Bernoulli-Goss polynomial and class number of cyclotomic function fields

by

Keqin Feng and Wenyun Gao

Max-Planck-Institut
Dept. of Mathematics
für Mathematik
Gottfried-Claren-Straße 26
China University of Science and Technology Hefei, Anhui
D-5300 Bonn 3
People's Republic of China
Federal Republic of Germany

MPI/88-42

Bernoulli-Goss polynomial and class number of Cyclotomic function fields

Keqin Feng Wenyun Gao

Abstract

Let $k=\mathbb{F}_{q}(T), q=p^{n}, K=k\left(\Lambda_{P}\right)$ the cyclotomic function field with conductor $P=P(T), K^{+}$the maximal real subfield of $K, h_{P}\left(h_{P}^{+}\right)$the class number of divisor group (of degree zero) of $\mathrm{K}\left(\mathrm{K}^{+}\right), \mathrm{h}_{\mathrm{P}}^{-}=\mathrm{h}_{\mathrm{P}} / \mathrm{h}_{\mathrm{P}}^{+}(\in \mathbb{I})$. In the paper we prove that for any fixed $q \geq 3$, there exist infinite many of irreducible manic polynomial $P \in \mathbb{F}_{q}[T]$ such that $\mathrm{p} \mid \mathrm{h}_{\mathrm{P}}^{+}$and $\mathrm{p}^{\mathrm{q}-2} \mid \mathrm{h}_{\mathrm{P}}^{-}$. We also determine all regular quadratic irreducible polynomial in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$ for $2 \leq \mathrm{p} \leq 269$.

1. Introduction and state of results

The cyclotomic function field theory has been developed extensively in recent years (see survey articles Goss [3] and [4]). There are many analogies with cyclotomic number field case, but some situations are quite different. In number field case, for example, the well-known Kummer results says that

$$
p\left|h_{p}^{+} \Rightarrow p\right| h_{p}^{-} \Leftrightarrow p \mid h_{p}
$$

where $h_{p}\left(h_{p}^{+}\right)$is the class number of $Q\left(e^{\frac{2 \pi i}{p}}\right)\left(Q\left(e^{\frac{2 \pi i}{p}}+e^{\frac{-2 \pi i}{p}}\right)\right), h_{p}^{-}=h_{p} / h_{p}^{+}, p$ is prime number. And Vandiver conjecture says $\mathrm{p} \not \mathrm{h}_{\mathrm{p}}^{+}$for all odd prime number p . For function field case, the following calculated data by Ireland and Small [7] shows that each possibility can occure ($p=q=3, P(T)$ is an irreducible polynomial in $\mathbb{F}_{3}[T]$. From now on, all irreducible polynomials are monic):

cases	$\mathrm{P}(\mathrm{T})$	$\mathrm{h}_{\mathrm{p}}^{+}$	$\mathrm{h}_{\mathrm{p}}^{-}$
$3 \not \mathrm{~h}_{\mathrm{P}}^{+}, 3 \nmid \mathrm{~h}_{\mathrm{p}}^{-}$	$2+\mathrm{T}^{2}+\mathrm{T}^{3}$	$53 \cdot 313$	$2^{12 \cdot 5 \cdot 79}$
$3\left\|\mathrm{~h}_{\mathrm{P}}^{+}, 3\right\| \mathrm{h}_{\mathrm{P}}^{-}$	$1+2 \mathrm{~T}+\mathrm{T}^{3}$	3^{9}	$2^{12 \cdot 3^{6}}$
$3 \not \mathrm{~h}_{\mathrm{P}}^{+}, 3 \mid \mathrm{h}_{\mathrm{P}}^{-}$	$1+2 \mathrm{~T}^{2}+\mathrm{T}^{3}$	$53 \cdot 313$	$2^{12 \cdot 3 \cdot 131}$
$3 \mid \mathrm{h}_{\mathrm{p}}^{+}, 3 \nmid \mathrm{~h}_{\mathrm{P}}^{-}$	$2+\mathrm{T}^{2}+\mathrm{T}^{4}$	$7 \cdot 3 \cdot 11^{2} \cdot 17 \cdot 29^{2} \cdot 421^{2} \cdot 191969^{2}$	$2^{39 \cdot 241 \cdot 3329 \cdot 65521 \cdot 1322641}$

As an analogy of number field case, we introduce the following
Definition. An irreducible $P=P(T)$ in $\mathbb{F}_{q}[T]$ is called regular (irregular) if $\mathrm{p} \not \mathrm{h}_{\mathrm{p}}\left(\mathrm{p} \mid \mathrm{h}_{\mathrm{p}}=\mathrm{h}_{\mathrm{P}}^{+} \mathrm{h}_{\mathrm{P}}^{-}\right) . \mathrm{P}$ is called irregular of first (second) class if $\mathrm{p} \mid \mathrm{h}_{\mathrm{P}}^{-}\left(\mathrm{p} \mid \mathrm{h}_{\mathrm{P}}^{+}\right)$.

For finding elementary criterion of regularity of irreducible polynomial in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$, Goss [2] introduces a series of polynomial as an analogy of classical Bernoulli number. For $\mathrm{j}, \mathrm{i} \geq 0$, we define

$$
S_{j}^{i}(T)=\sum_{A \in \mathbb{F}_{q}[T]} A^{i}
$$

$$
\beta_{\mathrm{i}}(\mathrm{~T})=\left\{\begin{array}{l}
\sum_{\mathrm{j} \geq 0} \mathrm{~S}_{\mathrm{j}}^{\mathrm{i}}(\mathrm{~T}), \text { if }(\mathrm{q}-1) \nmid \mathrm{i} \\
-\sum_{\mathrm{j} \geq 0} \mathrm{j} \mathrm{~S}_{\mathrm{j}}^{\mathrm{i}}(\mathrm{~T}), \text { if }(q-1) \mid \mathrm{i} .
\end{array}\right.
$$

It is easy to see that $S_{j}^{i}(T)=0$ if $j(q-1)>i$. Thus $\beta_{i}(T)$ is a polynomial in $\mathbb{F}_{q}[T]$ wich is called the Bernoulli-Goss polynomial. Goss proved that

Lemma 1 ([2]). Let P be an irreducible polynomial in $\mathbb{F}_{\mathrm{q}}[T], \mathrm{d}=\operatorname{deg} \mathrm{P}$. Then P is irregular of first (second) class iff there exists $i, 1 \leq i \leq q^{d}-2,(q-1) \nmid i((q-1) \mid i)$ such that $\mathrm{P} \mid \beta_{\mathrm{i}}$. (So P is regular iff $\mathrm{P} \nmid \beta_{\mathrm{i}}(\mathrm{T})$ for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{q}^{\mathrm{d}}-2$.)

Goss [2] and Feng [1] proved that for each q, there exist infinite many of irregular irreducible polynomials of first class; for each $q \geq 3$ there exist infinite many of irregular irreducible polynomials of second class (for $q=2, h_{\bar{P}}=1$, thus there is no irregular polynomial of first class in $\left.\mathbb{F}_{2}[\mathrm{~T}]\right)$. In this paper we improve this result by the following theorem (the proof of theorem 1 is in § 2)

Theorem 1. For each $q \geq 3$, there exist infinite many irreducible polynomials P in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$ such that $\mathrm{p} \mid \mathrm{h}_{\mathrm{P}}^{+}$and $\mathrm{p}^{\mathrm{q}-2} \mid \mathrm{h}_{\mathrm{P}}^{-}$. Particularly, there exist infinite many irreducible polynomials in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$ which are irregular both in first and second class.

On the other hand, concerning to regular irreducible polynomials, the result of [6] shows that regular irreducible polynomials are rare at least for the case of $q=p$ and $\operatorname{deg} P=2$. Before we state the result of [6] , we make following remark. It is easy to see from the definition of $\beta_{\mathrm{i}}(\mathrm{T})$ that $\beta_{\mathrm{i}}(\mathrm{T})=\beta_{\mathrm{i}}(\mathrm{T}+\mathrm{a})$ for any $a \in \mathbb{F}_{\mathrm{q}}$. Thus $\mathrm{P}(\mathrm{T})\left|\beta_{\mathrm{i}}(\mathrm{T}) \Leftrightarrow \mathrm{Q}(\mathrm{T})\right| \beta_{\mathrm{i}}(\mathrm{T})$ where $\mathrm{Q}(\mathrm{T})=\mathrm{P}(\mathrm{T}+\mathrm{a})$. Therefore $\mathrm{P}(\mathrm{T})$ and $\mathrm{Q}(\mathrm{T})$ have
the same regularity, and we can consider the regularity of equivalent class of irreducible polynomials by the action of group $\left\{\tau_{\mathrm{a}}: \mathrm{P}(\mathrm{T}) \mapsto \mathrm{P}(\mathrm{T}+\mathrm{a}) \mid \mathrm{a} \in \mathbb{F}_{\mathrm{q}}\right\}$. Particularly, for the case of $2 \mid q$, we can consider only the polynomials $P(T)=T^{2}-d$ where d is a non-square element in \mathbb{F}_{q}.

Lemma 2 (Ireland and Small [6]). If $3 \leq \mathrm{p} \leq 269$, there exist regular quadratic polynomial in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$ for only $\mathrm{p}=3,5,7,13$ and 31 . There are

$$
\begin{array}{ll}
\mathrm{p}=3, & \mathrm{~T}^{2}+1 \\
\mathrm{p}=5, & \mathrm{~T}^{2}+3 \\
\mathrm{p}=7, & \mathrm{~T}^{2}+1 \\
\mathrm{p}=13, & \mathrm{~T}^{2}+5 \\
\mathrm{p}=31, & \mathrm{~T}^{2}+5 \text { and } \mathrm{T}^{2}+25 .
\end{array}
$$

In this paper the above result is generalized to the case $q=p^{n}$. At first we give several criterion for regularity of quadratic irreducible polynomial (lemma 6 and 7), then all regular quadratic irreducible polynomials in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$ are determined for $2 \leq \mathrm{p} \leq 269$. The result is (the proof of Theorem 2 is in § 3):

Theorem 2. Let $q=p^{n}, 2 \leq p \leq 269$. The following list includes all (equivalence class of) regular quadratic irreducible polynomials in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$.
(a) $\mathrm{q}=2^{\mathrm{n}}, \varphi(\mathrm{q}-1)$ classes: $\mathrm{T}^{2}+\mathrm{cT}+\mathrm{c}^{2} \mathrm{~d}$ where c takes $\varphi(\mathrm{q}-1)$ primitive elements of \mathbb{F}_{q} and d is any fixed element in the set $\mathbb{F}_{\mathrm{q}}-\left\{\alpha^{2}+\alpha \mid \alpha \in \mathbb{F}_{\mathrm{q}}\right\}$.
(b) $\mathrm{q}=3^{\mathrm{n}}, \varphi(\mathrm{q}-1)$ classes: $\mathrm{T}^{2}-\mathrm{d}$ where d takes $\varphi(\mathrm{q}-1)$ primitive elements of \mathbb{F}_{q}.
(c) $\mathrm{q}=5$, one class: $\mathrm{T}^{2}+3$.
$\mathrm{q}=25$, four classes: $\mathrm{T}^{2} \pm(1 \pm 2 \sqrt{2})$.
(d) $q=7$, one class: $T^{2}+1$.
(e) $\mathrm{q}=13$, one class: $\mathrm{T}^{2}+5$.
(f) $\mathrm{q}=31$, t wo classes: $\mathrm{T}^{2}+5$ and $\mathrm{T}^{2}+25$.

2. Proof of Theorem 1

Both proofs of Theorem 1 and Theorem 2 are based on a closed expression for Bernoulli-Goss polynomial $\beta_{\mathrm{i}}(\mathrm{T})$ (Lemma 4). At first we list some fundamental properties of $\beta_{\mathrm{i}}(\mathrm{T})$.

Lemma 3 (Goss [4]).
(a) (reccurence formula) $\beta_{0}(T)=0, \beta_{1}(T)=1$ and

$$
\beta_{\mathrm{i}}(\mathrm{~T})=1-\sum_{\substack{\mathrm{j}=1 \tag{1}\\
(\mathrm{q}-1) \mid(\mathrm{i}-\mathrm{j})}}^{\mathrm{i}-1}\left[\begin{array}{l}
\mathrm{i} \\
\mathrm{j}
\end{array}\right] \mathrm{T}^{\mathrm{j}} \beta_{\mathrm{j}}(\mathrm{~T}) \quad(\mathrm{i} \geq 2)
$$

(b) For $\mathrm{i} \geq 1, \beta_{\mathrm{i}}(\mathrm{T}) \equiv 1(\bmod \mathrm{~T})$.
(c) $\beta_{\mathrm{pi}}(\mathrm{T})=\beta_{\mathrm{i}}(\mathrm{T})^{\mathrm{p}}$ where p is the characteristic of \mathbb{F}_{q}.
(d) (congruence property) If $\mathrm{i}_{1}, \mathrm{i}_{2} \geq 1, \mathrm{~d} \geq 1, \mathrm{i}_{1} \equiv \mathrm{i}_{2}\left(\bmod \mathrm{q}^{\mathrm{d}}-1\right)$, then $\beta_{\mathrm{i}_{1}}(\mathrm{~T}) \equiv \beta_{\mathrm{i}_{2}}(\mathrm{~T})\left(\bmod \mathrm{T}^{\mathrm{q}}-\mathrm{T}\right)$. Particularly, $\beta_{\mathrm{i}_{1}}(\mathrm{~T}) \equiv \beta_{\mathrm{i}_{2}}(\mathrm{~T})(\bmod \mathrm{P})$ for any irreducible polynomial $P(T)$ in $\mathbb{F}_{q}[T]$ with degree d.

Let i be a positive integer, $\mathrm{i}=\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{q}+\mathrm{c}_{2} \mathrm{q}^{2}+\ldots$ the q -adic expansion, $\ell(\mathrm{i})=\mathrm{c}_{0}+\mathrm{c}_{1}+\mathrm{c}_{2}+\ldots$. Then $\ell(\mathrm{i}) \equiv \mathrm{i}(\bmod \mathrm{q}-1)$.

Lemma 4. Suppose $\mathrm{i} \geq 1, \mathrm{~s}=\mathrm{q}-1$.
(a) $\beta_{\mathrm{i}}(\mathrm{T})=1$ for $\ell(\mathrm{i}) \leq s$.
(b) If $i=a+b q^{e}, e \geq 1,1 \leq a, b \leq q-1, \ell(i)=a+b>s$, then

$$
\beta_{\mathrm{i}}(\mathrm{~T})=1-\left[\begin{array}{l}
\mathrm{b} \\
\mathrm{r}
\end{array}\right]\left(\mathrm{T}^{\mathrm{q}}-\mathrm{T}\right)^{\mathrm{r}}
$$

where $\mathrm{r}=\mathrm{a}+\mathrm{b}-\mathrm{s}(\mathrm{s} \geq 1)$.

Proof. (a) The recurrent formula (1) can be rewritten as following (let $\mathrm{ks}=\mathrm{i}-\mathrm{j}$):

$$
\beta_{\mathrm{i}}(\mathrm{~T})=1-\sum_{1 \leq \mathrm{ks}<\mathrm{i}}\left[\begin{array}{l}
\mathrm{i} \tag{2}\\
\mathrm{ks}
\end{array}\right] \mathrm{T}^{\mathrm{i}-\mathrm{ks}} \beta_{\mathrm{i}-\mathrm{ks}}(\mathrm{~T})
$$

We need to show that if $1 \leq \mathrm{ks}<\mathrm{i}$ then $\left[\begin{array}{l}\mathrm{i} \\ \mathrm{ks}\end{array}\right] \equiv 0(\bmod \mathrm{p})$. Suppose that $\left[\begin{array}{l}\mathrm{i} \\ \mathrm{ks}\end{array}\right] \not \equiv 0(\bmod \mathrm{p})$. From the Lucas formula we know that $\ell(\mathrm{i})>\ell(\mathrm{ks}) \geq 1$. Since $\ell(\mathrm{ks}) \equiv \mathrm{ks} \equiv 0(\bmod \mathrm{~s})$ we know that $\ell(\mathrm{ks}) \geq \mathrm{s}$. Therefore $\ell(\mathrm{i})>\mathrm{s}$ which is. contradiction to the assumption $\ell(\mathrm{i}) \leq \mathrm{s}$.
(b) Now we suppose that $\mathrm{s}<\ell(\mathrm{i})=\mathrm{a}+\mathrm{b} \leq 2 \mathrm{~s}$. If $1 \leq \mathrm{ks}<\mathrm{i}$ and $\left[\begin{array}{l}\mathrm{i} \\ \mathrm{ks}\end{array}\right] \not \equiv 0(\bmod \mathrm{p})$, then $\mathrm{s} \leq \ell(\mathrm{ks})<2 \mathrm{~s}$ by Lucas formula, and $\ell(\mathrm{i}-\mathrm{ks})=\ell(\mathrm{i})-\ell(\mathrm{ks}) \leq 2 \mathrm{~s}-\mathrm{s}=\mathrm{s}$. From the part (a) we know that $\beta_{\mathrm{i}-\mathrm{ks}}(\mathrm{T})=1$ and formula (2) becomes

$$
\beta_{\mathrm{i}}(\mathrm{~T})=1-\sum_{1 \leq \mathrm{ks}<\mathrm{i}}\left[\begin{array}{l}
\mathrm{i} \\
\mathrm{ks}
\end{array}\right] \mathrm{T}^{\mathrm{i}-\mathrm{ks}}
$$

From $\ell(k s)=s, k s<i=a+b q^{e},\left[\begin{array}{l}i \\ k s\end{array}\right] \not \equiv 0(\bmod p)$ we know

$$
\mathrm{ks}=(\mathrm{s}-\mathrm{m})+\mathrm{mq}^{\mathrm{e}}, \mathrm{~s}-\mathrm{a} \leq \mathrm{m} \leq \mathrm{b} .
$$

Thus

$$
\left.\begin{array}{rl}
\beta_{\mathrm{i}}(\mathrm{~T})=1-\sum_{\mathrm{m}=\mathrm{s}-\mathrm{a}}^{\mathrm{b}}\left[\begin{array}{c}
\mathrm{a} \\
\mathrm{~s}-\mathrm{m}
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
\mathrm{b} \\
\mathrm{~m}
\end{array}\right] \mathrm{T}^{(\mathrm{b}-\mathrm{m}) \mathrm{q}^{\mathrm{e}}+\mathrm{a}+\mathrm{m}-\mathrm{s}} .
$$

But
$\left[\begin{array}{l}a \\ \lambda\end{array}\right]\left[\begin{array}{c}b \\ r-\lambda\end{array}\right]=\frac{a(a-1) \ldots(a-\lambda+1) b(b-1) \ldots(b-r+\lambda+1)}{\lambda!(r-\lambda)!}$

$$
=\frac{(\mathrm{s}-\mathrm{b}+\mathrm{r})(\mathrm{s}-\mathrm{b}+\mathrm{r}-1) \ldots(\mathrm{s}-\mathrm{b}+\mathrm{r}-\lambda+1) \mathrm{b}(\mathrm{~b}-1) \ldots(\mathrm{b}-\mathrm{r}+\lambda+1)}{\lambda!(\mathrm{r}-\lambda)!}
$$

$$
\equiv(-1)^{\lambda}\left[\begin{array}{l}
\mathrm{r} \\
\lambda
\end{array}\right] \frac{(\mathrm{b}-\mathrm{r}+1)(\mathrm{b}-\mathrm{r}+2) \ldots(\mathrm{b}-\mathrm{r}+\lambda) \mathrm{b}(\mathrm{~b}-1) \ldots(\mathrm{b}-\mathrm{r}+\lambda+1)}{\mathrm{r}!}
$$

$$
=(-1)^{\lambda}\left[\begin{array}{l}
r \\
\lambda
\end{array}\right]\left[\begin{array}{l}
b \\
r
\end{array}\right] \quad(\bmod p)
$$

Therefore

$$
\beta_{\mathrm{i}}(\mathrm{~T})=1-\left[\begin{array}{l}
\mathrm{b} \\
\mathrm{r}
\end{array}\right] \sum_{\lambda=0}^{\mathrm{r}}\left[\begin{array}{l}
\mathrm{r} \\
\lambda
\end{array}\right] \mathrm{T}^{(\mathrm{r}-\lambda) \mathrm{q}^{\mathrm{e}}(-\mathrm{T})^{\lambda}=1-\left[\begin{array}{l}
\mathrm{b} \\
\mathrm{r}
\end{array}\right]\left(\mathrm{T}^{\mathrm{q}}-\mathrm{T}\right)^{\mathrm{r}}}
$$

Corollary. Suppose $\mathrm{i}=\mathrm{aq}^{\mathrm{e}}+\mathrm{bq} \mathrm{q}^{\mathrm{f}}, \mathrm{f}>\mathrm{e} \geq 0,1 \leq \mathrm{a}, \mathrm{b} \leq \mathrm{q}-1, \mathrm{r}=\mathrm{a}+\mathrm{b}-(\mathrm{q}-1) \geq 1$. Then $\beta_{i}(T)=1-\left[\begin{array}{l}\mathrm{b} \\ \mathrm{r}\end{array}\right]\left(\mathrm{T}^{\mathrm{q}^{\mathrm{f}}}-\mathrm{T}^{\mathrm{q}}\right)^{\mathrm{e}}$.

This is a direct conclusion of lemma 4 and lemma 3, (c).

Lemma 5. There exist infinite many of irreducible polynomial P in $\mathbb{F}_{q}[T]$ satisfying the following property:

There exist a positive integer $t<\operatorname{deg} \mathrm{P}$ such that $\mathrm{P} \mid \beta_{\mathrm{i}}(\mathrm{T})$ for all i , $1+(q-1) q^{t} \leq i \leq(q-1)+(q-1) q^{t}$.

Proof. We need to show that for any $d_{1} \geq 1$, there exists an irreducible polynomial P with degree $>d_{1}$ satisfying above-mentioned property. Let $e=d_{1}$!. From lemma 4 we know that for $1 \leq i \leq q-1$,

$$
\beta_{i+(q-1) \mathrm{q}^{(\mathrm{T}}} \mathrm{T}^{(\mathrm{T}}=1-\left[\begin{array}{c}
\mathrm{q}-1 \tag{3}\\
\mathrm{i}
\end{array}\right]\left(\mathrm{T}^{\mathrm{q}}-\mathrm{T}\right)^{\mathrm{i}}=1+(-1)^{\mathrm{i}+1}\left(\mathrm{~T}^{\mathrm{q}^{\mathrm{e}}}-\mathrm{T}\right)^{\mathrm{i}} .
$$

Thus for any irreducible polynomial Q with degree $\leq d_{1}$,

$$
\begin{equation*}
\beta_{1+(q-1) \mathrm{q}^{\mathrm{e}^{(\mathrm{T}) \equiv 1}}(\bmod Q)}^{\text {(}} \tag{4}
\end{equation*}
$$

 factor $P=P(T)$. From (4) we know that $d=\operatorname{deg} P>d_{1}$. Let t be the least non-negative residue of $\mathrm{e}(\bmod \mathrm{d})$. From lemma $3(\mathrm{~d})$ we know that $\mathrm{P} \mid \beta_{1+(\mathrm{q}-1) \mathrm{q}}^{\mathrm{t}}$. But we have from (3) that

$$
\beta_{1+(\mathrm{q}-1) \mathrm{q}^{\mathrm{t}}}=1+\left(\mathrm{t}^{\left.\mathrm{q}^{\mathrm{t}}-\mathrm{T}\right)} \mid 1+(-1)^{\mathrm{i}+1}\left(\mathrm{~T}^{\mathrm{q}^{\mathrm{t}}}-\mathrm{T}\right)^{\mathrm{i}}=\beta_{\mathrm{i}(\mathrm{q}-1) \mathrm{q}^{\mathrm{t}}} .\right.
$$

Therefore $\mathrm{P} \mid \beta_{\mathrm{i}+(\mathrm{q}-1)^{\mathrm{t}}}(1 \leq \mathrm{i} \leq \mathrm{q}-1)$. At last, from $\mathrm{P} \mid \beta_{\mathrm{q}}(\mathrm{T})=1$ we know that $t \geq 1$. This completes the proof of lemma 5 .

Now we are ready to prove Theorem 1. We know that the Galois group of the cyclotomic extension $\mathrm{k}\left(\Lambda_{\mathrm{P}}\right) / \mathrm{k}$ is naturally isomorphic to $\mathrm{G}=\left(\mathrm{F}_{\mathrm{q}}[\mathrm{T}] / \mathrm{P}\right)^{\mathrm{x}}$ which is cyclic group with order $q^{d}-1, d=\operatorname{deg} P$. Let C and C^{+}be the $p-p a r t$ of the divisor class group of $\mathrm{k}\left(\Lambda_{\mathrm{P}}\right)$ and its maximal real subfield respectively. Then C and C^{+}are $\mathbb{I}_{\mathrm{P}}[\mathrm{G}]$-module and have direct decomposition

$$
C=\prod_{i=0}^{q^{d}-2} C\left(x^{i}\right), C^{+}=\underset{\substack{1=0 \\ q-1 \mid i}}{\prod^{d}-2} C\left(\chi^{i}\right)
$$

where $\left\{\chi^{i} \mid 0 \leq i \leq q^{d}-2\right\}$ is the character group of G. Goss and Sinnott [7] proved that

$$
\begin{equation*}
\mathrm{C}\left(\chi^{\mathrm{i}}\right) \neq 1 \Leftrightarrow \mathrm{P} \mid \beta_{\mathrm{q}^{\mathrm{d}}-1-\mathrm{i}}(\mathrm{~T}) . \tag{5}
\end{equation*}
$$

Theorem 1 is a direct conclusion of (5) and lemma 5.

3. Proof of Theorem 2

At first we give several criterion for regularity of quadratic irreducible polynomial in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$ by considering two cases $2 \mid q$ and $2 \nmid q$ separately.

Lemma 6. Suppose $21 \mathrm{q}, \mathrm{P}=\mathrm{T}^{2}+\mathrm{cT}+\mathrm{d}$ is an irreducible polynomial in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$. Then

$$
\mathrm{P} \text { is regular } \Leftrightarrow \mathrm{c} \text { is a primitive element of } \mathbb{F}_{\mathrm{q}} .
$$

Proof. From the definition of regularity we know that P is regular $\Leftrightarrow \mathrm{P} \mid \beta_{\mathrm{i}}(\mathrm{T})$ $\left(1 \leq \mathrm{i} \leq \mathrm{q}^{2}-2\right)$
$\Leftrightarrow \mathrm{P} \nmid \beta_{\mathrm{i}}(\mathrm{T})($ for all $\mathrm{i}=\mathrm{a}+\mathrm{bq}, 1 \leq \mathrm{a}, \mathrm{b} \leq \mathrm{q}-1,2 \mathrm{q}-2 \geq \mathrm{a}+\mathrm{b} \geq \mathrm{q}$) (by lemma 4 (a))
$\Leftrightarrow\left[\begin{array}{l}\mathrm{b} \\ \mathrm{r}\end{array}\right]\left(\mathrm{T}^{\mathrm{q}}+\mathrm{T}\right)^{\mathrm{r}} \not \equiv 1(\bmod \mathrm{P})($ for all $1 \leq \mathrm{r} \leq \mathrm{b} \leq \mathrm{q}-1, \mathrm{r}<\mathrm{q}-1)$ (by lemma 4 (b)).

Since

$$
\mathrm{T}^{2 \mathrm{q}} \equiv(\mathrm{cT}+\mathrm{d})^{\mathrm{q}}=\mathrm{cT}^{\mathrm{q}}+\mathrm{d} \equiv \mathrm{cT}^{\mathrm{q}}+\mathrm{T}^{2}+\mathrm{cT}(\bmod \mathrm{P})
$$

we know that $\left(T^{q}+T+c\right)\left(T^{q}+T\right) \equiv 0(\bmod P)$. But $P \mid T^{q}+T$, so $\mathrm{T}^{\mathrm{q}}+\mathrm{T} \equiv \mathrm{c}(\bmod \mathrm{P})$. Therefore

$$
\begin{aligned}
& \mathrm{P} \text { is regular } \Leftrightarrow\left[\begin{array}{l}
\mathrm{b} \\
\mathrm{r}
\end{array}\right] \mathrm{c}^{\mathrm{r}} \not \equiv 1(\bmod \mathrm{P})(\text { for all } 1 \leq \mathrm{r} \leq \mathrm{b} \leq \mathrm{q}-1, \mathrm{r}<\mathrm{q}-1) \\
& \quad \Leftrightarrow \mathrm{c}^{\mathrm{r}} \not \equiv 1(\bmod \mathrm{P})(\text { for } 1 \leq \mathrm{r}<\mathrm{q}-1) \\
& \Leftrightarrow \mathrm{c}^{\mathrm{T}} \neq 1 \in \mathbb{F}_{\mathrm{q}}(\text { for } 1 \leq \mathrm{r}<\mathrm{q}-1) \\
& \Leftrightarrow \mathrm{c} \text { is a primitive element of } \mathbb{F}_{\mathrm{q}} .
\end{aligned}
$$

For the case of $2 \mid \mathrm{q}$, as we said in § 1 , each equivalence class has exact one quadratic irreducible polynomial $T^{2}-d$ where d is a non-square element of \mathbb{F}_{q}.

Lemma 7 Suppose $q=p^{n}, p \geq 3, d$ is a non-square element of \mathbb{F}_{q}. Then following statements are equivalent to each other.
(A) $\mathrm{T}^{2}-\mathrm{d}$ is regular;
(B) $\quad\left[\begin{array}{l}b \\ r\end{array}\right](4 d)^{r / 2} \neq 1 \in \mathbb{F}_{q}$ (for all $\left.2 \leq r \leq b \leq q-1,2 \mid r\right)$
(C) $\quad 4 \mathrm{~d}$ is a primitive element of \mathbb{F}_{q}, and

$$
g^{k} / 2 \prod_{j=0}^{n-1}\left[\begin{array}{l}
b_{j} \\
k
\end{array}\right] \neq 1 \in \mathbb{F}_{p}\left(\text { for all } 2 \leq k \leq b_{j} \leq p-1,2 \mid k\right)
$$

where $g=(4 d)^{\frac{q-1}{p-1}} \in \mathbb{F}_{p}$.

Proof As the same as the case $2 \mid q$, from lemma 4 we know that
(A) $\Leftrightarrow\left[\begin{array}{l}\mathrm{b} \\ \mathrm{r}\end{array}\right]\left(\mathrm{T}^{\mathrm{q}}-\mathrm{T}\right)^{\mathrm{r}} \not \equiv 1\left(\bmod \mathrm{~T}^{2}-\mathrm{d}\right)($ for all $1 \leq \mathrm{r} \leq \mathrm{b} \leq \mathrm{q}-1, \mathrm{r}<\mathrm{q}-1)$.

Since $T^{2 q-2} \equiv d^{q-1} \equiv 1\left(\bmod T^{2}-d\right), T^{q-1} \equiv d^{\frac{q-1}{2}} \not \equiv 1\left(\bmod T^{2}-d\right)(d$ is non-sqare element of \mathbb{F}_{q}), thus $\mathrm{T}^{\mathrm{q}-1} \equiv-1\left(\bmod \mathrm{~T}^{2}-\mathrm{d}\right)$ and $\mathrm{T}^{\mathrm{q}} \equiv-\mathrm{T}\left(\bmod \mathrm{T}^{2}-\mathrm{d}\right)$. Therefore

$$
\text { (A) } \begin{aligned}
& \Leftrightarrow\left[\begin{array}{l}
b \\
r
\end{array}\right](-2 T)^{r} \not \equiv 1\left(\bmod T^{2}-d\right)(1 \leq r \leq b \leq q-1, r<q-1) \\
& \Leftrightarrow\left[\begin{array}{l}
b \\
r
\end{array}\right]\left(4 T^{2}\right)^{r / 2} \not \equiv 1\left(\bmod T^{2}-d\right)(2 \leq r \leq b \leq q-1,2 \mid r<q-1) \\
& \Leftrightarrow\left[\begin{array}{l}
b \\
r
\end{array}\right](4 d)^{r / 2} \not \equiv 1 \in \mathbb{F}_{q}(2 \leq r \leq b \leq q-1,2 \mid r) \\
& \Leftrightarrow(B)
\end{aligned}
$$

(B) $\Rightarrow(C)$: Taking $r=b$ in (B), we get $(4 d)^{r / 2} \neq 1$ for all $2 \leq r \leq q-1,2 \mid r$. So $4 d$ is a primitive element of \mathbb{F}_{q} and g is a primitive element of \mathbb{F}_{q}. For $2 \leq k \leq b_{j} \leq p-1$ $(0 \leq j \leq n-1)$ we take $r=k \frac{q-1}{p-1}=k+k p+\ldots+k p^{n-1}$ and let $b=\sum_{j=0}^{n-1} b_{j} p^{j}$. From (B) and Lucas formula we know that

$$
g^{k / 2} \prod_{j=0}^{n-1}\left[\begin{array}{l}
b_{j} \\
k
\end{array}\right] \equiv\left[\begin{array}{l}
b \\
r
\end{array}\right](4 d)^{r / 2} \neq 1 \in \mathbb{F}_{p} .
$$

(C) $\Rightarrow(B)$: Suppose that $\left[\begin{array}{l}b \\ \mathrm{r}\end{array}\right](4 \mathrm{~d})^{\mathrm{r} / 2}=1$ for some r and b , $1 \leq r \leq b \leq q-1,2 \mid r$. Then $(4 d)^{r / 2} \in \mathbb{F}_{p}$. Since $4 d$ is a primitive element of \mathbb{F}_{p}, we get $\left.\frac{q-1}{p-1} \right\rvert\, \frac{r}{2}$ and $r=\sum_{j=0}^{n-1} k p^{j}$ for some $k, 2 \mid k, 2 \leq k \leq p-1$. Let $b=\sum_{j=0}^{n-1} b_{j} p^{j^{\prime}}$ be the p-adic expansion. Then

$$
g^{k / 2} \prod_{j=0}^{n-1}\left[\begin{array}{l}
b \\
k
\end{array}\right]=(4 d)^{r / 2}\left[\begin{array}{l}
b \\
r
\end{array}\right]=1
$$

which is contradict to (C). This completes the proof of lemma 7.

Remark. Ireland and Small [6] proved the equivalence (A) \Leftrightarrow (B) for $q=p \geq 3$.
The statement (C) of lemma 7 is only concerned on the basic field \mathbb{F}_{p} so that it can be used to prove the following remarkable result.

Lemma 8. Suppose $q=p^{n}, q^{\prime}=p^{m}, p \geq 3, n>m$. If there exists a regular quadratic irreducible polynomial in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$, then there exists such polynomial in $\mathbb{F}_{q},[\mathrm{~T}]$.

Proof. Suppose that $\mathrm{T}^{2}-\frac{\mathrm{d}}{4}$ is a regular quadratic irreducible polynomial in $\mathbb{F}_{q}[\mathrm{~T}]$. From lemma 7 we know that d is a primitive element of \mathbb{F}_{q}, thus $g=d^{\frac{q-1}{p-1}}$ is a primitive element of \mathbb{F}_{q}. Therefore there exists a primitive element d^{\prime} in \mathbb{F}_{q}, such that $g=\left(d^{\prime}\right)^{\frac{q^{\prime}-1}{p-1}}$. From lemma 7 (c) we know that

$$
\begin{aligned}
& T^{2}-\frac{d}{4} \in \mathbb{F}_{q}[T] \text { is regular } \\
& \Rightarrow g^{k / 2} \prod_{j=0}^{n-1}\left[\begin{array}{l}
b_{j} \\
k
\end{array}\right] \not \equiv 1(\bmod p) \\
& \quad\left(\text { for all } 1 \leq k \leq b_{j} \leq p-1,0 \leq j \leq n-1,2 \mid k\right)
\end{aligned}
$$

$$
\Rightarrow g^{k / 2} \prod_{j=1}^{m-1}\left[\begin{array}{l}
b_{j} \\
k^{2}
\end{array}\right] \not \equiv 1(\bmod p)
$$

(for all $1 \leq \mathrm{k} \leq \mathrm{b}_{\mathrm{j}} \leq \mathrm{p}-1,0 \leq \mathrm{j} \leq \mathrm{m}-1,2 \mid \mathrm{k}$)

$$
\Rightarrow T^{2}-\frac{d^{\prime}}{4} \in \mathbb{F}_{q},[T] \text { is regular. }
$$

Now we are ready to prove Theorem 2. The lemma 2 says that there are no regular quadratic irreducible polynomial in $\mathbb{F}_{\mathrm{p}}[\mathrm{T}]$ for $37 \leq \mathrm{p} \leq 269$, so there are no such polynomial in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$ for $\mathrm{p} \mid \mathrm{q}, 37 \leq \mathrm{p} \leq 269$ by lemma 8 .

For $\mathrm{p}=2$, the lemma 6 says that a polynomial $\mathrm{T}^{2}+\mathrm{cT}+\mathrm{d}$ in $\mathbb{F}_{\mathrm{q}}[\mathrm{T}]$ is regular iff c is a primitive element of \mathbb{F}_{q}. Let $A_{c}=\left\{a^{2}+c a \mid a \in \mathbb{F}_{q}\right\}$ which is an additive subgroup of \mathbb{F}_{q} and isomorphic to $\mathbb{F}_{q} /\{0, c\}$, thus $\left|A_{c}\right|=q / 2$. It is easy to see that $\mathrm{T}^{2}+\mathrm{cT}+\mathrm{d}$ is irreducible iff $\mathrm{d} \notin \mathrm{A}_{\mathrm{c}}$. Therefore there exist exactly $\varphi(\mathrm{q}-1)$ classes of regular quadratic irreducible polynomials as shown in theorem 2.

For $p=3$, from lemma $7(C)$ we know that if $T^{2}-d \in \mathbb{F}_{q}[T]$ is regular, then d is a primitive element of \mathbb{F}_{q} and the condition (C) is trivially satisfied. Therefore $\mathrm{T}^{2}-\mathrm{d}$ is regular if and only if d is a primitive element of \mathbb{F}_{q}.

For $p=5$, the lemma 2 showed that there is only one regular quadratic polynomial $\mathrm{T}^{2}+3$ in $\mathbb{F}_{5}[\mathrm{~T}]$. Let $\mathbb{F}_{25}=\mathbb{F}_{5}[\sqrt{2}]$. If $\mathrm{T}^{2}-\mathrm{d}$ is a regular irreducible polynomial in $\mathbb{F}_{25}[\mathrm{~T}]$, then $(-\mathrm{d})^{\frac{25-1}{5-1}}=3$ from the proof of lemma 8. Thus $\mathrm{d}= \pm 1 \pm 2 \sqrt{2}$. We can varify easily that the condition (C) of lemma 7 is hold for such d. Therefore there exist exactly four regular quadratic irreducible $\mathrm{T}^{2} \pm(1 \pm 2 \sqrt{2})$ in $\mathbb{F}_{25}[\mathrm{~T}]$. For $\mathrm{q}=125$ we have

$$
3\left[\begin{array}{l}
3 \\
2
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right] \equiv 1(\bmod 5)
$$

From lemma 7 (C) we know that there is no such polynomial in $\mathbb{F}_{125}[\mathrm{~T}]$. By lemma 8, there is no such polynomial in $\mathbb{F}_{5^{\mathrm{n}}}[\mathrm{T}]$ for all $\mathrm{n} \geq 3$.

For $p=7,13$ and 31 , we have

$$
\begin{aligned}
& (-4)^{2}\left[\begin{array}{l}
5 \\
4
\end{array}\right]\left[\begin{array}{l}
5 \\
4
\end{array}\right] \equiv 1(\bmod 7) \\
& 6\left[\begin{array}{l}
3 \\
2
\end{array}\right]\left[\begin{array}{l}
7 \\
2
\end{array}\right] \equiv 1(\bmod 13) \\
& 11\left[\begin{array}{l}
3 \\
2
\end{array}\right]\left[\begin{array}{l}
13 \\
2
\end{array}\right] \equiv 24\left[\begin{array}{l}
3 \\
2
\end{array}\right]\left[\begin{array}{l}
8 \\
2
\end{array}\right] \equiv 1(\bmod 31) .
\end{aligned}
$$

From lemma $7(\mathrm{C})$ and lemma 8 we know that there is no regular quadratic irreducible polynomial in $\mathbb{F}_{\mathrm{P}^{\mathrm{n}}}[\mathrm{T}]$ for $\mathrm{P}=7,13,31$ and $\mathrm{n} \geq 2$. This completes the proof of theorem 2.

To end this paper we raise the following problem of elementary number theory:
For each prime number $p \geq 37$ and each primitive element of \mathbb{F}_{p}, are there exist integers $\mathrm{r}, \mathrm{b}, 2 \leq 2 \mathrm{r} \leq \mathrm{b} \leq \mathrm{p}-1$ such that $\mathrm{g}^{\mathrm{r}}\left[\begin{array}{l}\mathrm{b} \\ 2 \mathrm{r}\end{array}\right] \equiv 1(\bmod \mathrm{p})$? (The calculating result of Ireland and Small (lemma 2) says that is true for $37 \leq p \leq 269$.)

References

[1] Keqin Feng, A note on irregular prime polynomials in cyclotomic function field theory, Jour. of Number Theory, 22 (1986), 31-37.
[2] D. Goss, Kummer and Herbrand criterion in the theory of function field, Duke, Math. J. 49 (1982), 377-384.
[3] The arithmetic of function fields 2: The 'cyclotomic' theory, Jour. of Algebra, 81 (1983), 107-149.
[4] , Analogies between global fields, Canad. Math. Soc. Conference Proceedings, Amer. Math. Soc. 7 (1987), 83-114.
[5] D. Goss and W. Sinnott, Class Group of Function Fields, Duke Math. J. 52 (1985), 507-516.
[6] K.F. Ireland and R.D. Small, A note on Bernoilli-Goss polynomials, Canad. Math. Bull., 27 (1984), 178-184.
[7] Math. Comp. 46 (1986), 337-340, Class Numbers of Cyclotomic Function Fields, Math. Comp. 46 (1986), 337-340.

