Discontinuous Groups on pseudo-Riemannian Spaces

Mathematische Arbeitstagung 2009 at MPI Bonn

5–11 June 2009

Toshiyuki Kobayashi (the University of Tokyo)

http://www.ms.u-tokyo.ac.jp/~toshi/

Discontinuous Groups on pseudo-Riemannian Spaces - p.1/58

Compact quotients $\Gamma \backslash SL(n) / SL(m)$

Problem (Existence problem for uniform lattice): Does there exist compact Hausdorff quotients of

 $SL(n, \mathbb{F})/SL(m, \mathbb{F})$ $(n > m, \mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H})$

by discrete subgps Γ of $SL(n, \mathbb{F})$?

Compact quotients for SL(n)/SL(m)

Uniform lattice does not exist for the following (n, m):

Discontinuous Groups on pseudo-Riemannian Spaces - p.4/58

SL(n)/SL(m) case

<u>Conjecture</u> For any n > m > 1, there does not exist uniform lattice for SL(n)/SL(m).

Affirmative results:

K–	criterion of proper actions	$\frac{n}{3} > \left[\frac{m+1}{2}\right]$
Zimmer	orbit closure thm (Ratner)	n > 2m
Labourier-	-Mozes–Zimmer	
	ergodic action	$n \ge 2m$
Benoist	criterion of proper actions	n=m+1, m
Margulis	unitary representation	$(n \ge 5, m = 2$
Shalom	unitary representation	$n \ge 4, m = 2$

i even

Non-Riemannian homo. spaces

Discrete subgp \rightleftharpoons Discontinuous gp

for non-Riemannian homo. spaces

<u>General Problem</u>

How does a local geometric structure affect the global nature of manifolds?

New phenomena & methods?

Discontinuous Groups on pseudo-Riemannian Spaces - p.7/58

2. Complex symmetric structure

G/K: Riemannian symmetric space		
\Downarrow complexification		
$G_{\mathbb{C}}/K_{\mathbb{C}}$: complex symmetric space		
<u>Fact</u> (Borel 1963) Compact quotients exist for \forall Riemannian symm sp. G/K .		
	_	
<u>Conj.</u> Compact quotients exist for $G_{\mathbb{C}}/K_{\mathbb{C}}$ $\iff G_{\mathbb{C}}/K_{\mathbb{C}} \approx S_{\mathbb{C}}^7$ or complex group mfd	4	
⇐ proved by K–Yoshino 05, ⇒ remaining case $S_{\mathbb{C}}^{4k-1}$, $k \ge 3$ (Benoist, K–)		

Space forms (examples)

 $\begin{array}{l} {\rm Space \ form} \cdots \ \begin{cases} {\rm Signature} \ (p,q) \ {\rm of \ pseudo-Riemannian \ metric} \ g \\ {\rm Curvature} \ \kappa \in \{+,0,-\} \end{cases}$

E.g.	q=0 (Riemar		
	sphere S^n	\mathbb{R}^n	hyperbolic sp
	$\kappa > 0$	$\kappa = 0$	$\kappa < 0$

E.g.	q = 1 (Lorentz mfd)		
	de Sitter sp	Minkowski sp	anti-de Sitter sp
	$\kappa > 0$	$\kappa = 0$	$\kappa < 0$

Discontinuous Groups on pseudo-Riemannian Spaces - p.12/58

Space form problem

Space form problem for pseudo-Riemannian mfds

Local Assumption

signature (p,q), curvature $\kappa \in \{+,0,-\}$

 \Downarrow

Global Results

- Do compact forms exist?
- What groups can arise as their fundamental groups?

Compact space forms

(p,q): signature of metric, curvature $\kappa \in \{+, 0, -\}$

Assume $p \ge q$ (without loss of generality).

- κ > 0: Calabi–Markus phenomenon
 (Calabi, Markus, Wolf, Wallach, Kulkarni, K–)
- κ = 0: Auslander conjecture
 (Bieberbach, Auslander, Milnor, Margulis, Goldman, Abels, Soifer, ...)
- $\kappa < 0$: Existence problem of compact forms

Discontinuous Groups on pseudo-Riemannian Spaces - p.14/58

2-dim'l compact space forms

compact forms do NOT exist

for $\kappa > 0$ and $\kappa < 0$

Compact space forms ($\kappa < 0$ **)**

Riemannian case · · · hyperbolic space

Compact quotients

 \iff Cocompact discont. gp for $O(n,1)/O(n) \times O(1)$

 $\implies \text{Cocompact discrete subgp of } O(n,1)$ (uniform lattice)

Exist by Siegel, Borel–Harish-Chandra, Mostow–Tamagawa,

arithmetic Vinberg, Gromov–Piateski-Shapiro · · ·

non-arithmetic

Discontinuous Groups on pseudo-Riemannian Spaces - p.16/58

Existence of compact forms

• For pseudo-Riemannian mfd of signature (p,q)

Thm ConjectureCompact space forms of $\kappa < 0$ exist \Leftarrow \bigcirc q any, p = 0 $(\leftrightarrow \kappa > 0)$ \bigcirc \bigcirc q any $(\phi \in \kappa > 0)$ \bigcirc \bigcirc q = 0, p any $(\phi \in \kappa > 0)$ \bigcirc \bigcirc q = 0, p any $(\phi \in \kappa > 0)$ \bigcirc \bigcirc q = 0, p any $(\phi \in \kappa > 0)$ \bigcirc \bigcirc q = 0, $p = 0 \mod 2$ $(\phi \in \kappa > 0)$ \bigcirc \bigcirc q = 1, $p \equiv 0 \mod 4$ $(\phi \in \kappa > 0)$ \bigcirc \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in \kappa > 0)$ \bigcirc $(\phi \in \kappa > 0)$ $(\phi \in$

Infinitesimal approximation

 $G = K \exp \mathfrak{p} \implies G_{\theta} = K \ltimes \mathfrak{p}$ (Cartan motion gp)

$$G/H = O(p, q+1)/O(p, q) \implies G_{\theta}/H_{\theta}$$

Thm (K–Yoshino, 2005) Compact forms of G_{θ}/H_{θ} exist $\iff p \equiv 0 \mod 2^{\varphi(q)}$				
Here, $\varphi(q) = \begin{bmatrix} \frac{q}{2} \end{bmatrix} + \begin{cases} 0 & (q \equiv 0, 6, 7 \mod 8) \\ 1 & (q \equiv 1, 2, 3, 4, 5 \mod 8) \end{cases}$				
<u>E.g</u>	q = 0 q = 1	(2(1) - 1)	p any $n \equiv 0 \mod 2$	
	q = 1 $q = 3$	$\varphi(1) = 1$ $\varphi(3) = 2$	$p \equiv 0 \mod 2$ $p \equiv 0 \mod 4$	
	q = 7	$\varphi(7) = 3$	$p \equiv 0 \mod 8$	

Discontinuous Groups on pseudo-Riemannian Spaces - p.21/58

Radon–Hurwitz number (1922)

General idea: Compact-like actions

Non-compact Lie groups

occasionally behave nicely when embedded in $\infty\text{-dim}$ groups as if they were

compact groups (very nice behaviours)

Discontinuous Groups on pseudo-Riemannian Spaces - p.23/58

Compact-like linear/non-linear actions

 $L \cap \mathcal{H}$ (linear)

Unitarizability

= existence of *L*-invariant inner product

Discrete decomposability

= no continuous spectrum

in the *L*-irreducible decomposition

 $L^{\frown}M$ (non-linear)

Proper acions/properly discontinuous actions

= The action map $\begin{array}{c} L \times M \to M \times M \\ (g, x) \mapsto (x, g \cdot x) \end{array}$ is proper.

Compact-like linear/non-linear actions

Discontinuous Groups on pseudo-Riemannian Spaces - p.25/58

Criterion of admissible restriction

Proof uses micro-local analysis.

\pitchfork and \sim (definition)

 $L \subset G \supset H$

Idea: forget even that L and H are group

Def. (K−) 1) $L \pitchfork H \iff \overline{L \cap SHS}$ is compact for \forall compact $S \subset G$ 2) $L \sim H \iff \exists$ compact $S \subset G$ s.t. $L \subset SHS$ and $H \subset SLS$.

Discontinuous Groups on pseudo-Riemannian Spaces - p.39/58

\pitchfork and \sim

 $L \subset G \supset H$

Forget even that *L* and *H* are group

1) $L \pitchfork H \iff$ generalization of proper actions 2) $L \sim H \iff$ economy in considering

Meaning of h:

$$L \pitchfork H \iff L^{\frown} G/H$$
 proper action

for closed subgroups L and H

 \sim provides economies in considering \pitchfork

 $H \sim H' \Longrightarrow H \pitchfork L \Longleftrightarrow H' \pitchfork L$

Criterion for \pitchfork and \sim

G: real reductive Lie group

 $G = K \exp(\mathfrak{a}) K$: Cartan decomposition

 $\nu: G \to \mathfrak{a}$: Cartan projection (up to Weyl gp.)

<u>Thm B</u> (K-, Benoist) 1) $L \sim H$ in $G \iff \nu(L) \sim \nu(H)$ in a. 2) $L \pitchfork H$ in $G \iff \nu(L) \pitchfork \nu(H)$ in a. abelian

Special cases include

- (1)'s \Rightarrow : Uniform bounds on errors in eigenvalues when a matrix is perturbed.
- (2)'s \Leftrightarrow : Criterion for properly discont. actions.

Discontinuous Groups on pseudo-Riemannian Spaces - p.41/58

Criterion for compact-like actions

Compact-like linear/non-linear actions

H: Hilbert space

 $L^{\curvearrowright} \mathcal{H}$ discrete decomposability

... *L* behaves nicely in $U(\mathcal{H})$ (unitary operators) as if it were a compact group

M: topological space $L \curvearrowright M$ proper actions $\cdots L$ behaves nicely in Homeo(M) as if it were a compact group

Discontinuous Groups on pseudo-Riemannian Spaces - p.47/58

$Local \Longrightarrow Global$

 $G \supset H \text{ reductive Lie groups}$ $\Rightarrow G/H \text{ pseudo-Riemannian homo. sp}$ $\frac{\text{Cor} (\text{Criterion for the Calabi-Markus phenomenon})}{\text{Any discont. gp for } G/H \text{ is finite}}$ $\iff \operatorname{rank}_{\mathbb{R}} G = \operatorname{rank}_{\mathbb{R}} H$ $\frac{\text{Application} (\text{space form of signature } (p, q), \kappa < 0)}{\text{Exists a space form } M \text{ s.t. } |\pi_1(M)| = \infty}$ $\iff p > q \text{ or } (p, q) = (1, 1)$

(Calabi, Markus, Wolf, Kulkarni, Wallach)

 $p > q + 1 \Longrightarrow \exists M$ with free non-commutative $\pi_1(M)$

Rigidity, stability, and deformation

Suppose Γ' is 'close to' Γ

(R) (local rigidity) $\Gamma' = g\Gamma g^{-1} \ ({}^{\exists}g \in G)$ (S) (stability) $\Gamma' {}^{\frown} X$ properly discont.

In general,

- (R) \Rightarrow (S).
- (S) may fail (so does (R)).

Discontinuous Groups on pseudo-Riemannian Spaces - p.43/58

Local rigidity and deformation

 $\Gamma \subset G \xrightarrow{\frown} X = G/H$ cocompact, discontinuous gp

General Problem

- 1. When does local rigidity (R) fail?
- 2. Does stability (S) still hold?

Point: for non-compact H

- 1. (good aspect) There may be large room for deformation of Γ in G.
- 2. (bad aspect) Properly discontinuity may fail under deformation.

Rigidity Theorem

 $\Gamma \subset G \text{ simple Lie gp}$

<u>Fact</u> (Selberg–Weil's local rigidigy, 1964) [∃]uniform lattice Γ admitting continuous deformations for ① $\iff G \approx SL(2, \mathbb{R})$ (loc. isom).

<u>Thm</u> (K–) ∃

[∃]uniform lattice Γ admitting continuous deformations for ② $\iff G \approx SO(n+1,1)$ or SU(n,1) (n = 1, 2, 3, ...).

Local rigidity (R) may fail. Stability (S) still holds.

··· Solution to Goldman's stability conjecture (1985), 3-dim case

Discontinuous Groups on pseudo-Riemannian Spaces - p.45/58

Compact-like linear/non-linear actions

 $\mathcal{H} = L^2(G/H), L^2(G/\Gamma)$: Hilbert space

 $L^{\frown}\mathcal{H}$ discrete decomposability

 \cdots L behaves nicely in $U(\mathcal{H})$ (unitary operators) as if it were a compact group

M = G/H: topological space

 $L \frown M$ proper actions

 \cdots L behaves nicely in Homeo(M)

as if it were a compact group

Interacting example

Discontinuous Groups on pseudo-Riemannian Spaces - p.50/58

References

1) Pure & Appl. Math. Quarterly 1 (2005) Borel Memorial Volume

- 2) Sugaku Expositions, Amer. Math. Soc. (2009) translated by Miles Reid
- 3) Contemp. Math., Amer. Math. Soc., (2009), pp. 73-87.
- 4) Invent. Math. (1994), Ann. Math. (1998), Invent. Math. (1998)

For more references: http://www.ms.u-tokyo.ac.jp/~toshi