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FROM ALE TO ALF GRAVITATIONAL INSTANTONS. II

HuGcues AUVRAY *

Abstract

This article is the sequel of our previous paper From ALE to ALF gravita-
tional instantons, where we constructed ALF hyperkdhler metrics on minimal
resolutions of C2 /Dy, with Dy the binary dihedral group of order 4k, k > 2.
In the present article we generalize the construction to smooth deformations
of this Kleinian singularity, with help of the computation of the asymptotics
of the ALE gravitational instantons.

INTRODUCTION

A central question in Riemannian geometry in real dimension 4 is that of
the comprehension of non-compact, complete, Ricci-flat manifolds. These spaces
indeed arise naturally in differential geometry as limiting spaces, after rescaling, of
families of compact Einstein 4-manifolds; their knowledge might thus be of crucial
interest for the study of Einstein compact 4-manifolds and especially of sequences
of such spaces.

The dimension 4 moreover allows one to specify the question to Ricci-flat Kdh-
ler, or even hyperkdhler, non-compact, complete manifolds. If one adds furthermore
a decay condition on the Riemannian curvature tensor, this leads to:

Definition 0.1 (Gravitational instantons) A gravitational instanton is a non-
compact, complete, hyperkaihler manifold (X, g,1,J, K) of real dimension 4, whose
Riemannian curvature satisfies the following L? integral condition: f « | Rm? 1> pvol?
s finite, where p is a "ball volume growth ratio” function.

*This work was started while the author was visiting the University of Edinburgh during
Spring 2012, supported by the program Scientific stays for PhD students of the Fondation des
Sciences Mathématiques de Paris (FSMP), and completed during the author’s stay at the MPIM
Bonn as an EPDI post-doc visitor in 2013.
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By a ball volume growth ratio function, we merely mean a function comparing
the growth of balls in X to that of the flat model (R?, e), with e the standard
euclidean metric on R*; more concretely, fixing 2 € X and setting r = d,(z, -), one
4
can take P = W.
Let us add here that besides this differential-geometric definition, gravitational
instantons also appear as fundamental objects in theoretical physics, in fields such

as Quantum Gravity [Haw| or String Theory [CH, CK].

Recall that the hyperkéhler condition implies Ricci-flatness. Thus, the funda-
mental Bishop-Gromov theorem |[GLP| implies that on gravitational instantons,
the function p mentioned above is at least positively bounded below — in other
words, the growth of the ball volume is at most euclidean. If it is also bounded
above, one deals with Asymptotically Locally Euclidean instantons, or ALE instan-
tons for short. These hyperkdhler manifolds are completely classified, after [BKN]
and [Kro2| (notice also the recent extension [Suv| to the Kéhler Ricci-flat case);
their comprehension actually goes deeper, since the classification corresponds to
an exhaustive construction by Kronheimer [Krol], which is why we shall also often
refer to these spaces as Kronheimer’s instantons. In a nutshell, the hyperkéhler
structures of these spaces are asymptotic to that of a quotient R*/T', with T' a
finite subgroup of SU(2) = Sp(1); when moreover I' is fixed, these spaces are all
diffeomorphic to the minimal resolution of the Kleinian singularity C*/T. Here C?
stands for (R?*, I;) with I; the standard complex structure given by the coordinates
z1 = X1 + 1x9, 20 = X3 + ix4; we fix this notation, as well as that of Iy and I3 for
the other two standard complex structures on R* = H, given respectively by the
coordinates (1 + ixs, x4 + ixe) and (z1 + ixy, vo + ix3).

Now, still on gravitational instantons, a result by Minerbe [Minl| states the
following quantization: if the ball volume growth is less than euclidean, i.e quartic,
it is at most cubic; in other words, if the comparison function p is not bounded,
it grows at least like r. If this is indeed the case, one then speaks about Asymp-
totically Locally Flat, or ALF, gravitational instantons. Roughly speaking, half of
these spaces are classified, by Minerbe again [Min3|; their geometry at infinity is
that of a circle fibration over R?, and they are explicitly described by the so-called
Gibbons-Hawking ansatz — and this includes the prototypical Taub-NUT metric,
living on R*, itself.

Results. — The only other possibility for the asymptotic geometry of the ALF
gravitational instantons is that of a circle fibration over R3/4 [Min2|. This we
illustrate by the following, which is one of the two main results of this paper:

Theorem 0.2 Let (X,g7 LY, X IY) be an ALE gravitational instanton modelled
on R*/Dy,, in the sense that X minus a compact subset is diffeomorphic to R* /Dy,
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minus a ball, and that the hyperkdhler structure of X is asymptotic to that of
R*/Dy. via the diffeomorphism in play; here Dy is the binary dihedral group of
order 4k, k > 2. Then there exists on X a family of hyperkdhler structures
(Gms Jioms Joms Joom Jme(0,00), such that, for any fired m € (0, 00):

1m> “2m>

1. the diffeomorphism above can be chosen so that g, is asymptotic to the Taub-
NUT metric £,,;

2. the Kdhler classes associated to this hyperkdhler structure are the same as
those of the ALE hyperkdihler structure, and moreover vol¥™ = vol9X ;

3. the curvature tensor Rm™ has cubic decay.

The metric f,, of this statement is the Taub-NUT metric of parameter m;
one interprets this parameter, up to a multiplicative constant, as the inverse of
the squared length at infinity of the fibres of an f,,-isometric circle action. The
asymptotics between the ALF metric g, and f,, are as follows: if R denotes a
distance function for f,,, then (g,, — f,,) and V' (g,, — £,,) are O(R72%¢) for an
arbitrarily small € > 0. Of course f,,, is also invariant under Dy, so that it makes
perfect sense on R*/Dj.

Before discussing in more details on how Theorem 0.2 is proved, we shall under-
line the following: its proof heavily relies on the computation of the asymptotics of
the ALE instantons modelled on R*/D,. More precisely, Kronheimer’s construc-
tion of these spaces allows one to write these asymptotics under the shape of a
power series, the main term of which is the euclidean model (e, Iy, I5, I3), and this
actually holds for any finite subgroup I' of SU(2) alluded above. Our second main
result deals with the first non-vanishing terms of those expansions:

Theorem 0.3 Let (X, g, I3, I) be an ALE gravitational instanton modelled
on R*/T". Then one can choose a diffeomorphism ® between X minus a compact
subset and R*/T" minus a ball such that:

1. . gx—e=hx+0(r %), . X -1, = £ +0(r=% and if ¥ = gx([;*-,") and
ws =e(ly, "), then ®wi —w® = @ +O(r=9), where hx, 1 and wi* admit
explicit formulae and are O(r=*); for instance wy = — Z?Zl c;(X)ddg, (r=2)
for some explicit constants c;(X).

2. when T is not a cyclic subgroup of SU(2), the O(r=%) of the previous point
can be replaced by O(r~°).

Here the O are understood in an asymptotically euclidean context: € is O(r~?) if
for any ¢ > 0, ‘(Ve)ee‘e = O(r=%7%) near infinity.
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Organization of the article. — The paper is organized as follows. It is divided
into two parts, reflecting the dichotomy of Theorem 0.2 and 0.3. Part 1 is devoted
to the proof of Theorem 0.2. We first draw in section 1.1 a detailed program of
construction of our hyperkdhler ALF metrics, leading us to the expected result
(Theorem 1.3). In section 1.2 are recalled essential facts on the Taub-NUT metric,
seen as a Kéhler metric on C2. The construction itself occupies section 1.3 and 1.4;
roughly speaking, it consists into a gluing of the Taub-NUT metric with the ALE
metric of some ALE instanton, which we subsequently correct into a Ricci-flat
metric thanks to an appropriate Calabi-Yau theorem adapted to ALF geometry.
The concluding section 1.5, which is mainly computational, deals with the proof
of two technical lemmas useful to our construction.

In Part 2, which is mostly independent of Part 1, after recalling some basic facts
about Kronheimer’s construction of ALE instantons, we state Theorem 2.1, which
is a specified version of Theorem 0.3 — in particular we give the promised explicit
formulae (section 2.1). We give further details on Kronheimer’s construction and
classification in section 2.2, where we also fix the diffeomorphism of Theorem 0.3.
Then we compute the tensors hy, ¢f and @ in section 2.3; using similar tech-
niques, we show in the following section 2.4 that the precision of the asymptotics
is automatically improved when I' is binary dihedral, tetrahedral, octahedral or
icosahedral. We develop in the last section 2.5 few informal digressive consider-
ations on the approximation of complex structures of certain ALE instantons by
the standard I;, relied on links observed in the construction of Part 1.

Comments. — Let us start with a few words on previous constructions of ALF
dihedral gravitational instantons. Such objects are known to exist since the
works |[CH, CK], in which twistor methods are employed. The produced hyper-
kdahler spaces are unfortunately not much explicit, which partly motivates our
construction, although we hope that actually, both constructions produce the same
families of ALF hyperkdhler metrics, and more precisely that these constructions
are exhaustive, in the sense that any ALF dihedral gravitational instanton fits into
the produced examples (up to a tri-holomorphic isometry): this folklore conjecture
is the analogue of the classification of [Min3|. Let us recall also our previous con-
struction [Auv], in which we restricted ourselves to resolutions of Kleinian dihedral
singularities for technical reasons. We actually here follow the same guideline, by-
passing those difficulties. We would however like to emphasise their non-trivial
character: we indeed need Theorem 0.3 to tackle them, and some rather impor-
tant technical adjustments are still necessary to handle our construction (see e.g.
Proposition 1.7). Consequently, our approach in Part 1 is to focus on these ad-
justments, recalling only the minimal material from [Auv] to get to the envisaged
end, i.e. Theorem 0.2; in particular, we only state and use an ALF Calabi-Yau
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type theorem which was a major result of that paper.

More closely to the statement of Theorem 0.2, notice that it is not of a per-
turbative nature: this corresponds to taking the parameter m in the whole range
(0, +00). The price to pay is somehow that so far, we do not control what happens
when m goes to 0. We conjecture that the ALF hyperkéhler structure converges
in Cy°-topology to the original ALE one, as is the case on C?; this question will
be handled in a future article.

Now in Theorem 0.3, the existence of the first order variation terms hy, ¢
and w;® is of course not new, as it is even known from Kronheimer’s construction
[Krol| that the ALE hyperkéhler structures admit an expansion in terms of similar
tensors. What is new though is their explicit determination, which we could only
find in the simplest case that is the Eguchi-Hanson space (see e.g [Joy, p.153]), i.e.
when I' = Ay = {£idc2}. Notice at this point that as suggested by the statement
of Theorem 0.3, the shapes of hy, ¢ and @i follow a general pattern which is only
slightly affected by the group I'; up to a multiplicative constant, we can indeed
compute them on the explicit Eguchi-Hanson example. We think moreover that
Theorem 0.3 is of further interest, and that among others, the order of precision
it brings could be useful in more general gluing constructions.

Acknowledgements. — 1 would like to thank my former PhD advisor O. Biquard
for his wide advice, and particularly for his insight into Theorem 0.3. T am also
thankful to FSMP for its support during my visit in the University of Edinburgh,
and to the Max-Planck-Institut fiir Mathematik Bonn for its very stimulating
environment.

1 CONSTRUCTION OF ALF HYPERKAHLER METRICS

1.1 Strategy of construction

Outline of the strategy. — As described in [Auv]| and as we shall see in next section,
one can describe the Taub-NUT metric on R* as a Dj-invariant hyperkihler metric
with volume form the standard euclidean one €2, Kéahler for the standard complex
structure 1, and compute a somehow explicit potential, ¢ say, for it.

Now, given one of Kronheimer ALE gravitational instantons (X L gx, IS 5 I )
modelled on R?*/Dy, we have a diffeomorphism ®y between infinities of X and
RA‘/Dk such that ®x,.gx is asymptotic to the standard euclidean metric e, and
Oy, I{¥ is asymptotic to I;. It is this way quite natural to try and take dI;*d(®% )
glued with gx as an ALF metric on X, before we correct it into a hyperkéhler met-
ric. This naive idea does work when (X, le) is a minimal resolution of (C* /Dy, I))
and ®x the associated map: this is the purpose of [Auv|. However this fails in
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the general case, where (X, IIX) is a deformation of (C?/Dy, I ), without further
precautions: the size of the Taub-NUT potential ¢, roughly of order r* as well as
its euclidean derivatives, together with the error term ®x, ;¥ — I; on the complex
structure, even make wrong the assertion that the rough candidate dI;*d(®% ) is
positive — in the sense that dI;Xd(®%¢)(-, [;*-) is a metric — near the infinity of X.

Fortunately, up to choosing a different complex structure on X to work with,
we can make the appropriate corrections on ¢ so as to get a good enough ALF
metric on X to start with, and then run the same machinery as in [Auv| up to

minor but yet technical adjustments, so as to end up with Theorem 0.2.

Detailed strategy, and involvements of the asymptotics of Kronheimer’s instantons.
— We shall now be more specific about the different steps involved in the program
we are following throughout this part.

1. Let SO(3) act on the complex structures of X as follows: for A = (aj) €
SO(3), define the triple (AIY). as
(AI%). = ((AI%);) (an i + ajely + ajsls)

j=12,3 j=12,3

then (X, gx, (AI*)1, (AI),, (AI¥)3) is again hyperkihler, and therefore an
ALE gravitational instanton modelled on R*/Dy.

2. With the model R*/Dj, at infinity fixed, Kronheimer’s instantons are parame-
trised [Krol| by a triple ¢ = (¢1,(s,(3) € h @ R?* — D, where b is a (k + 2)-
dimensional real vector space endowed with some scalar product (,-), and
D is a finite union of spaces H ® R® with H a hyperplane in b (as notation
suggests, b is a Lie algebra; we will be more specific about its interpretation
in part 2). This parametrisation is compatible with the SO(3)-action of Point
1. in the sense that if  is the parameter associated to (X, gx, IS, I, [g(),
and if (Y, gy, I}, 13, 1)) is the instanton associated to A, defined by:

(1) Al = ((AC)j)j:LQ,g = (a1 + a2l + ajSCS)j:1,273’

then there exists an isometry which is moreover tri-holomorphic between
(X, gx, (AIY)1, (AI%)s, (AIY)3) and (Y, gy, 17, 1,1} ): this is Lemma 2.3,
stated and proved in Part 2. Defined this way, A( is of course still in h ®
R3 — D; otherwise AC € H ® R3 for one of the hyperplanes H mentioned
above, and thus ¢ = A*(A¢) € H ® R3, which would be absurd.

3. In general, one can take the diffeomorphism ®y between infinities of X and
R*/Dy, so that ®x, ;X — I, = O(r~*) with according decay on derivatives,
which is not good enough for our construction, see [Auv, p.17-18]. We can
nonetheless improve the precision thanks to the following two lemmas:

6
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Lemma 1.1 If £ € h @ R® — D is such that |&)* — |&]° = (&2,&) = 0, and
(Y, gy, IV, 1Y, Igy) is the associated ALE instanton, then one can choose ®y
such that there exists a diffeomorphism 3 = J¢ of R* commuting with the
action of Dy, and such that:

= O™ forallt>0.

e

’(ve)f(@y*ff — )

Moreover, the shape of 3 is given by: J(z1,2) = (1 + #)(zl,@), where
k,a € R, and (21, 29) are the standard complex coordinates on (C? 1), and
[(VO) (e — T*Qe) |, = O(r=*7) for all £ > 0.

Lemma 1.2 For any ¢ € h@R3, there exists A € SO(3) such that |(AC)s|? —
[(AQ)3[* = ((AQ)2, (AC)s) = 0.

Lemma 1.1, which relies on our analysis of the asymptotics of Kronheimer’s
instantons, is proved in section 1.3, assuming a general statement for these
asymptotics that is seen in Part 2; Lemma 1.2, which is elementary, is proved
at the end of this section.

4. Recall that ( is the parameter of our given instanton X. We choose A as in
Lemma 1.2, consider the instanton Y associated to € = AC € h @ R3 — D,
and apply the original program, i.e. we glue of the Kéhler forms and correct
prototypical ALF metric into a hyperkihler metric, with the potential ¢’ :=
J*¢ instead of ¢. Thanks to the better coincidence of the complex structures,
the rough candidate dI;¥ d(®%’) is now positive at infinity, and actually also
rather close to f’ := J*f, with f the Taub-NUT metric on R*, Kéhler for I;.

We should moreover specify here that the gluing also requires a precise de-
scription of the Kéhler form w! := gy (]%/-, -), which is again part of the
analysis of the asymptotics of Kronheimer’s ALE instantons.

We get this way after corrections a Ricci-flat, actually a hyperkihler, mani-
fold (Y, gy, 1Y, J3Y,JY), with ®y,g} asymptotic to £, and [g}. ([}, -)] =
lgy (17, -)]; the construction also gives [g5 (J) -, )] = [gy (I} -,-)], j = 2,3.

5. We let A* = A~! act back on the previous data to come back to X, and end
up with a hyperkihler manifold (X, g, Ji*, J5*, J5), with [gg((Jj?, 0] =
[gX([]X-, 3,7 =1,2,3, and ®x, g% asymptotic to £, provided that ®x is the
composite of @y and the tri-holomorphic isometry of Point 2 .

We shall also add that we can play on the metric f in this construction. Indeed,
f is invariant under some fixed circle action on R*, and the length for f of the fibres
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of this action tends to some constant L > 0 at infinity. We can make this length
vary in the whole (0, 00) and keep the same volume form for f; given m € (0, 00)
that we call the "mass parameter", we then denote by f,, the Taub-NUT metric

giving length L(m) = W\/% to the fibres at infinity, and of volume form €2, (the

choice of the parameter m instead of L will become clear in next section).
We can then sum our construction up by the following statement, which is the
main result of this part:

Theorem 1.3 Consider an ALE gravitational instanton (X, gx, IS, I, Igf) mod-
elled on R*/Dy,. Then there exists a one-parameter family (gg(ym, Jffm, me, Jgf(m)

of smooth hyperkdhler metrics on X such that, for any fired m € (0,00):

o the equality [gx,(JX. )] = [9x(IX-.-)] of Kihler classes holds for j =

gm®
1,2,3;
° g}am and gx have the same volume form;

® g, is ALF in the sense that one has the asymptotics

(V) (@xaghn —£)| = OB, £=0.1,

m

for any § € (0,1), and that Rm%%.» has cubic decay at infinity.

Here R is a distance function for £2,, and ®x is an ALE diffeomorphism between
infinities of X and R*/Dy, in the sense that |Px.gx — ele and |®x, I\ — Ij|e are
O(r=%), with according decay on derivatives.

In this statement, 2, = J*f,,, where J = J4; is given by Lemma 1.1, ¢ €
h ® R3 — D is the parameter associated to (X, gx, IS, I35, ]?f(), and A is chosen
as in Lemma 1.2. There might a slight ambiguity here, since different A € SO(3)
could do — namely, given ( as in Lemma 1.2, there may be many A satisfying its
conclusions; we will see however in Remarks 1.4 and 1.9 that 3 as we construct it
is not affected by this choice.

Points 1. and 5. of our program above do not need further developments. We
postpone the tri-holomorphic isometry of Point 2. to Part 2, paragraph 2.2.1, since
it will be easier to tackle with a few further notions on Kronheimer’s classification
of ALE gravitational instantons. As for Point 3., as mentioned already, the proof
of 1.1 is given in section 1.3 assuming results from Part 2; apart from the proof
of Lemma 1.2 which we shall settle now, our main task in the current part is thus
the gluing and the subsequent corrections stated in Point 4., to which we devote
sections 1.3 and 1.4 below, after recalling a few useful facts on the Taub-NUT
metric seen as a Kéhler metric on (C?, I;) in next section.

8



From ALFE to ALF gravitational instantons. 11

Proof of Lemma 1.2. For ¢ € h ® R3?, define the matrix Z(() = ((Cj,(g))KMQ
of its scalar products. It is elementary matrix calculus to check that the SO(3)-
action defined by (1), and referred to in the statement of the lemma, translates
into: Z(AC) = AZ(()A".

Fixing ¢, we thus want to find A € SO(3) such that AZ(¢)A" has shape:

[T
(2) x A0
x 0 A

Since Z = Z(() is symmetric, there exists O € SO(3) such that OZO" =
diag(A1, A2, A3), and we now look for @ € SO(3) such that Q diag(\1, A2, \3)Q"
has shape (2); setting then A = QO leads us to the conclusion. If two of the \;
are the same then we are done, up to letting act one of the permutation matrices

((1] 0 (1)>, <—01 0 8) and ( 0 1 (1)> Up to this action again, we can therefore assume
0-10 001 ~100
)\1 > /\2 > )\3.
Setting
A=A\ 1/2 Aa—Az\1/2
=) 0 (=)
Q= 0 1 0 ,
Aa—Az)1/2 A=A\ 1/2
_(,\f—,\i) 0 (Ai—)\i)
. . . . A1+Az—A2 0 —A
a direct computation gives: @ diag(A1, A2, A3)Q" = ( 0 )62 K ), where A =
- 2
(AL — )2 (Mg — A3)Y/2, O

Remark 1.4 Let us give a brief idea about how such a matriz Q) can be found.
This is actually what one can get by writing down the three relevant coefficients of
Q diag(Ai, A2, A3)Q" for Q = (gje)1<ju<s € SO(3), which leads to the underdeter-
mined system

(A1 — A2)@22q32 + (A1 — A3)qe3qss = 0,
(M = A2)@B + (A1 — A3)a3s = (A1 — A2)a3y + (A1 — As)a3s,

to which one adds the arbitrary extra two conditions qzo = qo3 = 0. Still keeping the

same notations, one can show that the only possibilities for writing Q diag(Ay, A2, A3)Q"
A1+Az3—A2 Acos¢ Asing ]
under shape (2) are the ( /j\\cps;z; /\02 A0 ), ¢ € R, and again Ay > Xy > A3.
sin 2

1.2 The Taub-NUT metric as a Kihler metric on (C?, I;)

Before we proceed to the gluing of the Taub-NUT metric with the ALE metric of
one of Kronheimer’s instantons, we recall a few facts about this very Taub-NUT
metric on C2, that will be used in the analytic upcoming sections 1.3 and 1.4.

9
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1.2.1 Gibbons-Hawking versus LeBrun ansitze

Gibbons-Hawking ansatz. — As recalled in the Introduction, the Taub-NUT metric
on R* is often described via the Gibbons-Hawking ansatz as follows: given m &
(0, 00), set

£ = V(dy? + dy; +dy3) + V',

where (y1,y2,ys3) is a circle fibration of R*\{0} over R3\{0}, V is the function
Ll (harmonic in the y; coordinates) with R?* = yi + y3 + 3, and where 7 is
a connection 1-form for this fibration such that dn = %gsdV. Thus defined, the
metric f,, confers length 71/2/m to the fibres at infinity, and is hermitian for the

almost-complex structures

7 Vdy, — n,
“r dyy — dy..,

with (a,b,¢) € {(1,2,3),(2,3,1),(3,1,2)}. These are in fact complex structures,
verifying the quaternionic relations J,J,J. = —1, for which £, is Kéhler, thanks to
the harmonicity of V: f,, is thus hyperkdhler. One checks moreover that this way,
the metric f,, and the complex structures extend as such through 0 € R*. The
reader is referred to [GH, LeB]| for details, as we shall now switch point of view to
a description better adapted to our construction.

LeBrun’s potential. — As depicted in [Auv], after [LeB|, one can give a more
concrete support of the description of f,,,, through which, among others, the com-
plex structure .J; mentioned above is the standard I; on C2, and vol™ = Q,, the
standard euclidean volume form. One starts with the following implicit formulae:

|Zl| _ em(u2_v2)u7

3
( ) |22| _ em(UZ_u2)U

)

defining functions w,v : C> — R, invariant under the circle action e?

(21, 22) =

(€?21,e7"%2) which makes S! as a subgroup of SU(2); notice the role of m in

these formulae, which enlightens our choice of taking it as the parameter of the
1,2

upcoming construction. One then sets y; = 5(u® — V%), Yo + iys = —iz1ze, R =

TW+0?) = (yi+yi+ yg)l/Q; these are S'-invariant functions, making (y1, ¥z, y3)
as a principal-S! fibration C? — R3 away from the origins. One finally defines:

(u® +v* + m(u* + o)) = %(R +m(R* +yi)).

o | =

(4> Pm =

One can then checks that ddf ¢, is positive is the sense of I;-hermitian 2-forms,

and that (ddflgom)2 = 2. If one sets moreover V = %, and n = LiVdy,

10
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noticing by passing that 7 is then a connection 1-form for the fibration with dn =
sgadV, one has: £, := V(dyi + dy3 + dy3) + V~'n* = (dd§,om)(-, [1-). This metric
is well-defined at 0 € C?, as (dd§ ¢n)(+, I1-) = e at that point.

The metric f,, is therefore Kéhler for I; with volume form vol'™ = Q. on the
whole C?; by the standard properties of Kéhler metrics, it is thus Ricci-flat. One
recovers a complete hyperkihler data after checking that the defining equations

(5) fn(Jj;-) = Wy

T where w§ = e(lj,), j=2,3,
with Iy, I5 the other two standard complex structures on R* = H, give rise to
integrable complex structures, verifying respectively J; : Vdy; — 7, dyi, — dy, for

(7,k,0) = (2,3,1),(3,1,2), as well as the quaternionic relations together with I.

Let us now give a look at the length of the S'-fibres at infinity. Consider the
vector field £ := i(ZI% - z_lé% — 223%2 + 2_2%) giving the infinitesimal action of
S'. Onme has dy;(—1,¢) = V71, thus n(§) = 1, and dy;(£) =0, j = 1,2, 3; since R
is S'-invariant, the length of the fibres is just 27V /2, which tends to 7+/2/m.

Remark 1.5 One can check that even if we can let m vary, this description actu-
ally leads to essentially one metric; indeed, if ks is the dilation of factor s > 0 of
R*, one gets with help of formulae (3) and (4) the following homogeneity property:
Kkif, = 8,52, which is of course coherent with the length of the fibres at infinity
and the fact that vol'™ = volfms2 = Q.

From now on, we see the mass parameter m as fixed, and we drop
the indices m when there is no risk of confusion.

The Taub-NUT metric and the action of the binary dihedral group on C*. — For
k > 2, which we fix until the end of this part, the action of the binary dihedral
group Dy of order 4k seen as a subgroup of SU(2) is generated by the matrices

Cp = (eig/k e,g/k> and 7 := (973'). One has: (iy; = y;, j = 1,2,3, and thus
(iR = R, and ({n = n, whereas: 7*y; = —y;, 7 =1,2,3, thus 7R = R, and 7" =
—1. The Taub-NUT metric f is therefore Di-invariant, and descends smoothly
to (R*\{0})/Dy: this is the metric we are going to glue at infinity of Dy-ALE
instantons in the next section. Before though, we need a few more analytical tools

for the Taub-NUT metric as we describe it here.

1.2.2  Orthonormal frames, covariant derivatives and curvature

In addition to the above relations between the vector field &, and the 1-forms
n and dy;, j = 1,2,3, one has that the data

(6) (607 €1, €2, 63) = (V1/2§7 _Ilvl/2€7 V71/2<7 V71/2IIC)7

11



From ALFE to ALF gravitational instantons. 11

is the dual frame of the orthonormal frame of 1-forms

(7) (e, €1, €3, ¢3) == (V7120, VI 2dy, VI 2dy,, V2 dys)

on C?\{0}, provided that the vector field ¢ is defined by:

0 0 0 0 ),

<e4my1 (zz— — 62_2—) + e (zl— — 0Z]—

1
(8) C 82_1 821 82_2 822

T %R

..........

this part. An explicit computation made in [Auv, §1.2.3] then gives us the estimate
‘(Vf)éeAf = O(Rilfe) near infinity for all ¢ > 1 and j =0,...,3.

Notice that consequently, for all ¢ > 0, }(Vf)é Rmf ‘f = O(R_?’_g); this estimate,
done using the Gibbons-Hawking ansatz, can also be found in [Minl, §1.0.3].

We close this section by two further useful estimates, which may give an idea
of the geometric gap between e and f: first, at the level of distance functions,
rearranging formulae (3) gives: R < 2r? which is sharp is general; second, there
exists C'= C'(m) > 0 such that outside the unit ball of C?, C~'r~2e < f < Cr2e,
which, again, is sharp in general.

1.3 Gluing the Taub-NUT metric to an ALE metric

As is usual when gluing Kéahler metrics, we shall work on potentials to glue the
ALF model-metric to an ALE one. The previous section gives us the potential
¢ for the ALF metric (equation (4)); the following paragraph provides us with a
sharp enough potential for the ALE metric.

1.3.1 Approximation of the ALE K&hler form as a complex hessian

Asymptotics of the Kdhler form and the complex structure. — In view of Step 3.
and 4. of the program developed in section 1.1, since we are performing our gluing
on some specific ALE instantons, we fix for the rest of this part

(9) §eh—D, such that: [&[* — |&]° = (€2, &) =0,

and consider the associated ALE instanton (Y, gy, 17, I3, I3). Lemma 1.1 gives an
ALE diffeomorphism ®y : Y\K — (R*\ B)/D;,, where K is some compact subset
of Y and B a ball in R* centred at the origin; recall that by "ALE diffeomorphism"
we mean that for all £ > 0,

|(Ve)g(¢y*gy — e)‘e =0>r ),

12



From ALFE to ALF gravitational instantons. 11

and likewise on the complex structures. Before using the more specific properties
of ®y at the level of complex structures, let us mention the following: we want to
proceed to a gluing of Kéhler metrics, and the convenient way of doing so is to
glue the Kahler forms, via their potentials. We already have a candidate for the
potential of an ALF metric at infinity at hand: as evoked, this would be ®y ¢
(see Point 4. in section 1.1). Conversely, we need to kill the ALE metric near
infinity, and for this we want a sharp enough potential, in a sense that we make
clear below, see Proposition 1.10. We thus need for this a sharp knowledge of
the Kdhler form wY := gy(IY-,-), and since we are about to compute I} -complex
hessians as well, we also need a precise description of the complex structure I} .
These are given by the following, from which Lemma 1.1 actually follows as we
shall see at the end of this section, with the same ®y-:

Lemma 1.6 One can choose the ALE diffeomorphism ®y such that
(10) Dy wy =wf — C(|§1|2‘91 + (&1, 62)02 + (&1, 53>93) +0(r)

where ¢ > 0 is some universal constant, §; = iddﬁj (7“_2), 7 =1,2,3, on the one
hand, and if 1Y denotes ®y IV — I, then it is given by:
rdr - oy

ety -, ) = —c(l&f + 1&)%) 6 +0(r™®)

where ¢ is the same constant as above and oy = Iyrdr, on the other hand.
We can moreover assume that ®y 2y = Qg, where Qy = vol9”.

In this statement the error terms O(r~®) are understood in the "euclidean way",
namely for any ¢ > 0, the /th Ve-derivatives of these tensors are O(r~—87*). This
lemma requires further notions on Kronheimer’s construction, and is more precisely
a direct application of Theorem 2.1 of Part 2 to Y = X with & verifying (9). Notice
however the order of the error term, which is —8 whereas —6 would be expected,
if one thinks for instance about the Eguchi-Hanson metric ( [Joy, Ex. 7.2.2]); this
estimate is crucial in proving Lemma 1.1, and is specific to (groups containing)
dihedral binary groups. Besides, the assertion on the volume forms is only needed
in next paragraph.

Approximating wi as an I -complex hessian. — We shall see for now how Lemma,
1.6 allows us to approximate the Kihler form w] as an I} -complex hessian, with

respect to the Taub-NUT metric pushed-forward to Y:

Proposition 1.7 Take ®y as in Lemmas 1.1 and 1.6, and denote by f a smooth
extension of ®y*f on Y. Then there exists a function W on Y such that near

infinity,
(11) (VO (w) = ddsy )|, = O(R™),  €=0,1,2

13



From ALFE to ALF gravitational instantons. 11

More precisely, ¥ can be decomposed as a sum Py " Vo + Py W, wqa, where on the

one hand, Vo, = O(r?), \Ijeuc‘e = O(r), and

(12) (V) (wf = cléa]?0r — ddé)Y*IIY\IIeuc) ’e =0(r " for all £ >0,
and on the other hand, W 4, ’d\IJde|f =O(R™), and

(13) [(V)) (= e((€r, 6005+ (€1, Es)0s) —ddy v Waa))|p = O(R™?), £=0,1,2.

Proof. Notice that once the statement on We,. (the "euclidean component" of W)
and V.4 (the "mixed component") are known, estimates (11) follow at once by
transposition to Y of estimates (12) and (13) and of the expansion of w! stated
in Lemma 1.6, keeping the following fact in mind:

Fact 1 If « is a tensor of type (2,0), (1,1) or (0,2) such that ‘(Ve)€a|e =
O(r=227%, a>1,0=0,1,2, on R*, then |(Vf)ea‘f =O(R'"™), £ =0,1,2.

This fact takes into account estimates such as R = O(r?) and C~'r~2%e <
f < Cr?e at level £ = 0, and roughly says that by passing from euclidean to
ALF geometry we do not win regularity by differentiation anymore; it is proved
in [Auv, p.22].

We hence come to the statements on V., and ¥,.q. We consider before
starting a large constant K such that the image of ®y is contained in both {r >
K} C R*Y/Dy and {R > K} C R?/Dy, and define a cut-off function x : R — [0, 1]

such that:
(t) = 0 if t<K-—-1,
MEY1 i > K,

which will be useful when defining functions to be pulled-back to Y via ®y-.

The euclidean component Vq,.. In an asymptotically euclidean setting, a natural

first candidate for the potential of a Kéahler form is %17’2. Now remember we are

working with I} — or more exactly with ®y,IY, but we forget about the push-
forward here for simplicity of notation; following Lemma 1.6, a straightforward
computation gives, near infinity in R*:

ddy Grz) = %d[(h + . Jrdr] = %d[al +c([&]? + [€s*)r T an + O(r™)]
= ot — (|6 + &)1 + O(r™),

where the O are understood in the euclidean way. On the other hand observe that
Lid(r~2) = —2r~*ay, and thus

ddjy (r™?) = d[(I + 1 )d(r™?)] = d[ = 2r~ ey + O(r™7)] = 46, + O(r™").

14
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Now define

Voo = XV + cal? + Il — 16 ?);

on R*/Dy, (it is Dy-invariant); it has support in the image of ®y, has the growth
stated in the lemma as well as its differential, and by the previous two estimates
we get that w§ — ¢|&]%0; — ddf{)Y*I},\IJeUC = O(r~®) for e with according decay on
the derivatives, as wanted.

The mixzed component Vi q. The main reason why we could construct W, such
as to reach estimates (12) is essentially that 6; can be realised as an I;-complex
hessian, at least away from 0. Now realising 65 and 03 as I;-complex hessians as
well does not seem possible: see [Joy, p.202| on that matter. Nonetheless, 6, and
03 may not be so problematic when looked at via f. We can indeed approximate
them precisely enough with respect to this metric by the I; or I} -complex hessians
of some well-chosen Dj-invariant functions, provided that we partially leave the
euclidean world and use also functions coming from Taub-NUT geometry, e.g. y;
and R (hence the previous dichotomy "euclidean/mixed"):

Lemma 1.8 Consider the complex valued function

(y2 + iys3) sinh(4my; )
2R

Ve := —2
on R"N\{0}. Then near infinity:

1. [(V5)e|. = O(R™Y) for £=0,...,4;

2. ‘(Vf)e(ddﬁlwc — (0 + i93))|f = O(R™2) for £ = 0,1,2, and these estimates
hold for 1Y as well.

The proof of this crucial lemma is essentially computational, which is why we
postpone it to section 1.5. For now set 1 = Re(1),.) and 13 = IJm(¢.), and define

Uik 1= —eX(R)((&1, &) va + (&1, &3)13).

In view of Lemma 1.8, such a function, defined on the image of ®y, verifies the
growth assertions of Proposition 1.7, as well as the estimates (13): Proposition 1.7
is proved. U

We are now in position to perform the gluing advertised in Point 4. of the
program of section 1.1. This is done in next paragraph to which the reader may
jump directly, since we conclude the current paragraph by the proof of Lemma 1.1,
assuming Lemma 1.6 (and more precisely the assertion on I} in that statement).

15
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Proof of Lemma 1.1 following Lemma 1.6. We fix ®y as in Lemma 1.6; we work
on R*, and to simplify notations we forget about the push-forwards by ®y-.

We are thus looking for a diffeomorphism 3 of R* such that }[1Y - :l*[l|e =
O(r~®), with according decay on euclidean derivatives — until the end of this proof
we forget about ALF geometry and stick to the euclidean setting; we will thus
content ourselves with using O in this euclidean meaning. An explicit formula is
given for 3 in the statement of Lemma 1.1, which is: J(z1, 29) — (1 + H+T4) (21, 22)
with (21, 22) the standard complex coordmates on (C?, I); since the value of x does
not affect asymptotic considerations — changing x only contributes as a O(r~ ) -,
we could thus, up to determining the value of the constant a, simply check that
such a J meets our requirement, in light of the asymptotics for I} stated in Lemma
1.6.

We prefer nonetheless the following more constructive approach. If we are
to look for some 3 as in the statement, we should certainly take it with shape
(21,22) = (214¢1, 22 +e2), with e; = O(r™*), j = 1,2. The condition I} —2*[; =
O(r~®) can be rewritten as a condition on e;: I} J*dz; = J*([1dz) + O(r=8) =
2*(idz) + O(r=8), ie. I¥ (dz, + dey) = i(dz + de1) + O(r~8). Recall the writing
[1y =1 + L}/; the previous condition hence gives us: [;dz, + [1dsy + L}/dzl =
i(dz +det) +O(r~®). Since I1dz; = idz; and I,de; = [1(851 —i—gel) = 1(0ey — 551)
(with @ and O those attached to I)), the final condition is: 2i0s; = 1} dz;+O(r=%) =
—da () + 00,

Set a; = Iyrdr, j = 2,3; from Lemma 1.6, rdr(:]-) = WM +O(r77),
a (V) = W,—j'gﬁrdr + O(r™"), as(ty+),a3(¢):) = O(r~7). Hence from the
equality

1
dz; = = [zl(rdr +io) — Z3(ag + iOé3)}>

we have: dz(1}-) = wzl(al + ardr) + O(r=8) = Wu—jﬁﬂ%(zfdz_l +
legdZ_Q) + O(r~®). At last we must thus solve

99, = _C(\fz\Q;ﬁr |53’2)(

One easily checks that g, = w

leads us to g9 = w and one checks easily that this way, one has indeed

—3*I; = O(r~®). The last point to be dealt with is the singularity of the ¢; at 0;

CZj (|§2‘2+|§3‘ )1
1+4rt” 4(k+r?)

with £ > 1 large enough so that 3 = idce +(e1,€9) is a diffeomorphism of C?; we
leave it to the reader as an exercise to check that x = 20c(|&|? +&]?) is Sufﬁcient.
The estimate J*Q¢ — Qe = O(r~%) amounts to seeing that i}{e(ael + d 2) =

O(r~®): extend id(z; + 1) A d(z1 + &1) A id(29 + €2) A d(Z2 + Z2), and look at the

22dz + zlzzdz_z) +0(r™®).

is an exact solution. A similar analysis

one can nonetheless take instead ¢; = One can even take €; =
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linear terms in €1, 5. Since after multiplication by a := w the error would

again be O(r~%), we can do this computation with 2 and 2 playing the respective

o (z) _ 1 _ 2% . _ :
roles of €1 and 5. Now a(r—i) = = — =%, J =1,2. Since these are real, we only

need to compute the sum 8121(%) + %(j—i), which is 2 — 2":—})|2 — Q‘j—ff = 0.
The Dj-invariance of 3 thus constituted is clear. O

Remark 1.9 According to the preceding proof, 3 as we construct it depends only
on c(|&|* + [&]?). If now £ is chosen as an A(, A € SO(3), ¢ € h — D, so as
to satisfy condition (9) as is evoked in Point 3. in the program of section 1.1, by
Remark 1.4, |&]? = |&3]? does not depend on A, and has to be the middle eigenvalue
of the matriz (((j, (¢)). Consequently, 3 = ¢ does not depend on A € SO(3).

1.3.2 The gluing

We keep the notations of the previous paragraph: (Y, Jy, (IJY)J':LZS) is a Dy-
ALE instanton with parameter £ verifying (9), ®y an asymptotic isometry between
infinities of Y and R*/D, fixed by Lemma 1.6, and 3 is given by Lemma 1.1 which
we may also see as as diffeomorphism of (R*\{0})/D;.

As alluded above, the form we want to glue w} = gy (IY-,-) with at infinity
is dIY dy’, where ¢ = ¢, is LeBrun’s I;-potential for f given by (4), and where
¢ = J*¢. We set likewise f* = J*f, both on R* and its quotient. Recall that
U = W + Upq is defined in Proposition 1.7 as an approximate I} -complex
potential of w}. Next proposition, which is the analogue of [Auv, Prop. 2.3,
explains how to glue dI} dy’ to w, so as to obtain an ALF metric on Y at the
end; notice that we lose one order of precision in the asymptotics though:

Proposition 1.10 Take K > 0 so that the identification ®y between infinities of
R*/Dy and Y is defined on o > K. Consider ro > 1, 8 € (0,1] and set

CI)in =Ko ((p" + U d — K) — X(('r’ — ro)ﬁ)\fleuc,
where k : R — R is a convex function vanishing on (—o0,0] and equal to idg

on [1,00), x is the cut-off function Ccll—':, and Veue == x(r — r0)WYeue. Then if the

parameters K and ro (resp. ) are chosen large enough (resp. small enough), the
symmetric 2-tensor g, associated via I to the I -(1,1)-form
Wi 1= WY+ ddzy .

is well-defined on the whole Y, is a Kdhler metric for 1Y, is ALF in the sense that
}(Vfb)e(gm - fb)|f., = O(R™?) for £ =0,1,2, and its volume form Q,, verifies

(14) (V) (@ = )], = O(R™)

for £ =0,1,2, where §2 is the volume form of the ALE metric gy.

17



From ALFE to ALF gravitational instantons. 11

Proof. The positivity of g, and its asymptotics follow from the arguments analo-
gous to those developed in the proof of Proposition 2.3 in [Auv]|, which is why we
are brief. We nonetheless underline a few necessary adjustment; for example, we
will keep the following comparison between f and its correction f* = J*f in mind:

Lemma 1.11 For{=0,1,2, we have: }(Vf)g(fb—f)‘f = O(R™) onR*. Moreover
FR=R+O(R™M).

The proof of this lemma is postponed to Section 1.5 (paragraph 1.5.2). For now,
we first consider the closed I} -hermitian form ddfy ko (gob 4+ U — K ) on Y.
1

Even though K is not fixed yet, this form is equal to ddSy ((p" + \Ifmxd) on {¢’ +
1
Uixa > K + 1} seen on Y via ®y — this is possible for K large enough since

©” + W,q is proper on R* as ¢* > 2*R ~ R (by Lemma 1.11) and U, =
O(R™'). Moreover & is convex, and thus ddSy ko (gob + Vg — K ) is non-negative
1
wherever ddfy (g&b + \Ifmxd) is, which we claim is the case near infinity. Since indeed
1
}ddiy \I/mxd’f = O(R™'), our claim will be checked if we prove the estimate:
1

(15) Ay =[O () = £ (01 ]| = or),

£b

as wep 1= %[fb(lly-, ) —f (-, Iy )} is nothing but the I -hermitian form associated
to the I{ -hermitian metric 3 [f*+£7 (I} -, I} -)] — notice @y, is not closed in general.
Pushing-forward by 3, proving estimate (15) amounts to seeing that:

1
)ddizyw -5 [E@L ) £, )] =0R).

£b

Now ddg*qgo = dJ,. IV dp = ws + dydp, where wy = f(I;-,+) and y = .17 — 1.
Let us estimate djdp; by Lemma 1.1 and by the analogue of the fact raised in
the proof of Proposition 1.7 for (1, 1)-tensors, for all ¢ > 0, ‘(ny]‘f = O(R™3),
whereas |(VF)’|, = O(R*™"); therefore |djde|, = O(R™?). On the other hand,
still from 3,17 = I + 3, £(3,. 17+, -) — £(-, 317 - ) = 2w + £(,-) — £(-, 7). The
error term f(y-,+) — f(,7:) is controlled by ||¢, which is O(R™®). We have thus
proved estimate (15). Thanks to the general formal formula

(16) VIt =NVIT + (g+ h) "'« VIh x T,

(see e.g. |GV, p.21|) for any metrics g and g+ h (h is thus seen here as a perturba-
tion) and any tensor 7', with Lemma 1.11 take g = f, g+ h = f* and T the tensor
in play, we prove with the same techniques an estimate similar to (15) up to order
2, that is:
b c _
(VO (dds o =) |, = O(R™),
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for £ = 1,2. If therefore K is chosen large enough, and taking moreover the
contribution of ¥4 into account, w}/ + ddiy (cp" + Vo — K ) is well-defined and
1

is an I} -Kihler form, and is equal to (w] — ddSy Wyxa) 4+ @5 up to a O(R™2) error
1

at orders 0,1 and 2 for f*; we fir such a K once for all.

We now deal with the summand —X((T — Tg)j) @Zeuc of @',’m which is meant to
kill the ALE part the Kéhler form we reached, or equivalently of the IY-hermitian
form (w}/ — dd?Y\IJde) + wyp . As before, there are two issues here: the positivity

1

of the resulting I7-(1,1) form on Y, and its asymptotics.

About the latter, since we are only looking at what happens near infinity, notice
they are independent of 7y and 3. Indeed, for any value of these parameters, and
provided that rg is chosen much larger than K, we have on r» > ry+ 1, by definition
of ®°

wi +ddiy @y, = (W) — ddjy V) +ddS v o,
with U that of Proposition 1.7; the parenthesis in the right-hand side is thus

O(R™2) for f by this proposition, and again this holds for £ by Lemma 1.11. We
have already dealt with the asymptotics of dd< ¢ in the previous step, and know
*1

they verify the announced estimates, i.e. the metric associated to this Kéhler form
via I} differs from f* up to order 2 by a O(R~?) error.

We are therefore left with the positivity assertion, which has to be proved
carefully since we essentially have to subtract a metric to another one, hence our
use of the two parameters ry and . This is however perfectly similar to what is
done in [Auv, p.21], and consists here into the following:

e take 1y so that on r > rq, ddﬁf (gpb 4+ Wkd — K) > %wfb,

e consider the remaining part w}’ —ddy [X((T—To)ﬁ ){Eeuc} , which can be rewrit-
1
ten as

x((r = 10)") (@ = ddiy ) + (1= x((r = 70)")) + By,

where Rg vanishes outside of {rg < r < 1o+ 1}, and |Rgle < Cp for some
constant C' = C(ry) independent of 3;

e consider x((r—ro)°) (w} — ddiy‘fleuc): it is O(r=*) for e, that is O(r=2) thus

O(R™Y) for f or f*, and vanishes outside {r > ry}; one can thus fix r large
enough so that this 2-form is > _%Wfb everywhere on Y';

e fix finally 3 so that|Rg|e is small enough to say that |Rslp < ooy where
it may not vanish, i.e. on {ro < r < ro+ 1}; this way w) — ddSy [x((r —
1
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TO)B)TZeuc] > _%Wfb — %Wfb = _%Wfb7 and therefore w) + ddlf@n > %Wfb —

%wfb = %Wfb — %wfb on {r > rqg}, whereas it is equal to w}/ + ddif (cpb +

Uosd — K ) >0 on Y\{r >y}, hence the desired positivity assertion.

The last part of the statements concerns volume forms, and is a direct con-
sequence of the estimates on the metrics, after observing that (on R*, say; recall
that ®y,Qy = Qo): volt’ —Qy = I*volf =Q, = T*Q — Qe, which can be writ-
ten as £{2e with ‘(Ve)fe‘e = O(r™®), £ > 0, by Lemma 1.1. This converts into
}(Vfb)fs‘fb = O(R™*), £ > 0, which is better than wanted. O

1.4 Corrections on the glued metric

1.4.1 A Calabi-Yau type theorem

We want to correct our I -Kéhler metric g, from Proposition 1.10 into a Ricci-
flat Kéhler metric. For this it is sufficient to correct it into an I} -Kéhler metric
with volume form y, since this is the volume of the I'-Kihler metric gy — and
once the complex structure is fixed, it is well-known that the Ricci tensor of a
Kéhler metric depends only on its volume form. As suggested by program ending
to Theorem 1.3, at the level of I-Kéhler forms, we want to stay in the same class;
in other words, we are looking for the I} -complex hessian of some function to be
the desired correction.

The tool we are willing to use to determine this function is the following ALF
Calabi-Yau type theorem:

Theorem 1.12 Let o, 5 € (0,1) and let (Y, gy, Jy,wy) an ALF Kdihler 4-manifold
of dihedral type of order (3,c,3). Let f a smooth function in C’ng(H,gg). Then

there exists a smooth function ¢ € CE’O‘(H, gy) such that wy +ddj, ¢ 1s Kdhler, and
(wy + dd3, ©)? = efwi.

The weighted Holder spaces of this statement follow the classical definition, and
are the analogues of those defined in next paragraph for g,, on Y. Let us now
make the following remark: since we want to construct a metric with volume form
(y, this is tempting to take f = log( ) to apply Theorem 1.12. But so far

Qy

volg,,,
we only control such an f up to two derivatives (see Proposition 1.10, estimates
(14)).

The other issue is that "ALF Kéahler manifold of dihedral type" can be taken so
as to mean that outside a compact subset, Y is diffeomorphic to the complement of
a ball in R*/Dy,, and that one can choose the diffeomorphism @y between infinities
of Y and R*/Dj, such that for all £ =0,...,3, |(V)"(Dy.gy —f) ‘gy =O0(p~?7, in

addition with a similar statement of the a-Hélder derivative of (V9)3(®y, gy —f),
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and analogous statements on the complex structures ®y,J? and I;, up to order
(4, ). Here again, a reading of Proposition 1.10 indicates us that the asymptotics
at our disposal do not allow us to take @y = ®y-.

We remedy to those problems as follows. First we correct g, into an I} -Kéhler
metric with volume form Qy — which is nothing but a Ricci-flat I} -Kéhler metric
— outside a compact subset of Y, which gives us an f with compact support; then
we put this corrected metric into so-called Bianchi gauge with respect to ®y*f°,
which corresponds to correct ®y itself so as to fit into the definition of an ALF
Kahler manifold of dihedral type.

We conclude this paragraph with a word on Theorem 1.12. Strictly speaking,
it is proved in [Auv| — see also the seminal works [Yau, TY1, TY2|, or the more
recent |[Hei|] — with Holder regularity of infinite order instead of (3,«). A careful
reading of the proof though shows the statement we propose here is also valid.

1.4.2 Ricci-flatness outside a compact subset

To correct g, into an I} -Kihler metric with volume form Qy outside a com-
pact subset of Y, we proceed as in [Auv, §2.3], with the loss of one order in the
asymptotics, both in the precision and the order of differentiation. Namely we
start with defining on Y weighted Holder spaces

(17) Gy (Y, gm) = {f € Cige| I fll e < 00},
for £ € N, a € (0,1], § € R, and where
I llgze = ([ Fllgo + -+ [ RV F| o

VvV Im 14 z) — (VIm 14
+ Sup max (R(x>€+a+6’R(y)€+a+5)( ) f( ) ( . ) f(y)
(z,y)€Y, dgm (.’I;, y) gm
dgm (x,y)<injgm
with R a smooth positive extension of ®y*R on Y, and C%-norms of the tensors
computed with g,,.
We then state the following, indicating the type of functions which can help
correcting w,, in the sense raised above:

Proposition 1.13 Fiz (a1,0;) € (0,1)? such that ay + 6, < 1, 60; > L. There

exists a smooth function ¢ € C’fﬁll N Cg’l"i; such that wy = wy, + ddy 1) is Kihler
1

for IV, and such that 5w3 = Qy outside a compact set.

Proof. Tt is completely analogous to the proof of Proposition 2.7 of [Auv|, namely
if one takes x a cut-off function as in Proposition 1.10 and sets xg, = x(R — R1),

one is brought to solving the problem (wm + ddiyw)z = (1= xg, W2 +2xg, Yy for
1

Ry large enough, with help of the implicit functions theorem. This is manageable,

since:
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w2 —
o W2 — ((1 — XR, )W, + QXRIQY) = Xr, (W2, — 2Qy), and HXleQ—iQY

ko
051

tends to 0 as Ry goes to oo thanks to estimates (14) for £ = 0, 1;

24¢e,a1 €,01

e the linearisation of the operators C5 5% — Cg%)__, e = 0,1, ¥ = (wn +
dd;ly@/J)Q Jw2,, at ¢ = 0, are the scalar Laplacians A, : Cgfﬁlg — C5% ..
These are surjective, with kernel reduced to constant functions, according
to the appendix of [BM]|, and using that (Y, g,,) is asymptotically a circle

fibration over R? /4.

Once R; is chosen large enough so that one can apply the implicit function theorem
simultaneously and that 1 is fixed in C’gl’ofl N C’g’lg so that (wy, + ddiyw)z =(1-
1
XR, )W, +2X R, Qy, the last point to be checked is the positivity of wy, := Wi tddy .
1

Since dd;lyz/z = O(R™°"), wy is asymptotic to wy,, hence positive near infinity. Since

_ 2
its determinant " XRl)wu’)’;JerRlQY relatively to w,, never vanishes, it is positive on
the whole Y. The smoothness of 1 is local. O

1.4.3 Bianchi gauge for wy,

Motivation. — We are now willing to deduce regularity statements on gy, using
its Ricci-flatness near infinity. Nonetheless this cannot be done immediately. The
reason is that the Ricci-flatness condition is invariant under diffeomorphisms, and
consequently the linearisation of the Ricci tensor seen as an operator on metrics
is not elliptic, which is problematic when looking for regularity.

One can however bypass this difficulty by fixing a gauge, which infinitesimally
corresponds to looking at metrics with good diffeomorphisms. We introduce the
diffeomorphisms we shall work with in next paragraph; then the gauge is fixed,
and regularity is deduced from this process (Propositions 1.16 and 1.17). Notice
that the Ricci-flatness of wy, is an indispensable prerequisite in this procedure,
since the gauge alone is not enough in general to obtain the regularity statement
we are seeking here.

ALF diffeomorphisms of C?>. — The class of diffeomorphisms we work with to
perform our gauge enters into the following definition; we define the dual frames
(€),....€3) and ((})’, ..., (e3)") as the pull-backs by 3 of the frames (e;) and (e])
defined in section 1.2.2 by formulae (6), (7).

Definition 1.14 Let (¢,a) € N* x (0,1), and let v > —1. We denote by Diff5*
the class of diffeomorphisms ¢ of C? such that:

e ¢ has reqularity (¢, «);
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e there exists a constant C' such that for any v € C?, dg (x,¢(x)) < C’(l +
R(z)) ";

e let Ry > 1 such that for any v € {R > Ry}, dp (O,qﬁ(x)) > 1. Denote by
Y 1 [0,1] = C? a minimizing geodesic for £ joining ¢(z) to x and by p.,, the
parallel transport along 7,. Consider the maps ¢;; : {R > Ry} — R given by

¢i;(x) = ()" ((Tuo 0 py, (1) —ide2)(€})), 4,5 =0,...,3,
and extend them smoothly in {R < Ro}. We then ask: ¢;; € C 1 (C?, ).

We endow Difff’a with the natural topology.

We moreover denote by (Diﬁ’f’a)pk the set of diffeomorphisms of Difff’o‘ com-
muting with the action of Dy.

The Holder spaces are those defined for £ on C2, in the same way as those of
defining equation (17). Notice that we authorise the distance between a point and
its image to go to oo; nonetheless the rate of blow-up we allow makes clear the
existence of the Ry of the third item, since v > —1.

Diffeomorphisms as Riemannian exponential maps. — We now "parametrise" our
diffeomorphisms via vector fields:

Lemma 1.15 There exists a neighbourhood ¥,>* of 0 in C%*(C?,£*) such that for
any Z in that neighbourhood, the map ¢, : x — expgb (Z(I)) is in Diff?.

The weighted spaces of vector fields are defined analogously to that of the pre-
vious paragraph, or equivalently: Z € C%(C?,f") if and only if Z € Cf(;g and

X(R)(e)*(Z) € Co(C?,£°), i = 1,...,3 (with x a cut-off function as in 1.10). A
similar statement with Dj-invariant vector fields, and diffeomorphisms commuting

with the action of Dy, of course holds. We simply call (”//f’a)pk the neighbourhood
of 0in (C5(C?, fb))Dk, the Dy-invariant vector fields of C%%(C2, £*). Notice finally

that for a genuine parametrisation, we would also need the surjectivity and the
injectivity of Z — ¢, from ¥%* onto its image. We do not need however this
degree of precision, since as seen in Proposition 1.16 below, it is enough for us to
realise sufficiently many diffeomorphisms of Difff’o‘ under the shape ¢.

Proof. The regularity assertions are rather standard. We shall nonetheless pay
a particular attention to the fact that we authorise vector fields blowing up at
infinity, when verifying the injectivity of ¢, for a given Z close to 0 in C%%; the
key is the decay of the derivatives of Z at infinity. Suppose (¢,a) = (1,0) to fix
ideas. For the injectivity of ¢ with fixed Z € C* and || Z]| ;10 < 1 say, we claim
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that there exists a constant C' independent of Z such that for any triple (x,y, 2)
such that ¢z(x) = ¢z(y) =: z,

dp (2,y) < C(1+ R(2)) (1 Z)| gpode (2, y),

from which the injectivity of ¢z follows at once provided || Z|| 10 is small enough.
We reach this claim thanks to the estimate ! Rm® | = O(R™3), as follows. For z,y
as in the claim, call respectively v, and v, the geodesics ¢ — expf[:b (tZ (m)) and t —
expflb (tZ (y)), and denote by p,,, p,, the attached parallel transports. Using [BK,
Prop. 6.6], control first dg (x,y) by |p, (1) (Z(2)) —p-, (1) (Z ()] (l—i—R(z))_g_zu.
Then control |p,, (1)(Z(z)) — py, (1)(Z(y)) | by dps (2, 9) (1 + R(z))flfVHZHCi,o;
for this interpolate between v, and v, by 7s(t) := expgb(s) [tZ(a(s))], where a is a

minimizing geodesic for f* joining = and y. This is where one uses the estimates
on the derivatives of Z. O

The gauge. — Denote by B" = §" + %trh the Bianchi operator associated to any
smooth metric h on R*. The gauge process now states as:

Proposition 1.16 Let (ag,d) € (0,1)? such that as < ay, % < 0y < 01, with
(cv1,01) fized in Proposition 1.13. There exists a smooth diffeomorphism ¢ €

(Diﬁ';;ofl)pk hence descending to R*/Dy, such that

BT ((By)ugy) =0

near infinity on C*, where g, stands for the I} -Kdihler metric associated to the
Kibhler form wy of Proposition 1.13. As a consequence, " — (¢ o Dy ).gy €
i (X, ).

Proof. Fix (e, 02) as in the statement, and consider the map

= (U007 x Metg™ ()P — Cpf (T7C, )P

* £b
(Z,9) — B2 (g),

where Met;**(f*)Px denotes the set of Dj-invariant metrics g on R* such that
g—f e Csy (X , fb) — we shall see further why we anticipate the action of Dy at
this point of our discussion.

We would like to solve the equation

(18) B% (g,) = 0, ie  E(Zgy) =0,

and for this use the implicit function theorem near (0, f”), since the differential
of = with respect to its first argument is (Vfb)*Vfb, which as we shall see enjoys
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isomorphism properties. Forgetting that g,, may not be defined via ®y on the
whole C?, if we are to do so nonetheless, we need to make g,, arbitrarily close to f’
in C5° (X, f ). Since we only want equation (18) to be solved near infinity, instead
of g,, we consider, for y a cut-off function as in Proposition 1.10, the metric

9r, = X(R — Ra)gy + (1 — x(R — R»))f",

which makes sense via ®y on the whole C? provided R is large enough; since g,
is C’;l’al close to f” at infinity, we have that ||gr, — £ ;1.0 (£7) goes to 0 when R
52

goes to oo. We are thus left with checking the isomorphism assertion on

(V)07 =] s (CRmP — (o)™ = (Ch ey ™
where the isomorphism on the right hand side is just the duality for £*. We shall
moreover replace £ by f (and the weighted spaces subsequently) since these are dif-
feomorphic to each other. Now surjectivity follows from that of (V)*VT between
0522“21 (TC?%,f) and C’g % (TC?,f), which amounts by the theory of self-adjoint op-
erators on weighted spaces to the injectivity of this operator on C’O 0‘25 ) = C’g a622,
and is seen in the proof of Proposition 2.11 in [Auv| on the bigger space C’1 505
this relies on an easy ellipticity argument, and an integration by parts using than
in ALF geometry, a sphere of large radius ¢ has its volume in #2.

The slightly newer point here is the injectivity of (V)*VF : (C’i"ﬂ)pk —
(C’%ﬁﬁ)pk, this is also where the invariance under the action of Dy is needed.
Let thus v € (02 “2)Pr such that (Vf) Viv = 0. Forget momentarily about the
Dy-invariance of v, and write it Z o v'e;, on {R > 1}, say, with (e;) the frame de-
fined by (6); each v* is thus in C’ ' near infinity. Now since (Vf)le; = O(R™17Y),

= 1,2,3 and because (VF)* Vf(v el) is equal to (Agv')e; plus a linear combina-
tion of the Vf v'VE e; and the v*(VF)? _ e;, we get that each v’ is the solution of
a Dirichlet problem

€5,€L

Ap' =w' € C5%% on {R>1},
Ui|{R:1} - 02’a2.

Recall that Ag : 6’2 2 CO % is surjective, with kernel reduced to the constants

(see the proof of Prop081t10n 1.13) and that Ag : 02 2 C’g ¢ is an isomorphism
(see e.g. |BM, App.]); those properties transfer to Dirichlet problems to tell us
that each v® can be written as ¢; + u;, with ¢; a constant and u; € C(?Q’OQ. Thus v
is asymptotic to ), ¢;e;; but v is Dy-invariant, whereas 7*e; = —e; for any 7. This
forces the ¢; to be 0, and as a result v € C’iaz. Finally, we know that (Vf)*Vf is
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injective on this latter space, so v = 0; in other words, the action of D;, allows us
to say that 0 is no more a critical weight for (V¥)*V* on vector fields.
The smoothness of Z, and therefore that of ¢z, is purely local. 0

Regularity of g,. — We conclude this paragraph by the following statement, which
finally allows us to apply Theorem 1.12:

Proposition 1.17 With the same notation as in Proposition 1.16, £’ —(¢o®y ).gy, €
6'3532_7 (X, fb) near infinity, and in particular, | Rm9* ‘gw = O(R™2-(8%2-7),

Proof. The assertion on the curvature of g, directly follows from the estimate
stated on € := g, — ¢*f* (or ¢.c), and the fact that !Rmfb |fb = O(R™3). For the
regularity statement on e, proceed as for [Auv, Cor. 2.12| from the two equations
Ric® = 0 (Proposition 1.13) and B (¢.g,) = 0 (Proposition 1.16) which hold
near infinity, to deduce (with one order less in the approximation):

(19) %$¢*fb5 +ex 0% = Q(e,0¢)

where .Z.¢ is the Lichnerowicz laplacian of #*f’, the symbols * denote algebraic
operations, and () is at least quadratic in its arguments, and can be factorised by
€ *0e. Since € € 0512’“2 — computed with respect to ¢*f” or Gy, which does not
matter because of the size of the error term ¢ itself —, the right-hand-side of (19) is
in C’g;” (X,£°). Again since € € 021(’5;"11, the linear operator n — 3.Z,.pon + £ % 071
is elliptic and one can draw for this operator weighted estimates similar to those
for Z,.p. From this we deduce that € € 022(’;?31; we conclude by repeating this
argument twice, giving us first € € 05’552_1)_1 = Ciéji:su and then € € C’;L&Zgz_g)_ L=

4,9
086277' U

1.4.4 Conclusion: proof of Theorem 1.3

We have proved that f* and (¢ o ®y).g, are C3®, hence C5*, close, provided
that we take o = oy and 3 = 85 — 7 (which is positive since d, > 1), to fulfil
completely the requirements of Theorem 1.12, we are only left with checking that
(¢ o Py), I} is also C’g’a close to the complex structure I := J*I; .

The estimate (¢ o ®y),I) — I} € C’g follows easily form the decomposition
(Py). LY — ¢*} = (Py)dy — L) + (I — I3) + (I — ¢*13), from the estimates
[(®y). Ly — L], = O(r™) and |I; — I}|_ = O(r™*) converted into |(®y).[} —
Ll | = 1|, = O(R™Y), and |I; — ¢* 13|, = O(R™*2) following from ¢ € Diff;?.

For higher order estimates, remember that g, is Kéhler for I}, and > for I
It is thus enough for instance to evaluate the successive (Vfb)e((gb o Oy ), 1Y ) In
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view of formula (16), we thus write formally for ¢ =1

VE (@0 @y).d}) = Vo9 (¢ 0 By). L)) +() 71 Vo9 (£ = hugy) x (60 by ).} ).

>3

~
=0 since gy is I} -Kéhler

which easily gives VT (9o ®y). 1)) € CY,, in view of (f* — ¢.gy) € Ch. For £ > 2,
simply use inductively formula (16), and the estimate (£ — ¢.gy) € C’éa — when
reaching ¢ = 4, we also get the right Holder estimate from the iterated formula,
and estimates such as (V%9 )4’ ¢ C’g’o‘.

As sketched in the introduction of this section, we now apply Theorem 1.12,
with (9, 9y, Jy, wy) = (Y, gy, I ,wy), and f = log (%), which is smooth and has
compact support. This gives us an I} -metric ggr,, on Y, with volume form Qy
and which is thus Ricci-flat, and with Kéhler form w,, + dd‘l},gp for some smooth

Y E C’;’Q(Y, gy) with g close to 1.

We need two more complex structures for Theorem 1.3. Recall we have two
more symplectic forms coming with the ALE hyperkéhler structure (Y, gy, 1V, 1), 1Y ) ,
namely wi = gy (I%/-, ) and wY = gy ([g/-, ) We simply define JJ and JY as the
almost-complex structures verifying gRF,m(JQY : ) = w) and gRF’m(Jg ° ) = wY,
just as in (5); one then checks these are complex structures using that the holo-
morphic symplectic 2-form w) +iw) is grr,-parallel (as (w) +iwd )A(w) —iwd ) =
40y = 4vol?""™) and that together with I} they verify the quaternionic relations.

The cubic decay of Rm?%#"™ comes as follows: first, an over-quadratic decay is
casily deduced from (g4 — grrm) € C3,5(Y, gy) and Rm? = O(R~*7F) (Proposi-
tion 1.17). Then a result of Minerbe [Min2, Cor. A.2| asserts that we automatically

end up with a cubic rate decay of the curvature. U

1.5 Verification of the technical Lemmas 1.8 and 1.11

We conclude this part by the left-over proofs of Lemmas 1.8 and 1.11, both useful
in the gluing performed in section 1.3. Recall that on the one hand, Lemma 1.8 is
about verifying the asymptotics at different orders of a function 1., the hessian of
which is meant to approximate the 2-form 65 + if5 in the Taub-NUT framework,
although such an approximation is likely to be vain in the euclidean setting; and
that on the other hand, Lemma 1.11 consists in saying that even though f* = J*f,
with 3 a diffeomorphism of R* better adapted to the euclidean scope, the transition
between f and f° is relatively harmless.

1.5.1 Proof of Lemma 1.8

Asymptotics of 1. and its successive derivatives. We first look at the first point
of the statement of Lemma 1.8. Since v, is S'-invariant when looked at on C?
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(recall that the S'-action on C? is given by a- (21, 22) = (€'*21, e "“23)), or in other
words is a function of yy, y2, ys (recall in particular that 2r* = Rcosh(4my,) +
y1 sinh(4my, ), following formulae (3) and the definitions of y; and R given in
paragraph 1.2.2), we have: di, = awc <dy, + 8y°dy + ‘%C <dys, and one can see as

well the partial derivatives f’bl_f as functlons of the y; only If we thus prove here

that for any p, ¢, s > 0 such that p+ g+ s <4,

gpratsy,

20 _—
(20) 0y

— O(R™79),

we will get the desired estimates, since we moreover know that ‘(Vf)edyj
OR' Y forall ¢ >1and j =1,2,3.

The estimate (20) at order 0 is immediate, since sinh(4my;) = O(R~'r?) — this
follows from the identity 2r? = R cosh(4my;)+v; sinh(4my;). What is thus clearly
to be seen is that each time we differentiate with respect to ys or ys, we win an
R, and each time we differentiate with respect to y;, we lose nothing. Let us see
how it goes at order 1, that is when p4+¢q¢+s=1. If p=1and ¢ = s = 0, then
(near infinity, where y(R) = 1):

|f:

oY, — 4y + i) <4m cosh(4my; ) 0 sinh(4my,) B sinh (4my;) 3(27,2))
o 2 3 2Rr? 22 R3 AR o0

an = 2V (y1 cosh(4my,) + Rsinh(4my,)) (recall that V' = =52=%), so that,
d® a Y1 4 h(4 Rsinh(4 1l that V' 1+24}72nR h

after snnphfymg.
oY,
o

and this is O(R™!), since 1= = O(R™) (as R = O(r?)).
Ifg=1and p=s=0, then

. 1 1 1
= =0+ i) (55~ 7 + o)

0. sinh(4my; ) S
v = -2 R — 2(yo + 1y3) Slnh(4my1)(

Y2 Yo cosh(4my ) )
r2R3 214 R2 ’

since %T;) = % cosh(4my,). As sinh(4my,) and cosh(4my,) are O(r*R™"), we end

up with % = ( 2/(R%*r 2)) +O(R-r2/R ~(r2R7? —1—7"2/R 7"*4R’1)) = O(R’Q).
The case s =1 and p = s = 0, i.e. the estimate on
to ya.

In a nutshell, we win one order each time we differentiate 4, y3, R and r? with
respect to ys or ys, which moreover kills functions of y; such as sinh(4dmy,); we
win one order as well when differentiating s, y3 and R with respect to y, but this
does not hold any more for r? or functions like sinh(4mzy;). More formally, using

8
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explicit formulae for the 8(2’”, ), J = 1,2,3, we can easily prove by induction that
Oy;

for any p, ¢, s there exists a polynomial @), , s of total degree < (1+p+ ¢+ s) in
its first two variables, and 2 + 3p + 2(q + s) in total, such that:

OPTatse), Qp,q,s <R6i4my1 € Ry e, y3)
Ay Oys0y;s (2r2)trptats RR(Prs)

— for instance, Q1,070 (Reillmyl ) y1€i4myl7 R7 Y1, Y2, y3) = 4(y2 ‘H?JS) [(R COSh(4my1)+

Y1 sinh(4my1))2 — R* — 4R®]. If now P(&,&,m, ..., m) = {;%ﬁl --mP is one
of the monomials appearing in @, ,s and a := a; + ag, b := b1 + -+ 4 by so that
a<2(l+p+q+s)and a+b < 2+ 3p+2(q+s), since ReFim1 yleﬂmyl = O0(r?),
we get that:

P(R6i4my1 ) y16i4my17 R7 Y1, Y2, 3/3) -0 (Tz)aRb
(r2)l+ptats R2+2(ptats) O\ (r2)tptats R2(1ptats)

and this is O (r2e2(tprats) Rh=2(14prats)): gince ¢ < 1+ p+ g+ s and r2 =
O(R™"), this is finally O(R**=30+P+a+)) " which in turn is O(R~(F7+)) since
a+b<2+3p+2(q+s). Therefore % = O(R~0+4%9) and this settles the
proof of point 1. of the statement.

Asymptotics of 03 + 103, and comparison with ddj . and dd;lywc. We thus come
now to point 2. of this statement. We do it for ¢ = 0; it will become clear from
this that the subsequent estimates could be dealt with in an analogous way. Our
strategy for proving the desired estimate is the following: first we restrict ourselves
to dd v.; next we decompose ddf . — (0 + i63) into its dy; A n-component and
its dy; A n-free component; we then observe that the dy; A n-free components of
both ddf 1. and (02 + i03) have already the size we want, whereas we need to look
at the dy; A n-component of the very difference [alcﬁ1 e — (62 + i@g)] to reach the
desired estimate. We conclude by collecting together these estimates, and settling
the case of the error term d(I} — I;)d,.
Since 1), is S'-invariant,

(% OV O ) 02, 0% OV o
c .= 1 c V 1 & d A + ( c + c v 1 c
v < oy3 dyr Iy s oy3  0y3 Y1 Iy

)dyz A dys

o) OV o
= © vyt (g Ay — Vdys Ad
v (5y18y2 v ys Gyl)( o A = Vilys A i)
0% OV o
= © 89 (g Ay — Vg Ad
+V <8y18y3 Vv ay3 8y1)( 93/\77 V yl/\ y2)7
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and since (§, —L V¢, (, [1() is the dual frame of (1, dy, dys, dys) and (0s + if3) is
(1,1) for Iy,

02 + i3 =V (02 + i05) (&, [1E)dys A+ (02 + 105)(C, [10)dya A dys
(21) + (02 +i03) (€, [,Q)(Vdyy A dya — dyz A1)
+ (02 +i05) (&, Q) (Vdys A dyy — dya A ).

We already know that (on R > K), 2% = —4(y,+iys) (% — 75+ i) thus (recall

'O
h ae2r?) Vv 2 2\, o
that 222 = V(|12 — |2,):

0%, , 2omV (|1]? — |2|?) 3 V(217 — |22]?
ey i = 2Rl I V(P )y
Jy; r R 4r*R 4r5R

the main term of which is 8mv(y2+iyi)ﬁ(|zl‘27|22l2), in the sense that it is O(R™1),
whereas the other summands are O(R~2). Moreover, from the estimates of Point
1. and the fact that g—;/j =O(R™), j =1,2,3, we get that:

8mV (y2 + iys)(|21]* — |22f*)

: dyy A+ O(R™?).

ddg . =

when estimated with respect to f.
Now recall that a; = I;rdr, j = 1,2,3, and observe that:

, rdr A ag —ag Aoy +irdr Aag —iag Aagy  (rdr —iaq) A (g + iag)
92 + 293 = =

6 76
. (z1d2_1 + 22d2’_2> N (—ngZl + ZleQ)
= :
2129(dzy Ndzy — dzg N dZ3) + z5dzy Ndzg — 23dzy Ndz 9N
if we set ¥ = 21dzy + 29dZ; and ¢ = —z9dz; + z1dze. Direct computations — use
e.g. (8) — give:
2212
9() = ~(af* ~ |=P), 9(Q) = T2 cosh(dmy,),
. Y
— —2 —
¢(5) 12122, ¢(C) T9%R

In particular, 9(¢) = O(r%), ¥(¢) = O(F*R™), 6(§) = O(R) and ¢(() = O(1).
Moreover, since ¥ (resp. ¢) is (0,1) (resp. (1,0)) for I, (05 + i03)(&, LE) =
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—29(§)9(€) = smaza(z1* 1221 Therefore, from (21) and since ¥ (resp. ¢) has

T

type (0,1) (resp. (1,0)) for I, using r~2 = O(R™') when necessary, we get:

8sz122(|Z1|2 - |22‘2)

62 +Z(93 = 7’6

dyl AN+ O(RiQ)

with respect to f. Since ys + 1y3 = —iz129, we thus have ’dd§1¢c — (6, + i03)|f =
O(R™?).

We set I := IV — I, and conclude with an estimate on ‘d([ly - [1)dwc|f =
|deY dip.|¢, which is controlled by [¢]|¢|VEidele + |VEi] [¢|dibcle. But [¢]¢ and
|VE.Y ¢ are O(r~2) hence O(R™1) (see e.g. the proof of Proposition 1.10), and |d.|¢
and |Vidi.|r are O(R™") as well from Point 1., and as a result |d(I} — Il)dwc’f =
O(R™2).

This settles the case ¢ = 0 of the statement. Cases £ = 1 and 2 are done in the
same way, noticing in particular that when letting V¥ act on the (V¥)J9. or the
(V.Y we keep the same order of precision. O

Remark 1.18 The function 1. is not so small with respect to e, at least at positive
orders; for instance, the best we seem able to do on its differential is |dip.le =

O(rR™).

1.5.2 Comparison between f and f*: proof of Lemma 1.11

Before comparing the metrics, and for this the 1-forms dy'; =*dy;, 7 =1,2,3,
and 7° := J*n to their natural ("unflat") analogues, we shall compare the y? =
J*y; to the y;, j =1,2,3:

Lemma 1.19 We have: yg—yj = O(R™), j =1,2,3. Consequently if R* := J*R,
then: R — R = O(R™).

Proof of Lemma 1.19 — estimates on (y3 — y2) and (y} — ys). Since y» = = (2122 —
m), and 3J(z1, 20) = (z1, aze) with a =1+ — by Lemma 1.1, it is clear that
Yy = a?yy = yo + O(yor™), that is: v —y» = O(Rr~*), and this is O(R™!) - recall
that R = O(r?).

Similarly, y3 = —%(2122 + m), thus 3 — y3 = ys(a? — 1), which is O(R™Y).

Estimate on (y5 — y1). The case of ¢} is slightly more subtle, and for this we shall
use the very definition of y;. We fix (21, 25) € C% Since J*2; = azy, J*2p = azo,
if one sets u’ = J*u and v* = J*v, LeBrun’s formulae (3) become:

042|21’2 _ 62m[(ub)2_(vb)2}<ub)2

(22) ’
Oé2|22|2 _ €2m[(vb)2—(ub)2}(Ub)Z7

31



From ALFE to ALF gravitational instantons. 11

which we rewrite as:
|21]? = 62ma2[(ub/a)2—(vb/a)2](ub/a)27

’22|2 — 62ma2[(vb/a)27(ub/a)2](,Ub/oé)Z.

These are precisely the equations verified by ,,,2 and v,,,2 instead of “Eb and %; by

. . b b
uniqueness of the solutions when |z;| and |2;| are fixed, = = upq2 and % = Va2,

that is: @ = Qupa2 and v° = av,e2, and consequently y; = 1[(v")* — (v°)%] =
%Q(UZ’LCMQ - U'rznaz) = Oé2y1,ma2-

Now still with (z1, 25) fixed, differentiating LeBrun’s equations with respect to
the mass parameter, p say, since we also see m as fixed, and rearranging them
gives:

My ARy
op  1+4pR,’

in particular y; , is a non-increasing (resp. non-decreasing) function of y on {|z;| <

|22]} (vesp. on {[zo] <[z[}).
Since a > 1, we have for instance on {|z1| < |23|} the estimate:

2
ma® 4 p n /ma d,u
0< m — Ylma2 — —FE= gy < m — =2Y1mlo «,
< Yim — Y1ma /m T g, S | =2y log
and similarly 0 < ¥ a2 — Y1.m < —2y1,mloga on {|23] < |z1]}. Since in both cases
loga = O(r~*) = O(R™?), we have:

Y1,ma? — Y1m = O(yl,mR_Q) = O(R_l)

Therefore ¥} — y1 = ?(Y1maz — y1) + (@2 — 1)y, = O(R™Y) as claimed, since
a—1=0(r"") =O(R™?) and in particular & ~ 1 near infinity.

The estimate R” — R = O(R™') comes as follows: (B> — R)(R’ + R) = (R’)? —
R2= ()% -2+ (15)* — 2 + (v3)? — y2 = O(1) from the previous estimates, and
thus R’ — R = O(ﬁ%), which in particular is O(R™!). |
Estimates on the dyg —dy;, j = 1,2,3, and n® —n. We come back to the proof
of Lemma 1.11 itself, and start with analysing the transition involved by 3 at the
level of 1-forms. We adopt by places the following elementary strategy to evaluate
the gap between our fundamental 1-forms and their pull-backs by 3: for v one of
the dy; or 7, we write

Y =20+ VY (= LE)dys + 7 (QOdys + 7 (1) dys,

and then evaluate the difference v°(¢) — v(€), and the subsequent ones. We start
with the easy cases of dy, and dys; for more concision, we use the complex expres-
sion v = dys + 1dys.
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Keep the notation J(z1, 22) = (o2, @zs); then J*(dys + idys) = d(a?(y2 +
iy3)) = o®(dys + idys) + (y2 +iys)d(a?). Since a = 1+ O(r™*), we focus on d(a?),
or rather on do. As « is invariant under the usual action of S', we already know
that da(§) = 0. Moreover,

r2d(r?)

23 do = —20a————
(23) o a(m_{_ﬂ)z’

which we keep under this shape since d(r?) = Zydz; + 21dz1 + Zadzy + 22d7; is easy
to evaluate against I1£, ¢ and I;{. As a matter of fact, all computations done:

|z1]* = | 22! —8ar? 1y, cosh(dmyy)

do(-h§) =~ eO=rTm
(24) —8ar? yscosh(4my;)
da(I;C) = (= +11)? R '

In particular, da(—L£) = O(r™*) = O(R™?), and da(¢) = O(R™'r™*) and da(I,¢) =
O(R'r~), which are O(R™3). Since a ~ 1 and y, + iy3 = O(R), we end up with
(dyy +idy3)(—1:¢) = O(R™?), (dys +idy3)(¢) = 1+ O(R™) and (dyj +idy;”)(¢) =
i+ O(R™1). In other words,

|(dys + idys) — (dys + idys)|, = O(R™).

In a way similar to what is done above on 3’ — y;, the estimate on dy — dy,
requires little extra care. First, likewise y;, 4} is invariant under the action of
S, since J commutes to this action; therefore dy(€) = 0. Next, pulling-back the
known expression for dy; (proof of Proposition 1.9 in [Auv]) by 3 gives:

1

m (6—4my?d(a2|zl|2> . 64myﬁd(a2|z2|2))

dy; =
When evaluating dy}, we decompose the term e 4™id(a2||?) — e™id(a2|z]?)
into o := a2 (e ™id(|z1 ) —e*™id(|2o|?) and p i= (€7 |2 [P —et i |2 ?) d(?) =
OFQ((u*’)2 — (vb)Q)d(QQ) = 4a*1y'idoz.
Now o(—1,¢) = 2a2(|zl|26*4my? + |22|264my5) = 4R’, and by (24), p(—1,&) =
4o Yyt do(—1€) = —16aa™ 1y, ‘Z(lllj_;f)22|4; this way:

y? \21|4 - |Z2\4

92 b .y _ b\—1 -1
(25) dyi(—5L&) = (V7) Sao 1+ 4mRiy (K + )2 )

where V° = IV = %. Since the last summand is O(r™*) and thus O(R™?),

by—1 -1 _ _2R 2R _ R'—R — -3
and (V7)™ = V™ = 0% — Timr = 20mammaranm — O77), we have

dy,(—6LE) =V + O(R72).
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Moreover o(() = 9—2(64’”(91*93)(zlzg—zlzg)—e*‘lm(yl*yg)(zlzg—zl,ZQ)) = a2 22 sinh[4m(y; —

2iR
gl and p(¢) = 4o~ yhda(C) = —32a0" Loy WR M) by (24). Thus
(26)
2 ’ h(4myy)
di (O) = a2 Y2 b4 Y — 1 1 Y1Y2 COS 1)
Ui(Q) = SR dmpy Shlm vy =y = 16a e e Ry

since y; — 1, = O(R™!), the first summand is O(R~2), whereas since cosh(4my,;) =
O(r’R™1), the second summand is O(R™! ’4) that is O(R™3), and as a result
dy}(¢) = O(R™2). Similarly dy(1,¢) = O(R™2?) (just replace y, by ys in the last
equality above).

Estimate on 1°. We conclude our estimate of |[f> — f|¢ by the estimate on 7°. We

start with a formula for n’; since on {z; # 0}, ::*;1) — d(;*;) = d((;ijjl) — dsjjz’il) =

a1y ( ) ded) _ dm da g similarly J* (422 — %2) = &2 _ d2 o)
z1 a Z1 21 22 22 22 22

{zQ # 0} we have on {z125 # 0}, according to the identity " = ;% [uz(dzé?l — dz—zll) —

v (£ — £2)] ([Auv, Lemma 1.6]):

22

22 Z2

b _ 1 [ub)2<dz_1 dzl>_<b>2<d22 d22>:|

4R R

n —
21 21

From this we compute 7°(¢) = 1 and 7°(—1,¢) = 0. We also compute 7°(¢) as
follows:

PO =g g [0 (2 = 2) — yremion (2 D))

21 21 Zo 22
:LO‘_Z [( b)2€4my1 21722 — Z1%2 o ( b)2€—4my1 Z1%9 — 212’2]
4}%b 2R a2|z1|2 042|22|2
ia’yy
:2RbR sinh [4m(y1 - yli)} )
since from the pulled-back LeBrun’s equations (22), a(;T:)EP — e—4my] and _a2|:)22|2 —
et Slmﬂarly 77 "(I¢) = w]‘%ﬁ:’% sinh[4m(y; — 4})], and since (y; — ;) = O(R™Y),

both 1°(¢) and 7°(1,¢) are O(R~?). Gathering those estimates, we get that

" —nle = O(R™?),

which is better than needed.
Recall that f = V(dy? + dy2 + dy2) + V~'n; since V=! — (V*)~!, and similarly
V —V’, are O(R™3), in view on the estimates we have just proved on the dy; — dy;

and n° — 7, we have:
f” —f|y = O(R™Y).
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Estimate on V' (f — *). We now prove that |Vf(f — fb)‘f = O(R™'), which is
the same as proving that |Vff’ ’f = O(R™). In view of the previous estimates on
V—V" V= —(V*)7!, on the dy; — dy} and on n—1’, and since the Vidy; and Vip
are O(R™2) for f, it will be sufficient for our purpose to see that the V(dy; — dyg)
and VE(n —n’) are O(R™!) for f.

We start with V(dy, — dyb) and VT (dys — dy3). We have d(ys + iys) — d(y5 +
iy5) = (o —1)d(yo+iys) +2(yo +iys)ada, we know that a—1 = O(r=*) = O(R™?),
and we actually proved that |dals = O(r‘4) = O(R™?). Similarly, we will be done
if we prove that |Vidals is still O( ).

Since « is S*-invariant, do = dy + 68; dyz—l- dyg, the -~ are S'-invariant as

well, and thus Vida = Z;’ — ay Byz dy; ®dyz+zj L ay Vfdyj The last summand

is O(R~?r~*), since the 2% are O(r~*) and the |V*dy;|¢ are O(R~ ) we thus focus
on the hessian E =1 ay 8ye dy] ® dy,, and all we need to prove is =0(r )

a
(actually, O(R™?)) for all j,¢. Now in terms of the y; variables,

a

a=1+ 5
K+ (7 + y3 + y3)/2 cosh(dmy, ) + yy sinh(4my,))

and using that e'vil = O(Rr=?), proving that 6’5'280;[ = O((Rcosh(4my;) +
J

y1 sinh(4my;))~2) = O(r~*) for all j,¢ amounts to an easy exercise. This set-
tles the cases of VE(dy, — dy3) and VE(dys — dy3).

Since our treatment of dy; —dy’ is a little less conventional, we shall see now how
goes that of V¥(dy, — dy}). According to formulae (25) and (26) and the previous
estimates on the derivatives of 2, it is enough to see that dy’ = O(1) and dR’ =
O(1), which are known for the previous step, giving in particular dsinh[4m(y; —
y2)] = cosh[dm(y; — v2)]d(y1 — ¥}), which is O(R™!) (actually O(R~?)) for f since
cosh[4m(y1 — y1)] ~ 1 and |d(y; — y7)|e = O(R™?).

The treatment of 7)° is similar.

We prove finally that |(VF)?(f — )|, = O(R™") with the same techniques. [

2 ASYMPTOTICS OF ALE HYPERKAHLER METRICS

We prove in this part an explicit version of Theorem 0.3; we indeed compute
explicitly the first non-vanishing perturbative terms of the hyperkéhler data of the
ALE gravitational instantons seen as deformations of Kleinian singularities. This
gives in particular the asymptotics stated in the previous part, Lemma 1.6, which
are crucial in our construction of ALF metrics, as mentioned already.
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2.1 Kronheimer’s ALE instantons

2.1.1 Basic facts and notations

We introduce a few notions about the ALE gravitational instantons constructed
by Kronheimer in [Krol| — and which is exhaustive in the sense that any ALE
gravitational instanton is isomorphic to one of Kronheimer’s list —, so as to state
properly the main result of this part, i.e. Theorem 2.1 of next paragraph, dealing
with precise asymptotics of those asymptotically euclidean spaces.

Finite subgroups of SU(2), and McKay correspondence. — The classification of
the finite subgroup of SU(2) is well-known: up to conjugacy, in addition to the
binary dihedral groups D; used in Part 1, one has the cyclic groups of order

k > 2, generated by <€2i0"/k e*29”/’€ ), on the one hand, and the binary tetrahedral,

octahedral and icosahedral groups of respective orders 24, 48 and 120, which admit
more complicated generators — all we need to notice for further purpose is that
they respectively contain Dy, D3 and Dj (among others) as subgroups. When no
specification is needed, we shall adopt the notation I' for any fixed group among
these finite subgroups of SU(2).

ALF instantons modelled on R*/T. — Kronheimer’s construction now consists in
producing asymptotically euclidean hyperkéhler metrics on smooth deformations
of the Kleinian singularity C?/T', which are diffeomorphic to the minimal resolu-
tion of C?/T. More precisely, the hyperkihler manifolds Kronheimer produces are
parametrised as follow: since I' is a finite subgroup of SU(2), McKay’s correspon-
dence [McK] associates a simple Lie algebra, gr say, to this group; for instance,
the Lie algebra associated to Dy is so(2k + 4) , (also referred to as Dyio — we
prefer the so notation which is less confusing when working with binary dihedral
groups!). Pick a (real) Cartan subalgebra b of gr. Then:

For any ¢ € h ® R? outside a codimension 3 set D, there erxists an ALE
gravitational instanton (XC7 gc, ]f, Ig, ]§) modelled on R*/T" at infinity in the sense
that there exists a diffeomorphisms @ between infinities of X, and R*/T" such that:
Oc.gc—e=0(r1), oI5 — I; =0(r™%), j =1,2,3.

The O are here understood in the asymptotically euclidean setting, i.e. ¢ =
O(r~®) means: for all ¢ > 0, |(Ve)€€| = O(r=**); since we remain in this setting
until the end of this part, we shall keep this convention throughout the following
sections 2.3 and 2.4.

2.1.2 Asymptotics of ALE instantons: statement of the theorem

Up to a judicious choice of the ALE diffeomorphism ®., which actually is part
of Kronheimer’s construction, one can be more accurate about the O(r~*)-error
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term evoked above. This is the purpose of the main result of this part:

Theorem 2.1 Given ( € h ® R* — D, one can choose the diffeomorphism @
between infinities of X¢ and R*/T such that ®¢, ge —e = he +O(r%), & It — I, =
S+ 0(r~%) and if W5 == gc(IS-,-), then @C*wf —w® =@ 4 O(r9), where:

(27)

(rdr)? 4+ a? — a2 — o aq - g —rdr - o
he=—1T1 Y 1GP - = ITIKG G2) p:
(jvkvg)GQlS
ay - ag+rdr-as Qy - a3 — rdr - oy
B HFH<C17C3> r6 - HF”<C27C3> r6 )
where L§ s gwen via the coupling:
Qy - Q3 rdr - oy
e(ti) =ITN(GI = 16 —%— = ITI(G 1 + 16—
(28) (rdr)* + a3 — af — a3
- "F|’<<27£3> 6 )
r
and
(29) @t = —[ITI1¢ 20 = TG, &)z = TG, o) O,
with |I']| = c|I'| for a universal constant ¢ > 0. Moreover, @, vol* = Q, and if

I’ us binary dihedral, tetrahedral, octahedral or icosahedral, the error term can be
taken of size O(r~%).

Recall the notations a; = Iyrdr, j = 1,2,3, and §, = w, (a,b,c) €
{(1,2,3),(2,3,1),(3,1,2)}. The scalar product on b used in this statement is the
one induced by the Killing form.

The rest of this part is devoted to the proof of this result. In next section we
specify the meaning of the space of parameters h — D; in particular we see how b is
identified to the degree 2 homology of our Kronheimer’s instantons, which is helpful
in computing the constant ¢ of the statement, as well as the coefficients appearing
in formulae (27)-(29). We also fix the choice of the diffeomorphisms ®., and check
their properties on volume forms (Lemma 2.5). The explicit determination of k¢,

Lf and w% is the purpose of sections 2.3 and 2.4.

2.2 Precisions on Kronheimer’s construction

2.2.1 The degree 2 homology/cohomology

The "forbidden set” D. — We keep the notation I' for one of the subgroups
of SU(2) mentioned in the previous section. We saw that Kronheimer’s ALE
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instantons asymptotic to R*/T" are parametrised by a triple ¢ = (¢1,(, () €
h ® R3 — D, with b a real Cartan subalgebra of the Lie algebra associated to
I' by McKay correspondence; for instance, if I' = Dy, k& > 2, then b can be
taken as the Cartan subalgebra of so(2k + 4) constituted by matrices of shape
diag(A1, ...y Agro, — A1, .o, —Aka2). We shall first be more specific about the "for-
bidden set" D; according to [Krol, Cor. 2.10], it is the union of codimension 3
subspaces Dy ® R? over a positive root system of h, with Dy the kernels of the
concerned roots; as such, it thus has codimension 3 in b.

Topology of X¢. — Recall the notation (Xc,gg,lf,lé,lg) for the hyperkahler
manifold of admissible parameter ( — this is actually also defined as a hyperkéhler
orbifold if ( € D. Those spaces are diffeomorphic to the minimal resolution of
C?/T (for I, say) [Krol, Cor. 3.12]; as such they are simply connected and, again
when I' = Dy, their rank 2 topology is given by the diagram:

k vertices

(which is nothing but the Dynkin diagram associated to so(2k + 4)), where each
vertex represents the class of a sphere of —2 self-intersection, and where two ver-
tices are linked by an edge if and only if the corresponding spheres intersect, in
which case they intersect normally at one point.

Furthermore, there is an identification between H?(X.,R) and b such that:

e the cohomology class of the Kéahler form wJC- = ¢ ([]?,’ ) is (5,7 =1,2,3;

o Hy(X¢,Z) is identified with the root lattice of h; more precisely, given simple
roots of h and the corresponding basis of Hy(X,,Z), the intersection matrix
of this basis is exactly the opposite of the Cartan matrix of the simple roots,
see [Krol, p.678]; in the case I' = Dy, k > 2, this matrix is thus:

2 0 -1 0 - 0
0 2 -1 0
e | -1 -1 2 -1
0 0 —1 . . 0
i
0 0 -1 2
| k+2 |
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From the latter, we deduce the following lemma, identifying cup-product on H?
and the scalar product on b induced by the Killing form, up to signs:

Lemma 2.2 Consider a, 8 € H*(X(,R), such that a or 3 has compact support.
Then aU 8 = qu aA B =—{(a, ), where the latter is computed with seeing o and

B in b via the above identification between H?*(X:, R) and b.

Proof. We do it for I' = Dy, k£ > 2. By Poincaré duality, the computation of
a U f amounts to that of intersection numbers for a basis of Hy(X¢,Z). But
through the identification between Hy(X,,Z) and the root lattice of h above, the
matrix of intersection numbers on the one hand and that of scalar products of the
corresponding basis (or dually, of the simple roots) are the same up to signs. [

Period matriz. — For ¢ € h — D, consider as above a basis X;, j = 1,...,r say, of
Hy(X¢,Z); from the previous paragraph, the period matriz

= i j<3 = ‘ -
P(C) - (PJ (O)llé%ér </Ee wj)g%;i

can be computed thanks to the identities [ch] = (j. One easily sees that these
P(¢) = P(¢) if and only if ¢ = £ With this formalism Kronheimer’s classi-
fication |[Kro2, Thm. 1.3] can be stated as : two ALE gravitational instantons
are isomorphic as hyperkdhler manifolds if and only if they have the same period
matriz. From this we deduce (see also [BR, p.8, (4)]):

Lemma 2.3 Let ( € h — D, and let A € SO(3) act on ¢ and the complex struc-
tures Ijg as in section 1.1. Then there exists a tri-holomorphic isometry between

(XC7 g¢, (AIC>17 (AIC)% (A]<)3) and (XAQ’ JA¢, ]{447 -[;Cu ]éAg) .

Proof. Just check that in both cases, the period matrix is AP(({), and apply
Kronheimer’s classification theorem. O

2.2.2  Analytic expansions.

Choice of the chart at infinity. — Consider a parameter ¢ = ((1,(2,(3) € h @ R3
and set

gl = (07627C3)7 "= <Oa07c3>
— we will keep these notations below. As described in [Krol, p.677], there exist
proper continuous maps:

A (Xe, g6, 15, 15, T5) — (Xenge, 15, 15,15,
)\g : (*XVC'ugCIJJ’lC 7[2C 7I§) — (XC"7gC”711< 7[2C 7I§ )7
Ny (Xen,gen, Iy 15 I3 ) — (RYT e, 11, I, I),
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which are diffeomorphisms (at least) on (A o X5 o A)~1({01), (A 0 AS)1({0}),
and (1S )~1({0}) respectively. As soon as (" ¢ D (resp. (',¢ ¢ D), \S (resp.
)\g, )\f) is a resolution of singularities for the third (resp. the second, the first) pair
of complex structures; in particular, if ¢ ¢ D (resp. if ( ¢ D), then /\gl (resp. )\g)
is smooth, and holomorphic for the appropriate pair of complex structures.

To get a "coordinate chart" on X, (or rather, to view objects on R*/I"), one

sets:
Fe: (X5 oS 0 X)) (RN\{0})/T — X,

(beware this is not exactly the same order of composition as Kronheimer’s "coor-
dinate chart", but this is not a problem by symmetry).

"Homogeneity" and consequences. — We shall see that the F are going be the @,
of Theorem 2.1. For now, according to Proposition 3.14 in [Krol| and its proof,
we have for any ¢ the converging expansion

FC*QC =e -+ Z héj),

=2

with héj ) a homogeneous polynomial of degree j in ( with coefficients homogeneous

symmetric 2-tensors on R*/T" — more precisely, if &, is the dilation x +— sz for any

positive s, H:héj ) = S*Q(jfl)héj ). We will thus be concerned with determining ex-

plicitly the term héz), and moreover show that when I' is binary dihedral then
hg?’) = 0. For now, observe that Kronheimer’s arguments, consisting in analyticity
and homogeneity properties of his construction, can also be used to give the exis-

tence of analogous expansions of other tensors such as the complex structures, and
therefore the Kéhler forms, or the volume forms as well. We can write for example

(30) FoIy =L+ 1,
j=1
where Lij is a homogeneous polynomial of degree j in ¢ with coefficients (1,1)-

s ¢ _ .—2j,¢ : ¢ :
tensors, satisfying xje; ; = s7%¢; ; (and again, the lower-order term ¢; ; vanishes,

but we will find this fact again below).

2.2.3  Minimal resolutions, invariance of the holomorphic symplectic structure.
We know that as soon as ¢ ¢ D, A : (XC,IIC) — (XC/,If/) is a minimal
resolution, and a similar statement holds for /\g : (XC/,]QCI) — (XCN,Ig”) and
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A (XCII,I?f”) — (R*/T, I3) whenever ¢’ ¢ D or " ¢ D, respectively ( [Krol,
p.675]).

As seen already, those maps can happen to be smooth — for instance /\E is, when
¢,(" ¢ D; we are then only left with their holomorphicity property. This can be
used nevertheless with their asymptotic preserving of the hyperkéhler structure,
to see that they do preserve the appropriate holomorphic symplectic structure:

Lemma 2.4 Fiz ( € h®@R3, and assume that (" ¢ D. Then the map )xgﬁ verifies:

(§)*(f + i) = i + i
Similarly, if ¢',¢" ¢ D, then (AS)*(wS +iwS ) = w§ +iwS ; if ¢,¢' ¢ D, then
(M) (w§ +iws ) = w + iws.

Proof. The assertion on )\gu is actually classical, and can be settled in the following
clementary way. Call 0 the 2-form (A ), (w$ +iw$ ), well-defined on (R*\{0})/T,
pulled-back to R*\{0}. Since A§" is holomorphic for the pair (I s, I3) and Wi +iwg
is a holomorphic (2,0)-form for Igu, 6 is a holomorphic (2,0)-form for I3, and can
thus be written as f(w$ + iwS), where f is thus holomorphic for I3 on R*\{0}. By

¢

Hartogs’ lemma it can be extended to the whole R*; however, since ()\gﬁ)*wj =

Fgu*wjgn ~ w§ near infinity on R*/T", j = 1,2, which can be seen as a consequence
of the power series expansions analogous to (30) for Kéhler forms, we get that f
tends to 1 at infinity. It is therefore constant, equal to 1, which exactly means
that (A )*(w® + iwg) = w$ + iw$ .

We deal with the assertion on AS in a somehow similar way. Since (', " ¢ D, A
is a global diffeomorphism between the smooth X and X,», holomorphic for the

) and is a (2,0)-holomorphic form

for I, (AS)*(w§” + iwS”) can be written as f(w$ + iwS) with f a holomorphic
function on (XC/,IQC ) Again f tends to 1 near the infinity of X, since there

1" 1"

(Ag/)*wf/ ~ w;;/, j = 1,3. Moreover w3 + iwj never vanishes on X, and so
neither does f on Xe. We collect those observations by saying that log(|f|?)
is a ge-harmonic function on X tending to zero at infinity, and thus identically
vanishing. Since f is holomorphic, it is not hard seeing that it is therefore constant,
thus f = 1, or in other words: (AS)*(w$ +iw$ ) = w§ + iws .

The assertion on )\f is done in the exact same way. U

. CI CN Lo C/ . C’ T
pair ([2 s ), since w3 4+ tw; trivialises K(XC/,Ig'

An easy but fundamental consequence of the construction of Fi via the )\§ and
the previous lemma is the invariance of the volume form, which we state for (
corresponding to smooth X so as to avoid useless technicalities:

Lemma 2.5 The volume form F:*vol% does not depend on ¢ € h @ R* — D, and
18 equal to the standard .
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Proof. Notice first that once we know that F," vol’* does not depend on (, the
equality Fi" vol% = () is a direct consequence of the expansion of F;" vol% as a
power series of (, the constant term of which is Q. To prove that F.*vol% is
independent of (, we proceed within three steps, considering first ¢”, and then (’
and (. Even if ( ¢ D, ¢’ or (" might lie in D; we can however assume this is
not the case without loss of generality, since F," vol’ can be written as a power

series of (. Now from the hyperkihler data (Xgu, gery I fﬁ, ]§", Ign), we know that
vol%” = %(w%ﬁ)z. Since F*(w$') = w? (the standard Kihler form on C2), we get
that Fin™ vol%” = (.

Consider now X; we know that wgl is "preserved" by )\gl, and therefore:

! "

1 ]_ ’ / 1
FC/*VOlg</ = QFC/*(wg )2 = EFC//*<)\5 )*<W§ )2 = §F<//*(LU§ )2 = FCH* VOlgCH,

the last equality coming from the fact that wgu is one of the Kéahler forms of the
hyperkihler structure (ger, I, IS, 15 ).
To conclude, we notice that w} is preserved by AS i.e. w§ = (A$)*w§, and thus

1 1 1 /
F¢7 ol = QFC*(wg)Q = §F<'*()\§)*(W§)2 = §F<'*(w§ )? = Fy*vol®

here we could also have used the forms wg and wgl. To make a long story short,
the reason for the volume form invariance is that at each step of the composition
of the )\g, at least one Kéhler form is preserved. O

2.3 Explicit determination of h¢

2.3.1 Verifying a gauge
We shall now work more precisely on the first possibly non-vanishing term of
the expansion of Fi"gic, t € R, ( fixed; this allows us to redefine hf) as follows:

Definition 2.6 Fiz ( € h @ R3, and set on R*\{0}:

1d?

31 he .= =—=| Fy*
(31) <= gap|_free
which is then O(r=4), with Ve-£th derivatives O(r=*=%), near both 0 and infinity,
and verifies:

Flge=e+he+e
with (V®)fe, = O(r=%7%). More precisely, h; is a homogeneous polynomial of degree
2 1n (, with coefficients symmetric 2-tensors homogeneous of degree 2 in the sense
that kthe = s 2h¢, where kg is the dilation x — sz of R*\{0} for any s > 0; as
for e¢, it is a sum of terms of degree at least 3 in (.

42



From ALFE to ALF gravitational instantons. 11

As indicated by the title of this section, given an admissible (, we want to anal-
yse h¢, which is the first (a priori, possibly) non-vanishing term in the expansion
of g¢ (from now on, for the sake of simplicity, we forget about the F, — we will
be more accurate about this abuse of notation whenever needed). There already
exists a rather powerful theory of deformations of Kéhler-Einstein metrics; see
in particular [Bes, ch.12] for an overview on that subject. Nonetheless, because
of the diffeomorphisms action in general, much of the theory is configured so as
to work once a gauge is fixed, precisely killing the ambiguity coming from the
diffeomorphisms.

The following proposition asserts that the i are indeed in some gauge, making
us able of further considerations — just as is done in paragraph 1.4.3. Let us specify
though that in determining explicitly h¢, we will be more concerned with other
specific properties of that tensor, namely with its inductive decomposition into
hermitian and skew-hermitian parts with respect to I;, I and I5. As we shall see
though, the gauge and the decomposition are rather intricate with one another;
seeing the verification of the gauge as a guiding thread, we state:

Proposition 2.7 Fiz ¢ € hR?. Then the lower order term he of the deformation
gc of e on RN\{0} is in Bianchi gauge with respect to e, and more precisely:

tr®(he) =0 and 0¢he = 0.

Moreover, the I,-skew-hermitian part of he is her, the Io-skew-hermitian part of he
is hen, and her is Is-hermatian, while the Ir-hermitian part of he, the Io-hermitian
part of her and hen give rise to closed forms, that is:

d(hc(fl-, ) = hels, Iy)) = d(hgl(lz-, ) — her(- Iz-)) = d(h(l/<13', )) =0 on R*"\{0}.

Remark 2.8 We took the liberty of possibly having ¢ in D since these statements
are made on R\{0}. More precisely, even if X; is not smooth, its orbifold singu-

larities lie above 0 € R* via Fy, and h¢ is smooth on the regular part of X, i.e.
(F¢)*he is smooth on R*\{0}.

Proof. Let us deal first with the assertion on tr®(h¢). At any point of (R*\{0})/T,
for any ¢:

vol9re — dete(gtg)Qe — det® (e + t2h€ + O(tg))Qe = (1 + +2 tre(hc) + O<t3))Qe.

But we saw in Lemma 2.5 that for all ¢, vol?* = Q,; consequently, tr®(h¢) = 0.
We now deal with the divergence assertion. As for the previous lemma, we pro-
ceed inductively on the shape of (; the hermitian/skew-hermitian decomposition
as well as the closedness property will come out along the different steps of the
induction. For this we assume that ¢’ = (0, (s, (3) and " = (0,0, (3) are as well
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out of the "forbidden set" D. Again, since h¢ can be written as a sum of quadratic
polynomials of ¢ times symmetric 2-forms independent of (, this assumption does
not actually lead to a loss of generality.

Step 1: 6°her = 0. We hence start with ¢ = (0,0, (3). Since I3 is parallel for e,
we have that d*[hen (-, I3-)] = (6%h¢r)(I3-); indeed, given any local e-orthonormal
frame (e;);j=1,. 4

(32)

4

d*[hen (-, Zej ¢ (her( 1)) and 6%her = = (Ve her)(ej, ),

j=1

see for instance |Biq, 1.2.11] for the first equality, and |Biq, 1.2.13] for the second
one. Moreover h¢r is clearly Is-hermitian, since the g are, Which is straight-

forward from the holomorphicity of the X;f" for the pairs (I [3) hen (-, I3+) is
therefore a (1,1)-form for I3. It is furthermore closed, since the gtcu( , I3-) are. We
can now use the Kéahler identity "d* = [A, d°]" with the structure (e, I3) and write:

dre (her(-s Isr)) = [Aug, di ] (her (- 15-)).

But Age (hen(+,I5+)) = —3tr®(hen) = 0, and since hen (-, I3+) is Is-hermitian and
closed, d§, (hev (-, I5+)) = d(hen(+, I3-)) = 0, hence the result.

Step 2: 0°he = 0. We go on our induction and analyse he, where we recall the
notation ¢’ = (0, (2, (3). We proceed through the following lines:

(i) we come back momentarily to her and prove it is Ir-skew-hermitian;

(ii) we prove that the Ir-skew-hermitian part of he is her, which is known to be
divergence-free for e;

(iii) we conclude by proving that the Ir-hermitian part of he is e-divergence-free
as well.

We tackle Point (i). Recall that the map AS : X¢ — X¢r is holomorphic for
the pair (IQC/,IQC”); since we forget about Fy and Fpv, this amounts to writing

Igl = IZC”. Recall that in the same way as for the metric, the complex structures
admit an analytic expansion, which can be written as a power series of ( with
coefficients homogeneous (1,1)-tensors on (R*\{0})/T. We assume momentarily

that the first order variation vanishes, and we thus write IQC” = I + LQH + 62//,
where 13 = %;;} . OItC , is O(r~*) (with according decay on derivatives), and

(Ve)eS" = O(r=5*) for all £ > 0.
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Now 5

splits into an e-symmetric part and an e-anti-symmetric part. But
according to |Bes, 12.96|, to the anti-symmetric part, (Lg/)“ say, corresponds an
Ir-holomorphic (2, 0)-form € via the coupling e(-, (Lg)“ ) = 0; this we get by con-
sidering the second order variation of the Kéhler-Einstein deformation (gtg“”, I;C”),
satisfying the gauge tr®(h¢) = d®her = 0, and observing that all the statements
are local. We can lift § on R*\{0}, and then write § = fdw; A dw,, where w; and
wy are the standard Ir-holomorphic coordinates x; + ix3 and x4 + ixs, and f is
thus Io-holomorphic with decay r—* at infinity. By Hartogs’ lemma we can extend
f through 0; we thus have an entire function on (R*, I,), decaying at infinity: the
only possibility is f = 0, and therefore (:5")* =0, or: 1§ is e-symmetric.

Here we would like to follow [Bes, 12.96] again, to see for example that Lg” then
corresponds to the I5-skew-hermitian part of h¢v, via the coupling w$ (-, Lgl-) — this
latter (2,0)-tensor being clearly Io-skew-hermitian, because w§ is I>-hermitian, and
since for all t, —1 = (I")2 = 12 + (1,8 + «§' L) + O(#3), thus L = =i I,
Since in our situation, wgn does not vary, we could also expect from [Bes, 12.95] that
the I>-hermitian part of h¢» vanishes. Nonetheless some of the quoted arguments
are of global nature, and one should check they can be adapted to our framework.
This can be bypassed however by a rather simple computation, which we quote

here: for any t,
Jicr = w;d(' I;c”) = w5 (-, o) + w5 (- Lgl') +O(t%) since wégn = w§
C e+ t*her + O(t?),

1!

and thus her = ws(-, Lg ) which is I5-skew-hermitian, as announced.

We now claim that the [-skew-hermitian part of A is nothing but h», which
is Point (ii) of the current step. Indeed, since for all ¢, I = I'*" (consider AY),

1"

0 :gtc’(I;C " [;C ) = G = gt(’(Iéc B Iéc ) = G
=e(Iy"" I3 ) + ho (I3 1)) — e — 2he + O(#?)
26(12'7 IQ) +t2€<]2', Lg/,') + t2€<Lg”', ]2) + t2hCI(IQ~, ]2) — e — tQhC/ + O(tg),
——

—=e

and thus he — he (1o, L) = e(la, S +e(lS -, Irr). We know that e(l-, i) =

wa(-,15 ) = hen. To conclude, use that e and e(, /{") are both symmetric, that
I = —Lg I, and that e is Is-hermitian to see that for all X, Y,

e(LgNX7 LY) = e(LrY, Lg,X) = —e(Y, IQLgNX) =e(Y, Lg/IQX) =e([X, LgﬂY),
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ie. ety - Ir) = e(ly, Lg“-) = h¢r. We have proved that

1
5 (b = Dol 1)) = her,

as claimed. Since 0°h¢r = 0, to see that °hy = 0, we are only left with checking
this identity on the I>-hermitian part of h¢, which is Point (iii) of the current
induction step.

For this, let us call ¢ this tensor twisted by I, namely ¢ = %(h(l(IQ', )=
he(+, I5)). As above, we want to see that d*°p = 0. This is clearly an I,-hermitian
2-form, that is an I-(1,1)-form. It is moreover trace-free with respect to e, since
h¢ is. If we check it is closed then we are done, using the Kéhler identity [A.,, df,].

For this, we use an expansion of wg . for all ¢,

/ 1 / ! 1 " "’
wy 25(%4'(15( 2 =g (5 1) = Q(th'@C ) = i (1))
1 "
25(6([2',') +t2e(Lg ',') +t2h<'l([2',‘)

—e(, Ipr) —t?e(-,15 ) — £2he (-, b)) + O(t%)
=ws + t2<,0 + O(t?’)7 since e(ly+, ) = —e(+, I3-) = ws and e(-, Lg”-) = e(Lg”-, );

this expansion can be differentiated term by term, so that t2dyp + O(¢*) = 0, hence
dy = 0, as wanted.

Step 3: 0°h¢ = 0. We now analyse h¢. All the techniques to pass from h¢r to her
can actually be used again, and bring us to the desired conclusion:

1. we first observe that If = Ifl, and we define L? = %| tZOIfCI which we
assume again to be the possibly lower-order non-vanishing variation of [fc/;
then (1$)® = 0, since otherwise we would have a non-trivial entire function
on C? going to 0 at infinity;

/ 1"

2. since w; = wy; = wf, we get that he is Ij-skew-hermitian, given by Ll/ via
the identity hy = w§(-, /"), and that the I;-skew-hermitian component of
h¢ coincides with h¢, the §° of which vanishes; we are thus left with the
I1-hermitian component of h;

3. this component is e-trace-free (h¢ is), and gives rises to an [;-hermitian 2-
form v, which is closed since the w!® are; the Kéhler identity [Aue,df | = d*
then leads us to d**i) = 0, which is equivalent to:

0°¢ ([ 1-hermitian component of hg) = 0.
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To finish this proof, we justify our assumption of the vanishing of the first order
variation of the complex structures. For instance, let us not assume that ¢ :=
4| I is a priori vanishing. Then it is defined on R*\{0}, and is O(r~2). Now
as above, since 0 = %| 1Yt has vanishing trace and divergence for e, the e-anti-
symmetric part of ¢+ has to vanish since it gives rise to a holomorphic function on
(R, I) decaying at infinity. And we see as above that w§(+, ) = %}tzogtc“” =0,
and thus ¢ = 0. Similarly, the arguments for Lf apply to
0 instead of h¢r, so that

) %Lﬁ:OIfC/ with %‘tzogtc’ -
4 i =0. O
Remark 2.9 By contrast with what is usually done, we used properties already
known of her and her, conjugated to properties of mappings between X¢, X and
X to show that indeed, our first order deformations were in gauge, which is also
retroactively used in some places, e.q. in killing tensors like (Lg")a.

2.3.2  Lower order variation of the K3hler forms: general shape

As seen when proving that the gauge was verified, given ¢ € h @ R?, hen is
Is-hermitian, the Iy-skew-hermitian part of hes is her, and the [;-skew-hermitian
part of he is her. In order to determine he completely, we are thus left with
working on the respective I3, Iy and [;-hermitian components of h¢v, her and he,
or equivalently on the respectively I3, Iy and I;-(1,1) forms

" U 1
wg = hcu([g-, '), wg = §(h</(]2-, ) — h(/(-,IQ'))
1
and w$ = E(hc(ll-, ) = hel(, 1))

We interpret these forms as the first (possibly) non-vanishing variation term of
wg , wg and wf; as such and as seen above, these are closed forms. More precisely,

they follow a general common pattern:

Proposition 2.10 There exist real numbers a1;(C), a2;(¢'), as;(¢"), 7 = 1,2,3,
such that:

1!

w§ = a31(¢")01 + az2(¢")02 + ass(¢")bs, w§' = a91(¢")01 + ax(¢")0s + as(¢)0s,
and w% = an(C)Ql + G12(C)(92 + alg(C)Qg.

where we recall the notations:

rdr A ap — ag A az rdr A ay — az A o rdr A ag — aq A Qi
91: 5 ‘92: y 63: .

r6

76 76
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Proof. We do it for wg, as it will be clear that the arguments would apply similarly
to ws and w§ ; we work on R*\{0}. As @} is of type (1,1) for Iy, it is at any point
a linear combination of rdr A aq, as A as, rdr Aas —as Ao and rdr Aas —ag A as.

The symmetric tensor %(hc + hc(ll-,ll-)) corresponding to wf is moreover

trace-free for e, which translates into w§ Awf = 0. Since w; = Wﬂ,
we have (rdr AN ag —az A ag) Aw§ = (rdr A ag — a; A ag) A w§ = 0, whereas
rdr A a; ANw§ = ag A az A wf. As a consequence, the pointwise coefficient of
g A g is the opposite of that of as A aiz. To sum up, since the 6; are O(r~*) with
corresponding decay (or growth, near 0) of their derivatives, which are precisely

the orders of w%, we know that:
@i = f01 + gbs + hb,

for three bounded functions f, g, h, with euclidean ¢-th order derivatives of order
O(r=*), near 0 and infinity. We can be more precise here: from the properties of

. . . . . . C
analytic expansions in play discussed in paragraph 2.2.2, we have that s}w; =

572w, where £, is the dilation of factor s > 0 on R*. But we exactly have
ki0; = s7%0;, j = 1,2, 3; therefore, f, g, h are functions on the sphere S*. Notice
that from this point, we also know that @S is anti-self-dual (for e), since the 0;’s are.
Therefore @$ is e-harmonic on R*\{0}, which is the same as: (V°)*(V®)w$ = 0.
On the other hand, the 0, are harmonic as well: they are anti-self-dual, and closed,

since

(33) 0, = iddﬁj (l> =123

r2

Putting those facts together and setting e; = Ij%xia%i, 7 =1,2,3 — forget about
formulae (6) — so that rdr(e;) =0 and ay(e;) = rdji, 7,k = 1,2, 3, we get that:

3
Aolf0) = 5 (Do 1~ 23 (e~ )V,
k=1

The ngé’l are easy to compute: since e - r = 0, ngﬁl = T%ng (rdr N ag — ag A
a3). Moreover since the I; are parallel, we just have to compute V¢ rdr; since
Ve(rdr) = e, V¢ (rdr) = e(ex,-) = +ay. Therefore V¢ 6, = 0, V¢ 6, = 205 and
Ve, 01 = —%92. Thus A(f6,) = T%(Agiif)el — %(62 - f)ls + %(63 - f)02. A circular
permutation on the indices gives as well A(gf) = %5 (Agsg)fa—2(e5-9)0142(e1-9)0s
and A(hfs) = 5(Agsh)03 — 2(ey - h)bs + 2(ez - h)0;. Since the 6; are linearly
independent, Awf = 0 translates into:

(34) Agsf—4(es-g—eq-h) = Agsg—4(e1-h—ez-f) = Agsh—4(ey- f—e1-g) = 0.
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On the other hand, dwg = (0is equivalent toe; - f+es-g+es-h=ey-f—e1-g=
es-g—eg-h=-e-h—es-f=0;the latter three equalities, plugged into equations
(34), exactly give Ags f = Agsg = Agsh = 0, hence: f, g and h are constant. [

Remark 2.11 We have not used the I'-invariance of the tensors here; nonetheless,
since the 0; are SU(2)-invariant, which comes from the identities 6; = ddfj(r%),
this does not give us any further information.

2.3.3 Lower order variation of the Kahler forms: determination of the coefficients

We know form the formal expansion of g¢ (or those of g and g¢~) that the ajx
coefficients of Proposition 2.10 are quadratic homogeneous polynomials in their
arguments. Their explicit form is given as follows.

Proposition 2.12 With the same notations as in Proposition 2.10,

az (¢") =0, az(¢") =0, ags(¢") = — IT|[I¢s?,

azn(¢') =0, an(C") = = [ITI¢/* az3(¢") = — IT[1{¢2: G3),

an(Q) = =TGP, aa(Q) = = T, ¢)s @) = = [ITI1{C1, Gs)-
where ||| := |

2Vol(BY) — =2°

Proof. We shall first prove the assertion on the a3;(¢”), and then apply the same
techniques to determine the a;(¢") — the a1;(¢) being dealt with in a similar way.
One more time we can assume that ¢ is chosen in h — D, and so that (', (" ¢ D.

The coefficient az3(¢"). To begin with, set a = a31(¢"), b = as2(¢”) and ¢ = az3(¢").
We consider on X¢» (which is smooth by our assumption ¢” ¢ D) a closed form
A with compact support representing (3 by Poincaré duality; this is possible since
minimal resolutions of C?/T" have compactly supported cohomology [Joy, Thm
8.4.3|, and X~ is diffeomorphic to such a resolution (this is actually a minimal
resolution of (C?/T,I3), but we will not use this fact). Next, consider a smooth
cut-off function y, vanishing on (—oo, 1], equal to 1 on [2, +00). From the equality
w§ = £dd§, (r?), and from formulae (33), we have that

17 1 1
ei=w§ —A—d ngd(x(r)TQ) + Z(ajl + bl + cl3)d(x(r)r—?)

is well-defined on X, has cohomology class 0, and is O(r~°%) at infinity, with

appropriate decay on its derivatives; here we write r instead of ()\g//)*r. As we
need it further, we shall also see now that ¢ admits a primitive which decays at
infinity.
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From [Joy, Thm 8.4.1], £ can indeed be written as h + d3 + d <" v, where h is
in C$°(X,, A?) and is ger-harmonic, and 3 and « are in C5°(X,, A?); we used here
classical notations for weighted spaces: for example, § = O(r=2), V¢S = O(r=3),
and so on. The harmonic form A is actually decaying fast enough so that we can
say it is closed and co-closed: write (all the operations and tensors are computed
with respect to g¢») for all r

0:/ (h,Ah)vol:/ (|dh?+|d*h[) Vol—l—/ (h®dh+hed*h) vol,
IBXC// (r) ]BXC// (T‘)

SXC// (r)

where By, (1) = (A1 (BY(r)/T), and Sx,, (r) is its boundary. From what pre-
cedes, the boundary integral is easily seen to be O(r3=37%) = O(r=), and thus
dh = d*h = 0. Hence 0 = de = dd*v; an integration by parts similar to the pre-
vious one, but with boundary term of size O(r=2), leads us to d*y = 0, and thus
e = h+dp. According to [Joy, thm 8.4.1] again, H*(X¢n) — H?*(X¢n), h— [h] is
an isomorphism; now here [h] = [¢ — df] = 0. Therefore h = 0, and ¢ = df, with
B =0(r2).

Write B(r) for By, (r) to simplify notations; we shall now compute the integrals

fB(T)(wguf in two different ways. First, recall that (w$ )? = 2vol®, and thus!

"

fB(T)(wguf = 2ﬁ\fol (B*). On the other hand, since w§ = N+ dp + e, with

¢ = +I3d(x(r)r?) + +(aly + bly + cl3)d(x(r)r=?), we have:

/ (wgn)2:/ )\2+2/ )\/\dgo—i-Q/ ANe
B(r) B(r) B (r)/T B(r)

+/ (dgo)2+2/ 5/\dgo+/ 2.
B(r) B(r) B4(r)/T

Let us analyse those summands separately.

For r large enough, fB(T) A2 = fXC// A2 = AU\ = —|¢3/%, by Lemma 2.2, and the
fact that [A] = [w$'] = (¢")s = Gs.

The integral fB(T) AN dy equals fS(T) A A @ by Stokes’ theorem, where S(r)
stands for Sx C,,(7“), and this vanishes for r large enough; similarly, fB(T) ANeE =
fB(T) ANdB = fS(T) AN B =0 for r large enough.

(35)

’

ndeed, fB(r) (wg//)2 is ”the limit as s goes to 0 of fB(T%B(S)(wg, )2, since as an s-tubular
neighbourhood of E := (\§ )~ ({0}) which is of real dimension 2, B(s) has its volume tending to
0 when s goes to 0. Now we can also see [5 ) 5 (wgﬁ)2 on R*/T via )\g,, which is diffeomorphic
away from FE, and since (/\gl/)*(wgﬁ)2 = 2Q,, fB(T)iB(S) (wg//)2 is twice the euclidean volume of

the annulus of radii s and 7 in R*/T", hence the result when s — 0.
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We now come to fB(T) (dp)?. By Stokes, this is equal to fS(T) dp N p, which we
view back on RY/T via A§ . For r > 2, the integrand is

1 1, oq (6%} 3
e
(w§ + aby + by + cbs) N [5043—5(@? + br_4 + cT—4)}
1 c
=53 <1 — r4>&1 ANag Aas+O(r™7),
since w§ N az = T%al/\ag/\ag, ws N oy = T%rdr/\ag/\al = 0 and w§ A g =
Lrdr ANag Aas =0 on S*(r)/T; 03 A g = —21092098 g, A gy = tdrhahas — ()

Or A g = "rhe2has — 0 on S*(r)/T; and 6; A a, = O(r™7) for j k = 1,2,3.
Observe that de a1 Aas Aag = 4r? Vol (B*(r)) /|| — for instance, compute
fB4(T) w§)? =3 f]B4 w§ A das by Stokes; we thus end up with:

/ (o) =2(1 — 5B ) B) | oty = 2" =)y (BY) + O(r ™).
B(r) r IT| T

We conclude by the last two summands of (35). On the one hand, fB(T) eNdp =
Jsme N =00 = O(r7?), since e = O(r™°) and ¢ = O(r). On the other
hand, [5, &° = Jg, e NdB = [g, €A B thisis O(r*~°7%) = O(r™°) (and this is
actually the only place where we need an estimate on the decay of a primitive of

£).

Collecting the different estimates, for r going to co we have:

2(rt —
%Vol (B*) = —lGs|* + —(Tm Y ol (BY) +0(r*),
hence: ¢ = — 2V‘01;‘]B4)|C3|2

The coefficients az(¢") and a3 (¢"). We use the same techniques to see that
a31(¢") and as2(¢"), used above as a and b in ¢, vanish. Recall for example that
w%l = wy; therefore, pi= w% — d[ I d(X(T)TQ)} has compact support in X¢», and
cohomology class [w¢] = (¢” )

We can compute fB(r) wg A wl ¢ in two different ways. First, this is 0 for all
r, since wf" and wgu are Kahler forms for the same hyperkéhler metric and anti-
commuting complex structures and thus wgﬁ A w1,, = (0. Secondly, using the sums

w§ =A+dp+eandwd =p+dy, with ¢ = 11id(x(r)r?), we write for all 7

/ wg///\wfn :/ )\/\u—l—/ d(p/\,u—l—/ AL
B(r) B(r) B(r) B(r)

+/ )\/\dQ/J—i-/ dcp/\dz/wl—/ eNdi.
B(r) B(r) B(r)
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We briefly examine each summand. The first integral, fB(T) A A, is equal to
S Xen A A p for r large enough, and this is 0, since [u] = 0. The second integral can

be rewritten as fS(T) de A A, which vanishes for r large enough; the same is true for
the third (since € = df) and fourth integrals. As for the sixth integral, it can be
written as fS(T) e A, and this is O(r?~%1) = O(r=2).

We are left with the fifth summand of (36), which we rewrite as fS(T) do N,
and view back on R*/T". For r > 2, the integrand is

Oél/\OéQ/\Oég

1
(w§ + (101 + b92 + 693) VAN 50&1 = —a 9,6

on S*(r), since there w§ ANag = 03 ANy = 03 ANy = 0. As a consequence,
fB(T) do N dip = —a Vol(B*)/|T|.

This tells us that the right-hand-side of (36) is —a Vol(B*)/|T'| when we let
r go to oo; as the left-hand-side is always 0, a31(¢"”) = @ = 0. One proves that
as2(¢") = 0 in the same way.

The ay;(C") coefficients. Let us come now to the coeficients involved by wg,. Since

[2§’ = 1'24// and since we have the equality of . él—holomorphic (2,0)-forms wg"+m1 =
w§ +iws , we have the writing:

wf/:,ujtdw and wg/:A—i-d(p—i—e;

taking v a compactly supported closed 2-form representing (s = [w$'] (since (¢')y =
(2), we can write, for the same reasons as those invoked when proving the analogous

11

formula for w; :
Wi =v+dE+n
with & = 1 [Ld(x(r)r?) + (aly + bl + cI3)d(x(r)r—2)] where this time, a = as ('),
b = an(), ¢ = ax(’), and with n € Cg°(Xe, A?) of the form dy for some
v e CSO(XCI,AQ)
Exactly as in what precedes, we get from computing respectively fB(r) (wgl)2
and fE(T) w$ A wS', where now B(r) = ()\gu o AS)! (B*(r)/T), that as(¢') =b =

—%&BM@P and ag(¢') = a = 0. Now though it goes through similar lines, the
¢ ¢

computation of wS AW s slightly new. Indeed, w "AwS =0 identically,
B(r) 2 3 2 3
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whereas:

/ wg/\wgl—/ u/\)\+/ I/Adc,a—i-/ vAe

B(r) B(r) B(r) B(r)

(37) +/ dfM+/ d{Adgp+/ d¢ Ne
B(r) B(r) B(r)

+/ 7]/\)\—|—/ 77/\dg0+/ nAe.
B(r) B(r) B(r)

The first integral of the right-hand-side equals ch vAXN=—([V],[A]) = — ({2, (3)
for r large enough. For r large enough again, the second, the third, the fourth
and the seventh integrals vanish (use Stokes’ theorem). Further uses of Stokes’
theorem and the estimates ¢, & = O(r), e,n = O(r=%) and 8,7 = O(r=2) (with
e = df, n = dvy) give us that fB dé N e and fB o1 A dp are O(r ~2), and that
nAe=0(r).

{?Ve hence are left with computing the contribution of the fifth summand,

namely fB ) d¢ A dp, in the right-hand-side of (37). This can be rewritten as

fS(T) & A dyp; seen on R*/T, the integrand is:
1 1 , o ,
3 [Cw - F(Cm(c ) + 0043)} A (w§ + ass(¢)0s).

All computations done, this can be rewritten on §*(r)/T" as: —c®42229 - Thus

f df/\ dp = 2cV|ol|]B ) + O(r=%) (recall that fsg jp01 Ao Aag = 4r6\|/13}(134)>‘

Collectmg the estimates of the last two paragraphs and letting r go to oo, from
(37) we get 0= <C27 C3> ZCV‘?‘I‘(B )7 that is: ¢ = _QV(‘)I(]E‘l) <<27 C3>

The ay;(C) coefficients. After noticing that wg + iwg = wgl + iwgl, and that wg can
be written as a sum
p+dy +,

where y still has compact support but this time has class [w$] = (1, ¢ is the 1-form
[[1d( ( )7’2) + (all(C)Il -+ alg(C)Ig —+ a13(<)]3)d( ( )T’_ )], and s Cgo(Xg,A2)
can be written do with o € C5°(X,, A?), we get that
I
~ 2Vol(B*)

r
P, a0 =5y
I

~ 2Vol(BY)

a11(C) = (C1,¢2)

and a3(¢) = (C1,G3),

from respective computations of [, (W) 2, Joe w$ AwS and Joer) wé Aw§ | where
here B(r) is seen in X¢, following the same hnes as above. O
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2.3.4 Conclusion: proof of Theorem 2.1 (general I')

Let us sum the situation up. If we take &, = FC_1 : XC\Fgl({O}) — (R\{0})/T"
and keep the notations introduced in this section, we have ®¢ g = e+he+O0(r~%),
O It =1, + 15 + O(r~ %) and @, w§ = w§ + @ + O(r~5). The I -hermitian com-
ponent of h¢ is @S (-, I1+), which we know, and its ]1 skew-hermitian component
is her. Now the Ip-hermitian component of her is @S (-, I5-), which we also know,
and 1ts I>-skew-hermitian component is hev. Finally, her is Iz-hermitian, equal

to w§ "(-, Is-), which we know as well. In a nutshell, we are able to write down
explicitly h¢ from Propositions 2.10 and 2.12:

he =5 (1) + 5 (-, 1) + @i (- In)
SIS IGPC L+ (GG ).

1<j<h<3
which gives exactly formula (27), with ¢ = -2

el = 7
From this and the formula for wf proved in 2.12 — which gives formula (29)
of Theorem 2.1 —, we deduce the expected formula for L§. We know indeed that
$ =5, and that he = ws (-0 ¢.) and 1§’ is e-symmetric, hence:
e(tf-,-) =e(-,§ ) = —wf(l14f -) = —ho (-, )
=[0I (1Gs1205 (11, I3+) + |Gl *02(11+, Lo-) + (G2, C3)0s(11-, 12-))

—||FH(|C3| 93( ) |C2| 92( )— <C27C3>93('=I3'))

Qg -z —rdr - oy Qy -z +rdr - oy
=[ITlI¢s? 5 — ITIl1¢2l? 5
r r
2

(rdr)? + oz% —a? — a2

Y

— T2, Cs)

of which formula (28) is just a rewriting.

r6

2.4 Vanishing of the third order terms when I' is not cyclic

We shall see in this section that in the expansion g; = e + h¢ + Z , if T
is one of the Dy, k > 2, or contains one of these as is the case when F ZS bmary
tetrahedral, octahedral or icosahedral, then the third order term h vanishes, and
that this holds as well for complex structures and Kéhler forms. Keeping working
with the diffeomorphisms F¢ of the previous section even if we omit them to
simplify notations, we claim:

Proposition 2.13 Suppose I' contains Dy, k > 2, as a subgroup. Then g =
et+he+00®), I} = I + 5 + 0%, w§ = wy + @ + O, where by O(r=8)
we mean tensors whose (th-order derivatives (for Ve) are O(r=87°).
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Proof. We shall first see that, for a general I', the crucial considerations made in
section 2.3 on the second order term h. of the expansion of g¢ still hold for h?);

first recall that hf’) is a homogeneous polynomial of { of order 3, with coefficients
O(r=%) symmetric 2-tensors, with according decay on the derivatives, and those
coefficients are independent of (. We start with claiming that:

h’)y=0  and  &hP =0
Indeed, for the trace assertion, once ¢ € h ® R® — D is fixed, one has for all ¢:
Qe = volc = det® (e + t2he + 20 + O(t1)) Qe
= (1 + 2 t°(he) + £ 01°(h) + O(t1)) e,

since the higher order contributions of t?h; are included in the O(#*), hence
tre(h{) = 0.

We thus notice that hf’) shares this property with hs because the non-linear
contributions of the hy, which are of order at least 4 in ¢, do not interfere with the
linear contribution of hfg). We thus generalize this observation to prove that hé‘g)
shares other properties with h¢, and to start with, that 5eh23) = 0, as promised.
Again we proceed within three steps, considering first (" = (0,0,(3), and then
("= (0,62, ¢3) and ¢ = (G, G2, G3)-

The case of hg,g,) is immediate, and merely amounts to the fact that it is an
I3-hermitian tensor (the g,c» are) with vanishing trace for e, used with the Kéahler

identity [Ay,, d,] = d* applied to héi)(jg', ).
For the case of h?), remember the following: we first saw that the second order

variation of Ig = I2C” was e-symmetric; this still holds for the third order term,
since the only I-entire function on C? decaying (like =%) at infinity is trivial.
Then we identified the I-skew-hermitian part of he with her; again, this holds

for hg)) with hg),) (and the latter is indeed Iy-skew-hermitian). This amounts to
looking at the term of order 3 in ¢ of:

e the expansion of g;ov = Wi (1) to see that hg’,) is indeed I»-skew-

hermitian (recall w" = w, for all ¢);

e the expansion of gtC/(Iécl-, I;CI-) — gier to see that %(hg’) +h§’)(12-, L)) = hg’).
We concluded by using the usual Kéhler identity (for I5) on the e-trace-free I-
(1,1) form £ (he/(Iz-,+) — he(+, Io+)), after seeing it was closed; we can do the same
on its analogue l(hé‘?)(lg-, ) = hg/)’)(‘,IQ‘)), which is also an e-trace-free I-(1,1)

2
form, and is closed as seen when looking at the third order in ¢ of the expansion

of Wgc = %(QtC’(IEC ) = gtcf(fé< ',[2'))-
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One deals with h¢ in analogous way. In particular, we get in passing that the
third order variation of [ f = [f/, ﬁ say, is e-symmetric and anti-commutes to I,
that the I;-skew-hermitian part of hg’) is hé‘?), related to 55 by h(g’) = we(-,75), and
that its [;-hermitian part gives rise to an e-trace-free closed I;-(1,1) form.

Running backward this description, we will thus be done if we show that the
third order variations of the Kéhler forms vanish when I' contains a binary dihedral
group. In general though, we know these are O(r~°) near 0 and infinity with
corresponding decay on their derivatives, that they are of type (1,1) for one of the
I; and trace-free; they are thus *e-anti-self-dual, and therefore can be written as
O, + g0y + hOs, where this time, 72f, r2g and r2h depend only of the spherical
coordinate of their argument. Our form are moreover closed, hence in particular
harmonic; using again that the Laplace-Beltrami operator and the rough laplacian
coincide on (R?*, e), and that the #; are harmonic, we have this time:

3

Ae(f01) = (Aef)01 =2 (ex- [)VE 00,
k=0

with ey = fa%j. We set f = r2f; this is a function on S?, and ey f = e (r™2f) =
eo- (r2)f = —2r3f = —2r~1f. Since on functions, A, = — 50, (%0, - ) + HAgs,
one has:
Aof = Ae(r2f Lo (P, f o+ ~Asf = ~ AT
of = Ae(r f):_r_g, T(r (7 ))f+T—4 S3f:ﬁ ssf5

since 9, (r*0,(r=2)) = 0 (r~2 is the Green function on R?).

Moreover, V& 01 = 9,(r~°)(rdr Aay — oo Aag) + 1775V (rdr Aoy —ag Aag) =
—g@l -+ %91 = —%01 We recall that V§191 = O, V§26’1 = %Qg) and V§391 == —%92,
therefore:

Aol f0) = 5 (B~ 167)61 — 5 ((e2 s — (es- F)62).

Writing the analogous equations on g = 72g, h = 72h, the equation A¢(f0; + g6 +
hés) = 0 is equivalent to the system:

Agsf —16f —4(es - §) + 4(ex - h) = 0,
(38) Ags§ — 165 — 4(ey - h) + 4(es - f) = 0,

Agsh — 16h — 4(ey - f) + 4(es - §) = 0.

Now the closure assertion on f6;+g60s+h0s is equivalent to (e;-f)+(eq-g)+(e3-h) =
(eo-f)—(e3-g)+(e2-h) = (eo-g) —(e1-h)+(e3- f) = (eo-h) —(e2- ) +(e1-g) = 0.
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Since ey - u = —%ﬂ and e - u = %ekwlforu = f,g,h and k = 1,2,3, we

deduce from the latter equalities and the system (38) the equations:
ASBf— 8f == AS3§ - 8§ - ASSZL - 8;L =0.

Setting f = 72f and likewise for § and iL, we get that f, g, h are harmonic (on
the whole R*) and homogeneous of degree 2. This is not hard seeing that they are
thus linear combinations of the z? — x?, J=2,3,4, and the z;x;, 1 < j <k < 4.

The 6; are I'-invariant; f, g and h, and consequently f , g and iL, must thus be
as well. But if I' contains a binary dihedral group as a subgroup, then there is no
non-trivial linear combination of the above polynomials which is I'-invariant. We
use first the 7-invariance; if indeed Dy < I for some k > 2 and u = Z;’:l a;j(z? —
23) D01« jeoca Qe is T-invariant, then 2u = u+ 7% u = ag(2} — a3 + 23 —23) +
az(z? — 23 + 22 — 2?) + aq(2? — 2% + 23 — 23) + app(z179 + T374) + a13(T173 —
x321) + a14(X104 — T3%2) + ao3(T2x3 — T421) + A24(ToTs — T4%2) + az34(T324 + T122),
that is: u has shape a(xf — 23 + 23 — 23) + 2b(v129 + 2324) + 2¢(v124 — T322), 1.
aRe(2? + 22) + bIm(2? + 22) + ¢Im(Z122), a,b,c € R, in complex notations. We
now use the (;-action and write:

k k
bu=Y"Gu=3"al(Ct) Re(=? + 22) + b(C)) Tm(=? + 25) + e(¢L) Tm(z122)

since €*™/* £ 1 (k > 2). In particular, the third order variation term of wf
vanishes; in other words, w$ = w;, + @ + O(r~3).
Since moreover ﬁ is determined by hg’) which is also 0, this third order variation

of the first complex structure vanishes as well, or: I¢ = I} + § + O(r~®?). O

This completes the proof of Theorem 2.1. Notice however that in view of the
previous two sections, we could also have given similar statements on the second
and third complex structures and Kahler forms of X.. We chose to focus and the
first ones since this is what is needed in our construction of Part 1, see in particular
Lemma 1.6, which is just a specialization of Theorem 2.1: take ( = ¢ verifying
condition (9), and ®y = .
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Nonetheless, the asymptotics of the second and third complex Kéhler forms are
available via Proposition 2.12, from which the asymptotics of the corresponding
complex structures easily follow, since the asymptotics of the metric are known.

2.5 Comments on Lemma 1.1

2.5.1 The condition (9)

The first comment we want to make about Lemma 1.1 concerns the reason why
we state it under the condition (9), which we can recall as (|(2|>—|(3]?)+2i(Cs, (3) =
0 (if one takes ¢ instead of £ as parameter).

One could instead try to generalize the proof we give in section 1.3 with help
of the asymptotics given by Theorem 2.1, with ¢ a generic element of h @ R® — D.
This is formally possible, but leads to include terms such as %, %, %, T2172
in the correction terms e; and &, of that proof, which is obviously not compatible
with the requirement that J is a diffeomorphism of R*.

In others words, (|G|? — |Cs]?) + 2i(Cs, Cs) appears as an obstruction for I¢ to
be approximated to higher orders by I, even with some liberty on the diffeomor-
phism between infinities of X, and R*/T", which reveals some link between the
parametrisation of the X, and the general problem of the approximation of their
complex structures.

2.5.2 Links with the parametrisation

Conversely we interpret of Lemma 1.1 as follows: when I' = Dj, — this would be
true also in the tetrahedral, octahedral and icosahedral cases — and (|(o|* —|(3]?) +
2i((2,(3) = 0, then the complex structure If can be viewed as approximating
the standard complex structure I; with precision twice that of the general case,
i.e. with an error O(r~®) instead of O(r™*), up to an adjustment of the ALE
diffeomorphism given in Kronheimer’s contruction. Now (|(a|? —|C3]%) +2i(Cs, 3) =
(Ca +1iC3, G2 + iC3), and this precisely the coefficient ay in the equation of X, seen
as a submanifold of C?, which is

(39) u® + w4+ W = ap + ayw + - + w4 b

(a; being given by symmetric functions of the (k + 2) first diagonal values of
(2 + (3 € b or he/(Weyl group) of degree (k + 2 — j), and b by their Pfaffian).
Denote by Xp, the orbifold defined in C? by the equation u? 4+ v*w +w*™! = 0,
i.e. equation (39) with ag = --- = ap = b = 0. This is identified to C?/D; via
the map (z1,2) = (u,v,w) = (227" 2 — 23"7'2)), L(23* + 23%),2823). This
suggests that (u,v,w) in equation (39) should somehow have respective degrees
2k + 2, 2k and 4 in the z1, zo variables, and this equation remains homogeneous if

o8
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we give formal degree 2 to (. When a; = 0, the right-hand-side member of (39) is
therefore formally conferred "pure" degree at most 4k — 4, instead of 4k.

We suspect that this corresponds to the improvement by four orders in the
approximation of [ 1( by I; in the sense of Lemma 1.1. It would thus be of interest
to draw a rigorous picture out of these informal considerations, establishing a more
direct link of the kind suggested here between the parameter ¢ and the associated
complex structures, without passing by the analysis of g¢, which we unfortunately
have not been able to so far.
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