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1 Introduction

The aim this paper is to present a simplified proof of the existence of elliptic
cohomology. Recall that elliptic cohomology is a cohomology theory constructed
from complex cobordism as follows.

Consider the Jacobi guartic

v =126z + ezt o)}

over Z{3,6,¢]. For €(8? — ¢) # 0, this curve can he compactified to an elliptic
curve by adding two points at infinity. The group law of this elliptic curve
will be written additively, with zero given by 0 = (0,1). Then z is a formal
parameter of the elliptic curve (1). The resulting formal group law is Euler’s
formal group law

Fs oz, &) = g, (2)
y=V1-2627 + ez, j = V1= 2623 + ez°.

It is easy to see that this formal group law has coefficients in Z[%,¢, 6].

Recall also that there is a complex cobordism spectrum MU, that there
is a formal group law Fyu(z, &) over the coefficient ring MU., and that by
a theorem of Quillen (cf. [Qui69] or the textbooks [Ada74, Part II], [Rav86,
§4.1] for an approach based on on Milnor’s calculation of MU., and [Qui71]
for a direct approach) the formal group law Fyy is & universal formal group
law. Applied to Euler formal group law, this means that there is a unique ring
homomorphism :

$: MU, — 2[%, 5,¢] (3)
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which maps the coefficients of FasU to the coefficients of Fs.¢. This is a graded
homomorphism if the grading on 2[},¢, 6] is given by

degd =4, dege = 8. (4)

We can now formulate the main theoremn about the existence of elliptic coho-
mology, due to Landweber, Ravenel and Stong.

Theorem 1 Let P(6,€) be a homogeneous polynomial of positive degree with

respect to the grading (). Then the functor from the stable homotopy category
to graded vector spaces

1 _
Ellp.X = MU.X 1@ 2[5,6,¢, P(5,¢) 1, (5)

where the second factor of the tensor product is an MU.-module by the map
é (8), is a generalised homology theory. Moreover, for finite spectra X, the
associated cohomology theory is given by

LI T - l -1
El}X = MU Xh%' 2[5, 6,¢, P(6,¢)7"], (6)

where this time the grading on Z[6,€] is the opposite of ({), i.e., degé = —4,
dege = —8. Moreover, the isomorphism (5) defines the elliptic homology spec-
trum Ellp uniquely up 1o unique isomorphism in the stable homotopy category,
and the multiplication on (6) for a finite CW-complez X, which is given by the
ring structures of MU" X and Z{L,6,¢, P(6,€)7!], comes from a unigque struc-
ture of a commutative ring spectrum on Ellp.

This cohomology theory is related to interesting geometric problems studied
by Witten, Ochanine, Landweber, Stong, Bott, Taubes, Hirzebruch, Kreck, and
Stolz (cf. {Seg88) and [KS91]). Unfortunately, the present paper is not con-
cerned with these problems, but only with the algebraic construction of elliptic
cohomology from complex cobordism.

The preprint {LRS] is unpublished, but a proof of theorem 1 (but without
the subtle points of uniqueness and the structure of a ring spectrum) appears
in {Lan88a], where it is based on certain congruences for the coefficients of the
power series for multiplication by a prime p in the formal group Fs.. We can
offer no fundamental new insight, but a significant simplification of the argument
and a precise description of the situation in which it can be applied. As in
[LRS] and [Lan88a], the construction is based on a verification of the conditions
of Landweber’s exact functor theorem for ¢. However, the use of the difficult
Chudnovsky-Landweber congruences can be avoided, since the assumptions of
the Landweber exact functor theorem are easy consequences of the result of
Deuring and Eichler (which is also used in the proof of the congruences) that



the height of the formal group law of an elliptic curve in positive characteristic
is never bigger than two. This fact was also noticed by Baker [Bak90, Proof of
theorem 1], but without giving details.

We also discuss the rather subtle question about the uniqueness and the
existence a ring structure on a spectrum obtained by the Landweber exact
functor theorem for a countable MU, -algebra.

The organisation of this paper is as follows. In scction 2, we prove theorem 1
by verifying the Landweber conditions for Euler’s formal group law. This proves
theorem 1 up to the questions about uniqueness and the ring structure. These
questions are settled in section 3 for general specira obtained by the exact func-
tor theorem from countable MU.-modules or algebras. In section 4, we explain
under which conditions other families of elliptic curves satisfy the Landweber
conditions. We apply this to Hirzebruch’s elliptic genera, which have values in
the ring of modular forms modulo I'; [N]. In section 5, we give a simple proof of
the Chudnovsky-Landweber congruences. We tried to keep sections 2 and 5 as
elementary as we could. Due to their general nature, sections 3 and 4 are more
abstract. The reader who is only interested in the congruences may go directly
to section 5.

This paper is based on the author’s talk at the 1991 Geyer-Harder workshop
on elliptic cohomology in Oberwolfach, which was organised by M. Kreck, W.
Nahm and S. Ochanine. The author is indebted to the audience of this workshop
for interesting discussions, in particular to M. Kreck, U. Jannsen, and R. Jung
for recommending him to publish his talk, and also to D. Husemoller and F.
Waldhausen, for teaching him stable homotopy. He alsc had an interesting
conversation with G. Laumon about parts of section 4.

2 Verification of the Landweber conditions for
the Jacobi quartic

Let M, be a graded MU.-module. To verify that the functor on the stable
homotopy category defined by

Exm.X = MU.X X M. M
MU,

is a generalised homology theory, one has to check that the long exact sequences
of bordism groups defined by a cofibration sequence of topological spaces (or,
equivalently, by exact triangles in the stable homotopy category). For instance,
this could be ensured by the assumption that M is flat over MU.. By using the
Landweber-Novikov cooperations on complex bordism, it is however possible to
work with the weaker Landweber conditions, which we now describe.

Consider a prime p, and let [p]r be the power series for multiplication by p



in the formal group # i.e.,

My = X
(Mlr = F(n-1)p,X).

Let uy be the coefficient of X?* in the formal power series [p]r. The dependence
of u; on p and F will not be expressed in the subscript, because we will usually
think of a fixed prime p and a fixed formal group law F. We can now formulate
the Landweber exact functor theorem, cf. [Lan76). In the case of the universal
formal group law Fuu, this gives us elements p, uy, ... € MU.,.

Theorem 2 Let M. be a graded MU, -module such thal for each prime p, the
sequence of elements in MU, (p,ui,ug,...) is M-regular, i.e., that mulliplica-
tion by up in M/(p,u1,...,ug-1)M is injeclive.

A. Then the functor defined by (7) on the category of spectra is a generalised
homology theory. Moreover, for finite spectra X its associated cohomology theory
is given by
M* () MU"X, (8)
MU+

where M* is M. with ils opposite grading, i.e., M* = M_,.

B. We have
TorMU«(M.,N.) =0 (9)

Jor any MU, -module N, which admits the structure of an MU, MU-comodule.

Indeed, by the exactness theorem (Lan76, Theorem 2.6] and by the Adams-
Brown representability theorem [Swi75, Theorem 9.27}, (8) on the category of
finite spectra is representable by a spectrum Ejps. Using the Spanier-Whitehead
duality operator D, we have by applying [Ada74, Remark 5.3 and Lemma 5.5)
(where DX was denoted X*) twice

Ey.X =E;f DX = M~ (X) MU DX = M. Q) MU.X.
MU=~ MU,

Since both sides commute with filtered inductive limits, this also holds for in-
finite spectra, verifying (7). In the next section, we will discuss some subtle
questions of this construction, for instance the question if Eps is determined u-
niquely up to unique isomorphism in the stable homotopy category and if it has
the structure of a ring spectrum. The reader can for the moment skip the fol-
lowing remarks about (9) since they are only needed in the next section. If NV is
a MU.MU-comodule which is finitely presented as a MU.-module, (9) is con-
tained in the proof of [Lan76, Theorem 2.6]. To get the vanishing in general, one
uses a result of Miller and Ravenel, which says that any MU, MU-comodule is



the filtered inductive limit of a family of finitely presented MU, MU-comodules.
This s proved in the BP-case in [MR77, Lemma 2.11]. The proof given there
also works for MU.

Let R. be a graded ring and F a formal group law over R such that F
has total degree —2, defining a homomorphism ¢r: MU, — R,. To verify
the Landweber conditions for the MU.-module R,, we have to verify that
for any prime p the sequence (p,uy,...) is regular in R, i.e., that u; is no
zero divisot in R/(p,uy,...,up—1)R. To prove the Landweber-Ravenel-Stong
theorem 1, we have to verify these conditions for R = Z[1,6,¢, P(6,€)~!}, where
P is homogeneous of positive degree with respect to (4). We will fix an odd
primne number p and verify the following conditions, which imply the sssumption
of theorem 2:

1. pis no zero divisor in R.
2. u;(6,€) does not identically vanish modulo p.
3. ug(8,£) is invertible modulo the ideal (p, u;).

The first of these points is clear. To verify 2, let us consider the singular cases
e=62ande=0. If e = 62, we have

MF(z,2)) = Mz)A(&).
with
1-— oz

1 + 8z

In other words, A defines a homomorphism from Fj . to the multiplicative formal
group law. Since u; = 1 for the multiplicative formal group law, we have

)\(:c) =

uy = NP1 =65 (mod (p, 6% ~¢)). (10)

If ¢ = 0, we have an isomorphism between Fj. and the multiplicative formal
group law defined by

M) = V=26z + V1 — 2622,

hence ‘ .
up = NP~ = (=26 (mod (p,¢)) (11)

Each of (10) or (11) implies that u;(6,€) does not vanish identically modulo p,
establishing the second point.

To establish the third point, we need a classical result of Eichler and Deuring
about the height of the formal group law of an elliptic curve. Recall that the
height of a formal group law I” over a field of characteristic p is the smallest k
such that u; # 0, or infinity if the power series [p]r vanishes identically. The
theorem which we need is the following:



Theorem 3 If £ is an elliptic curve over a field of positive characteristic and
if £ is a rational function on £ with £(0) = 0 and doz # 0, then the height of
the formal group law defined by F(z(P),z(Q)) = z(P+Q) is either one or lwo.

A proof can be found in [Sil88, Corollary IV.7.5.] or in [Hus87, §13]. The
theorem also follows from the fact the the isogeny of multiplication by p on
an elliptic curve has degree p?, cf. [Mum88, Proposition at the end of §11.6] or
[KM85, Theorem 2.3.1].

Now if for the Euler formal group law uz was not invertible in R/(p, u1),
then there would be a maximal ideal p C R which contains p, u), and uy. If
p would contain (8% — €), then it would contain both ¢ and 6 by {10) or (11),
since it contains u;. But then p would contain P! which is impossible since
by definition P is a unit in R. It follows that €(62 — €} # 0 in the residue field
k = R/p, hence the Jacobi quartic

y=1~262% + ezt

is known to be [Hus87, §4.3] an open subset of an elliptic curve £ over & with
0 = (0,0). It is also known that the Euler formal group law Fj, is the formal
group law defined by this elliptic curve and the local parameter z, cf. for instance
the appendix to [Lan88c]. Since p contains p, uy and u,, it follows that the height
of the formal group law defined by £ is bigger than two. This contradiction to
thearem 3 proves the invertibility of uz  {mod (p, 1)) and completes the proof
of theorem 1.

3 Uniqueness for the exact functor construc-
tion

It remains to prove the uniqueness claim and the claim about the existence
of a ring structure in theorem 2. Qur methods work for arbitrary countable
MU, -modules which satisfy the Landweber conditions. Although we will only
formulate the resulis for MU, they are also valid for BP. In the BP-case, simi-
lar uniqueness questions for v;;’! have been investigated by Yosimura in [Yos88).
I does not seem to be easy to use this method in the case of elliptic cohomol-
ogy. A discussion of some other cases can be found at the end of the second
section of [Rav84], which also uses the methods of Yosimura. Our approach
will be completely different and gives a weaker result, but works for arbitrary
countable spectra obtained by the Landweber construction.

We first have to introduce some notations and conventions, which will we will
use throughout this section. MU.MU is the module of cooperations on MU.
The pair (MU., MU,MU) comes with various structure maps, which are easily

1This is the only point where we have used the fact that P is homogeneous of positive
degree. Actually, only the fact that P{0,0) = 0 was used, but homogeneity is necesaary to get
a grading on R.



memorised by saying that this pair forms a cogroupoid object in the category of
rings. In particular, there are cosource and cotarget maps MU, — MU.MU,
a coidentity MU, MU — MU,, and a cocompaosition MU, MUIMU MU —
MU,MU. Unless otherwise specified, tensor products, and torsion products in
this section are over MU,. The tensor product MU, MU ® M, will always
be defined using the structure of a MU,-modules on MU.MU given by the
cotarget map, and will be given the structure of a MU,-module using the
cosource map. For M. @ MU,MU, the opposite conventions apply. It is known
that MU,.MU is a free MU,-module in both ways, and that MU, (MU A
X)=MUMU®MU,X. A MU, MU-comodule is 8 MU,-module M, which
comes with a map M, — MU, MU ® M. satisfying all sorts of compatibilities.
For instance, complex bordism of a spectrumn is a MU, MU-comodule. For a
discussion of these question, we refer to [Ada74, Part III, 12-15] or to [Rav86,
§2.2].
For an integer k, let

0 ilkisodd
(k) = { 1 ifkiseven
be its parity. ‘
Theorem 4 Let L,, M., N, be countable MU, -modules which are concentrated

in even dimension, and which satisfy the conditions of Landweber’s ezact functor
theorem 2.

A. The spectrum Epq is characterised by the isomorphism (7) uniquely up to
unique isomorphism in the stable homotopy category. Moreover, the natural
transformation

Ep. X @ MUY — Epyu (X AY)
defined by (7), and the ring siructure on MU comes from a unique struclure of

a MU-module spectrum on Epy.
B. There is a spectral sequence of MU, -modules
ED? = Extfy. (MULX, M,) = ERFIX (12)

for any spectrum X. Here ExtP? is the graded object Ext?, and the convergence
properties of the spectral sequence are as described in [Ada7{, Theorem III. 8.2].

C. We have a canonical isomorphism
[Ear, S¥En] & Ext{H"(MU.MU @ M., N,). (13)

Recall our convention that the tensor product is over MU, and that MU, MU®
M. is always defined using the structure of a MU. -modules on MU, MU given
by the colargel map, and is given the structure of a MU, -module using the
cosource map.



D. Ifamap Ear — Ex of ecven degree induces the zero map Egr, X — En. X
for any finite spectrum X, then it is homotopic lo zero. However, a map
Ey — En of odd degree always induces the zero map on homology, or on
the cohomology of any finile spectrum,

E. Let two maps of even degree Ef, — Epy and Epy — Ey be given by
¢ MUMU®L, — M.

and
"J):MU.MU ® Mt — N,

in (18). Then their composition is given by

MU.MU @ L, —2C0mPOsILON - 17, MU ® MU.MU & L.
1d
®¢ MU.MU ® M.
2, ..

The composition of maps of odd and even degree ts given in the same way, where
one of the maps ¢ ore ¢ is now an extension class. The composition of two maps
of odd degree is homotopic to zero.

F. A map Ep — Ep i3 a map of MU-module spectra if its image by 18 lies
tn the image of the map

Ext*®0E-rEp N) — Ext" B MU MU @ M., N.)  (14)

defined by the coidentily on MU, MU. Ifk is even orif M, admils the struclure
of a MU.MU-comodule, then the map (1§) is injective, and ils image consists
of all maps Epy — En of MU-module spectra.

Proof; It is easy to see that Ejs is unique up to isomorphism. Indeed, using
the countability of its homotopy groups, cne can see that any spectrum which
satisfies the condition for Ejs has a countable subspectrum to which it is ho-
motopy equivalent. Let Eps and Eps be two spectra with this property. Then
for any finite subspectrum X C Ejas, the inclusion defines a cohomology class
in
Ey X = M* @ MU"X = Ej, X.

We get a consistent system of maps from the finite subspectra of Eps to Ea. By
the Milnor exact sequence [Ada74, Proposition IH.8.1], these maps come from a
homotopy class Epy — Eas which induces an isomorphism on homology. Hence
it induces an isomorphism on homotopy groups and is a homotopy equivalence.
However, its uniqueness is a question about a lim !_term, which is the hard part

of the theorem. The uniqueness will follow once we have established part D..



The crucial point will be the spectral scquence (12), which will eventually
follow from [Ada74, Theorem 111.13.6]. However, we can not yet apply this result
since we do not yet know for sure that Epy, is a MU-modulespectrum. However,
it is possible to get Adam’s machinery to work under a weaker assumption.

Lemma 1 Let E be a ring spectrum and let F be any spectrum, and assume
that we are given the structure of a E,-module on F, and a E,-lincar map
E.F — F,. These two data give us a homomorphism

F*X — Homg, (E.X, F.) (15)

which is functorial in X. Suppose that the following two conditions hold.

Y E is the direct limit of subspectra Eq for which E.(DE,) is a projective
E.-module and for which (15) is an isomorphism.

Z If X is any spectrum with E.X = {0}, then F.X and F*X vanish.
Then we have a spectral sequence of groups

ERY = ExtB(E, X, F.) = FPHiX

with the convergence properties as in [Ada7{, Theorem IT1.8.2]. Moreover, the
map F*X — E3* is (15).

Indeed, the assumptions of the lemma are all that is needed to carry out the
proof of {Ada74, Theorem 111.13.6] if one does not need the differentials of the
spectral sequence to be homomorphisms of E,-modules.

We want to apply the lemma to £ = MU and F = Eps. Then F, is the
MU,-modules M., and F, £ = MU.MU ® M. — M, by the coidentity and
the MU.-module structure on M,. Condition Y. follows from [AdaT74, I11.13.4.]
and (8). To verify condition Z., consider the transformation

(MUAEM).X = En.(MUAX)
= M@MUMUMU.X
— M,®MU.X (16)
= EmX,

where the non-isomorphic arrow is given by the coidentity. By the arguments
used to prove the uniqueness of Epy, this natural transformation comes from a
(possibly non-unique) map f: MU A Ep — Ep. When composing f with the
map g: E — MU AE defined by the identity of MU, we get the identity trans-
formation on homology, hence on homotopy groups. Replacing f by (fg)~'f
if necessary, we may assume fg = Id. This means that every map X — En
factorises over MU A X and proves the vanishing of £}, X if MU, X vanishes.
The other assertion of Z. follows directly from (7).



We now have (12) available, at least as a spectral sequence of groups. The
isomorphism (13), at least as an isomorphism of groups, follows from this and
the following algebraic lemma:

Lemma 2 If M, ts a MU,-module which salisfics the assumptions of the ezact
functor theorem. Then MU.MU ® M, is a flat MU, module. If in addition
M., is countable, then

Ext}fy, (MUMU @ M., N,)

vanishes for p > 1 and any MU, -module N, .

To get the flatness assertion, note that
Tor1(N., MU.MU ® M,) = Tor;(N. ® MU.MU, M,)

by the flatness of MU,MU. The left hand side vanishes by part B. of (2),
since N, ® MU.MU admits the structure of a MU, MU-comodule given by
the cocomposition on MU MU.

To get the vanishing of the Ext-groups, we apply the following lemma.

Lemma 3 If A is a countable flat module over a countable ring R, then M has
a free resolvent of length two.

To prove lemma 3, we use a result of D. Lazard [Laz64], which says that a
flat module is the filtered inductive limit of free modules. We want to make sure
that in our case the limit can be chosen to be indexed by the natural numbers.
Let GG be the free module generated by the elements of A, and let f:G — A
be the canonical map. Let X; be finitely generated free submodules of G and
Y; finitely generated submodules of X; Nker f such that X; C X4y, ¥; C Yy,
G = U2, Xi, ker f = |J;2, Yi. By [Laz64, Théoréme 1}, the map X;/¥; — A
factorises over a map f;: F; — A from a finitely generated free module. Since
the image of f; is contained in that of X; in A for some j < ¢, we may chose
a cofinal sequence i; of integers morphisms ¢;: F;, — F;,,, over A. Then A is
the limit of the £, , which is the cokernel of the injective map of free modules

[en] o0

[Ir - [I#

i=l1 i=1

(Fe)ey — (Fe=teo1(fi-1))puo

where t; = 0. This completes the proof of lemma 3 and also the proof of
lemma 2.

We now have {13) as an isomorphism of groups. By the last assertion of
lemma 1, the image of a map of even degree f: Ezyy — Epn can be reconstructed
from the map

Ey.MU — Ex.MU
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which it induces. If f vanishes on the bomology of any finite spectrum, then it
also vanishes on the homology of MU since homology commutes with filtered
inductive limits. But then the image of f by (13) is zero, hence f vanishes. This
proves the assertion of D. about morphisms of even degree. As we mentioned
at the beginning of the proof, this also proves that Ej¢ is unique up to unique
isomorphism. To get the structure of a MU-module spectrum, recall that we
have a map MU A Eyr — Ejp which induces (16) on homology. Since MU A
Eym = Emyu,mugm. and by the flatness of MU.MU @ M, proved lemma 2,
the part of D. which is already proved implies the uniqueness of this map. A
similar uniqueness argument can be used to verify the axioms of a MU-module
spectrum. This completes the proof of A.. Since the other parts of the theorem
will not be needed for our treatment of elliptic cohomology, the rest of the proof
will be rather terse.

Now we can deduce B. in full glory from [Ada74, §111.13]. This implies that
(13) is an isomorphism of MU.-modules and completes the proof of C. To verify
the remaining part of D., we first need the following lemma:

Lemma 4 If the image of [: X — Ep tn the Eg"-term of (12) is denoted by
¢, then the map MU, X — MU,Ey induced by ¢ is given by

MU, X — MU.MU @ MU.X-22® . MU.MU ® M. = MU.Ey, (17)

where the left arrow is the coaction of MU, MU on MU X.

This is easily verified. In D., we conclude that for a map f:Ey — En of odd
degree the induced map MU.Ey — MU,Ey is zero. By the isomorphism
Ea. X &= MU, X ® MU,E,; and the analogous isomorphism for N,, it follows
that f induces the zero map on the homology of MU A X. By the injectivity of
the map Ex.X — Ex.MUA X (existence of a MU-module structure for Ex ),
this also implies the vanishing of the map which f induces on the homology of
X, and completes the proof of D..

Now we consider E., which is concerned with the behaviour of the composi-

tion of maps E, -LEM -—LEN. If f is of even degree, our formula follows from
the fact that the spectral sequence (12) is functorial in X and from formula
(17). If the degree of g is even, one easily checks how the spectral sequence
[AdaT4, Theorem I11.13.6) behaves with respect to (possibly non-linear) maps
of module spectra. 1f both g and f are of odd degree, their composition is of
even degree and induces zero on homology, hence it vanishes.

The fact that a map Epy — Ey is a map of MU-module spectra can be
expressed as the commutativity of a certain diagram, which can be examined by
the composition formula of E.. One sees easily that the map MUAEy — Ex
which defines the structure of a MU-module spectrum on Ejas corresponds by
(13) to the map

MUMUQMUMU® M. — M. (18)

c®c;®m — v(c)v(ca)m,

11



where v:MU,MU — MU, is the coidentity. Using this, we see that a map

f:Ep — Ey with image ¢ under (13) is a MU-module morphism if and only
if the diagram

MU MU ® MU MU @ M,

p@ldeld

MU,MU @ MU.MU @ MU.MU @ #14®U8qu. MU @ M.

MU MU@MUMUQ® AN, {18 - N
commutes. For the sake of simplicity, we describe the arrows in this diagram, in
the case where ¢ is a homomorphism. If ¢ is an extension class, the definition
is similar. The map u is the cocomposition map on MU.,MU, and « is defined
by

a(e1 ® c2 ® ca®m) = e1 ® (Y vlea)ch ;d(ch; ® m)).,

where pi(ca) = 3 ¢4 ; ® ¢y ;. It follows that an element ¢; ® c3 @ 7n in the upper
corner of the diagram is mapped to ¢{c,v(cz) @ m) in the right lower corner by
the composition of the arrows via the right middle correr, and to ¢ (v(c1)co@m)
by the composition of the arrows via the left lower corner. It follows that f is
a morphism of MU-module spectra if and only if ¢ is in the kernel of the map

Ext"®) -5 (MU, MU ® M., N.} —
— ExtmEE-7t) (MU,MU ® MU.MU ® M., N,)
defined by
f:MU.MU®MU.MU — MU.MU

c1®cz — cvfe2) —vla)es.

But 8 is a surjection onto the kernel MU, MU? of »: MU, MU — MU,, which
is {MU,-nonlinearly) split by the map

MUMU° — MUMU@ MUMU
c — c®1l.

12



Therefore, ¢ comes from a map of MU-module spectra if its restriction to
MU.MU”’ @ M. vanishes, and this condition is is also necessary if ¢ is a ho-
momorphism. If M. admits the structure of a MU, MU-comodule pps: M, —
MU.MU ® M., then the map 8 ® ldas has a linear splitting

MUMU’o M, — MUMUMUMUGRM,
ce®m — c® pup(m),

hence in this case the vanishing of the restriction of ¢ to MU, MU’ ® M, also is
a necessary condition [or ¢ to define a homomorphism of MU-module spectra.
But the restriction of ¢ to MU.MU®° @ M, is zero if and only if ¢ is in the
image of (14). In the case of maps of even degree, (14) is clearly injective on
homomorphisms. In the case of exiensions, it is at least injective if M, has the
structure of a MU, MU-comodule, since ups defines a splitting. Q.E.D.

If M. has components of both odd and even degree, then we shall see be-
low that Eps is no longer defined uniquely up to unique isomorphism by (7).
However, it is still possible to make a canonical choice of Eps by

EM = EModd @EMcven,

where M&¥¢® and M299 are the odd and the even components of M,. By ap-
plying (13) to the components of odd and even degree, we obtain a canonical
decomposition

[Ear, Ex] = Hompmy, (MU.MU® M., N.) @ Exth~! (MU, MU @ M,, N.)
(19)
of the group of morphisms from Ep to Ex in the stable homotopy category.
Let us also discuss Lhe possibility of defining the structure of a ring spectrum.

Theorem 5 Let R, be a countable MU, -algebra with unitl which satisfies the
conditions of the Landweber ezact functor theorem. Then we have natural trans-
formations

Ep., X®@Egp. X — Er X AKX (20)
MU-X b 4 ER.‘.JY.

The first of these transformations is given by the MU.-algebra structure on H.
and by (7), the second transformation is given by (7) and the unit element of
R.. If R, is concentrated in even degree, these transformations come from a
unigue structure of ¢ MU-algebra spectrum on Ei. Moreover, the MU-algebra
spectrum By is commutative if R, is commautative.

If R. has components of both odd and cven degree, then there ts still a canon-
ical way of defining the structure of a MU-algebra spectrum on Ep, although its
multiplication is ro longer uniquely determined by (20). The map MU — Eg
is always uniquely defined by the second transformation in (20).
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Proof: By the arguments used at the beginning of the proof of theorem 4, the
transformations (20} come from maps

wEgAEy — Epg
MU — Epg.

We have Eg — Eg = Exgmu.Muss, and R. @ MU, MU ® R. satisfies the
conditions of the exact functor theorem, by the flatness part of lemma 2. There-
fore, if K. is concentrated in even degree, p and ¢ are uniquely determined by
their action on homology. By a similar uniqueness argument, the axioms for a
MU-algebra structure are satisfied.

If R. s no longer concentrated in even degree, one defines u and ¢ by their
image in (19), using the map

MUMU® MU MUQ® R, — R,

defined by the coidentity on MU,MU and the MU,-algebra structure on R.
for u, and the transformation

MUMU®MU, MU — R,

defined by the coidentity and the MU.-module structure on R, for . The
axioms of a MU-algebra structure are easily verified, using the composition
formulas in thecrem 4.E. Q.E.D.

To see that our precautions in the case of modules which have both odd and
even components are really necessary, consider MUQ = Ey,yy, ®, e By (13),

we have

(MUq, MU = { Hombrd, (MU.MU, MU, ®,(2/2)) itk is odd
{0} if k is even,
(21)
where Z is the profinite completion of Z. Moreover, all of these maps induce
zero on homology, and for odd k the subgroup of maps of MU-module spectra
is given by

MU, ®(2/Z), (22)
1

embedded into (21) by the coidentity on MU.MU. It follows that for R, =
MU, & MU, @, Q[#] with positive odd k, equipped with the structure of
a8 MU.,-algebra such that the product of two odd elements is zero, Egz, has
automorphisms which induce the identity on homology. Since (21) is bigger
then (22), it even such antomorphisms which also violate the structure of a MU-
module spectrum. This means that Eg, is not defined uniguely up to unique
isomorphism by (7), that it has more than one structures of a MU-module
spectrum, and that the first transformation in (20) does not characterise the
structure of a ring spectrum on Eg, uniquely.
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In the case elliptic cobomology, these arcane perversities do not arise because
we work with rings which are concentrated in even dimension. Therefore, the
result of this section completes the proof of theorem 1.

4 Other families of elliptic curves

Let us explain to which families of elliptic curves the Landweber exact functor
theorem can be applied. To get a formal group law, we need a commutative
Noetherian ring R with unit and a flat commutative group scheme?

p:€ — SpecR

of finite type and relative dinension one, whose fibres are elliptic curves, tori
or additive groups. To get a formal group law, we need a function X on some
neighbourhood of the zero section of £ which is a formal parameter of £/SpecR
near the zero section.

We also need a grading, thus we assume that R has a grading in even di-

mensions
o0
R= P Ra.

k=—o0

The grading defines an action of the multiplicative group G, on SpecR:
pR:Gm Xspecz Spec R — SpecR.
To get a formal group which is compatible with the grading, we need an action
B Gm Xspeck € = R

which is compatible with the grading of R, i.e. pug = prp, and with X,
ie. pg(A)*X = AX for any unit A in some localisation of Rg. By the last
compatibility, ue is determined uniquely by X and by the grading of R, if it
exists.

Let € be the set of triples (R., £, X) consisting of a graded ring R., a group
scheme & and a formal parameter X satisflying the conditions of the last two
paragraphs, Then X and the addition in £ define a formal group law over
R., hence we have a homomorphism MU, — R, respecting the grading. The
Landweber conditions have the following reformulation in terms of R, and the
group scheme &:

2 Actually, it is not necessary to have an elliptic curve on R itself. It is sufficient if SpecR is
the coarse moduli space for an algabraic stack of elliptic curves on which a formal parameter
is given functorially. Since there do not scem to be elliptic genera in the Literature which force
us to consider this situation, we do not want to introduce this additional difficulty.
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A The additive group of R. has no torsion. In other words, there is no irre-
ducible component of SpecR, which is concentrated in positive characteristic.

Obviously, this corresponds to the condition that no prime number is a zero
divisor in R..

B In characteristic p > 0, there are no points z of SpecR for which the fibre
of £ at z is an additive group.

Indeed, by theorem 3 the set of such points z is the set defined by the
vanishing of (p, uy, uz), and also by the vanishing of (p, uy, ..., u;) for any k < 2,
since the additive group has height infinity. Therefore, condition B is implied
by the condition that uj is no zero divisor modulo (p, u1, uz), and implies that
uz is invertible modulo (p, uy).

C For any prime number p, there is no irreducible component X of the fibre
at p SpecR, ® F, such that for any € X the fibre £; is supersingular.
Indeed, by the definition of supersingularity and by condition B, this is an
equivalent reformulation of the assumption that u; is no zero divisor in B/(p).
Now the Landweber exact functor theorem tells us that for any triple r =
(R., €, X) € € which satisfies the conditions A-C above, the functor

EILX = R. () MU.X
MU.

is a generalised homology theory. At least if R. is countable, it is unique up to
unique isomorphism in the stable homotopy category and carries a structure of
a MU,-algebra spectrum.

One can use this to construct elliptic cochomology theories in abundance.
This rises the problem to find those which are “natural” in the sense that they
are related to “natural” geometric questions, like the usnal elliptic theory ob-
tained from the Jacobi quartic. While the conditions only depend on the family
of elliptic curves, the problem of getting genera with good geometrical proper-
ties does not only depend on the choice of the family of elliptic eurve, but aiso
on the clever choice of a formal parameter.

For the case of the moduli problem of elliptic curves with a point of order
N and an invariant form, a choice of the formal parameter X which yields good
geometrical properties has been made by F. Hirzebruch {Hir88]. The task of the
remaining part, of this section is to show that this choice gives rise to complex
oriented cohomology theories after inverting N.

Recall from [DR73, I1.1] the notion of a generalised clliptic curve, which is a
flat morphism f:C — X of relative dimension one such that the regular set Cre®
has the structure of a group scheme acting on € and such that the geometric
fibres are usual elliptic curves or Néron n-gones. Let Xy be the moduli problem
which to a scheme S over SpecZ[ ] associates the set of isomorphism classes
{C, P,w}, where
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e C is a generalised elliptic curve over S.

e P:S — (™8 is a point of precise order N such that for any geometric point
8 — S5 the image of P in m(C]*8) generates that group.

e w # 0 is an invariant form on C™8.

Proposition 1 Let N < 2. The moduli problem Xn is representable by a
smooth scheme Xy of relative dimension two over SpecZ{f]. Rescaling of the
invariant form w defines an action of Go, on Xx. Let us call a cusp a connecled
component of the closed subscheme of Xy which parameirises singular elliptic
curves. Then the complement of any non-emply set of cusps in Xy is an affine
densge open subscheme.

Proof: Let X be defined in a similar way as Xy, but without the invariant
form w. Then Xy is a smooth stack over Xn. The smoothness and algebraicity
of Xn has been proved in {[DR73, Construction 1V.4.14]. It follows that Py is
algebraic and smooth of dimension two over SpecZ. Let us prove its rigidity.

Let k be an algebraically closed field of characteristic p not dividing N, and
let ¢ be an automorphism of an elliptic curve £ over k¥ which fixes a point of
order N and induces the identity on the tangent space at the origin. If p = 0,
then ¢ — Id is etther zero or etale. Since it induces zero on the tangent space,
it must be zero. 1f p > 0, then deg e — Id must be divisible by N since a point
of order N is fixed and by p since p ~ Id is not etale, hence it is divisible by
Np. Using the fact that Np > 4 one argues as in the proof of [KM85, Corollary
2.7.3] to prove ¢ = Id. Now let C be a generalised elliptic curve over k, and let
P be a point of order & generating the group of connected components of C™8.
By [DR73, 11.1.10], the automorphisms of C are given by

¢(z) = p(z) =,

where u:1o(C™8) — (™8 ig a group homomorphism from the group of con-
nected components of C'8 to the connected component of C™8. One sees easily
that P can be fixed by ¢ # Id only if one of the following cases occurs:

o N=2¢(z)=—z

o N =4, mp(C™8) = Z/2Z, p(z) = p(x) — z, where p: mp(C™8) — C*6:° is
the unique non-trivial group homomorphism.

In both cases, one sees that  cannot fix an invariant form w.

Therefore, we know that Xy is representable by a smooth algebraic space
Xn. Clearly, the action of G, on Xn by rescaling w defines an action on Xy.
To prove that Xy is a scheme, it suffices to prove that the complement of
a cusp is affine, since there are always the two disjoint cusps mo(C™8) = {0}
and m(C™8) = Z/NZ. If N > 4, then [KM85, Corollary2.7.3] together with

17



the above consideration in the case of singular elliptic curve proves that the
moduli problem XYy for points of order N is rigid, hence representable by a
projective curve Xy by [DR73, Construction 1V.4.14] and the method of the
projectivity proof in [DR73, Corollaire 1V.2.9]. But then the complement of any
cusp in Xy is affine. Since Xy is the space of non-zero invariant forms on the
universal curve over Xy, this proves our claim if N > 4. If N < 4, we have
to proceed in a different way. For a prime number p not dividing N, one first
uses [DR73, Théoréme IV.6.7] to represent the moduli problem of generalised
elliptic curves with a level p structure and a point of order N by a projective
curve over SpecZ[ﬁ;]. By the method used in the case N > 4, this implies the
claim of our theorem with Xy replaced by the moduli problem of generalised
elliptic curves with a level p structure, a point of order N, and an invariant
form. Using the map “forgetting the level p structure and contraction [DR73,
Proposition 1V.1.3]”, one represents X as the quotient of this moduli problem
by GLg[Z/pI]. This proves our claim if p is inverted. Since this holds for any
p, the theorem follows. Q.E.D.

Let C¢ny be the universal generalised elliptic curve over Xx and let (:."(N) be
the quotient of C(ri.g) by its cyclic subgroup gencrated by P, and let C(x) , be the
restriction of é( ~) to the open subscheme XN‘O parametrising non-degene{ate
elliptic curves. The image of the group of N-torsion points on Ciny in Crwvy
defines a discrete cyclic subgroup of order ¥ G C (,T(N)()?N,o). The 1image of

N-1P in (?(N) defines a coset M C (T(N)()?N‘o). Hirzebruch’s choice of the
formal parameter is given by

divX = (G)~ (M) (23)
doX = w,
where w is the invariant form belonging to the moduli problem .

Theorem 6 The condition (23) uniguely defines a formal parameter on é(N),
hence a formal group law end a homomorphism

MU, — H*(Xn,0%,)- (24)
IfU C Xy is a G -invariant affine open subset, then

Ellyy.X = H'(U,03,) Q) MU.X
MU,

defines a MU-algebra specirum Elly y uniquely up to unigue isomorphism in
the stable homotopy category. If the complement of U conlains at least one cusp,
then Elly ¢ is periodic in a non-unique way.

Proof: By the description of the Picard group of an elliptic curve, (23) defines X
as a unique formal parameter on the complement of the cusps, which is a rational
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function on C'( ~)- We have to show that the zero section is the only component
of the divisor of X which meets the zero section. By the normalisation (23), it
suffices to show that for any point s € Xy the preimage G, of the Zariski closure
of G in the fibre Cy , at s is multiplicity free and disjoint to the preimage M, of
the Zariski closure of M. It suffices to do this when s parametrises a degenerate
elliptic curve. Since the map C(”;‘.‘) — E(N) is finite and hence proper, G, is the
tmage in Ch'(N)', of the group of N-torsion points on C{f})'_. This is a discrete
cyclic subgroup of order equal to the cardinality of 7 (C('"A;) ,)- Moreover, M, is
the image of N~! P in C(x), and is clearly disjoint from G,.

This proves our claim about the existence (24). If U is a Gy-invariant
affine open subset of X, we have to verify the conditions A~C., for é( N) over
HD(U, OXN)' As for A., this is a consequence of smoothness, B. follows from
the very definition of the moduli problem, and C. follows from the fact that
ordinary elliptic curves form a open dense subset in the fibre of Xy at p.

It remains to prove the periodicity claims. If I/ is the complement of the
cusps, then the discriminant of w defines an invertible function on U which is
homogeneous of order 12 for the G,-action, hence a periodicity of order 24 for
Ellyy. By a theorem of Manin and Drinfeld [EIk90), the difference of two
cusps in torsion in the Jacobian of an elliptic modular curve, hence some sort
of pertodicity still exists even when only one cusp is removed. Q.E.D.

When N = 2, one recovers theorem 1 from the above theorem. The ne-
cessity of inverting a homogeneous polynomial of positive degree in theorem 1
corresponds to the necessity of passing to a G -invariant open subset U in the
above theorem. More precisely, Ellp in theorem 1 is Ell; ;v above, where U is
the complement of the set of zeros of P.

There are at least two other sorts of elliptic genera in the literature. Baker
[Bak90) considers a family of WeierstraBl cubics solving the moduli problem of
elliptic curves with a non-zero invariant form €2 in characteristic prime to 6. He
also verifies the Landweber conditions in this situation. R. Jung [Jun89] and G.
Hohn [Hoh91] consider a “universal elliptic genus” which links the Hirzebruch’s
elliptic genera for varying N. The conditions A.—B. for this family of elliptic
curves should be accessible to direct calculations. One could perhaps try to use
this to replace the abstract moduli theory which we used in our approach to
Elly iy by explicit calculations. We leave all this to the reader.

5 A proof of the Chudnovsky-Landweber con-
gruences

Landweber based is verification of condition 3 on page 5 on the congruences

uy = (—_;Jl)iﬁ‘__l (mod (p, u1))
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(62— )T = 5T (mod (p,w)).

As we have seen in the last two sections, this is not necessary. Nevertheless, it
may still be interesting to prove the congruences. The original proof of Chud-
noveky is based on the Atkin-Swinnerton-Dyer congruences. T'wo proofs in
[Lan88c] were based on a calculation of B. Gross for Weierstra$$ cubics and on
formulas of Igusa for multiplication by n in the Jacobia quartic. We follow
Gross’ ideas, but work directly with the Jacobi quartic. This allows us to avoid
much of the computational labour in [Lan88c], without seriously complicating
the theoretical background on which the proof depends.

Let £ be an elliptic curve over a field k of characteristic # 2, let P € £;— {0}
be a point of exact order 2 on £, and let w be a non-vanishing invariant form on
£. As we shall see below, the triple (£, P,w) has a unique realisation as a Jacobi
quartic. We will also consider the factor curve & = £/{0, P} (cf. [Mum88, §11.7.]
for a description of the quotient of an algebraic manifold by a finite group). Let
m: & — £ be the projection. Then

}3 = 11'(82 - {O,P})

is a point of precise order 2 on €. There is a unique invariant form & on £ with
7*@ = w. Let us first derive the equation of the Jacobi quartic, and some other
useful formulas. They are well-known from the theory of elliptic and modular
functions of one variable, cf. [Igu59)].

Proposition 2 1. There is a unique rational function X on £ with

divX =(0) + (P)- (& - {O,P})

and
doX = W(O).
It satisfies the relations
X(a+P) = —-X(a) (25)
X(—-a) = —X(a).

2. There is a unique rational function Y on £ with

divY = Z (Q) - 2(&2~ {0, P})
219

and Y(0) = 1. [t satisfies the relations

Y(@+P) = -Y(a) (26)
Y (~a) Y(a).

20



8. There unique conslants 6, € € k such that
Y2=1-26X%4eXx?, (27)
and the map P — (X(P),Y(P)) defines an isomorphism of £ — (& -
{0, P}) with the affine curve (27).
4. The invariant form is given by

dX
& (28)

5 Let X and Y on & be dcﬁngd in the same way as X and Y, using P and
w. Then the pull-backs of X and Y 10 € are given by

e X
1-¢eX* 1-eXx?

Y2~ (1= 26X%+ex)t

w =

~y

6. The constants § and ¢ for the triple (€, P,&) are§ = —26 and & = 4(82—¢).

Proof: The existence and uniqueness of X and Y follow from the well-known
description of the divisor class groups of elliptic curves. Since —X{(—a) and
Y (—a) satisfy the conditions which characterise X and Y uniquely, the second
formulas in (25) and (26) follow. For the same reason, the first of the formulas
in (25) and (26) have to be true up to a sign, and to complete their proof we only
have to exclude the possibility that X(a + P) = X{a) or Y(a + P) = Y(a). If
the first of these relations was true, then X would come from a rational function
f on € with divf = (0) — P. By the description of the divisor class group of £,
no such function f exists. If we had Y(a + P) = Y{a), then Y = #*g, where
divg = 2(P) — (£ - {0, P}), which is impossible.

To get the equation for the Jacobi quartic, we rcpresent £ as a ramified
double cover p:€ — P! with p(—a) = p{a) and p(P) = oo. Then all the
summands in the equation (27) are functions f on £ with f(a + P) = f(—a) =
f(a) and with poles of order < 4 in & — {0, P} and no other pole. A function
J with these properties has the form #*p*g, where g is a polynomial of degree
< 2. Since there are only three such polynomials but four summands in (27), a
relation of type (27) must hold, by the normalisation for Y.

To verify that £ — (£ — {0, P}) is mapped isomorphically to the Jacobi
quartic, let @ and @ have the same finite coordinates X and Y. By the symmetry
properties, X{(a) = X(P — a). By the description of the divisor of X, X is of
degree two, hence we must have @ = P — a. But Y(P — a) = —Y(a), hence
Y(a) = 0 since p is odd, hence 2a = P, hence & = P — a = a. This shows that
the map from £ — (€3 — {0, P}) to the Jacobi quartic is one-to one. One verifies
that its differential is not zero, for instance by the formula for the invariant
differential w.
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Since the right hand side of (28) has the correct value at 0, to verify (28) it
suffices to prove that its right hand side has no poles, because then it must be
a multiple of w. The possible candidates for poles of the right hand side of (28)
are the second order poles of dX aud the first order zeros of Y. But the poles
of dX are cancelled by the poles of Y, and by (27) the zeros of Y are also zeros
of dX.

The first of the formulas (29) holds because its right hand side has the correct
divisor and the correct differential at 0. To verify the formula for 7* ¥, note
that »*¥ is uniquely determined by w = "LL:%:. But

d,rt}:r Yd¥-XdY

YidX - LX dy?
Y(1 —-eX4)
1-26X2 4+ eX*+26X2% — 2eX4dX
1-eX1 Y

W,

Finally, we have

(1-eX?)?
Y4
1—2eX4+e2X8
Y4
(1-26X2 4+ X4 46X2(1 - 26X2% 4 €X?) + 4(8% — £) X4
Y4
= 14+46r" X2 +4(87 - e)m" X4,

™y?

proving our formulas for § and &, Q.E.D.
We arc now ready to prove the nain result of this talk.

Theorem 7 Let £ be a supersingular elliplic curve over a field k of character-
islicp > 2, and let P € E(k) be a point of precise order 2. Let w be a mnvariant
differential form on £, and lel X, 6, ¢ be defined in the same way as in the
above proposition. Then

[P]* ¥ = up X?’ (30)
with )
= 72_21_—1 (;) . 31
g =t - (31)
Furthermore,
(62 — §) " =BT (32)
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Proof: We follow B. Gross’ arguments for the Weierstrass cubic, which were
explained in {Lan88¢]. 1t is clear that the validity of our formulas does not
depend on the choice of w. Since it is known (or will follow from considerations
below) that there are only finitely many isomorphism classes of supersingular
curves, we may assume k£ = F,. We will choose an appropriate model for £ over
Fpa. Then our formulas will turn out to be essentially rationality assertions.
The arguments in the next paragraph give a refined version of the classical fact
that any supersingular elliptic curve lives over Fp2. We will use the standard
facts about descending elliptic curves over algebraically closed fields to smaller
subfields, as explained, for instancz, in [Hus87, Chapter 7).

Let Frobp:& — £() be the Frobenius and let V,:EP) — £ be the Ver-
schiebung, the dual of Frob,. While Frob, is always purely inseparable, V,
is purely inseparable if and only if £ is supersingular. Recall that two pure-
ly inseparable covers of a curve over a perfect field are isomorphie, cf. [Sil86,
Corollary 11.2.12). Applying this vo the inseparable covers £ (via Froby) and
£C”) (via V,) of £(°), we gee that, there exists an isomorphism y: & 2 £(°%).
Applying the same fact to the two inseparable covers of degree p? of £, £ via
¥~ 1Froby: and £ via [p], we see that there exists an automorphism A of the
curve £ such that ¢y~!Frob,a = A[p|. At the price of changing , we may achieve

that 4 = [(2’})] Let E be the model of £ over Fpa obtained by descent with
respect to v, Then the relative Frobenius is

Frobeye,, =1( )], (35)

This relative Frobenius is characterised by the property that pull-back by it
maps any Fa-rational function to its p?-the power. The Fya-model E is defined
in such a way that Frobgr s = ¢! Frobpa, whence (33). The crucial observa-
tion which brings the Jacobi symbol into the play is that this endomorphism of
£ acts as multiplication by (-‘P-l)p := 1 on points of order 4, hence the model E
has all its points of order 4 defined over Fpa.3

As was indicated above, the matter is independent of w, hence we may
assume that w and X and Y are defined for the model E. Then FrobE/F’,'X =

X?*, hence (33) implies (30) with uy = (:P—l-) To prove (31) we have to show

e5 = 1, i.e., that ¢ is a fourth power in Fpa. Recall the factor curve =
£/{0, P}. It is also defined over F,, as are X and ¥. Lel Q € E4 such that
2Q ¢ {0, P}. By the definition of ¥, 7Q is a zero of Y, hence eX(Q)* = | by
(29). This proves that ¢ is a fourth power in Fpa and completes our proof of
(30) and of (31).

3The posaibility of replacing A by —A corresponds precisely to the twist considered at the
end of [LanB8¢c, p. 80]. However, the separate treatment of the cases § € {0;1728} is not
necessary since in these cases we also have more automorphisms o twist with.
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We have already seen that ¢ ir a fourth power in Fa, hence the right hand
side of (32) is equal to one. On the other side, the condition (33) is invariant
under isogenies, it is also satisfiel by E = E/{0, P}. Since & is clearly Fpa-

rational, £ = 4(6% ~ ¢) is also a fourth power in Fpa. Since 45 = (mod p),
this means that the left hand side of (32) is also equal to one. Q.E.D.
Now we consider the general Jacobi quartic

y? =1 — 2622+ ezt

Up to a double point at infinity, this is a semielliptic curve over Specl[:}, 6, e} -

{(0,0)} with multiplicative reduction along the cusps £ = 0 (connected Néron

model) and §% — £ = 0 (Néron model has two components). The identity is the

point {0, 1). For an odd prime number p, consider the power series
Pl'z=pe+ .. .+ w2l +... +ugz?’

It is well known that the relation p = u; = 0 characterises supersingular elliptic
curves. The result of our theorem -an therefore be reformulated as

Uz = (_Tl)ez%‘L (mod rad(p, uy))

(6 =) = & (mod rad(p, u1)).

Our task was to prove these congruences modulo the ideal (p,u;) itself. It
suffices to show that this ideal is the intersection of maximal ideals. Here we
simply reproduce Igusa’s well knowr argument (applied to Legendre polynomials
instead of the Deuring polynomials), as in [Lan88c].

Proposition 3 We have

rad(p, U]_) = (pl ul)‘

Proof: Let F(z,Z) be the formal group law and let
o0
w:Zwk(é,e)z", wo =1,
k=0

be the invariant differential for the universal Jacobi quartic. We first want to
verify

Uy = Wy (mod p). (34)
To this end, note that
w16,
og(z) = 3 4218k ¢ Qs o]
k=1
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is the logarithm of the formal gloup' law, satisfying log(F(z,z)) = log(z) +
log(Z), and let

o0

exp(z) = Zek(é, £)zt, e = 1,

k=1

be the inverse of log. Then for 1 <k <p-~1, ‘ﬂ'f—‘- is a polynomial in é and

€ with p-integral coefficients, consequently the polynomials e, (4, ) also have
p-integral coefficients if 1 < & < p— 1. Also, pe, is p-integral. It follows that

[ple = exp(plog(a)) = wpmrz® (mod (++,p)),
which was to be proved.
Now recall the Legendre polynomials Pi(€), which aze defined by

R - N
Vi VR

By (34) and our formula for the invariant differential on a Jacobi quartic, this
implies

(65,6) = Pega ("5 (mod p)

Consequently, it suffices to show that P,—: has no double zeros modulo p.
Note that the Legendre polynornials satisfy the differential equation

(1-2)Pi(z) — 22 Pi(z) + n(n + 1)Pa(z) = 0. (35)

Since P,(£1) = (£1)", %1 are not zeros of P, modulo p. If z ¢ {£1} is a double
zero of P, modulo p, then it follows by induction from (35) that all derivatives
of P, vanish modulo p at z. If n := deg P, < p, this would imply P, vanish
modulo p, which we know it does not. This proves that Pz;_: has no double
zeros modnlo p, and completes our lecture. Q.E.D.
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