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1. Let U= {({zeC l |z] < 1} be the unit disk in €. If M is
a ‘complex (Banach) manifold, Denote by H(U,M) the set of all

holomorphic maps from U to M. The Kobayashi metric of M is

defined by

(1.1) Pu(p;v) = inf{|u| | u ¢ Ty (U) and af(O,u) = v

for some f ¢ H(U,M) with f(0)=p}

for all peM and ve Tp(M). Here we identify TO(U) with
€ and | | denotes the euclidean norm. The indicatrix of M at

p with respect to the Kobayashi metric is defined by

(1.2) Ip(M) f {v e TP(M) l PM(p,v) < 1},

Let V be a complex Banach space. We say that a domain D c V

is starlike if, for all t ¢ [0,1], we have

th = {t2z l Z ¢ D} € D.

‘Phe Minkowski functional of a starlike domain D <V is a

function my =m : V + IR, defined by

0O if z =0
(1.3) n(2) =
.inf{1/¢t t >0and tz ¢ D} 4if 2 # O.

- Then, for aili Z ¢V - {0}, we have (m(z))m1

Z ¢ 3D and m(2) = 1
if and only if Z e 3D. Also D = {Z ¢ V | m(2Z) < 1}. We say that

G cV ig a complete circular domain if G is a connected,

bounded, open set with the property that if 2 ¢ G and ) ¢ U,



than AZ ¢ G. Such a domain G is clearlv starlike and O ¢ G.
Moreover the associated Minkowski functional m; has the

following homodeneity proverty:
(1.4)  mb(Az) ?.lxlmc(z) for all A e and 2 ¢ V.

Throughout the paner we shall identify the tangent space
TO(G) of G at the origin with V. Then, in varticular, the indicatrix
Id(s) will be a subset of V. Also we shall denote the restriction

FG(O,-) of the Kobayashi metric to TO(G) by F.. Then Fo,

o
G.
under the above identification, is defined on V. The following

result is due to Barth (B]:

THEOREM 1.1 Let G V be a complete circular domain. Then

G c IO(G). Moreover, if G is pseudoconvex, then G = IO(G) and,

in fact, m. = ,P°.

2. The Kobayashi metric is a biholomorphic invariant and plays
an important role in the classification of comnlex manifolds. On
the other hand one can clagsify complete circular domains by
means of their Minkowski functionals (cfr. [PW]). Barth's theorem
implies that for complete circular domains the two approaches
coincide even in the 1nf1n1te dimensional case. Pre.isely we

have the following resuit.

THEOREM 2.1 Let G, G' be two pseudoconvex, compnlete circular

domaifns in a coimwlex Banach space V. The following statements

are equivalent:



(1) G is biholomornhic to G'.
{i1) There exists a linear isomorohism A : V - VvV such that
“‘c' = mg,,° A.

(114) There exists a linear isomornhism A

Pgs Pg. oA.

V - Vv such that

PROOF. Clearly (ii)«<==>(iii) because of Theorem 1.1. Assume that
(ii) holds. Then, if Z ¢ G, we have mG.(A(Z)) = mG(Z) < 1 and
hénce A(G) € G'. Similarly one shows that G' < A(G) so that

A!G : G+ G' 1is a biholomorohic man and (i) holds. Finally if

(1) is true, because of a theorem of Braun, Kaup and Upmeier [BKU],
then there gxigts a linear isomorvhism A : V » V such that

A(G) = G' and thus (ii) follows.

q.e.d.

A simple and interesting consequence of Theorem 2.1 is the

following (cfr. [PW] for a'weaker statement):

COROLLARY 2.2 Let G c.cn be a pseudoconvex, complete circular
——— 5

domain with C” boundary and let B be the unit ball in En. The

following statements are equivalent:

(i) G is biholomorohic to IB.
(i1) There exists A eVGL(n,C) such that m.(2) = Fg(z) = ||a(2)].

(111) ﬁG ixfg H En-*Il{+ is of class C2 at the origin.

PROOF. Clearly (i)==>(ii), (i) ==>(iii), (ii)==>(iii). Also since
mp = Il 1, Theorem 2.1 implies that (ii)==>(i). We shall show that
(t11)m=> (1i). Define M = (mG)z. If (iii) holds, then M is of

2

class é on €". Moreover because of (1.4), we have for all Z ¢ ch

anid A ¢ €



(2.1) M{AZ) = |A]“M{z).
Let ;ve ¢” - {0)}. Differentiating (2.1) for A, we get

2wz _ % 2 M(xz)zu

(2.2) 0 < M(2) = ,
aAdx © u,v=1 azMaZ®

2 .
Taking limit in (2.2) as XA + O, we can conclude that M is a
positive definite hermitian form and hence (ii) follows.

g.e.d.

We shﬁll now prove a Schwarz'sllemma for holomorphic maps
between circular domains. This resuli is partly contained in [s]
in the finite»dimeﬁsional version. However our proof baéed on
Barth's theorem is ﬁuch simpler and hélds in the infinite dimensional

setting (cfr. also [FV] Theorem III.2.3 and [R] Theorem 8.1.2).

THEOREM 2.3 Let G,G' be complete circular domains in a complex

Banach space V. Let m, m' be the resvective Minkowski functionals
and assume that G' is pseudoconvex. If ¢ : G -+ G' 1is a holo-

mornhins man with aAf(N) = O, then

(1) m'(4(2)) < m(Z) for all Z ¢ G and if m'(4(2)) = m(2)
for some Z ¢ G, then, for all A ¢ € with [A] < m(z))" ],
- we have m'(6(A2)) = m(AZ) = |A|m(2).
(11) If A = d¢(0) is the differential of ¢ at O, then

A(G) c G'.

PROOF. First of all we observe that if f € H(U,G') and f£f(0) = O,
then m(£(z)) < |z] for all =z ¢ U. In fact, if we define
Q£ : U + V by gr(z) =z 1f(rz) for r ¢ (0,1), then 9, is holo-

mbrphic on U, continuous on U and g,.(3U) « G'. But then, since



G' '{§ vseudoconvex, by the Kontinuit# tssatz, grw) c G' for all

r € (0,1). Taking 1imit as Tt + 17, this implies m'(f(z)) < |z].

Let 2 ¢ G. Then Z = tc where t = m(z) and c = t 'Z ¢ 3G.
Define ¢, ¢ H(U,G) by ¢,(z) = zc. Then, as observed above,

m' (¢, (2)) jtlil for all z e U. In narticular we get
m' ($(2)) = m' (6,(t)) < t = m(2).

Since G' is pseudoconvex then m' is a olurisubharmonic function
(cfr. [B), Theorem 1). Thus the function h defined by h{x) =
m'(l"1¢(12)) on the disk U' = {A ¢ C IA] < m(Z)-1} is sub-
harmonic for everv 2 ¢ G. Since suo h =m(z), if m'(4(2)) =
m(2), then h must be constant andUhence m'(6(22)) = m(A2) =
|A[m(2) and the proof of (i) is complete.

Part (ii) follows immediately from Barth's theorem because

under the hypothesis we have

A(G) © A(I4(G)) a I,(G")) = G'.

q.e.d.

3. From now on we shall give apvlications of the above results

to the study of holomorphic maps between circular domains. First

we shall deal with isometries of the Kobayashi metric. Let M, N

be complex manifolds and ¢ : M + N be a holomornhic man. We say
that ¢ is an isomety of the Kobayashi metric (K-isometry for short)

at p e M iF for all v e Tp(ﬁ) we have FM(p,v) = FN(¢(p),d¢(n,v)).

THEOREM 3.1 ' Let G, G' be pseudoconvex, comolete circular domains

in- €® and ¢ :+ G -+ G' be a holomorohic mao with 6(0) = 0. If ¢

is a K-isometry at O, then ¢ is a linear biholomornhic map of G into G'



PROOF. Let A = d¢(0) : € + € be the differential of ¢ at O.
‘By hypothesis. . Fp. = FZOA. Thus A is non sinqular and, by Theorem
2.1.«3 is hiholomornhic to G' and, in fact, G' = A(G). But then

v = ¢0A—1v:‘G-* G is a holomorohic map such that $(0) = O

anéd dy(0) = Id. By Cartan's uniquenéss theorem we conclude that

¢1= Ida and hence § =A= de¢ (0).

qg.e.d.

COROLLARY 3.2 Let G, G' be pseudoconvex, comolete circular

domains in " and ¢ : G+ G' bhe a holomornhic man.

1(0) exists such that

(1) If G is homogeneous and 2 e ¢
¢ is a K-isometry at Z, then ¢ is a biholomornhic man.

(ii) If G' is homoaeneous and ¢ is a K-isometrv at 0 ¢ G,
then ¢ is a hiholomornhic man.

In varticular if both G, G' are homocenrous, then ¢ is bi-

holomorﬁhic if and onlv if ¢ is a K-isometry at some point 2 ¢ G.

PROOF. The claim is a straightforward conseaquence of Theorem
3.1 since automorohisms are K-isometries at everv point.

q.e.d.

4. In this section we restrict our considerations to more
special domains. Pirst we need some terminoloqgy. Let V be a
comnlex Banach gpace and K c V. A noint o0 ¢ K is called a

comolex extreme noint of K if gq = O is the only vector in Vv

such that {p + A\q | A ¢ U} € K. Let D be a convex domain in V.
We say that D is E-convex if every noint o ¢ 3D is a complex
extreme point of D. We also recall the definition of the Kobayashi

nseudodistance GM for a connected complex (Banach) manifold M,




Let p, q ¢ M. A holomorphic chain for »n, q 1is a pair
{(fj)j~1,...,u"zj)jso,...,n} such that £, ¢ H(U,M), 2z, e U
and p = £,(z,), £,(2,) = £,(2;), ..., fj(zj) = fj+1(zj)"°"
fN(zN) = q. Then,if p denotes the hymerbolic distance on U,

(4.1) 8§y (Prq) = inf { § p(zj.zj+1) | {(fj).(zj)} is a
holomorphic chain for o,ql}.

In fact, Lf D is a convex domain in a comnlex Banach space V, then,

because of a.theorem of Lemmert [L] which carries over to the

infinite dimensional case with no change, 6D is a distance and,

if p,q ¢ D, we have

(4.2) GD(p,q) = inf {p(z,w) z,w ¢ U and f(z)=p, f(w)=q

for some f ¢ H(U,D)}.

A complex geodesic (cfr. [V]) for the Kobayashi distance dM is

amap f e H(U,M) such thaf GM(f(z),f(w)) = p(z,w) for all

z,w ¢ U. It 18 known ([V])) that if G is a E-convex, complete
circular domain in a complex Banach space V, then the commlex
‘geodesics of §; are the linear mans £_ ¢ H(U,G) defined by
fc(z) = zc where c¢ is any point in 3G. The following observation

(cfr. also [P] Theorem 3.1') will be useful later.

PROPOSITION 4.1 Let G be a E~convex, complete circular domain

in a complex Banach space V. Let m be its Minkowski functional
andﬂF° be the Kobayashi metric of G at the origin. Then for all

Z ¢ G we have

1 - FO(2)

1,1 +m(2) _ 1, 1+ Foz)
(4.3) \CG(OpZ)_ - E‘quT-:—"-‘-(—z—T -z-loa-———--—-—.

PROOF. If Z ¢ G and c = (m(2)) 'Z ¢ 3G, then the map



ﬁc e H{u,G) 'defined as above is a complexvgeodesic and hence the
first ‘equality holds. The second one is a consequence of Barth's
theorem.

g.e.d.

THEOREM 4.2’ Let G, G' be E~-convex, complete circular domains

in €" and let m, m' be the resvective Minkowski functionals.
If ¢ : G+ G' is atholomorphic mao with ¢(0) = O, then the
followinq'Statements ére‘equivalent:

(i) ¢'is a linear biholomornhic mao.

(11)  65(0,2) = 85,(0,6(2)) for all 2 ¢ G.

(i11) For some r ¢ (0,1), if m(Z) = r, then m'($(2)) = r.

PROOF. Since biholomorohic mans preserve the'Kobayashi distance,
(1) ==>(ii). Also (ii) ==>(iii) because of (4.3). Aqgain because of
(4.3) and of (i) of Theorem 2.3, we have that (iii) ==>(ii). Only
(11) ==>(i) remains to be shown. Given any c ¢ 3G, the map

fc ¢ H(U,G) defined by fc(z) = 2zc is a complex geodesic of G.
If (ii) holds, then the maovp a = ¢°fc ¢ H(U,G') is a commnlex

geodesic of G' and G(0) = O. Thus, as remarked above, g must be

linear and hence

¢(zc) = g(z) = dq(0,2) = A¢$(0,zc).

Since this holdé for all c¢c e 3G, ¢ is linear. Also since GG is

a distance, 1if ¢(zZ) = 0, then O = GG.(0,¢(2)) = GG(O,Z) and
hence\ Z = O i.e. ¢ is injective and therefore surjective. Because
of (4.3) then FC, = Foo$ = Fgod¢(0) i.e. ¢ is K-isometric at O
and the claim follows from Theorem 3.1.

q-e.do
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As with Corollary 3.2, since bhiholomorphic mans are Kobayashi
distance nreserving, one shows at once the following consequence

of the above theorem.

COROLLARY 4.3 Let G, G' be E-convex, comolete circular domains

in € and let ¢ : G+ G' be a holomornhic man.
(1) If G is homogeneous and there exists Z ¢ G such that

$(2) = 0 and §,(2,Ww) = §,,(0,4(W)) for all W e G,

then ¢ is biholomorphic.
(ii) If G' is homogeneous and GG(O,W) = GG.(¢(O),¢(W)) for

all W e G, then ¢ is biholomornhic.
In particular, if both G and G' are homogeneous, ¢ is biholomornhic
if and only if there exists 2Z ¢ G such that GG(Z,W) = GG.(¢(ZL¢04))
for all W e G.

5. We shall now study the case of vrover holomormhic maos

between circular domains. Recently Bell [B] characterized among
them the nolvnomial mans using Bergman kernel tecniques. Here we
use the vrevious results to characterize the biholomornhic maps.

The following fact about Monae-Amvére equations will be useful.

PROPOSITION 5.1 Let G be a nseudoconvex, camlete cfrcular domain

in €® with c? boundary. Let m : €” » IR, be its Minkowski

functional. Then u, =c loam is the unique solution to the

nroblem



1

(3.1) w is plurisubharmonic on G and w ¢ c®@ - (oh

2

(5.2) det(2-¥_) =0

az¥azV (P )
(5.3) w(z) - c log|lz|]| =0(1) as 2 + 0O
(5.4) w(2Z) =0 if 2 ¢ 23G.

for all ¢ > O.

PROOF. It is known that u_ satisfies (5.1), (5.2) (cfr. for

c

example [BT2}) and (5.4). If Ry = min m(2) and R, = max m(2),
2] =1 I 2l =1

then Roﬂzl < m(z) < Rllz] and therefore also (5.3)holds for u_.

1

Let v he another solution to the the nroblem (Pc). Then, aiven
anv n > 0O, there exists § so that,if B(8) is a ball of radius

4 around the oriqgin and G(§) = 5 - B(§), then
(5.5) (1=-nv<cu, < (1+n)v  on 3G(8).

Thus, by the Bedford-Taylor minimum orinciole for the Monge-
Ampére operator (cfr. [BT1}), (5.5) holds on G(6). Then, letting
n + 0, it follows that u, = v.

q.e.d.

COROLLARY 5.2 Let G, G' be two pseudoconvex, comnlete circular
2

domain in €" with C° boundaries and let m, m' be the respective

Minkowski functionals. If ¢$: G+ G' 1is a prower holomorphic man

such that
(1) 4(0) = 0,
(ii) there exists an integer N > O and constants C, K > 0O

such that cii|f < |b(z)l] <k|2|f for a1 z ¢ g,

(11i) ¢ extends to a homeomornhism & : G G°',

then m'04 = mN,
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PROOF. Under the hypothesis v = logl|Z|| solves the problem (Py)

and hence Proposition 5.1 implies the claim.

q.e.d.

The question on when a proner holomornhic man ¢ : D + D!
between two pseudoconvex domains extends to a homeomorphism
$ D + D' has not vet been completely settled. Here we restrict
ourselves to the use of the theorem of Henkin and Vormoor (cfr.
[DL] for a detailed nroof) which states that if D, D' have c?
- boundaries, D has a nlurisubharmonic defining function, D' is

strictly vseudoconvex, then the promer man ¢ : D + D' extends

to a homeomorphism § : D + D'.

THEOREM 5.3 Let G, G' be complete circular domains in t”. Assume

that they have C2 boundaries, that G is pseudoconvex and G' is
strictly pseudoconvex. Let ¢ : G + G' bhe a nrooer holomorvhic
map reqular at O and such that ¢(0) = O. Then ¢ is a linear

biholomorphic man and, in marticular, G is strictly pseudoconvex.

PROOF. Let m, m' be the Minkowski functionals of G,G' respectively.
Then m’ is a plﬁrisubharmonic defining function for G. Because of
the theorem of Henkin and Vormoor and since ¢ is regular at O,

the assumption of Corollary 5.2 are verified in our situation with

N = 1. Thus we can conclude m'o¢ = m. Let cC ¢ " so that Fg(c) ="
m(c) =1 so that c ¢ 3I,(G) = 3G. Define é_: U+ G' by ¢_(z) =
¢(zc). Then m'(fF(z)) = m(zc) = [zl. Also, since ¢, is holo-
morphic, we have the nower series develonment ¢c(z) = kZiARZk

for z € U. But then m'(A, + ) Akzk) = 1 so that taking limit
1 k2

as  z + 0, we get
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(5.6) Fgr (4(0,0)) = m' (zée(2)|,00) = m' (A)) = 1 = FZ(c).

Since (5.6} holds for all ¢ L ® with Fg(c) = 1, Then ¢ is
a K-isometry at O &nd thus, by Theorem 3.1, the claim follows.

qg.e.d.

A direct consquence of Theorem 5.3 is the following result

originally proved by Alexander [A].

COROLLARY 5.4 Let B be the unit ball in " and ¢ : B + B be

a proper map. Then ¢ is an automorphism of B.

PROOF. Let Z € B be a regular ooint of ¢,and let W = ¢(2).
Let a, B £ Aut(BB) be such that a(0) = 2 and 8(W) = O. Then

the claim follows applying Theorem 5.3 to the map ¥ = Bogoa.

q.e.d.
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