
introduce' ~ ..

- ,

/. BT(iRn) = L 1B(m-lol+n/2)(IRn),
101:5 L \ '

~L(IRn) = {{/a}o E' ~T(IR'~) I L (_1)10 1Defa - O}.
lalSL

Notice thetrelation \,

.~m (IR") = ind li~_~T (IRn),

~~lere the inductive limit is extend,ed as L --t 00, such that '~~(IRn) becomes a stric~,

(CB )-space. ,'. ' '.', ' - "

• I' I.

The proof will.be givel~ in an appe'I1dix to this section" since additional noti~n of no further
use have' to be introduced. ,," '

.J

2.6 Proposition. The following sequences ur'e' topological exaet:

o~ §~(lRn)'---t '(lm,(IRn ) ~ fIm(JR.n)j §m(lRn)~ 0, .

o ---t ~m(IR") ~ ~m(lR") '---t §m(IR")' ---t 0,

o ---t ~m(lR~) ffi (sm(IRnt nfrm(lRnt). ---t ~~(IR") ffi frm(~nr'

~ sm(lRn
)' ffi frm(IRnt j(sm(lR7l t n fpn(I~",t) ---t 0,

I,

(2.8)

(2.9) ·

(2.10)

'(2.11)'

Ther'eby, (2.9), (2.10); and (2.11) are the dual s.equences tq (2..8)) (2.9)) and (2.10), re-
. spectively.' In (2)1), potars ar;e laken wilh r'cspeet to (11m (IRn), 11m (IRn)') . '" "
. " .

. I,

P 1'0.0 f: (2.8), (2.10) are topologically exact as' short ex:act sequences of Frechet spaces.

Because L:m(IRn) is the stro~lg dual to',frm(R,n) and nm(~n) is th~ strang dual to ~m(IRn),
. (2.9) is the' dual sequen~e to ,(2.8), as same par'tial integration shows. ,'Furthermore, we

c<;lnct"ude that, (2.10) 'is the dual sequeqce to ,(2.'9) by the sa.n1e argurrie~t. The topological .
exactne~s ,of (2.9) and of the se,quence "

(2.12)
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'are CO~lsequences of Proposition A.1 alld :thc observation made in Lenlma 2.5. That thc
latter sequellce coincides with (2.11), Le., (2.9) is a direct sunlmand in (2.12), can easily
be verified lIsing (2.6). , 0

Before we proceed we lllake out SOtTIe of the properties of spaces appearing in (2.8)­
(2~11Y I sm(IRn

), .Sm(IR'{) are Frechet spaces. Thanks to Proposition A.9' we obtajn

that ,§m(JRny is a conlplete barreled (DF)-space, i.c., a complete (LB)-spa~e. Especi­

ally, ß((sm)', sm) anel ß((sm)', sm) coincide?n sm (IRn
)'. The salTIC is trivially true for

ß(sm, (sm)'), ß(S'n, (sm)') on sm (IRn
). As a further cOIlsequcIlce we get:

2.7 Proposition. sm(IR.n ) is the strong bidual.of Sm(IRn).

Proposition 2.7 makes it possible to speak about thc dual pair (sm(lR.n
), Sm(IR1l

)'). This
allows to define the weak synlbol topology on sm (Rn) as folIows: .

(2.13)
. .

In Lemlna 2.12 we shall see that this definition agrees with Definition 1.1 previously given.

2.8 Lemnla. S~(lRn) is co'mplete. ,

Proo f: This follows from LemmaA. 7.

Pro 0 f: This follows from Proposition A.8 applied to E = S~(lR.n)', F = C.

o

o

In Lemma 2.20 we shall cha~acterize the weak symbol topology on the bounded sets of
sm(lR.n

).

2.3 Oscillatory Integrals aS.Weakly Continuous Functlonals

Here we discuss ,the canonical embedding sm (Rn)' C sm (!Rn)'- in 1110r'e detail. Functiolls

v E S(IRn
) can be viewed as functiorials on 5'm(IRn) via the identification sm(IRn

) 3 a M

Ja(~)v(~) d(

. Pro 0 f: By (2.9), e]eolents in ,sm(IRn )' can be written in the form,

sm(lRn
) 3 a~ L Jr(oafa(O d~

lol:5L .

(2.14)



,2.3 Oscillatory Integrals as Weakly ContJnuous- FuncUonals
\ ' , ", I

}

yvith Ja E 1B(m-lal+nI2) (IR.ny for 'I~[ ::; ,L and some L E N. If Ja E s(~n) for [O'[ ~ L,
then thc f~lnc~jonal.in (2.1"4) cail be rewritten as

.. : s'm(IRn
) 3 a >-+ J(2:.( -l)!~Iße r(~))a(~) de,

_. lal:5L .
- ( ~ .

, where I.: lal:5LC..:...I) lal.aZJa(~) E S(IR.,n), ~Y, partial integration. The proof is concluded
rema~kin~ that, for. t E IR, S(IRn

) is dense in 1B(t)(IR.n
)".. , 0

. • . ' 0.. r j. I ~•• •

The prototype of functionals in sm(lRn
)' ar~ oscillatory integrals regarded as linear func-

tionals on sYlnbols'. Such aJ;l oscillatory int~gral.is a formal integral expression ~f the
kind '1· ..J~;~(x~eJa(x, (lu(x) dxd~, (2.15)

y;here' 4> E CCO(fi x (!Rn \ 0)) is 'a,' p~ase func~ion, ci E Sro(O x IRn), and 'll E Cgo(O),' with
n c !Rn, some open set. Being a' phase function"Ineans that 1; is re~l-valued, positively
homogeneous of degree 1 in ~, and \1x,ep(x,~) does not vanis'h on the conical s\lpport, of.
d'-- For a E s~o(O .x !Rn) with 7/1." <' -n, the integral in (2.15) is absolutely convergent. In
general; integrals of the kind (2.15) can be regularized by a partial integration proc;edure
(for details, see [7, §7.8]). The value, then aSsigned to (2.15) is usually denoted by 14J(au).

, . '\

Another possibility for cOlnputing (2.1.5) consists in thc fol~owing.: Choos\e X E S(IRn
),

x(O) = 1. 'Then, fo'r E > 0,

"

is absolutely convergent, and we have

\(2.16)

where we have set a((c) =X(t:C)a(~).

Now coming .back ·to functionals in Sm(IR.n)'. Clearly"

(2.17)
. ,

where cf> 'is a phase function, e.g.; 1;(x, e) = x"· e,' and'1l E C~(IRn), define's an elelne~t in
sm (IRny. '

, 0 • / , .

. ~.11 Proposition. Let <I> E sm(!Rn
),. Then the extension of<I> to afunctional 011 sm(IRn

)

according to Proposition 2.~ is given' by' ,
"

,I
(2.18) .

'. -

whe1'C I,he lirnit' exists ü;depen,dently 0]. lhe "clio'ice of lhe fu~·etion' X .~ith the, properti"es
stated' above. Moreove'1") for E being a cornplete' les, eve7'y a E sm(IRn ; E) defines a

mappi1lg ~elp1lging 'to ..c(S~(IRn)',E) vi~ forrnula (2.18)".,'
"
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Pro 0 f: By Lelnma 2.10, functionals o[ the kind (2.17), i.c., oscillatory integrals viewed' as

linea.r [unctionals on constant,coefficient symbols, form a dense subsct in Sm(lRny. (To see
this, write Ja(~)v(~)d~,as (21r)-n JeiX,ea(~)v(x)dxd~, where v E S(lRn), D E C~(lRn).)

Then either fr01n the regularizing procedure 01' the topology give,~ on sm(IRny it is deal'
thai; the approximation of 4> by such oscillatory integra.ls can be perfornled uniformly

on bounded sets in Sm(lRn
). There~ore,·by. (2.16), thc liInit (2.18) exists ,and gives the

desired e~dension of <I> ta, a functional on sm(IR.n ), since it is valid for functionals of the
. kind (2.17).

Furthennore, the same reasoning realizes ~ synlbol CL E sm{lRn
; E) as a linear opera­

tor from sm(IRny to E that is readily seen to be continuous providing the embedding

sm(IRnj E) c L:(sm(IRny, E). 0

Let us point out that Proposition 2.11 allows us to recover the fact that s'm(IRny becomes

identifi~d with a compl~nlented subspace in sm(IRn
)'. For'that thc luapping from s'm(IRn

)'

into sm(lRn
)' defined by (2.18) j~ seen t6 be ·continuous. When ide!1tifying Sm(IR.n

)' with

its image in sm(lRn
)'; a continllous projection)o sm(IRn

)' outo s'm(lRn
)' is given by first

projecting s'm (IRn
)' ont'o sm (}Rn y using the dualof thc clubedding sm (!Rn) 'C-4 sm (Rn)

and thcn applying the Inapping from Sm(lR.n
)' to sm (IR.ny just defined.

Froll 110W on sm(IRn
)' shall be regarded as the compleJnented subspacein S7n(Rn

)' as

recognized in Proposition 2.11. As a characterization for elements in sm(IRny belonging

to sm (IRn
)' we get:

2.12 Lenlma.'~Let <J> E sm(lRn
)'. Then 4> belongs to sm(IRn

)' il and only if the 'l'estriction
01 iJJ to any bounded set 'in sm (Rn) is co'ntinuous 101' the Coo -topology.

Pro 0 f: Each osci11atory integral defined by (2.17) obeys the property 11lentioned in the

lemlna. Thus cach eleI'nent in sm (IRny' does.

To conclude the proof it suffices to notice thc obvious f~ct that any functional in sm(lRn
)'

the restrietions of which to bounded sets in sm(IRn
) are ~ontinuous for thc COO-topology

and"which at. the same tilne ~anishes on sm(lRn
) i,s o. 0

Fu'rther, by our yonsicleration above, S;.n(IRn
)', sm(lRn

)' coincide as topological vector

spaces. From now on we will write S.;.n(iRn)' instead of Sm(lRn)'.
, ,

2.13 Remark. Functionals in sm(lRn
)' actually belonging t6 S~(lRn)' are said to, be

weakly continuous. This notion was introduced in a more general context by HÖflllander
(see [7, Definition 18.4.9]), !Vho observed the importance of such functiopals in questions

'related to the continuity of pseudo-differentiat'operators.

2.4 Properties of 'S~(IRr,~)'

In this subsection wecontinue to studying the properties of S,: (}Rn)'. So we sha11 re­
cognize that every weakly compact set in S~(IRn)' ls compact. Especially, this ilnplies



2;4 Properties o[ 8'; (IRn
),

"

13

, , ,

""that the 'weak symbol topol~gy on sm(IRn
) is the;"topology of unifonn convergence on,the

precompact sets of S;n(IRn
)'.

, .
'But previously we ma~e the stateluent that S';(IRny i~ a (LB)-space more precise. For
definition of bounded retractiyity, see Appen"dix A.5. .

(2.19)

wheTe' the limit is extended as L -+ 00. The indueti.ve 'limit. is bounde,dly, ret1'active.

P,r 0 0 f: Under the ~atu~'al identificatiqn ~T e ~m w~ have 6.L= ~L 0 t1T+l anel

~[; /6.[; = ~[; /(~[;. n 6.i+l) =:: (~L + ~L+l)/6.L+1 e ~L+l/ t1L+1 .

,for,all L E·N, with,a norm-elecreasing embedding. Thus ~L /6."'E·becomes a clense subspace
of 'E'E+l/ t1L+1• Notice that .S(IRn

) as a subspace of 'E~ is deI~se in 'Er /6."'E 'for each
t~ E N. Obyiously, ~m(IR.n)/~m(IRn) =:: ind lim ~'E(IRn)/6.'E(IR:n

). Now (2.19) folIows,
'sihce s;i (IR.!")' ~ 'Em(IRn

) / t1m,( IRn
) by- the topological.~exactr:~ssof the seque~ce (2. ~)~ .

~ ~. ..... I •

Using Lemm~A.3 and' Proposition A.11 we conclude first that'S,;.n(IR.n)' satisfies t,he strict,
Mackey C~)}1V~rgence condition anel -then that the' ,regular inquctive limit ind lim tr /6.T
is boundedly l'etractive. . · 0

In the sequel ,,:e sh~:tll sometimes ·make use of the fact that the spaces appearing in the
,second short exact seqtfence-in Proposition 2.6, ,i.e:, in (2.9),' are separable. This has
the usual consequences , e.g., if ales' E is separable, then equi-continuous sets in 'E' are
separabl~ and lnetrizable for cr(E', E). Notice that tiie spaces 'appearing, in the third ~hort

, exact sequen~e in .Proposition' 2.6, i.e:, in (2.10), are" not ,sepa~able; they are, ho~e~er,
separable~f9r the weak topologies coming from the second short exact sequence, i.~,., from
(2.9).' - .

In the following result weakly compaet set~ in L:lol~o 1 B(m-iol+nj2)(lR
n

) a~e charaeterize~:

2.15 Lemma. Let D. C Em(IRn) be" bounded.· Tlten D is 1'(~latively a(L;m, n~l )-'cornpact if
and o71ly if ' . " ,

sup L 2!(m-lo~+n/2) iljo IIL2(Aj) -t, O' as p -;+ 00 . (2."20) ,
" JE~ j>p , ' ",

fOT 'all Q' ,E Nn
J where fO is the <;:dh component 01 f. Furthennore J D e 'Em(IR.n) 'is

relatively compact if and only ij, in additionJ for all p 'E N and a E Nn
J the sets

. • I' ~

i,,·,

(2.21 )

J,

are relatively compact.

I

P roof: S,ihce V.e l;m(IRn) is boundeel, D ~ ~L(IR~) for sOln,e 11 E' N. Moreover, if D is
relatively weakly compac:t in 'Em(IRn

), then it is relatively weakly compact in, 'Er(lRn), if
.b is relatively ~o~npact in t m (lRn

), then it is relatively cqmpact in ,'E:L(lRn). Therefore,



14 2 THE ,WEAI{ SYMBOL TOPOLOGY

if suffices to characterize relatiyely weakly compa~t sets and relatively cOIl1pact sets~ in
1B(t)(IRn

), t E IR, by propcrties (2.20) and (2.20), (2.21), respectively, with 1n -10'1 +n/2
rcplaced by t and Ja replaced by f: Especially, property (2.20) then reads

(2.22)

To start with we prove that every weak Cauchy seq{tence {fk}~o in 1B(t)(IRn
) obeys (2:22)~

Going over to a suitable difference sequence {fk '- !t} for k, l -+ 00, if necessary, we may
as~ulne that {!k}k=O i8 a weak null sequence. Suppose that (2.22) with V = {!k; ,k E N}
is not satisfied. Then we construct a function v E oo'B( -tl (IRn

) fulfilling (fk, v) f+ 0 as

k -+ 00 as follows (this is thc sliding-hu1l1p techniq~e, see, e.g., [9, §22, 4.(4)]): The
function v shaU be found by defining it 8uccessfully on Aj for j = 0,1,2, ... through
functions Vj E L2(A j ). By 'our assumption, we find a 0 > 0, an increasing sequcnce
{PI }~o C N and a subsequence {!kl }~o C {fk}~o such that

L 2
jt IljkI IIL2(Aj) 2: 48

j>PI

for alll E N: Possibly choosing a further subsequence we cqua~ly assurne that

L 2jtllfkl!lv(Aj) 2: 30,
PI<j:5PI+l

L 2
jt

11 fk l )1 D~(Aj) ::; 0,
j>PI+l

a.nd, 111oreover~ if the functions Vj for j = 0,1, ... ,PI have already been constr~lctecl,

I L (fk"Vj)L2(Aj]l::;li, ..
0:5j:5PI'

(2.23) .

since {!kl ~=o Aj }~o converges weakly t~ 0 in L2(Uj=o Aj ). Here (, )L2(i\j) is the scalar

product in L2 (Aj ).

Now assuming all that, ~hoose Vj E L2(A j ) for j = Pi +1, ... ,Pl+l to satisfy the canditions
't .'IIVj 11 V~(Aj) = 2J

,

'(J~/l Vj)L2(Aj) = 2
jt

11 fklll L2 (Aj)'

Choose Vj E L 2(Aj ) for j = 0, ... ,Po to satisfy (2.23) for l = O. Then setting VIAj = Vj

for JEN, v belangs to 00 B(_t)(lRn
), since SUPj>po 2-jt IIVIIL2(Aj) = 1, and

L (fk" v )L2(Aj) -I L "(!kpY )L2(Aj)I-I L (!kp v )L2(Aj)I
PI<j~PI+l O~j~PI", j>PI+l

> 30 - 0 - 8 = O.

for alll E N. This contradicts thc weak convergencc of {fk}~o in 1 B(t)(lRn
) to 0:

To conclude the proof of (2.22) for V C 1B(t) (IR.n ) being relativeIy weakly compact use
the fact that V is "at the same tilne weakly rnetrizable. Thus V is relatively weakly
seqtlentially conlpact: Now, if (2.~2) werc not be ~atisfied, then 'D would contain a weak
Cauchy sequence violating property (2.22) which is not possible as we have seen. Hence,
D fulfills (2.22).
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C.onversely, if DeI 8(t)(lRn
) is bouuded and satisfies (2.22) we show tha:t. D, relatively ,

weakly sequentially cornpact and, thereforc', relatively weakly, com'pact by Eberlein's theo­
rem. Let {!k}~o,C D be a sequerice. By a diagona1 procedure, we choose a-sllbsequence

..:{!kl}~o c {fk}~o such tha~ {!kqAj}~O 'C L7.(Aj ) iS'.'weakly' conve~gent for' all JEN:

Introdllce hEl B(t)(IRn) as '~een defined o'n AJ ~ thc limit of all these sequences, i.e., ,
fktl'Aj --7 h l~j as l --7 00 ,weakly in L7.(Ajr From I:j>p 2jtH/h, - hII L1(Aj) ::( 2op ', 'where

op = Sup JE1J. 2: j >p 2~tllfllv~(Aj)' P~:N, we infel' thiü !k, --7 h as 1 --7 oo'weakly in 1B(t)(IRn
),

. . . ,. .
Slllce . '

~ ,I(!kl - h,a')1 ::; I'L(!k l 7h,a)L2(Aj)! ~ 2op' sYP ~-jt'lIalIL2(A)'
. -,< J>P ,

)_P, '. '

for all, l E N and a E 00 B(_'t) (Rn} Thus D is relativel,Y weakl.y sequentially compact.

Finally, ifD c ~B(t)(IR.n) is relatively compact, then the analogues of the ~onditions stated
in (2.20), '(2.21) are obvioll.sly fulfilled. Vice' versa, 'if these conditions are satisfied for a
su~set D c I B(t)(IRn), then D is relatively compact in 1B(t)(IRn) by a'constl'uction simi~ar,

,to that on~ j ust giv,en.

The lemm'a is complete~y,prov~d.

',' 2.16 .Lemlna. Every weiik null sequence ,in S;' (!Rn)' can be lifted to a weak null sequence
, in ~m(IRn).

. .
Proof: Let {<I>k}~o be a weak null sequence in S;'(lRn

). By Lemma 2.5 and Lemma A.2,
_{<I>k}~o 'js a weak null sequence in ~L /~L for some L E,N. (Notice that the absol~ltely

,convex closed hull of {<t>k; k EN}"in,S;n(lRn
) iSI{L:~o..\k<Pk;.I:~o!..\kl::; l\},which is

d( S.;.n, sm )-compact.) For k E ~, represent <I>k as
. ,

. (ih', a) = 'L Jm08tai~) d~, aE sm (IRn
),

, JolSL· ,,'

2.17 Proposition. Every weakly cornpa~t set iri S;n(IRny is compact,. Furthennore, every­
cornpact set in ß;'(IRny is the cf,ln?nical ,image 'oJ a com,pact s~t in Em (Rn).

\ \
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,p l' 0 0 f: .To star.t with we show that prop~rty (1.2) hotels, i .e., for every a( S';, (S'; )')-null
sequence {ak}~o anel every a((S~)',S';)-null secjuence {<I>k}~o we have

1'0 see this, for some L E N, represent the functionals <I>k in accorelance with Lelnnla 2.16
as

«h, a) = 1L fk(~) a'ta(~) d~,a E sm(lle),
, lal:5L

where {fk}~O ~ 1 B(m-lal+n/2)(IRn
) are 0-(1 B(m-lal+n/2h 00 B(-m+lal-n/2))-null sequcnces.

For 0' E Nn
, 1l?'1 ::; L, we have .

\
" thanks to Lenlma 2.15.

Fix some, € > 0. Since the a( S.;.n , (S.;.n )')-nul~ sequence {ak} is bounded in S;t (}Rn), it is
bouneled sm(IRn

), i.e., .

for '0 E Nn 'anel SOlDe constant Ca > 0, and all k E N. Choose p E N so large that

L 2i (m- 1a!+n/2), Ilfkllp(A
J
') ::; (2Ca (hj-1 €

i>p .

for ,0 E Nn
, \0\ ::; L, anel ail k E N. Here dLi8 the nUlnber of 0 E ~ with lai:::; L. Then

decolnposing the expres.sion for (<I>k, (tk),

(i1i k,ak) = L L Lfk(~)a'takWd~ + L L Lfkwa'tak(~)d(
lal:5L0:5j:Sv AJ lal:5 L i>p AJ .

we find for thc second sUffinland

I L L 1fk(~).a'tak(~) d~ I
jal:SL i>p Aj

::; 'L L 2j(m-!~I+n/2) Ilik'IIJ)~(AJ') 2j(-m+lal-n/2) 118lak 11L2(Aj) :::;. f./2,
.jal:5 L j>v . , .

while the first summa.l~d, L.,ICi I:5 L ~O:5j:5P JAj fk(~) 8rak(~) d~, tends to °as k -t 00 by

Lebegue's convergence theorem. Notice for the latter that fk(~) 8fak(() conver~es to 0
a.e. in (E }Rn as k -t 00, since sm(lRn) 3 a t-+ 8ra(() defines a. weakly continuous
functional. Thus, for k large enough, we obtain

To concludc the proof that weakly conlpact sets in S.;n(IRny are compact we make use
of the results of Subsection A.5. Weakly compact sets in 8;.n(IRny belong to the dass S'
defined with respect to.the ?ual pair (S;n(IRn

) , s.;.n(IRny) , since they are weakly Inetrizable.



2.4 Properties oE S,: (}Rn)' 17

Therefore, by Proposition A.6, they belong- to the dass ,C', i..,e., ,they are limited, with
respect to the ~ame dual pair. That lneans that they ar,e p~'ecompact in s,;n·(IRn

)', since
S.;.n(IRn)' cont~ins a' countable we,akly to~_al subset. Thus weakly ~ompact sets in S~_(!Rn)'
are cO,mpact.

Finally, if C C S~(lR.n)' is c;ompact', then C c ~L /11[; is coo;pact for some p.Ef N. Thus'
C is the canonical in1age of s?l1:e C0111pact set V C ~L" , .:
The proof is finished. q

Next we consid'er functionals used in the proof of Propositi~n 2.17 in more detail. Let
~ E !Rn, 0 E :Mn. Denote the linear fu.nctional "

by ~aoe. In view of Lemlna 2.12, 'ao.oe E'S;n(lRn
)'.

• I" ~ ,
, '

(2.25)

(2.26)

'2.18 Lemn1a. Let ~ ERn, a,E :Mn. Then the f1!-_n'eti07~al aaoe"belongs It~' E~+lal/~~+lal'
!iJ.Lrt.hermore, the estimate
.r

is true with sonle cons~an't Cm':~ > -0 not depen«ing on eE ·Rn. :, For' k E N, ·[h.e function
7/Ja defined by 'lj;(A~)' = ?aOe belangs- to Ck(IR~; ~~Ial+k/ 11:+lal+k ), where -

(2.27)

Proof: First we prove (2.26). Suppose m' < laI. Represent·aaoi as folIows: if 6 ,>
0, ... ,~n ;::: 0,

(aa8e,a) (-l)~+lalx . .' (2.28), .. \1:o.}:H(TJ' -6) 0·. ° H(TJ~-{n)(On. ° o. o~n8;a)(TJ) dTJ' 00 ° dTJn,: .

, while: for general ~, für .thqse j for which ~j < 0holds we replace the expres.si~n !{(1lj - ~j)'
nnder. the integral sign by - H( ~j - 7]j). Here' 11 is the Heaviside fu'nction, i .e., H(t) = 1
for t 2:: 0, H(t) = 0 for t <' O.. ' .

A ca1culation shows th~t H((sgn~d'f]l - 161),. ,lJ((sgn~n)'f]~ - l~nl). as a functi~n of n' ,
belongs to 1B(m_lal:-n/2)(IRn

). More'precisely, we have

with s~me constant" Cm,a.> 0 indepe.ndent of~. Therefore, aaSe 'E B~+la)! 11:+ial and

provided that m .("101.
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For general n/, E IR, denote for the mOInent the funetional 8Cl1Je aeting on sm(IRn
) by <I>~a'

Then, for arbitrary m, 1n' E IR, we get by induetion on lai that

(2.29)

\

11([>2oIIE~+'a,/6~+la' <

fOf suitable e, E Z, d-y E s-m'-hl (lRn). Espeeially, e, = 1, d-y ~ (~)-ml for 1,1 =. O.
Here d'"Y stands for the multiplieation operator anel (~)ml is multipl,ieation by a eonstant.
Since Illultiplieation by a funetion in SI-'(lRn

) re~lizes a bounded operator [rom 1B(t) (Rn)
to 1 B(t-Il) (IRn

), t E IR, we obtain

C (~)ml L 11<I>~;.:.n~-hIIlEm-ml-hI/6m-m~-hl
n+lal-hl n+lal-hl-ySC! '

< C (~rnl L Cm-ml-I'"YI,a-"I (~)m-m'-lal

'"Y:::;o'

with son1e eonstant' C > 0 if m' > m- lai. This ilnplies (2.26).

To ver~fy (2.27) it suffiees to treat the ease, = Cj, j =" 1, ... ,n, where Cj is the fl1ultiindex
of length 1 having 1 at the jth plaee. By 'symmetry, suppose that j = 1. Further suppose
that m < 10'1 + 3/2. I~eplaee the representation.(2.28) by

( aase, a) = (_l)n~lal+,l x1:.-1:(7)1 -:- 6) H(7)1 - ~1)' .. H(7)n- ~n)(a;, an' ... anna~a )(7)) d7)! ... d17n

if 6 ~ 0, ... , ~n 2 0, and thc analog expression with (171 - ~dH(17t - ~d replaecd by
-(~1 -7]dH(6 -17d if 6· <: 0 and IJ(1lj -ei) replaeed by H(ej -1]j) if ei < 0, j = 2, ... , n.
We have to eonsider aaSe+Mi - aaoe + h;8°+~oe as h -t O. In ease 6 "2: 0, ... ,~n 2 0 we
obtain

( aaoe+h~l ..:.. 8°oe+h aO+~l Oe, a ) . F .

(-lt+1al+1 1:· .[:(771 - ~~ -.:. h)(H(l/J - 6 - h) - H(7)l - 6)) x

- H (7]2 - ~2) ... 11(77n - en) (8;1 8TJ2 ... 81Jn a;a)(7] ) d1]l ... d7]n,

anel an analog expression in the general ease. For the funetion under the integral.sign in
front of 8;1 81J'l ••• 81Jn a;a, i.e, (sgn~d(171 - 6 --: h) (Tl ((sgn6 )( 7]1 - 6 - h)) - H ((sgn6 )171 ­

f~11)) H ((sgn~2 )1]2 - Ie21) ... H ((sgn~n )17n - !~nD, as a funetion of 7] 'E }Rn we get, for h E IR,
the cstimate

11(7]1 - 6 - h)(H((sgn6)(ryl - fl - h)) - H((sgn~d771 -16\)) x

II((sgne2)7]2 -1~2\) ..., H((sgn~n)1]n -1~nl)I\IB _::; Cm,a (~)m-lal-3/2IhI3/2
(m-Ial":'l-n/'l)

for same eonstant Cm1a > 0 independent of ~, h as long as Ihl ::; I~I, sinee 16 - 1]11 ::; h
on supp(H((sgn~d(1]l- 6 - h)),- H((sgn~d7]1 ~ 161)).

In particular, for ~ E !Rn fixed, it follows that

llaose+hel - aaOe + haa+~lOeIIEm 16m = o(!hl) as 111.1 -7 O.
n+lal+l n+lnlt! .

. For general nl. E IR, the same estilnatc ean be obtained by eonsiderations similar to those
above using fonllula (2.29). This yields fJe·'ljJa(~) = -8o+~joe for j = 1, ... , n. 0

, J •
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\

We proceed wi~h p[oviding relevant functionaJ-analyti.c properties of. S~ (IR~). From, Pro-
position 2.17, by LemIna A.I0, 'we al ready know that,h~unded set~ in S,;.n(lRn)"are,pre~

compact. But even Inore is true:

" <

2.19 Proposition. S,;.n(Rn
) is, a comp/ete, sepa1'ab/e Schwa1'tz space.

'. J '

Pr 60 r: Wc 'show 'first that any convergent sequehce"in S~(IR.n)' is equi-continuously con-
vergent.' Let {<I>k}~o c S.;.n(IR.n )' beta conve~gentseql~ence. We n1ay suppose that {<I>,1J~o

.. con;'erges to 0; By Lemma 2.14, {tPk}~o is contained anel convergent to 0 hl:~L /b..'E for
some L E N. Further there.exists a· sequen~~ {Pk}kD of posi~ive reals with Pk .--+ 00 as
k --+,00 such that {Pk<I>k}kO converges to 0 in ~'E /~L and therefore in S;.n(lRn

)' (see·[B,·
10.1.3, 10.1.4])'.' Then [) ,= {Pk<I>ki k E N}O is' 0-rieighbourho09 in S~(IRn), anel we have

,. . . .

sup 1(<I>k) a)1 --+ 0 as k --+ 00,
aEU' . '

, f

"since I(<I> k) a) I :s; Pkt .for k E N an'cI a: EU. Therefore, {<I>,1J~o converges' ~lniforrrili on U.

Now'let C c: s~ (IR'!")'. be compp.~t. It' suffices to sl~ow that C is cont~ined in the do­
sed absolu tely convex huH of some eqtii-conti nuous null sequen'ce {<I> k}~o in S~ (IRn)'.
C is contained anel cOInpact in the Danach space ~L /ti.'E for some. L E N. lIence,

.C C {Lk Ak<I>k; Lk jAkl ::;} I} for certain n~ll-.sequence {<I>k}~o in ~L /~L' ~llt C_ C
{Lk Ak<I>k; Lk IAkl :=S' I} is the ~losed absolutely convex ~ull of the sequence {<I>~Jbo in
S.;.n(IRn

)', while {<I>k}~D equi-continuously converges,to o. 0

• I.. ' ..

Notice further properties of S;n(IRn
). Since bounded sets in S;.n(IRn

) are relatively com-· ,
pact, ·S,;.n{IRn

) is a ~emi-Montel space. J S,i(lRn
) is not quasi-barreled, therefol:e, neither

bornological nor'bärreled, since otherwise .s~(IRn) would be a Montel space, i.e., reflexive.
. , - ,,' , ' '

The associated 'bornological space to S;n(IRn) is sm(IRn). ' ~-

The fact'bchind the next len1rna is .t~at thc weak symbol topology ~s actually the strongest"
locally convex topology. on S.;.n(lRn

) which agrees on the bounded sets, w,ith the "Yeak \
topology a(S.;.n, (S~)') ,(see, 'e.g., [8,,9.3.7]).

2.20 Lemm~. 071 the bounded sets 0/ S~(lRn), the. T-topo'logy co!ncides 1Vith any 0/ th;~,

jo//owing top%gies: the topology ~of point-wise converge"nce, the Coo -top%gy; and' ,the·
. fopology induced by sm' (Rn) for rn l > m: ' ","

Pro 0 f: By a dassical.result (see [6, p: 88]), the latter three topologies are the sanie
on bounded' sets of sm(IR.n). Moreover,' each of these' topologies is weak~r than the '7­

topology. Now the result folIows, since dosed bOllllded sets.in Sm(lRn)'are"compact'for
the T-topology and a bijective and coritlnuous mappi'ng from: a comp~ct spa.ce onto a
Hausdorff space is a hOIlleoIllorphisin. \ 0 ,

2.21' Ren1ark. 'Note' the strong analogy of the situation \lnder consideration to the

sequence spaces Co, [1, and /00, and their non-reflexivity. Here sm (IRnI),. S~(IR.~)', and
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. S~(IRn) correspond to Co, [l, anel [00, respectively. For instance, every weakly cOlnpact
set in [1 is compact, anel Zr;: = (Zoo, T( [00, ZI)) i8 a universal complete, separable Schwartz
space.

Next we discuss nuc1earity for S;l(I~n). We will se~ in a Inol11ent that S~(IRn) is not
a nuclear space. The property by which in the applications we have in mind the non­
nuclear~tyof S~(IRn) is absorbed is given in Theorem 2.23 below .

. 2.22 Len101a. For evel'y t E IR,' the lnapping

(2:30)

is continuous,'

, ~'f-t Ila(D)uIIHt = sup. Ija(D)u(x)v(X)dxl
!lv II H - t ;51

is a. continuous selni-norrn on S~(lRn), ~ince the set {<!lv; IlvllH-t ~ I} C S~(IRn)', whcre
we have set (4)v, a) = Ja(D)uv dx, is weakly con'Ipact for the weak conlpactness of the
unit ball in li-t(Rn). . . ' 0

For the nation of local Banach space used in the next theorem, see Appendix A.l.

2.23 Theorem. For each u E fft+m(IR
n

), the7'e is an absolutely convexJ closed O-neigh­
bourhood U in S~(lRn) such that the m'apping S;n(Iftn) '--+ Ht(rR.n)J a f-t a(D)uJ Jactors
through S;>(IRn)(U) in a way such that ihe resulting operator

(.2.31)

is 2-nuclear.

Proof: We can rec!tlce to the case 7n = t = o. Since then {lluIIL2(Aj)} E l2, there is a
sequence {,j} E Co of positi ve reals slieh that

00

L "'1;1 liuIJi2(Ai) < 00

j=O

(2.32)

(see [8, p. 27]). Fix son1.~ L E N, L > n/2, set Ji = ,}/2 for JEN, and define the absolutely
convex, cOlupact set C c S~(IRn)' as the union of the absolutely convex, con1pact set in
S~(lRn)' given in the proof of Lemlua 2.22 as the set of ail functionals a f-t Ja(e)'il(e)v(e) de
with IIvllL2 ::; 1 and the absolutcly convex, cOlnpact set in S~(IRn)' which is the ilnage in
S~(lRn)' of the weakly c.olnpact set V C L~(1Rn) given by. requiring
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. .
for ap p E N and all Q' E' Nn

, laI S; L (see Lemma 2.15). Set further V = Co. Then the
m~p~ing S~(IRn) -t cL2(!R~), 'a 1--7 a( D)u, 'facto.rs through ,the cqntinuous rpappi~g

. , (2.33')

t.

We ptove that this m'apping fs 2-integral. By Proposition B·.l~ it suffices to show tllat the '
mapping 'S~(Rn)(;,)'-t L2 (Rn) induceq by s~(~n) -t l}(~n), ,a r-+ ~u, i~ o~?er boun~ed,
i.e., there is an /~ E .L2 (!Rn) such that

la(~)u(~)I S; .h(~) a.e. ~ E {Rn . (2~34)

for' all ci E \I. For that.end, we derive an' estimate of the modulus of functions in V.
Clearly,giye~·. a -E' Nn, lai ::;. L, JEN, eleme~lts' {J~} E ~O(R~) with Jß ~ 0 if ß :;:. 0', .
JOI Ak ' 0 if k :;:. j and 11/01IL2(A]) S; 2~(101-n/2) Oj belo~g. to' V. Therefore, for a E V we

. " \,

ob t ai TI .' " . .' . ,

". '. .' 11 8ta IIL2(Aj) ~ 2j (-la l+n/2)·o;1.

FrOIn that, using a rescaling a;gument and..sobolev's 'elnbedding theore~ as in the pro'of
... of. Proposition 2.3 we arri~e at the~_estimate J ' • • ••

..Ia(~)1 ::; C J;\ .~ E Aj ,

. .
\yhich holds for a E V and,j E N with some co'nstant C > 0 independent of a, j. Now,
by (2.32), in (2.34) we 'may put , )

h(~) == CJ;llfi(~)!, ~ E Aj ..
I.

Haying shown the 2-integrality 'o{ the operator (2.33), we choose an. absolutely convex,
closed O-n~ighbourhood U in S~(I~~n). absor~~d by·.\1 su~h tha:t the canonic::al ~1apping
~~(Rn)(u) H S~(IR~)(v) iS'compact and get, by Proposition B.2; that ~he operator,'

is 2-nuclear. o

. 2.24 Proposition. Let 1L E, Ilt+m(!Rn
) . . The,~ the mapping, s~ (lR.n ) -t' Ht(Rn)', a 1--7

a(p)u, is nucLear if '0nd on/y if ~ .E 1H(t+m)(IRn), where 1H(t+m) (!Rn) ,is the Besov space, , .
considered -in Stibsecti.on 2.2. Nfor:eover, an equiva/ent condition is that there exists an

,absolutely convex, closed O-neighbou1'ho~d .U 01 S~(IRn) such' tha! the mapP,ing S,;.n(IRn
) -t

,. Ht(lR.n), a ~ a(D)u, facto1"~ through ,S,;.n(Rn)(u) with th~ resulting ope1'ato1' S~(lRn).(lJ)·-t
Ht (Rn) berng l-sumnling. '

, .

Pr 00 f: Assurne again m = t == O. ,'Suppose that there e.xists ·an ab~olutely conyex, closed,
'O-neighbourhood U' of S.;.n(lR.n) such that the Illapping S~(Rn) --+ Ht(lR.n), 'a H a(D)1L,'
factoI:s thro~lgh s,;.n(~n)(U) with the re~ulti~g operator s,;.n~~_n)(U) -t Ht~IRn) heing 1­

summing. Let {Xj}b:o be a .dyadic decompositi0J.l.of u.nity on !Rn, i.e., Xj ~ _C~{IRn),
. SUPPXl C {~ E !Rn; '1 S; ~ :S 2}, Xj(~) ~ Xl(2-'-J~-) for j 2:: 1, apd L::o,Xj(~) ~ 1.
It' i8 easy to see that the ,s'equence {Xj}~o is unconditional sun1mable in S~(IR!1), in
parti'cular, unconditional weakly summable. Therefore, by 0111' assumption, we must have

.'\
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2:;:0 llx(D)uIIL2 < 00. By a 111odification of this exanlple we furthe~' see that we' get

2:~o Ilullv~(Aj) < c<>', i.e., U E 1Jf(o) (IRn
).

, Vice versa, S~lppose that u E 1 II(o)(IRn
). Then there is a sequence {('j }~o E CD such

. that L:b:o ,Tl IlitIIDl(Aj) < 00. Choose aorthonornlal basis {Vj}j;ö in L2(!Rn
) as f?llows:

'Vj (e) = Cj if eE Aj and Vj (~) = 0 if e 1:. Aj , where the constaut Cj is detefInined by the
condition IIVj 1!L2 = 1. In particular, Cj behaves like 2- jn / 2 tinles sOlne constaut as j -t 00.

Represent, the operator S~(lRn) -+ L2(lRn
), a f---t a( D)u, as

00

a f---t L ')';- 1 11 it 11 L2 (A j ) ( 4>j , a)vj l

. j=O

(2.35)

where the functional 4>j E S~(IR71)' is giv.en by (<I>j,a) = ('jllillILi(Aj)Cj J
AJ

, a(e)11(e)de for

a E S°(IRn). Now we see that (<I>j,a) -+ 0 as j -t 00 for all a E S°(IRn), since .'
\

and SUPjEN Cj Ilalk2(Aj) < 00. This yields that (2.35) is a nuclear representation. 0

Notice that in the proof of Proposition 2.24 we have actually sl{own that the sequence ,
{Xj}j;o appearing in a clyadic decomposition of unity on Rn is unconditional summable,
but not absolutely summable'in S~(IRn). Especially, we have obtained:

2.25 Corollary. S,;:n(lRn) is not a nuc/ear spaee.

2.6 Tensor Ptoduct Representation

'In this subsection the vector-valued symbol classes sm(lRn
; E) are studied. In particular,

it is prov~d that"S~(iR~;, E)' = S~(IRn)0cE bolds for any complete les E.

2.26, Definition. Let E be a eomplete -lcs. Then the weak syrnbol topology on sm,(lRn
j E)

is !liven by the semi-norm systcrn

sm (Rn; E) :3 a f---t sup 11 (<I> "a )'11,
<%lEe

(2.36)

where C is any weakly compaet set in S~(IRn)' and 111/ is any continuous ser~i~noT'1n on
E.' sm (!Rn; E) equipped with th,is topology is. denoted by S;' (Rn; E) .

.
Proll Proposition 2~11 recall that fllllctionals belongj-ng to S.;.n(IRn

)' can be applied to
functions in S,;:n(IRn; E) yielding elel:n'ent~ in E. For E = C, Definition 2.26 agrees with
the definition previously giyen for' $;'(lRn

). .

2.27 Proposition. Let E be a complete les; Then the space S,;.n(IRnj E) is eornplete.

Pro 0 f: Sllpp~se that {aJ is a Cauchy net in S,;:n(IRnj E). Since S.;.n(Rn
; E) Y COO(IRn; E),

thcre. is an a E 0 00 (!Rn; E) such that {aJ converges ,to a in 0 00 (Rn; E). For every cf; E E',
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{(4);a,)} is a Cauchy net i'n S~(IRn). By Lemma 2.8, ,{(4)~a,)} converges' to (~,,'a), in
S;(lRn

), ~lH~reby, ~nifornllyon equi-continuous sets in E',. Le."
/

(2.37)

for ev~ry ~qui-col~tinllous set Fr c E' anq ~ny O-neighb~~Jrhoo'dU C ,S;n(IRn
). Especially,

we have'

sup 11(4), a)ll(u) < 00.
rPEH, . ," '

(2.38) .

'property (2.38) ~eans that, for any eq~i-cC?ntinuous set' H' CE', {(<p,a)j ~ E;: H} \s.
bounded in S.;.n(lRn). Now sm(lRn), S,;.n(IR.n) have the same bop.nded sets. It follows that .
(2.38) holds also for O-neighbourhoods U C sm(lRn

) •. Conseqüently,' a E COO(IRn
; E) ..

belon,gs to ,S~(lRn;E), and {aJ converges to a in Si(IR.n; E) by (2.37)., ' , 0'

Before stating the next resulf we need:' ..

, .
2.28 Lemlna. Le.t ß be a eomplete les. Furl~er: let ci e sm(IRn

; E). Then the eo~vergence

i~' (2.18), i.e.,
.. (<1>, a() -t, (cI>, a) in E as € -t 0+,

~ • r J •• _

holds unifo1'mly fOT <1> in compact' sets' in S~(lRn)'.
, -

, (2.39)

Pro 0 f: Regarding a(, for 0 < € < 1 as lineal' rnappings in' 'c(S.;.n(lRn
)', E}, we ~ee ·that .

{a(; 0'< E< I} is a bounded set in 'c(S.;:n(lRn)',·E) for thc sinlple,topology. Moreover,
{a(}converges to a as € ~ 0+ in 'cO'(S;'(IRn

)', EJ by (2.18),' therefore, in,'c')'(S.;.n(lRn
)', E)

by the Banach-Steinhaus ~heore,m. This -iso thc assertion. D'

2.29, Theorem. L,et ß be a complete les.' Then

S;'(IRn;E) ~ S~(IR.n~0(E. (2.40)

P roof: We first'show that sm(lRn)®E'in the topology induced by S~(IRn; E) is S;'(IRn')®(
, E. For that .it suffices to, notice that for C being a cOInpact'·set in S.;.n(lRn

)' anq' U being
"a O-neighbourhood or' E we have" " \ ' , .~

. . ~ , .

. sup,II'(<I>, i>j l8l aj) 11 ~ sup It (4), Ctj) (<I>, aj) I

. 'ctJEC ;=1 " (U) 4l12)1JEC0Uo j=l ,', ,

for all aj E E, a~ E S,;.n(IRn
) and 'K E N.', (On th~ right-hand side the're; stands the geperic

: sen1i-nOl'ffi of S.;.n(lRn
; E), on the left,:,hand' siele the generic semi-norm of S.;.n(IRn

) ®( E.)

It rem~in~,t~ p~~ye t4at S'~ (IRn) ® Eis' elense'~n ·S.;.n ()Rn;: ß). Firs~, S-co (lRn; E) is sequen­
tially dense in S.;.n(IRn

; E) by Lemma 2.28'.. (Choose X E Cgo(IRn
) in' (2,39),)' The'refore, it

, ,is enough to show that S-C:O(IR.nY®E is dense 'in S-OO(IRn
; E) when S-CO(IR.71

; E) carl'ies the'
_weak sYlnbol topology induced by S~(IRn; E). ,But this holds, since by (2.3) S-<X!(IRn)~ E
is dense in',$-CO(IR.n ; E) in an even stronger topology. ' 0

,/
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Using Lenllna 2.18 we now derive another representatian far S~(JRn; E).

2.30 Proposition. Let E be a cornplcle lcs. Then Jor evcry J{ E .c(S~ (IRn)', E) there
exists an a E sm(IRn

; E) s7tch that

li(<I» = (<I>, a) (2.41)

holds Jor all <I>. E S~ (IRn
)'. In this ,way) sm (IRn

; E), .c(s~ (IRn
)', E) are identified as linear

spaces. Under this identificationJ

S';(IRn
; E) = .c,(S';(IRn

)" E),' , (2.42)

1J!here SUbSC1'ipt " stands for the topology' o/. 'uniforin conve1'"!Jence on all preC?1npnet sets
in S;n(lRn

)'.

Proof: By Proposition 2.11 we already knaw that every sm(IRnjE) gives rise to an
,operator in .c(S~l(IRn)', E) via fonTIula (2.18). Thus the other direction has ta be proved.

Let ,H E .c(S~(IRny, E). Define the function a(~) on IRn with values in E by

where oe is the functional given in (2.25). Then a belangs to COO(IRn
; E), where

in view of (2.27), anel, further, to S~(IRn;E) in view af (2.26).

We show that a satisfies (2.41). Let <I> E' S.:-n(IRn
)'. Represent <I> ,according to (2.9), i.e.,

(<Il, b) = L J!"'(~) 8fb(0 d~, b E sm (IR~ ),
·lal:5L ' •

for SOIne Jet E 1B(m_lal+nj2)(IRn
) anel L E N. Then

(<Il, b) == L (_1)10 1Jr(O Wo" b) d~ = ( L (_1)1"1J!"'(O ()"/je d~, b).
lal:5L . lal:5L

(2.43)

This is permitted, sirice Jfa(~) ,8aöe d~ exists as Bachner integral in B:+1all~:+Ial by
(2.2,6). We obtain ~

<Il = L (~1)1~1Jr(~) 800, d~
lal:5L .

and

. H(<Il) = L (-i)I"1J!"'W H(ijOoe) d~ = L Jrio ofa(O d~ = (~, a).
lal:5L lal:5L'

"Thereby, the latter equality is another possibility to define the Value af (<I> 1 a) for <I> E
S.;.n(JRny having the representatio~ (2.43). ' '
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Thus we have i'dentified sm(IR.n;E), L:(S~ (Rn.)', E) as linear spaces. 'Theri (2.42) follows
in advance, since, for C being a cOInpact set in S;.n(IR.n)' anel U an absolutely con~e~,
closed .O-neighboul'hoo·~l'of S~(lR.n.), the semi-norn1 on·LJ,(S~(IR.n)',E), " '

is the same as ~n (2.36).

J!.f-t sup II!f (<I» I1 (U)
4lEC "

It is seeh that nndel' the identification' iri Pl'opqsi tion .2.30, we also have that
1,'

(2.44)

, topologically. Furthe'r, property (2.42) ~eans that S~(IR.n; E) i~ the E-p~oduct of S~{IRn)
and E. Thus, by P~oposition A.5, aB another corollary to Proposition 2..30 we get: .

I '

Now we. take advantage of (2.42), (2.44) to derive.the following results:

'. .
2.32 'Lelnma. Let'E be a comp/eie les. Then S~(IR.nj E)J S~(IR.n; E) hav'e the same
bounded s'ets.

Pro 0 f: Every bounded set in L:,(Sf(IRny, E) is bounded for' the topology.· of pointwise
,~onvergenceanel, t'herefore, bounded in L:ß(S~(IR.n)', E) .by 'Proposition A.8. 0 '

"'vVe also obtain a descri ptipn of the bounded sets in sm (IR.n; E) as follows: H C sm (IR.n;E)
i~ bounded if and only if the sets {(<I-, a); a E. H, <1> EC} are bounde'd in E for all compact
sets C C S~(IR.n)', , ' .-

. Sometimes it is useful to know:

2.33 Len1ma. Let E be a ~omplete les. Then the eanonieal embeddin9

(

ßs coriiznuous /07', 7n' > 7n.

(2 ..45)

,'" '

Proof: For B ,c S;; (Rn)' being bounded, C the image of B ,under the natural.map-
ping S;;' (!Rn)'. -+ S;;(lRn)', and U a O-ne'ighbourhoqd in E,' the O-neighbourhood {a E'.
Sm' (Rn; E); (<1>, a) 'E 'u for ail ([> E B} of sm' (IRn

; E) contains· the O-neigpbourhood {a E
sm(IRn

; E); (<I>, a) E ·U· for all <I> E C} of S;;(IR.nj E). The latter is a O-neighbourhood, since'
C 'is reiativ~ly yveifkly compact in S~(IR.~)'. . 0 '

. \

I,
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2.7 Appendix: Proof of Lemma 2.5

We come to the proof of Lemlna 2.5. But prelilnin30ry we study the spaces Im+71/4(IR7l , {O}),
jm+n/4 (JR7l, {O}). '

Reca11 that Jm+n/4(JRn l {O}) is the sp~,ce of 3011 u E S'(IRn) satisfying
,

~au E 00 H(-m+IQI~7l/2) (JRn)

for a.11 a' E N~. Sirnilarly for Jm+7l/4(JR.7l, {O}), 00 Ij(_m+lal_n/2)(IR7l
).

Frorn (2.46) we infel' th30t

(2.46) .

(2.47)

Here [1-w]Im+7l/4(IRn ,{O}) denotes th~ elosure of {(l-w)u; u E jm+ri/4(IR7l ,{O})} in

[m+7l/4(IR7l , {O}); .the sp'ace [1 - w] jm+n/4(IRn, {O}), [1 - w] S(IR.7l ) is sirnilarly defined .
. w E Cr(JR7l ) is 30 cut-off function which equals 1 elose to O. .

Thus it relnains to describe the behaviour near Q. Introduce thc following function spaces:
Let Y be a c10sed C0I11pact Inanifold, dirn Y = n - 1, ~,nd t, p E IR, 1 ~ p ::; 00. Then
p H(t) (IR x Y) denotes the space of all u E 8'(lRj P H(t)(Y)) such that uE Lroc(JR; P f!(t)(Y)),

(2.48)

(modification for p = 00). The annuli Aj are defined in Subsection 2.2 (now in the one­
dilncnsional case), R t (>..) E L~l(Y; IR>.) ,js a para,n~ter-dependent order-reduction, i.e.,
a parameter-dependent family of eÜiptic pseudo-differential operators such that Rt (>..) :
P H(t)(Y) -+ P H(o)(Y) realizes an isoIllorphisnl for alt A E IR. For p = 2 we also write
H(t) (IR. X Y) = 2 J:l(t) (IR X Y).

Starting ~rom (2.48); one can show that,--for.t, t o, /'1 E IR, 1 ~ p ::; 00, 0 < e< 1,

(2.49)

holds providecl that t = (1 .,... O}to+ Ot i. lIere [ " ]o,p denotes the real inte~'polation fun~tor
(see [1]).

Next introduce correspohding Besov spaces over the open cone IR+" X Y. On R+, replace
the Fourier transform by the Mellin transfonn, i.e.,

Mv(z) = v~z) =100

rZ-1v(,» dr.

The variables r, x in resp., IR+ anel IR anel the corl'esponding covariables z; ~ in r~sp. the
Mellin anel Fourier image are supposed to be relitted b~

\ X = log r, z = n /2 - i~.

Moreover, introd uce the mapping <I> that assigns functions v on IR+ XY to functions u on
IR' x .y via, th'e fonuula

<I>u=v iff u(x)=rn/2~(r).
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Under these hypotheses, it is seen that

(Fu)(() = (Mv)(z) ,if <Pu = v.
" .
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(2.50)

The spa~e P1{(i),')'(IR.+ x 'Y) is explained as th~' ilnage of e')'X P]j(t) (IR xV) under <P, where
~...,x is multiplication by this function. A norm on P1i(t),,(IR-t- ~ Y) is given, by

.lIv ll P1l('I'7(1Il+xY) ={f (tO%~"2_7 11 R'(lmz)v(z)!I;H(O)(Y) dz) ~/2rp "
, )=0 ImS'EAjI, ' . .

(modification for p ~ (0). Espec!ally, we have P1i(t) ,..." (IR+. ,x' Y) ;::: r""'-o P1i(t),o(IR.+ x :Y).
. 2 " '

Denote tl(t),...,,(IR+ x Y) = 1i(t),...,,(IR+ x V). From (2.,49) it follows that

, [1i(to).,..."o (IR+ x ~), 1i(ttl'')'l (~+ X V)] B,p = P1i(t),...,,(IR+ x' Y)

if t = (1':-- B)to + Bi l " = (1- B),o +'B,l, 0<: 0 < 1.
. ) . .

For Y -:- $n-t bein'g the unit spherc, also write P1i(t) ,..." (IR" ) instead of P1i(t),...,,(IR+' x sn-I), .
thinking of (r, y), where y IS th,e coordinate.o·n S"-l, as introduced as polar·q)ordihates

~. . , .' i '.

in IRn.

2.34 Relnark. For a thorough discussion of B~sov spaces on' ~omplete Riemannian
, .' manifolds with positive injectivity radius and bounded ge0111etry, see [13, Chapter 7]. I

The approac;h to the ßpaces Ptl(t),')'(ll4 x Y) via tI-ie integral (2.50) ill'case p = 2 is taken'
.. frolD [11]. . '

For i E IR, lil - 17../2 ~ N, illtroduce

. T (Rn) = { {~(x) I:1~I<t~n/2aaxOj 'aa E C},... t > 17../2,
, (t) '{I:I~J<ltl-n/2 (zo J(a)(x )j. ao ' E C}, t < .-n/2,.

where J(x)' is the Dirac measure. For 'Iil < ;1,/2,' set' T(t)(IRn
) = {O}. Notice that r;t)(IRn

)

is finite-dimension~l. ' . . .

2.35 Lelnma. Let t, P E IR, 1 ::; p ::;/00. Then,. if lil- n/2 ~ N,
. .

[w] PlI(t) (IRn
) ~ [w] Ptl(t),i(IRn

) +T(t)(IRn
).

I '

(2.51 )

Proof: For p = 2, (2.51) may be fO~l'nd in [2, T~eoreln-AA.7) ift,~ O. ,(For,a proof'
in a si.milar situatiQ,n using pseudo-differential tecqniques ~and ~1ellin expansion, see [11,
Theoreln 2.1.39].) Then, for p = 2and i < 0, (2.51) follows by dua)ity' and, for general,p,

, .t, by i~terpolati~n. '.' 0

Für' the next lemma,' denüte oo1-l(~),')'(IRn)

00 H(t),oy(IRn
) ..

, \
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2.36 Lell1ma. Let m. E R \ Z) I'm. +n/21 < n/2. Then

Jm+n/4(IRn, {O})

j~+n/4(JRn., {O} )

[w] oo1i(oo),_m_n/2(IRn) + [1 - w] S(IRn
),

[w] oo1(oo),_m_n/2(IRn) + (1 - w] S(IRn).

(2.52)

(2.53)

,

Pro 0 f: We only show (2.52). The proof of (2.53) is sirnilar. Let s = -m - n/2. First,
m tf:. Zimplies' Is + kl - n/2 t/:. N for all k E N. Further, from ]m + n/21 < 11,/2 we infel'
that T(,,)(IRn

) = {O}.

Let 1l E Jm+n/4(JR.n., {O}). Using (2.46) anel Lemma 2.35 we see that X aW1l = WVa +W a for

0' E Nn
, where Va E oo1i("+IO'I),,,+)al(IR

n
) anel WO' E T(.'+lal) (IRn

). Writi.ng r k = l:IO'I=k Xa Xo

for certain XaE C:x'(sn-l), k E N, we obtain wu = ,-k~Vk+r-k LIO'I~k XaWen where Vk E

ootl("+k),s+k(IR.n), i.e., ,-k Vk E ootl(.5+k),s(IRn). Now it iso easy to see,that r- k Llal:::::k XaWa rf:.
oo1l(.5),s(IRn) unless WO' = 0 for all 10'1 = k. Therefore, ~u E oo1i{s+k),s(IRn) for all k E N,
Le., wu E oo1i(oo),s(JRn

).

Using (2.47) we get r n+n/4 (JRn, {O}) ~ [w] oo1i(oo),s(IRn)+[l-w] S(IRn
); the other direction

is obvious.' 0

Note that using Lemma. 2.35 one can equally p'rove that, for rn. E IR. \ Z,

Pro 0 f 0 f Le III m a 2.5: It is enough to verify Lenlma 2.5 for some 11"1. E IR, since

sm(IRn) = (e)m SO(IRn), anel siruilarly for Sm(lRn
). In the sequel we shall assullle that

m. E IR \ Z, Irn + 11,/21 < n/2.
By Proposition 2.3, it is enough to verify that [m+n/4(IRn , {O}), fm+n/ 4 (IR.n , {O}) are
quasi-nornlable. Then, by Lemma 2.36, it is sufficient to prove that 001i{oo)._m_n/2(lR

n
),

ooil(~),_m_n/2(IR.n)are quasi-normable, since the clirect sum of two quasi-nonnable spaces
and the quotient of a quasi-norinable space is quasi-normable again (see (5, p. 177]), and

r ~(IRn) is a nuclear space.· ,

We show that the spaces 00 H(oo) (IR. x V), 00 il(oo) (IR x ·Y), with Y being a closed cOlnpact
manifold, are quasi-norlllable and apply it to Y = sn-I. On IR x Y, there exists a family of
pseudo-differentialoperators {J€; 0 < t .s; l} C L -00 (IR x V), with global symbol estimates

. in IR-direction, such that {J,,; 0 < t ::; .l} is a bounded set in LO(IR X Y), .Jf.U --+ u in
P H(t) (IR. x Y) a.s t --+ 0+ for u E P H(t)(JR x Y), t, P E IR, 1 :::; p ~ 00, anel

Ilu - Jf.uIIPH(t)(!RXY) ::; Ct,r er IluIIPH(t+r)(Ji.XY)'

IIJf.uIIPH(t)(&xY) < Ct,r t:-rllul]PH(t~r)(axY)

(2.54 )

(2.55)

for some constant Ct,r > 0 provided that l' 2:: O. (For a construction in a similar situation,
see [12, Lemma 1.3.A].)

Now l.et U = {u E ooll(oo)(lR x V); Ilullool/(k)(IR.XY) :S;.1} be a given O-neighbourhood in

00 11(00) (IR x Y) for some k E N. Put V = {u E 00 H(oo) (IR x V); Ilull 00 H(k+l)'(lRXY) :s; l}. Now

I'
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let'A '> O. Then; by (2.54), u"": J(u E' AU .f~)f E = Ck,r,\ and u E V, whe.reas (2'.55.) implfes
that, for u E V, J(7.1 belongs to a bounded set Al in'oo lf(oo) (IR x' V). Thus V ~ M + AU

• \. ' 0

'~hich shows ~hat" co. Ii(oo) (IR. x y.) is quasi-.n~1'1nable. Thc proof for, ~1f(oo)(IR'~ Y) ,is

concluded noting: that 'J(, 0 < E ':s 1, maps S(IR; COO(Y)) and, therefore, ~H(t)(IR x'Y)
into itsel( . , ' ' 0

, ,

,~

, - ,. /

- { -

.'

j •
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3 Applications to, Pseudo-Differential ;Operators;
Examples'

As one application of thc wcak symbol topology introduc~d in the previous section we
verify Sobolev space continuity of pseudo-differential operators in the following situations:
first we consider 'pseudo-differentiq1 operators with symbols in sm (IRn

X Rn), after thcit
pseudo-differentia~ ~perators the symbols of which have coefficients in H"(IRn

). Charac­
teristic for the first case· is that gooel order reductions are at our disposaJ, wh!le in thc
sccond case llluitiplication by a coefficient is controlled in a special n1a.nner.

3.1 TheCase of Smooth Coefficients

In this subsection we deillonstrate thc usc of tensor product techniques in the verifica­
tion of continuity of pseudo-differential operators if one is concerned with the '"standard
situation". This means th~Lt we are going to p~ove continuity' of the mapping

(3.1 )
"

In the next proposition, S~(IRn x IRn
) stands for S~(IR.nj Cb (lRn)).

3.1 Proposition. Let 7n,.t E IR. T~en the mapping

(3.2)

is conUnuous.

Proo f: The assertion can be reduced to the case 7n = t = 0.. We have to show that, for
each u· E j}(IRH

), the 'mapping ,

is c~mtinu~::nIs. By completEmess of L2 (IRn
), it suffices to show tpat the luapping

is continuous, since, obviously, a(x, D)u --7 0 in S'(IRn
) as a --7 0 in ·S~(IRn x IRn) ..

Fix some.u E L2(IRn
). We show that the bilinear form

cr'(rre) X S~(I1e) -7 C, (a,a) t-t Ja(x)a(D)u(x)v(x)dx

(3.3)

(3.4)

belong~ to (Cr(lRn) 0: S~('IRn})', loe:, is integral, and runs through an equi-continuous set
in (Cb (lRn

)@( S~(lRn)r if .v runs through the closed un i t ball in L2 (IRn).

First we show that that, for v E· L2(IRn
),.. the bi linear form given in (3.4) is integral.

According to Theorem 2.23 th~re exists an. absolutely convex, closed O-neighbourhood
. U of S'~(IRn) such that the lnapping S~(lRn) -t L2 (IRn), a M a(D)u, factors through
S~(IRn)(u) in a way such that the arising operator S~(lRn)('{J) -t L2(IRn) is 2-nuclear. Let
V2 denote its 2-nuclear norm. As an easy calculation shows, the multiplication operator'



, ·3.2 Coefficients (rom Sobolf?v Spaces .. " 31

, "

. L2(IR~) --+ L1 (lR.n ), w t-+ vw~ is absolutely sümming with 1-sunüning nonn.llvIIL2. Thus we
obt~in that th~ C0l11posed operator S~(lRn)(U) ""7 LI(~n),' at-+ (a(D)u)v, is 'nuclear with

1-nuclear norm not exceedingv21lvllL2. In particular, by Proposition B.1, the imageoftqe
closed unit ball of 'S~(lRn)(u) is order bounded in .LI(IRn

), i.e., ther~ exists a non-negative
functi~m hELl (lR.n )- such that.." ,

,la(D)u(x)v(x)l::; h(x). a.e. x E }Rn-

holds for ~ll a E U. Thereby, hcan' be chosen to satisfy Ilhllv :s; V7.IIVIIL2. It follows that
the.mappi'n{? S~(IRn)(U) --+ LOO(JRn,h(x)dx),a t-+ h-1(a"(D)u)v, is continuous, where we'

, 'have set h-I(x)a(D).u(x)v(x)= 0 if hex). = O. Furthe'r, the regular Borel measure h(x)dx
. is: finite on }Rn. Tlll:s' we have f~>und an integral. representation,

At .the same time ~ve haveseen that, for IIvllL2 ::; 1, the~e bilinear forms belong 'toa '"
bounded set in (L00 (II,~n) 0( S~(IR~ )(u))" ..,Therefore, . these bilinear forms belong' to an

equi-continuous set i.n (Cb(.IRn
) <8)( 5'~(IRn))'. '

Thus continuity of (3:3) is pro~ed. 0

r , • ~

'Now' continuity of th'e"mapping (3.1) is conclucled as follows:, Under the c.ontinuous map­
ping S~(IRn x {Rn) --+ .ca (I{t+m (IRn

), Ht(lRn)), a' t-+ a(x, D), bouilded sets are Inapped
into bounded' sets: Fl~rther, S~(IRn x lR.n ), S~(lR.n, x' jRn) and .c(Iit+m(IRn), H.t(IR il

)),

-.c(1 (Ht+m (Rn y, lIt(Rn)), respectively, have the sam~ b6~lnded' sets. Consequently; - the

, mapping (3.1) a~so Inaps bounded sets -into bounded sets anel, therefore, js continuous,
since,sm(Rn x Rn) is a bornological sp~ce.

~

3.2 Coefficierits from Sobolev Spaces'. . \

Next we a~'e concerned with the continui~y of the mapping

(3.p)

. for 8, t E IR,' 8 > n/2, It I ::; ß. Whereas in the example inSubsection 3.1 the integrality
of certain. bilinear. forms ,yvas directly shown,_ here Vfe take 'into, accotint lin~al;-topologlcal

pro~erties of the coefficie~ts ;pace to "raise"' the injective ten.sor product.' -

f ,

3.2- Lemma. Let s, t E IRJ s' > n/2, 0 ~ t ~ 8 J and v E H-~(lR.n}. Then the operator, .

. (3.6)

is 2-s'll~n:ming. Moreover'J. its 2-sum'ming n01"m does not 'exceed CllvllH-t J whe1'e the cpn­

stant C > 0 only l{epend8 on 8, t.'

Proo f:' lt suffices to prove that ,the ~p~rator in (3:6) is ~ Hilbert-Schrnid,t operator. .In ­
fact, given' v E H-t(IR~), t,he operat?r Hll(IRn

) --+ H-,t(IRn
), a t-+ ay, is Hilbert-S~hmidt

- ..
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aB the cornposition of the isometry H.!l(IRn
) -t ,L2(IRn

), a I--t (e)8 a(e), tbe Hilhert-Schmidt
op~rator

and the isolnetry L2(IR") -t H-t(IR."), W I--t F{__lx((e)t~v). In order to see that the operator
in (3.7) is I-lilbert-Schmidt we show .that ,its kernel belangs ,to L2 (IR." x IRn

). ~

Up to a constant, the kernel of (3.7) equals (~)-t(ry)-.!lv(~-1]). Its L2-n~rn1 is finite, since

. .
for sUPtjERo J(ry)2t(e - ry)-2.!l(e)-2t de < 00' because of s > n/2, 0 :::; t ::; s.

1,

As before continuity of (3.5) is implied by the following observation:

3.3 Proposition. Let mE 1Ft 'Purlher let s, t EIR" 8 > n/2, l'll ::; s. Then

o

,is contin1l07.f,S'-

Pro 0 f: Again, it suffices to show that, for cach ti E JJt+m (IRn
), the mapping

, , '

is continuolls. By Proposition BA, for, that is enough ~o show that the Inapping

is continuous.

(3.9)

Fix SOlne u E Ht+m(IRn
). Treat the case t < 0 first. Then, by Lemn1a 2.22 anel Lemma

3.2, thc mapping
,

S~(IR.") -t 'IT2(H.!l(Rn
), Ht(IRn

)), a I--t (0' r-+ a(x)a(D)u),

where ll.2 denotes the Banach ideal of 2-sulnlning operators, is continuous, since the 2­
summing norm of the operator J{8(IR.n ) -t Ht(IR.n ) , a I--t a(x)a(D)u, does no't exceed
C Ila(D)uIIHt and a '1--7 Ila(D)uIIHl is a continuous selni-norm on S;n(IR."). According to
Theorem 2.23 there exists an absolutely convex, closed O-neighbourhood U of S~(IRn) such
that the mapping S~(IR.n) -t L2(IRn

), a t--+ a(D)u, factors through S~(IR.")(U) such that

the arising operator S~(lRn)(U) -t L2 (IR.") i~ 2-nuclear. This operator is then 2-SUI11ming
which inlplies the. desired estimate: : .

lI a(x)a(D)uIlH' ~ C lIa(D)uIlH,{lH_,l<v,a)12 dV(V)} 1/2

< c {lY"', ~)I' dlt(q,)r' {l
H

J(v' ~)I' dv(v)r'

, "
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"

for suitable probability measures /-l and l! on resp. UO. and BH -" ,where .Uo is the pol~r

to U i~ S~(IRn)' and EH-I is the'closed unit ball in Jj-~CIT{n).' The 'assertion follow~from'
Proposition B.3:· ,

In case t 2:' 0, we argue 'by duality. Le~, v E ]f'7 t (lRn
). T.hen, by Propositon B.3, the

bilinear form .

W(IT?.n) x s;n(IT?.n) -+iC, (a,a) H Ja(D)uav~x, (3.10)

is an ele~ent of ciI~(lR.n) 02 S.;.n (lR.n ))', since we ,have the 'estin1at'e '

IJa( D)u av dx I :::; Ila(D)ullH'.llavIIH~"·

and' both operators S.;.n(IRn)(u) -t H t
l a + kerllll(u) l-t a(D)u, for ~ 'suitably chosen

absolutely convex, clüsed O-neighbourhobd ,U of-S~(IRn), aüdlf8(JRn) -:-+' H-t(IRn), Cl: l-t

av, are 2-sumIniüg. Fu'rthermore, it. is seen that the bilinear form in (3.10) runs through
an equi-continuou's set in (H';(lRn

) 02 S.;.n(IRn)y if v runs through the close'd unit ball in·
H-t(IR':). This implies continuity of (3.9). , I 0 "

, , '
\' "

I'
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A Facts on Locally Convex Spaces

In this appendix we provi'de .some general facts concerning locally convex spaces. It is
not intented.M a self-contained inLroduction into thc theory of locally convex topologica,l
vector spaces; for that purpose we refer to standard text books Oll that topic, e.g., [5),
[8J, [9]. lnstead of we bi'iefly present the necessary prerequisi tes for understanding the
constructions leading to the w,eak sy~~ol topology· and 'deriving its properties.

A.l Some Notation,

We shal1 enlploy standard notion from thc theory of locally convex spaces. Locally convex
spaces (henceforth abbreviated as les) are a]ways assumed to b~ Hausdorff. If we wish to
indicate the topology r on ales E explicitly, we write (E~ r). For a les E, U = UE denotes
a fixed basis of O-neighbourhoods consisting of absolutely convex, closcd sets. Eventually
BE is a basis for the boundea ~ets,'in E. For U E UE , the associated local Banach space
is E(u), i.e., the completion 9f E(u), where E(u) = E/kerllll(u) is canonically normed and'
1I II(u) denotes thc continllous semi-norm on E associated with U, i.e., IIUII(u) = inf{A > 0;
u E AU} foru E E. For a disk B C E, i.e., B is absolutely convex and weakly bou'nded,
EB = ,U:lEN nB is the natural nonned linear span of B. Recall that, forany U E UE, we

have (E(u))' ~ Ef,Q as Banach spaces. Hefe E' is thc dual to E and UO c E' is the polar
to U, Le., ljo = {</> E ß'; I(</>, 1l) I ~ 1 for u E U}. If 110 otherwise stated, E' is assumcd I;a
carry the strang topology. The dual pair between linear spaces E, F is denoted by (E, F).
Then a( E, F), r( E, F), and ß( E, F) refer to the weak, Mackey, and strang topology on
E, respective~y, with respect to tbe dual pair (E, F).

For E, F being l~s, E( E, F) denotes the space of linear continuous mappings from E
into F. Then f:,q(E, F), f:,--y(E, F), Lß(E, P) is this space equipped with the topology of
unifonnconvergence on all finite subsets of E, on all precOlupact sets of E, and on all
bounded sets of E, respectively.

A.2 Short Exact 'Sequences

By a short exact sequence we mean a sequence of locally convex spaces E, F, G,

I

'0 -+ E -+ F -+ G ---+ 0 , (A.1)

which is algebraically exact and for which all ~appings are continuous. (A.l) is called
topologically exact, if, ~n addition, E and G- carry the induccd and the quati'ent topology,
respec~ively. A short exact sequence of Frechet spaces is always topologically exact.

ror ~ short exact sequence (A.1) the du~i seque~ce

0' --+ G' -=-t p' --+ E' --+ 0 (A.2)

is exact. Recall that ip. (A.2) the spaces G' and E' Inay be identifi<~d algebraically with
EO = {</> E F' I (</>, E) = O} and F' / EO, respectively.

We·have the following result (cf. [10, Satz 26.17]):
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A.l· Propositio'n. Let E be a Freehet spate. T.hen E is quasi-normq,ble if and only i/foT,
any sho'rt exact sequenee (A.1) of Frechet spaces the dual s~quence (A.2) is topologically

, .
exact.

A.3' Quasi-Normable Lcs and Schw?rtz spaces
'. ' \ '.

Recall that a les E is calledquasi-nonnable if for every U EU there is aVE U contained
in U ,such that the topologies, ~l~duced' on.' UO by ~esp. E' and E~o are the same. An
'equivalerit characteiization is tpat for eyery' U E U we find a V EU such trat for every
{) > 0 there is a M E ßE satisfyiI~g , .

VCM+JU. (A.3) .

We need thc following lenünas (cf. [5, Chap. 4, Part 4, Sect. 1, -Exer. 2], [5;·"Chap.' 4,
Part 4, Sect. 3, Thm. 2]):

Ar.2 .Lemma. Let ß be a quasi-nohnable 'les. Let A C 'E' be equi:.co'nt,inuous, ~bsolule{y
cpnvex and a (E'" Eil) -e01npact. Then there eXl:sfs a equi-contiri1~ous, absol1ftely convex a11d
weakly dosed subset B C E' containing A such that A is weakly compact -ili EB.. . ~ .

• 6

A.3 Len1ma. Let E be a quasi-barreled les., Then E is quasi-normable ij aT'}d' only if its _
strong dual E' satisfies the stl'icl Mackey convergence condition.

"

Ales E is called a Schwartz space if for every U E U the1'e is aVE U contairied in 'u
, I

such. that uo' is cOlllpact in E~o. An'equivalent characterize:ttion is that every mapping in
12( E, F) into an arbitra1'Y Banach space F is compact. A lcs E is Schwartz if and only
if it is quasi-no1'mable and its bounded sets are precompact. A sequence {<Pk}~o in E'
is said to be equi-continuously cOll~e1'gent 01' E-convergent to 0 if {(cPk, u)}~o conv.erges'
to 0 uniformly in"u E U for some U E UE. The ·topology on a Schwartz space E is
the topology of uniform con~e1'gence ·on the t~null'sequences-in E'. Moreover; for an

,- . , . .\ .
arbitrary lcs (E, r), the t'opology o.f'llniform conve~gence on the E-null sequences in 'E' is '
the strongest Schwartz topology on E ,which is weake1' than T·.

Further d~tails on quasi-normable lcs and Schwartz spaces rnay ,be found, e.g., in [5,
, Chap. 4, ~art 4], [8, 10A, 10.7]).

A.4 The E-Product

We recall some basic facts concerning the injective tensor product,' the (-pr~duct, and the
approximation' p.roperty. For the approximation property, we follow the presentation in
[8, Chapte1' 18].

Let E, F b~ lcs. A' furldamental systenl of semi-norms f~r the topology, (', of the injectiv~'
tensor product on E 0 F is given by ,

~.

l .
, K '.

'1Iwll(~),(v);0( = ' ·~up· ',IL (cP, Uj) (1jJ, Vj) I,
. - l/J0tJ;EU00V O i=1 " .

I'
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where" w = 2:;:=1 uj"0 Vj E E 0 F' and the expression 0[.1 the fight-hand side does not
depend on the representation chosen för w. It is the weakest locally convex topblogy on
E 0 F for which E' 0 F' is "contained in the du"al space anel, fOf all (j E UE , V E UF ,

ljo 0 VO c E' 0 F' is an equi-continuous set: The completibn of E 0r.: F shall be elenoted
by E0r.:F.

We need a characterization of the dual tö E 0(. F (see, e.g., [8, 17.4:1.]):

,A.'4 Proposition. Let E, F be les. Furthel~ let B. be a conlinuous bilineul' forrn on
E x F. Then the associated linear form to B 01~ E 0 F is continuous for the c-topology
if and onli! if there exist a finit.e m"easul'e J-l 0.71 a loeally eompaet spaee X and mappings
S E L( E; Loo (J-l)), T E L( F; Loo (J-l)) sue~ that I" "

B(u, v) = LSu(x)Tv(x) dll(X)

holds for all u E E, v E F.

In Proposition AA, the finite tneasure J-l is supposed to be a regular Borel measure anel
we write LOO(ll) instead of LOO(X,p). Bilinear forms having the property descri bed in the
proposition are called integral. It is readily seen "that the space of all integral bilinear
forms on E x F is the dual to E 0( F.

Thc c-product EtF of E, F is .ce(E~, F)," whcre E~ is the dual to E equipped with the

topology of uniform convergence on all preconlpact sets in E anel e stands for the topology
of uniform convergence on all equi-continuous sets in E'. E 0~ F is a subspace cf Ee.F.
Moreover,Ef.F is c0l11plete if and only if F is complete. In this case, E0r.:F is a closed
subspace of Ef.F. If E, F are both cOlnplete, then EtF = FeE canonically.

Ales JE is said to. have the approximation property if E'0E, Le., the space of all continuous
finite-rank operators in E, js dense in .c-y(E).",· Hefe .c-y(E) = .c-y(E, E). (Grothendieck's
original definition is that E' 0 E is dense in .cpc(E), where pe stands for the topology of
unifonn" convergence on precompact" sets "in E. In case E is quasi-complete", both concepts
coincide. )

For the next result, see [8, 18.1.8]:

A.5 Proposition. Let F be ales. Then F possesses the approximation prope1'fy if and
only if E 0F is dense in EtF for any les ,E. In this case, we have

(A.5)

if F is comp/ete.

A.5 Precompact Sets and Limited Sets

"We .provide a frame for" discussing property (1.2).' It waS found in [5, Chap. 5, Part 3,
Stipp. Exer., Exer. 3-4].

l
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, , .

Let E be ales. A subset ACE is called limited if every weakly con,,:erg~nt sequence in
E' converges un.ifonnly on A. An equivalent condition. is that A is precompact for the,
tOP91ogy of unifonn convergence on the subs'ets of E' fOf' whkh every sequence contained .
possesses a subsequence which is weakly Cauchy. Denote the ratter dass of subsets .of E' ,
~y S'. Denote further the c~ass of limited subsets of E by L. Since~these ~onstructio~s
only 'depcnd on the dual pair (E, E'), 'we have adequate notions for the dual pair (E', E)
and corresponding dasses S, L' of subsets of resp. E, 'E'" Each r(E, E')-precompact set in
E is'limited. Conve~sely, if E contains a' countable weakly total subset, then each limÜed
set is .reE', E')-precompact. Notice, ho\yever, that in [00 th~re al:e 'weak Cauchy sequences
whieh are not weakly convergent supplyi,ng examples of limited sets in a· Banach ~pace.

that are even not relatively wea,kly eOlnpact. ' '

A.6 Proposition. Let E be a lcs. Then S c L if a1!d on.lY ij

(A.6) .

'rhe' conditions in Proposition A.6 are also equivalent to S' c L'; A f9rther equivalent
eondition states. that' every weakly ~onvergent sequence in E is li'mited. By [5, Chap. 2,
Seet. 18, Exer. 4c]" a separable 'Bailacl{ space E saÜsfies the~e cOllditiol;S if~ and only if
,e~ery weakly compact set in E is conl·pact".

A.6 Misc~llaneousTop~'cs

\ '

Here 'we collect ren~aining 'facts aiso needed in the n1ain body of th~ paper.
. ~.

For the first rest{lt, ,se<: [9, §28, 5.(1)]:

. .
A.7 Lemma. L~t E he a sequentially c01nplete hOTT}ologicallcs. Then, E~ = (E', t(E', E))
is ,complele.

. .',

The n,ext result follows f1'o111 the Banach-Mackey theorem (see [9, §39,~.(~)]): .

A.8 Proposition. Lct E, F h'e lcs. ,Suppose thai E is sequentially camplete. Then eveTy
subset· oj .c(E, F) WhlCh is boundeijoT L(1(E, F) is hounded f01' Lß(E, F):

The following proposition. is found in [9, §29, 4.(2), (3)], [10, CoroÜar 26.18]:

! •

A.9 Proposit,ion. Let E be·a metrizahle lcs. Then its strong dual E' is a co;";plete
.(DF) -space. The associaied bornological space to E' iso (E'; ß(E', E,N)). Esp'ecially, E' is
barreled il and only if E' is bornological.· , ' '

,Moreover, the~e conditions are satisfied if E is a quasi-not,nahle Fricket space.

Y'le also r:nake use of (see [5, Chap. 2, Sec. 18, Thm. 12, Co~. 5]):

, .
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A.I0 Lemll1a. Let E be ales. Then the bounded sets in E are p1'econ/'paet, ij and anly
ij the equi-continuous sets in E' are 1'clatively' contpaet.-

,

Finally recall the notion of a boundedly retractive inductive limit.' Let {Ek}~o be an
increasing sequence of linear subspaces of E = ind Ihn Ek, where the lil11it is extended as
k -t 00, ,:"ith continuous embeddings Ek C Ek+1 for a11 k E N. Then the induc~ive linlit
ind Ihn Ek is said to be boundedly retractive if each bounded set B C E is contained and
bounded in Ek for BOUle k E N and the topologies induced by resp. E and Ek coincide on
B. We have the following' result: .

A.ll' Proposition. Let E = ind lim Ek und {Ek}~o as aboue. Suppose that the induc­
tive limit ind Ihn Ek is regular. T/wn lhe induetive limit ind lün Ek is boundcdlv 1'elractive
ij and only if E satisfics the strict M'ackey conuergence condition.

I ,
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Statements about locally convex spaces can often be traced back to statemep.ts about
Banach spaces. In that respect, in con~ection with the contJnuity of pseudo-differential
operators, Banach op~rator ideals and tensor norms are of special int~rest. Here we
introduce into these subj~cts only as far as it is necessary for the intende.d applications
in Se~tion 3. '

ß.l Banach Operator Ideals

Throughout this subsection, let E, F' be Banach spaces with norms resp. liliE and IIIIF.
We use BE to denote the'unit· ball in E. For dual spaces E', BEI sliall often be considered .
as aCE', E)-compact Hausdorff space. Details on Banach operator ideals may be found,
e.g., in [3), [4].

An operator T E .c(E, F) is called l-summing (or absolutely summing) if it maps weaKly
summable sequences ioto summable sequences. It is called 2":summing if it maps weakly 2­
summable sequeoces ioto 2-summable s'equences. A sequence {Uk}h:O C Eis eailed weakly
~~mmable, summable, weakly 2-sumIl1:able~ and 2':'summable, if 2::01(4), uk)1 < 00 for .
ci;il4> EE', L::o ll u kllE <: 00', L::o'I(q"Uk)12 <'00 for all 4> EE', and 2::0 IlUkll1- < 00,'

respectively.. Equivalent conditions for T E 'c(E, F) being.l-'summing and 2-summing are

\'

I<

2:,IITuklIF
k=O

I< 1/2

(2: llTukll}) ,
k:O

I<

< C sup{2: 1(4), uk)lj 1; E E', 114>IIEI ~ I},
k=O

K '

< Csup{(2: 1(~,uk)'12)1/2; 4>'E E',II4>IIE' ~ I},
k=O

respectively, 'for '~l· finite sequences {Uk}k=O c E. The infimums over all constants C > 0
therein are the l-summing norm' 1Tr(T) and 2-summing norm 7T'2(.T), respectively. Every
l-summing operator is 2-summing. By the Pietsch domination theorem, T E ,c(E, F) )s
2-summing ir'and only if there exists a probability measuf.e Jl (~ always assumed'to be a
regular Borel measure) on BE' such -that for every u 'E E

(B.I)

holds with some 'constant C > O. The infimum over all C for all possible Jl is the 2­
summing norm 7T2(T) (see [4, Theorem 2.12]). An oper~t'or T E .c(E, F) between Hilbert
spaces E, F is 2-summing if and only if it is a Hilbert-Sehmidt operator with coincidence
of the corr~sponding norms (see [4,.Th~rem 4:10]).

An operator T ~' !(E, F) is cal'led I-integral (or integral) ifthere are a probability measur~

J1. and operat~rs R E .c(~, L1(J1.)), S ~ .c(LOO(J1.) , F"Ysuch that we have the 'factorization
,. . ...

kF . T = S . tl . R, . (B.2)

where kF : F -+ F" is .the isometrie' emb~dding and tl denotes the canonical mapping
from L1(fl) ioto LOO(J-l) (see also Proposition A:4; T.E 'c(E, F) Is integral if and only
if tpe bilinear form E x F' -+ C~ ..(u, 1/1) f-t (1/1, ~u)~ .is integral). T.he 'I-,integral norm
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bl (T) is inf 1I RIIII SI!' ,where the infimum is ,extended over all possible factorizations (B.2).
An operator T E 'c(E, F) is called 2-integral if there are a probability measure 11 and
operators R E .c(E, L'2(fl)), S E .c(LOO(fl), F) such that we have

- ,T == S . t'2 • R, (B.3)

where l2 is the 'canonical mapping from L2(p) ioto LOO(fl). The 2-integral norm b'2(T) is
inf IIRIIIISIJ, where this time the infimum.is extended over all possible factorizations (B.3).
Every I-integral operator is 2-integral. The I-integral operators are always l-summing.
The 2-integral operators and 2-summing operator are the same.

, Next we state a sufficient condition for an operator T E .c(E, L2 (ft)) to be 2-integral. For
that we ma~e use of the Ba'nach lattice structure of L'2(fl). Recall that a set M ,c L'2(fl)
is called order' bounded if there exists a function h- E L'l(fL), h ~ 0, such that

If(x)j S; h(x) fl-a.e.

-. for all f E M. Th~n the s~t {I/li I E M} has a supremum in L'2(fl). Similar results apply
to the space Ll(IJ), but this time the condition to state that an operator T E l,(E, L1(/-l))
is I-integral turns out also to be 'necessary. A proof of the following -proposition may be
f9fud in [4, Proposition 5.18, Theorem 5.1~].

" b'2('T) $ 11 sup ITu III L2 (tl)'
uEBs

[I T E l,(E, L1(p.)), then T is I-integrat'if and only' il T(BE ) is order bounded in L(fJ)·

In that case, bl (T) ~ 11 sUPUEBE ITulllu(tlr

! .

B'.l Proposition. Let T E .l,(E, L2(fL)). Then T is 2-integral ifT.(BE ) is order bounded
in L'2(fl). In that case, ,

An operator T E .c(E, F) is called I-nuclear (or nuclear) if there are sequences {4>k}~o C
E', {Vk}~O'C Fand {Ak}k;o E,Llsuch t~at {4>k}~o is bounded in E', {Vk}bo is bounded
in Fand

00

'T = L Ak cPk ~ Vk, (BA)
k=O

where, the series converges in l,(E, F) .. Here, for 4> E E', v E F, 4> ® v denotes the rank-, ..
one operator E -+ F, u ~ (4), u)v .. The I-nuclear norm lJl(T) is inf {Ek.lAkl SUPk IIcPkllEI .

. SUPk IlvkllF }, where the infimum is extended over all possible representations (BA). An .
operator T E .c( E, F).is calledZ-nuclear if there are sequences {cPk}k;o c E', {Vk}~o C F
and {Ak}~o E [2 such that {4>k}~ is bounded in E'l {(t/J,Vk)}~o E [2 for all 'Ij; E F' and,
again, (B.4) is satisfied. In this case, the 2-nuclear norm is inf {(L: k IA k 1

2
) 1/2 snPk I1 cPk 11 E'

sUPlltJIllFI~l(tk 1('Ij;, Vk) 12)1/2 }; where the infimum is extended over all representations
(BA). Every I-nuclear operator ,is I-integral, every 2-nuclear operator is 2-integral. Fur­
thermore~ every I-nuclear operator is 2-nuclear. The composition of an 2-nucleaf'operator
S and ~ 2':summing operator T is 1-nuclear with I-nuclear norm not exceeding 1T:;z(T)II2(S)
(see [4, Theorem 5.29]).'· .

We ne~d -the following r~ult (see 14, Theorem 5,.28]):

B.2 Proposition. Let S E "r,'(E, F), T E 'l,(F, G), where G .is a jurther Banach space.
Suppose that S is compact and T is 2-integral. Then the operator T . S .is 2-nuclear. .
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, , ' .'. ~ .

The ideals of 1-summing, 2-summing, I-integral, 2-integral, I-nuclear, and 2-nuclear ope-

rators are denoted by n1(E, F), I12 (E, F), I 1(E, F), I 2(E, F), N1(E, F), an4 N2(E, F)"
respectively. These spaces equipp~d with the corresporiding norms: are Banach spaces.,

Moreover, they obey the ideal property, c.g., R E !(Eo, E), S E Il 1 (E"F), T E lJF, Fa),'"
\Vhe~e Eo, Fa are, Banach spaces, implies that ,T . R . S E Il 1(Eo"Fo). .

: '

B.2 2-Tensor Product
\

> ,

Here we intr~'duce a certain tensor product used In Subsection 3.2. 'For further details on
tensor products, '~e~ [3(' . . '

~et 'E, F be les. T4en, for w E E ® F, .

. 1I~II(u;.(v);02 =i~f sup" {tH4>, Ui }!2}1/2{t I(~', ViW} 1/2,
4>01/JEuo0VO '-1' '-1. J- J-

. \

where the infimull1 is extended over a.ll fi.nite representatio~s 10 = L;=1 '1fj ® Vj, Uj E. J!!, '.
7lji' E F, defines a semi-nOfll1 on E ® F. The space E ® F equipped with. t.h~ semi-norm
system {111l(u),(V);02; U E UE, V E «F} i.s denoted by, ,E 02 Fand is termed the'2-tensor

. product" of E, F. Its cornpletion is denoted by ·E®2F.". .
~ .j .. ~ ~ l ,

. In the following staterl1ent, i'n particular, the. dual space to ß 02 F is described: '

:8.3 ·Pro~osition. Let E J F; G be Banach ~paees wilh norms 1lliEJ IIII~J a~d 11 '11cJ
respeciively. Further let T :.E 0 F "'-7 G be linear. Then·r E l(E 02 F, G) if and only if
the1'e are probability 'lneaSU'1'e~ fLJ v on resp, BE.' and E!F' such that for th.e"bilinear fonn '
B : E x F -r G associated with T the' following" esti'inate is valid:. . .

• I

- 1
:' " 1/2. " 1/2 '

IIß(u, v)llc ~ c {lB' 1(4), u)1 2 d/L(4))} ,{ lp, I(,p, vW dv(,p) }. ' (S.5)

f01' all u E, E J v E F: and s9me constant C >" O. Ther~by', th.e inJitnum over all"possible C
i~ (B.5) is the 7l0rf?l 01 T in ,C( E 02 F, G). .

, .
A proof of this result for G = C may be found in [3, Theorem 19.2] .. It, carries over to
the case of general G. Notice that, by the Piets<;h domination theoreln:, an equivalent
cOllcIftion for (.B.5) is th!=tt there exist'2-sl.lmrning operators fl E l(E, EoL S E !(F, Fa),
whereEo, Foare arbitrary Banach spaces~ such that

.: I •

11B(u, v)IIG'~ IIRullEo 'llSvllFo

for all' u E E, v EF. For the next result, see [3, CoroÜary 35.4]'.

B.4 Proposition. Let E be 'a les. Then E is Hilber'tizable J z.e' J its topology is given by
a system of I!ilbert semi-nor'msJ if und only if

'I

E0f. F ='E02 F'

holds topologieally for any les -f.

" I
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