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Introduction

Let 53 be a (generic) homotopy K3 surface having a multiple fibre F3 of

multiplicity three. In [MI] we have determined for S3 the moduli space M2(w) of

w-fitable 2-bundles 6 ---+ 83 with (cl( ~), c2( ~») = (0,2) relative to some Kähler

form W of a Kähler metrie mO on 83 , The pUIpose of this note is to explain for generie

(but not necessarily Kähler) metries mO on 83 elose to mO it is possible to malte use of

the explicit deseription of M2(w) and apply the method introdueed by Donaldson in [D3]

of defining polynomial invariants to construet eertain symmetrie bilinear maps

defined on the sublattice K~ CH2(S3;1l) annihilated by the canonical class KS of 83 .
3 3

Furthermore we show q2 8 (mO) links to the interseetion form Q8 of 83 on H2(8 3ill )
) 3 3

in the following way.

Theorem q2 S (mO) = 2QS as symmetrie bilinear maps on K~ )( K~ .
, 3 3 3 3
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One should note that q2 S (mO) ia not a polynomial invariant of S3 in the sense of
, 3

[D3]. Neverthelesa it shares the property being a polynomial on QS and KS3 3

([FMM] ).

A natural eompactifieation of M2( w) , by ita explicit algebro-geometrie deseription

obtained in [Mt], is to add to it a copy of the symmetrie produet S2F3 of the multiple

fibre F3 . NoUting Mt(w) is empty, one would ineline to think then the Yang-Mills

compactifieation M2( w) of M2(w) in this situation could be as niee as that

where [9] denotes the gauge equivalenee dass of the trivial conneetion 9 on 53' A

main point of the present paper is to explain this is indeed the ease. To justify the

compatibility of these two compaetifieations of M2(w) , we are to deseribe a

neighbourhood system forthe lower stratum

in M2(w) , exploiting partieularly the strueture nea.r the diagonal part !S x { [9]} .
3

This is the most teehnical part of establishing the theorem granted results obtained in

[Mt].

The reason we da not work directly with the Kähler metne IDO on 53 is that such a

metrie faHs to be generie and the moduli space M2(w) , despite being smooth, ia of (real)

dimension higher than the virtual one by two. This is aceountable, as explained in [Ml],

by the appearance of the t1 eokernel bundle" ,---+ M2(w) arising !raID the assignment

l --+ H2(at( l)) ~ ( . Here we diseusa in such situations how one could sometimes get
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around this kind of difficulty by warking with nearby generic metrics mO . This is the

point that limits the domain of q2 S (mO) to the sublattice K.l )( K.l of
, 3 S3 S3

H2(S3;1l) )( H2(S3;1l) as we shall see.
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§ 1. The definition of q2 8 (mO)
I 3

In Riemannian geometry the homotopy K3 surfa.ce 83 is a smooth compact

simply-eonnected oriented 4-manifold with b~ (83) = 3 . For such a surface there defines

in [D3] a polynomial invariant qk 8 'E 8ymd(H2(83;1l)) of degree d = 4k-6 for each
, 3

integer k > 3 . To construct such polynomials qk 8 ,it requires amongst other things a
I 3

suitable choice of generic metrics m on 83 so that the 88sociated Yang-Mills moduli

spaces Mk(m)) consisting of equivalence classes of anti-Belf-dual (ASD) connections on

an SU(2)-bundle P ----+ 83 with c2(P) = k I is a smooth manifold of virtual dimension

2d . Here we consider this construction on the surface 83 for a smaller value k=2. It

turns out that by working with some special metric mO on 83 we are still able to define

certain polynomial q2 8 (mO) using essentially the same method of [D3] as we are going
, 3

to explain.

Recall that the surface 83 L IP1 is elliptic with canonical bundle

K8 ~ [F3]~ , the square of the line bundle [F3] 88sociated to the multiple fibre F3 .
3

Given any lattice point a in

one can always find a smooth oriented real surface ~ (83 representing a with the

property that the intersection ~ n F3 is empty. For such a surface ~,we can define as in

[D2] a (complex) line bundle .Z:'E ----+ M2(m) by the assignment
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sending a eonnection A on P to the determinant line assoc:iated to the Dirac operator

IA IE coupled with the restricted connection AlE· Provided E is suitably chosen, we

can find for the bundle $E --t M2(m) transversal sections with zero sets VE n M2(m)

containing elements [A] which are non-trivial on E. As M2(m) has virtual dimension

fOUT, one ean consider then appropriate intersection numbers IV
E1

nV~ n M2(m) I on

M2(m) .

(1.1) Lemma Transversal intersections V
E1

nV~ n M2(mÜ) are eompact, provided the

surfaces EI' ~ are disjoint from the multiple fibre F3 and mO is a generic metrie

suffic:iently elose to mO.

We shall show thislemma in eoming seetions. Assuming this for the moment, we obtain an

assignment

and henee asymmetrie bilinear map

q2 5 (mO) : K~ )( K~ ---+ 7l.
, 3 3 3

for a generie metrie mO dose to IDOJ as wished.

Despite the framework just described does not apply to the (non-generie) Kähler

metric mO on 53 J it will be important for us to eonsider transversal intersections



-6-

V~l nV~ n M2(mO) in order to determine the polynomial Q2,S3(mO) . Note that it still

makes good sense to talk of such intersectionB since the moduli space M2(mO) is, after all,

a smooth manifold. This niee property of M2(mO) follows !rom a theorem of Uhlenbeck

and Yau allowing one to identify M2(mO) with the moduli space M2(w) of stable

2-bundles determined in [MI]. Besides, there is no U(I)-reduction in M2(mO) to worry

about for the following reason.

*By choice w= Ws + N tP Wp , the SUDl of an arbitrary Kähler form Ws on S3
3 I 3

and a multiple of the pullba.ck Fubini-Study form Wp of IPI . Here we take N to be an
I

integer larger than

Then, as a result of the following proposition, one finds M2(mO) in fact contains no

U(l)-reduction at all.

(1.2) Proposition There is no holomorphic line bundle $ --+ S3 satisfying w· $ = 0

and $. $E {-1,-2,-3}.

Proof Suppose on the contrary there is such a bundle $ over S3' The Riemann-Roch

formula gives then

Assuming $..;1 = -1,-2,-3 , we have either
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Consider first the case when $. [F3] = °.Ir hO( $ 8 [F3]) ~ 1 , we have that the

bundle $ e [F3] is represented by an effective divisor D on S3 satsifying

[D] • [F3] = °.It follows D ia equivalent to a combination of fibres on 83 and one

infers then $. $ = °,a contradiction to the assumption that $. $ f °.One

argues aimilarly for the case hO( $18 [F3]) ~ 1 . Suppose now that ~. [F3] f 0 . If

hO
( $8[F3]) ~ 1 , then we have ( $ 8 [F3])· [F3] ~ °and the assumption implies

$ · [F3] ~ 1 . As w· $ = 0 for such a bundle $, one finds on the one hand

deg ( $ ~ [F3]) = deg [F3] = deg [F3JW W Ws
3

while on the other

deg ( $8[F3]) = deg ($8[F3]) + N( $ ·F)
W Ws

3

1t followa then

deg [F3] > N( $·F) > N> deg KS '
Ws Ws 3

3 3

This is a contradiction as KS ~ [F3] 82 . The treatment for the case
3

hO( 2 1
8 [F3]) ~ 1 ia similar and this proves the proposition.

Note that transversal intersections V
E1

nV~ n M2(mO) are smooth (real)
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2-dimensional manifolds rather than a finite number of points. They are moreover compact

as the argument of proving lemma (1.1) will show. We shall however move on to determine

q2 S (mO) first in the next section. The proof of lemma (1.1) is quite technical and will be
) 3

postponed to § 3 - § 4.
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§ 2. The determination of q2 S (mO)
, 3

The caleulation of q2 S (mO) involves more generally the consideration of certain
, 3

problem that we wish to diseuss first. Let X be a smooth compact simply-eonneeted

oriented 4-manifold with bt(X) odd. Suppose that for some fixed non-generie metrie m

on X the moduli space Mk(m) is a smooth eompact manifold of dimension 2d+r, higher

than the virtual one 2d by r. Assume moreover the second cohomology group H1(ad P)

in the Atiyah-Hitchen-Singer deformation complex ia of dimension r for all

[A] E Mk(m) so that the assignment A --+ HÄ(ad P) defines a cokernel bundle

(--+ Mk(m) . Then a question one would like to pose is that whether it ia possible to

recover (up to isotopy) nearby moduli 8paees Mk(m ') for those generic met ries m' on

X sufficiently dose to m. The answer to this problem would not be affirmative in general.

However, with the additional assumption that Mk(m) and Mk(m') are all compact, it is

indeed possible to reeover Mk(m') in the following way. Our approach follows [FU] .

Let A be the affine space of connections on P and 9l = eS(GL(TX)) the

Banach space of eS-automorphism of the tangent bundle of X for same integer s >> 0 .

Writing P + = ~1 + *m) , we define a map

with the property that for all fixed ; E 9l the zero set {F+,. (A,;) = O} C .A eonsists

*of all ASn connections on P relative to the pullback metrie f/J m on X. (We assume

here n1(ad P) and n~(ad P) are modelled on certain Hilbert spaees but notations for

whieh are omitted for simplicity.) At the point (A,id.) E vi x 9l the partial derivative of
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F+J. in the st -factor is the map

and we always assume 111 = 1 . For those [A] E Mk(m) we can define an orthogonal

projection

and thus obtain a seetion f 1 of the eokemel bundle ,-----+ Mk(m) indueed by the

* 1assignment A -----+ ?rAP+(1 F(A)) . Let ~t = exp t 1 E .9t .

(2.1) Proposition If f vanishes transversallyon Mk(m) , then the zero set {f =o} ia
1 * * 1

diffeomorpbie to a nearby Mk(~tm) provided the moduli spaces Mk( 9Stm) are compact

*over a small path of metries 9StID on X.

This proposition does not apply directly to the non-tompact moduli space M2(mO)

for 83 we have been eonsidering. Nevertheless, assuming the eompaetnes8 of

V~l nV~ n M2(mÜ) for nearby metrics mÜ' one will find an easy modification of the

proof for tbis proposition shows intersection numbers of V~1 nV~ n M2(mÜ) are in fact

that of V~l nv~ n M~(mO) on a "cut-down" moduli space M;(mO)' the zero set of a

transversal section U of ,-----+ M2(mO) . We shall determine the polynomial

<l2,S3(mO) by means of computing intersection numbers IV~l n V~ n M;(mO) I in

respect to the natural orientation of M~(mO) . Note that the compactness assumption on

*Mk( ~tm) in the proposition could not be relaxed in view of the pathetic possibility that
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*Mk( tPtm) could have "ends" not isotopic to M~(mO)' We first need the following lemma

to exclude this complexity.

*Let N ---+ Mk(m) be the normal bundle of Mk(m) c ~ ~X' the space of

*equivalence classes of irreducible connection on P . Suppose U E ( 3 X is a smail tubular

neighbourhood of Mk(m) diffeomorp~c to the f-ball bundle aBsociated to N .

*(2.2) Lemma Suppose for same to> 0 moduli spaces Mk(tPtm) are compact for all

t E [O,tO] . Then given any tubular neighbourhood U f of Mk(m) there is a small

constant t E > 0 such that

Proof For 0 < c ~ to we let

and by assumption the space Yt is compact. If S denotes the E-sphere bundleo f

associated to N --t Mk(m) , then the intersection Y
to

U{S f x [O,tO]} is compact and

so ia ita projection image K C [O,tOJ . As Mk(m) is properly contained in U E ' one finds

o;. K and hence that the minimum tK of K is strict1y positive. It follows then the

space Y 1 t can be written aa a disjoint union of two compact pieces
1" K

W1 = Yi t
K

n {U f x [O,j t K]} and

W2 = Yj t
K

\{U f x [O,i tK]}
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since Yi t
K

n {S E x [O,j tK]} is empty. Now project W2 to [O,~ t K]

compact subset with minimum 2t ,8ay. One checks t > 0 and that
E E

Yt E CU E x [O,t E] • The lemma follows.

Assume from now on t E [O,t
E

] and write 'A for Hi(ad P) for simplicity.

Under the present assumption the map

+ *. 1 l.dA : {NA CKer dA In n (ad P)} -----+ 'A

is an isomorphism. By the implicit function theorem, we can solve nt(A) E NA for

snfficiently small t so that

and thereby obtain a manifold

in U E ,where ~ denotes the gauge transformation group of P . Clearly then we have

which is diffeomorphic to the zero set
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in the obvious way. To finish the proof of the proposition we show ~t is diffeomorpruc to

{€,., = O} if t t- 0 is small. On the compact space Mk(m) , one finds ~t is the zero set

of

P +(( ,;1)*F(A + nt(A)))

* 2= 'KAP+{F(A + nt(A)) + t ,., F(A + nt(A)) + O(t )}

= 'KAP+{F(A) + t,.,*F(A) + 0(t
2

)}

= t{ € ,.,(A) + O(t)}

••

by 1rAdA == 0 and Int I = O(t) . As €,., vanishes transversely by assumption, we

conclude ~t and {€ ,.,=O} are in fact isotopic for sufficiently small t t- 0 . Trus proves

proposition (2.1).

To compute intersection numbers IV~l nV~ n M~(mO) I we exploit the fact that

on the bundle ,f1J2 ------. M2(mO) there is a section with transversal zero set !:>~/71.
2

A A

topologieallya copy of 83\F3 C M2(mO) ,where 83 denotes the blow-up of 83 at all

the node points on singular fibres of 83 L IP1 (c.f. [MI]). We shall show

IV
EI

nV~ n fJlit /11
2

1 = 4E1 •~ so that

It will follow then q2 8 (mO) = 2QS as the theorem asseIts. Trus calculation requires
J 3 3

A

the knowledge of H2(S3\F3jll) that we wish to diseuse now.
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...

It ia well-known H2(S3\F3j1l) is generated by H2(S3\F3;1l) together with

homology classes {et }~~1 carried by the exceptional divisors on S3\ F 3' It suffices for us

to determine H2(S3\F3;1l) . H {hr}~~1 is an integral basis of K~3 ' we can choose for

each hr a smooth surface Er representing hr with Er n F3 empty. Such surfaces Er

carry homology elasses in H2(S3\F3;1l) which will also be denoted by hr for simplicity.

(Without loss we assume each Er does not contain any node on singular fibres on 83 ,)

Using the fact W"1(S3\F3) = 0 established in [K], one finds by a Mayer-Vietories

argument H2(S3\F3;1l) is in fact generated by two elements ßl' ß2 in addition to the

lifting of K~3 spanned by {hr}· These two homology classes ßl' ß2 can be described

more easily in S3\F3 ~ SO\F ,the complement of a smooth fibre F on an ellipticaO aO
K3 surface SO' To see this, let F be a smooth fibre of So elose to Fa and t ll t 2 be

o
the two loops on F generating H1(Fi1l) . If a is a linking cirele of Fa

O
in SO' then ß1)

ß2 are simply the homology classes defined respectively by a)( tl' a)( t 2 . We have

... * * *thus showed H2(S3\F3 i1l) is freely generated by hr, ßs' et . Denote by hr , ßs' et the

dual classes of hr , ßs' et in H
2

(S3\F3i11) . A fact that will be useful in OUI discussion is

that the support of ßs can be chosen arbitrarily elose to the multiple fihre F3 by

shrinking the linking circle a. Thus we may &Ssume ßr is disjoint !rom the surfaces Er

if so wished.

Now we are ready to compute the algebraic sum of V
EI

nV~ n &t:t/11
2

using

algebraic geometry. The basic tool of our calculation is the exact sequence

for the universal bundle 1----+ M2(mO) x 53 when restricted to t1"t/1l
2

x 53 (c.f.
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[Mt]). To begin with, we notice first it is possible to choose zero set V~ of sections on
1

the bundle $1: so that V1: n tJ..e:t/71 is compact for i = 1,2 . To see this, let U be a
1 1 2

'"
small tubular neighbourhood of F3 in 53 not meeting ~1' ~ . We wish to show the

'"
bundle $~ are trivial over U\F3 C 53\F3 ~ tJ..e:t/71

2
. If we write

then it is enough to check that bl = b~ = 0 for i = 1,2 . Using the fact

cl( $E.) = c2( I)/~] (c.f. [D2]) one finds
1 1

b~ = (c2( 1)/ [~] ,ßs)

= (c2( I ~r~ (~r; [F3])/ [~]'ß8) if F3·~ = 0 .

Deform ßs to be inside U\F3 if necessary we may assume ~ and Ps have empty. I * *intersection. It follows then b~ = 0 as the section of eprl '~r2 [F3] inducing the

exact sequence (2.3) does not vanish on ~)(ßs.

'"
Now, by the fact that H2(53\F3;1l) is free of torsion, we can evaluate the algebraic

SUIn using differential forms as follows. Write ~N(E) for the Thom class of the normal
'"

bundle of a smooth oriented real surface E in 53\F3 . In the case when E is compact,

2 '"
one can &Ssume tN(~) in H (53\F3;[R) has compact support (c.f. [BT]). We shall

check in a moment
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'"
when Vb n 83\F3 is compact. Granted this, the algebraic sum of VE n V~_ n &J:::ffll.

1 I ~ 2

is given by

as what we wiah to establish.

. * .
It ia easy to see that tN(~) = 1: a~hr with a~ = hr •~ . On the other hand, one

r
'" '"

notices that tN(Vb ) is in essence the Poincare dual of Vb n 83\F3 in 83\F3 which
1 1

ca.n otherwise be realized aB Cl( $b) in this setting (c.f. [BT] p. 67 J p. 134). As berore,
1

2 A *
one finds cl( $~ E H (83\F3) has only hr-eomponents with coefficients

as the section of l@pr~(@pr; [F3] inducing the exact sequence (2.3) vanishes to order

two at transversal intersection points of ~ and Er' It follows 9N(V!;.) = 2tN(~) as
1

wished.
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The rest of this paper will be showing for real surlaces Ei' ~ of 83 disjoint !rom

the multiple fibre F3 J tranaversal intersections V
EI

nV~ n M2(mO) are compact for

the Kähler metric mO on 83 . The main point we need ia that the surlaces EI' ~ are

submanifolds of 83\F3 on where the 1R
3
-bundle A~,mo -----i 83\F3 is naturally

trivialized by the Kähler form w together with Re, and Im t/J , the real part and

imaginary part of a non-zero section ,E HO(K8 ) . This argument can easHy be extended
3

to those generic metric mO elose to mO. Indeed for such metrics similar trivializations of

the bundle A+2 / can be found over 83\ UF ,the complement of a small neighbourhood
,mO 3

UF of F3 not meeting EI' ~ . Thus one may draw the conelusion
3

V
E1

nV~ n M2(mO) are actually campact far such metrics and this ensures in particular

the map <12 8 (mO) constructed in § I is indeed well-defined. For simplicitYJ we write in
J 3

what follows w1' w2' w3 for the self-dual harmonic forms w, Re fl, Im ~ on 83

respectively. Also we assume "'1 Aw2 Aw3 orients A~ over 83\F3 .

To show V
E1

nV~ n M2(mO) is compact, we observe first MI(mO) is empty so

that

Thus a sequence {[Ai]} of elements in V
EI

nV~ n M2(mO) can possibly approach

the lower stratum M2(mO)\M2(mO) of M2(mO) only if there ia same 8ubsequence

{[A./]} ( {[A.]} such that either
1 1
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(a) there are two (distinct) points xl' ~ on S3 away from which Ai' ---+ 0

in Cm ,or

(b) there is a point XoE~1 n~ away from which Ai' ---+ IJ in Cm
.

Note that in case (a) hath surfaces EI' ~ have to contain at least one of the two points

xl' ~ should [Ai'] be in V~1 nV~ n M2(mO) for large i' . We are to show for

cases (a) and (b) the self-dual curvature F+ (A.,) for i' »0 must not be zero.
,mO 1

This however contradicts the anti-5elf-duality of A., and enables U8 to conelude
1

intersections V~l nV~ n M2(mO) are compact. The impossibility of case (a) was first

pointed out to the author by Donaldson using an "orientation argument". Here we make

this idea precise and extend it to cover the less-understood tase (b).

We begin with case (a) and consider {[Ai']} approaches some
. 2

(xl'~; [9]) E(S (S3)\&S ) )( {[ IJ]} away from the diagonal part ~S )( { [IJ]} for
3 3

i' » 0 . AB explained in [D2] , a neighbourhood for such an [Ai'] can be described in
I....--J

the following way. Let su(2) be the trivial bundle over S3 with fibre su(2) , the Lie
~

algebra of SU(2) . Denote by es' s=1,2,3, the constant sections of su(2) associated to

an orthonormal oriented basis el' e2, e3 of su(2) . Let ~3 be the vector bundle spanned

by fes}~=l over IR. Define for Xl' ~ a 16-rlimensional manifold

Nx y =fr {(B(Xi'r) ( 53) )( (O,e) )( 50((A~)Y.EB(x. r)' SU(2))} ,
1 r 2 1 =1 1 l'

where r, E" are some small constants, and then fix a rule of assigning an element

n = 11(Y" ~. ,R.) E N a cutoff function ß on 53 supPOrted away from
1 1 1 X1'~ n

O( V'lj}-neighbourhoods of Yi' i = 1,2 . Finally let H~(~ !R3) denote the harmonie
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space of self-dual 2-forms on 83 relative to the metric MO' Then the "alternating

method 11 developed in [D2] shows in this situation for i I >> 0 a neighbourhood of

[Ai I] E M2(mO) is modelIed on a quotient ;-1 (0)/80(3), where f/J is an
xl'~ xl'x2

SO(3}--€quivariant map

solving

for some assignment T sending an element n EN to some connection
xl'~

T(n) = AOJ(n) on P -----t 83 .

There is an approximation of the map t/J in terms of self-dual harmonic forms
xl'~

on 83 , More precisely for any element n = TT(y·,A.,R.) E N 1 we identify
1 1 1 xl'~

rP (n) E R+2 ~ ß. ·~3 via L2-projection with the vector
xl'~

3

q(n) = l qrs(n)· wr ~ es E drf; ~ ~3 .

I,s=l

For such elements we have

(3.1)
2

qrs(n) = 8,.21: ~~ (Rjwr(Yj),es) su(2) + Op"3) ,
i=1
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where I = max{t\1'~2} . To see F+(Ai I) f 0 , it is enough to show q f 0 if A« 1

and for this suppose we are to consider two different cases separately aB folIows.

Assume first hath xl' ~ lie on the surface, ~1' ~ disjoint !rom

F3 = {w2 = 613 = O} . Rewrite (3.1) into the form

and one sees q f 0 for small I f 0 if the norm of the vector

in (SU(2))S3 is definitely bounded away from zero. As v is invariant under the

transform~tion (t\1'~2) ----+ (tt\l't~2) for t f 0 , it suffices to show y f Q. on a compact

piece {I = Aa} for same constant AOf 0 . In the case when, say, ~1 = 0 so that

t\2 = AO is non-zero, one finds readily y is not the zero vector in (SU(2))
ED

3 . Ir neither

~1 nor ~2 is zero, we prove y f Q by an orientation argument as folIows. Suppose on the

contrary that the vector y is the origin of (su(2))EB3 . Then we get two sets of oriented

basis, namely,

of su(2) which are however related by an orientation reversing transformation



-21-

-1 E GL(3,1R) . This is clearly absurd and one concludes therefore q *0 if 'I « 1 in this

case.

Now we a.ssume, say, xl EE1 n~ in wbich caBe the point ~ need no longer be on

:E1 or ~ . The previous argument applies in this situation except possibly for the case

when Y2 is a point of F3 since then y takes the form.

and the orientation argument breaks down if t\I = 0 . In tbis case however we have

1AO= ~2 and for small ~1' aay, 0 ~ "'1 ~ ~ "'2 ' the vector

ia non-zero as "'1 is the Kähler form associated to mO' One argues as before y *0 on

{'I = 10 +O} and tbis completes the proof that intersections V
EI

nV~ n M2(mO) stay

away hom (xI~; [0]) E (82(83)\&8 ) )( {[O]} in case (a).
3

Now we consider case (b) and suppose {[Ai I]} approaches some (xO'xO; [0]) in

the diagonal part &8 x {[ 0] } C M2(mO) as i I ----+ m . Thus for a large i I the
3

connection Ai I is close to the trivial connection () on complements of small geodesie

balls about the point XoE 83\F3 . In tbis case we can define for Ai I a "measure of

concentration 11
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(3.2)

having the property that JJi I ---+ 0 as i I ---+ (I) • Here 1] > 0 is a small constant to be

specified later. Pick an xi I E 83 satisfying

the choice of which will not be important in our discussion. Now for a fixed small Po > 0

we can dilate neighbourhoods B(xi I ,PO) of 83 by a factor 1/JJi I and obtain thereby a

sequence of connection {A. I} defined on large balls of T 83 ~ 1R4 . By passing to
1 X"

1
...

subsequences and after gauge transformations, we may assume {A,/} converges as
1

i I ---+ (I) on compact aubsets of 1R4 away from a finite point set Lto an ASD connection

A ,which extends to the whole of 84 = 1R4 U{(I)} . There are three possibilities:(I)

(3.3)

(i)

(ii)

(iü)

L is empty,

4L cOnsists of a single point Zo EB ,and

4L consists of two distinct points zl'z2 E B ,at least one of

which lies on 8B4 .

We shall show in t he next section that F+(Ai I ) *0 for i I >> 0 in these three cases

using rather technical arguments. The compactness of V~l nV~ n M2(mO) will then

follow. Note that the method we are going to diseuss in fact can be used to describe a

neighbourhood system for the diagonal part 82(83) x {[ 9]} in M2(mO) but we need not

go into full details of this to exclude all possibilities in (3.3).
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Remark We conclude the whereabouts of the ponts zO' zl' z2 in cases (ii) and (iii) by the

fact that

I
... 2 2IF(A,/) I = l6r -fl ,

4 1

a direct consequence of the way we define Ai I . Such conclusions might sound unfamiliar

at first sight but has in fact been considered in [Dl] . Indeed, assuming c2(P) = 1 in the

above discussion, we can deduce {Ai I} converges to some connection on (R4 for

i I »0 since the only other possibility is that {Ai I} would converge to the trivial

connection on 1R4 away !rom a point in 53 = 8B4 which however would contradict the

choices of center x(Ai I) for the connections Ai I . It is the point that we perform such

kind of dilation for Ai I right at the center x(Ai I) rather than the point Xo to secure
...

the convergence of Ai I in [Dl]. In our present situation however, we are to consider

same more possibilities as described in cases (ii) and (iii) in addition to the convergence

case (i).
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§ 4. An elaboration oI the alternating method

We show in this seetion all the three possibilities in (3.3) ca.nnot oeem and our main

tool ia a variation of the alternating method developed in [D2]. Consider first in case (i)

that the point set Lis empty. In this situation one finds [Am] EM2(S4) . Should we

take " in (3.2) to be the small universal eonstant in the appendix of [Di] required to

obtain the decay estimates for ASD conections on 1R4 , the connections Ai I ean be put

into a standard form over a conformal connected SUffi S3 # S4 relative to the trivial
X·I

jJ i I 1

connection (J on S3 and A on 84 ~ T jX U{CD} (e.f. [D2]). Conversely it isCD X.I X·I
1 1

possible to the apply the alternating construetion to obtain all such ASD connections,

parametrized by a quotient ;-1 IL A (0)/SO(3) for some SO(3)--equivariant map
xO"-O' m

2 #H3
----tl eN+~ ß. -11( •

""
Here r, /Jo are small constants with /JO depends upon Am while ttA ia a slice in a

m

small neighbourhood UA of [Am] in M2(1R
4

) transversal to the conformal group
CD

action conf(1R4) . Furthermore, A+a ia a connection on P with [A +a] E 0A"" . Tom m
CD

show F +(Ai I) f 0 for large i I in this situation, we identify as before the image of

; A at a point n = (x'/J,A +a) with some q(n) E eN+2 EB (ii3 having eomponents
xO,/JO' CD m

(4.1)
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4 * ...
where u denotes the antipodal map on S . Note that u (Am+a) becomes self-dua! as

u is orientation reversing on 54. This time we wish to check

* ...
{F+(0" (Am+a)x' wr(x)~s)su(2) is not all zero for r,s E {1,2,3} but it is a consequenee

of the following lemma as {wr(x)}~=l constitutes a frame for (A~)x anee x E B(xO,r)

is in the complement of F3 = {w2 = w3 = O} .

(4.2) Lemma The curvature field F+(u*A) is nowhere vanishing for any [A] EM2(S4) .

The proof of thislemma, using the renawned ADHM construction, is rather diverging !rom

the present discussion and so will be postponed to the appendix. Granted this result for the

moment, one sees readily in (4.1) that F+(Ai I) *0 for i I »0 and thus the POssibi.lity

of case (i) ean be excluded.

Consider now in case (ii) {AjI} converges to same connection Am on 1R4 away

from a point Zo EB4 when i I ----+ m. Note that [Am] E M1(S4) in this case. We

defined for eaeh Ai I with i I »0 a center zi I E 1R4 and a radius t\i I as in [01]. Hy

dilating ~mall neighbourhoods of Z'I E 1R4 in a usua! way we can represent A. I js a
1 1

standard form on the conformal model S3 # 54 # 84 of 53 relative to the ASn
X" ~ Z.,

Pi I 1 i I 1

connections (J, A I I on 53' 54 ,54 respectively. Here the two 54-factors are joining
m xi I zi I

in a row and I denotes the standard ASD connection on S4 . (We have thus dilated a
zi'

neighbourhood of xi' E S3 twice.) This time to capture Ai I for large i I we need a

small variation of the alternating construction. Denote by S3 11 S~ the disjoint union of

53 and S:. We then work with the manifolds 5~ and 5311 S: in the construction. As

a first step of the iteration in the alternating construction, one defines a connection on

X # S4 # S4 by cutting off 8, A,I just as in [D2] when the alternating construction
P x ~ Z m
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starts. The procedure of shifting error terms, a core feature of the construction, is applied

separate1y to s~ and S3 il S~ so that P,.A can be treated as independent parameters.

On may then find small constants PO' AO depending on the (fixed) connections IJ, Am' I

so that the iteration proceeds indefinitely when P < Po and A < AO . In this way we

obtain SO(3)-equivariant maps

f/J 'A": {B(x,r) x [O,E) x SO((ad PA" ) ,su(2))}X,P,Z,A, xm m

x {B(z,r) x [O,E) x SO((ad PA )z' (A~)z} -----+ H~ <I ß..(ft3
m

with the property that same {rp AA = O} /SO(3) contains [A.,] if i' islarge.
X,P,Z, 1 m 1

This time the projection image q = l q Sw <I es E eN~ GiD (ii3 of tP AA hasr r X ,P,Z, , m
r,s

components

for some Asn connection A on [R4 approaching Am as A--1 0 . Since X ~ F3 I wem,A ....
observe that

is bounded away from the origin as in the limiting case A = 0 the curvature field

."F+(0' Am) is also non-vanishing. One argues then F+(Ai , ) *0 for i' »0 and this

excludes the possibility of case (ii).

Now we come to the final case that A., --+ () on 1R4 as i' --+ m away from two
1
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points zl' z2 on B
4

with one of which lies on 83 = 8B4 . In principle Ai' can still be

captured eventually and put into certai~ standard form on same suitable conformal model

of 83 . However, we are not able to deduce F+(Ai ,) t 0 for large i' by the previoUB

method for the following reason. The self-dual harmonic forms on S3 # 84 have
p x

pointwise norm scaled down by a factor of O(p2) in the leading term approximating the

ASn equation in tbis situation. As p, ----+ 0 , so that the leading term goes down to zero,

the previoUB argument breaks down and it faila to give F+(Ai ,) :J:. 0 for i' »0 tbis

time. Ta get around tbis difficulty, we obaerve that for Ai' with i' large it ia possible to

define two (distinct) centera xl(Ai' ), ~(Ai') on 83 and respectively two radii

tll(Ai')J "'2(Ai ,) aB in [01]. Funhermore one finds for any given integer N» 0 the

centers xl(Ai' )J x2(Ai') stay at least 0 (Nl(Ai ' )) apart for large i' ,where 'I(Ai ' )

ia the larger ofthe two radii tl 1(Ai ')J tl2(Ai ,). Given such nice properties·of Ai' we

may now argue F+(Ai ,) '* 0 on 83 for i' »0 as in § 3 by a more delicate calculation

as folIows. Note that there is abrief discussion conceming the existence of such connections

on certain definite 4-manifold in [M2].

We begin with a technicallemma for Ai' with i' » 0 . For such a connection the

geodesic balls BNtl
1
(Ai' )(x1(Ai')) and BN"'2(A

i
, )(~(Ai')) can be assumed disjoint

2
and we write ~3 = S3\ U BN..\ (A. )(x (Ai'))· Let

a=l a l' a

N 2
(~3) = 83\ U B 1 N' (A )(x (A. I)) .

a=1 'i '" Q i' a 1

Then the restricted connection Ai I I(~3r can be extended smoothly to same (Ai ,r
defined on the whole of 83 in such a way that
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F((Ai 1 )"') = 0 on

Furthermore, by taking N sufficiently large we abtain a uniform estimate

!F(Ai/)"'! Sconst.! F(Ai/)!

2
on the annuli U B 1 NA (A )(x (A" ))\B 1 NA (A )(x (A,/)) for alllarge i 1 ([DI]

a=l"i Q i ,aI '4 a i 1 a 1

Lemma 20). Taking into account of the fact that

IIF(Ai I)! ~ const. 4 2 on B 1 NA (A )(x (A. I))\B 1 NA (A )(x (A. 1))
N A (A. I ) 'i Q i 1 Q 1 '4 a i ,aI

a 1

we conclude IIF(A j I )"'II
L

2 can be arranged arbitrarily amati and therefore (Ai I)'" ia a

connection on the trivial 5U(2)-bundle over 53'

(4.3) Lemma For sufficiently large i I we can find for (Ai I)'" a global gauge on which

(Ai I)'" = d + (ai 1)'" ,where (ai I)'" is a smooth connection matrix satisfying

11(3:" )"'11 k ~ const. IIF((A" )"')11 2
1 eIL

on ~3 for all integer k ~ 0 .

The proof of this lemma is much in the spirit of [FU] § 8 and [UI] § 3 and so we

shall be brief. Recall that the centers Xl (Ai I), ~(Ai I) for Ai I are dose to some

XoE 83 and so we may find same fixed small geodesic ball B(xO,rO) on 53 so that

Xl (Ai I), ~(Ai I) are well inside B(xO,rO) for i I » 0 . Now fix a suitable covering
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{ U er} of 83 with the following properties.

(i) Each 'it er ~ B
4

are small geodesic balls on S3'

(ii) U1 = B(~lrO) .

(iii) U {t 'lter} covers S3'

(iv) U {i u0 : 0 =F 1} is disjoint !rom B(xo,.jrO)·

(v) BiNA (A. 1 )(xa(Ai 1 )) C B(xo,iro) for 0 = 1,2 .
o 1

Note that the choice of such a covering is not crucial to this argument. Now we can find for

each U a (Coulomb) gauge on wruch (A'/)N = d + Ca .I)N wither 1 OJl

*Moreover, since IId (F(d + (a '1 )N)II 2 ia finite, we can deduce the regularity
a,l L

on tun ~3 for (a . I)N just as in [FU] -Proposition 8.3 aß on ~3 the connectiona 0',1

(Ai I)N ia Asn. Then we can construct a global gauge on 53 for (Ai I)N following [U1]

§ 3 so that (Ai 1 ) N = d + (ai 1 ) N on trus gauge satiafying

on ~3 . The lemma follows.
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Now we define new connections

t)I N N1\.., = d + ~ , (a. , )
1 . 1 1

on 83 ) where each ~, is a smooth cutoff function supported away from

2
U B 1 N~ (A. )(xQ(Ai ,)) and takes the constant value 1 over ~3' Note that Ai' I~3

0=1 l' a l'

is gauge equivalent to Ai' I~3 . Moreover, we have

on BNA (A., )(xa(Ai , ))\BiNA (A., )(xo(Ai ,)) . As the connection matrix
a 1 a 1

a i , = ßi , • (ai,)N is smail in CO(S3) I we can put Ai' into a Coulomb gauge so that

Ai' = d + ai , on S3 with lai' I uniformly smaIl (c.f. [U2]). Now we deduce better

estimates

(4.4)
22 J (A.,)

lIa·,1I 2 ~ const. 2
1

1 L N

for such connection matrices &i' by using
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and the fa.ct that Ila,/11 4 is uniformly smail if i I » 0 . Aa we shall see however, (4.4)
1 L

cannat po8sibly hold for i I >> 0 if Ai I ia to be ASD. This contradiction will then rule

out this possibility of case (iii) described in (3.3) and we will be horne.

Ta see (4.4) eannot hold for i I large we 0 bserve first F+(d+ai I ) = 0 on ~3 and

hence that

(4.5) f Tr(d+aj,Awrs) = - f Tr«vAai' )+Awrs)

~3 ~3

N 2 2~
for each harmonie elements wra = wr e es of HO c .O+(su(2)) where r,s =1,2,3 .

The left hand aide of (4.5) induces a veetor u E 1R9 with cornponents

and for our purpose it suffices to show that the norm lIul! 9 of u satisfies
IR

(4.6) 2 1 Ilull 9 ~ const. (log N)
I (Ai I) IR
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80 that (4.5) cannot hold for N» 0 in view of (4.4). Ta establish (4.6) we shall show for

cenain transition function p ., thata,l

(4.7) JTr(d+&i I AlI1rs)=

~3

where I~ (A.,) is a rescaled standard ASD connection of radius ~ a(Ai ,) for a = 1,2
0- 1

while BN\ (A )(x (A.,)) has orientation oPDOsite to the naua! one 80 that tu
A Q i' Q 1 IS

becomes ASD. Assuming BN~ o-(A
i
, )(xa(Ai ,)) is a flat 4-ball for simplicity we can

deduce then by a straightforward calculation that

and (4.6) will follow should we apply the orientation argument as in § 3 to the leading

terms
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of (4.7) and take into account of (4.8) in addition.

To see (4.7) holds we observe on the annulus

BN,\ O'(A
i
, )(xa(Ai , ))\B,\ O'(A

i
, )(xa(Ai ,)) it is possible to construct for Ai' a

"transversal gaugell as discussed in [FU] § 9. Indeed, on the 3-sphere

S~ \ (A. ) = DBN, (A. )(x (Ai')) we find a gauge for A., on which the connection
"0' )' "0 l' a 1

matrix bf, satisfies

This gauge extends to one on the whole of BNA (A., )(xa(Ai , ))\BA (A., )(xa(Ai ,)) in
a 1 a 1

Buch a way that the (extended) connection matrix b'!, for A., satisfies
.11

(4.9)

2

{

I AO'(A i ,)}<const. 3 + 3 .
- N A (A.,) (d(y,x (A.,))

a 1 a 1

AB estimate we shall need in a moment is that on S~ (A. I) = OB~ (A. I )(xa(Ai I ))

a 1 Q 1
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(4.10)

which follows easily from (4.9) aB one sees.

The connection matrices ai 1 and b~ 1 (for the trivial connection) on the annulus

BN~ (A. )(xo(Ai 1))\B ~ (A. )(xo(Ai I)) are re1ated by
o l ' a l '

-1 0 -1a. 1 = ~p . 1 • P . 1 + P . 1 b. 1 P . 1
1 a,l O,l a,l 1 0,1

for same transition function p . 1 satisfying
0,1

(4.11)

and so we have

(4.12) JTr(d+vAwrs) = J Tr(aj,Awrs)

~3 8~3

=J Tr(b~/A(p-1"wsp ,/))+o(~2(A,/))
1 0,1 r 0,1 ° 1

~3
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using the estimate

IJ -dp '1 .p-1. /Aw si ~ const. 3 1 vol({J~3) = O(A 2(A'/))
a,1 a ,1 r N A (A. ) a 1

~ a 1
1

8:=>3

Now we apply the Stokes' theorem on the annulus

(4.13)

by (4.9), (4.11) and the fact that dOwrs = 0 . Hy (4.9) we can estimate the boundary

integral

and one finds then (4.12) and (4.13) combine to give
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f Tr(d+~ f/\wrs)

~3

which ia in easence (4.7) should one apply the estimate of Ibf I (y) I in (4.9) to this

situation. This finishes the proof.
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Appendix

Using the ADHM construction, we wish to show here that the curvature field

F = F(A) of an SU(2) ~ Sp(l) connection A on a quaternionic line bundle E ---+ S4

with ~(E) = -2 ia nowhere vanishing ie A ia self-dual. All such self-dual connections

can be realized in the following way (c.f. [Al). Regard S4 as the quaternion projective

line IP1«(H) with scalar multiplication on the right. Let C, D be two constant

quaternionic 3)(2 matrices and define

v(X,y) = Cx + Dy

for (x,y) E(HfD2 . Provided v(x,y) has maximal rank for all (x,y) f (0,0) , the column

vectors of v(x,y) span a quaternionic plane in (HED3 and hence its orthogonal complement

E(x,y) ,aB (x,y) varies, defines a quaternionie line bundle E --+ S4 ~ IP1(IH) with

c2(E) = -2 . We assume v(x,y) always has maximal rank in what folIows. By taking

orthogonal projections p( ): D-IED3
------i E( ) for all (x,y) 1 (0,0) , we obtain anx,y x,y

Sp(l)-connection on E in a standard way. The associated curvature field can be given in

affine coordinates (x,y) = (x,1) by

where p2 = v*v . In this setting F = °precisely when p2 ia real. Now if we pick an

orthogonal gauge u of the bundle E) Le.

* *u v = 0 and u u = 1

then the curvature F can be expressed in this gauge u by
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* 2 *F=u Cdxp- dXe u .

We are now to show that F is non-vaniahing given p2 ia real.

The first thing we notice is that if p2 = v·V ia a real matrix, then it must be

symmetrie and positive over IR. In partieular, p2 = MT. M for same real matrix M and

hence we may write p-2 = M-1. (M-1)T . Thus the eurvature field can be written into

the following special form:

F = u·e dx M-1.(M-l)Tdi e·u
= (u·e M-1)dx Adi((M-1)TC*u

• 1 * 1 *= (u C M- )dx A di(u C M- )

• -1 EB2 *where (wl'w2) = u C M E IH . Note that (wl'w2) f (0,0) since u C ia

*nan-vanishing. Ta see this, we assume on the contrary that u C vanishes at some

*xa = (xO,l) , Le. u (xo)· C = 0 . Thell; we would have

*O=uv

*= u ·(Cx + D)

*= u (xO)· D at x = Xo

*whieh implies in particular that u (xO) ·v(x,y) = 0 for all (x,y) f (0,0) . It would follow

then the bundle E is spanned trivially by the vector u(xO) E 1HS3 , a contradiction to the

assumption that c2(E) = -2 .
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Now, as required in the argument, we write curvature field F explicitly aB follows:

F = -2{(dxIAdx2 + dx3Adx4)(wl i w2 + w2 i w2)

+ (dx1Adx3 + dx
4Adx3)(wl j \VI + w2 j w2)

I 4 23-+ (dx Adx + dx Adx )(w i k wl + w3 k w3)} .

To finish the proof, suppose on the contrary that F vanishes at sorne xo' i.e.

w1(xO) i w1(xO) + w2(xO) i w2(xa) = 0

w1(xO) j w1(xO) + w2(xO) j w2(xa) = 0

w1(xo)k w1(xO) +w2(xO) k w2(xa) = 0

Clearly then we have I w1(xO) 1
2 = 1w2(xO) 1

2 which ia moreover non-zero since

(wl'w2) ;/= (0,0) . Using the fact wi(xO)-l = wi(xO)/ 1wi(xO) 1
2 one abtains

(a.1)

W1(xO) i w1(xa)-l = -w2(~) i w2(xO)-1

w
1
(x

O
) j w

1
(x

O
)-1 = -w

2
(Xo) j w

2
(x

O
)-1

w
1
(x

O
) k w

1
(x

O
)-1 = -w

2
(x

O
) k w

2
(x

O
)-1

and in where we may assume wi(Xo) E Sp(l) for i = 1,2 via normalizations

wi(xO) ---+ wi(xO)/ I wi(x
O

) 1 . By the fact that the adjoint representation of Sp(l) ,

which sends q E Sp(l) to

-11"(q) : Im IH ----+ Im IH; v .....- ......1 q V q
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is a homomorphism

~ : Sp(l) -----+ 80(3)

with images in 80(3), we conclude each of th~ following sets of vectOtS

{W1(XO) i w1(Xo)-I, w1(xO) j w1(xa)-I, w1(xO) k w1(Xo)-I} ,

{w2(xO) i w2(Xo)-I, w2(xO) j w2(xO)-I, w2(xO) k w2(xO)-I}

fOtms an oriented orthogonal basis fOt Im D-I • This howevet gives a conttadiction to (a.1)

by the orientation argument and thuslemma (4.1) folIows.
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