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Abstract

Let k = IFq('I‘), q=p, K= k(AP) the cyclotomic function field with conductor
P =P(T), K" the maximal real subfield of K,hp(h}) the class number of divisor group
(of degree zero) of K(K+), hp = hP/hf;(E Z7) . In the paper we prove that for any fixed
q 2 3, there exist infinite many of irreducible manic polynomial P € [Fq [T] such that
Pl h;,' and pq"2 | h; . We also determine all regular quadratic irreducible polynomial in

qu [T] for 2<p <269

1. Introduction and state of results

The cyclotomic function field theory has been developed extensively in recent years
(see survey articles Goss [3] and [4]). There are many analogies with cyclotomic number
field case, but some situations are quite different. In number field case, for example, the

well-known Kummer results says that
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where hp (h‘;) is the class number of Q(e P ) (Qe ® +e P)), h; = hp/h'; , P is

prime number. And Vandiver conjecture says p 4 h'l'; for all odd prime number p . For
function field case, the following calculated data by Ireland and Small [7] shows that each
possibility can occure (p = q =3, P(T) is an irreducible polynomial in [y [T] . From

now on, all irreducible polynomials are monic}):

cases | P(T) h’; h;
34'h+,3+h; 2+T2+T% | 53-313 212.5.79
3|hj,3|b5 | 1+2T+T3 | 3° 212.36
3put 3 (b5 | 1+2T%+TY 53-313 212.3.131
3|0 345 | 24724+ T p7-3-11%17-20% - 4217 1919607 2°° - 2413329 - 65521 - 1322641

As an analogy of number field case, we introduce the following
Definition. An irreducible P = P(T) in qu [T] is called regular (irregular) if
p ,{-'hp (p]hp = h;h;) . P is called irregular of first (second) class if p[h; (p[h;) .

For finding elementary criterion of regularity of irreducible polynomial in IFq (T],
Goss [2] introduces a series of polynomial as an analogy of classical Bernoulli number. For

ji 2 0, we define

S}(T) = Yy A
AEF  [T]

monic
deg A = j



ﬁi(T) =1

It is easy to see that S}(T) =0 if j(g=1) >1i.Thus G(T) is a polynomial in [F(1 [T]

wich is called the Bernoulli—Goss polynomial. Goss proved that

Lemma 1 ([2]). Let P be an irreducible polynomial in [Fq [T],d = deg P . Then

‘P isirregular of first (second) class iff there exists i,1 <1< qd—2, (a—1)4i ((g—1)|i) such

that P|g, . (So P is regular iff P*,Bi(T) foreach 1,1<i< qd-2 )

Goss [2] and Feng [1] proved that for each q, there exist infinite many of irre-
gular irreducible polynomials of first class; for each g 2 3 there exist infinite many of irre-
gular irreducible polynomials of second class (for q = 2, h; = 1, thus there is no irregular
polynomial of first class in [, [T] ). In this paper we improve this result by the following

theorem (the proof of theorem 1isin § 2)

Theorem 1. For each q 2 3, there exist infinite many irreducible polynomials P
in {Fq [T] such that p]hi*; and pq_2 | h;. Particularly, there exist infinite many irre-
ducible polynomials in [Fq [T] which are irregular both in first and second class.

On the other hand, concerning to regular irreducible polynomials, the result of [6]
shows that regular irreducible polynomials are rare at least for the case of ¢ = p and
deg P = 2 . Before we state the result of [6], we make following remark. It is easy to see
from the definition of A,(T) that G(T) = f,(T+a) forany a € qu . Thus
P(T)|8(T) & Q(T)|B(T) where Q(T) = P(T+a). Therefore P(T) and Q(T) have
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the same regularity, and we can consider the regularity of equivalent class of irreducible
polynomials by the action of group {7, : P(T)+ P(T+a)|a €F q} . Particularly, for the
case of 2|q, we can consider only the polynomials P(T) = T2_d where d is a

non—square element in [Fq .

Lemma 2 (Ireland and Small [6]). If 3 < p <269, there exist regular quadratic

polynomial in [Fq [T] foronly p =3,5,7,13 and 31 . There are

2

p=3, T +1
p =5, T2+3
p=1, T2+1
p =13, T2 45
p = 31, T2+5 and T2+25.

In this paper the above result is generalized to the case q = p" . At first we give
several criterion for regularity of quadratic irreducible polynomial (lemma 6 and 7), then
all regular quadratic irreducible polynomials in [Fq [T] are determined for 2 < p <269 .
The result is (the proof of Theorem 2 is in § 3):

Theorem 2. Let q =p", 2 < p < 269 . The following list includes all (equivalence

class of) regular quadratic irreducible polynomials in [‘Fq [T] .
(a) q=2" p(q-1) classes: T2 + ¢T + ¢%d where ¢ takes ¢(g—1) primitive
elements of [Fq and d is any fixed element in the set qu - {0(2 + x|x € qu} .
(b) q=3" p(q-1) classes: T2-d where d takes ¢(q—1) primitive elements
of F q
(c) q =5, one class: T +3.
q = 25 , four classes: T? & (1+272).
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(d) q=7,onecla.ss:T2+1.

2

(e) q=13,0neclass: T°+ 5.

D q=31,twoc1asses:T2+5 and T2+25.

2. Proof of Theorem 1

Both proofs of Theorem 1 and Theorem 2 are based on a closed expression for

Bernoulli—Goss polynomial f,(T) (Lemma 4). At first we list some fundamental properties
of B(T).

Lemma 3 (Goss [4]).
(a) (reccurence formula) B,(T) =0, §;(T) =1 and

A(T)=1- 2 [i]T8m (22
| |

_j=1
(¢-1) | (i-3)
(1)

(b) For i21, B(T)=1 (mod T) .
(c) ﬁpi(T) = ﬁi(T)p where p is the characteristic of q
(d) (congruence property) If i))iq 21,d21, i =i, (mod qd—l) , then
d
8 (T) B, (T) (mod TY —T). Particularly, 8. (T) B, (T) (mod P) for any

medumble polynomlal P(T) in F q [T] with degree d.
Let i be a positive integer, i = ¢g+a+ 02q2 + ... the q—adic expansion,
L(i)=cy+¢; + ¢y + ... Then £(i) =i (mod q-1}.
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Lemma 4. Suppose i21,s=qg-1.
() B(T)=1 for L(i}<s.
(b) If i=a+bq%e>1,1<a b< g1, () =a+b>s,then

gm =1~ (2] ~1y
where 1 = a+b—s(s > 1).

Proof. (a) The recurrent formula (1) can be rewritten as following (let ks = i—j ):

A=1- § [4]T7 (@
1<ks<i
(2)

We need to show that if 1 { ks <1 then [llcs ] = 0 (mod p) . Suppose that
[]i(s } # 0 (mod p) . From the Lucas formula we know that £(i) > £(ks) 2 1. Since
£(ks) = ks =0 (mod s) we know that £(ks) 2 s. Therefore £(i}) > s which is .
contradiction to the assumption £(i) <s.

(b) Now we suppose that s < £(i) =a+b<2s.If 1 {ks <i and
[ 11(8] # 0 (mod p) , then s < £(ks) < 25 by Lucas formula, and
£(i—ks) = £(i) — £(ks) € 2s—s = 5 . From the part (a) we know that B_y(T)=1 and

formula (2) becomes



From £(ks) =s, ks <i=a+ bq®, []l(sJ Z 0 (mod p) we know

ks = (s=m) + mq®,s—a{m<b.

Thus
> e
BT =1- ) [Sfm] [;]T(b—m)q + a + m-s
m=s—a
13 (3] ud e
A=0 (let A =m—(s—a) =m — (b—1))
-1 § (3] (%)
But ‘

[ 3] [IEA ] - a.(a.-l)...(a;,!\+%]):%($—rl)...(b—r+z\+Q

_ (s=b+r)(s=b+r-1)... (s-b+r=A+1)b(b~1)...(b—r+A+1)
AT{r-2) T

(_1)/\ [ i ] (b—r+1)(b»r+2)...(b;!+A)b(b—1)...(b-—r+)¢+ﬂ

=(—1)’\[i][?] (mod p) .



Therefore

[;]T(r_)‘)qe(—'l‘)" —1- [?](qu —T)F .
0

| B

am=1- ;]
' A

Corollary. Suppose i = aq® + bqf, f>e20,1<{a,blg-l,r=a+b—(q-1)2 1.

f
Then f(T)=1- [?J(Tq _ )

This is a direct conclusion of lemma 4 and lemma 3, (c).

Lemma 5. There exist infinite many of irreducible polynomial P in F q [T] satis-
fying the following property:
There exist a positive integer t < deg P such that P |,Bi(T) forall i,

1+ (g-1)q* <i < (a-1) + (a-1)a* .

Proof. We need to show that for any d1 2 1, there exists an irreducible polynomial
P with degree > d1 satisfying above—mentioned property. Let e = dll . From lemma 4

we know that for 1 <i<q-1,

(T)=1- [qgl ] (10 —T) = 1 + (<11 _

(3)

i+(q-1)q°

Thus for any irreducible polynomial Q with degree < dy,

1+(q—1)qe(T) 21 (mod Q) (4)



From (3) we know that deg 3 e(T) 21,50 3 o Dave an irreducible
1+(q-1)q 1+(a-1)q

factor P = P(T) . From (4) we know that d =deg P > d, . Let t be the least

non—negative residue of e(mod d) . From lemma 3(d) we know that P|f (a-1) ; - But
14+(q—1)q

we have from (3) that

¢ . v
8 =1+ (9 -T)|1+ (1) (1T-1) = .
1+(q-1)q" i(q-1)q"

Therefore P |f ¢ (1 {i<qg-1). Atlast,from P | 8 (T) =1 we know that
i+(q-1) 1
t 2 1. This completes the proof of lemma 5.

Now we are ready to prove Theorem 1. We know that the Galois group of the cyclo-
tomic extension k(AP)/k is naturally isomorphic to G = (qu [T] /P)x which is cyclic
group with order qd-—l, d =deg P.Let C and cT bethe p—part of the divisor class
group of k(Ap) and its maximal real subfield respectively. Then C and C¥ are

Ip [G]—module and have direct decomposition

d d
-2 ) q —2 )
C= L]—ro C(x),ct = Tl C(x)
1= 1=

q—1|i

where {x'[0<i¢ qd—2} is the character group of G. Goss and Sinnott [7] proved that

COOFLOPIBy (1) (5)

Theorem 1 is a direct conclusion of (5) and lemma 5.
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3. Proof of Theorem 2

At first we give several criterion for regularity of quadratic irreducible polynomial in
[Fq [T] by considering two cases 2|q and 2.k q separately.

Lemma 6. Suppose 2 |q ,P= 72
F q [T] . Then

+ c¢T + d is an irreducible polynomial in

P is regular ¢= c is a primitive element of IFq .

Proof. From the definition of regularity we know that P is regular <& P | B(T)
(1<i<q°-2)

{:}P*ﬂi(T)(foraH i=a+bq,1<a,b<q-1,29—22a+b2q)
(by lemma 4 (a))

b q r
ﬁ[r](T 4+ T) #1(mod P) (forall 1{r<{b<qg-1,1r<qg-1)
(by lemma 4 (b)) .

Since
T = (cT 4+ d)9=cTq+d=cT9 + T2 4 cT (mod P)

we know that (T9+ T+ ¢)(T9+ T) =0 (mod P). But P | T+ T, so
T + T = ¢ (mod P) . Therefore
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P is regular & [?]cr;'él(modP) (forall 1{r<{b<g-1,1r<q-1)

& ¢ #1 (modP) (for 1<r<q-1)
(=)--cr?91€ﬂ:q(for 1{r< q-1)

& ¢ is a primitive element of qu .

For the case of 2 | q, as we said in § 1, each equivalence class has exact one

quadratic irreducible polynomial T2—d where d is a non—square element of [ q

~ Lemma 7 Suppose q = p%,p >3, d is a non—square element of II:q . Then follo-

wing statements are equivalent to each other.

(A) T4 is regular;
(B) [E](Jid)r/z#lE!Fq(forall2Sr$b$q—1,2]r)
(©) 4d is a primitive element of [Fq , and

z T“T[k’] #1€F (forall 2<k<b;<p1,2[k)
J=0

-1
where g = (4d)£’L_r €F,

Proof As the same as the case 2|q, from lemma 4 we know that

(A) = [‘;](TLT)‘¢1(mod T2-d) (forall 1<r<b<q-1,r<g-1).
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Since T292 =491 =1 (mod T2—d), T¥™ = d 2 #1 (mod T>-d) (d is non—sqare
element of [F q ), thus 41z (mod Tz-d) and T = -T (mod T2—d) . Therefore
A) & [P (=2T) £1 (mod T%—d) (1 <t < b < g1, r < g-1)

& [P ]@r) 2 #1 (mod T?—d) (2 <1 <b < g1, 2|1 < g-1)

o 'b‘(4d)f/2¢1emq (2<r<b< g1, 2[r)
& (B)

(B) 2 (C): Taking r =b in(B), we get (tici)r/2 #1 forall 2€r<q-1,2|r.So 4d is
a primitive element of [F q and g is a primitive element of [ q For 2<k¥ bj <p-1
n—1
e _.q-1 _ n—1 _ J
(0 < j<n-1) we take r—kf)L_i-—k—H(p + ...+ kp and let b—.}:o bjp . From (B)
J=v.

and Lucas formula we know that

gkﬁ?:lr [Ei] = [E](zid)r/?%lE[Fp :

j=0

(C) 2 (B): Suppose that [lr)](4d)r/2 =1 forsome r and b,
1{r<{b<q-1,2|r. Then (ticl)r/2 € in . Since 4d is a primitive element of IFp , We
n—1 n—1
—1|r _ J _ K
get %:rlﬁ and r—-.E kp for some k, 2|k, 2<k<p1.Tet b= Y bol be the
1=0 j=0
p—adic expansion. Then
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—1 ~b.
k/2 2 [ J] r/2( b
g I (4d) =1
J=l '
which is contradict to (C). This completes the proof of lemma 7.

Remark. Ireland and Small [6] proved the equivalence (A) & (B) for q=p2 3.
The statement (C) of lemma 7 is only concerned on the basic field [Fp so that it

can be used to prove the following remarkable result.

Lemma 8. Suppose q=p~, @ =p™, p> 3, n> m.If there exists a regular

quadratic irreducible polynomial in [ q [T] , then there exists such polynomial in

Fo [T

Proof. Suppose that T2 —% is a regular quadratic irreducible polynomial in
—1

[F q [T] . From lemma 7 we know that d is a primitive element of IFq ,thus g =dP™ is

a primitive element of [F q° Therefore there exists a primitive element d’ in [Fq , such

gi_—ii

that g = (d’) . From lemma 7 (c) we know that

72 —% € [Fq [T] is regular

n—1 b,
22T T [kl] #1 (mod p)
J=0

(for all ISkajﬁp—l,OSan—l,ﬂk)
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m—1 ~b.
22T T [k’] # 1 (mod p)
j=1

(for all ISkajSp—l,OSjSm—l,ﬂk)
sT2-LerF [T] is regular
T Q’ g .

Now we are ready to prove Theorem 2. The lemma 2 says that there are no regular

quadratic irreducible polynomial in IFp [T] for 37 < p <269, so there are no such poly-
~ nomial in [Fq [T] for plq, 37 <p <269 bylemma 8.

For p =2, thelemma 6 says that a polynomial T2 +cT+d in [Fq [T] is re-
gular iff ¢ is a primitive element of !Fq -Let A = { a’+ca | a € [Fq } which is an
additive subgroup of [Fq and isomorphic to [Fq/{O,c} , thus |Ac[ = q/2 . It is easy to
see that T2 + ¢T + d isirreducibleiff d £ A c Therefore there exist exa.cﬂy w(q-1)

classes of regular quadratic irreducible polynomials as shown in theorem 2.

For p =3, from lemma 7 (C) we know that if T _de qu [T] is regular, then d
is a primitive element of [Fq and the condition (C) is trivially satisfied. Therefore 124
is regular if and only if d is a primitive element of [Fq .

For p =75, thelemma 2 showed that there is only one regular quadratic polynomial
T243 in Fs[T] . Let Fopr =F,[{2] . If T2_d is a regular irreducible polynomial in

25-1
Fos[T] , then (—d)s_I = 3 from the proof of lemma 8. Thus d =+ 1% 2{ 2 . We can

varify easily that the condition (C) of lemma 7 is hold for such d . Therefore there exist

exactly four regular quadratic irreducible T2 2 (1+2]2) in Fos [T] . For q=125 we

have
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(2] [2)[4) =1 et

From lemma 7 (C) we know that there is no such polynomial in [F125 [T] . By lemma 8,

there is no such polynomial in F_ [T] forall n23.
S

For p=17,13 and 31, we have

6[‘3] [;] = 1 (mod 13)

11[3} [%3] 524[SJ [g] = 1 (mod 31) .

From lemma 7 (C) and lemma 8 we know that there is no regular quadratic irreducible

polynomial in [F n[T] for P=7,13,31 and n 2 2. This completes the proof of
P

theorem 2.

To end this paper we raise the following problem of elementary number theory:

For each prime number p 2 37 and each primitive element of F_, are there exist
integers r,b, 2 < 2r {b < p-1 such that g [ gr] =1 (mod p) ? (The calculating result
of Ireland and Small (lemma 2) says that is true for 37 < p < 269.)
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