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ABSTRACT. We prove that Kontsevich integral, via a weight system coming from Lie
algebra son, coincides with the Kauffman polynomials. As a corollary we get some
relations between mixed Euler numbers.

1. INTRODUCTION

Kontsevich integral is a knot invariant which contains in itself all knot invariants of
finite type, or Vassiliev invariants. The value of this integral lies in an algebra Ag, spanned
by cord diagrams, subject to relations corresponding to the flatness of the Knizhnik-
Zamolodchikov equation, or the so called infinitesimal pure braid relations ([11]).

For a Lie algebra g with a bilinear invariant form and a representation p : g — End(V)
one can associate a linear mapping Wy, , from Ag to C[[h]], called the weight system
of g,t,p. Here t is the invariant element in g ® g corresponding to the bilinear form.
Combining with the Kontsevich integral we get a knot invariant with values in C[[A]].
The coefficient of A" is a Vassiliev invariant of degree n.

From the other hand for a simple Lie algebra g,¢, p there is another knot invariant,
constructed from the quantum R-matrix corresponding to g,¢,p. Here R-matrix is the
image of the universal quantum R-matrix lying in g @ U@ through the representation
p- The construction is given, for example, in [17, 18, 20]. The invariant is a Laurant
polynomial in ¢, by putting ¢ = exp(h) we get a formal series in k. By a theorem of Bar-
Natan, Birman and Lin the coefficient of A™ is a Vassiliev invariant of degree n, and its
n-th derivative is the same as that of the invariant defined in the previous case. Bar-Natan
conjectured that these two invariants are the same.

Kontsevich invented his integral by using ideas from Drinfeld’s works on quasi-Hopf

algebras [6, 7). From these works it is also clear more or less that the Kontsevich integral,
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via weight system, should be the same as the invariant coming from quantum groups.
But since Drinfeld’s work does not treat knot invariant thoroughly, and since Kontsevich
integral was invented after this work and now is presented in literature without quasi-Hopf
algebra theory, here we present a direct proof that these invariants are the same for the
case when g is Lie algebra of series B,C, D and p is the fundamental representation. The
case of series A was treated in our previous work [13]. From the coincidence of the two
invariants we can derive some unexpected relations between the so called mixed Euler
numbers which recently gains much interest among number theorists. Arnold (2] calls
these numbers Zagier zeta function, here we use the terminology suggested by D.Zagier.
In section 2 we recall definition of Kontsevich integral for knots and links, and then
give a generalization for framed links. Kontsevich integral for framed links is technically
more convenient for our purpose. In section 3 we prove the main theorem about coinci-
dence of the two invariants. In the last section we derive some relations between mixed
Euler numbers. In Appendix we give a description of the Drinfeld associator and compute
its coefficients.
Acknowledgment The authors would like to thank M.Kontsevich, D.Zagier for useful
discussions and X.S.Lin for sending his preprints. We also thank A.Bolibruch for help
in proving theorem A.8. We are grateful to the Max-Planck institut fiir mathematik for
hospitality and support.

2. KONTSEVICH’S INTEGRAL FOR FRAMED LINKS

In this section, we extend the definition of Kontsevich integral for framed links. For

details on “usual” Kontsevich integral see [12] and [3].

2.1. Algebra and modules of cord diagrams. Let k be a positive integer. A cord
diagram is k oriented circles with finitely many cords, which will be represented as dashed
lines, marked on it, regarded up to orientation and component preserving diffeomorphisms
of the circles. Here dashed lines mean that two different cords never intersect each other.
We also suppose that the vertices of cords are all different. The circles are called the
Wilson loops, we suppose that they are numbered. Denote the collection of all cord
diagrams on k circles by D). This collection is naturally graded by the number of cords
in such a diagram. Denote the piece of degree d of D by GyD®). G,D*¥) is simply the
collection of all cord diagrams having precisely d cords.
Let the vector space A¥) be the quotient

A®) = gpan(DW)/span(4 — term relations).
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FIGURE 1. 4-term relation

FIGURE 2. Multiplication

The 4-term relation is described in fig.1.

We denote also A*) for the completion of A¥) by the graduation G;A(). The module
A® will also be denoted by A.

Let D;, Dy be two cord diagrams, each with a noted Wilson loops. Remove an arc on
each noted Wilson loop which does not contains any vertex and then using two lines to
combine the two Wilson lines into one single loop (fig.2) we get a cord diagram called the
product (or connected sum) of Dy, D; along the noted Wilson loops. As in [3] it can be
proved that this operation does not depend on the location of the arcs removed.

With this multiplication A becomes an algebra. Unit in this algebra is the circle
without any cord. Using connected sum we can define an action of A on A® if the
number of the Wilson loop to be acted is indicated. And there is an action of A®* on
AR,

Suppose X is a compact 1-dimensional oriented piece-wise smooth manifold with or
without boundary. The components of X are circles or lines. A cord digram with support
X is a set of dashed cords with end points lying in the interior of X, regarded up to
diffeomorphism which preserves each component and the orientation of X. Connected
component of X are called Wilson lines or Wilson loops. Let A(X) be the space spanned
by cord diagrams with support in X subject to the 4-term relation. Let 4y(X) be the
space spanned by cord diagrams with support in X subject to the 4-term relation and
every cord diagram containing a part like in figure 3 is equal to zero. If f: X — X'is a
homeomorphism then there is an associate isomorphism between A(X) and A(X’). If X
is a circle then A(X) is isomorphic to .A. We denote by A, the factored algebra of A by
the ideal generated by © where O is the cord diagram in figure 4. Using connected sum

U:o

FIGURE 3. Extra relation
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FIGURE 4. The cord diagram ©

and an evident isomorphism we can define an action of A on A(X) if the Wilson line or
loop to be acted is indicated. The action is the connected sum with the indicated Wilson
line. As in [3] it is proved that this action is well-defined. Similarly A, acts on Ag(X).

2.2. Tangles. We will consider R® as the product of R and C with a fixed orientation. A
point of R? has coordinates (¢, z), let z = z+1ty. A plane parallel to C is called horizontal.

A tangle T is a 1-dimensional compact oriented piece-wise smooth submanifold of R?
lying between two horizontal planes, called the top plane and the bottom plane of this
tangle, such that all the boundary points of T is lying in the top plane or in the bottom
plane. There may be some interior point of T lying in the top or bottom planes. This
definition is a little more general than, for example, that of [21, 18].

A tangle T is called of type 1 (or braid-like tangle) if :

a)Except for endpoints T has no local maximum or minimum.

b)T contains an even number of connected components, each is called a Wilson line of
T. The orientation of half of the components point upwards, the others point downwards.

A tangle is of type 2 if :

a’)Except for endpoints T has exactly one extremal point which lies in the top or bot-
tom plane. Of course this point is a maximal (minimal) point if it lies in the top(bottom)
plane. The component containing this point is called the distinguished Wilson line of this
tangle.

b’) Except for the distinguished line there are an even number of components, half of
them are directed upwards.

A tangle of type 2 can be treated as a tangle of type 1 if we consider the only extremal
point as two end points. Two tangles of type 1 (or type 2) are horizontal equivalent if
there is an isotopy transferring the first into the second such that the isotopy preserves
every horizontal plane and every point of the top and bottom planes are fixed.

For two tangles T7,7; of both types we can define the product T} x T} if the bottom
plane of T; coincides with the top plane of T,, the end points in this plane are also
coincident, and if we combine the two tangle then the orientation on each component is
definitely defined. The product is the combined 1-dimensional manifold. The product of
two tangles of type 1 is a tangle of type 1, but the product of two tangles of different type
or two tangles of type 2 may not be neither of type 1 nor type 2, but it is a tangle.
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FIGURE 5.

If T =Ty x T, then for D, € A(Ty), D, € A(T:2) we can define D, x D; € A(T) in an
obvious way, just combining the two diagrams.

Consider n straight line parallel to R and going through (0,7),7 = 1,...,n. Let T
(rep. T3, T) be the tangle which is the intersection of these line with the set 0 < ¢ <1
(res. 1 <t <2,0<t<2). Then T =T} x T;. But there is an obvious homeomorphism
T ~ T\ = T3, by shrinking. Let B, = A(T). Then B, is an algebra. Unit is the cord
diagram without any cord.

2.3. Kontsevich integral. Tangle of type 1: Let T be a tangle of type 1 with 2n

Wilson lines, numbered by 1,2,...2n. Suppose the bottom (top) plane is defined by
t = tgin(t = tmez). An applicable state (abbreviation AS) of degree m of T is m un-
ordered pairs (71,71),--- , (JmsJh), €ach is a pair of distinct numbers from {1,2,...,2n}.
For t € [tmin, tmaz] let z;(t), zi(t) be the projections onto C of the intersection points of the
Wilson lines numbered j;, j; with the horizontal plane going through ¢, for: =1,...,m.
FiX tmin < t1 <13 < -+ <ty < lmazx, let Dp be the cord diagram of A(T) obtained by
connecting pairs 2;(t;), z/(f;) by dashed lines. Let #P| be the number of points of the
form z;(;), zi(¢:),1 = 1,2...,m at which the orientation of T' is downwards. Of course Dp
and #P| do not depend on the choice of t,,...,t,,. We define Z(T) € A(T) as follow:

— 1 dz; — dz!
2(T)= ). o= / Y ()P AZ=—FD,
meo (273) tmin<ti < <tm<tmas AS of degree m S

In fact this is the holonomy along the corresponding curve in the configuration space

with a flat connection (see [3]).

Example 2.1. Consider three tangles T, T_,T in figure 5, the first two have end points
(0,0), (0,1), (1,0), (1,1), in the third the distance between two top end points is /;, the

distance between two bottom end points is I;. Then
Z(T,) = exp(/2)

Z(T-) = exp(~0/2)
I, L

Z(T) = exp(Qlog ) = (E)n
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FIGURE 6.
Here in each case the symbol Q¢ for a non-negative integer d is the cord diagram containing
d cords (= dashed lines), each is parallel to the plane C and connects the two Wilson

lines.

Tangle of type 2: Now suppose T is a tangle of type 2. In the integral Z(T) the

coefficient of some applicable states is infinity. To get rid of these irregularities we take
the value of the integral not in A but in Ay. Formally one can proceed as follows. Let T,
be the tangle obtained from T by cutting a part near the plane containing extremal point.
The cut is carried by a horizontal plane lying between top and bottom planes and having
distance ¢ to the plane containing the extremal point. Of course 7, is a submanifold of
T and hence there is a mapping A(Z,) — A(T'). Combining with A(T) — Ay(T) we can
view Z(T,) as an element of Ay(T"). Then there exists the limit ll_l"% Z(T,) which belongs
to Ap(T). The reason is if the coefficient of an applicable state of T, tends to infinity
when ¢ — 0 then the cord diagram of this applicable state is zero in Ay(T) (but not in
A(T,)). Denote this integral also by Z(T'), it is a well defined element of A,.

General tangle: Now suppose T is a tangle. Using horizontal planes going through

maximal and minimal points of T and some other planes lying between them we can
decompose T into the product of several tangles of type 2, T = T3 x T3 x --- x T;,.
Put Z(T) = Z(Ty) x --- x Z(T,). It can be proved that Z(T) does not depend on the
decomposition, if T = T x T" then Z(T') = Z(T") x Z(T"). The most important of Z(T)

is the following

Proposition 2.1 ([3, 12]). ¢)Z(T) remains unchanged under isotopy which preserves the
bottom and the top planes and does not change the number of mazimal and minimal points
of each Wilson line or loop.

b)If T' differ from T only in a neighborhood of a ball in which T and T’ look like in
fig.6 then

Z(T') =~.2(T) (1)

where v is the Kontsevich integral of the tangle U in fig.7, v belongs to Ay and the right

side of this equality should be understood as the action of v on the Wilson line containing
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FIGURE 7. Diagram U

FIGURE 8. d-th power of w

this part of the tangle.

Suppose L is an embedding of k circle into R3? in generic position. The components
of L are numbered. For i = 1,...,k let s; be the number of maximal points of the i-th
string. Let

Z(L)=7y"® - @y ™2Z(L)

here in the right hand side we use the action of (4y)®* on o,
Theorem 2.2. Z(L) is an isotopy invariant of oriented links.

Proof. Using proposition 2.1 one easily proves that Z;(L) is invariant under all the moves

listed in (21, Theorem 3.2]. Hence Z;L is an ambient isotopy invariant. [J
This is an easy generalization of Kontsevich integral for links.

2.4. A generalization for framed links. A tangle of type 3 is a tangle of type 2 such
that a neighborhood of the only extremal point is lying in the plane (¢, z), the extremal
point is not a smooth point and in a neighborhood of this point the two parts of the
distinguished lines are straight lines forming an angle 7 /4, (see fig.8).

Suppose T is a tangle of type 3. Let T, for small ¢ € R,e > 0 be the tangle obtained
from T by cutting a part near the extremal point by a horizontal plane. Here € 1is
the distance between two intersection points of the distinguished line with the cutting
horizontal plane. Then T =T, x (I' — T,) and T, is a tangle of type 1. We can define
Z(T.) which belongs to A(T.). Let w? stands for the cord diagram in A(T — T.) which
consists of d parallel dashed lines near the maximal (minimal) point and connecting points

of the distinguished lines as in fig.8. We regard w? as the formal d-th power of w.

Lemma 2.3 (Lemma about regularization of Kontsevich integral). IfT is a tan-

gle of type 8 containing a minimal point then there exist

: : w
Z4(T) = lim Z(T.) exp(—5~loge)
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FIGURE 9.
which belongs to A(T'). If T contains a mazimal point then there ezists

) w
Z4(T) = limexp(;—log ¢) Z(T.)
This lemma is proved in [14]. We will write u* for exp(w logu).

Example 2.2. Suppose T}, T; are two tangles in figure 9, the distance between two end
points in both tangles is {. Then

Zf (Tl) — lw/?‘rri

Z!(Tg) — l—w/lm'
While Z(Th), Z(T3;) are “unit”, that is, cord diagram without any cord.

Now suppose L is a framed link. We represent L as a framed link diagram on the
plane (t,z) with blackboard framing (see for example [10]). We suppose that all points
of L belongs to the plane (f,z) except for a neighborhood of double points. After a
deformation at extremal points we can decompose L into several tangles of the type 3,
L=Tyx---xT, Put Z;(L) = Z;(Ty) x -+ x Z;(Ty,). It is easy to see that Z;(L) does
not depend on the decomposition. We call it the framed Kontsevich integral of L. Let ¢
be the framed Kontsevich integral of the framed link diagram U in fig.7. Let s; be defined
as in theorem 2.2. Put

Zi(Ly=¢""Q - ®¢~"*.Z(L)
Here in the right hand side we use the action of .A®% on A(¥),
Theorem 2.4. a) Z; is an invariant of framed oriented links.

b) If L, L, L_ are three framed link represented in the black board framing by diagrams
coincident every where except for a disk in which they look like in fig.10 then

Z5(Ls) = exp(©/2)24(L)
Zy(L-) = exp(—6/2)Z(L)
here exp(©/2) and exp(—0/2) belong to A and the right hand sides of these equalities

should be understood as the action on the Wilson loop concerned.

This theorem is also proved in [14].

In fact what we get is an invariant of colored framed links.
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FIGURE 10. Changing frame

Remark. 1) The relation between Z;(L) and Z(L) is very simple and is explained in
(14].

2)Suppose I is a C-valued invariant of framed links of finite type, this means there is
d € N such that the (d + 1)-th derivative Vg4 1(I) of I is zero, then the d-th derivative
of I defined a linear mapping from G4(®x.A*)) into C. Conversely every functional on
Ga(®rA®) is the d-th derivative of a framed knot invariant of degree (d + 1). This is
proved in exactly the same way as in the case of invariant of “unframed knots” using the
integral Z; instead of Z.

3) The invariant Zj contains every framed knot invariant of finite type. This means
if Z;(K,) = Z;(K,) then I(K,) = I(K;) for every framed knot invariant of finite type.
Hence the question the system of invariant of finite type is complete is reduced to the

question: are there two different framed knots with the same framed Kontsevich integral?

3. WEIGHT SYSTEMS AND KAUFFMAN POLYNOMIAL

3.1. Semi-simple Lie algebra. A weight systems on A¥) (resp. on A‘(f)) is a linear
mapping from A®) (resp. from A{?) to C.

Let g be a Lie algebra with a non-degenerate invariant bilinear form. Let ¢ be the
corresponding Casimir element in Ug ® Ug.* Suppose p; : g — End(V;),: = 1,2,... be a
set of representations of g.We generalize the notion of weight system of [3, 15] as follow.
Choose a base ej- for each vector space V,. Let D be a cord diagram such that each Wilson
loop or line is enhanced with a number from N, called the color of this Wilson loop (or
line).

A connected subset of Wilson loops and lines of D is called an arc if it has no vertex
(of cords) in the interior of it and its boundaries are vertices or a boundary of the strings.
An arc of D is called internal arc if both boundary poeints of it are vertices of cords, and
is called boundary arc if otherwise. Define a state as a mapping from arcs of D to {e}}
such that an arc of the Wilson loop or line of color 1 is e; for some j. For a cord in
fig.11 we associate the number ht2], called the weight of this cord in this state, where &

is a formal parameter, a,b,c,d are the values of the four arcs under the state-mapping,
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FIGURE 11. State of a cord
1,1’ are the colors of the Wilson lines (or lines), and ¢ here is considered as the mapping
t:V,® Vi - V; ® Vi corresponding to the Casimir element ¢. Suppose D contains only
loops. Let
Wi, (D) = E H htZdb (2)

states cords

Wi,:3(D) is called the weight of D.
Correctness of this mapping follows from the fact that ¢ satisfies the following equation,
the graphical representation of which is the 4-term relation:

[ti2, ta3] + [t12, 223 = 0 (3)

A colored framed link is a framed link such that each component is enhanced with a
number from N called the color of the component. Combining the above mapping with
Z; we get an invariant of colored framed link with valued in C[[A]].

As a special case for any operator r: V@V — V ® V satisfying (3) we get a weight
system W,.

3.2. The case g = soy and all p; are the fundamental representation. First
consider the case when p; = p: g — End(V). We will denote W, simply by W. Suppose
D is a cord diagram, maybe with open Wilson lines. Denote the set of all end points of
D at which the orientation of D is inwards (outwards) by D;,, (D,y).Then the number of
points in D;, is equal the number of points in Dyy. We define W(D) as an operator from
V(Douw) to V(Din), where V(Dout) = ®pepouV (), V(Din) = ®@peninV(p) 2and all V(p)
are equal to V. Let e;,...,¢€, be a base of V. Consider the state sum (2) as above, only
with fixed values of the external arcs. Then by varying the values of the external arcs we
get an operator from V(D,y) to V(D;,). This operator does not depend on the choice of
the base e; and commute with the action of g on V(D,y) and V(D;,) (see [3]).

Proposition 3.1. Suppose p is irreducible, Dy, D, are two diagrams from A®), and

D #D; is the connected sum along arbitrary components, then

W (D #D;) = W(D,)W(D,)/ dimV
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Proof. After removing a small arc from D, and D; we get cord diagrams Dj, Dj, each
has two end points (see fig.12) Then W(D]), W(D}) are operator from V to V. It is
easy to see that W(D;) = Tr W(D!),i = 1,2. While W(D,#D;) = Tr[W (D)W (Dj})].
Since p is irreducible and both W(D!),i = 1,2 commute with actions of p we have
W(D,) = const. id, W(Dj}) = const.id. It follows that

Te[W(D,)W(D%)] = [Te W(D.)|[Te W(D})]/ dimV O

Now suppose § = soy and p : soy — End(V) = End(CV) is the fundamental

representation. After a normalization we have
£2% = 2(636¢ — 6°6.4)
A specific property of this case is the following important:

Lemma 3.2. We have t = —t" = —t" where t* is the transpose of t on the first space

and t* is the transpose of t on the second space.

The proof is trivial and follows from the explicit form of ¢.

The following graphical representation of ¢ allows us to compute quickly W (D).

w20 - 3=
w(O)=Nw(DuQ)=NW(D)

where D is a cord diagram and D L O is the union of D and a circle which is far away.

Example 3.1. For the tangle Ty, T_ in fig.5 W(Ty), W(T-) are operators from V @ V
to V®YV. Then '

W(2/(Ty)) = Pexp(hp(t)/2) (4)

W(Z(T-)) = Pexp(—hp(t)/2) (5)

where P is the permutation P(z ® y) = y ® z. This can be proved easily by using the

result of example 2.1.
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Note that for a cord diagram D in general if we change the orientation of a Wilson
line then W{(D) changes.

Proposition 38.3. If we change the orientation of a Wilson line then the operator p(T) =
W(Z;(T)) remains unchanged.

Proof. When we change the orientation of a Wilson line, then for an Applicable state,
for a cord having one vertex on this Wilson line the term #P] is changed by —1, and
the associate number of this cord must be replaced by the corresponding number of the
matrix obtained from ¢ by transpose on the first or on the second place. From lemma
3.2 we see that the result is unchanged. For a cord having both vertices on the string we
have to change ¢ to t1*2 which is equal to t. O

If L is a framed link then it follows that W(Z;(L)) does not depends on the orientation
of the link.

3.3. Kauffmann polynomial.

2 ,exp[(N — 1)A] — exp[(1 — Nk
Lemma 3.4. Let n = N*/( 2l expn}t]—exp(p—[(h) =

[P exp(hp(t)/2) — P exp(—hp(t)/2)}sq = (exp h — exp(—h))[id —6°°b4a/n]
This lemma is proved by explicit calculating matrices exp(hp(t)), exp(hp()). Recall

that P is the permutation actingon V@ V.
The operator 6%°4;4 can be represented graphically as

+1). Then

\/
A~ m ) -
We have seen that W(Z;) is an isotpy invariant of framed links, but W(Z,(O)) #
1. We will use another normalization. Let k(L) = N=*W($)W(Z,(L)), in this case
R(O) = 1. If L is a framed link diagram with s maximal points then from proposition

3.1

N°"W(Z,(L))
k(L) = 6
W= "Wy ©

Denote W (exp(©/2))/N by . Then W(exp(—0/2)/N = o™, by proposition 3.1. We
have seen that x(L) is a formal power series on h and is an invariant of framed oriented

links.

Proposition 3.5. If L, L, , L_ are three framed links such that in some blackboard rep-
resentation they differ only in a disk in which they look like in fig.10 then x(Ly) =
ok(L), k(L) = o~ 'k(L). Hence o~"Wx(L) where w(L) is the writhe number of the

framed link L is an ambient isotopy invariant of oriented links.
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FIGURE 13.

FIGURE 14. Scheme to prove theorem 3.6

This proposition follows from theorem 2.4 and proposition 3.1.

Let x(L) = 2, «;h' then from the construction of the integral it follows that each
ki 18 an invariant of framed links of degree i and its :-th derivative is computed by the
weight system W. From the other hand the coefficients of Kauffmann polynomials are
also invariant of finite type with the same derivatives (see [15]). We will prove that these

two invariants are the same.

Theorem 3.8. £(L) does not depend on the orientation of L and if Ly, L_, Lo, Lo are

four framed link diagrams coincident outside some disk and looking as in fig.13 in this
disk then

K(Ly) = &(L-) = (exp(h) — exp(—h))[~(Lo) — £(Leo )] (7)

Hence (L) is the Kauffman polynomial.

Proof. The fact that (L) does not depend on the orientation follows from proposition
3.3. By regular isotopy we can push the local part containing the difference of the four
links far away as in figure 14. In this figure the different parts of the four link are in the
box denoted T. The complement parts are the same and is denoted by X. We suppose
that the end points of X are (0,0),(0,1),(1,0),(1,1). In figure 14 L is decompose into
three tangle, the top is denoted by 7}, the middle by T5, the bottom by T3. The middle
contains T and two extra lines parallel to the straight line R. We suppose the upper end
points of these two lines are ({,1),({+ 1,1). We will consider the limit when I — oo, and
write T1(1), T2(1), T3(1). Let Z(T3(1)) = A+ B(l) where B(l) is the part containing all the
cord diagrams with at least one “long” cord connecting a Wilson line of the left part of
T; and a Wilson line of the right part of T3, A = Z(T) is the remaining. Of course A
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does not depend on . The coefficient of a diagram of B(!) tends to zero when [ tends to
infinity at least as fast as log(1+1/1). This follows easily from the formula of the integral.

For all cord diagrams with less than & cords of Z;(T3(l)) or Z;(T5(l)), the coefficients
tends to infinity when ! tends to infinity, but at most as fast as (log{)*. This also follows
easily from the integral formula. Using llirg log(1 + 1/1)(log I)* = 0 we see that

24(L) = Jim Z,(Ty(1)) x 24(T) x Z;(Ts(D)

Now let T respectively the diagram of fig.13, for the first three cases we use the
orientation which points downwards in T'. For the last case use arbitrary orientation in
T, and then change the orientation of some component of X such that the combining
diagram have definite orientation. Using lemmas 3.3, 3.4, equations (4), (5) and the

previous equation we get

W(Zs(Ly) = Z4(L-)] = (exp(h) — exp(—h))W[Z;(Lo) — Z;(Leo)/n] (8)

Now consider the case when the part I in figure 14 is trivial (just two parallel lines),
taking into account the number of maxima (see (6)) and using proposition 3.3 we get
(exp(N —1)h —exp(l — N)h
exp(h) — exp(—h)
or (W(¢)+ N?)(W(é)/n—1) = 0. Because W(¢) depends on h we see that W(¢) = g

hence

) W(g) = N* — W($)/n

(N — 1)h] — expf(1 — N)h]
exp h — exp(—h)

Wwig) = N1 /(22 +1) (9)

Now using W(¢) = 5 in (8) and proposition 3.3 concerning the inversion of one string
of a tangle we get (7).

Besides n(O) = 1. Together with (7) this defines x uniquely as an invariant of
framed link. Hence x(L) is the Kauffmann polynomial. In the notation of Turaev [20,
§4.3.4] it is equal to Qn (L) with ¢ = exp(h) 0O

Remark. An anologous proof yields the following result: For a weight Wif W{exp(p))
satisfies the polynomial-equation f(t) = 0 then this polynomial annihilates the invariants
W (Z,) in the sense of Turaev [20).

4, SOME COMPUTATIONS AND COROLLARIES

We compute explicitly the series W(¢) and deduce some unexpected relations between

the so called mixed Euler numbers.
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()

FIGURE 15. Closing

4.1. Elements 7, ¢. Recalled that v = Z(U) is in Ap while ¢ = Z;(U) is in A. Let
f: A — Abe the mapping which takes a cord diagram with k cords into (—1)*©@*. Recall
that there is a comultiplication A defined on A(see [3, 12] for details). Put

$(D) = m[(f @ id)A(D)]

where D is a cord diagram and m is the usual multiplication in A. It follows that v is
an algebra homomorphism, its kernel is the ideal generated by © hence it also defines
a homomorphism from Ay to A. The composition A YA A s identity, and
¥?: A — Ais equal to . The operator 1 was also introduced in [3, 16].

Proposition 4.1. We have ¢ = (7).

The proof is presented in Appendix.

Consider the algebra Bj introduced in §1.2. Let ;2 be the cord digram with one cord
connecting the first and the second Wilson lines, €33 be the cord digram with one cord
connecting the second and the third Wilson lines. For a multi-index I = (3,,...,1) put

012923 1ngﬂ"' -1, .Qmﬂ';';,'l. Now converting the orientation of the second Wilson
hne then closing the three Wilson lines into one Wilson loop as in figure 15 we get a closing
mapping cl: By — A. Let D; = cl(Y;). We also consider D(I) as an element of Ay, by
the natural projection A — A,. Consider the set I = {I = (4;,...,%),1, € N,ip > 1}.
Let |} = ©F_, iy, k(1) be the number of indices in I. For I = (4,...,i) € J set

1

mil mlk
my < <mpeN 771 - T

€ty 1) =

It is called a mixed Euler number. When £ = 1 it is the value of the zeta function at

some natural number.

Proposition 4.2. The element v € A is givcn by

T=1+) +—= o )m 1D D(T)

IGJ

This proposition is proved in Appendix (see also [13]).



16 LE T.Q.T. & JMURAKAMI

4.2. Relations between mixed Euler number. It is easy to check that 3,[p(2)]g5 =
2(m —1)é5. Let

r=p(t)—2(m-1)id
and W, be the weight system corresponding to r. Then W,(8) = 0 and hence W, is a
weight system on A,.
Proposition 4.3. For every cord diagram D € Ay we have W, (D) = W(y(D)).

This follows immediately from the definition of 4 and r. As a corollary of this and

proposition 4.1 we get

Proposition 4.4. One has W,(y) = W(9).
We use a normalization of mixed Euler number by putting ((I) = (—=1)*D(x:)~M¢ (D).
Now define g(1,,...,1;) as follow. Let

N-1 1 -1 N-1 -1 1
u=nh 1 N-1 -1|,v=h 0 0 0
0 0 0 1 -1 N-1

Matrix v is obtained from u by permutation of the second and the third coordinates. Let

1
g1, ..., 0) = (0, l,O)uvil'luvii‘l CLuvtt

N
Proposition 4.5. For [ € J

W.(D(D) = (-2)VINg(I)

This is proved by induction on the number of cords, using the graphical representation
of t.

Theorem 4.8. We have

1+ 3 g(DC(Nh = N(exp(h) — exp(—h))

exp(N — 1)k — exp(1 — N)h + exp(h) — exp(—h)

(10)

Proof. Note that if k is odd then 3|5z g(I)¢(I) = 0 due to the inversion formula for
¢(I) (see [13] and Appendix). Hence the left side of (10) does not contain terms with odd
power of h. Using propositions 4.2, 4.4, 4.5 to compute the left hand side of (9) we get
the result. O
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Both sides of (10) belong to C[N][[A?]]. By comparing the coefficients of N?h? we get
different relations between mixed Euler numbers. It is interesting to notice that these
relations are not established by traditional methods of number theory, but by isotopy
invariant of links.

For example by comparing the lowest order of N in both sides of (10) when the order
of h is fixed we get

€(2,2,...,2) = 7/(2n +1)! (11)

This can also be derived from the similar formula gotten from the HOMFLY polynomial

case [13]. From (11), by induction one can easily reprove a famous theorem of Euler which
(211')2“| ]
By combining all relations among Euler mixed number w1th 1| <6, || even, coming

expresses ((2n) in terms of Bernoulli numbers: {(2n) =

from the HOMFLY and the Kauffmann polynomials we can compute all these numbers.
The case |I| = 6 these numbers are computed modulo ((3). For example

€(1,2,8) = 227 + 3C(3)",((2,4) = 5ei=n® +C(3)°

For the case when |I| > 8 these relations are not enough to determine {(I), when || is

odd we can not get any relation.

APPENDIX A. ITERATED INTEGRAL, MIXED EULER NUMBERS AND DRINFELD’S
ASSOCIATOR

A.1. Tterated integral, mixed Euler numbers. We recall here the definition and
some properties of iterated integral (see [5, 8]). Suppose &,...,& are 1-forms on [a,b],
that is ¢ = f;(u) du,u € [a,b], define

Ukay

/flfz k= /dul(fl “1)/du‘1(f2(u2 / / d‘“kfk(uk) ))

1d
Let wy = %f,wl = %ud_ul. For example for 0 < a < b < 1 we have
b
1 b

k_ 1 Ok
! (w0)* = Gryeglios;) (12)

1-5
/ ()" = Grmloel = (13)

The following properties of iterated integral are well known.
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Proposition A.1. Suppose £,&a,. ..,k are 1-forms on [a,b] then

/bfx---fk/bfkn---fw =;j£a(l)-~-fa(k+l)

where the summation is performed with respect to all permutation 0 € Sy such that

el (1) <o (2 < - <o M(k),o M k+ 1)< - <o Yk +1).
Note that the sum in the right hand side contains Cf,, terms.

Proposition A.2. The iterated integral along the inverse path is given by
b

/agl...ek=(-1)’=/5k...§1
b

a

Proposition A.3. Fora<b<c : .

fo o fo 68 fot femn ot o
'} a I=laq [ b

Now consider fol &1 ... & when &; is either wg or wy. If §; = w; or € = wp then it is easy

to verify that the integral does not converge. Otherwise the integral exists and its value

can be computed explicitly as follow. Let py, q1,p2,43,- - -, Pn, s are natural number. Set

1

—_ +-
T(PI,QI, . spn)qn) — (_1)'1’1 In jwoplw1Q1 .. 'wopﬂwlqu
[}

Recall that mixed Euler number {(z4,...,%) is defined for natural numbers ¢;,

i > 1 by
. . 1
C(l],...,zk)= ——:—'.l Y
my <<my€N my...my

If ¢4 = 1 the right hand side does not converge.

Proposition A.4. We have

Gy Pagn) = (L, L+ 1,1, g+ 1, g+ ]
T(P1,G1s- -+ Prrn) = (( ¢+ @+ gn +1)

ri—-1 r3—1
Proof. Let for u € (0,1)
. . s
F(zl,...,lk;u): T————;:
my<<meN T -2 T

then one verifies at once that

j“F(il,...,i,,;v)dv

1—v

= F(iy,...,t, 15u)

---,’:k with

(14)
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/“ F(iy, ..., i v)dv

v

= F(i1,...,5 + 1;u)
0
Using these equalities and induction on ¥ p; + ¢; it is easy to prove (14). O

Note that another form equivalent to (14) is

1
. N -1 ia-1 ix—1
C(tl,...,zk)—jwowl" wow1? L wown 't
0

A corollary of the previous Proposition and Proposition A.2 is

Corollary A.5 (Inversion formula for mixed Euler numbers). We have

T(PlaQIa“-,Pm‘In)=T(Qn:pm"'sqlap1) (15)
For example ((1,2) = ((3),¢(1,3) = ((4). We see that the function 7 is more “sym-

metric” and we will use this function instead of (.

A.2. Drinfeld’s associator. We can not present here Drinfeld’s theory of quasi-Hopf
algebras (see [6, 7]). We only mention that the category of representations of a quasi-
triangular quasi-Hopf algebra is a quasi-tensorial category, from which one can construct
invariants of framed links (see [18, 19, 1]). In a quasitriangular quasi-Hopf algebra A
there are two important objects, an element R € A ® A, called R-matrix and an element
® € A® AQ® A, called the associator. There are gauge transformations which change R, ®
but do not change the category of representations of A and hence the corresponding link
invariant remains unchanged. For a class of quasi-Hopf algebras Drinfeld showed that by
gauge transformations one can make R-matrix very simple ( of type R = exp(t)), and all
the difficulties are placed on ®. Drinfeld gave an explicit way to construct ® in this case.
We will decribe this ®, but without any quasi-Hopf algebra, and point out the connection
to element ¢,~ defined in section 4.

Let M, = C< A, B> be the module of non-commutative formal series on two
symbols A, B. With the natural multiplication M; is a non-commutative algebra. Con-

sider the equation

G'(w) = 5(2 + —22)G(w) (16)

2miu

where G : (0,1) — M; is a formal series on A, B with coefficients which are analytic
functions on u. Then for any 0 < a < 1 there is a unique solution to (16) with G(a) =1,
let denote the value of this solution at b € (0,1) by Z(A, B). We can write

24, B) =1+ Y fx(a,HX (a7)



20 LE T.Q.T. & JMURAKAMI

where the summation is over all monomes X in M;, fx(a,b) is an analytic function on
a,b. Here a monome in M is the product of a finite number of symbols, each is A or B.

By induction one sees that the coefficient fx(a,b) in (17) is given by

b
n@@=/x (18)

where the right hand side is the iterated integral on [a, 8] in which each symbol A in X is
replaced by wy, each symbol B is replaced by w,. Hence if X is a monome which begins
with A and ends with B then there exists the limit lim,_o fx(e,1 — £€). Otherwise the
limit is oo.

We will say that a sequence of elements in M — 1 converges to an element of M, if the
coefficients of each monome converge to the corresponding coefficient of the limit element.

In order to regularize the limit lim,_q Z}~% we can use the following two approaches.

Consider module M, which is a submodule of M; containing only formal series on
monomes beginning with A and ending with B. At the same time M; is a factor of M;:
M, = M,/(BM; = 0, M;A = 0). Let ¢;3 : M; — M, be the factor map. Then we see
that there exists the limit

P = lim 12(227)

which belongs to M,.

If we write ' =1 4+ Y. I'x X where the summation is over all monomes in M, then

rx=jx (19)

This integral is convergent because X begins with A and ends with B. From (14it follows
that each coefficient I'y is a mixed Euler number.

Another way to regularize lim,_o Z!~° is the following. There exists uniquely one so-
lution Gy (u) of (16) with asymptotic G;(u) ~ u#/?*™ (for u — 0) where u = exp(Alogu)
and Gy(u) = uA/* means that G;(u)u=4/?™ has an analytic continuation into a neigh-
borhood of u = 0 and becomes 1 at this point.

Similarly there exists uniquely one solution G3(t) of (16) with asymptotic Ga(t) =
(1 —)B/% ( = 1). Let

® =G;'G,

Then ® does not depend on ¢ and is an element of M, it is the Drinfeld’s associator and

plays important role in the theory of quasi-Hopf algebras and invariants of links. Let us
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C] Ca - Cﬁ
C¥ {Cs Cs
FIGURE 16.
write
@(A,B)=1+Z‘I’XX (20)

We will compute ®x for each monome X. It is clear from the definition of ® that
@(A, B) = ln_% 6—5/21{2;1—:5.4/2:{ (21)

Note that ® belongs to M, while I belongs to M;. We want to find a relation between ®
and T.

Recall that Bj is the algebra of cord diagrams whose support is three lines parallel to
R and lying between two horizontal planes {t = 0}, {t = 1}.

There is an operator closure D € B3 — cl(D) € A indicated in fig.15. Recall that
¢=2;U),y = 2Z(U).

Proposition A.6. We have

q.l? = cl(@(—ﬂn, —023)) (22)

7 = pr(cl(T'(—z, —23))) (23)
Where pr : A — Ay is the natural projection.

Proof. We prove (22), the second identity can be proved in a similar manner, even more
easily.

Using horizontal deformation we can deform U into a diagram U’(l) lying in the
plane (t,z) like in figure 16. In this figure the points C,,C3,C3,Cy, Cs,Cg have co-
ordinates respectively (0,1),(0,0),(1,1),(1,0),({,0),({,1). Using two horizontal planes
{t = 0},{t = 1} we cut U’(l) into three tangles: the top is Ty(!), the middle T3(I)
and the bottom T5(!). Then Z,(Ty()) = I/* Z,(T3(1)) = (I — 1)7%/**, While
Zs(T3(l)) = Z4(T) + log(1 + 1/1)O(1) (for I — o0). Here T is the part from point
C, to Cq and Zy(T) is defined in exactly the same manner as for any tangle of type 3.
By definition

ZI(T) — liﬂrj&sﬂzs/%iz(Tcl-z)E-ﬂuf?m‘
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where Z(T!~¢) is the Kontsevich integral of the tangle obtained from T by cutting upper
and lower parts by two planes {t =1 — ¢}, {t = ¢}.

Let I tend to infinity, using limy_.., (log {)*log(1 + 1/1) = 0 we see that ¢ = cl(Z;(T)).
From the definition of the integral we see that Z(T!¢) = Z1~¢(—3, —13). Hence

¢ = Z;(U) = l(Z(T)) = cl(®(—D1a, —Ns3)) O

From (23) and (19) we get proposition 4.2.

Now consider the module M; which consists of formal series with coefficients in C
on four symbols A, B, a, 8 such that a, 8 commute with every other symbols. Then with
the obvious multiplication Mj; is an algebra. Every monome in M3 can be represented
uniquely in the form #?Xa? where X is a monome in M,. Consider the mapping s :
M3 — M, ¥ (f?Xa?) = BPX A?. Note that this is a module homomorphism, but not
an algebra homomorphism. Note also that 13 ((B —$)Y) = 0 and ¥3,(Y(A—a)) = 0 for
every element Y € M;.

Let 413 : My — Mj; be the map ,3(H(A, B)) = H(A — a, B — ) where H(A,B) is
an element of M;. Denote ¥ : M, — M, the composition 13;%3. This ¥ is a module
homomeorphism, but not an algebra homomorphism, and if X is a monome in M, begins
with B or ends with A then ¥(X) = 0, hence ¥ can be regarded also as a homomorphism
from M; to M;. If X is a monome in M; then ¥(X) = X 4+ Y where Y is the sum of

monomes which begin with B or ends with A. Hence the composition
My — M, 5 M, — M,
is identity. Besides, ¥U?, as a homomorphism from M; to M, is coincident with V.
Proposition A.7. We have
Y(@)=12 (24)

Proof. Note that G;(A — a, B — ) is a solution to equation
,_ 1 A-—a B-§

¢ = 211':'( u + u-—1

with asymptotic u{4=2)/3* when u — 0. The function u=*/?*(1 —u)~P/*"G (A, B) is also

a solution to (25) with the same asymptotic. Hence

)G (25)

Gi(A — @, B — B) = u™/*(1 — u)™#/**G, (4, B)
Similarly we get

Gy(A - a, B — ) = u™®/*"(1 — u)~P*"iG,(A, B)
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Hence (G3'G1)(A, B) = (G7'G1)(A — a, B — B). In this identity both sides are elements
of M;. From this we get (24) immediately. O

Theorem A.8. The following identity holds true
yr)y=9e (26)
Proof. Applying ¥ to both sides of (21) we get

lim W(e~B/7"Z} <= 4/7m) = ¥(9) (27)

e—0
For every element Y € M; one has ¥(BY) = U(AY') = 0 hence the left hand side of (27)
is lim, .o ¥(Z}~¢) which is ¥(T"). While the right hand side of (27) is ® by (24. O

As a corollary one can prove proposition 4.1. In fact cl(¥(T'(—£2,23))) is just
P(cl(T'(—h2, Q23))) by definition of ¥, and of ¥ in §4. Combining with (22),(23) we get

proposition 4.1.
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