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ABSTRACT. We prove that Kontsevich integral, via a weight system coming from Lie
algebra SaN, coincides with the Kauffman polynomials. As a corollary we get some
relations between mixed Euler numbers.

1. INTRODUCTION

Kontsevich integral is a knot invariant which contains in itself all knot invariants of

finite type, or Vassiliev invariants. The value of this integral lies in an algebra Ao, spanned

by cord diagrams, subject to relations corresponding to the flatness of the Knizhnik­

Zamolodchikov equation, or the so called infinitesimal pure bra.id relations ([11]).

For a Lie algebra 9 with abilinear invariant form and a representation p : 9 -+ End(V)

one can associate a linear mapping Wg,t,p from Ao to C[[h]] , called the weight system

of 9, t, p. Here t is the invariant element in 9 C& 9 corresponding to the bilinear form.

Combining with the Kontsevich integral we get a knot invariant with values in C[[h]].

The coefficient of hn is a Vassiliev invariant of degree n.

From the other hand for a simple Lie algebra 9, t, P there is another knot invariant,

constructed from the quantum R-matrix corresponding to 9, t, p. Here R-matrix is the

image of the universal quantum R-matrix lying in U~ C& U~ through the representation

p. The construction is given, for exa.mple, in [17, 18, 20]. The invariant is a Laurant

polynomial in q, by putting q = exp(h) we get a formal series in h. By a theorem of Bar­

Natan, Birman and Lin the coefficient of hn is a Vassiliev invariant of degree n, and its

n-th derivative is the same as that of the invariant defined in the previous case. Bar·Natan

conjectured that these two invariants are the same.

Kontsevich invented his integral by using ideas from Drinfeld's works on quasi-Hopf

algebras [6, 7]. From these works it is also clear more or less that the Kontsevich integral,

1



2 LE T.Q.T. &. J.MURAKAMI

via weight system, should be the same as the invariant coming from quantum groups.

But since Drinfeld's work does not treat knot invariant thoroughly, and since Kontsevich

integral was invented after this work and now is presented in literature without quasi-Hopf

algebra theory, here we present a direct proof that these invariants are the same for the

case when 9 is Lie algebra of series B, C, D and p is the fundamental representation. The

case of series A was treated in our previous work [13]. From the coincidence of the two

invariants we can derive some unexpected relations between the so called mixed Euler

numbers which recently gains much interest among number theorists. Arnold [2] calls

these numbers Zagier zeta function, here we use the terminology suggested by D.Zagier.

In section 2 we recall definition of Kootsevich integral for knots and links, and then

give a generalization for framed links. Kontsevich integral for framed links is technica11y

more convenient for our purpose. In section 3 we prove the main theorem about coinci­

deuce of the two invariants. In the last section we derive some relations between mixed

Euler numbers. In Appendix we give a description of the Drinfeld associator and compute

its coefficients.

Acknowledgment The authors would like to thank M.Kontsevich, D.Zagier for useful

discussions and X.S.Lin for sending his preprints. We also thank A.Bolibruch for help

in proving theorem A.8. We are grateful to tbe Max-Planck institut für mathematik for

hospitality and support.

2. KONTSEVICH'S INTEGRAL FOR FRAMED LINKS

In this section, we extend the definition of Kontsevich integral for framed links. For

details 00 "usual" Kontsevich integral see [12] and [3].

2.1. Algebra and modules of cord diagrams. Let k be a positive integer. A cord

diagram ia k oriented cirdes with finitely many cords, which will be represented as dashed

lines, marked on it, regarded up to orientation and component preserving diffeomorphisffiS

of the circles. Here dashed lines mean that two different cords never intersect each other.

We also suppose that the vertices of cords are a11 different. Tbe circles are caUed the

Wilson Joops, we anppose that they are numbered. Denote tbe collection of a11 cord

diagrams on k circles by V(k). Tbis co11ection is naturally graded by the number of cords

in such a diagram. Denote the piece of degree d of V by 9dV(k). 9dV(k) is simply the

collection of 8011 cord diagrams having precisely d cords.

Let the vector space A(k) be the quotient

A(k) = span(V(k))/ span(4 - term relations).
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FIGURE l. 4-term relation
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FIGURE 2. Multiplication

The 4·term relation is described in fig.l.

We denote also A(k) for the completion of AO;) by the graduation QdA(k). The module

A (1) will also be denoted by A.
Let Dt, D2 be two cord diagrams, each with a noted Wilson loops. Remove an arc on

each noted Wilson loop which does not contains any vertex and then using two lines to

combine the two Wilson lines inta one single loop (fig.2) we get a cord diagram called the

produet (or eonnected sum) of D1 , D2 along the noted Wilson loops. As in [3] it ean be

proved that this operation does not depend on the loeation of the ares rernoved.

With this rnultiplication A becomes an algebra. Unit in this algebra is the eircle

without any cord. Using connected surn we ean define an action of A on A(k) if the

number of the Wilson loop to be acted is indicated. And there is an action of A~k on
A(k).

Suppose X ia a compact I-dimensional oriented piece-wise srnooth manifold with or

without boundary. The components of X are circles or lines. A cord digram with support

X is a set of dashed cords with end points lying in the interior of X, regarded up to

diffeomorphism which preserves each component and the orientation of X. Connected

component of X are called Wilson lines or Wilson loops. Let A(X) be the space spanned

by cord diagrams with support in X Bubject to the 4-terrn relation. Let Ao(X) be the

space spanned by cord diagrarns with support in X subject to the 4-term relation and

every cord diagram containing apart like in figure 3 is equal to zero. If f : X -+ X' is a

homeomorphism then there is an associate isomorphisrn between A(X) and A(X'). If X

is a circle then A(X) is isomorphie to A. We denote by An the factored algebra of A by

the ideal generated by e where e is the cord diagrarn in figure 4. Using connected surn

u =0

FIGURE 3. Extra relation
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e
FIGURE 4. The cord diagram e

and an evident isomorphism we can define an action of A on A(X) if the Wilson line or

loop to be acted ia indicated. The action is the connected sum with the indicated Wilson

line. As in [3] it is proved that this action ia well-defined. Similarly Ao acta on Ao(X).

2.2. Tangles. We will consider IR3 as the product of IR and C with a fixed orientation. A

point of IR3 has coordinates (t, z), let z = x +i y. A plane parallel to C is called horizontal.

A tangle T ia al-dimensional compact oriented piece-wise smooth submanifold of R3

lying between two horizontal planes, called the top plane and the bottom plane of this

taugle, such that all the boundary points of T is lying in the top plane or in the bottom

plane. There may be some interior point of T lying in the top or bottom planes. This

definition is a little more general than, for exampIe, that of [21, 18].

A tangle T is called of type 1 (or braid-like tangle) if :

a)Except for endpoints T has no Iocal maximum or minimum.

b)T contains an even number of connected components, each is called a Wilson line of

T. The orientation of half of the components point upwards, the others point downwards.

A tangle is of type 2 if :

a')Except for endpoints T has exactly one extremal point which lies in the top or bot­

tom plane. Of course this point is a maximal (minimal) point if it lies in the top(bottom)

plane. The component containing this point is called the distinguished Wilson line of this

taugle.

b') Except for the distinguished line there are an even number of components, half of

them are directed upwards.

A tangle of type 2 can be treated as a tangle of type I if we consider the only extremal

point as two end points. Two tangles of type I (or type 2) are horizontal equivalent if

there is an isotopy transferring the first into the aecond such that the isotopy preserves

every horizontal plane and every point of the top and bottom planes are fixed.

For two tangles Tb T'J of both types we can define the product Tl x T'J if the bottom

plane of Tl coincides with the top plane of T'J' the end points in this plane are also

coincident, and if we combine the two tangle then the orientation on each component is

definitely defined. The product is the combined I-dimensional manifold. The product of

two tangles of type 1 is a taugle of type I, hut the product of two tangles of different type

or two tangles of type 2 may not be neither of type 1 nor type 2, hut it ia a tangle.
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T

FIGURE 5.
If T ="Tt x T'J then for Dt E A(Tt ), D2 E A(T2 ) we can define Dt x D'J E A(T) in an

obvious way, just combining the two diagrams.

Consider n straight line para~lel to Rand going through (0, i), i = 1, ... , n. Let Tl

(rep. T'J' T) be the tangle which is the intersection of these line with the set 0 ~ t ~ 1

(res. 1 ~ t ~ 2, 0 ~ t ~ 2). Then T = Tl X T'J' But there is an obvious homeomorphism

T ~ Tl ~ T'J, by shrinking. Let Bn = A(T). Then Bn ia an algebra. Unit is the cord

diagram without any cord.

2.3. Kontsevich integral. Tangle cf type 1: Let T be a tangle of type 1 with 2n

Wilson lines, numbered by 1, 2, .. .2n. Suppose the bottom (top) plane ia defined by

t = tmin(t = t mBx )' An applicable state (abbreviation AS) of degree m of T is m un­

ordered pairs (jt,iD, ... ,(jm,j:n), each is a pair of distinct numbers from {l, 2, ... , 2n}.

For t E [tmin, t mBx] let Zi(t), z:(t) be the projections onto C of the intersection points of the

Wilson lines numbered ji,j: with the horizontal plane going through t, for i = 1, ... ,m.
Fix tmin < tl < t 2 < ... < t m < t mBX , let Dp be the cord diagram of A(T) obtained by

connecting pairs Zi(ti), ZHti) by dashed lines. Let #P! be the number of points of the

form Zi(ti), zi(td, i = 1,2 ... ,m at which the orientation of T ia downwards. Gf course D p

and #P! do not depend on the choice of t], ... ,tm' We define Z(T) E A(T) as follow:

Z() ~ 1 J '"' ( )#Pl dZi - dZ: DT = mL.:o (21ri)m LJ -1 1\ z. - z~ p
'mln<'t <"'<'m<'ma% AS of dep-ee m I I

In fact thia is the holonomy along the corresponding curve in the configuration space

with a Hat connection (see [3]).

Example 2.1. Consider three tangles T+, T_, T in figure 5, the first two have end points

(0,0), (0,1), (1,0), (1,1), in the third the distance between two top end points ia 1" the

distance between two bottom end points ia h. Then

Z(T+) = exp(Oj2)

Z(T_) = exp(-0/2)
1, 1, n

Z(T) = exp(!11og -) = (-)
h h
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T' T

FIGURE 6.

Here in each case the symbol nd for a non-negative integer d is the cord diagram eontaining

d cords (= dashed lines) , eaeh is parallel to the plane C and connects the two Wilson

lines.

Tangle oe type 2: Now suppose T is a tangle of type 2. In the integral Z(T) the

coefficient of some applicable states is infinity. To get rid of these irregularities we take

the value of the integral not in A but in An. Formally one ean proceed as followB. Let Te

be the tangle obtained from T by cutting apart near the plane containing extremal point.

The cut is carried by a horizontal plane lying between top and bottom planes and having

distance € to the plane containing the extremal point. Of course Te is a submanifold of

T and henee there is a mapping A(Tc ) -+ A(T). Combining with A(T) -+ An(T) we can

view Z(Te ) as an element of Ao(T). Then there exists the limit lim Z(Tt;) which belongs
«-0

to Ao(T). The reason is if the coefficient of an applicable state of Te tends to infinity

when e ~ 0 then the cord diagram of this applieable state is zero in An(T) (but not in

A(Te )). Denote this integral also by Z(T), it is a wen defined element of Ao.
General tangle: Now suppose T is a tangle. Using horizontal planes going through

maximal and minimal points of T and some other planes lying between them we ean

deeompose T ioto the product of several tangles of type 2, T = Tl X T2 X ••• x Tn .

Put Z(T) = Z(T1 ) X ••• x Z(Tn ). It can be proved that Z(T) does not depend on the

decomposition, if T = T' x T" then Z(T) = Z(T') x Z(T"). The most important of Z(T)

is the following

Proposition 2.1 ([3, 12]). a)Z(T) remains unchanged under isotopy which preseroes the

bottom and the top planes and does not change the number 0/ maximal and minimal points

0/ each Wilson line or loop.

b)l/ T' differ /rom T only in a neighborhood 0/ a ball in which T and T' look like in

fig.6 then

Z(T') = ,.Z(T) (1)

where , is the Kontsevich integral 0/ the tan:gle U in fig.7, I belongs to An and the right

side 0/ this equality should be understood as the action 0/, on the Wilson line containing
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FIGURE 7. Diagram U

FIGURE 8. d-th power of w

this part 0/ the tangle.

7

Suppose L is an embedding of k circle ioto R3 in generic position. The components

of L are numbered. For i = 1, ... ,k let Si be the number of maximal points of the i-th

string. Let

Z(L) = ,-Si ® ... ® ,-sk.Z(L)

here in the right hand side we use the action of (Ao)®k on ~k).

Theorem 2.2. Z(L) is an isotopy invariant oforiented links.

Proof. Using proposition 2.1 one easily proves that Zj(L) is invariant under all the moves

listed in {21, Theorem 3.2]. Hence ZjL is an ambient isotopy invariant. 0

This is an easy generalization of Kontsevich integral for links.

2.4. A generalization for framed links. A tangle 0/ type 3 ie a tangle of type 2 such

that a neighborhood of the only extremal point is lying in the plane (t, x), the extremal

point is not a smooth point and in a neighborhood of this point the two parts of the

distinguished lines are straight lines forming an angle 1r /4, (see fig. 8).

Suppose T is a tangle of type 3. Let T~ for small e E IR, e > 0 be the tangle obtained

from T by cutting apart near the extremal point by a horizontal plane. Here e is

the distance between two intersection points of the distinguished line with the cutting

horizontal plane. Then T = Te X (T - T~) and Te is a tangle of type 1. We can define

Z(T.J which belongs to A(Te ). Let wd stands far the cord diagram in A(T - T.:) which

consists of d parallel dashed lines near the maximal (minimal) point and connecting points

of the distinguished lines as in fig.8. We regard wd as the formal d~th power of w.

Lemma 2.3 (Lemma about regularization of Kontsevich integral). 1fT is a tan­

gle 0/ type 9 containing a minimal point then there exist
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FIGURE 9.
which belongs to A(T}. 1f T contains a maximal point then there exists

ZJ(T} = lim eXP(2
W

• log t:}Z(Te }
4'-0 1f~

This lemma is proved in [14]. We will write u'" for exp(w log u}.

Example 2.2. Suppose Tb T2 are two tangles in figure 9, the distance between two end

points in both tangles is I. Then

ZJ(Tt } = 1"'/2wi

ZJ(T'J} = 1-"'/2-':i

While Z(Tt ), Z(T2 ) are "unit", that is, cord diagram without any cord.

Now suppose L is a framed link. We represent L aB a framed link diagram on the

plane (t,x) with blackboard framing (see for example [10]). We suppose that all points

of L belongs to the plane (t, x) except for a neighborhood of double points. After a

deformation at extremal points we ean deeompose L into several tangles of the type 3,

L = Tl X ..• x Tn • Put ZJ(L) = ZJ(Td x ... x Zj(Tn ). It is easy to see that Zj(L) does

not depend on the decomposition. We eall it the framed Kontsevich integral of L. Let fjJ

be the framed Kontsevieh integral of the framed link diagram U in fig.7. Let Si be defined

as in theorem 2.2. Put

Zj(L) = fjJ-410··· 0 4J-·".Zj(L)

Here in the fight hand side we use the action of A0k on A(.I:).

Theorem 2.4. a) Zj is an invariant ollramed oriented links.

b) If L, L+, L_ are three fra~ed link represented in the black board framing by diagrams

coincident every where except for a disk in which they look like in fig.10 then

ZJ(L+) = exp(8/2)Zj(L)

ZJ(L_) = exp( -8/2)ZJ(L)

here exp(6/2) and exp( -8/2) belong to A and the right hand sides 01 these equalities

should be understood as the action on the Wilson loop concerned.

This theorem is also proved in [14].

In fact what we get is an invariant of eolored framed links.
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L

FIGURE 10. Changing frame

Remark. 1) The relation between 2J(L) and Z(L) is very simple and is explained in

[14].
2)Suppose I is a C-valued invariant of framed links of finite type, this means there is

dEN such that the (d + 1)-th derivative Vd+l(I) of I is zero, then the d-th derivative

of I defined a linear mapping from Qd(ffikA(k)) into C. Conversely every functional on

9d(ffikA(k)) is the d-th derivative of a framed knot invariant of degree (d + 1). This is

proved in exactly the same way as in the case of invariant of "unframed knots" using the

integral ZJ instead of Z.

3) The invariant 2J contains every framed knot invariant of finite type. This means

if ZJ(Kd = ZJ(K'J) then I(Kd = I(K'J) for every framed knot invariant of finite type.

Hence the question the system of invariant of finite type is complete is reduced to the

question: are there two different framed knots with the same framed Kontsevich integral?

3. WEIGHT SYSTEMS AND KAUFFMAN POLYNOMIAL

3.1. Semi-sirnple Lie algebra. A weight systems on A(k) (resp. on .41.)) is a linear

mapping from A(k) (resp. from ~k)) to C.

Let 9 be a Lie algebra with a non-degenerate invariant bilinear form. Let t be the

corresponding Casimir element in Ug ® Ug.· Suppose Pi : 9 -+ End(Vi), i = 1,2, ... be a

set of representations of g.We generalize the notion of weight system of [3, 15] as follow.

Choose a base e~ for each vector space Vi, Let D be a cord diagram such that each Wilson

loop or line is enhanced with a number from N, called the color of this Wilson loop (or

line).

A connected subset of Wilson loops and lines of D is called an are if it has no vertex

(of cords) in the interior of it and its boundaries are vertices or a boundary of the strings.

An arc of D is called internal are if both boundary points of it are vertiees of cords, and

is ealled boundary arc if otherwise. Define astate as a mapping from ares of D to {e;}

such that an arc of the Wilson loop or line of color i is e~ for some j. For a cord in

fig.ll we assoeiate the number htj, called the weight of this cord in this state, where h

is a formal parameter, a, b, c, d are the values of the four ares under the state-mapping,



10 LE T.Q.T. &, J.MURAKAMI

a b

-1 I-It •••••• l

C d

FIGURE 11. State of a cord

i, i l are the colors of the Wilson lines (or lines), and t here is cODsidered as the mapping

t : Vi !&l Vi, -+ Vi !&l Vi, corresponding to the Casimir element t. Suppose D contains only

loops. Let

W{Pi}(D) = L n httj
.tatea cord.

(2)

W{Pi}(D) is called the weight of D.

Correctness of this mapping follows from the fact that t satisfies the following equation,

the graphical representation of which is the 4-term relation:

(3)

A colored framed link ia a framed link such that each component is enhanced with a

number from N ca11ed the color of the component. Combining the above mapping with

Z/ we get an invariant of eolored framed link with valued in C[[h]].
As a special case for aoy operator r : V !&l V -+ V !&l V satisfying (3) we get a weight

system Wr •

3.2. The ease 9 = SON and all Pi are the fundamental representation. First

consider the ease when Pi = P : g -+ End(V). We will denote Wp simply by W. Suppose

D is a cord diagram, maybe with open Wilson lines. Denote the set of a11 end points of

D at which the orientation of D is inwards (outwards) by Din (Dout).Then the number of

points in Din is equal the number of points in Dout ' We define W(D) as an operator from

V(Dout ) to V(Din ), where V(Doud = @pEDout V(p), V(Din ) = !&lPEDin V(p) and a11 V(p)
are equal to V. Let e], . .. , en be a base of V. Consider the state SUffi (2) as above, only

with fixed values of the external arcs. Then by varying the values of the external ares we

get an operator from V(Doud to V(Din)' This operator does not depend on the ehoice of

the base ei and eommute with the action of 9 on V(Dout ) and V(Din ) (see [3]).

Proposition 3.1. Suppose P is irreducible, D], D'l are two diagrams from A(k), and

D 1#D2 is the connected Bum along arbitrary components, then
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D'1 D'2

FIGURE 12.

Proof. After removing a small are from D1 and D2 we get cord diagrams D~,~, each

has two end points (see fig.12) Then W(DD, W(D;) are operator from V to V. It is

easy to see that W(D i ) = Tr W(DD, i = 1,2. While W(D1 #D'J) = Tr[W(DDW(D;)].

Since p is irreducible and both W(DD, i = 1,2 commute with actions of p we have

W(DD = COllst. id, W(~) = COllst. id. It follows that

Tr[W(D~)W(D;)]= [Tr W(DDHTr W(DD]/ dirn V 0

Now suppose 9 = SON and p : SON -+ End(V) = End(CN) is the fundamental

representation. After a normalization we have

A specific property of this case is the following important:

Lemma 3.2. We have t = _tt} = _tt~ where ttl is the transpose 0/ t on the first space

and tt~ is the transpose 0/ t on the second space.

The proof is trivial aod follows from the explicit form of t.

The following graphical representation of t allows us to eompute quickly W(D).

wq·_··l) = 2(X-~)
W(O) = N, W(D U 0) = NW(D)

where D is a cord diagram aod DUO is the union of D and a circle which is far away.

Example 3.1. For the tangle T+, T_ in fig.5 W(T+), W(T_) are operators from V <81 V

to V ® V. Then

W(ZJ(T_)) = P exp(-hp(t)/2)

(4)

(5)

where P is the permutation P( x ® y) = y ® x. This ean be proved easily by using the

result of example 2.1.



12 LE T.Q.T. & J.MURAKAMI

Note that for a cord diagram D in general if we change the orientation of a Wilson

line then W(D) changes.

Proposition 3.3. I/ we change the orientation 0/ a Wilson line then the operator p(T) =
W( Zf(T)) remains unchanged.

Pro0/. When we change the orientation of a Wilson line, then for an Applicable state,

for a cord having one vertex on this Wilson line the term #P1 is changed by -1, and

the assodate number of this cord must be replaced by the corresponding number of the

matrix obtained from t by transpose on the first or on the second place. From lemma

3.2 we see that the result is unchanged. For a cord having both vertices on the string we

have to change t to ttlt'l which is equal to t. 0

If L is a framed link then it follows that W(Zj(L)) does not depends on the orientation

of the link.

3.3. Kauffmann polynomiaI.

Lemma 3 4 Lei 1 = N~/('.!EPl(N -1~hJ - C n N)hl +1). Then
exp - exp -

(P exp(hp(t)/2) - P exp( -hp(t)/2)]:d = (exp h - exp( -h))[id -{;DC{;bd/,,]

This lemma is proved by explicit calculating matrices exp(hp(t)), exp(hp(t)). Recall

that P is the permutation acting on V 0 V.

The operator {;DC{;bd cao be represented graphically as ~ .

We have seen that W(Zj) is an isotpy invariant of framed links, but W(Zj(Q)) =I
1. We will use another normalizatioD. Let K(L) = N-2W(t,b)W(Zj(L)), in this case

1\:( Q) = 1. If L is a framed link diagram with s maximal points then from proposition

3.1

K(L) = N$-2W(Zj(L)) (6)
(W(4»)a-1

Denote W(exp(8/2))/N by (f. Then W(exp( -8/2)/N = a-1
, by proposition 3.1. We

have seen that K( L) is a formal power series on hand is an invariant of framed oriented

links.

Proposition 3.5. I/ L, L+, L_ are three /ramed links such that in some blackboard rep­

resentation they differ only in a disk in which they look like in fig.10 then K(L+) =
aK(L), K(L_) = (7-1 K(L). Hence a-w(LlK(L) where w(L) is the writhe number 0/ the

/ramed link L is an ambient isotopy invariant 0/ oriented links.



KONTSEVICH INTEGRAL FOR KAUFFMAN POLYNOMIAL 13

x x Je

FIGURE 13.

FIGURE 14. Scheme to prove theorem 3.6

This proposition follows from theorem 2.4 and proposition 3.1.

Let ",(L) = L:~o "'ihi then from the construction of the integral it follows that ea.ch

Ki ia an invariant of framed links of degree i and its i-th derivative is computed by the

weight system W. From the other hand the coefficients of Kauffmann polynomials are

also invariant of finite type with the same derivatives (see [15]). We will prove that these

two invariants are the same.

Theorem 3.6. K( L) does not depend on the orientation 0/ Land i/ L+, L_, L o, L oo are

Jour Jramed link diagrams coincident outside some disk and looking as in fig.13 in this

disk then

(7)

Hence ",(L) is the Kauffman polynomial.

Proof. The fact that ",(L) does not depend on the orientation follows from proposition

3.3. Hy regular isotopy we can push the local part containing tbe difference of the,four

links far away as in figure 14. In this figure the different parts of the four link are in the

box denoted T. The complement parts are the same and is denoted by X. We suppose

that the end points of X are (0,0), (0,1), (1,0), (1,1). In figure 14 L is decompose into

three tangle, tbe top is denoted by Tl, the middle by T'J' the bottom by T3 . The middle

contains T and two extra lines parallel to the straight line IR. We suppose tbe upper end

points of these two lines are (/,1), (I + 1,1). We will consider the limit when 1 --+ 00, and

write Tl (I), T'J(I), T3(1). Let Z(T'J(I)) = A +1;1(/) wbere B(I) is the part containing all the

cord diagrams with at least one "long" cord connecting a Wilson line of the left part of

T2 and a Wilson line of the right part of T'J, A = Z(T) is the remaining. Of course A
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does not depend on I. The coefficient of a diagram of B(l) tends to zero when I tends to

infinity at least as fast as 10g(1 +1/1). Trus follow8 easily from the formula of the integral.

For all cord diagrams with less than k cords of Zj(T1(l)) or Zj(T3(1)), the coefficients

tends to infinity when 1 tends to infinity, hut at most as fast as (log l)k. This also follows

easily from the integral formula. Using lim log(l + 1/1)(log l)k = 0 we see that
1-00

Now let T respectively the diagram of fig.13, for the first three cases we use the

orientation which points downwards in T. For the last case UBe arbitrary orientation in

T, and then change the orientation of some component of X such that the combining

diagram have definite orientation. Using lemmas 3.3, 3.4, equations (4), (5) and the

previous equation we get

Now consider the case when the part U in figure 14 is trivial (just two parallellines),

taking into account the numher of maxima (see (6)) and using proposition 3.3 we get

(
eXP(N - l)h - exp(1 - N)h) W(4)) = N 2 _ W(4))2/

77exp(h) - exp( -h)

or (W(4» + N 2 )(W(fjJ)/77 -1) = O. Because W(t,6) depends on h we see that W(fjJ) = 77
heuce

W(t,6) = N 2 /(exp[(N - l)h] - exp[(l - N)h] + 1)
exp h - exp( -h)

(9)

Now using W(t,6) = 77 in (8) and proposition 3.3 concerning the inversion of one string

of a tangle we get (7).

Besides ~(O) = 1. Together with (7) this defines ~ uniquely as an invariant of

framed link. Hence K( L) is the Kauffmann polynomial. In the notation of Turaev [20,

§4.3.4] it is equal to Qm.l(L) with q = exp(h) 0

Remark. An anologous proof yields the following result: For a weight Wif W(exp(p))
satisfies the polynomial-equation f( t) = 0 then this polynomial annihilates the invariants

W(Z j) in the sense of Turaev [20].

4. SOME COMPUTATIONS AND COROLLARIES

We compute explicitly the series W( 4» a.nd deduce some unexpected relations between

the so called mixed Euler numbers.
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FIGURE 15. Closing

4.1. Elements "Y, <p. Recalled that "Y = Z(U) is in Ao while <p = Zj(U) is in A. Let

f : A ~ A be the mapping which takes a cord diagram with k cords into (-1 )kE)k. Recall

that there is a comultiplication ß defined on A(see [3, 121 for details). Put

,p(D) = m[(f ® id)ß(D)l

where D is a cord diagram and m is the usual multiplication in A. It follows that ,p is

an algebra homomorphism, its kernel is the ideal generated by e hence it also defines

a homomorphism from Ao to A. The compositioo Ao ~ A ~ Ao is identity, aod

,p2 : A ~ A is equal to ,po The operator ,p was also introduced in [3, 16].

Proposition 4.1. We have <p = ,p(,).

The proof is presented in Appendix.

Consider the algebra 8 3 introduced in §I.2. Let On be the cord digram with one cord

connecting the first aod the second Wilson lines, 0 23 be the cord digram with one cord

connectiog the second and the third Wilson lines. For a multi-index I = (i}, . .. , ik) put

YI = nnn;~-lnnn;~-l ... n12n;;-1. Now converting the orientation of the second Wilson

line then closing the three Wilson lines into oue Wilson loop as in figure 15 we get a closing

mapping cl: 8 3 ~ A. Let DI = cl(Y]). We also consider D(I) as an element of .40, by

the natural projection A ~ Ao. Consider the set J = {I = (i}, ,ik ), i ll E N, i k > I}.

Let I/I = L:~=l i ll , k(I) be the number of indices io I. For I = (iI, , ik ) E J set

1
«it, ... ,ik)= E i} I/l:

ml <·.·<m/l:EN m 1 ••• ffi k

It is called a mixed Euler number. When k = 1 it is the value of the zeta functioo at

some natural number.

Proposition 4.2. The element, E .40 is given by

This proposition is proved in Appendix (see also [13]).
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(10)

4.2. Relations between mixed Euler number. It is easy to check tha.t Lb[P(t)]b~ =

2(m - 1)6do Let

r = p(t) - 2(m -1)id

aod Wr be the weight system correspondiog to r. Then Wr(8) = 0 and hence Wr is a.

weight system on Ao.

Proposition 4.3. For every cord diagram D E .Ao we haue Wr(D) = W(tP(D)).

This follows immediately from the definition of tP and r. As a corollary of this aod

proposi tion 4.1 we get

Proposition 4.4. One has Wr (,) = W(4)).

We use a normalization of mixed Euler number by putting ((I) = (-1 )k(l)(1ri)-II I((I).

Now define g(i], .. . , ik ) as follow. Let

(
N-l 1 -1) (N-l -1 1)

u =hiN -1 -1 ,v = h 0 0 0

o 0 0 1 -1 N - 1

Matrix v is obtained from u by permutation of the second aod the third coordinates. Let

Proposition 4.5. For I E J

This ia proved by induction on the number of cords, using the graphical representation

of t.

Theorem 4.6. We have

1 + ~g I ( I hili = N(exp(h) - exp(-h))
IE'J ( ) ( ) exp(N - l)h - exp(l - N)h +exp(h) - exp( -h)

Proof. Note that if k is odd then LIII=k g(I)((I) = 0 due to the inversion formula for

((I) (see [13] and Appendix). Hence the left side of (10) does not contain terms with odd

power of h. Usiog propositions 4.2, 4.4, 4.5 to compute the left hand side of (9) we get

the result. 0
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Both sides of (10) belong to C[N][[h2]J. By comparing the coefficients of NPh q we get

different relations between mixed Euler numbers. It is interesting to notice that these

relations are not established by traditional methods of number theory, hut by isotopy

invaria.nt of links.

For example by comparing the lowest order of N in both sides of (10) when the order

of h is fixed we get

((~,2,:.. ,2) = 7r
2n /(2n+ I)!

n

(11)

This can also be derived from the similar formula gotten from the HOMFLY polynomial

ease [13]. From (11), by induetion one ean easily reprove a famous theorem of Euler which
(211" )2n

expresses ((2n) in terms of Bernoulli numbers: ((2n) = 2(2n)! IB2n l·
By eombining all relations among Euler mixed number with 111 ~ 6, I/I even, coming

from the HOMFLY and the Kauffmann polynomials we ean cornpute all these numbers.

The case I/I = 6 these nurnbers are computed modulo ((3). For example

( ) -29 6 ()2 ( ) -4 6 ()2
( 1,2,3 = 6480 7r +3( 3 ,( 2,4 = 283511" +( 3

For the ease when I/I ;::: 8 these relations are not enough to determine ((/), when 111 is

odd we eao not get aoy relation.

ApPENDIX A. ITERATED INTEGRAL, MIXED EULER NUMBERS AND DRINFELD'S

ASSOCIATOR

A.l. Iterated integral, mixed Euler numbers. We reeall here the definition and

sorne properties of iterated integral (see [5, 8]). Suppose 6, ... ,~k are I-forms on [a, b],
that is ~i = /i(u)du,u E [a,b], define

b b Ul U2 Uk-l

Jel~2'" ~k = JdUt(!t(Ut) JdU2(!2(u2) J... J dUkfk(U~.)",))
Q Q Q Q Q

1 du 1 du
Let Wo = -2,-,Wt = -.--. For exarnple for 0 < a< b< 1 we have

1rt U 21rl U - 1
b

J kIb k
(wo) = (21ri)kk! [log(~)]

Q

The following properties of iterated integral are weH known.

(12)

(13)
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Proposition A.l. Suppose ~., ~2'" ., ek+l are l~fonns on [a, b] then

b b b

J6 .. ·6.Jek+1 ... ~k+l = L:JeO'(I) .•. eO'(k+l)
a a 0' a

where the summation is performed with respect to all permutation u E Sk+l such that

".-1(1) < u-1(2) < ... < u-I(k),u-I(k +1) < ... < ".-1(k + 1).

Note that the surn in the right hand side contains CZ+1 terms.

Proposition A.2. The iterated integral along the inverse path is given by
a b

J6 ... ek = (_1)k Jek ... e1
b a

Proposition A.3. For a < b< c

c b k-I b c cJet ... ek = J6 ... ek +~Je1 ... ej Jej+t ... ek +Jel ... ek
a a )=1 a b b

Now consider J~ ~1 ... ~k when ~i is either Wo or W1' If el = WI or ek = Wo then it is easy

to verify that the integral does not converge. Otherwise the integral exists and its value

ean be eomputed explicitly as follow. Let Pt, q., P2, q'J, . .. , Pn, qn are natural number. Set
I

r(pb q., ... l Pn, qn) = (-1 )ql +"+qn JWOP1 W1 ql ••• WO PnW1 qn

o

Recall that mixed Euler number ((i., . .. ,ik ) is defined for natural nurnbers i t , ..• , ik with

iA: > 1 by

((i., ... ,ik ) = L: i1
1

i"
ml <···<m,tEN m l ... mA:

If i k = 1 the right hand side does not eonverge.

Proposition A.4. We have

T (Pb q., ... ,Pn, qn) = ((1, , 1, q1 + 1, 1, ... , 1, q2 +1, ... , qn +1) (14)
" -I L.....,

pl-I ~-1

Proof. Let for u E (0,1)

then one verifies at onee that

Ju F(i1l ••• , ik ; v)dv _ F(' . l' )
----.;.------- - I., ... , tk, ,U

I-v
o
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Ju F( i b ... , ikj v)dv F( . . )---------'- = tt, •.. , Ik +Ij U
v

o

Using these equalities and induetion on L. Pj + qj it ia easy to prove (14). 0

Note that another form equivalent to (14) is

t

((it, ... ,ik) = JWOWtil-twoW/~-t ... woWt ilr - t

o

A eorollary of the previous Proposition and Proposition A.2 is

Corollary A.5 (Inversion formula for mixed Euler numbers). We haue

19

(15)

For example (1,2) = (3), ((1, 3) = (4). We see that tbe funetion T is more "sym·

metrie" and we will use this funetion instead of (.

A.2. Drinfeld's associator. We ean not present here Drinfeld's theory of quasi-Hopf

algebras (see [6, 7]). We only mention that the eategory of representations of a quasi­

triangular quasi-Hopf algebra is a quasi-tensorial category, from which one ean construet

invariants of framed links (see {IS, 19, 1]). In a quasitriangular quasi-Hopf algebra A

there are two important objects, an element RE A ® A, called R-matrix and an element

~ E A 0 A 0 A, called the associator. There are gauge transformations whieh change R, ~

hut do not change the eategory of representations of A and hence the corresponding link

invariant remains unehanged. For a dass of quasi-Hopf algebras Drinfeld showed that by

gauge transformations one eao make R-matrix very simple ( of type R = exp(t)), and all

tbe diffieulties are plaeed on cI». Drinfeld gave an explicit way to construct cI» in this ease.

We will deeribe this 4), but without any quasi-Hopf algebra, and point out tbe eonneetion

to element 4;, I defined in seetion 4.

Let Mt = C« A, B» be the module of non·commutative formal series on two

symbols A, B. With the natural multiplieation Mt is a non-commutative algebra. Con­

sider the equation

G'(u) = ~(A +~)G(u)
21rt u u - 1

(16)

where G : (0,1) -t Mt ia a formal series on A, B with coefficients which are analytic

funetions on u. Then for aoy 0 < a < 1 there is a unique solution to (16) with G(a) = 1,

let denote the value of this solution at b E (0,1) by Z:(A, B). We eao write

Z~(A,B) = 1 +2: Ix(a, b)X (17)
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where the summation is over all monomes X in MI, f x (a, b) is an analytic function on

a, b. Here a monome in MI is tbe product of a finite number of symbols, each is A or B.

By induction one sees that the coefficient f x (a, b) in (1 7) is giyen by

b

Jx(a,b) = JX
a

(18)

wbere tbe right hand side is the iterated integral on [a, b] in which each symbol A in X is

replaced by wo, each symbol B is replaced by WI' Hence if X is a monome wbieh begins

wi th A and ends with B then there exists the limit lilTl.e-o fx (e, 1 - e). Otherwise the

limit is 00.

We will say that a sequence of elements i.n M -1 converges to an element of MI if tbe

coefficients of each monome converge to the corresponding coefficient of tbe limit element.

In order to regularize tbe limit lillle_o z~-e we cau use the following two approacbes.

Consider module M'J which is a submodule of Mt containing only formal series on

monomes beginning with A and ending with B. At the same time M'J is a factor of MI:

M 2 = M1/(BM1 = 0, M1A = 0). Let 1/J12 : MI -+ M 2 be the factor map. Then we see

tbat there exists tbe limit

which belongs to M 2 •

If we write f = 1 + L r x X where tbe summation is over all monomes in M'J' then

I

f x = JX
o

(19)

This integral is convergent because X begins with A and eods with B. From (14it follows

that each coefficient r x is a mixed Euler number.

Another way to regularize lilTl.e_o z~-e is tbe following. There exiats uniquely one so­

lution GI (u) of (16) with asymptotic GI (u) ~ uA/ 21ri (for u -+ 0) wbere uA = exp(A log u)
aod GI (u) ~ uA /21!i means that GI (u )u-A/ 21!i has an analytie continuation into a neigh­

borhood of u = 0 and becomes 1 at this point.

Similarly there exists uniquely one solution G'J(t) of (16) with asymptotic G2(t) ~

(1 - t)B/21!i (t -+ 1). Let

Then 4f> does not depend on t aod is an element of Mb it ia tbe Drinfeld's associator and

plays important role in tbe theory of quasi-Hopf algebras aod invariants of links. Let us
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FIGURE 16.

write

<I-(A, B) = 1+E <I-xX

We will compute <I-x for each monome X. It is dea.r from the definition of ~ that

<I-(A B) = lim e-B/'J-Kizl-eeA/'J-Ki
, e-O e

(20)

(21)

Note that <I- belongs to MI while f belongs to M'J. We want to find a relation between {Jl

and f.

Recall that 8 3 is the algebra of cord diagrams whose support ia three lines parallel to

IR and lying between two horizontal planes {t = O}, {t = I}.

There is an operator dosure D E 8 3 ~ cl(D) E A indicated in fig.15. Recall that

cP = ZJ(U), 'Y = Z(U).

Proposition A.6. We have

'Y =pr(cl(f(-n12 , -n23 )))

Where pr : A --+ Ao is the natural projection.

(22)

(23)

Proof. We prove (22), the second identity ean be proved in a similar manner, even more

easily.

Using horizontal deformation we ean deform U into a diagram U'{/) lying in the

plane (t,x) like in figure 16. In this figure the points Ct,C'J,C3,C4,C5,Ca have co­

ordinates respeetively (O, 1), (O, 0), (1,1), (1,0), (1,0), (1, 1). Using two horizontal planes

{t = O}, {t = I} we cut U'(l) into three tangles: the top ia Tl (1), the middle T2 (1)
and the bottom T3 (1). Then ZJ(Tl (1)) = lW/'J7ri, ZJ(T3 (1)) = (I - 1)-w/2'11"i. While

ZJ(T'2{I)) = ZJ(T) + log(l + 1/1)0(1) (for I ~ 00). Here T ia the part from point

Cl to C4 and ZJ(T) ia defined in exact1y the same manner as for any tangle of type 3.

By definition
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where Z(Te
1-e) is the Kontsevieh integral of the tangle obtained from T by eutting upper

and lower parts by two planes {t = 1 - e}, {t = c}.

Let 1 tend to infinity, using liIl1l_oo(1og l)k log(1 + 1/1) = 0 we see that cP = cl(ZJ(T)).

From the definition of the integral we see that Z(TeI-e) = z:-e( -012, -02a). Henee

From (23) and (19) we get proposition 4.2.

Now consider the module Ma whieh eonsists of formal senes with eoefficients in C

on four symbols A, B, 0:, ß such that 0:, ß eommute with every other symbols. Then with

the obvious multiplieation Ma is an algebra. Every monome in Ma ean be represented

uniquely in the form ßPX aq where X is a monome in MI' Consider the mapping ,pal :

M3 -+ M1,,p3I(ßPXaq) = BPXAq. Note that this is a module homomorphism, but not

an algebra homomorphism. Note also that 1/1aI((B - ß)Y) = 0 and ,p31(Y(A - 0:)) = 0 for

every element Y E Ma.

Let ,pI3 : MI -+ Ma be the map VJI3(H(A, B)) = H(A - 0:, B - ß) where H(A, B) is

an element of MI' Denote \lI : MI -+ MI the eomposition ,p311/113' This W ia a module

homomorphism, but not an algebra homomorphism, and if X is a monome in MI begins

with B or ends with Athen W(X) = 0, henee Wean be regarded also aB a homomorphisffi

from M'l to MI' If X is a monome in MI then W(X) = X +Y where Y is the surn of

monomes whieh begin with B or ends with A. Henee the eomposition

M'J r......t- MI ~ MI -+ M2

is identity. Besides, W2
, as a homomorphism from MI to MI, is coineident with W.

Proposition A. 7. We have

(24)

Proof. Note that GI(A - a, B - ß) ia a solution to equation

G' = ~(A-a + B-ß)G (25)
21rl U U - 1

with asymptotic u(A-a)/'J'fi when u -+ O. The function u-a/'l..-i(1-u)-ß/'lll' iG1(A, B) ia also

a solution to (25) with the same asymptotie. Hence

Similarly we get
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Hence (Gi" I G1 )(A,B) = (Gi"lGt}(A - o,B - ß). In this "identity both sides are elements

of M 3 • From this we get (24) immediately. D

Theorem A.8. The Jollowing identity holds true

\lI(r) = cI»

Proot Applying \lI to both sides of (21) we get

lim \lI(e-B/21riZl-~e-Atl1ri)= w(cI»)
~-o e

(26)

(27)

For every element Y E MI one has \I1(BY) = \l1(AY) = 0 hence the left hand side of (27)

is li~_o \l1(z:-e) which is \I1(r). While the right hand side of (27) is cI» by (24. 0

As a corollary one can prove proposition 4.1. In fact cl(,*,(r(-012 ,023))) is just

11'(cl(r(-012,023))) by definition of '*', and of 11' in §4. Combining with (22),(23) we get

proposition 4.1.
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