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ON THE GORENSTEIN PROPERTY OF FORM RINGS

M. Herrmann, J. Ribbe, P. Schenzel

Introduction.

For a Noetherian ring A and an ideal I in A , the blowing up of A

along I is given by Proj(R{(I)) , where R(I) = ngolntn is the Rees

algebra of I . While the local properties of the blowing up and its excep-
tional fibre Proj(G(I)) , where G(I) = ngoln/&nf1 ’is the form ring of I,
are the same for I and any power I  of I , the arithmetic of the specific
underlying coordinate rings R(I) an& R(I") as well as G(I) and G(I")

are quite different in general.

IH this note we relate the Gorenstein property of G(Ir) and R(Ir) ,r2i,
to the Gorensteinness of G(I) . It is known (s.[2],(3.1)) that - for ideals

I of height ht(I)22 - at most one power I¥ of I has a Gorenstein Rees
ring. One of our main obsérvations in section 2 is that the Gorensﬁeinness

of R(ID) requires - at least for ht(i) 22 - the Gorenstein property of the
form ring G(I) . More precise we préve_the following fact (s. theorem (2.3)),

which was partly indicated by Ooishi [8] as a question for m-primary ideals:

For any ideal I with ht(I)22 in a local Gorenstein ring (A,m) the

following conditions are equivalent:

(1) R(Ir) is Gorenstein and R(I) is Cohen-Macaulay

(ii) G(I) is Gorenstein with a(G(I)) = -(r+1) ,

where a = a(G(I)) 1is the a-invariant of G(I) , s. [1], (36.13).

By an example we show that this equivalence is not valid if we omit "R(I)

is Cohen-Macaulay" in (i).

This theorem (2.3) is a consequence of our key result (s. theorem (2.1)) which
shows that for ideals I with ht(I)2 2 and Cohen-Macaulay form ring G{(I)

the following statements are equivalent:



(i) G(I) is a Gorenstein ring

(i) G(IF) is a Gorenstein ring for all r}a+1

(11i1) There is an integer r 21 such that G(1") is a Gorenstein
ring.

While the assumption on the height of I is essential in our proof of
(i1i) =» (i) in theorem (2.3), it is not necessary in order to show (i) = (ii).
By an example it follows that theorem (2.1) is not true for an ideal of
height zero. It is not clear to the authors whether the implication (iii)= (i)
is also valid under the assumption of height one. In section 3 we present

some examples to illustrate this special situation.

besides of the above-mentioned notation we follow the terminology introduced
in [1]. In addition to that we abbreviate by R(I) =ng&1ntn the extended Rees

algebra of I , which we use frequently as a technical tool.

We would like to thank N.T. Cuong, C. Ionescu and T. Korb for stimulating

~discussions during the preparation of this work.

1. The canonical module of certain form rings.

Given a Noetherian ring B we denote by .KB the canonical module of B ,
provided it exists. Of course KB is a'graded B-module if B 1is a graded

ring. For a local Gorenstein ring A the canonical module of G(I) , I an ideal
of A, exists since G(I) 1is the homomorphic image of a Gorenstein ring. The

canonical module K is a finitely generated graded G-module, s.[4],

G(I)
5.16. So there exists an integer min{nEZ :[KG(I)]n # O} which coincides
'with the a-invariant of G(I) . In the following we give an explicit des-

cription of the canonical module of the form rings of the powers of an ideal.

Proposition (1.1). Let I be an ideal in A . Assume G(I)

is a Gorenstein ring with a-invariant a . For an arbitrary integer rz21
put a+t=e+kr with k€Z and O<eSr . Then G(Ir) is a Cohen-Macaulay

ring and



- nr+e [ _(n+1)r+e
Keary (ke D = 2, 1 /I

Proof: Let R denote the extended Rees ring R(I) . Since R/(u) =6G(I) ,
- ] !

u=t , R is Gorenstein and the a-invariant of R is a(R) = a+1 , i.e.

K_RE R(a+1)

By the basic properties of the r-th Veronesean functor it follows that

= (k) P 5 @(arn)) P =@ yrRratierm

KR(r) nEZ

!
i

Because of the presentation a+ lI'=e+kr , as given above, by a certain shift

(r)

it turns out that K (r) can be taken as an ideal of R
R
. +e rn e r.,(r)
K, .\ (-k) & 1T s (1%, 0THRY ,
R(r) ngz

e . . i .
where I is considered as sitting in degree 0 .

since BT/ (uT) 26(1%) we get for G := G(IF)

Ry (-k+1) & (Ie,ur)R(r)/ur(Ie,ur)R(r)

s. [ 4], 6.3. By an easy calculation we obtain
_ z.‘ nr+e [/ _(n+l)r+e
Re(Tkr) = @, I /I

as required.

Corollary (1.2). With the notations and assumptions of (1.1) it follows

that



. 1+u(1e) for O<ex<r
type(G(I)) =
1 for e=1,

where u(Ie) is the least number of generators of Ie .

Proof: The Cohen-Macaulay type of a Cohen-Macaulay ring - in our case

G(Ir) - is given by the minimal number of generators of its canonical module,
s.[4],é.11. Put M = (m,G+) , where G, denotes the ideal generated by all
forms of positive degree of G := G(I") . By the homogeneous version of
Na%ayama's lemma, s.{1],(36.5), the minimal number of generators of K, 1is

G
eqhal to the . G/M-vector space dimension of

A A/m © Ie/m]:‘c3 for O<e<r
KG(-k+1) 8 (G/M) =
A/m for e=r1r .

Note that the residue field A/m is sitting in degree -1 . Counting the

dimension proveé the claim of (1.2).

As shown in the proof of (1.1) the canonical module K (r)(-k) can be con-
(r)
R

sidered as an ideal of . This observation yields the following

corollary.

Corollary (1.3): With the notations and assumptions of (1.1) the graded ring

Q := 2OIrn/Irn+e

r n
is Gorenstein with the a-invariant a(Qr) =k .

i)

Proof: Note that is Cohen-Macaulay, s.[1],(27.8). Adopting the

arguments of [4] in the proof of 6.13 we get from the exact sequence



QD] 0 —> K(-k) —> B —> B/K(-k) —> 0 ,
and K := KB » the exact sequence
0 —> Hom(B,K) —> Hom(K(-k),K) —> Ext' (B/K(-k),K;) —> 0

By definition Extl(B/K(—k),KJ SKB/K(—R) s, 5. [ 11,(36.14). On the other

hand we have Hom{(K,K) B . Altogether this yields the short exact sequences
(2) 0 —> K —> B —> Koy —>0
and f by shifting -
i
(3 0 —> K(-k) —> B —> Ky (_jy(-k) —> 0
Comparing (2) and (3) we obtain
(4) : KB/KB(-R) (-k) = B/KB(-k)

Since %/KB(—R)EEQr » (4) proves a(Qr) = k and that Qr is a Gorenstein

ring.

2. On the Gorenstein property of Rees and form rings

In this section we shall prove the main results concerning the Gorenstein

properties of G(Ir) resp. R(Ir) for an integer r21 and an ideal I .

Theorem (2.1). Let I denote an ideal of a local Gorenstein ring (A,m)

Suppose that ht I22 and that G(I) 1is a Cohen-Macaulay ring with the

a-invariant a = a(G(I)) . Then the following conditions are equivalent:

i) G(I) 1is a Gorenstein ring.
ii) G(I*) is a Gorenstein ring for all r|a+l

‘s . . r, . . .
iii) There is an integer r2 1 such that G(I') 1is a Gorenstein ring.



Proof: . The implication i)=ii) is a particular case of (1.2). Moreover,
the implication ii)=iii) is obviously true. So let us show iii)=¥i) for rz2
in order to complete the proof. Since G(I) = R/uR, R=R(I) , is a Cohen-

» Macaulay ring it follows that R 1is also a Cohen-Macaulay ring. Hence

r n/ n+r
re= = @
P R u R nz_r+1I /I

is a graded Cohen—Macaulay ring. Put
N := (It,ur)R/urR

the}ideal generated by the forms of degree one in P . It is easy to see that
i
1

& 1A/I .

PN s W,

Therefore gradeN = htN = dimA -dimA/I =htI22 (note that P 1is a Cohen-

Macaulay ring and dimP= dimA ). Furthermore, there is a natural isomorphism
P sl

(r)

where P
P(r)

denotes the r—-th Veronesean subring of P . By the assumption

is a Gorenstein ring and

(l(P) (r) = K (r) = P(r) (b) = P(rb) (r)
P

for a certain integer b . Now we claim that

K, & P(rb) ,

P

i.e., P 1s a Goremnstein ring. For that choose an element f € [Kp(r)]-b E[KP];rb
(r)

that generates K (ry 3as an P'"/-module. Next we show the triviality of

its annihilator, 1i.e.,

4} :P f = AnnPf = (0 .



To this end recall that

(r)
(0 : £) =0 :
P P

(r)

because £ generates K (ry 3% 2 P "’ -module. Therefore there exists a
P

power of N , say N® , such that

s
N°(0: £) =0
( 0 )

Whence 0 :_f €0 : N°

P P = 0 because grade N 22 . Therefore it follows that

1 P = P/AnnPfSPf (-rb) .
}
Because fE?[KP]_rb , the graded P;module generated by £ 1is a submodule

of KP . So there is a short exact sequence of graded P-modules
0 —> P(rb) — K, — c—> 0 ,

where C denotes the cokernel of the corresponding embedding. By the choice

(r)

the r-th Veronesean functor
C(r)

of f and the Gorenstein prdperty of P

applied to the 'short exact sequence yields = () , That is, there exists

.an integer s such that N°C = 0 . In other words, C 1s an N-torsion module.
But now ‘

2 >
gradeNP..2 and gradeNKP 21 .

~So the above short exact sequence provides that C = 0 . That 1is, KPEEP(rb)

and P is a Gorenstein riﬁg. But then R 1is a Gorenstein ring and
Ky #R((b+1)1)

as follows because of P = Rfu’R . But finally
G = R/uR

is a Gorenstein ring with KG55G((b+l)r-1) . a



. . r . . . .
The situation that G(I ) 1is a Gorenstein ring for all rz21 1is of a par-
ticular interest. As shown in the following it provides the a-~invariant

a(G(D)) .

P%oposition (2.2). Let I denote an ideal of a local Gorenstein ring (A,Mm).

Suppose that ht(I) 22 and that G(I) is a Cohen-Macaulay ring. Then G(1h)

is a Gorenstein ring for all r21 if and only if G(I) 1is a Gorenstein ring
with a(G(I)) = -1

Proof: It is known that G(Ir) is a Cohen-Macaulay ring provided G(I) is

a Cohen-Macaulay ring. So the equivalence turns out by view of 1.2. g

)
i

For an ideal 1 of height at least 2 in a local Gorenstein ring S. Ikeda,
s. [71,(3.1), has shown that the Rees ring R(I) 1is a Gorenstein ring pro-
vided G(I) ' is a Gorenstein ring with a(G(I)) = -2 . This is the converse
to a result shown by C. Huneke, s. [6],1.2 . The implication. i)=1ii)} of the
following theorem extends these results and solves the question of Ooishi

mentioned in the introduction ( ii)=i) is due to [2], (3.5)).

Theorem (2.3). Let I be an ideal of a local Gorenstein ring (A,m)

Suppose that htI 22 . For an integer r2 1 the following conditions are
equivalent:
i) R(I) 1is a Cohen-Macaulay ring and R(I) is a Gorenstein ring.

1i) G(I) 1is a Gorenstein‘ring with a(G(I)) = ={(r+1)

Proof: First we show i) =1ii) . By [6],1.1, it is known that G(I) 1is a
Cohen-Macaulay ring with a(G(I)) <0 . Furthermore, by the main result of
[7],(3.1), applied to the Rees ring R(Ir) , it turns out that G(Ir) is

a Gorenstein ring with a(G(I")) = -2 .

Now (2.1) provides that G(I) 1is a Gorenstein ring. Put a(G(I)) = a . Then
by (1.2) and (1.1) it follows that

a+1 =r+(-2)r ,



whence a = -(r+1) , as required. In order to prove the reverse implication
first note that R(I) is a Cohen-Macaulay ring. On the other hand by (1.1)
we see that G(Ir) is a Gorenstein ring. Note that r_la(G(I)) +1 . Further-~
* more a(G(IF)) = -2 as follows by 1.1 because

3

-r s v+ (-2)r .

Finally, by [7], (3.1), we see that R(Ir) is a Gorenstein ring.

If r=1 in (2.3), then it is just Huneke's result, see [6],1.1 , which

we -had to use in our proof of (2.3). By view of this particular case one
1

might ask whether the Cohen-Macaulay property of R(I) 1in 1) of (2.3) is

superfluous.’ This is not true as shown in the following example.

Example (2.4). Let k be a field. Put A =1£Hx1,...,x11D /(x%) where

120Xy over k.

Jm , where m

kﬂxj,...,x11ﬂ denotes the formal power series ring in x

Note that A 1is a hypersurface ring with m2==(x Ly X

S 22" 11
denotes the maximal ideal of A . By [10],2.1 , G(m) 1is a Gorenstein ring
with a(G(m)) = -9 . By (2.3) it follows that R(ms) is a Gorenstein ring
and R(m) is a Cohen-Macaulay ring. Now let I denote the ideal of A

generated by all monomials of degree 4 in x different from x%.x% R

227 %y
Then 12 = m8 and R(Iz) is a Gorenstein ring. On the other hand there
is a short exact sequence

2

0 —> R(I). —> R(m") —> k - xg x5 (=1) —> 0

~as easily seen. The Cohen-Macaulayness of R(mq) yields that R(I) is a
Buchsbaum ring with depthR(I)=1 and dimR(I) = 11 . For (for R = R(I))

kH‘i(R) =0 , i#1,11, and I-L;(R)'ak(ﬂ) ,
where M = (m,R+) . Note that even G(I) 1is not Cohen-Macaulay.

. . r
There are several results concerning the Gorenstein property of R(m ') ,

rz2 1, for a local Gorenstein ring (A,m) , see e.g. [2]. It is known that
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r3d-1, d=dimA , provided R(mr) is a Gorenstein ring. The extremal
situations 1t = d-1,d-2 , and d-3 are classified in [2],[8]. In additionm
to these results we considera lower bound for r . Here e{(A) denotes

* the multiplicity of A .

Proposition (2.5). Let (A,m) denote a local Gorenstein ring. Assume that

G(n) is a Cohen-Macaulay ring. For an integer rSd-3 , d =dimA , let

R(mr) be a Gorenstein ring. Then
rapu(m -e(A) -1 .

Eqdﬁlity holds if and only if either A 1is a hypersurface or

e(A) = p(m) -d+2 .

Proof: Without loss of generality we may assume that A has an infinite
residue field. By(2.3) G(m) is a Gorenstein ring with a(G(m)) = -(r+1) .

Choose a minimal reduction x of m . Then
a(G(m) /x*) = d=(r+1) .
Let h. = dim., [G(M) /x*]. . Then h.>0 for O0SiSd-r-1 and
i A/m ~ i i

d-r-1
e(A) = ) hy21+p(m) -d +d-r-2 .
i=0

This shows the inequality. Because G(m)/x* 1is a Gorenstein ring

hi = hd-i-r-l . That proves the statement about the equality.

It would be interesting to get a similar result as in (2.5) without the

Cohen-Macaulay assumption on G(m) .



_11_

3. Ideals of small height.

In the proof of (iii)= (i) of (2.1) we have decisively used the assumption
.he(I) 22 . For the height zero case this implication is not true as the

following example shows.

.Exampie (3.1). Consider the Gorenstein ring B = kﬁts,ts,tgﬂ . Then tSB

is a minimal reduction of the maximal ideal n = (ts,t6,t9)CZB because

ﬂ4 = t5 .n3 . We know by [10],3.6 , that G(n) = ngonn/nn—1 is Cohen-~

Macaulay but not Gorenstein. Now let

A= Q/tSB and m = n/&SB
! .
H

A 1is an Artinian Gorenstein ring and m4 = 0 . Therefore G(ma) = A is

Gorenstein,‘but
5.%
c(m) = c(n)/(z » o,

5% . 5 . o . :
where (t7) is the initial form of t~ im G{1) , is not Gorenstein, since

(ts)* is a non-zero-divisor on G(n) .

In the sequel we give examples of height one ideals I 1in a local Gorenstein

ring A for which the above-mentioned implication (iii) = (i) also holds.

We will say in the following that I 1is an almost complete intersection
ideal if w(I) = ht(D)+1 and n(Iy) = he(P) for all PEMin(A/I) .

Proposition (3.2). Let I be an almost complete intersection ideal of height

one in a local Gorenstein ring. Assume that

(1) G(I) 1is not Gorenstein but

(ii) R(I) 1is Gorenstein,
Then G(Ir) is not Gorenstein for all rz2 .

Before proving (3.2)'we give two examples where the assumptions (i) and (ii)

are fulfilled.
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Example (3.2). Let A =k[[X,Y] , k a field and X,Y indeterminates,

and I = (Xz,X-Y) . Note that I 1is an almost complete intersection of height
one. In {3], example 1 it was shown that R(I) 1is Gorenstein. But G(I) is
“not Gorenstein s.[11], example 9.

Example (3.3). Let A =k[[X,Y,2]] and I = (X-Y,X-Z) , s. [3], example 2.

" Again R(I) 1is Gorenstein but G(I) 1is not.

Proof of (3.2): Note that G(I) is Cohen-Macaulay; since R(I) is so.

Assume that G(Ir)A is Gorenstein for some r 22 . Then - using the structure-

theorem for the canonical module K N in [5], (2.5) and also [2], (3.3) -
- R(17)

we get .

i

- (-1) »

where a = a(G(Ir))., the a-invariant of G(Ir) , and (1,t)n denotes the
R(Ir)—submodule of the polynomial ring A[t] which is generated by
l,t...,tn in case n20 or (1,t7:)_1 = IrR(Ir) in case n = -1 . Moreover
by [21, (2.6) '

r

4= [ a(G(I))]

and a(G(I)) = -ht(I) = -1 , s. [9]. This means. a = -1 if r22 . There-

fore we have

(1) ko= a,0 e = RaHED
R(I)
On the other hand aSSumﬁtion (ii) implies
- '\1
2) =k O cr@meEn®
R(I")  R(D) .

Comparing the degrees in (1) and (2) one gets an A-isomorphism "= Ir—1 .

Since the analytic sprea& of I is AR(I) = 2 (otherwise I would be a

complete intersection), this implies r = r-1 by the proof of (3.2) in
[2], a contradiction.
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Remark (3.4):

a) If I 1is an almost complete intersection ideal of height one and if
“A/1 1is Cohen-Macaulay (so that G(I) is Gorenstein by [11], Corollary 11) ,
‘then G(Ir) is Gorenstein even for all r22 . This follows from (2.2)
because a(G(I)) = -1 . |

. b) If (A,m) 1is a 1-dimensional Gorenstein ring with a Cohen-Macaulay form
ring G(m) and the reduction exponent &(m) £ 3 we can show that the im-
plication (iii)= (i) . in (2.1) holds for the maximal ideal m .

For instance in the above-mentioned Sally's example (3.1) it turns out that no
power of the maximal ideal m of the one-dimenéional ring k{[tS,t6,t9D

has-a Gorenstein form ring. In this case the reduction exponent is &(m) = 3 .

‘ .
For;us the situation is not clear if &(m)z24 .

¢) 1In [10] J. Sally has shown the follpwing result: If (A,m) is a local
Gorenstein ring and &(m) = 2 , then GA(m) is a Gorenstein ring. Because of
the remark given in b) the corresponding result for an M-primary ideal is

not true.
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