Bernoulli—Goss polynomial and class number of cyclotomic function fields

by

Keqin Feng and Wenyun Gao

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26

D-5300 Bonn 3

Federal Republic of Germany

Dept. of Mathematics China University of Science and Technology Hefei, Anhui

People's Republic of China

MPI/88-42

Bernoulli-Goss polynomial and class number of Cyclotomic function fields

Keqin Feng Wenyun Gao

Abstract

Let $k = \mathbb{F}_q(T)$, $q = p^n$, $K = k(\Lambda_P)$ the cyclotomic function field with conductor P = P(T), K^+ the maximal real subfield of K, $h_P(h_P^+)$ the class number of divisor group (of degree zero) of $K(K^+)$, $h_P^- = h_P/h_P^+ (\in \mathbb{Z})$. In the paper we prove that for any fixed $q \geq 3$, there exist infinite many of irreducible manic polynomial $P \in \mathbb{F}_q[T]$ such that $p \mid h_P^+$ and $p^{q-2} \mid h_P^-$. We also determine all regular quadratic irreducible polynomial in $\mathbb{F}_q[T]$ for $2 \leq p \leq 269$.

1. Introduction and state of results

The cyclotomic function field theory has been developed extensively in recent years (see survey articles Goss [3] and [4]). There are many analogies with cyclotomic number field case, but some situations are quite different. In number field case, for example, the well-known Kummer results says that

$$p \mid h_{D}^{+} \Rightarrow p \mid h_{D}^{-} \iff p \mid h_{D}^{-}$$

where $h_p(h_p^+)$ is the class number of $\mathbb{Q}(e^{\frac{2\pi i}{p}})$ ($\mathbb{Q}(e^{\frac{2\pi i}{p}}+e^{\frac{-2\pi i}{p}})$), $h_p^-=h_p/h_p^+$, p is prime number. And Vandiver conjecture says $p \nmid h_p^+$ for all odd prime number p. For function field case, the following calculated data by Ireland and Small [7] shows that each possibility can occure (p=q=3, P(T)) is an irreducible polynomial in $\mathbb{F}_3[T]$. From now on, all irreducible polynomials are monic):

cases	P(T)	h ⁺ p	h_p_
3∤h ⁺ _P ,3∤h [−] _p	$2+T^2+T^3$	53 • 313	$2^{12} \cdot 5 \cdot 79$
3∤h ⁺ _P ,3∤h ⁻ _p 3 h ⁺ _P ,3 h ⁻ _P			$2^{12} \cdot 3^6$
3∤h _P +,3 h _P	$1+2T^2+T^3$	53 · 313	$2^{12} \cdot 3 \cdot 131$
3 h _P ⁺ ,3∤h _P	$2+T^2+T^4$	$2^7 \cdot 3 \cdot 11^2 \cdot 17 \cdot 29^2 \cdot 421^2 \cdot 191969^2$	$2^{39} \cdot 241 \cdot 3329 \cdot 65521 \cdot 1322641$
	,		

As an analogy of number field case, we introduce the following

For finding elementary criterion of regularity of irreducible polynomial in $\mathbb{F}_q[T]$, Goss [2] introduces a series of polynomial as an analogy of classical Bernoulli number. For $j,i\geq 0$, we define

$$S_{j}^{i}(T) = \sum_{\substack{A \in \mathbb{F}_{q}[T] \\ \text{deg} A = j}} A^{i}$$

$$\beta_i(T) = \begin{cases} \sum\limits_{j\geq 0}^{\sum} S^i_j(T), & \text{if } (q-1) \nmid i \\ \\ -\sum\limits_{j\geq 0}^{\sum} j S^i_j(T), & \text{if } (q-1) \mid i \end{cases}.$$

It is easy to see that $S^i_j(T)=0$ if j(q-1)>i. Thus $\beta_i(T)$ is a polynomial in $\mathbb{F}_q[T]$ wich is called the Bernoulli–Goss polynomial. Goss proved that

 $\underline{\text{Lemma 1}} \ (\ [2 \] \). \ \text{Let P be an irreducible polynomial in $\mathbb{F}_q[T]$, $d = \deg P$. Then P is irregular of first (second) class iff there exists i, $1 \le i \le q^d-2$, $(q-1)\not+i$ $((q-1)|i)$ such that $P \ | \beta_i$. (So P is regular iff $P\not+\beta_i(T)$ for each i, $1 \le i \le q^d-2$.)$

Goss [2] and Feng [1] proved that for each q, there exist infinite many of irregular irreducible polynomials of first class; for each $q \ge 3$ there exist infinite many of irregular irreducible polynomials of second class (for q=2, $h_P=1$, thus there is no irregular polynomial of first class in $\mathbb{F}_2[T]$). In this paper we improve this result by the following theorem (the proof of theorem 1 is in § 2)

Theorem 1. For each $q \ge 3$, there exist infinite many irreducible polynomials P in $\mathbb{F}_q[T]$ such that $p \mid h_P^+$ and $p^{q-2} \mid h_P^-$. Particularly, there exist infinite many irreducible polynomials in $\mathbb{F}_q[T]$ which are irregular both in first and second class.

On the other hand, concerning to regular irreducible polynomials, the result of [6] shows that regular irreducible polynomials are rare at least for the case of q=p and $\deg P=2$. Before we state the result of [6], we make following remark. It is easy to see from the definition of $\beta_i(T)$ that $\beta_i(T)=\beta_i(T+a)$ for any $a\in \mathbb{F}_q$. Thus $P(T)\mid\beta_i(T)\iff Q(T)\mid\beta_i(T)$ where Q(T)=P(T+a). Therefore P(T) and Q(T) have

the same regularity, and we can consider the regularity of equivalent class of irreducible polynomials by the action of group $\{\tau_a: P(T) \longmapsto P(T+a) \mid a \in \mathbb{F}_q\}$. Particularly, for the case of $2 \mid q$, we can consider only the polynomials $P(T) = T^2$ —d where d is a non-square element in \mathbb{F}_q .

 $\underline{\text{Lemma 2}} \text{ (Ireland and Small [6]). If } 3 \leq p \leq 269 \text{ , there exist regular quadratic}$ polynomial in $\mathbb{F}_q[T]$ for only p=3,5,7,13 and 31. There are

$$p = 3,$$
 $T^2 + 1$
 $p = 5,$ $T^2 + 3$
 $p = 7,$ $T^2 + 1$
 $p = 13,$ $T^2 + 5$
 $p = 31,$ $T^2 + 5$ and $T^2 + 25$.

In this paper the above result is generalized to the case $q=p^n$. At first we give several criterion for regularity of quadratic irreducible polynomial (lemma 6 and 7), then all regular quadratic irreducible polynomials in $\mathbb{F}_q[T]$ are determined for $2 \le p \le 269$. The result is (the proof of Theorem 2 is in § 3):

Theorem 2. Let $q=p^n$, $2 \le p \le 269$. The following list includes all (equivalence class of) regular quadratic irreducible polynomials in $\mathbb{F}_q[T]$.

- (a) $q=2^n$, $\varphi(q-1)$ classes: T^2+cT+c^2d where c takes $\varphi(q-1)$ primitive elements of \mathbb{F}_q and d is any fixed element in the set $\mathbb{F}_q-\{\alpha^2+\alpha\,|\,\alpha\in\mathbb{F}_q\}$.
- (b) $q=3^n$, $\varphi(q-1)$ classes: T^2-d where d takes $\varphi(q-1)$ primitive elements of \mathbb{F}_q .
 - (c) q = 5, one class: $T^2 + 3$. q = 25, four classes: $T^2 \pm (1 \pm 2\sqrt{2})$.

- (d) q = 7, one class: $T^2 + 1$.
- (e) q = 13, one class: $T^2 + 5$.
- (f) q = 31, two classes: $T^2 + 5$ and $T^2 + 25$.

2. Proof of Theorem 1

Both proofs of Theorem 1 and Theorem 2 are based on a closed expression for Bernoulli-Goss polynomial $\beta_i(T)$ (Lemma 4). At first we list some fundamental properties of $\beta_i(T)$.

<u>Lemma 3</u> (Goss [4]).

(a) (reccurence formula) $\beta_0(\mathbf{T})=0$, $\beta_1(\mathbf{T})=1~$ and

$$\beta_{\mathbf{i}}(\mathbf{T}) = 1 - \sum_{\mathbf{j}=1}^{\mathbf{i}-1} \begin{bmatrix} \mathbf{i} \\ \mathbf{j} \end{bmatrix} \mathbf{T}^{\mathbf{j}} \beta_{\mathbf{j}}(\mathbf{T}) \quad (\mathbf{i} \ge 2)$$

$$(\mathbf{q}-1) \mid (\mathbf{i}-\mathbf{j})$$

$$(1)$$

- (b) For $i \ge 1$, $\beta_i(T) \equiv 1 \pmod{T}$.
- (c) $\beta_{pi}(T) = \beta_i(T)^p$ where p is the characteristic of \mathbb{F}_q .
- (d) (congruence property) If $i_1, i_2 \ge 1$, $d \ge 1$, $i_1 \equiv i_2 \pmod{q^d-1}$, then

 $\beta_{i_1}(T) \equiv \beta_{i_2}(T) \pmod{T^q} - T$. Particularly, $\beta_{i_1}(T) \equiv \beta_{i_2}(T) \pmod{P}$ for any irreducible polynomial P(T) in $\mathbb{F}_q[T]$ with degree d.

Let i be a positive integer, $i=c_0+c_1q+c_2q^2+\dots$ the q-adic expansion, $\ell(i)=c_0+c_1+c_2+\dots$. Then $\ell(i)\equiv i\pmod{q-1}$.

<u>Lemma 4</u>. Suppose $i \ge 1$, s = q-1.

- (a) $\beta_i(T) = 1$ for $\ell(i) \leq s$.
- (b) If $i = a + bq^e$, $e \ge 1$, $1 \le a$, $b \le q-1$, $\ell(i) = a+b > s$, then

$$\beta_{\mathbf{i}}(\mathbf{T}) = 1 - \begin{bmatrix} \mathbf{b} \\ \mathbf{r} \end{bmatrix} (\mathbf{T}^{\mathbf{q}^{\mathbf{e}}} - \mathbf{T})^{\mathbf{r}}$$

where $r = a+b-s(s \ge 1)$.

<u>Proof.</u> (a) The recurrent formula (1) can be rewritten as following (let ks = i-j):

$$\beta_{i}(T) = 1 - \sum_{1 \leq ks < i} \begin{bmatrix} i \\ ks \end{bmatrix} T^{i-ks} \beta_{i-ks}(T)$$
(2)

We need to show that if $1 \le ks < i$ then $\left[{i\atop ks} \right] \equiv 0 \pmod p$. Suppose that $\left[{i\atop ks} \right] \not\equiv 0 \pmod p$. From the Lucas formula we know that $\ell(i) > \ell(ks) \ge 1$. Since $\ell(ks) \equiv ks \equiv 0 \pmod s$ we know that $\ell(ks) \ge s$. Therefore $\ell(i) > s$ which is contradiction to the assumption $\ell(i) \le s$.

$$\beta_{i}(T) = 1 - \sum_{1 \le ks \le i} \begin{bmatrix} i \\ ks \end{bmatrix} T^{i-ks}$$

From
$$\ell(ks) = s$$
, $ks < i = a + bq^e$, $\begin{bmatrix} i \\ ks \end{bmatrix} \not\equiv 0 \pmod{p}$ we know

$$ks = (s-m) + mq^e$$
, $s-a \le m \le b$.

Thus

$$\beta_{\mathbf{i}}(\mathbf{T}) = 1 - \sum_{\mathbf{m}=s-a}^{b} \begin{bmatrix} \mathbf{a} \\ \mathbf{s}-\mathbf{m} \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{m} \end{bmatrix} \mathbf{T}^{(b-\mathbf{m})q^{e}} + \mathbf{a} + \mathbf{m} - \mathbf{s}$$

$$= 1 - \sum_{\lambda=0}^{r} \begin{bmatrix} \mathbf{a} \\ \lambda \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{b} + \lambda - \mathbf{r} \end{bmatrix} \mathbf{T}^{(r-\lambda)q^{e}} + \lambda$$

$$(\text{let } \lambda = \mathbf{m} - (\mathbf{s} - \mathbf{a}) = \mathbf{m} - (\mathbf{b} - \mathbf{r}))$$

$$= 1 - \sum_{\lambda=0}^{r} \begin{bmatrix} \mathbf{a} \\ \lambda \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{r} - \lambda \end{bmatrix} \mathbf{T}^{(r-\lambda)q^{e}} + \lambda .$$

But

$$\begin{bmatrix} a \\ \lambda \end{bmatrix} \begin{bmatrix} b \\ r-\lambda \end{bmatrix} = \frac{a(a-1)...(a-\lambda+1)b(b-1)...(b-r+\lambda+1)}{\lambda! (r-\lambda)!}$$

$$= \frac{(s-b+r)(s-b+r-1)...(s-b+r-\lambda+1)b(b-1)...(b-r+\lambda+1)}{\lambda! (r-\lambda)!}$$

$$\equiv (-1)^{\lambda} \begin{bmatrix} r \\ \lambda \end{bmatrix} \frac{(b-r+1)(b-r+2)...(b-r+\lambda)b(b-1)...(b-r+\lambda+1)}{r!}$$

$$= (-1)^{\lambda} \begin{bmatrix} r \\ \lambda \end{bmatrix} \begin{bmatrix} b \\ r \end{bmatrix} \pmod{p}.$$

Therefore

$$\beta_{\mathbf{i}}(\mathbf{T}) = 1 - \begin{bmatrix} \mathbf{b} \\ \mathbf{r} \end{bmatrix} \sum_{\lambda=0}^{\mathbf{r}} \begin{bmatrix} \mathbf{r} \\ \lambda \end{bmatrix} \mathbf{T}^{(\mathbf{r}-\lambda)\mathbf{q}^{\mathbf{e}}} (-\mathbf{T})^{\lambda} = 1 - \begin{bmatrix} \mathbf{b} \\ \mathbf{r} \end{bmatrix} (\mathbf{T}^{\mathbf{q}^{\mathbf{e}}} - \mathbf{T})^{\mathbf{r}}.$$

 $\begin{array}{l} \underline{Corollary}. \ \ Suppose \ i = aq^e + bq^f, \, f > e \geq 0, \, 1 \leq a, \, b \leq q-1, \, r = a+b-(q-1) \geq 1 \; . \\ \\ Then \ \ \beta_i(T) = 1 - \left[\begin{array}{c} b \\ r \end{array} \right] (T^{q^f} - T^{q^e})^r \; . \end{array}$

This is a direct conclusion of lemma 4 and lemma 3, (c).

Lemma 5. There exist infinite many of irreducible polynomial P in $\mathbb{F}_{q}[T]$ satisfying the following property:

There exist a positive integer $\,t< deg\;P\,$ such that $\,P\,|\,\beta_i(T)\,$ for all $\,i$, $\,1+(q-1)q^t\leq i\leq (q-1)+(q-1)q^t$.

<u>Proof.</u> We need to show that for any $d_1 \ge 1$, there exists an irreducible polynomial P with degree $> d_1$ satisfying above—mentioned property. Let $e = d_1!$. From lemma 4 we know that for $1 \le i \le q-1$,

$$\beta_{i+(q-1)q^e}(T) = 1 - \left[{q-1 \atop i} \right] (T^{q^e} - T)^i = 1 + (-1)^{i+1} (T^{q^e} - T)^i.$$
(3)

Thus for any irreducible polynomial Q with degree $\leq d_1$,

$$\beta_{1+(q-1)q} e^{(T) \equiv 1 \pmod{Q}}$$
(4)

From (3) we know that $\deg \beta = 1+(q-1)q^e$ (T) ≥ 1 , so $\beta = 1+(q-1)q^e$ have an irreducible factor P = P(T). From (4) we know that $d = \deg P > d_1$. Let t be the least non-negative residue of $e \pmod d$. From lemma 3(d) we know that $P \mid \beta = 1+(q-1)q^t$ we have from (3) that

$$\beta_{1+(q-1)q^t} = 1 + (t^{q^t} - T) | 1 + (-1)^{i+1} (T^{q^t} - T)^i = \beta_{i(q-1)q^t}.$$

Therefore $P \mid \beta$ $i+(q-1)^t$ $(1 \le i \le q-1)$. At last, from $P \mid \beta_q(T) = 1$ we know that $t \ge 1$. This completes the proof of lemma 5.

Now we are ready to prove Theorem 1. We know that the Galois group of the cyclotomic extension $k(\Lambda_P)_{/k}$ is naturally isomorphic to $G = (\mathbb{F}_q[T]_{/P})^x$ which is cyclic group with order q^d-1 , $d=\deg P$. Let C and C^+ be the p-part of the divisor class group of $k(\Lambda_P)$ and its maximal real subfield respectively. Then C and C^+ are $\mathbb{Z}_p[G]$ —module and have direct decomposition

$$C = \prod_{i=0}^{d-2} C(\chi^{i}), C^{+} = \prod_{i=0}^{d-2} C(\chi^{i})$$

where $\{\chi^i \mid 0 \le i \le q^d - 2\}$ is the character group of G. Goss and Sinnott [7] proved that

$$C(\chi^{i}) \neq 1 \iff P \mid \beta_{q^{d}-1-i}(T)$$
 (5)

Theorem 1 is a direct conclusion of (5) and lemma 5.

3. Proof of Theorem 2

At first we give several criterion for regularity of quadratic irreducible polynomial in $\mathbb{F}_q[T]$ by considering two cases 2|q and $2\not\uparrow q$ separately.

 $\underline{\text{Lemma 6}}. \ \ \text{Suppose 2} \ | \ q \ , \ P = T^2 + cT + d \ \ \text{is an irreducible polynomial in}$ $\mathbb{F}_q[T] \ . \ Then$

P is regular \Longleftrightarrow c is a primitive element of \mathbb{F}_q .

<u>Proof.</u> From the definition of regularity we know that P is regular \iff P | $\beta_i(T)$ $(1 \le i \le q^2-2)$

$$\Leftrightarrow$$
 P $\not\vdash$ β_i (T) (for all $i = a+bq$, $1 \le a,b \le q-1$, $2q-2 \ge a+b \ge q$) (by lemma 4 (a))

$$\iff \begin{bmatrix} b \\ r \end{bmatrix} (T^{q} + T)^{r} \not\equiv 1 \pmod{P} \text{ (for all } 1 \leq r \leq b \leq q-1 \text{ , } r < q-1 \text{)}$$

$$\text{(by lemma 4 (b))}.$$

Since

$$T^{2q} \equiv (cT + d)^q = cT^q + d \equiv cT^q + T^2 + cT \pmod{P}$$

we know that $(T^q+T+c)(T^q+T)\equiv 0\ (\text{mod}\ P)$. But $P\mid T^q+T$, so $T^q+T\equiv c\ (\text{mod}\ P)$. Therefore

$$P \text{ is regular} \Longleftrightarrow \left[\begin{array}{c} b \\ r \end{array}\right] c^r \not\equiv 1 \text{ (mod P) (for all } 1 \leq r \leq b \leq q-1, \, r < q-1)$$

$$\iff$$
 $c^r \not\equiv 1 \pmod{P}$ (for $1 \leq r < q-1$)

$$\Longleftrightarrow c^r \neq 1 \in \mathbb{F}_q \text{ (for } 1 \leq r < q-1)$$

 \iff c is a primitive element of \mathbb{F}_q .

For the case of 2 \mid q , as we said in § 1, each equivalence class has exact one quadratic irreducible polynomial T^2 —d where d is a non-square element of \mathbb{F}_q .

Lemma 7 Suppose $q=p^n$, $p\geq 3$, d is a non-square element of \mathbb{F}_q . Then following statements are equivalent to each other.

(C) 4d is a primitive element of
$$\mathbb{F}_q$$
, and

$$g^{k/2} \prod_{j=0}^{n-1} {b_j \choose k} \neq 1 \in \mathbb{F}_p \text{ (for all } 2 \le k \le b_j \le p-1, 2 \mid k \text{)}$$

where
$$g = (4d)^{\frac{q-1}{p-1}} \in \mathbb{F}_p$$
.

 $\underline{Proof}\,$ As the same as the case $\,2\,|\,q$, from lemma 4 we know that

$$(A) \Longleftrightarrow \left(\begin{smallmatrix} b \\ r \end{smallmatrix}\right) (T^q - T)^r \not\equiv 1 \; (\text{mod } T^2 - d) \; (\text{for all } 1 \leq r \leq b \leq q - 1 \; , \; r < q - 1 \;).$$

Since $T^{2q-2} \equiv d^{q-1} \equiv 1 \pmod{T^2-d}$, $T^{q-1} \equiv d^{\frac{q-1}{2}} \not\equiv 1 \pmod{T^2-d}$ (d is non-squre element of \mathbb{F}_q), thus $T^{q-1} \equiv -1 \pmod{T^2-d}$ and $T^q \equiv -T \pmod{T^2-d}$. Therefore

(A)
$$\iff$$
 $\left\{\begin{array}{l} b \\ r \end{array}\right\} (-2T)^r \not\equiv 1 \pmod{T^2-d} \ (1 \le r \le b \le q-1, r < q-1)$

$$\iff \left[\begin{array}{l} b \\ r \end{array}\right] (4T^2)^{r/2} \not\equiv 1 \pmod{T^2-d} \ (2 \le r \le b \le q-1, 2 \mid r < q-1)$$

$$\iff \left[\begin{array}{l} b \\ r \end{array}\right] (4d)^{r/2} \not\equiv 1 \in \mathbb{F}_q \ (2 \le r \le b \le q-1, 2 \mid r)$$

$$\iff (B)$$

(B) \Rightarrow (C): Taking r = b in (B), we get $(4d)^{r/2} \neq 1$ for all $2 \leq r \leq q-1$, $2 \mid r$. So 4d is a primitive element of \mathbb{F}_q and g is a primitive element of \mathbb{F}_q . For $2 \leq k \leq b_j \leq p-1$ $(0 \leq j \leq n-1)$ we take $r = k\frac{q-1}{p-1} = k + kp + ... + kp^{n-1}$ and let $b = \sum_{j=0}^{n-1} b_j p^j$. From (B) and Lucas formula we know that

$$g^{k/2} \prod_{j=0}^{n-1} {b \choose k} \equiv {b \choose r} (4d)^{r/2} \neq 1 \in \mathbb{F}_{p}.$$

 $(C) \Rightarrow (B) \text{: Suppose that } \left[\begin{array}{c} b \\ r \end{array}\right] (4d)^{r/2} = 1 \text{ for some } r \text{ and } b \text{ ,}$ $1 \leq r \leq b \leq q-1 \text{ , } 2 \mid r \text{ . Then } (4d)^{r/2} \in \mathbb{F}_p \text{ . Since } 4d \text{ is a primitive element of } \mathbb{F}_p \text{ , we}$ $\text{get } \frac{q-1}{p-1} \left| \frac{r}{2} \text{ and } r = \sum_{j=0}^{n-1} kp^j \text{ for some } k \text{ , } 2 \mid k \text{ , } 2 \leq k \leq p-1 \text{ . Let } b = \sum_{j=0}^{n-1} b_j p^j \text{ be the } p \text{ adic expansion. Then}$

$$g^{k/2} \frac{n-1}{\prod_{j=0}^{n-1} {b_j \choose k}} = (4d)^{r/2} {b \choose r} = 1$$

which is contradict to (C). This completes the proof of lemma 7.

Remark. Ireland and Small [6] proved the equivalence (A) \iff (B) for $q=p\geq 3$. The statement (C) of lemma 7 is only concerned on the basic field \mathbb{F}_p so that it can be used to prove the following remarkable result.

Lemma 8. Suppose $q=p^n$, $q'=p^m$, $p\geq 3$, n>m. If there exists a regular quadratic irreducible polynomial in $\mathbb{F}_q[T]$, then there exists such polynomial in $\mathbb{F}_q[T]$.

<u>Proof.</u> Suppose that $T^2-\frac{d}{4}$ is a regular quadratic irreducible polynomial in $\mathbb{F}_q[T]$. From lemma 7 we know that d is a primitive element of \mathbb{F}_q , thus $g=\frac{q-1}{p-1}$ is a primitive element of \mathbb{F}_q . Therefore there exists a primitive element d' in \mathbb{F}_q , such that $g=(d')^{\frac{q'-1}{p-1}}$. From lemma 7 (c) we know that

$$\mathbf{T}^2 - \frac{\mathrm{d}}{4} \in \mathbb{F}_{\mathbf{q}}[\mathbf{T}] \text{ is regular}$$

$$\Rightarrow g^{k/2} \prod_{j=0}^{n-1} {b_j \choose k} \not\equiv 1 \pmod{p}$$

(for all
$$1 \le k \le b_j \le p-1$$
, $0 \le j \le n-1$, $2 \mid k$)

$$\Rightarrow g^{k/2} \xrightarrow{m-1} {b \choose k} \not\equiv 1 \pmod{p}$$

(for all
$$1 \le k \le b_j \le p-1, 0 \le j \le m-1, 2 \mid k$$
)

$$\Rightarrow T^2 - \frac{d'}{4} \in \mathbb{F}_q$$
, [T] is regular.

Now we are ready to prove Theorem 2. The lemma 2 says that there are no regular quadratic irreducible polynomial in $\mathbb{F}_p[T]$ for $37 \le p \le 269$, so there are no such polynomial in $\mathbb{F}_q[T]$ for $p \mid q, 37 \le p \le 269$ by lemma 8.

For p=2, the lemma 6 says that a polynomial T^2+cT+d in $\mathbb{F}_q[T]$ is regular iff c is a primitive element of \mathbb{F}_q . Let $A_c=\{a^2+ca\mid a\in\mathbb{F}_q\}$ which is an additive subgroup of \mathbb{F}_q and isomorphic to $\mathbb{F}_q/_{\{0,c\}}$, thus $|A_c|=q/_2$. It is easy to see that T^2+cT+d is irreducible iff $d\notin A_c$. Therefore there exist exactly $\varphi(q-1)$ classes of regular quadratic irreducible polynomials as shown in theorem 2.

For p=3, from lemma 7 (C) we know that if $T^2-d\in \mathbb{F}_q[T]$ is regular, then d is a primitive element of \mathbb{F}_q and the condition (C) is trivially satisfied. Therefore T^2-d is regular if and only if d is a primitive element of \mathbb{F}_q .

For p=5, the lemma 2 showed that there is only one regular quadratic polynomial T^2+3 in $\mathbb{F}_5[T]$. Let $\mathbb{F}_{25}=\mathbb{F}_5[\sqrt[3]{2}]$. If T^2-d is a regular irreducible polynomial in $\mathbb{F}_{25}[T]$, then $(-d)^{\frac{25-1}{5-1}}=3$ from the proof of lemma 8. Thus $d=\pm 1\pm 2\sqrt[3]{2}$. We can varify easily that the condition (C) of lemma 7 is hold for such d. Therefore there exist exactly four regular quadratic irreducible $T^2\pm(1\pm 2\sqrt[3]{2})$ in $\mathbb{F}_{25}[T]$. For q=125 we have

$$3\left[\begin{array}{c}3\\2\end{array}\right]\left[\begin{array}{c}4\\2\end{array}\right]\left[\begin{array}{c}4\\2\end{array}\right]\equiv 1\ (\mathrm{mod}\ 5)\ .$$

From lemma 7 (C) we know that there is no such polynomial in $\mathbb{F}_{125}[T]$. By lemma 8, there is no such polynomial in $\mathbb{F}_{5n}[T]$ for all $n \geq 3$.

For p = 7,13 and 31, we have

$$(-4)^{2} \begin{bmatrix} 5 \\ 4 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} \equiv 1 \pmod{7}$$

$$6 \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 7 \\ 2 \end{bmatrix} \equiv 1 \pmod{13}$$

$$11 \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 13 \\ 2 \end{bmatrix} \equiv 24 \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 8 \\ 2 \end{bmatrix} \equiv 1 \pmod{31} .$$

From lemma 7 (C) and lemma 8 we know that there is no regular quadratic irreducible polynomial in $\mathbb{F}_{P^n}[T]$ for P=7, 13, 31 and $n\geq 2$. This completes the proof of theorem 2.

To end this paper we raise the following problem of elementary number theory:

For each prime number $p \ge 37$ and each primitive element of \mathbb{F}_p , are there exist integers r,b, $2 \le 2r \le b \le p-1$ such that $g^r \left(\begin{array}{c} b \\ 2r \end{array} \right) \equiv 1 \pmod{p}$? (The calculating result of Ireland and Small (lemma 2) says that is true for $37 \le p \le 269$.)

References

- [1] Keqin Feng, A note on irregular prime polynomials in cyclotomic function field theory, Jour. of Number Theory, 22 (1986), 31-37.
- [2] D. Goss, Kummer and Herbrand criterion in the theory of function field, Duke, Math. J. 49 (1982), 377-384.
- [3] ———, The arithmetic of function fields 2: The 'cyclotomic' theory, Jour. of Algebra, 81 (1983), 107–149.
- [4] ——, Analogies between global fields, Canad. Math. Soc. Conference Proceedings, Amer. Math. Soc. 7 (1987), 83–114.
- [5] D. Goss and W. Sinnott, Class Group of Function Fields, Duke Math. J. 52 (1985), 507-516.
- [6] K.F. Ireland and R.D. Small, A note on Bernoilli—Goss polynomials, Canad. Math. Bull., 27 (1984), 178–184.