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ON FINITE DRINFELD MODULES

Introduction

In [5], Deu~ng determined the possible isomorphism types of endomorphism rings

of elliptic curves, notably for those curves tbat are defined over a finite field. His results

were later generalized to abelian varieties of higher rank by Tate [17J and Honda [13J .

. Now in the fundamental paper [6] I Drinfeld transports the modular theory of el­

liptic curves to the function field case. He Cound the kind oC dioplantine objects (called

by hirn lIelliptic modules") that over global function fields play the role of elliptic curves

j'n number theory. By bis theory, he was able to prove analogues of the theorem of

Kronecker-Weber, the main theorem of complex multiplication, and parts of the Lang­

lands conjectures for GL(2) over function fields. Actually, in the course of the last few

, 'years, the tbeary of Drinfeld modules has shown to be the key tool in the arithmetic of

function fields aver finite fields. This comes from the fact that Drinfeld modules lead to

moduli problems that are related to GL(r) (r arbitrary), and to Galois representations

in loeal fields of positive characteristic, which one needs in order to describe the absolute

Galois group of a global function field.

In this paper, we treat Deuring's problem of endomorphism rings in tbe Drinfeld

~ module setting, Le., we study DrinIeld modules that are defined over a finite field, and

their endomorphism rings. Let (K,m) be a pair consisting of a function field K in one

variable over a fini te field, and a place CD of K . Let further A be the ring of elements

I of K with poles at most at CD I and p a prime of A with finite residue field

Fp = Alp. As for elliptic curves, the classification up to isogeny of DrinIeld modules tP
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over extensions of IF p ia given by the isomorphism type of End( (,i» ! K (Thm. 3.5).

This ring turns out to be a certain division algebra central over the subfield E genera­

ted over K by the Frobenius endomorphism F of t/J (Thm. 2.9). (These twa results

are stated in [7J J Prop. 2.1 in a somewhat disguised form, and with a few cryptical

, hints as proofs.). We call 4J supersingular if E equals K. One of aur results is that for

, supersingular r/J J End(r/J), is a maximal order in End( tP) ~ K (Thm. 4.3). This opens

the way t6 use Drinfeld modules in the arithmetic of division algebras over function

\ fields, exploiting properties of modular schemes. IIi a subsequent paper, we will use this

approach to effectively determine the class and type numbers of such algebras. Simple

examples on this are given in (4.4) and (4.7).

We introduce tbe norm n(u) of an isogeny u, an ideal of A .which for separable

, u ia the Euler-Poincare characteristic of Ker(u), and for u an endomorphism agrees

with the reduced norm. By means of n(u) J we may interpret the value Pt/J(l) of the

characteristic polynomial' of F as the E.-P. characteristic of Dur finite Drinfeld

A-module (Thm. 5.1). This leads -to the definition of tbe loeal zeta function (or rather

Z-function) ZtjJ(t) attacbed to tP, which has properties similar to those of the

Z-function of an abelian variety over a finite field. Also, our results suggest that the glo-

, bal zeta fnDctions (ifJ (for Drinfeld modules r/J over finite extensions cf K) which may

be constructed through local factars aB above, have reasonable properties. This is at least

the case if rP has "complex multipücation" J as reaults e.g. !rom Takahashi's paper [16J.
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I. Background on Drinfeld modules

Let K be a function field in one variable over the finite field !Fq with q ele­

ments, which we suppose to be algebraically closed in K. Fix a place 11 m fI of K 1 let

K be the completion, and A the ring of elements of K regular outside of m . On A,
CD

we have the degree function deg: A --+"'D. (extended to K in the obvious way) that

maps a to log #(A/a) . The typical example ia given by the polynomial ring
• q

A = IF [T] , where "deg" ia the uaua! degree function. Hy an "ideal" oi A , we under-
q .

stand a non-zero ideal. We use "prime", IIprime ideal" J and "place" of Aassynonyms.

Let L be a field that is an extension of either K or of [fp = Alp, L its alge­

braic closrne, and ,: A --+ L the canonical structure as an A-algebra. L has

characteristic (written char(L)) CD or P J respectively. Let T be the Frobenius endo­

morphism relative to (fq , Le., the map x t--+ xq . In the ring EndL(Ga) of all.

L--endomorphisIDs of the additive group scheme Ga IL J T generates a aubalgebra

L fT} that is simply. thc non-eommutative polynomial algebra in T aubject to t~e

commutation rule T 0 X = xq
0 T J X E. L . Let deg

T
f be the well-defined "degree" of

f E. L{T} in T.

Monie elements f E. L{T} (Le., those with leading coefficient 1) conespond bijecti­

vely to finite subschemes of 0=q-vector spaces of Ga IL by f t---+ H = ker(f) . Any

manie C may uniquely be written f = C 0 f. J where Cs ia aeparable (Le., ita constant
SI.

coefficient ia non-zero) and fi = T h is purely inseparable. We write h = ht(f) = ht(H)

and call it the height of f or H J respectively.

1.1. Delici tion: A Dri meld modnIe over L of rank r ~ 1 is astmeture of A-modnIe

on Ga IL J given by a ring homomorphism



-4-

, :

where we require that for any a e. A , the following two conditiona hold:

(i) degr tPa = r • deg a ;

(ii) cPa = t{a) + terms divisible by r.

Thus if A =!F [T] ,a rank r Drinfeld module t/J ia given byq

where gl' ... ,gr-l ' gr 4: 0 may be chosen arbitrarily in L. A morphism u: t/J --+ 1/1

of D. modules (more precisely, a morphism defined over L, or L-morphi~m) is a mor­

phism of group schemes over L coinmuting with the A-action, Le., an element

u e. L{T} such that for all a E. A

(*) U0tP =1P oua a

holds. Therefore, we have endomorphisms, isomorphisms, and automorphisms of D.

modules, where e.g. an isomorphiam ia a non-zero conatant u e. L for which (*) ia satis­

fleel.· Non-zero morphisms are possible only between D. modules of the same rank; they

are calJed isogenies.

1.2. Proposition (see e.g. [2] I Thm. 4.9): Tbe endomorphism ring End (rj» of the

rank r Drinfeld module cP ia a finitely generated projective A-module of rank less or
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equal to r2
. Moreover, End( 4» ~ K is a division ring.

A l1J

Clearly, there exists a finite extension L' of L such that al1

L - endomorphisms of cP are defined over L'.

We let a4> = ker(tPa) be the scheme of a::diyision points, which ia a finite sub­

scheme of A-modnIes of Ga IL . For an ideal n of A I we let

nr/J= n ker(4)a)'
ae.n

It ia easy to see that ntP ia reduced, and its module ntP(L) of L-points is isomorphie

with (A/n)r if and only if n ia relatively prime to char(L). Thus let q be a prime

ideal of A different from char(L) I Kq and Aq the q-adic completions, and put

cP = lim cP •
l1J nq . ~ q

We define the g-adic Tate module of tP by

(1.3)

which is a free Aq-module of dimension r. On T q( ifJ) we have representations of

a) tbe Galois group Gal(L:L) of L and

b) the ring End( tP) .

Since any endomorphism u =/= 0 of rP has finite kernel, the associated homomorpliism
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i : End(4') ~ A --+ EndA (Tq) ia injective.
q q q

Later on, we will need the following characterization of kernels of isogenies:

(1.4) Let ifJ be a Drinfeld module Qver L and H C Ga IL a finite subscheme of

[fq-vector spaces. Then H is the kernel of some isogeny u: 4> -+ 1/J if and only if

(i) H(L) ia an A-submodule of L (A-action by 4') ;

(ii) ht(H) = 0 (char(t) = m)

ht(H) :: O(deg p) (char(L) = p) .

This implies e.g. that for any isogeny u: 4> ----+ 1/J , there exists v: 1/J --+ ifJ such that

v 0 u = 4>a far some a E. A .

Proo~ of all the assertions collected here may be found in [6J, [8J) or [2].
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2. EndoIDomhism rings

Let now p he a prime of A of degree d, and suppoae L ia a finite extension of

degree m of [f p = A/p . Then L has cardinality qn, where n = d • m , and contains

n
[f via i: A --+ L . Let F = T

n : x....-..+ xq be the associated Frobeniua morphism.q

If the Drinfeld module ifJ (always a8sumed of rank r) is defined aver L, F commutes

with if>(A) CL{T} ,Le., F E. End(t/» . As lang as ifJ ia fixed, we write "A" for the

subring 4J(A) of L{T} .

(2.1) Let L(T) be the division ring of fractiaDs of L{r} . It ia central of degree n2

over [fq(F) = quotient field of [fq{F} , and splita at the places of [fq(F) different

from F = 0 and F = (I) • At F = 0 (F = (1)) , its invariants are l/n (- l/n) , respecti­

vely. (See e.g. [14]. In the identification of loeal Brauer groups with ~ / 7J. J there are

two possible sign choicea. Ours, which agrees with that of [14], ia defined hy the asser­

tion above.)

(2.2) Recall that for any field extension E of [fq(F) that embeds inta L( T) , there ia

only oue place extending the ramified place F = 0 or F = lD , respectively. This follows

for example from Thm. 32.15, loc. cit ..

(2.3) Regarding ifJ: A --+ L{T} as an embedding, K = Quot(A) iS contained in

L(T) . Let E be the extension of K generated by F. Then E =E ~ K ia a field.
lD K lD

• •(2.4) Let deg: E --+ ~ be the extension to E of the valuation deg: K ~ 7J. ,

which ia uniquely determined by the preceding. From degT(ifJa ) = r • deg a (a E. A) J

we derive deg F = n/r . Ir d denotes the degree of lD over {f J this means that Fm q
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has fractional pole order n/r • d at lD with respect to the field K .
lD m

(2.5) By (2.3), [E: K] = [E : K ] = e • C ,where e = ramification index and
lD lD

f = residual degree cf E : K . But E = K (F), hence
aJ QJ m (I) _

e = denominator cf pole order of F w.r.t. K .
CD

(2.6) Correspondingly, [E: IFq(F)] = [E : IF (F) J = e' • C' by (2.2). Clearly, the
lD q CD

residual degree f' equals d · f , whereas the ramification index e' ia given by
QJ

e' = pole order of F w.r. t. E = numerator of n/r · d .
QJ CD

Combining (2.5) and (2.6) yields the equality

(2.7)

j
1
I

I

(compare "proof" of Prop. 2.1 in [7]).

Therefore, letting r1 = [E: KJ ,

is an integer.

(2.8) For a subset S of L(T) ,let ~(S) be its commutant. Then
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End( tP) 0 K = ~(K) = ~(E)
A

since E = K(F) and F is central. From the commutant equality ( [IJ , § 10, Thm. 2),

we see that End( ifJ) ~ K is central over E of degree r~. It8 dass in the Brauer group

of E ia the class of L(T) over IFq(F) restricted to E J as follows from loe. cit., § 10,

Prop. 2. Denoting by ~ the unique prime of E that divides F (note that ~ lies

above the prime p = char(L) of K) , the invariants of End( t/J) 8 K are therefore

[E : [fq(F)] · l/n = l/r2 at q3, - 1/r2 at the plaee (I) of E J and zero at all the

other places.

SummarizingJ we bave proved tbe theorem (stated in [7]):

2.9. Theorem: Let E be the subfield of End(t/J) 8 K generated over K by F J and

r1 = [E: K] its degree. Then r/l1 ia an integer [2' and End(q,) ~ K is a eentral

division ring over E of degree r~. There is a unique prime ~ of E that divides F,

and ~ lies above p. End( c/J J. 8 K splita a~ primes different from 'll and (1), and has

invariants 1/r2 J - 1/12 at qJ J (1), respectively.
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3. Norms of isogenies

We keep the notations of the last section.

Let N be the map from End(t/J) 8 K to K obtained by composing the reduced

norm nr: End( rp) 8 K --+ E with the field norm N~: E ---+ K . Then N ia

K-homogeneous of degree rand agrees on maximal commutative subfields H with the

Hnorm NK : H -----+ K .

3.1. Lemma: For u E. End(rp) J we have degTN(u) = r • degTll .

Proof: Hoth sides define valuationB on End( r/J) 8 K equivalent with the m-a.dic valua­

tion. The proportionality factor comes out by evalua~ing on u =4>a' a E. A .

For each prime q '* p of A J iq(H) ~ Kq ia a maximal commutative Kq-5ubalge­

bra oe End
Kq

(Tq(l/J) GD Kq) I whose norm mapping to Kq is the determinant. There-

fore, N IH = (det 0 iq) IH for every maximal commutative subfield H of

End(r/J) ~ K , so

(3.2) N =det 0 iq .

Let P rjJ(X) be the characteristic polynomial of iq(F) , and Mrp(X) the minimal poly­

nomialof F over A.

r23.3. Lemma: Pr/J(X) = Mt;6(X) t r2 = rl [E : KJ .
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r
Proof: It suffices to show that P(t) = M(t) 2 for t E. E . Hut

r r r
P(t) = det(t - F) = N~ 0 nr(t - F) = N~«t - F) 2) = (N~(t - F)) 2 = M(t) 2 J the

last equality coming from E = K(F) .

304. Corollary: The characterlstic polynomial PfjJ(X) of F in the q-adie representa­

tion i has coefficients in A that are independent of q .q

3.5. Theorem: For two Drinfeld modules ifJ and 1/J of rank r aver L, the following

statements are equivalent:

(a) ifJ and 1/1 are isogeneous;

(b) End(,p) 0 K and End(1/1) ~ K are isomorphie K-algebras i

(c) M,p = M'fjJ ;

(d)· PtjJ = P1/1'

ProoC: c) and d) ~e equivalent by the lemma, since hath M and P are monie polyno­

mials. a) => c): Let Mr/>(X) = 1:: aiXi . Then in L{T} ,. 1: yil/la. = 0 . Let
1

u : rP -i 1/1 be an L-isogeny; i.e., U E. L{T} such that for each a E. A , we have

u 0 ifJ = 1/J 0 u. Then 0 =E u 0 Fi
0 fjJ = E Fi

0 1/1, 0 u , which impliesa a a. a.
1 1

1:: ~ 0 .,pa. = 0 • in other w~rds, MI/II M.,p. thus Mr/> = M.,p . c) => b): Denote by Er/>'
1

E1jJ C L(T) .the fields generated by the Frobenius elements, respectively, which are

K-isomorphic by assumption. From Thm. 2.9, we see that an isomorphism may be

extended to an isomorphism of End( rP) a K to End( 'f/J) ~ K . b) ~ a): Let

a : End( rP) ~ K-i End(1/;) ~ K be an isomorphism. By the theorem of

Skolem-Noether ([1], § 10, Thm. 1), there exists u E. L(T) such that Cl ia eonjugation
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with u. But L(r) = L{r} 8 (f (F) f hence, np to a central element, we may as-
. [f {F} q

q .

surne u €. L{.r} f which clearly defines an isogeny u: 4J ---+ ?/J.

(3.6) Following Deuring [5], we associate an isogeny with any left ideal of the A-<>rder

End( tP) in End(q)) 8 K . In the given context, this generalizes a cODstruction of Hayes

[12]. (For notation and the elementary ideal theory in simple algebras, we refer to

[14].)

Let u be a left ideal of End( ifJ) . Since L{T} is right euclidean, the left ideal

L{ r}u of L{T} is principal, generated by u = neu) E. L{T} ,which is well-defined,

requiring u to be monie. But rjJ(A) ia eentral in End(4'), so u = u f/J(A) , which for

eaeh a e. A implies the existence of ?/Ja e. L{T} with u 0 t/Ja = ?/Ja 0 U •

u3.7. Lemma.: The map a~ 1/J, defines a Drinfeld module 1/1 = t/J ,and u is ana

isogeny!rom cf> to 1/J.

frQQf.. Clearly, 1/1 ia a ring homomorphism, and ?/Ja satisfies the degree condition (i) of

(1.1). If fE. U , we have ht(f) =O(d) by (1.4) (ii), so the same holds for u = g.c. right

divisor of fe. u in L{ T} . Hut this implies that rPa and VJa have the same constant

coefficient ,. (a) , Le., condition (ii) of (1.1).

3.8. Lemma: L-et 9l be the right order in End( cI» ~ K of the left ideal U of End( 4» .

Then conjugation with u in L{T} defines an injection of vt ioto End(4)u).

f, Proof: Let r E. Vl ,Le., ure u·, which yields the existence of s E. L{T} with

u 0 r = 8 0 U . But then

s 0 1/J 0 8-1 = sou 0 4J 0 u-los-1 = u 0 r 0 t/J 0 r-l
0 u-1 =u 0 r/J 0 U-1 = 1/1 ,

a a a a a
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since r commutes with l/Ja , thus u 0 9to u-I C End(.,p).

(3.9) Next, we associate an ideal neu) of A with each isogeny u: l/J ---+.,p of Drin­

feld modules of rank r over L. If M ia a finite A-module, let X (M) be the Euler­

Poincare characteristic of M ) which ia an ideal of A uniquely determined by the condi-

tions

(i) X (M) = q J if M ~ A/q with a prime ideal q of A ;

(ii) If 0 ----t MI ----+ M~ M2 ---+ 0 is exact, then

X (M) = X (M1)X (M2) .

Define the norm n(u) of the isogeny u by

, neu) = pht(u)/d • X «ker u)(L)) .

3.10. Lemma: Let u and v be isogenies of rank r Drinfeld modules over L that

may be composed. Then

(i) neu 0 v) = n(u)n(v) j

(ii) degrll = deg neu) ;

(iii) neu) = (N(u)) if u E. End(l/J) ia an endomorphism;

(iv) Let u C End(l/J) be a leet ideal. Then n(u(u)) =ideal generated by N(f) ,

fE. U .

Proo{: (i) and (ii) follow directly Crom the definition. (Hi) Let q be a prime different

Crom p, and t a very high power of q . We calculate the q-pan of (N(u)) :
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(hy (3.1))

= X(ker(u))q

= (n(u))q .

Furthermore, by (ii) and Lemma 3.1,

r · deg neu) = r • degTll = degrN(u) = r • deg N(u) I so (N(u)) and n(u) ~gree, since

they have the same q--components (q f p) and the same degree. (iv) results from (iii)

in view of u(u) = g.c. right divisor in C{T} of {f E. u} I so

n(u(u») = g.c.d. {n(f) IfE. u} .

Note that (iii) impües that tbe norm of an endomorphism ia a principal ideal.
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4. Snpersin glliari ty

We now study in detail the extreme case of Thm. 2.9 where E = K . Let r be the rank

of r/> • The assumption E = K ia equivalent with F = tPr J BOme fE. A J whose divisor

(f) must be apower oi p. Comparing r-degrees yie1ds (f) = pm/r . (Recall that

m = [L: [f~ .) We denote by tP p the isogeny {rom rp to rpu associated with the left

ideal u = End( tP)p C End(4» • Then ker( tPp) =ptP •

4.1. Proposition: The following assertions on t/J are equivalent:

a) There exists a finite extension L' of L such that over L' J the degree
, 2

[End(tP) ~ K : KJ equals r .

b) Same power of F lies in A.

c) ifJ p is purely inseparable.

Proof: The equivalence of a) and b) comes !rom Thm. 2.9. By tbe preceding. b) says

pm/rl/l • thus pl/l is loeal, whieh means that I/lp is purely inseparable. Conversely, let

I/lp be purely inseparable. Then pl/l(L) =0 , and also /)I(L) = 0 • all i. If pi = (I) is

principal, iflr ia purely inseparable, and same powers of F and cf tPr agree.

Drinfeld modules that satisfy tbe conditions of the proposition are called super­

singnillr. All tbe supersingular D. modules oi rank r in characteristic p are isogeneous

by Thm. 3.5. Their isomorphism classes are finite in number. since all oi tbem may be

defined over a certain finite field L.

Let ffiO be the order oe p in the class group oe A ,and L the extension of [fp

of degree m = roo · r .
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4.2. Proposition: Any supersingular Drinfeld module t/> of rank r and characteristic p

is isomorphie to one defined over L.

ProoC: Let tP be defined over a finite extension L' of L" and F = T
n

, n = d • m

m
the Frobenius relative to L. Let f E. A with (f) = pO, thua cPf = const • T

n . With-

out restrictioD, w,e mayassume <Pf =~ , poasibly replacing t/> by an isomorphie D.

module. If a E. A and' tPa = E aiT
i

,the commutation rule tPa 0 4Jf = tPf o,pa implies

Dq
a. = a, for all i, Le., a., E. L .
• •

4.3. Theorem: Let </J be a supersingular rank r Drinfeld module over the finite field

L , which we asaume large enough such that aIl endomorphisms are defined over L.

(i) End( t/» ia a maximal order in End( t/» .4) K .

(ii) The left ideal classes of End (tP) correspond bijectively to the elements of

the set E(r,p) of isomorphism classes of supersingular rank r Drinfeld

modules in charaeteristic p.

Proof: (i) We adapt the idea of Deuring's pIcof in tbe elliptic curve case [5] to our

situation. In each order, there alwaya exist lett ideals with maximalIeft (and right) or­

ders. Thus !rom (3.8), we see that there exists a supersingular 't/J isogeneous with r/J

and such that End( 1/;) is maximal. We are therefore reduced to showing that End( 1/J)

is maximal if 1/; ia isogeneou8 with ep and End(,p) ia maximal.

Let u: ifJ ---+ 1/J be a monie isogeny with norm n(u) = n a fixed ideal in A·. De-

compose
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f 1 h L
n =p n , w ere nl =n ~1

with different primes q. f P of A . Since r/J ia supersingular, the p-component of
1

ker(u) ia purely Ioeal, and u ia completely determined by the number f and the

A-module ker(u) (t) , which has Euler-Poincare characteristic n/ . Thus choosing u

amounts to choosing for each j an A-submodule of length fj of

f.
n. 4> ~ (AInj )r, "i = qi

1
•

1

Next, by (3.10) (iv), for· any left ideal u of En~(t/» , the norm n(u(u)) agrees with the

reduced norm nr(u) relative to the eentral division algebra End(<;6) S K : K . Since the

ideal theory of End(4» localizes, u ia given by the choice of:

a left ideal up o( End(r/J) GD Ap with reduced norm p( i and (or each i J

a left ideal ~ of End(4)) ~ A ~ M (Aa) with reduced norm n. .
1 qi r i 1

Now there exists only one ideal up aa above ( [14] , ~hm. 13.2) and by the theo­

rem cf elementary divisors, there are as many ideals ~ as required aB A-submodules

of length f. of (A/n.)r .
1 1

In view of n(u(u)) = nr(u) , this means that each iaogeny u as above comes from

a left ideal u. Lemm~ 3.8 now yields that for t/J = t/Ju I End( 1/1) ia a maximal order,

and (i) ia proved.

(ii) By (i), we have a surjective map u~ t/Ju from the set of left ideal classes of

End(q,) to E(r,p) J which.is ~so injective, aB ia easily seen.
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In the foUowing, let D = D(r,p) be the central divison algebra of degree r2 over

K with invariants I/r, -l/r at p, m, respectively. The theorem may be used in in­

vestigating the arithmetic of D .

4.4. Example: Let K = IFq(T) be the rational funetion field and um" the usual place

at infinity, i.e., A = IFq [T] ,and p a prime of degree d . The number of snpersingular

isomorphism classes of rank 2 D. modules in characteristie p ia given by

d
#(E(2,p)) =~

q -1

d
=~+ qo q+l

(d == 0(2))

(d == 1(2)).

Thus for d = 1 or 2, E{2,p). consists of one element, represented by the module

(d =1)

(d =2) ,

where p(T) ia the manie polynomial that generates p. The fonnula ia proved in [8] by

an elementary argument, whi~h works only in the case above. In [9], a conceptual proof

is given that ia based on the arithmetic of Drinfeld modular curves. It has the advantage

to generalize to the case of arbitrary fnnction rings A. Combined with the results of

[10] I this will lead to ex:plicit formulas for #(1:(2,p)) (= class number of D(2,p)) in

terms of zeta values of the function field K nnder consideration. Another generalization
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of (4.4) is the case where A still equals the polynomial ring [fq [T] ',but r ~ 2 ia arbi­

trary. Here, the corresponding modular scheme haa dimension r - lover A, but is still

simple enough such that the number #(E(r,p)) can be determined (see forthcoming

work of the author). Other interesting results concerning class numbers of D(r,p) (and

of more general algebras , and non-maximal orders) have been obtained by Denert [3J

and Denert-v. Geel [4J.

(4.5) In certain cases, our methods also allow to describe the set of~ (Le., conjugacy

classes = isomorphism classes) of maximal orders in D(r,p) . First note that if u is a

left ideal in the maximal order End(tP) of D(r,p) ,U is two-eided if and only if u(u)

induces an isomorphism ~nd(4J)~ End( 1/1) for 1/J = tP U • The next proposition gives

necessary conditions for endomorphism rings to be isomorphie.

4.6. Proposition: Assume the class number of the quotieni ring A [p-1J of A ia one.

Then the types. of maximal orders in D(r,p) correspond bijectively to the orbits of

~(r,p) under the action cf the Galois group G =Gal(O=p : 0= p) .

Proof: Clearly, applying u E. G to. the eoeflicients of f E. End( tP) defines an isomor-
I\J

phism End(4J) ----. End( 1/1) J where 1/J =u( tP) . Let cP ~ E(r,p) . Sinee al1 maximal or-

ders in D(r,p) appear up to eonjugacy as right orders of a left ideal u cf the given

maximal order End(tP) 1 the assertion will follow aOID (ii) of the theorem and

(*) If t/J E. E(r,P) and End(1/J) ia isomorphie with End(4J) t there exists a purely

inaeparable isogeny (f: tjJ ---. t/J .



-20-

Namely, such a (f has the form q = COllSt • ~d ,and, pos6ibly replacing 1/J by

idan isomorphie module, we mayassume (f =.,. .Then 1/J will be the Galois twist (1{4J)

of 4J I where we now consider (1 as an element of G .

Proo! of (*): Let u: 4J -----t 1/J be an isogeny. Factorizing u = Us 0 ui into a purely in­

separable ui : 4J -----t 4J 'and a separable us : tP I -----t t/J I we have

End( ljJ)~ End( 4J ') . Let Us correspond to the left ideal Us in End(l/J') , having

right order !R. From the maximality of 9l and Lemma 3.8, Dl ~ End( 7/1) » which by

assumption ia isomorphie with End( tP') ~ End(<p) . But this mea.ns that Us is

two-sided. Since Us ia separable, nr(us) = n(us) ia relatively prime to p. In view cf

the known st rueture of two-sided ideals of t he maximal order End(<P ' ) ([14] , Thm.

22.4, 22.10), the class number eondition forees Us to be principal, and hence <p' is

isomorphie wi th 1/J .

. T~e conditions of the proposition are in partieular satisfied if A itself has dass

number one, e.g. if A = [fq [T] . In the situation of Example 4.4 (suppose p > 2 for

simplicity)I the number t(2,p) of types of maximal orders in D(2,p) is related to the

number W of fixed points of the Atkin-Lehner involution (see [9], Korollar 5.4) on ci
, .

certain modular eurve by

1
t(2,p) = ~ (#(E(2,p» + w/2) .

Let e be a non-aquare in Ifq and p(T) the monie generator of p. Then w may be

expressed through the class numbers h( ';p ( T ) ), h(.Je p ( T ) of the rings obtained
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by adjoining square roots of p(T), e · p(T) to A (loe. cit., Prop. 3.6). Tagether, this

yie1ds

(4.7) t(2,p) = ~ [~ + 1 + i (h( v'P (T) + h(.,te p ( T ))] , if d ia add,
q -1

The values far d = 1,2,3 are l,l,q + 1 .

I

j
I
j.

I

I
1

l

1
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5. Zeta functioßs

We let now again t/J be a fixed rank r Drinfeld module defined over L, where L has

degree m aver [f 13 . Furt her, F = T
n

1 n = m • d 1 ia the Frobeniua morphism relative

to L. Let P{X) = Pq,{X) E. A [X] be the characteristic polynomial of F . For any na­

tural number i J Li denotes the extension of L of degree i J and X (LprP) the Euler­

Poincare characteristic of the finite A-module Li defined by means of t/J .

5.1. Theorem:

(i) The principal ideal (P(l)) of A equals X (L,t/J) .

(ii) (P(O)) = pm .

(iii) The zeroes xi of P in an extension of KID satisfy Ixi I ~ qn/r .

I
I

Proof: From (2.9) and (3.3), we see that p ia the only prime of A that divides P(O).

The exponent m comes from (2.4) and the product formula in K, thus (ii). Since P ia

apower of the minimal polynomial M of F 1 it suffices to prove (iii) for M instead cf

P . Hut M ia also the minimal polynomial of E = K(F) ~ K ,hence ia irreducible. m K m

aver K . Now the assertion follows from considering the Newton polygon of M aver
(D

the IDeal field Km' thus (iii). Finally, aB in (3.10), we caleulate the q-primary compo-

nent of the principal ideal (P{l)):
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(P(1))q ={det 0 iq(F - 1))

= X (ker(F -1))q .

Furthermore, deg(F - 1) = deg F = n/r (see (2.3)), which means that P(I) and

N(F - 1) have the same q-adic valuationa at all placea q -+ P of K , including q = m

. Hence by the product formula, their p-adic valuationa agree too, and (i) ia shown.

The theorem has some remarkable cansequences. First, we get restrictions for those

fields that carry a Orinfeld module.

5.2. Corollary: If there exists a Drinfeld module (rank arbitrary) over the field L of

degree ID. over Alp, the ideal pm ia principal.

By results of D. Hayes, a finite field L carries a rank one Drinfeld module if and

anly if L contains same residue field of the Hilbert dass fie1d H of (K,m) as an

A~ubalgebra ([12], seet. 8; H = maximal unramified abelian extension of K that

splita completely at m). Combined with (5.2), this ytelds an expücit version of the prin­

cipal ideal theorem of class field theory for K (see also [15]):

5.3. Corollary: Every ideal of A becames principal aver the Hilbert dass field H of

(K,m) .

5.4. Corollary: X (Li ,cfJ) ia a princlpal ideal for all i .

5.5 Corollary: Let t/J be supersingular with Frobenius endomorphism F = 4Jf , fe; A ,

and q f p a prime of A . If f/J has one non-trivial q-torsion point aver L. , a1l af its
. 1
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q-torsion points will be defined ever Li.

Proof: Since McP(X) = X - r t we have X(Li'cP) = ((1 - f i))r .

Let now for a moment F be an endomorphism ef an r-dimensional vector space

V over an arbitrary field K. Let Ai V be the i-th exterior power and Ai F the in­

duced endomorphism. We put

j

I
J

1
I

and denote by 11 h logJl the operator f 1----+ c' If on power series C(X).

5.6. Lemma: We have the Cormal identity oC power series

ProoC: This results from combining the well-known identities

~
t
f
j

J

j
,f

1
1
}

I
I

I
1

a) det(l - XF) = 1: (- l)i Tr(Ai F)Xi

O~i ~r

b) - X h log det(1 - XF) = 1: Tr(Fk)Xk
J and

k2:1

(applied to Fk and

evaluated at X = 1) ,

c) d d dax log(C • g) = (IX log(l) + <IX log(g} .
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The preceding motivates our

5.7. Definition: The z-runction of a rank r Drinfeld modul~e ifJ over L ia

where Qi(X) ia the inverse characteristic polynomial det(l - X AiF) of the i-th exte­

rior power AiF acting on AiT q(<p) • Note t hat Qi(X) ia completely determined by

Ql(X) = Q(X) = Xrp(X-1) .

5.8. Example: Let r = 1,2,3, and P(X) given by P(X) =X - a J X2 - aX + b ,

x3 - a.X2 + bX - C , respectively. Then

Z (t)=I-at
ifJ I-t

1- at + bt 2

= (1 -t)(1 - fit)

_)-d+bt- ct3)~1-ct}
- 2

(1 - t)( 1 - bt + act - c t )

(r = 1)

(r = 2)

(r =3) .

5.9. Variant: If we have a meaningful notion of exponentiation of ideals of A with

values in K(J) (see e.g. [11]) J we define t he zeta funet ion of ifJ by

Also, if ifJ ia defined over a finite extension L of K with ring of A-integers B, we
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may define a global zeta funetion

',p(a) = Ir Q'l,( t q)-l ,

q prime of B

where t q =p-m(q) · s. m(q) = [B/q: Alp] • and the factors Qq are construeted

from the reductions ~f ,p mod q . By the following corollary, we may expect that 'r/J
contains meaningful information about the arithmetie of ,p . Ir e.g. ,p ia the Carlitz mo­

dule for A = 0=q (TJ , defined by cPT = T + r, 'cP will be the Carlitz-Goss zeta

funetion whieh has values

1: a-k at 8 = k ,and !i m 1: ak at s = - k J

1-+0) •
&€.A monie a mon 1 C

deg aSi

for natural numbers k, It is known that these values and their congruenee properties

are intimately eonnected with the arithmetic of K = 0=q(T) .

From (5.1) and (5.6) we obtain

5.10. gorollary: Let E k t oe the power senes expansion of t lk log Z,p(t) . Then

ak E. A ~ and (ak) ia the E.-P. characteristic X (Lk,cP) .

In the following concluding examples, we assume that A = IFq [T] J and that cP ia

defined over the "prime field ll 0= p = Alp. Write peT) for the monie generator of p J

and 11 for the map composed of the norm IFp ---+ 0=q and the canonical inelusion

!Fq e-....t> A .
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5.11. Examples:

(i) r = 1 , Le., c1JT = T + CT, ~ f C E. 0= P . We have P(X) = X - a . Comparing

coefficients yields a = v(c) • p(T) , thus

Z (t) - 1- v (c)p(Tl
q, - I - t .

(ii) r = 2 , and suppose tPT = T + gr + T
2

, g €. [fP . Then

P(X) = X
2

- aX + b, b =const • p (T) , and by (üi) cf (5.1), deg a :5 d/2 ,

d = deg p . The precise value of a and b may be expressed through the "Deuring

polynomiaP' of [8]. Let first d = 1 , Le., (fq~ 0= P . Then P(X) = X2 + gX - p(T)

and

~~-=­Zr/J(t)=~ .

If d = 2 , an elementary calculation gives P(X) = X2 - (v (g) + 1" (T))X + p(T) ,

which leads to

Z (t) - L::.fj! )+ p'q t + p(T)t
2

r/J - - t ) ( - p T) t ) .

The complexity of determining P(X) grows rapidly with d and r increasing.
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