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ON FINITE DRINFELD MODULES

Introduction

In {5], Deuring determined the possible isomorphism types of endomorphism rings
of elliptic curves, notably for those curves that are defined over a finite field. His results
were later generalized to abelian varieties of higher rank by Tate [17] and Honda [13].

. Now in the fundamental paper [6], Drinfeld transports the modular theory of el-
liptic curves to the function field case. He found the kind of dioplantine objects (called
by him "elliptic modules") that over global function fields play the role of elliptic curves
in number theory. By his theory, he was able to prove analogues of the theorem of
Kronecker-Weber, the main theorem of complex multiplication, and parts of the Lang-

lands conjectures for GL(2) over function fields. Actually, in the course of the last few

years, the theory of Drinfeld modules has shown to be the key tool in the arithmetic of

function fields over finite fields. This comes from the fact that Drinfeld modules lead to
moduli problems that are related to GL(r) (r arbitrary), and to Galois representations
in local fields of positive characteristic, which one needs in order to describe the absolute
Galois group of a global function field. '

In this paper, we treat Deuring's problem of endomorphism rings in the Drinfeld
module setting, i.e., we study Drinfeld modules that are defined over a finite field, and
their endomorphism rings. Let (K,») be a pair consisting of a function field K in one
variable over a finite field, and a place @ of K. Let further A be the ring of elements
of K with poles at most at @, and p a prime of A with finite residue field

Fp = A/p . As for elliptic curves, the classification up to isogeny of Drinfeld modules ¢
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{ over extensions of [F_ is given by the isomorphism type of End(‘q)) i K (Thm. 3.5).
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i This ring turns out to be a certain division algebra central over the subfield E genera-

ted over K by the Frobenius endomorphism F of ¢ (Thm. 2.9). (These two results
are stated in [7], Prop. 2.1 in a somewhat disguised form, and with a few cryptical
hints as proofs.). We call ¢ supersingular if E equals K . One of our results is that for
supersingular ¢ , End(¢) is a maximal order in End(¢) ® K (Thm. 4.3). This opens
the way to use Drinfeld modules in the arithmetic of division algebras over function
fields, exploiting properties of modular schemes. In a subsequent paper, we will use this
approach to effectively determine the class and type numbers of sﬁch algebras. Simple
examples on this are given in (4.4) and (4.7).

We introduce the norm n(u) of an isogeny u , an ideal of A which for separable

4 u is the Euler—Poincaré characteristic of Ker(u), and for u an endomorphism agrees

with the reduced norm. By means of n(u) , we may interpret the value P ¢(1) of the
characteristic polynomial of F as the E.—P. characteristic of our finite Drinfeld
A-module (Thm. 5.1). This leads to the definition of the local zeta function (or rather
I-function) Z ¢(t) attached to ¢ , which has propérties similar to those of the
I~function of an abelian variety over a finite field. Also, our results suggest that the glo-
bal zeta functions ¢ 4 (for Drinfeld modules ¢ over finite extensions of K) which may
be constructed through local factors as above, have reasonable properties. This i3 at least

the case if ¢ has "complex multiplication", as results e.g. from Takahashi’s paper [16].
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I._Background on Drinfeld modules

Let K bea Afunction field in one variable over the finite field !Fq with q ele-
ments, which we suppose to be algebraically closed in K . Fix a place "a " of K, let
K, be the completion, and A the ring of elements of K regular outsideof o. On A,
we have the degree function deg: A— I (extended to K in the obvious way) that
maps a to log #(A/a) . The typical example is given by the polynomial ring
A=F [T] where "deg" is the usual degree function. By an "ideal" of A , we under-

stand a non—zero ideal. We use "prime", "prime ideal", and "place" of A as synonyms.

Let L be a field that is an extension of either K or of le =A/p, L its alge-
braic closure, and 7: A ——> L the canonical structure as an A-—algebra . L has
characteristic (written 'char(L)) @ or p, respectively. Let 7 be the Frobenius endo-
morphism relative to IFq , i.e., the ma.p. x+—— x4 . In the ring End;(G,) of all
L—endomorphisms of the additive group scheme G_|L , 7 generates a subalgebra
L {r} that is simply the non—commutative polynomial algebra in 7 subject to the
commutation rule rox=x%o07, x€ L. Let deg 1'_f be the well-defined "degree" of
fe L{r} in r.

Monig elements fe L{r} (i.e., those with leading coefficient 1) correspond bijecti-
vely to finite subschemes of [Fq-—vector spaces of GalL by f+— H = ker(f) . Any
monic f may uniquely be written = f3 ) fi , where fs is separable (i.e., its constant
coefficient is non—zero) and f, =7 b s purely inseparable. We write h = ht(f) = ht(H)

and call it the height of f or H , respectively.

1.1. Definition: A Drinfeld module over L of rank r > 1 is a structure of A—module

on G a | L, given by a ring homomorphism

Sgmoen
-ﬁ'
a ot m-’g? .
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¢: A——L{r} CEnd;(G,),

a,n—-——-oqﬁa

where we require that for any a € A, the following two conditions hold:

(i) deg_¢, =1 * dega;
(ii) ¢, = 1(a) + terms divisible by 7.

Thusif A = [Fq [T] , arank r Drinfeld module ¢ is given by

bp=2T) + g7+ o + g7
where g, ....8._; » 8 # 0 may be chosen arbitrarily in L . A morphism u: ¢ — ¥
of D. modules (more precisely, a morphism defined over L , or L-morphism) is a mor-

phism of group schemes over L commuting with the A-action, i.e., an element

ue L{r} suchthatforall ae A
(*) uod, =y, 0u

holds. Therefore, we have endomorphisms, isomorphisms, and automorphisms of D.
modules, where e.g. an isomorphism is a non—zero constant u e L for which (*) is satis-
fied.- Non—zero morphisms are possible only between D. modules of the same rank; they

are called isogenies.

1.2. Proposition (see e.g. [2], Thm. 4.9): The endomorphism ring End (¢) of the

rank r Drinfeld module ¢ is a finitely generated projective A—module of rank less or
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4 equal to r“. Moreover, End(¢) ® K is a division ring.
; A
g
? Clearly, there exists a finite extension L’ of L such that all
L — endomorphisms of ¢ are defined over L’ .
-‘ We let ¢ = ker(¢a) be the scheme of 3—division points, which is a finite sub-
)
{ scheme of A—modules of G,|L . Foranideal n of A, welet
i
b= N ker(d,).
aen
It is easy to see that ¢ is reduced, and its module n¢(L) of L—points is isomorphic
{ with (A/n)" if and only if n is relatively prime to char(L) . Thus let g be a prime
E
{ ideal of A different from char(L), Kq and A q the g—adic completions, and put
i p=lm _¢.
© . —
:
We define the g—adic Tatg module of ¢ by
:
4
? which is a free A q-—module of dimension r.On T q(¢) we have representations of
i
i a) the Galois group Gal(L:L) of L and
{ b) thering End(g).
Since any endomorphism u#0 of ¢ has finite kernel, the associated homomorphism
|
4
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i q.End(q&) A q—+End Aq(Tq) is injective

Later on, we will need the following characterization of kernels of isogenies:

(1.4) Let ¢ be a Drinfeld module over L and HC Ga|L a finite subscheme of

F q—vector spaces. Then H is the kernel of some isogeny u: ¢ — 4 if and only if

(i) H(L) is an A-—submodule of L (A-action by ¢);

(ii) ht(H) =0 (char(L) = o)
ht(H) = 0(deg p) (char(L) = p) .

This implies e.g. that for any isogeny u:¢ — 1, there exists v: ¥y—— ¢ such that

vou=<,z!»a for some ae A .

Proofs of all the assertions collected here may be found in [6], [8], or [2].



2. _Endomorphism ringg

Let now p be a prime of A of degree d , and suppose L isa finite extension of

degree m of II-'p = A/p. Then L has cardinality q", where n =d - m, and contains

qu via. 7:A—L.Let F=7":x+— an be the associated Frobenius morphism.
If the Drinfeld module ¢ (always assumed of rank r) is defined over L, F commutes
with @¢(A) CL{r} ,ie., F e End(¢). As long as ¢ is fixed, we write "A" for the
subring @(A) of L{r}.

(2.1) Let L(7) be the division ring of fractions of L{r} . It is central of degree n?
over IFq(F) = quotient field of IFq{F} , and splits at the places of [ q(F) different

from F=0 and F=o. At F=0 (F = o), its invariants are 1/n (- 1/n), respecti-

- vely. (See e.g. [14]. In the identification of local Brauer groups with Q / 7 , there are

two possible sign choices. Ours, which agrees with that of [14], is defined by the asser-

tion above.)

(2.2) Recall that for any field extension E of F q(F) that embeds into L(7), thereis
only one place extending the ramified place F =0 or F = o, respectively. This follows

for example from Thm. 32.15, loc. cit ..

(2.3) Regarding ¢: A— L{r} as an embedding, K = Quot(A) ig contained in

L(r) . Let E be the extension of K generated by F.Then E =E ® K  is a field.
K

* *
(2.4) Let deg:E —— Q be the extension to E of the valuation deg: K — 7,
which is uniquely determined by the preceding. From degr(qﬁa) =r +dega (aeA),

we derive deg F =n/r . If d, denotes the degree of o over F q’ this means that F
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has fractional pole order n/r - dw at o with respect to the field Km

(25) By (2.3), [E:K] = [E_:K_]=e-f, where e= ramification index and
f= residual degreeof E_:K_ .But E = K _(F), henqe

e = denominator of pole order of F w.r.t. Km

(2.6) Correspondingly, [E: [Fq(F)] = [E,: qu(F)m] =e’ - {/ by (2.2). Clearly, the

residual degree f’ equals d_ - f, whereas the ramification index e’ is given by
’ = pole order of F w.r.t. E_ = numerator of n/r - d
Combining (2.5) and (2.6) yields the equality
(27) | [B:F(F)]/[E: K] =ufe
(compare "proof" of Prop. 2.1in [7]).
Therefore, letting r; = [E: K] ,
Iy=1/r;=nf[E: EFq(F)]
is an integer.

(2.8) For a subset S of L(7),let #(S) beits commutant. Then

.:'1 ‘k“"&" 7
v‘ r!’#w u*“ﬂ 'M 3 -» S ﬁﬁ‘# AL *'»:; r’B’

S



K = 3(K) = U(E)

End(g) 8
since E = K(F) and F is central. From the commutant equality ([1], § 10, ’i‘hm. 2),
we see that End(¢) ® K is central over E of degree rg . Its class in the Brauer group
of E is the class of L(r) over FF q(F) restricted to E , as follows from loc. cit., § 10,
Prop. 2. Denoting by ‘P the unique prime of E that divides F (note that P lies
above the prime p = char(L) of K) , the invariants of End(¢) ® K are therefore
[E: IFq(F)] "1/n=1/r, at P, —1/r, attheplace o of E, and zero at all the
other places.

Summarizing, we have proved the theorem (stated in [7]):

2.9. Theorem: Let E be the subfield of End(¢) ® K generated over K by F, and
r; = [E:K] its degree. Then r/r; is an integer 1, ,and End(¢)®K is a central
division ring over E of degree rg . There is a unique prime ‘B of E that divides F,
and ‘P lies above p. End(¢) ® K splits at primes different from P and o, and has

invariants 1/r2, —1/r2 at P, o, respectively.
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3. Norms of isogenies

We keep the notations of the last section.

Let N be the map from End(¢) ® K to K obtained by composing the reduced
norm nr : End(¢) ® K — E with the field norm NE :E—— K .Then N is
K-homogeneous of degree r and agrees on maximal commutative subfields H with the

norm NIH( H—K.
3.1. Lemma: For u e End(¢), we have deg N(u)=r - deg. u .

Proof: Both sides define valuations on End(¢) ® K equivalent with the w—adic valua-

tion. The proportionality factor comes out by evaluatingon u=¢_, ae A.

a ’
For each prime q#p of A, i q(H) ®K q is 2 maximal commutative K q—suba.lge—

bra of Endy (T q(qf;) ® K q) , whose norm mapping to K q is the determinant. There-
qg @ :

fore, N|g = (deto iq) | g for every maximal commutative subfield H of

End(¢) ® K, so

(3.2) deetoiq.

Let P ¢(X) be the characteristic polynomial of i q(F) , and M ¢(X) the minimal poly-

nomial of F over A.

3.3 Lemma: P¢(X) = M¢(X)r2 , Io=1/[E: K] .
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r
Proof: It suffices to show that P(t) = M(t) 2 for te E.But

P(t) = det(t — F) = Ng o nr(t —F) = Ng((t - F)2) = (N (t - F)) 2= M(t) 2 , the

last equality coming from E = K(F).

3.4. Corollary: The characteristic polynomial P ¢(X) of F in the g-adic representa-

tion iq has coefficients in A that are independent of q.

3.5. _Theorem: For two Drinfeld modules ¢ and % of rank r over L, the following

statements are equivalent:

(a) ¢ and ¢ are isogeneous;

(b) End(¢)® K and End(¢)® K are isomorphic K-algebras ;
(C) M¢ = M¢;

(d) P 6= P "

Proof: ¢) and d) are equivalent by the lemma, since both M and P are monic polyno-

mials. a) 3 c): Let M¢(X)=Eaixi . Then in L{r} ,  TF¢_=0. Let
1

u:¢9— 9 be an L-isogeny ; i.e., ue L{7r} such that for each a e A , we have

uop, =y, ou. Then O0=ZuoFo¢ =EFoy ou , which implies
1 1

}"_.Fiowa.=0,inotherw9rds, M¢|M¢,thus M¢=M¢.c) 3 b): Denote by E¢,

1
E¢C L(r) the fields generated by the Frobenius elements, respectively, which are

K-isomorphic by assumption. From Thm. 2.9, we see that an isomorphism may be

extended to an isomorphism of End(¢) ® K to End(¢)® K.b) 3 a): Let

" a: End(¢) ® K — End(¢) ® K be an isomorphism. By the theorem of

Skolem—Noether (1], § 10, Thm. 1), there exists u e L{r) suchk that a is conjugation
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with u . But L(r)=L{r} @ IFq(F) , hence, up to a central element, we may as-

q
sume u € L{r} , which clearly defines an isogeny u: ¢ — 9.

(3.6) Following Deuring [5], we associate an isogeny with any left ideal of the A—order
End(¢) in End(¢)® K . In the given context, this generalizes a construction of Hayes
[12]. (For notation and the elementary ideal theory in simple algebras, we refer to
[14].)

Let u be a left ideal of End(¢) . Since L{r} is right euclidean, the left ideal
L{7}u of L{r} is principal, generated by u = u(u) e L{r} , which is well-defined,
requiring u to be monic. But ¢(A) is central in End(¢), so u = ug¢(A), which for

each a e A implies the existence of ¥, e L{r} with uo¢ =9 ou.

3.7. Lemma: The map a+—— ';}a. defines a Drinfeld module %= ¢u ,and u is an
isogeny from ¢ to .

Proof. Clearly, 9 is a ring homomorphism, and ), satisfies the degree condition (i) of
(1.1). If fe u, we have ht(f) = 0(d) by (1.4) (ii), so the same holds for u = g.c. right
divisor of fe u in L{r} . But this implies that ¢  and ¢, have the same constant

coefficient v (a) , i.e., condition (ii) of (1.1).

3.8. Lemma: Let TR be the right orderin End(¢) ® K of the left ideal u of End(g) .

Then conjugation with u in L{r} defines an injection of R into End(g").

Proof: Let re® ,ie, urCu, which yields the existence of 8 e L{r} with

uor=sgou.But then

sogbaoshl=souo¢aou_los"'1=uoro¢aor_lou"1=uo¢aou_1=¢a,
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since r commutes with ¢_, thus uoRo ul C End(%) .

(3.9) Next, we associate an ideal n(u) of A with each isogeny u:¢ -—— 9 of Drin-
feld modules of rankr over L.If M is a finite A—module,let x (M) be the Euler—
Poincaré characteristic of M , which is an ideal of A uniquely determined by the condi-

tions

(i) x(M)=gq, if M~ A/q with a prime ideal q of A;

(ii) If 0— M, — M — M, — 0 is exact, then

x (M) = x (M{)x (M,) .

Define the norm n(u) of the isogeny u by

n(u) = pRU/d Ly ((er w)(L)) .

3.10. TLemma: Let u and v be isogenies of rank r Drinfeld modules over L that

may be composed. Then

(i) n{uev)=n(un(v);

(ii) deg.u = deg n(u) ;

(iii)  n(u) = (N(u)) if u e End(¢) is an endomorphism;

(iv)  Let uC End($) be a left ideal. Then n(u(u)) = ideal generated by N({),

feu.

Proof: (i) and (ii) follow directly from the definition. (iii) Let q be a prime different
from p,and ¢ avery high power of q. We calculate the g—part of (N(u)):



—14 =~

(N(u))g = (det oig(u)) - (by(3.1))

= X (T (9)/im i (w)

= x($/8(.9))

= x(ker(u) N ¢)

= x(ker(u)),

= (n(w)),
Furthermore, by (ii) and Lemma 3.1,
r - degn(u) =r - deg_u = deg N(u) =r - deg N(u) , s0 (N(u)) and n(u) agree, since
they have the same q—components (q# p) and the same degree. (iv) results from (iii)

in view of u(u) = g.c. right divisorin C{r} of {fe u},so
n(u(u)) = g.cd. {n(f)|fe u}.

Note that (iii) implies that the norm of an endomorphism is a principal ideal.
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4. Supersgingularity

We now study in deté.il the extreme case of Thm. 2.9 where E = K . Let r be the rank
of ¢ . The assumption E = K is equivalent with F = ¢f , some fe A, whose divisor
() must be a power of p . Comparing 7—degrees yields (f) = pm/ . (Recall that
m= [L: in} .) We denote by qbp the isogeny from ¢ to ¢" associated with the left
ideal u = End(¢)p C End(¢) . Then ker(¢p) = qu .

4.1. Proposition: The following assertions on ¢ are equivalent:

a) There exists a finite extension L’ of L such that over L’ , the degree
[End(¢) ® K : K] equals .

b) Some power of F liesin A .

c) qip is purely inse‘parable.

Proof: The equivalence of a) and b) comes from Thm. 2.9. By the preceding, b) says

m /r¢ , thus pcﬁ is local, which means that ¢p is purely inseparable. Conversely, let
p

¢:p be purely inseparable. Then pq&(L) =0, and also iqS(L) =0,all i.If |Ji = (1) is
b

principal, ¢f is purely inseparable, and some powers of F and of ¢f agree.

Drinfeld modules that satisfy the conditions of the proposition are called super-
singular. All the supersingular D. modules of rank r in characteristic p are isogeneous
by Thm. 3.5. Their isomorphism classes are finite in number, since all of them may be
defined over a certain finite field L.

Let m, be the order of p in the class group of A, and L the extension of F

p
of degree m=mg-r.
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Y 4.2. Proposition: Any supersingular Drinfeld module ¢ of rank r and characteristic p

1  is isomorphic to one defined over L.

Proof: Let ¢ be defined over a finite extension L’ of L ,and F=7", n=d ' m

m
the Frobenius relative to L. Let fe A with (f)=p 0

, thus ¢f— const + 7 . With-
out restriction, we may assume qbf: 2 | possibly replacing ¢ by an isomorphic D.

|  module.If ae A and ¢a =3 airi ,the commutation rule q&a o ¢f = ¢f o d’a implies
n .
2, =a forall i,i.e., a.ieL.

{ 4.3. Theorem: Let ¢ be a supersingular rank r Drinfeld module over the finite field

L, which we assume Ié.rge enough such that all endomorphisms are defined over L .

(i) End(¢) is a maximal order in End(¢) ® K.
(ii) The left ideal classes of End (¢) correspond bijectively to the elements of
the set XI(r,p) of isomorphism classes of supersingular rank r Drinfeld

modules in characteristic p.

Proof: (i) We adapt the idea of Deuring’s proof in the elliptic curve case [5] to our
situation. In each order, there always exist left ideals with maximal left (and right) or-
ders. Thus from (3.8), we see that there exists a supersingular ¥ isogeneous with ¢
and such that End(y) is maximal. We are therefore reduced to showing that End(%)
is maximal if 1 is isogeneous with ¢ and End(¢) is maximal.

i Let u: ¢ — 9 be a monic isogeny with norm n(u) =n a fixed ideal in A-. De-

compose
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f.
n=pfn’ , where n’ ='[_|'qil

with different primes q; #p of A. Since ¢ is supersingular, the p—component of

ker(u) is purely local, and u is completely determined by the number f and the

A-module ker(u) (L) , which has Euler—Poincaré characteristic n’. Thus choosing u

amounts to choosing for each i an A-gubmodule of length f, of

b2 (A, m =g
n = iV mME9

Next, by (3.10) (iv), for any left ideal u of End(4) , the norm n(u(u)) agrees with the

reduced norm nr(u) relative to the central division algebra End(¢) ® K : K . Since the

* ideal theory of End(¢) localizes, u is given by the choice of:

a left ideal u, of End(¢) @Ap

a left ideal u, of End(¢)® Aq' ~ M (A
i

with reduced norm pf; and for each i,

) with reduced norm n, .

%

Now there exists only one ideal u_ as above ([14], Thm. 13.2) and by the theo-

p
rem of elementary divisors, there are as many ideals u, as required as A-submodules
of length f, of (A/ni)r.

In view of n(u(u)) = nr{u) , this means that each isogeny u as above comes from

a left ideal u. Lemma 3.8 now yields that for ¢ = o, End(%) is a maximal order,

_ and (i) is proved.

(ii) By (i), we have a surjective map uw~—— ¢" from the set of left ideal classes of

End(¢) to I(r,p) , which is also injective, as is easily seen.
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In the following, let D = D(r,p) be the central divison algebra of degree % over
K with invariants 1/r, —1/r at p, o, respectively. The theorem may be used in in-

vestigating the arithmeticof D .

4.4. Example: Let K=F q(T) be the rational function field and "@" the usual place
at infinity, i.e., A=T q [T] ,and p a prime of degree d . The number of supersingular

isomorphism classes of rank 2 D. modules in characteristic p is given by

d
#(E(2,0) = '225"1‘ (d = 0(2))

d
=;1ﬁ+fh (d=1(2)).

Thus for d =1 or 2, X(2,p) consists of one element, represented by the module

pp=1(T)+7° (d=1)

¢T=7(T)+r—7[ 1 ] ? o (d=2),

p’(T)

where p(T) is the monic polynomial that generates p. The formula is proved in [8] by
an elementary argument, which works only in the case above. In [9], a conceptual proof
is given that is based on the arithmetic of Drinfeld modular curves. It has the advantage
to generalize to the case of arbitrary function rings A . Combined with t;he results of
[10], this will lead to explicit formulas for #(Z(2,p)) (= class number of D(2,p)) in

terms of zeta values of the function field K under consideration. Another generalization
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of (4.4) is the case where A still equals the polynomial ring [Fq [T] ,.but I 22 is arbi-
trary. Here, the corresponding modular scheme has dimension r—1 over A, but is still
simple enough such that the number #(Z(r,p)) can be determined (see forthcoming
work of the author). Other interesting results concerning class numbers of D(r,p) (and
of more general algebras, and non—maximal orders) have been obtained by Denert [3]

and Denert—v. Geel [4].

(4.5) In certain cases, our methods also allow to describe the set of typeg (i.e., conjugacy
classes = isomorphism classes) of maximal orders in D(r,p) . First note that if u isa
left ideal in the maximal order End(¢) of D(r,p), u is two—sided if and only if u(u)
induces an isomorphism End(¢) = End(y) for ¥ =¢" . The next proposition gives

necessary conditions for endomorphism rings to be isomorphic.

4.6. Proposition: Assume the class number of the quotient ring A [p_l] of A is one.

Then the types of maximal orders in D(r,p) correspond bijectively to the orbits of

Z(r,p) under the action of the Galois group G = Ga.l(IFp : !Fp) :

Proof: Clearly, applying o € G to the coefficients of fe End(¢) defines an isomor-
phism End(¢) =, End() , where #=o0(¢) . Let ¢ e I(r,p) . Since all maximal or-
ders in D(r,p) appear up to conjugacy as right orders of a left ideal u of the given

maximal order End(¢) , the assertion will follow from (ii) of the theorem and

(*) If ¢eX(r,p) and End(y) is isomorphic with End(¢) , there exists a purely

inseparable isogeny o : ¢ — .
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Namely, such a ¢ has the form o = const - 1'id , and, possibly replacing ¥ by
an isomorphic module, we may assume o = Tid . Then 4 will be the Galois twist o(¢)

of ¢ , where we now consider o 2as an element of G .

"Proof of (*): Let u:¢ — ¢ be an isogeny. Factorizing u = u oy into a purely in-

separable u, : ¢ —— ¢’ and a separable u, ¢’ — ¢, we have

End(¢) —=- End(¢’) . Let ug correspond to the left ideal u, in End(¢’) , having
right order R . From the maximality of ® and Lemma 3.8, R~ End(%) , which by
assumption is isomorphic with End(¢’) % End(¢) . But this means that ug is
two—sgided. Since ug is separable, nr(us) = n(us) is relatively prime to p . In view of
the known structure of two—sided ideals of the maximal order End(¢’) ([14], Thm.
to be principal, and hence ¢’ is

22.4, 22.10), the class number condition forces u,

isomorphic with .

“The conditions of the proposition are in particular satisfied if A itself has class
number one, e.g. if A = EFq[T] . In the situation of Example 4.4 (suppose p > 2 for
simplicity), the number t(2,p) of types of maximal orders in D(2,p) is related to the
number w of fixed points of the Atkin—Lehner involution (see [9], Korollar 5.4) on a

certain modular curve by
H2,p) = 5 (#(Z(2,0)) + w/2)

Let e be a non—square in IFq and p(T) the monic generator of p. Then w may be

expressed through the class numbers h(y/p(T)), h(yep (T)) of tﬁe rings obtained
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j
; by adjoining square roots of p(T), e+ p(T) to A (loc. cit., Prop. 3.6). Together, this
yields

(4.7) t2,0) = 5 ﬂ;‘;g+ 147 ((/PTTY +b(yep(TY)|,if d isodd,
-

—y

d
=7 | &=L+ 5h(Vep (T))| ,if d is even.
q -1

The values for d =1,2,3 are 1,1,q + 1.
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5. Zeta functions

We let now again ¢ be a fixed rank r Drinfeld module defined over L , where L has

degree m over [F_. Further, F = ™, n=m-d , i8 the Frobenius morphism relative

b
to L.Let P(X) = P¢(X) e A[X] be the characteristic polynomial of F . For any na-
tural number i, L. denotes the extension of L of degree i, and x(Li,q{;) the Euler—

Poincaré characteristic of the finite A—module L. defined by means of ¢ .

5.1. Theorem:

(i) The principal ideal (P(1)) of A equals x (L,¢).

(i) (P(0)) = p™ .

(iii) The zeroes x; of P in an extension of K satisfy |x| sqn/ r.

Proof: From (2.9) and (3.3), we see that p is the only prime of A that divides P(O) .
The exponent m comes from (2.4) and the product formula in K, thus (ii). Since P is
a power of the minimal polynomial M of F, it suffices to prove (iii) for M instead of
P . But M is also the minimal polynomial of E_= K(F) g I{m , hence is’irreducible

over Km . Now the assertion follows from considering the Newton polygon of M over
the local field K, thus (iii). Finally, as in (3.10), we calculate the g~primary compo-
nent of the principal ideal (P(1)):
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(P(1))q = (det o i (F - 1))
= X (T (9)/im i (F 1))

= x (ker(F — 1))CI .
Furthermore, deg(F —1) =degF =n/r (see (2.3)), which means that P(1) and
N(F —1) have the same q-adic valuations at all places q# p of K, including 9=
. Hence by the product formula, their p~adic valuations agree too, and (i) is shown.
The theorem has some remarkable consequences. First, we get restrictions for those

fields that carry a Drinfeld module.

5.2. Corollary: If there exists a Drinfeld module (rank arbitrary) over the field L of
degree m, over A/p, theideal p™ is principal. '

By results of D. Hayes, a finite field L carries a rank one Drinfeld module if and
only if L contains some residue field of the Hilbert class field H of (K,») as an
A-subalgebra ([12], sect. 8; H = maximal unramified abelian extension of K that
splits completely at @ ). Combined with (5.2), this yields an explicit version of the prin-
cipal ideal theorem of class field theory for K (see also [15]):

5.3. Corollary: Every ideal of A becomes principal over the Hilbert class field H of

(K,m) .

5.4. Corollary: x (Li,¢) is a principal ideal for alli .

5.5 Corollary: Let ¢ be supersingular with Frobenius endomorphism F = ¢f, fe A,
and q#p aprimeof A.If ¢ has one non-trivial q-torsion point over L, , all of its
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q—torsion points will be defined over Li .
Proof: Since M,(X) = X —f, we have x(L;¢) = ((1 —fiyr.

Let now for a moment F be an endomorphism of an r-dimensional vector space
V' over an arbitrary field K . Let A'V be the i—th exterior power and A!F the in-

duced endomorphism. We put
Q(X) = det(1 - X A' F)

lld

and denote by " 3y log" the operator fs—— {’/f on power series {(X).

5.6. Lemma: We have the formal identity of power series

il
Y det(1 - FXE = x $t0g TT @)1
k>1 0<i<r

Proof: This results from combining the well-known identities

a) det(l—-XF)= 2 (~ 1)i Tr(}\i F))(i (applied to FX and
0<i<r
evaluated at X = 1),

k
b) -XSglogdet(1-XF)= ¥ Te(FN)XK, and
k>1

c) gx log(f + g) = :—}X log(f) + %x log(g) -
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The preceding motivates our

5.7. Definition: The Z—function of a rank r Drinfeld module ¢ over L is

Z¢(t) = W Qi(t)(—l)i'i'l ’

0<i<r

where Q,(X) is the inverse characteristic polynomial det(1 —X AiF) of the i-th exte-

rior power AIF acting on AT q(¢) . Note that Q,(X) is completely determined by
-1

Q,(X) = Q(X) = X"P(X 1) .

58. Example: Let r=1,23, and P(X) given by P(X)=X-a, X°—aX +b,

X3 - a.X2 + bX — ¢, respectively. Then

Z4(t) = T=¢ | (c=1)
2
1- b
= -t:jn(:1+- lt)t) (r=2)
_(-at+bt? - ed)ioay) (c=3).

(1—t)(1 = bt + act® -c*t%)

5.9. Varant: If we have a meaningful notion of exponentiation of ideals of A with
valuesin K (see e.g. [11]), we define the zeta function of ¢ by

C¢(5) = Z¢(p—m.s) .

Also, if ¢ is defined over a finite extension L of K with ring of A—integers B, we
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may define a global zeta function

o= TTQty ™
qprime of B

where tq = p—m(q) "8 m(q) = [B/q: A/p] , and the factors Qq are constructed
from the reductions qf ¢ mod q . By the following corollary, we may expect that ( é
containg meaningful information about the arithmetic of ¢ . If e.g. ¢ is the Carlitz mo-
dule for A=F q [T] , defined by ¢pp=T+71, ¢ & will be the Carlitz—Goss zeta

function which has values

): a X at s=k,and lim 2 ak at g§=—-k ,
i=o

a€A monic a monic

deg a<i

for natural numbers k . It is known that these values and their congruence properties
are intimately connected with the arithmeticof K =F q(‘1‘) .
From (5.1) and (5.6) we obtain

5.10. Corollary: Let X ay % be the power series expansion of t g-flog Z ¢(t) . Then
a, € A,and (a) is the E—P. characteristic x (Ly,8).
In the following concluding examples, we assume that A = F q [T] , and that ¢ is

defined over the "prime field" F_= A/p. Write p(T) for the monic generator of p,

p

and v for the map composed of the norm [Fp —_ IFq and the canonical inclusion

[Fqc-—rA.
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5.11. Examples:

(i) r=1,ie, ¢p=T+cr, 0fcelF, . We have P(X)=X-a . Comparing

p
coefficients yields a = i{c) - p(T), thus

Z¢(t) =1 —IV_(:)P(T) ]

(ii) r = 2, and suppose ¢T=T+gr+1'2,ge[Fp.Then
P(X)=X?—aX+b , b=const-p(T) , and by (iii) of (5.1), dega<d/2,
d =degp . The precise value of a and b may be expressed through the "Deuring

polynomial" of [8]. Let first d =1, ie, F = F,. Then P(X)=X?+ gX —p(T)

p

and %

2
_ 1+4gt—p(T)t
Zy(t) = T=i)T+ p(TE

If d=2, an elementary calculation gives P(X)= x? - (v(g) + P (THX + p(T) ,
which leads to

2
_1- + p/ (Tt + p(T)t
zy(t) = = (R

The complexity of determining P(X) grows rapidly with d and r increasing.
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