
Bemoulli-Goss polynomial and class number

of cyclotomic function fields

by

Keqin Feng and Wenyun Gao

Max-Planck-Institut
für Mathematik
Gottfried-elaren-Straße 26

D-5300 Bonn 3

Federal Republic of Germany

Dept. of Mathematics
China University of Science
and Technology
Hefei, Anhui

People's Republic of China

MPI/88- 4 4



Bernoulli-Goss polynomial and dass number

of Cyclotomic function fields .

Keqin Feng Wenyun Gao

Abstract

Let k = IFq(T)) q = pU) K = k(Ap ) the cyclotomic funcHon field with conductor

P = P(T), K+ the maximal real subfield of K) hp(ht) the dass number of divisor group

(of degree zero) of K(K+)) hp = hp/ht(E 71) . In the paper we prove that for any fixed

q ~ 3 ) there exist infinite many of irreducible manic polynomial P E IFq [T] such that

pi ht and pq-2,hp . We also determine all regular quadratic irreducible polynomial in

[fq [T] for 2:5 P :5 269.

1. Introduction and state of results

The cyclotomic function field theory has been developed extensively in recent years

(see survey articIes Goss [3] and [4]). There are many analogies with cyclotomic number

field case) but same situations are quite different. In number field case) for example) the

well-known Kummer results says that
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2m 2m -2m
where hp (h;) is the class number of lQ(eP ) (lQ(eP + e----P)), h; = hp/h; ,p ia

prime number. And Vandiver conjeeture says p 1'- h+ for all odd prime number p . Forp .

function field case, the following ealeulated data by Ireland and Small [7] shows that each

possibility can oeeure (p = q =3, P(T) is an irreducible polynomial in IF3 [T] . From

now on, all irreducible polynomials are manie):

cases P(T)

~t,3-rh~ 2+T
2
+T

3

31 ht,31 hp 1+2T+T
3

3-rht,31 hp 1+2T
2
+T

3I ht,3}hp . 2+T
2
+T

4

53-313

39

53 0 313

7-301120170292042120191969

212 -5 0 79

212 _36

212 _3-131

239 _241-3329 0 65521-1322641

As an analogy of number fieId case) we introduce the following

Definition. An irreducible P = P(T) in [fq [T] is called regular (irregular) if

p -t hp (p Ihp = hthp) . P is called irregular of first (second) class if pi hp (p Iht) .

For finding elementary criterion of regularity of irreducible polynomial in IF [T] ,q

Goss [2] introduces aseries of polynomial as an analogy of classieal Bernoulli number. For

j,i ~ 0 , we define

l Al

AEIFq[T]
moni c

deg A = j
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It is easy to see that S~(T) = 0 if j(q-l) > i . Thus ß·(T) is a polynomial in [f [T]
J ] q

wich is called the Bernoulli-Goss polynomial. Goss proved that

Lemma 1 ([2]). Let P be an irreducible polynomial in [fq [T] J cl = deg P . Then

.p is irregular of first (second) dass irr there exists i, 1 ~ i ~ qd_2, (q-1)fi ((q-1) Ii) such

that P Ißi . (So P is regular iff P1'ßj {T) for each iJ 1 ~ i ~ qd_2 .)

Goss [2] and Feng [1] proved that for each q J there exist infinite many of irre­

gular irreducible polynomials of first dass; for each q ~ 3 there exist infinit~ many of irre­

gular irreducible polynomials of second dass (for q = 2, hp = 1 , thus there is uo irregular

polynomial of first dass in [f2 [T] ). In this paper we improve this result by the following

theorem (the proof of theorem 1 is in § 2)

Theorem 1. For each q ~ 3 , there exist infinite many irreducible polynomials P

in (fq [T] such that pi ht and pq-2 j hp . ParticularlYJ there exist infinite many irre­

ducible polynomials in !F [T] which are irregular both in first and second dass.q

On the other hand, concerning to regular irreducible polynomials J the result of [6]

shows that regular irreducible polynomials are rare at least for the case of q = p and

deg P = 2 . BefoTe we state the result of [6] J we make following remark. It is easy to see

from the definition of ß]·(T) that ß·(T) = ß·(T+a) for any a E[f . Thus
1 1 q

P(T) Ißi(T) (=} Q(T) Ißi(T) where Q{T) = P{T+a) . Therefore P(T) and Q(T) have
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the same regularity, and we can consider the regularity of equivalent daSs of irreducible

polynomials by the action of group { Ta : P(T) t-+ P(T+a) la E[fq} . Particularly, for the

case of 21 q , we can consider only the polynomials P(T) = T2-d where d is a

non-square element in Ifq .

,.'

Lemma 2 (Ireland and Small [6]). If 3 ~ p ~ 269 , there exist regular quadratic

polynomial in Ifq [T] for only p = 3,5,7)13 and 31. There are

p = 3J T 2 + 1

p = 5J T 2 + 3

P = 7, T 2 + 1

P = 13, T
2 + 5

p = 31) T
2 + 5

2
and T + 25 .

In this paper the above result is generalized to the case q = pU . At first we give

several criterion for regularity of quadratic irreducible polynomial (lemma 6 and 7), then

all regular quadratic irreducible polynamials in [f [T] are determined for 2 ~ P ~ 269 .q

The result is (the praof of Theorem 2 is in § 3):

Theorem 2. Let q = pU) 2 ~ P ~ 269 . The following list includes all (equivalence

dass of) regular quadratic irreducible polynomials in [f [T] .
q

(a) q = 2
n

J cp(q-l) classes: T
2 + cT + c2d where c takes fP(q-l) primitive

elements of {f and d is any fixed element in the set {f - {0:2 + 0: 10: E{f } .q q q

(b) q = 3
n

, cp(q-l) classes: T
2-d where d takes fP(q-l) primitive elements

of (fq .

(c) q = 5 , one dass: T 2 + 3 .

q = 25 ) four cIasses: T 2 ± (1 ± 2p) .
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2(d) q = 7 , one dass: T + 1 .

2(e) q = 13 tone dass: T + 5 .

(f) q = 31 , two classes: T2 + 5 and T2 + 25 .

2. Proof of Theorem 1

Both proofs of Theorem 1 and Theorem 2 are based on a closed expression for

Bemoulli-Goss polynomial ßi(T) (Lemma 4). At first we list some fundamental properties

of ß.(T) .
I

Lemma 3 (Goss [4]).

(a) (reccurence formula) ßO(T) = 0 , ß1(T) = 1 and

i-1

.q(T) = 1 - ;: U]TjPj(T) (i ~ 2)
_ j=1

(q-1) I (i-j)
(1)

(b) For i ~ 1, ßi(T) :: 1 (mod T) .

(c) ß .(T) = ß·(T)P where P is the chara.cteristic of IF .pI I q

(d) (congruence property) If il'i2 ~ 1, d ~ 1, i1 :: i2 (mod qd_1) , then

d
~ (T):: ~ (T) (mod Tq - T) . Particularly, ß· (T):: ß· (T) (mod P) for any

11 12 11 12

irreducible polynomial P(T) in IFq [T] with degree d.

Let i be a positive integer, i = Co + Clq + ~q2 + ... the q-adic expansion,

t(i) = Co + Cl + c2 + .... Then t(i):: i (mod q-1) .
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Lemma 4. Suppose i ~ 1, s = q-1 .

(a) ßi(T) = 1 for t(i) ~ s .

(b) If i = a + bqe, e ~ I, 1 ~ a) b ~ q-l) .e.(i) = a+b > s , then

"

where r = a+b-s(s ~ 1) .

Proof. (a) The recurrent formula (1) cau be rewritten as following (let ks = i-j ):

ßi(T) = 1 - L [~s ] Ti-ksßi_ks(T)
15ks<i

(2)

We need to show that if 1 ~ ks < i then [Ls ] :: 0 (mod p) . Suppose that

[LsJ 'f. 0 (mod p) . From the Lucas formula we know that t(i) > t(ks) ~ 1 . Since

t(ks) :: ks :: 0 (mod s) we know that t(ks) ~ s . Therefore t(i) > s which is .

contradiction to the assumption t(i) ~ s .

(b) Now we suppose that s < t(i) = a+b ~ 2s . Ir 1 5ks < i and

[~s ] 'f. 0 (mod p) ,then s ~ t(ks) < 2s by Lucas formula, and

t(i-ks) = t(i) - t(ks) ~ 2s-s = S . From the part (a) we know that ßi-ks(T) = 1 and

formula (2) becomes

ßp) = 1 - L [ ~s ] T
i
-

ks

15ks<i
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From t(ks) = s, ks < i = a + bqe, [ts ] ~ 0 (mod p) we know

ks = (s-m) + mqe , s-a ~ m ~ b .

Thus

b
. I1(T) = 1 - 1: [ s=m ] [ ~ ] T(b-m)qe + a + m-s

m=s-a

r
= 1 - \' [a ][ b ] T(r-A)qe + Ä

l Ä b+A-r
Ä=O

(let Ä = m - (s-a) = m - (b-r))

•
But

[aJ [ b ] = a(a-l) ... (a-Ä+l)bib-l) ... (b-r+A+l)
A r-Ä I\! (r- )!

= (s-b+r)(s-b+r-l) ...is-b+r-A + 1)b(b-l )... (b-r+ Ä+ 1)
! (r -1\) !

== (-I)" [ 1] {b-r+1)Cb-r+2)...Cb;f+")bCb-1)...{b-r+.l+1)

= (-I)" [1 ][n(mod p) .
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Therefore

Corollary. Suppose i = aqe + bqf, f> e ~ 0, 1 ~ a, b ~ q-l, r = a+b - (q-l) ~ 1 .

Then ßi(T) = 1 - [~ ] (Tqf _ Tqe)r .

This is a direct conclusion of lemma 4 and lemma 3, (c).

Lemma 5. There exist infinite many of irreducible polynomial P in [fq [T] satis­

fyjng the following property:

There exist a positive integer t < deg P such that P Ißi(T) for all i ,

1 + (q_l)qt ~.i ~ (q-l) + (q_l)qt .

Proof. We need to show that for any d1 ~ 1 J there exists an irreducible polynomial

P with degree > dl satisfying above-rnentioned property. Let e = d1! . From lemma 4

we know that for 1 ~ i ~ q-1 ,

ß. e(T) = 1 - [qjl ] (Tqe - T)i = 1 + (_1)i+1(Tqe _ T)i .
l+(q-l)q

(3)

Thus for any irreducible polynomial Q with degree ~ dl '

ß (T) :: 1 (mod Q)
l+(q-l)qe

(4)
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From (3) we know that deg ß (T) ~ 1 ,so ß have an irreducible
1+{q-1)qe 1+{q-1)qe

faetor P = P{T) . From (4) we know that d = deg P > d1 . Let t be the least

non-negative residue of e(mod d) . From lemma 3(d) we know that PIß t . But
1+(q-1)q

we have from (3) that

Therefore PIß t (I ~ i ~ q-1) . At last, from PIß (T) = 1 we know that
i+{q-l) q

t ~ 1 . This eompletes the proof of lemma 5.

Now we are ready to prove Theorem 1. We know that the Galois group of the eydo­

tomie extension k(Ap)/k is naturally isomorphie to G = ([fq [T] /p) x whieh is eyelie

group with order qd_1, d = deg P . Let C and C+ be the p-part of the divisor dass

group of k(Ap ) and its maximal real subfield respeetively. Then C and C+ are

Hp [G] -module and have direet decornposition

d d
~. q-2.

C = J 1 C(x
l
) l c+ = n C(X

1
)

1=0 1=0
q-lli

where {xi I0 $ i ~ qd_2} is the character group of G. Goss and Sinnott [7] proved that

C(Xl) f 1 {=} PIß cl (T)
q -l-i

Theorem 1 is a direct conclusion cf (5) and lemma 5.

(5)
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3. Praof of Theorem 2

At first we give several criterion for regularity of quadratic irreducible polynomial in

[fq [T] by considering two cases 21 q and 2,-f q separately.

Lemma 6. Suppose 21 ci ,P = T 2 + cT + d is an irreducible polynomial in

(fq [T] . Then

P is regular {=} c is a primitive element of [f .q

Praof. From the definition of regularity we know that P is regular ~ p 1 ß
i
(T)

(1 ~ i ~ q2_2)

~ P { ßi(T) (for all i = a+bq J 1 ~ a,b ~ q-l I 2q-2 ~ a+b ~ q )

(by lemma 4 (a))

{=} [~] (Tq + T)r t 1 (mod P) (for all 1 Sr Sb Sq-l ,r< q-l )

(by lemma 4 (b)) .

Since

T
2
q == (cT + d)q = cTq + d =cTq + T2 + cT (mod P)

we know that (Tq + T + c)(Tq + T) == 0 (mod P) . But P I Tq + T , so

Tq + T == c (mod P) . Therefore
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P is regular <=} [~J cr ~ 1 (mod P) (for all 1 5 r 5 b 5 q-l, r < q-l)

<=1 cI"t 1 (mod P) (fOI 1 ~ I < q-l )

f=} ,_CI =/= 1 E u= q ({OI 1 5r < q-l)

f=} c is a primitive element of [fq .

For thc case of 2 I q) as we said in § I, each equivalence dass has exact one

quadratic irreducible polynomial T2--d where d is a non-square element of tFq .

Lemma 7 Suppose q = pn ) p ~ 3 ) cl is a non-square element of u=q . Then folIo­

wing statements are equivalent to each other.

(A) T2--d is regular;

(B) [~J(4dl/2*lElFq(fora1l25r5b5q-1,2Ir)

(C) 4d is a primitive element of [fq , and

~where g = (4d)P- E u= .
p

Proof As the same as the case 21 q ) [rom lemma 4 we know that

(A) <=} [~J (T'LTl ~ 1 (mod T2-d) (for a11 1 5 r 5 b 5 q-l , r < q-l ).
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~Since T 2q-2:; dq- 1 :; 1 (mod T2--d) J Tq-1 :: d ~ 1 (mod T2--d) (d ia non-sqare

element of IF ), thus Tq-1:: -1 (mod T2-d) and Tq:: -T (mod T2--d) . Therefore
q

(A) ~. [~J (-2T)r 't 1 (mod T2--d) (1 ~ r ~ b ~ q-1, r < q-1)

~ [~J (4T2)r/2 't 1 (mod T2--d) (2 ~ r ~ b ~ q-1, 21 r < q-1)

~ (B)

(B) ~ (C): Taking r = b in (B), we get (4d)r/2 *1 for all 2 ~ r ~ q-1, 21 r 0 So 4d is

a primitive element of IF and g is a primitive element of [f 0 For 2 <k <bo <p-1q q - - J-
n-I

(0 :5 j :5 n-I) we take r = kJ;=i = k + kp + 0 .. + kpn-l and let b = 1: bjpj 0 From (B)

j=O.

and Lucas formula we know that

l/2 H [bj ] :: [b ](4d)r/2 =F 1 EIF .
j=O k r p

(C) =} (B): Suppose that [~J (4d)r/2 = 1 for some rand b,

1 ~ r ~ b ~ q-1 , 21 r . Then (4d)r/2 EIfp . Since 4d is a primitive element of Ifp , we

n-I n-l

ge (iI~ an r = ; k forme k, 2 1k I 2 <k ~ ~ . Let b = ; bjPj ·be the

j=O j=O
p-adic expansion. Then
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which is contradict to (C). This completes the proof of lemma 7.

Remark. Ireland and Small [6] proved the equivalence (A) <=* (B) for q = p ~ 3 .
..

The statement (C) of lemma 7 is onIy concerned on the basic field [f so that itp

can be used to prove the following remarkable result.

Lemma 8. Suppose q = pn, q' = pm, p ~ 3, n > m . If there exists a regular

quadratic irreducible polynomial in IFq [T] ,then there exists such polynomial in

!Fq' [T] .

Proof. Suppose that T2
- ~ is a regular quadratic irreducible polynomial in

~
[fq [T] . From lemma 7 we know that d is a primitive element of [fq J thus g = dP- is

a primitive element of [fq . Therefore there exists a primitive element d' in [fq , such

~ ,

that g = (d')P- . From lemma 7 (c) we know that

T2 - tEIfq [T] is regular

=}gk/2n [:j] "tl (modp)
J=O

(for all 1 ~ k ~ bj ~ p-l, 0 ~ j ~ 0-1, 21 k)
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/ rn-I [b.]
:} gk 2TI kJ 1: 1 (rnod p)

J =1

(for all 1 ~ k ~bj ~ p-1, 0 ~ j ~ rn-I, 21 k)

:} T
2

- f E [fq' [T] is regular.

Now we are ready to prove Theorem 2. The lemma 2 says that there are no regular

quadratic irreducible polynomial in [fp [T] for 37 ~ p ~ 269 , so there are no such poly­

nomial in (fq [T] for pi q, 37 ~ p ~ 269 by lemma 8.

For p = 2 , the lemma 6 says that a polynomial T2 + cT + d in lfq [T] is re­

gular iff c is a primitive element of lfq . Let Ac = { a
2
+ca I a Elfq} which is an

additive subgroup of [fq and isomorphie to [fq/{O,c} ,thus IAc I = q/2 . 1t is easy to

see that T2 + cT + dis irreducible iff cl ~ Ac' Therefore there exist exactly cp(q-1 )

classes of regular quadratic irreducible polynomials as shown in theorem 2.

For p = 3 , from lemma 7 (C) we know that if T
2

- d E [f [T] is regular, then dq ,

is a primitive element of [f and the condition (C) is trivially satisfied. Therefore T2--dq

is regular if and only if d is a primitive element of [f q .

For p = 5 J the lemma 2 showed that there is only one regular quadratic polynomial

T
2
+3 in [f5 [T] . Let (f25 = [f5 [12] . If T

2-d is a regular irreducible polynomial in

25-1
5=l .

[f25 [T] ,then (--d) - = 3 from the proof of lemma 8. Thus d = :i: 1 :i: 212 . We cau

varify easily that the condition (C) of lemma 7 is hold for such d. Therefore there exist

exactly four regular quadratic irreducible T 2
± (1 ± 212) in [f25 [T] . For q = 125 we

have
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3 [ ~ ] [~J [~J :: 1 (mod 5) .

From lemma 7 (C) we know that there is no such polynomial in [f125 [T] . By lemma 8,

there is no such polynomial in [f [T] for all n ~ 3 .
Sn

For p = 7,13 and 31 , we have

6 [ ~ ] [ ~ ] :: 1 (mod 13)

From lemma 7 (C) and lemma 8 we know that there is no regular quadratic irreducible

polynomial in tF n [T] for P = 7J 13, 31 and n ~ 2 . This completes the proof of
p

theorem 2.

To end this paper we raise the following problem of elementary nwnber theory:

For each prime number p ~ 37 and each primitive element of [fp , are there exist

integers r,b, 2 $ 2r $ b $ p-1 such that gr [ ~r ] :: 1 (mod p) ? (The calculating result

of Ireland arid Small (lemma 2) says that is true for 37 ~ p 5 269.)
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