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Introduction

Let S, bea (generic) homotopy K3 surface having a multiple fibre Fo of
multiplicity three. In [M1] we have determined for S, the moduli space Moy(w) of
w—stable 2-bundles & — 8, with (c,( &), cy( &)) = (0,2) relative to some Kahler
form w of a Kéhler metric m, on 53 . The purpose of this note is to explain for generic
(but not necessarily Kahler) metrics m6 on S, closeto my it is possible to make use of
the explicit description of My(w) and apply the method introduced by Donaldson in [D3]

of defining polynomial invariants to construct certain symmetric bilinear maps
i L
Qoo (m)):Kg xKg — 1,
2,S3 0 S3 83

defined on the sublattice Kg C Hy(S4;¥) annihilated by the canonical class Kg of S, .
3 3
Furthermore we show q, o (m/) links to the intersection form Qg of S, on H,(S.;Z)
2,540 Sq 3 2\V3

in the following way.

Theorem 45 g (mé) = 2QS as symmetric bilinear maps on K'é' X K'é‘ .
™3 3 3 3



One should note that q, S (m(’)) is not a polynomial invariant of S5 in the sense of
™3

[D3]. Nevertheless it shares the property being a polynomial on Qg and K¢

3 3

([FMM]).

A natural compactification of M2(w) , by its explicit algebro—geometric description
obtained in [M1], is to add to it a copy of the symmetric product SzF3 of the multiple
fibre F, . Noticing Ml(w) is empty, one would incline to think then the Yang—Mills

compactification My(w) of My(w) in this situation could be as nice as that

M) = My(w) U (%Fy x {[6]}) ,

where [60] denotes the gauge equivalence class of the trivial connection 6 on Sq. A
main point of the present paper is to explain this is indeed the case. To justify the
compatibility of these two compactifications of M,(w) , we are to describe a

neighbourhood system for the lower stratum

M,(@)\M,(«) C S%(S5) x {(6)}

in M,{w) , exploiting particularly the structure near the diagonal part Asa x {[4]}.

This is the most technical part of establishing the theorem granted results obtained in
[M1].

The reason we do not work directly with the Kahler metric m, on S3 ig that such a |
metric fails to be generic and the moduli space M,(w) , despite being smooth, is of (real)
dimension higher than the virtual one by two. This is accountable, as explained in [M1],
by the appearance of the "cokernel bundle" ¢ — Mz(w) arising from the assignment

& — H2(sl’.( &)) ~ € . Here we discuss in such situations how one could sometimes get
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around this kind of difficulty by working with nearby generic metrics m6 . This is the

point that limits the domain of E2 S (m6) to the sublattice K'SL x K'é' of
™3 3 3

Ho(S4;T) x Ho(S4;T) as we shall see.
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§ 1. The definition of q2,83(m6)

In Riemannian geometry the homotopy K3 surface S3 is a smooth compact
simply—connected oriented 4—manifold with b;(ss) = 3. For such a surface there defines

in [D3] a polynomial invariant q g € Sym®(H*(S4;7)) of degree d = 4k—6 for each
3
integer k > 3 . To construct such polynomials Qg it requires amongst other things a
™3

suitable choice of generic metrics m on S3 8o that the associated Yang—Mills moduli
spaces M, (m) , consisting of equivalence classes of anti—self—dual (ASD) connections on
an SU(2)-bundle P — S, with co(P) =k, is a smooth manifold of virtual dimension
2d . Here we consider this construction on the surface Sq for a smaller value k=2 .1t
turns out that by working with some special metric m(’] on S3 we are still able to define

certain polynomial q m/) using essentially the same method of [D3] as we are goin
2,540 gomng

to explain.

Recall that the surface S3 2 IP1 is elliptic with canonical bundle

Kg = [F3]02 , the square of the line bundle [F,] associated to the multiple fibre F, .
3

Given any lattice point a in

Kfs'a = {a € Hy(Sy;T) : a-K83 =0} ,

one can always find a smooth oriented real surface ¥ C S3 representing a with the
property that the intersection ¥ n F, is empty. For such a surface ¥, we can define as in

[D2] a (complex) line bundle .#yy— Moy(m) by the assignment

A —— A3 (Ker /A | E)* ® A3 (coker /A | E)



sending a connection A on P to the determinant line associated to the Dirac operator

/ Al . coupled with the restricted connection A | - Provided ¥ is suitably chosen, we

can find for the bundle %y, — M,(m) transversal sections with zero sets Vy, N My(m)
containing elements [A] which are non—trivial on X . As M,(m) has virtual dimension

four, one can consider then appropriate intersection numbers |Vy N VY“Z N My(m)| on
1

My(m) .

(1.1) Lemma Transversal intersections VE N sz n M2(m6) are compact, provided the
1

surfaces 21, 22 are disjoint from the multiple fibre Fq and m6 is a generic metric
sufficiently close to m, .

We shall show this lemma in coming sections. Assuming this for the moment, we obtain an

assignment
(2, %) — |VEl n VEQ n Mz(m(’))l
and hence a symmetric bilinear map
L i
q (m’) K xKg — 1
2,540 S 84
for a generic metric m6 close to m , a wished.

Despite the framework just described does not apply to the (non—generic) Kahler

metric m, on 83 , it will be important for us to consider transversal intersections
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VEI n sz n M2(m0) in order to determine the polynomial q2,53(m6) . Note that it still

makes good sense to talk of such intersections since the moduli space Mz(mo) is, after all,
a smooth manifold. This nice property of My(m,) follows from a theorem of Uhlenbeck
and Yau allowing one to identify M,(m,) with the moduli space M,(w) of stable
2—bundles determined in [M1]. Besides, there is no U(1)-reduction in My(mg) to worry

about for the following reason.

*
By choice w = wg_ + N¢ Wp s the sum of an arbitrary Kahler form wg on S3
3 1 3
and a multiple of the pullback Fubini—Study form wp of [P1 . Here we take N to be an
1

integer larger than

deg . K =JC(K JAwe .
w53 S ! 11785, Sq
3

Then, as a result of the following proposition, one finds M2(m0) in fact contains no

U(1)-reduction at all.

(1.2) Proposition There is no holomorphic line bundle % — S3 satisfying w- £ =0
and ¥ - Z€{-1-2-3}.

Proof Suppose on the contrary there is such a bundle . over 83 . The Riemann—Roch

formula gives then
0 #@®[F,])—bl( £®[F,]) + 1% L ®[F,]) =1 2 2+2
3 3 3/ =3 '

Assuming & - ¥ =-1,-2,-3, we have either



hO( #@[F,]) 21 or B £@[F,]) 21 .

Consider first the case when % « [F,] = 0.1f h%( #®[F,]) > 1, we have that the
bundle #®[F,] is represented by an effective divisor D on S, satsifying

[D] - [F3] =0.1It follows D is equivalent to a combination of fibres on S, and one
infers then .¢ - .£ =0, a contradiction to the assumption that .# - £ # 0. One
argues similarly for the case hO( 7o [Fg]) 2 1. Suppose now that &+ [F,] $0.If
h( #®[F,]) > 1, then we have ( #®[Fy])- [F,] > 0 and the assumption implies
Z[Fg] 21.As w+ £ =0 for sucha bundle ¢, onefinds on the one hand

de (£ OLF5]) = deg[Fy] = de [Fy]

while on the other

deg ( < ®[F,]) = degws ( £@[Fy])+ N( £ -F) .
3

It follows then

degws [F3] >N( ZF)>N> degwS Kss.
3 3

This is a contradiction as Kg = [F3]92 . The treatment for the case
3

ho( 7o [F3]) 2 1 is similar and this proves the proposition.

Note that transversal intersections Vy N Vnz N My(my) are smooth (real)
1
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2—dimensional manifolds rather than a finite number of points. They are moreover compact
as the argument of proving lemma (1.1) will show. We shall however move on to determine

U g (ma) first in the next section. The proof of lemma (1.1) is quite technical and will be
™3

postponed to § 3 — § 4.



§ 2. The determination of q2,S3(m6)

The calculation of q, ¢ (ma) involves more generally the consideration of certain
™3

problem that we wish to discuss first. Let X be a smooth compact simply—connected
oriented 4—manifold with b';(x) odd. Suppose that for some fixed non—generic metric m
on X the moduli space Mk(m) is a smooth compact manifold of dimension 2d+r , higher
than the virtual one 2d by r. Assume moreover the second cohomology group Hi(ad P)
in the Atiyah—Hitchen—Singer deformation complex is of dimension r for all

[A] € M, (m) so that the assignment A — Hi(ad P) defines a cokernel bundle

(— Mk(m) . Then a question one would like to pose is that whether it is possible to
recover (up to isotopy) nearby moduli spaces M (m’) for those generic metrics m’ on
X sufficiently close to m . The answer to this problem would not be affirmative in general.
However, with the additional assumption that Mk(m) and Mk(m’ ) are all compact, it is

indeed possible to recover Mk(m’ ) in the following way. Our approach follows' [FU].

Let .6 be the affine space of connections on P and % = C*(GL(TX)) the
Banach space of Cs—automorphism of the tangent bundle of X for some integer 8 >> 0.

Writing P L= %(1 + *m) , we define a map

F, . A% & ——'ﬂ_?_(a.dlz)
(A,9) ——P_((#7) F(A)

with the property that for all fixed ¢ € R the zeroset {F +,- (A,8) =0} C A consists
of all ASD connections on P relative to the pullback metric ¢*m on X .(We assume
here ﬂl(ad P) and ﬂf_(ad P) are modelled on certain Hilbert spaces but notations for
which are omitted for simplicity.) At the point (A,id.) € £ x & the partial derivative of
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F L. in the Z—factor is the map
)

T,y (R) — 0% (ad P)
7—— P (7 F(A))

and we always assume |7| =1. For those [A] € M, (m) we can define an orthogonal

projection
7, : 02(ad P) — H2(ad P)
AT+ A

and thus obtain a section € y of the cokernel bundle { —— M, (m) induced by the

* -
assignment A —— 7, P (7 F(A)) . Let ¢1=expt7€.9b.
A"+ t

(2.1) Proposition If €. vanishes transversally on M, (m) , then the zero set {e7=0} is
* *
diffeomorphic to a nearby Mk(¢tm) provided the moduli spaces Mk(qﬁtm) are compact

*
over a small path of metrics ¢tm on X.

This proposition does not apply directly to the non—compact moduli space Mz(mo)
for 83 we have been considering. Nevertheless, assuming the compactness of

Vy N VE2 N My(m() for nearby metrics m , one will find an easy modification of the
1
proof for this proposition shows intersection numbers of Vg N VE2 n M2(m 6) are in fact
1
thatof Vg, NVy N Mg(mo) on a "cut—down" moduli space Mg(mo) , the zero set of a
1 X

transversal section ¢ of ( —— M2(m0) . We shall determine the polynomial

32’Ss(m6) by means of computing intersection numbers |V21 n VEZ n Mg(mo)l in

respect to the natural orientation of Mg(mo) . Note that the compactness assumption on

*
Mk( ¢tm) in the proposition could not be relaxed in view of the pathetic possibility that
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*
M, (¢,m) could have "ends" not isotopic to Mg(mo) . We first need the following lemma

to exclude this complexity.

*
Let N—— Mk(m) be the normal bundle of Mk(m) = Fy , the space of
*
equivalence classes of irreducible connection on P . Suppose U € C 3)( is a small tubular

neighbourhood of M, (m) diffeomorphic to the e—ball bundle associated to N .

*
(2.2) Lemma Suppose for some tg > 0 moduli spaces Mk(¢tm) are compact for all
t € [0,t;] . Then given any tubular neighbourhood U _ of M;(m) thereis a small

constant t € > 0 such that
X
M, (¢,m)CU_ forall t€ [0t ]
Proof For 0 < ¢ € ty welet

Y= U {M(gym) x {t} |t € [0.c]}

and by assumption the space Yt is compact. If S c denotes the e—sphere bundle
0
associated to N — M, (m) , then the intersection Y, U {S e ¥ [O,to]} is compact and
0

$0 i8 its projection image K C [O,to] . As Mk(m) is properly contained in U _, one finds
0 ¢ K and hence that the minimum tg of K is strictly positive. It follows then the

space Y,

¢ can be written as a disjoint union of two compact pieces
7K

Wy =Y, " {U_x [0,}t]} and

W,y = Y.;, tK\{UG x [0,3 tx]}
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since Yi‘ - n{s,x [0,5 tx]} is empty. Now project W, to [0,5 tK] and obtain a

compact subset with minimum 2t‘E , 8ay. One checks t e 0 and that

Y, CU_x [0t ] . The lemma follows.
€

Assume from now on t € [O,te] and write (, for Hi(a.d P) for simplicity.

Under the present assumption the map
.6l iR
dx : {N, CKerd, in °(ad P)} — (}

is an isomorphism. By the implicit function theorem, we can solve nt(A) €N, for

sufficiently small t 80 that

P_((61)F(A +n,(A)) €

and thereby obtain a manifold

Z, = {A +n,(A)| [A] €M (m)}/ ¥

in Ue , where § denotes the gauge transformation group of P . Clearly then we have

My(4ym) = {P, ((¢1) F(A +n,(A)) = 0}/ ¥ CZ,

which is diffeomorphic to the zero set

7, = {[A] € My(m)| P, ((;)) F(A +n,(A)) = 0}
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in the obvious way. To finish the proof of the proposition we show Zt is diffeomorphic to
{e y = 0} if t#0 is small. On the compact space M, (m) , one finds Zt is the zero set
of

P, (6)F(A +n,(A))

= 1, P {F(A + n,(A) +t 7 F(A + n,(A) + 0(t2)}
= 1, P_ {F(A) + t7 F(A) + 0(:%)}

=t{e 7(A) + 0(t)}

by « AdX =0 and |n | =0(t). As € y vanishes transversely by assumption, we
conclude Zt and {e 7:0} are in fact isotopic for sufficiently small t # 0 . This proves
proposition (2.1).

To compute intersection numbers |Vy, N sz n Mg(mo) | we exploit the fact that
1
on the bundle (@2 ] M2(m0) there is a section with transversal zero set A? /T
2

topologically a copy of §3\F3 C M2(m0) , Where §3 denotes the blow—up of 83 at all
the node points on singular fibres of S, 2, P, (cf [M1]). We shall show

|V21 n sz n Avmzl = 4%, -3, so that

a5, mONE), [B]) =§1Vy 0 Vg nag g |
= 221 22 .

It will follow then q. m/) = 2Q. as the theorem asserts. This calculation requires

the knowledge of H2(§3\F3;H) that we wish to discuss now.
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It is well-known H2(§3\F3;R) is generated by H2(83\F3;ZI) together with

24

homology classes {e,}}”, carried by the exceptional divisors on S,\F,. It suffices for us

to determine H,(S,\Fq;Z).If {h }21 is an integral basis of K& , we can choose for
253V 3 r'r=1 S3

each h_ asmooth surface Er representing h. with Er N Fg empty. Such surfaces X .
carry homology classes in Ho(Sq\Fg;Z) which will also be denoted by h_ for simplicity.
(Without loss we assume each 3 does not contain any node on singular fibres on S,-)
Using the fact #,(S4\F5) =0 established in [K], one finds by a Mayer—Vietories
argument H,(S,\F4;Z) isin fact generated by two elements 3, B, in addition to the
lifting of K-SL3 spanned by {h_} . These two homology classes 3, B, can be described

more easily in S,\F5 2 §,\F, , the complement of a smooth fibre F, on an elliptic
0 0

K3 surface S0 . To see this, let F be a smooth fibre of S0 close to Fa. and P‘l' 2,2 be
0

the two loops on F generating HI(F;H) .If a i8 a linking circle of F, in S0 , then ﬁl,
0

ﬂ2 are simply the homology classes defined respectively by a x Ql, a x 17.2 . We have

- * * %
thus showed H2(S3\F3;H) is freely generated by h., B, e, . Denote by h, B, e, the
dual classes of h, B, ¢, in H2(S3\F3;Zl) . A fact that will be useful in our discussion is
that the support‘of ﬁs can be chosen arbitrarily close to the multiple fibre F3 by
shrinking the linking circle @ . Thus we may assume ,61_ is disjoint from the surfaces Er

if so wished.

Now we are ready to compute the algebraic sum of Vg N sz nag /T using
1 2

algebraic geometry. The basic tool of our calculation is the exact sequence
* * * * @2
(2.3) 0—0— £ @pr, (8pry [Fy] — pr, (8pr, [F4] ®20 7 — 0

for the universal bundle /z‘ ~— My(mg) x Sy when restricied to A7 x Sy (o
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[M1]). To begin with, we notice first it is possible to choose zero set Vy, of sections on
1
the bundle ..2‘2 so that VB n A? /T is compact for i = 1,2 . To see this, let U bea
1 1 2

small tubular neighbourhood of F, in 53 not meeting 3,, 3, . We wish to show the
bundle .Zzi are trivial over U\F3 C §3\]§‘3 ~Ag /nz . If we write

IR N RN I

¢y( 'ZEI) =Y ah, + )b+ ) e
I 8 t

then it is enough to check that bl = bj =0 for i = 1,2 Using the fact

¢,( .2’21) = co( f{ )/ [%] (cf. [D2]) one finds

bl = (eo( £)/15).6,)
= (cql / ®0r (Bory [F5))/[5;].8,) if Fye%; =0 .

Deform 'Bs to be inside U\F3 if necessary we may assume El and ﬂs have empty
: * *
intersection. It follows then b; = 0 as the section of X @pr1 (Gpr2 [F3] inducing the

exact sequence (2.3) does not vanish on Elxﬂs .

Now, by the fact that H2(§3\F3;ﬂ) is free of torsion, we can evaluate the algebraic
sum using differential forms as follows. Write QN(E) for the Thom class of the normal
bundle of a smooth oriented real surface ¥ in 5“‘;3\F3 . In the case when ¥ is compact,
one can assume $(X) in H2(§3\F3;IR) has compact support (c.f. [BT]). We shall

check in a moment

#\(Vy) = 2 8y(3)
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when Vzi n és\F3 is compact. Granted this, the algebraic sum of Vzl n sz n A? /”2
is given by

J (Vg ) Aoy (Vy, ) = 4[ B (5)) A 1y (T)

-

S3\Fg S3\Fg

=4% -3

as what we wish to establish.

. * .
It is easy to see that &y (3.) = 2 a;h ; With a:_, =h -3 . On the other hand, one
' r
notices that QN(VEI) is in essence the Poincaré dual of v?‘i NS4\F, in S4\F; which

can otherwise be realized as ¢,( Zy,) in this setting (c.f. [BT] p. 67, p. 134). As before,
1

- *
one finds c,( Zy) € H2(83\F3) has only h_—components with coefficients

oy 51} = (ool # @or; @y [F31)/ (5] b,)

=285

* *
as the section of P/ ®pr, (®pr, [F3] inducing the exact sequence (2.3) vanishes to order
two at transversal intersection points of % and X . It follows QN(VEI) =23y (%,) as

wished.
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§ 3. The compactness of Vzl n VE2 n M2(m0)

The rest of this paper will be showing for real surfaces El, )]2 of S3 disjoint from
the multiple fibre F, , transversal intersections Vg N Vg N M,(m,) are compact for
3 21 Ilz 2'V70

the Kihler metric m, on S3 . The main point we need is that the surfaces El, 22 are

2

submanifolds of 53\F3 on where the Ro~bundle A +mg

— 53\F3 is naturally

trivialized by the Kahler form w together with Re ¢ and Im ¢, the real part and

imaginary part of a non—zero section ¥ € HO(KS ) - This argument can easily be extended
3
to those generic metric ma close to m, . Indeed for such metrics similar trivializations of

the bundle Af_ o/ can be found over S,\Ug, , the complement of a small neighbourhood
i 3

UF3 of Fg not meeting El, %, . Thus one may draw the conclusion
Vy N VE2 n Mz(m(’)) are actually compact for such metrics and this ensures in particular
1
the map ?1'2 S (m6) constructed in § 1 is indeed well-defined. For simplicity, we write in
"3

what follows Wy, Wy, Wy for the self—dual harmonic forms «, Re ¢, Im ¥ on 83
respectively. Also we assume w; A We A wq orients A_?_ over 53\F3 .

To show Vzl n VE2 n M2(m0) is compact, we observe first Ml(mo) is empty so

that

M,m,)\M,(m,) € 5%(S,) x {[6]}

Thus a sequence {[Ai] } of elements in Vs N sz n M2(m0) can possibly approach
1

the lower stratum Mzimoi\Mz(mO) of lemoi only if there is some subsequence
{[A;+1} C{[A;]1} such that either
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(a)  there are two (distinct) points x;, x, on S, away from which A;s —— @
in C®,or

(b)  thereisa point x; €%, N %, away from which A,, —— @ in c®.

Note that in case (a) both surfaces X, X, have to contain at least one of the two points

Xy, X, should [A,/] bein Vzl n VE2 N My(m) for large i’ . We are to show for
cases (a) and (b) the self~dual curvature F +.m (A;/s) for i’ >> 0 must not be zero.
0

This however contradicts the anti—self—duality of Ai’ and enables us to conclude

intersections Vg, N VE2 N M2(m0) are compact. The impossibility of case (a) was first
1

pointed out to the author by Donaldson using an "orientation argument". Here we make

this idea precise and extend it to cover the less—understood case (b).

We begin with case (a) and consider { [Ai’] } approaches some
(x, %9 [6]) € (82(53)\:183) * {[6]} away from the diagonal part Ag x {[0]} for
i’ >> 0. As explained in [D2], a neighbourhood for such an [Ai’] can be described in
the following way. Let m be the trivial bundle over S, with fibre su(2) , the Lie
algebra of SU(2) . Denote by 'é's, 8=1,2,3 , the constant sections of ;ﬁ_(;? associated to

an orthonormal oriented basis e, € €3 of su(2) . Let B3 be the vector bundle spanned

by {gs}g=1 over R. Define for x;, x, a 16—dimensional manifold

2 2
pr*z = E {(B(xi,r) C 83) % (0,€) x SO((A+)yiEB(xiJ), su(2))} ,

where 1, € are some small constants, and then fix a rule of assigning an element

n= Tr(yi,li,Ri) € le, X, a cutoff function B on S, supported away from

O(y X;)—neighbourhoods of y;, i =1,2. Finally let JE’_?_(E [R3) denote the harmonic
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space of self—dual 2—forms on S5 relative to the metric m, . Then the "alternating
method" developed in [D2] shows in this situation for i’ >> 0 a neighbourhood of
[A;/] € My(m) is modelled on  quotient ¢ ,(0)/S0(3) , where ¢, isan

Iy 172
SO(3)—equivariant map

:N — d?_?_@ﬂ.'lR:;

i U TS
solving
F (r(n))=¢, , (n)
+ X1Xg
for some assignment 7 sending an element n € N, to some connection
1)

r(n) = A®(n) on P — S5 .

There is an approximation of the map ¢x x, in terms of self-dual harmonic forms
1!

on S, . More precisely for any element n = TT(y;,A;R;) € le’x2 , we identify

¢x (n)€ X i ®3, B via L2—projecti0n with the vector

17%2

3
q(n) = 2 q4(n) - wrﬁgsE o'f_?_ﬁm:; .

I,8=1
For such elements we have
2
2 2
(3'1) qrs(n) = 87 .2 Al (Riwr(Yi))es)8u(2) + O(Ia) ]

i=1
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where X = max{2,,A,} . To see F_(A/) # 0, it is enough to show q#0 if T << 1

and for this suppose we are to consider two different cases separately as follows.

Assume first both x,, x, lie on the surface 21' 22 disjoint from
Fo = {wy = wg = 0} . Rewrite (3.1) into the form

N

2 42

A%
qrs(n) = 812}2( 2 i.-% Riwr(yi))es)su(z) + 0(}-3)
i=1

and one sees q # 0 for small X # 0 if the norm of the vector

2 a2 2 )2 2 52
_ i i i
v= {3 FRw0) T R0 T 5 Runtyy)]
i=1 i=1 i=1
in (su(2))93 is definitely bounded away from zero. As v is invariant under the

transformation (Al,Az) — (tAl,tAz) for t # 0, it suffices to show v # 0 on a compact
piece {A = ]’0} for some constant 1'0 # 0. In the case when, say, A; =0 so that

Ag = A, is non—zero, one finds readily y is not the zero vector in (su(2))93 . If neither
Al nor A2 is zero, we prove y ¥ 0 by an orientation argument as follows. Suppose on the

contrary that the vector v is the origin of (su(2))63 . Then we get two sets of oriented

basis, namely,

{Afnlwr(yl)}fﬂ and {"ng“’r(Yz)}g:l ’

of su(2) which are however related by an grientation reversing transformation



—1 € GL(3,R) . This is clearly absurd and one concludes therefore q # 0 if X << 1 in this

case.

Now we assume, say, x; € El N 22 in which case the point x, need no longer be on
El or 22 . The previous argument applies in this situation except possibly for the case

when Y, i8 a point of F, since then y takes the form

2
{ 2 "?Riwl(yl)’ /\ER1&’2(}'1), A§R1w3(y1)} € (Su(2))93
i=1

and the orientation argument breaks down if "1 = 0 . In this case however we have

’XO = Ay and for small A, say, 0 < A < % A, , the vector

"%lel(xl) + Angwl(xz) € su(2)

is non—zero as w; is the Kihler form associated to m . One argues as before v # 0 on

{A= IO # 0} and this completes the proof that intersections vEl n sz N My(m,) stay

away from (x,x,;[6]) € (52(33)\‘553) x {[8]} in case (a).

Now we consider case (b) and suppose {[A;/]} approaches some (x;x4;[6]) in

the diagonal part AS3 x {[6]} CM,(m,) as i’ — . Thus for a large i’ the

connection Ai’ ig close to the trivial connection & on complements of small geodesic
ballg about the point x, € S3\F3 - In this case we can define for A., a "measure of

concentration"
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(3.2) Wy =min{£ IF(Ai/)|2=1612-1];x653]
? 1B(xp)

having the property that p,, — 0 as i’ — o . Here 5> 0 is a small constant to be

specified later. Pick an x,, € S, satisfying

£ |F(A; )% = 1627~ 7 ;
(xi’n“i’)

the choice of which will not be important in our discussion. Now for a fixed small Py >0
we can dilate neighbourhoods B(xi; ,po) of Sq bya factor 1/ p;+ and obtain thereby a
sequence of connection {;li/} defined on large balls of T, S, = rY. By passing to

1

subsequences and after gauge transformations, we may assume {Ai'} converges as

i’ — o on compact subsets of IR4 away from a finite point set L to an ASD connection

-~

A , which extends to the whole of st=rtu {w} . There are three possibilities:

=

(1) is empty,
(3.3) (ii) L consists of a single point z, € B, and
(iii) L consists of two distinct points z,,z, € B , at least one of

which lies on 9B% .

We shall show in the next section that F +(Ai’) #0 for i’ >> 0 in these three cases

using rather technical arguments. The compactness of Vs N sz n Mz(mo) will then
1

follow. Note that the method we are going to discuss in fact can be used to describe a
neighbourhood system for the diagonal part S2(83) x {[6]} in M mO) but we need not
go into full details of this to exclude all possibilities in (3.3).



—923 —~

Remark We conclude the whereabouts of the ponts z, z;, z, in cases (ii) and (iii) by the
fact that

1:[; |P(A)|? = 167
4

a direct consequence of the way we define Ai s . Such conclusions might sound unfamiliar
at first sight but has in fact been considered in [D1] . Indeed, assuming c,(P) =1 in the
above discussion, we can deduce {fki;} converges to some connection on R for

i’ >> 0 since the only other possibility is that {Ai;} would converge to the trivial
connection on IR4 away from a point in §3 = 0B4 which however would contradict the
choicés of center x(Ai;) for the connections A,/ . It is the point that we perform such
kind of dilation for A;, right at the center x(A,,) rather than the point x; to secure
the convergence of Ai’ in [D1]. In our present situation however, we are to consider
some more possibilities as described in cases (ii) and (iii) in addition to the convergence

case (i).
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§ 4. An elaboration of the alternating method

We show in this section all the three possibilities in (3.3) cannot occur and our main
tool is a variation of the alternating method developed in [D2]. Consider first in case (i)
that the point set L is empty. In this situation one finds [A_] € My(S*) . Should we
take 5 in (3.2) to be the small universal constant in the appendix of [D1] required to
obtain the decay estimates for ASD conections on R , the connections Ai s can be put

into a standard form over a conformal connected sum S3 # S:t. , relative to the trivial
ﬂi 7 1

connection 6 on S, and Am on Si, 2Tx.,;XU {w} (cf. [D2]). Conversely it is
i i

possible to the apply the alternating construction to obtain all such ASD connections,
parametrized by a quotient ¢;1 4 A (0)/S0(3) for some SO(3)—equivariant map
070" o

bepiph, * (BT CSI\Fg} = (Org) x B x SO(ad PR 1) ep(x vy su(2)}

®

_— ine,@.-m"'.

Here T, By are small constants with Ho depends upon I\m while ﬁA is a slicein a
1]

small neighbourhood U,  of [Am] in M2(IR4) transversal to the conformal group
®
action conI(IR4) . Furthermore, A -a is a connection on P with [A +a] € ﬁA . To
©
show F_(A;/) # 0 for large i’ in this situation, we identify as before the image of

¢ 1 atapoint n= (x,,u,A +a) with some q(n) € ¥ 2 g i having components
xO’”O'Am o + ‘

(4.1) rg(n) = 87°K2(F (0 (A +A), 0,(x) 8 )y on + O(4Y)
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* -~
where o denotes the antipodal map on st . Note that o (A +a) becomes self—dual as
o 1is orientation reversing on S4 . This time we wish to check
* -
(F +(a (Ag+a)y wr(x)ees)su@) is not all zero for r,8 € {1,2,3} but it is a consequence

of the following lemma as {wl_(:ic)}:::1 constitutes a frame for (A once x € B(xy,r)

2
Y,
is in the complement of Fg = {w, = wy =0} .

*
(4.2) Lemma The curvature field F +(a A) is nowhere vanishing for any [A] € M2(S4) :

The proof of this lemma, using the renowned ADHM construction, is rather diverging from
the present discussion and 50 will be postponed to the appendix. Granted this result for the
moment, one sees readily in (4.1) that F +(Ai’) #0 for i’ >> 0 and thus the possibility

of case (i) can be excluded.

Consider now in case (ii) {A;/} converges to some connection ;&m on R4 away
from a point z; € B* when i’ — o . Note that [;km] € Ml(S4) in this case. We
defined for each A,, with i’ >> 0 a center z, € R? and a radius A;s asin [D1]. By
dilating 5ma.11 neighbourhoods of zs € R? in a usual way we can represent A, isa

standard form on the conformal model 83 # Si. # S:_, of S3 relative to the ASD
pi 7/ 1 A i 7/ 1

. N 4 4
connections 8, Am,I on Sa, Sx_/, Sz_’

1 1

respectively. Here the two S4—factors are joining

in a row and I denotes the standard ASD connection on S:_ , (We have thus dilated a
i

neighbourhood of x;, € S, twice.) This time to capture A, for large i’ weneed a
small variation of the alternating construction. Denote by S3 11 Si the disjoint union of
S, and S: . We then work with the manifolds Si and S, ]| S: in the construction. As
a first step of the iteration in the alternating construction, one defines a connection on

X # Si # S: by cutting off 8, f\m, I just asin [D2] when the alternating construction
b A
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starts. The procedure of shifting error terms, a core feature of the construction, is applied
separately to Si and S3 11 Si‘ so that u, A can be treated as independent parameters.
On may then find small constants p, A, depending on the (fixed) connections 6, .:\m, I
so that the iteration proceeds indefinitely when u < B and A < ,\0 . In this way we

obtain SO(3)—equivariant maps

e, (B0 = [0,6) x SO((ad P} ), su(2))}

 {B(ar) x [0,€) x SO(ad P ), (a3),} — #2ep &

with the property that some {g 42,2 A =0}/80(3) contains [A;,] if i’ islarge.
tF aut bt Rl | m
This time the projection image q = 2 Qe @ 'é‘s € J?_?_ ® 3 of ¢x,#,z, A,;& has
r,s m
components

gy = 872K (F (0 A ) (0088} gy 90 + OG°)

for some ASD connection ;\m 3 on [R4 approaching Acn as A— 0. Since x ¢ F3 , we

observe that

* 3 9
{(F+(a Am,A)x’ ”r(x)ees>su(2)}r,s=1 ER
is bounded away from the origin as in the limiting case A = 0 the curvature field
* ~
F_(o A_) is also non—vanishing. One argues then F_ (A;/) #0 for i’ >> 0 and this

excludes the possibility of case (ii).

Now we come to the final case that Ai’ — 8 on IR4 as i’ — o away from two
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points z;, z, on B with one of which lies on S° = 8B4 . In principle Ai’ can still be
captured eventually and put into certain standard form on some suitable conformal model
of S, . However, we are not able to deduce F_ (A;/) #0 forlarge i’ by the previous

method for the following reason. The self—dual harmonic forms on S3 # Si have
b
pointwise norm scaled down by a factor of O(pz) in the leading term approximating the

ASD equation in this situation. As g4 —— 0, so that the leading term goes down to zero,
the previous argument breaks down and it fails to give F_(A;/) #0 for i’ >> 0 this
time. To get around this difficulty, we observe that for A,, with i’ large it is possible to
define two (distinct) centers x,(A,/), xo(A;/) on S, and respectively two radii
A(A;7), Ay(A;s) asin [D1]. Furthermore one finds for any given integer N >> 0 the
centers x;(A;s), xo(A;s) stay at least O(NA(A,/,)) apart for large i’ , where (A7)
is the larger of the two radii A;(A;/), A,(A;s) . Given such nice properties-of A,/ we
may now argue F +(Ai’) #0 on §4 for i’ >> 0 asin § 3 by a more delicate calculation
as follows. Note that there is a brief discussion concerning the existence of such connections

on certain definite 4—manifold in [M2].

We begin with a technical lemma for A,, with i’ >> 0. For such a connection the
geodesic balls BNAI(Ai,)(xl(Ai’)) and BNA2(Ai,)(X2(Ai’)) can be assumed disjoint

2
and we write §3 = Ss\angNAa(Ai/)(xa(Ai/)) . Let

2
(83)" = 83\ LU Bina (A, ) %alAi) -

Then the restricted connection A,/ | (3,)" can be extended smoothly to some (Ki/)'“
3

defined on the whole of 83 in such a way that
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2
F(X..))=0 UsB A)) .
(i) =0 on U By, () %alAir)
Furthermore, by taking N sufficiently large we obtain a uniform estimate

| F(Ki, ™| < const. | F(A,/)|

2
on the annuli U BLN).G(Ai,)(xa(Ai’))\B%NAa(Ai,)(xa(Ai’)) for all large i’ ([D1]

a=1 2
Lemma 20). Taking into account of the fact that

IF(AiI)l S const. m on B%N/‘G(Ail)(xa(AI’))\B%NAQ(AII)(XQ(AI’))
a* 1

we conclude ||F(Ki, )l o can be arranged arbitrarily small and therefore (Ki /) isa
L

connection on the trivial SU(2)—bundle over S -

4.3) Lemma For sufficiently large i’ we can find for (X.,)" a global gauge on which
4 i g gaug

(Ki/)~ =d+ ('zi'i,)M , where (?fi/)N is a smooth connection matrix satisfying
1G85 )7 g < comste [[ECCE NI
on §3 for all integer k 2 0.

The proof of this lemma is much in the spirit of [FU] § 8 and [U1] § 3 and so we
shall be brief. Recall that the centers x,(A;/), x5(A;/) for A,/ are close to some
X, € S5 and so we may find some fixed small geodesic ball B(xO,ro) on S, so that

x;(A;7), x9(A;s) are well inside B(xy,ry) for i’ >> 0. Now fix a suitable covering
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% } of S, with the following properties.
a 3

(i) Each %~ B* are small geodesic balls on S, .
(ii) U = B(xo,ro) :

(iii) U{: %,} covers 5,.

(iv) U{$ %,:a#1} is disjint from B(x,,31p) -
(v) B-;rN,\a(Ai,)(xa(Ai’)) C B(xg,31,) for a=12.

Note that the choice of such a covering is not crucial to this argument. Now we can find for

each %, a(Coulomb) gauge on which (X;,)" =d + (3,,/)" with
||(ga,ir)~||ck < const. |IF((Kif)~)||L2 :

* ~ ~
Moreover, since ||d (F(d + (2, ;/)")||_, is finite, we can deduce the regularity
? L

1651 S const QA
on § ¥, N ga for (a a i,)N just as in [FU] ‘Proposition 8.3 as on gs the connection
(Ki;)'ﬁ is ASD. Then we can construct a global gauge on S, for (Ki;)N following [U1]
§ 3 s0 that (Ki;)N =d+ (gi’)~ on this gauge satisfying

"(gi')~||ck < const. IlF((Kif)~)||L2

on §3 . The lemma follows.
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Now we define new connections
~ ~
Ki[ - d + ﬂil(ail)

on Sa , where each ﬁi’ is a smooth cutoff function supported away from

2
ang IN Aa( Ai’)(x a(Ai’)) and takes the constant value 1 over §3 . Note that Ki’ |§

is gauge equivalent to A,/ |§ . Moreover, we have
3

3

|F(K;/)| € const. {|F(A;/)| + |dB;/ |}

ﬁconst.{ 7 21 + 1 ]
N'AS(A/)  NA(A))

< const. Tg_“l

on BNAa(Ai’ )(xa(Ai' ))\B%NAQ(Ai’ )(xa(Ai’ )) . As the connection matrix

?fi, =B -(?fi/)N is small in CO(S3) , We can put Ki’ into a Coulomb gauge so that
Ki’ =d+a;, on 55 with |a;/| uniformly small (c.f. [U2]). Now we deduce better

estimates

. T(A)
(4.4) ||a.i,||L2 < const. I

for such connection matrices a,s by using
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lla; ||L2 < const. "ai,”L‘%/?'

< const. {”F+(Ki’)”L4/3 + |[(31’Aai’)+"L4/3

(A, )
< const. { —g— + [la;/ "L2' ”ai’”L4

and the fact that ||ai, [ 4 i8 uniformly small if i’ >> 0. As we shall see however, (4.4)
L

cannot possibly hold for i’ >> 0 if Ai’ is to be ASD. This contradiction will then rule
out this possibility of case (iii) described in (3.3) and we will be home.

To see (4.4) cannot hold for i’ large we observe first F+(d+a.i;) =0 on §3 and

hence that
(4.5) J Tr(d*a, Au ) = —J Tr((a; Aay /) Aw)
g3 §3
: N 2 2N
for each harmonic elements w . =w ®e of Hy = ﬂ+(su(2)) where 1,6 =123.

The left hand side of (4.5) induces a vector u € R? with components

3
{j Tr(d+aifl\wrs)}

r,8=1
g3

and for our purpose it suffices to show that the norm |Ju| 4 of u satisfies
R

1
4.6 u > const. (log N
(4.6) X_z_(A. I |||Rg_ (log N)

lI



8o that (4.5) cannot hold for N >> 0 in view of (4.4). To establish (4.6) we shall show for

certain transition function p ai’ that

(4.7) J' Tr(d¥a, Aw )=

S

2

2

l TI(F(IA (A.;))Ap;],.i’ wrspa’j’)
a=1 NAa(Ai,)(xa(Ai’))\B,\G(Ai,)(xa(Ai/)) @

+ O(X%(A,/)) |

where I, (A:/) is a rescaled standard ASD connection of radius A (A,/) for o= 1,2
a* 1

while By Aa( A )(x a(Aif )) has orientation gpposite to the usual one so that Wy
becomes ASD. Assuming B (x (A.,)) is a flat 4—ball for simplicity we can

deduce then by a straightforward calculation that

(4.8) |£ T(R(, Ai,))Ap;fi, UesPai’)
NA (A, ) %alAi By (4 ,)(xa(A;/))

2 2
2 const. A (A,/) - log N+ O(2 (A;/))

and (4.6) will follow should we apply the orientation argument as in § 3 to the leading

terms
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3

—1
Tr(F(IAa(Aiz))Apa,i’ wrspa,i’)]
r,s=1

2
L
a=1 BN (A, ) alAi By (A, )(%a(Ay7))
of (4.7) and take into account of (4.8) in addition.

To see (4.7) holds we observe on the annulus
Bny o Ai/)(x o(A;7)\B A (A, )(x o(Aj)) it is possible to construct for A,, a
"transversal gauge" as discussed in [FU] § 9. Indeed, on the 3—sphere
SI?;T A (Ar) = 0By A Ai/)(xa(Ai’ )) we find a gauge for A,, on which the connection
matrix b'i’/ satisfies

CO(SI?IAa(Ai,)) CO(SI?"IAG(Ai/))
1

< const. -
N /\"'(Ai/

This gauge extends to one on the whole of By, (A, ,)(xa(Ai’ )\B, (A, ,)(xa(Ai’)) in
a‘i a‘’i

such a way that the (extended) connection matrix b‘i’; for A;, satisfies

NA(A;)  A%(A) dr}

. %y)| < const. : — T
(49) I5()] £ const [‘3—+Jd(y,xQ(Ai/)) r

2
Sconst.{ 5 1 + Yo%) 3}'
N (A) (@ xg(A )

As estimate we shall need in a moment is that on Sia( A) = JB A Ai’)(x olAi7))
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2
(4.10) ” Tr(b‘i',(y)/\wrs) < const. A” (A;/)
Sa
which follows easily from (4.9) as one sees.

The connection matrices a,, and b'i’, (for the trivial connection) on the annulus

BN"a(Ai’ )(xa(Ai’ ))\BAa(Ai’ )(xa(Ai/)) are related by

1

—— L] _1 a =
8, =—dpy i1 Py it Pei Py

for some transition function p ai’ satisfying
¥
a a
(4.11) ldpa,i/|S|ai/|+|bir|$2|bi/|
and so we have

(4.12) J Tr(d*a A ) =J Tr(a, rAw,)

8, &3,

- J Tr((pg;/b5 oy ) + O 2(A;))
AN

= [ TOLMEG s + O0ZA)
a§3
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using the estimate

” —dpall pa lrl\w < const. —3(—) vol(ag )=0(A (A /)
o8,

Now we apply the Stokes’ theorem on the annulus

BN/\ (A )(x (A, I))\BA ( )(x (A /)) to get

(413) = T8 A wgp i)

a§3

l TH((d b5 )P, 0P 50))
N (A )%l By (4 )(Eg(Ai))

+J Te(b2/A(P] 0y 1)) + OO Z(A )
SA (A )(x (A )

by (4.9), (4.11) and the fact that d g% = 0 - By (4.9) we can estimate the boundary
integral

” Tr(b?’A(p;Ti""rspa,i’)) < const. Ai(Ai;)
,\ (A )( (A i'))

and one finds then (4.12) and (4.13) combine to give
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J Tr(d+a,l, Awg)

08,

£ To((d 705 )M (Fg i/ Ui 7)
N2 (A, )(xa(Air ))\B"a(Ai’ )(xa(Ai' )

+0(x2(a,))

- L TI(F—(IA (A-/))A(p;}i’ wrspa,i’))
N"Q(Ai’)(xa(Ai'))\BAG(Air)(xa(Ai’)) at 1

_l Tr((b§, AbT /)_A(p;:’li/ P i)
NAa(Ai;)(xa(Ai’))\BAa(Ai,)(xa(Aif))

+0(A%(A,))

which is in essence (4.7) should one apply the estimate of |b?/(y) | in (4.9) to this

situation. This finishes the proof.
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Appendix

Using the ADHM construction, we wish to show here that the curvature field
F = F(A) of an SU(2) ~ Sp(1) connection A on a quaternionic line bundle E — s
with ¢,(E) = -2 is nowhere vanishing if A is self-dual. All such self—dual connections
can be realized in the following way (c.f. [A]). Regard st a5 the quaternion projective
line P,(H) with scalar multiplication on the right. Let C, D be two constant

quaternionic 3x2 matrices and define
v(x,y) = Cx + Dy

for (x,y) € W22 . Provided v(x,y) has maximal rank for all (x,y) # (0,0) , the column
vectors of v(x,y) span a quaternionic plane in IH633 and hence its orthogonal complement
E(x,y) , a8 (x,y) varies, defines a quaternionic line bundle E — st n P,(H) with
¢y(E) = —2 . We assume v(x,y) always has maximal rank in what follows. By taking
orthogonal projections P(x’y) W®B__ E(x’y) for all (x,y) # (0,0) , we obtain an
Sp(1)—connection on E in a standard way. The associated curvature field can be given in

affine coordinates (x,y) = (x,1) by
2.— X
F=PCdxp“dxC P

*
where p2 = v v. In this setting F_ = 0 precisely when p2 is real. Now if we pick an

orthogonal gauge u of the bundle E,i.e.
* *
uv=0and uu=1,

then the curvature F can be expressed in this gauge u by
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* -9 _ ¥
F=uCdxp “dxCu .
We are now to show that F is non—vanishing given ,a2 is real.

%x

The first thing we notice is that if p2 = v v is a real matrix, then it must be
symmetric and positive over R . In particular, p2 = MT M for some real matrix M and
hence we may write p_2 =M1 (M_I)T . Thus the curvature field can be written into

the following special form:

F=uCdM - (M HTax '
= (' ¢ M Yax A dx((M )T
* -1 _, ¥ —1.*

=(uCM JdxAdx(u CM )

= (wy,Wp)dx A 4% [31]

Y2
* a1 e @2 ; *n s
where (w;,w,) =u CM ~ EH". Note that (w;,w,) # (0,0) since u C is
*
non—vanishing. To see this, we assume on the contrary that u C vanishes at some
*
x5 = (xg,1) ,i-e. u (xp)*C = 0. Then we would have
*
O=uv
*
=u +(Cx+ D)

*
=u (x)'D at x=x,

*

which implies in particular that u (x;)-v(x,y) =0 for all (x,y) #(0,0) . It would follow
then the bundle E is spanned trivially by the vector u(xO) € 13 , a contradiction to the
assumption that co(E) =-2.
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Now, as required in the argument, we write curvature field F explicitly as follows:

F = —2{(dx"Adx® + dxAdx)(w, § 7, + wy 1 W)
+ (@t Adxd + axtha®)(w W, + wy §7y)
+ (dx'Adx? + ax®AaxP)(w K w + wa kW)

To finish the proof, suppose on the contrary that F vanishes at some Xg ie.

wy(xg) 1 W {xp) + wy(xp) i walxg] =0
wy(xg) 3 W {Xp) + Wylxp) J Walxg) =0
w(xg) k W1(Xp) + Wolxg) k Wolxg) = 0 .

Clearly then we have |w,(x)] 2_ | wo(x4) | 2 which is moreover non—zero since
(wy,w,5) ¥ (0,0) . Using the fact Wi(xo)—l = wi(xo)/ | w;(x) | 2 one obtains

W, (x0) 1 Wy (xg) ™ = —wo(xg) § Wo(x)) ™

1%/ P ¥/ = TWalXe) T WalXg
. . -1

(a.1) Wl(xg) J Wl(xo = —Wg(xg) J Wg(xo)
-1 -1

wy(xg) kwy(xg) = —wy(xg) k wo(x,)

1

and in where we may assume w;(x,) € Sp(1) for i =1,2 via normalizations

wi(xo) — wi(xo) / | Wi(xo)l . By the fact that the adjoint representation of Sp(1),

which sends q € Sp(1) to

7{q):ImH——ImH; v-———-—-;qvq_1 ,
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is a homomorphism
x : Sp(1) —— SO(3)

with images in SO(3) , we conclude each of the following sets of vectors

{wy(xg) i wy (xg) ™, wy(xg) 3wy (xg) ™ Wy (xg) kwy(xg) '}
{w2(x0) i Wz(xg)_l: Wg(xo) i w2(x0)_1, Wz(xo) k w2(x0)—1}

forms an oriented orthogonal basis for Im H . This however gives a contradiction to (a.1)

by the orientation argument and thus lemma (4.1) follows.



—41 —

References
[A] Atiyah, M.F.
"Geometry of Yang—Mills Fields"
Fermi Lecture Notes, Scuola Normale Sup. di Pisa, Pisa (1979)
[BT] Bott, R., Tu, L.W.
"Differential Forms in Algebraic Topology™
Springer—Verlag, New York (1982)
[D1] Donaldson, S.K.
"An Application of Gauge Theory in Four Dimensional Topology"
J. Diff. Geometry 18 (1983) 279—315
[(D2] Donaldson, S.K.
"Connection, Cohomology and the Intersection Forms of 4—Manifolds"
J. Diff. Geometry 24 (1986) 275—341
[D3] Donaldson, S.K.

"Polynomial Invariants for Smooth Four—Manifolds"
Preprint

[FMM] Friedman, R., Moishezon, B., Morgan, J.W.

"On the C® Invariance of the Canonical Classes of Certain Algebraic
Surfaces"
Bull. Amer. Math. Soc. (N.S.) 17 (1987) 283—286

[FU] Freed, D.S., Uhlenbeck, K.K.
"Instantons and Four—Manifolds"
Springer—Verlag New York Inc. (1984)

[K] Kodaira, K.
"Or Homotopy K3 Surfaces"
Essays on Topology and Related Topics, Springer, New York (1970) 58—69



[M1]

[M2]

[U1]

[U2]

— 42 —

Mong, K.C.
"Stable 2—Bundles with (cl,cz) = (0,2) over a Homotopy K3 Surfaces"
Max—Planck—Institut Preprint (1989)

Mong, K.C.
"A Remark on Taubes’ Grafting Procedure of Instantons"
Max—Planck-Institut Preprint (1989)

Uhlenbeck, K.K.

"Connections with LP Bounds on Curvature”
Comm. Math. Phys., 83 (1982) 31—42
e

Uhlenbeck, K.K.
"Removable Singularities in Yang—Mills Fields"
Comm. Math. Phys., 83 (1982) 11-29



