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THE ETA INVARIANT OF PIN MANIFOLDS
WITH CYCLIC FUNDAMENTAL GROUPS

PETER B. GILKEY?

ABsTRACT. Let £ = 2% > 1. Let M be an orientable manifold of odd dimension
with w1 (M) = 2, whose universal cover M is spin. We define a fixed point free action
of Z;¢ on the product M x M and let N := M x M /Zy,; N(M) is non-orientable and
admits a natural pin~ structure. We express the eta invariant of N(M) in terms of
the eta invariant of M and show the map M — N (M) extends to a map of suitably
chosen equivariant connective K-theory groups. Let X be a non-orientable manifold
with 71 (X) = Zsy of even dimension m > 6 whose universal cover is spin. We show
that if X admits a metric of positive scalar curvature, then the moduli space of all
metrics of positive scalar curvature on X has an infinite number of arc components.
If m = 2 mod 4 and if wz(X) = 0, we show X admits a metric of positive scalar
curvature if and only if the A genus of the universal cover X vanishes; this establishes
the Gromov-Lawson conjecture in this special case.

§1 INTRODUCTION

1.1 Notational conventions. We work in the category of smooth manifolds and
smooth vector bundles in this paper. All manifolds are assumed to be closed and
connected unless otherwise noted. Let £ = 2 > 1 be a non-trivial power of 2 and
let g¢ := e2™V=1/¢ be the canonical generator of Zy := {A € C : Af = 1}. Let
ps(A) = A? define linear representations of Zg for s in the dual group Z; = Z/{Z.
Let 7 be a finite group. A 7 structure on a manifold M of dimension mn is a map
f from M to the classifying space Bw of w. Let Z(Bm) be the classifying principal
7 bundle over Br and let Z(M) = f*Z(Bn) be the associated principal = bundle
over M. If my(M) = =, we give M the natural 7 structure; Z(M) = M is the
universal cover of M. '

If m is odd and if M admits a spin® structure, let Py be the Dirac operator
on M; Py is the tangential operator of the spin® complex. If mn is even and if M
admits a pin® structure, let Py be the Dirac operator on M; Py is the tangential
operator of the pin® complex. The operator Py is a self-adjoint elliptic operator.
If M has a 7 structure f and if p is a representation of =, let (M, p) be the eta
invariant of the Dirac operator P with coefficients in the associated flat bundle.

We say that a manifold M is a spherical space form if M admits a Riemannian
metric of constant sectional curvature +1. We say that a finite group « is a spher-
ical space form group if 7 is the fundamental group of a spherical space form or
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equivalently if there exists a fixed point free representation of 7 to the orthogonal
group O{m + 1) for some m.

1.2 Previous results for orientable manifolds. In [14, 18] we showed the eta
invariant completely detects the reduced complex, real, and quaternion K-theory
groups K(M), KO(M), and KSp(M) if M is a spherical space form. In [16], we
showed the eta invariant and the equivariant characteristic numbers completely
detect the equivariant spin® bordism groups M Spin¢(BZg). Later joint work with
Bahri, Bendersky, and Davis [3] then gave the additive structure of these groups. In
related work [17], we studied the cquivariant unitary bordism groups MU, (BZ;).

Let m > 5 be odd. In joint work with B. Botvinnik [7, 8], we used the eta
invariant to construct exotic metrics of positive scalar curvature on a wide class of
manifolds with finite fundamental groups whose universal cover is spin.

The Gromov-Lawson conjecture as generalized by Rosenberg asserts that a man-
ifold of dimension m > 5 whose universal cover is spin admits a metric of positive
scalar curvature if and only if a generalized index of the Dirac operator vanishes.
In joint work with Botvinnik and Stolz [10], we used the eta invariant to prove this
conjecture for a spin manifold M whose fundamental group is a spherical space
form group. In joint work with Botvinnik [9], we extended these results to the case
in which M is an orientable manifold with cyclic fundamental group and whosc
universal cover admits a spin structure.

The proof of all of these results used formulas of Donnelly [12] which compute
the cta invariant of the tangential operators of the classical clliptic complexes in
terms of Dedekind sums if M is a spherical space form. We also used generalizations
of these formulas to manifolds M which are lens space bundles over S2.

1.3 Previous results for non orientable manifolds. In [15], we developed the
basic theory of the Dirac operator for a pin® manifold. In joint work with Bahri {4],
we used these results to determine the bordism groups MPint. Oledzki [26, 27]
has used the eta invariant to detect exotic 4 dimensional projective spaces. In these
results for even dimensional manifolds, the only fundamental group which enters is
the cyclic group Zg of order 2.

1.4 Outline of the paper. This paper is devoted to computing the eta invariant
for a wider class of pin~ manifolds than those with fundamental group Z, and to
giving some applications of this computation. In §2, we discuss the Dirac operator
for odd dimensional spin and spin® manifolds and for even dimensional pin® and
pin® manifolds. Let 7 be a finite group. If n is even, we will show that the map
which sends M to (M, p) € R/Z extends to a homomorphism from the equivariant
pin~ bordism groups M Pin_ (Br) to R/Z. fm =2 (8) and if pisrcal or if m =6
(8) and if p is quaternion, then this invariant takes values in R/2Z.

Let f be a Z, structure on an orientable manifold M of odd dimension m; we
assume the associated principal bundle Z = Z(M) is spin. Let Dys denote the
action of Z; on Z. Define a fixed point free action Dy of Zyy on Z x Z by

(1.5) Dn{gae) : (21,22) = (Darlge)za,21); let N(M):=(Z x Z)/Zq,.

In Lemma 3.4 we will show that N (M) inherits a natural pin~ structure. In Theo-
rem 3.7, we will express the eta invariant of N(M) in terms of the eta invariant of
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M this is the main analytical result of this paper. There is an analogous result for
N(M) if M is an even dimensional non-orientable manifold due to Barrera-Yanez
{5]. We can also take twisted products. Let M be an even dimensional pin™ mani-
fold with a Z, structure. Let U be an even dimensional spin manifold with a spinor
“Zg action. In Theorem 3.11 we express the eta invariant of U xz, Z(M) in terms
of the eta invariant of M and the equivariant index of the spin complex on U.

Let M be cither a lens space or a lens space bundle bundle over S%. In §4, we
use the results of §3 to compute the eta invariant of N(M). This gives a whole new
class of pin™ manifolds with cyclic fundamental group Z,, for which we can compute
the eta invariant combinatorially. We estimate the range of the eta invariant and
establish some technical results we will use in later sections.

Let X be a manifold of dimension m > 5 with 7, (X) = 7 whose universal cover
is spin and which admits a metric of positive scalar curvature. If n is odd, we
assume X is orientable and if m is even, we assume X is not orientable. Let R(X)
be the space of all metrics of positive scalar curvature on X and let M(X) be
the moduli space R(X)/Diff(X). In Theorems 5.6, 5.7, 5.10, and 5.12 we show
under certain conditions that M({X) has an infinite number of arc components and
that X admits infinitely many metrics of positive scalar curvature which are not.
concordant. Theorems 5.6 and 5.7 follow from results of [7, 8); Theorem 5.6 deals
with the case m odd and = cyclic and Theorem 5.7 deals with the case of general 7
if X itself is spin. Theorems 5.10 and 5.12 are new; they use the analytic results of
§3. Theorem 5.10 deals with the case m even and 7 cyclic and Theorem 5.12 deals
with the case of general 7 if X admits a pin~ structure and if m = 2 mod 4. We
also refer to related work by Kreck and Stolz [22] if m = 3 mod 4, if H}(X;Z,) = 0,
if the Pontrjagin classes of X vanish, and if X is spin.

In the generalized Gromov-Lawson-Rosenberg conjecture, it is stated that a man-
ifold M of dimension rn 2> 5 whose universal cover is spin admits a metric of positive
scalar curvature if and only if a certain generalized equivariant index of the Dirac
operator vanishes. Stolz {34] has established this conjecture if M is simply con-
nected. The fundamental group = of M plays a crucial role. This conjecture has
been established if 7 is a spherical space form group and M is spin by Botvinnik,
Gilkey and Stolz [10], if 7 is cyclic and if M admits a flat spin® structure by Botvin-
nik and Gilkey [9] and by Kwasik and Schultz [24], if 7 = Z, & Z,, for p an odd
prime by Schultz [32], and for a short list of infinite fundamental groups, including
free groups, free abelian groups, and fundamental groups of orientable surfaces by
Rosenberg and Stolz [30]. In §6, we prove the Gromov-Lawson conjecture for non-
orientable pin~ manifolds of dimmension m = 4k + 2 with fundamental group Zo,.
As a byproduct of our investigation, we show the eta invariant completely detects
certain twisted connective K-theory groups and we show the map M — N(M)
extends to a map in counective K-theory, see Theorem 6.6 for details.

It is a pleasant task to thank E. Barrera-Yanez, B. Botvinnik, and S. Stolz for
helpful conversations regarding these matters.

§2 THE DIRAC OPERATOR FOR SPIN AND PIN MANIFOLDS

2.1 Clifford algebras. Let Clif*(m) denote the real Clifford algebra on R™; this
is the universal unital algebra gencrated by R™ subject to the Clifford commutation
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rclations v+ w+wxv = £(v,w)- 1. Let Clif*(mm) := Clif~ (m) ®r C be the complexi-
fication. Let pin®(m) C Cliff(m) be the multiplicative subgroup generated by the
unit sphere of R™; this is the set of all elements x which can be written as a finite
product T = vy * ... * v; of clements v; of length 1 in R, We complexify to definc

pin®(m} = pin~ (m) xz, S* C Clif*(m)

where we identify {g, A) = (—g,— ).

2.2 Definition. If v € V and |v} = 1, then v=! = £v so (vy * ... * vx) ™! is given
by (£1)*vy * ... ¥ vy. Let
(1) det(z, ) = A% : pin®(m) — S*.
(2) x(vy * ... xvy) := (=1)* : pinF(m) = Z,.
x(v1 % oo % v, A) := (=1)* : pin°(m) = Z,.

(3) E(z) : we x(z)z xw* 2zt : pin®(m) = O(m).
E(z, A) :w e x(z, Nz +w =zl pin®(m) o O(m).

N

(4) spin{m) = spin~ (m) := ker{x)Npin*(m} and spin®(m) := ker(x) Npin°{m).
If v is a unit vector in R™, Z(v) is reflection in the hyperplane perpendicular to v.
Thus Z defines a surjective group homomorphism from pin®(m) to O(m) and from
spin(m) to SO(m). Let m > 3. Since spin(rn) is connected, since 7, {(SO(m)) = Z,
and since ker(Z) is {£1} € spin(m), spin(m) is the universal cover of SO(m). A
similar argument shows that pin®(m) is ¢ universal cover of O(m). Since O(m) is
not connccted, the universal cover is not uniquely defined as a group; pint (m) are
the two possible universal covering groups of O(m).

Let e = —, e = +, or € = ¢. We say that a manifold M admits a pin® structure if
we can lift the transition functions of the tangent bundle TM from the orthogonal
group O(mn) to pin(m). We say that an orientable manifold M admits a spin
structure or a spin® structure if we can lift the transition functions of the tangent
bundle TM froin the special orthogonal group SO{m) to spin(m} or to spin®(m).
If M admits a (s)pin® structure sps, the determinant line bundle det{sas) is the
associated complex line bundle over M. Let w; be the Sticfel-Whitney classes of
TM. The following is well known; see for example Giambalvo [13].

2.3 Lemma.

(1) M admits a spin structure < w; =0 and wy = 0.

(2) M admits a spin® structure <= w; = 0 and wo lifts to H*(M,;Z).
(3) M admits a pin~ structure < w? + wy = 0.

(4) M admits a pinT structure < wy = 0.

(5) M admits a pin® structure <= ws lifts to H*(M;Z).

2.4 Example. Let L be the classifying real line bundle over RP* := §*/Z, and
let vL=L&..» L. Letw, :=e€;%...%xe,. Then Z(w,) = ~1I, is a lift of the
transition functions of vL from O(v) to pin®(mn). Then vL admits a pin¥ structure
if and only if w? = 1 or equivalently if (£1)*(=1)**~1/2 = 1; by replacing w, by



v —=1w, if necessary we see vL always admits a pin® structure. These structures
reduce to spin® structures if and only if v is even. Since T(RP*) @1 = (k + 1)L,

(1) (4k + 1)L and RP** admit pinT structures; wg = 0.

(2) (4k +2)L and RP*+1 admit spin® structures; w; = 0, and wy lifts.
(3) (4k +3)L and RP¥*+2 admit pin~ strutures; w? -+ wy = 0.

(4) (4k +4)L and RP*+3 admit spin structures; w; = 0 and w, = 0.

2.5 Operators of Dirac type. We say a second order partial differential operator
D on the space of smooth sections C* (V) of a vector bundle V' is of Laplace type
if locally D has the form D = —g*7 Iy/;8; + A¥8; + B or equivalently if the leading
symbol of D is given by the metric tensor. We say a first order partial differential
operator P is of Dirac type if P? is of Laplace type. The leading symbol p of P gives
V a Clif " (M) module structure i.e. p is a linear map from the cotangent bundle
to the bundle of endomorphisms of V' so that p(£)? = —|¢|?Iy. Conversely, given
a Clif~(T'M) module structure p on V and a connection V on V, then P:=poV
is an operator of Dirac type on V. Fix a fiber metric on V so p is skew-adjoint.
The connection V is said to be compatible with the Clifford module structure if V
is Riemannian and if Vp = 0. Such.connections always cxist and the associated
operator P is self-adjoint; see Branson-Gilkey [11].

Let M, (F) be the v x v matrix algebra over the division algebraF =R, F = C, or
F = H; we use the notation M_(F) when we wish to simplify notation by omitting
the parameter v. We recall the structure of some of the Clifford algebras; see [1j
for further details:

2.6 Lemma.

(1) The isomorphism Cliff(2k) = My (C) defines an irreducible Clif*(2k) mod-
ule Agg. Every Clif*(2k) module is isomorphic the direct sum of copies of
this module.

(2) The isomorphism Cliff(2k + 1) = My« (C) @ Mok (C) defines two irreducible
Clif*(2k + 1) modules Agiqy and Dopy1; Doks1(E) = —Aor1(€). Every

CUft(2k + 1) module is isomorphic to the direct sum of copies of these two
modules.

(3) Clift(8k) = M_(R) and Clif* (8k + 1) = Clif+(8k) @ Clif* (8k).

(4) Clif~(8k+2) = M_(H) and Clif (8k + 3) = Clif (8k +2) ® Clif ™ (8k + 2).
(5) Clif*(8k +4) = M_(H) and Clif*(8k + 5) = CLfT(8k + 4) @ Clif* (8% + 4).
(6) Clif~(8k + 6) = M_(R) and Clif~ (8k +7) = Clif (8k + 6) @ Clif~ (8k + 6).

Let o be a representation of Cliff(vn) on a finite dimensional vector space . If
z € spint(m), the following diagram commutes:

R™ @5 AN 3
(2.7) 1 Z(z) ® o(z) Lo(z).
R*"®X = P

If M admits a spin® structure, we use diagram (2.7) to define an elliptic operator
P, := 00V of Dirac type on the associated bundle Z{M). If A is the fundamental
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representation, P is the Dirac operator on the spin bundle A(M). If m is odd, P
is the tangential operator of the spin® complex. If m is even, the decomposition
P = P* @ P~ gives the spin® complex.

If, on the other hand, M is not orientable, the situation is a bit more complicated.
Let £ € R™. Because

0(E(@)€)o(z) = x(w)o(z)o(€)o(z) o (z) = x(z)o(z)a(€),

diagram (2.7) does not commute if x(z) = —1. To remedy this difficulty, we
introduce x on the right hand side. Let x act on the one dimensional vector space
L,.. The following diagram does commute:

R"@% 5 r¥® L,
(2.8) LE(z)@o(z) o lo(z)®x(z)
R"®ZL e L@ Ly
Let M be a manifold which admits a pin® structure. Then L, (M) is the orientation
line bundle. We use diagram(2.8) to define an elliptic symbol and, once a compatible
connection V is chosen, an elliptic complex
0:T"M®E(M) - (M) ®L, (M), and
D, =00V :C®(E(M)) - C®(E(M) ® L, (M)).
If m is even, there is another way to solve the difficulty involved in diagram (2.7).
Let {e;} be the standard orthonormal basis for R™. Let wy, := 6(mn,€)e; * ... x ey

(2.9)

where §(m, €) is chosen so that w?, = —1 if e = —, ¢ and w2, = +1 if ¢ = +. More
precisely ,
1 fm=2(4)and e=— or e =g,
1 ifm=0(4) and e =+,
o(m,e) =4 .
i fm=0(4)ande=—ore=c,

i ifm=2({4) and e = +.
Since m is even, w,, anti-commutes with £ € R™ C Clif¢(m). We extend o to a
representation of Clif(rn + 1) on ¥ by defining o(em+1) = o{w,n). We also define
a new representation & of Clif~(m) on I by 6(€) := o{wm)o(£); even if e = +, 7 is
a representation of CIif~. If z € pin®(m), then zw,, = x(r)wnz and the following
diagram commutes:

R"®X N z
(2.10) lE2(@)®a(z) o |oz).

R" ®% -

If M admits a pin®(rn) structure, then diagram (2.10) gives risc to a self-adjoint
operator of Dirac type

(2.11) P; =60V :C®(Z(M)) = C(S(M)).

We emphasize that the representation o defines (M) and the representation &
defines P. If ¥ is complex, o and & are abstractly isomorphic, but act differently
upon the representation space ¥. If € = — or if € = ¢, the roles of ¢ and & are
symmetric; if we wish to use o to define an operator P, we can use & to define the
bundle. We take the fundamental representation to define the Dirac operator on
M; this is the tangential operator of the pin® complex.
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2.12 Remark. If m is even, let D, be the operator defined in equation (2.9)
and let P; be the operator defined in equation (2.11). Then o(wy,) defines an
isomorphism between ¥ and ¥ ® L, which extends to an isomorphism between
(M) and B(M) ® L, (M) and modulo a possible sign convention, P; = o(w,,)D,.
Furthermore, if we extend o to a representation of Cliff(vn + 1), then P; is the
tangential operator associated to the resulting elliptic complex on M % [0, co).

2.13 The eta invariant. If P is a self-adjoint operator of Dirac type, let
1(z, P) := Trpa(P - (P?)~C+D/2)

be the eta invariant of Atiyah-Patodi-Singer [2]. The function n(z, P) has a mero-
morphic extension to € with isolated simple poles on the real axis. The origin is a
regular value and we define

n(P) :== ${n(z, P) + dimker(P)}|.=o

as a measure of the spectral asymmetry of P. A representation p of a finite group
7 defines a flat vector bundle V(p) over the classifying space Bw. Let f give M a
7 structure. The pull back bundle f*(V(p)) is a flat bundle over M with holonomy
pfe. If m is even, we assume M has a pin® structure; if m is odd, we assume M has
a spin® structure. Let n(M, p) be the eta invariant of the Dirac operator on M with
coefficients in f*V{(p). If mn is even and if M is orientable, then P, is conjugate to
— P, and therefore n{M, p) = dimker(P,)/2. This vanishes if M admits a metric of
positive scalar curvature. We refer to [19] for further details.

2.14 Equivariant pin bordism. The equivariant bordism groups M Sping, (Br)
and M Sping,(Bw) consist of triples (M, f,s) where f is a 7 structure on a manifold
M of dimension m and where s is a (s)pin® structure on M; we assume M is closed
but not necessarily connected. We imnpose the equivalence relation (M, f,s) ~ 0 if
there exists a compact manifold N (which need not be connected) with boundary
M so the structures (f, s} extend over N. The group structure is defined by disjoint
union. There are twisted bordism groups we will discuss in §5. Let R(w) be the
group representation ring of a finite group = and let Ro(r) be the augmentation
ideal of virtual representations of virtual dimension 0. The map p — n(M,p) is
additive in p and extends to R(w).

2.15 Lemma.

(1) If o is odd and if p € Ro(w), the map (M, f,s) —» n(M,p) extends to a
homomorphism from MSpint (Br) to R/Z which takes values in R/2Z for
M Spin,, (Bw) in the following cases:

a) If m =3 mod 8 and p is real.
b) If m =7 mod 8 and p is quaternion.

(2) If n is even and if p € R(x), then the map (M, f,5) = n(M, p} eztends to
¢ homomorphism from M Pin, (Bw) to R/Z which takes values in R/2Z in
the following cases:

a) If m =0 mod 8, if e = +, and if p is quaternion.
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b) If m =2 mod 8, if e = —, and if p is real.
c) If m=4 mod 8, if e =+, and if p is real.
c) Ifm=6 mod 8, if e = —, and if p is quaternion.

Proof. We refer to [9] for the proof of assertion (1). Suppose that M = N where
the pin® and « structures extend from M to N. Choosc a metric on N which is
product near the boundary. We use Remark 2.12 to see that modulo a possible sign
convention, P is the tangential operator of an elliptic complex D defined over N.
The Atiyah-Patodi Singer index theorem [2-1, Theorem 3.10} then yields

Index(D(p)) = [P £ 0(M, p)

where P is the constant term in the asymptotic expansion of the heat equation; P
vanishes as dim(N) is odd. This proves that n(M, p} is a bordism invariant with
values in R/Z. To complete the proof, we use Lemma 2.6 to squeeze out an extra
factor of 2. In the cases discussed, d(e,7n) = 1 so we do not have to complexify.
If m = 2 mod 8, A(N) and D admit a quaternion structure; we assumed p is
real. If m = 6 mod 8, A(N) and D are real; we assumed p is quaternion. Thus
A(N)® f5(V(p)) and D, admit a gquaternion structure so the (complex) dimension
of the kernel and cokernel is even. [

§3 TWISTED CYCLIC ACTIONS

3.1 spin® structures with flat determinant line bundles. Let M be an odd
dimensional orientable manifold with fundamental group m (M) = Z, whose uni-
versal cover M is spin. Let Pas(ge) be a lift to the principal spin bundle on M of
the orientation preserving isometry Dys(ge) of M. Then Pp(g) =1 = M
admits a spin structure. If Ppr(g)¢ = —1, we let P§,(g¢) := e™V=1/¢P,,(g¢) on the
principal spin® bundle. Then P§,(g¢)® = 1 so M admits a spin® structure with flat
associated line bundle given by p;.

Counversely, suppose f is a Z; structure on a manifold M and suppose that
M admits a spin® structure with associated flat determinant line bundle given by
pp- Then Z(M) admits a spin® structure with trivial determinant line bundle and
hence a spin structure; g, preserves this spin structure and the action of Z; on the
principal spin® bundle of Z is given by +P§,(g¢) := eb=V=1/tp,, (ge)-

3.2 Definition. We dcfine the external tensor product X as follows. Let

P®1 18P\
192 —-P ol

B (R RS (S IR (Y

a% = a,% = ag =1, a1a2 + aga; =0, aya; = azaq, aya; = aza,.

PXIP, ;=P1®1®a1+1®P2®0.2=(

3.4 Lemma. Let Z be the principal Z, bundle defined by a Zg structure f on an
oriented odd dimensional manifold M. Assume M admits a spin® siructure with
associated flat determinant line bundle given by f*ps.

(1} The twisted product N(M) = (Z x Z)/Zy is a non-orientable manifold
with natural Zoy and pin~ structures.



(2) We may identify A(Zx Z) = A(Z2)®A(Z)®C?. Under this identification,
P(Z x 2) = P(Z)XIP(Z).

(3) Let C(ge) and Cgae) give the action of g and ga¢ on A(Z) and A(Z x 2Z)
respectively. Let e =1 if m =3 mod 4 and e = v/—1 if m =1 mod 4. Then
Clgae)(v1 ® v2 ® 2) = €C(ge)v2 ® v1 B azz.

Proof. Let Dy give the natural action of Z, on Z. Let

Dy (g2¢) : (21, 22) = (Dar(ge) 22, 21).

Then Dy{g2e)? : (21, 22) — (Dar(ge)21, Das(ge)22) 50 Dar(g2e)* = 1. We have Dy
defines a fixed point free isometric action of Zg on Z x Z. Clifford multiplication
defines an embedding spin(m) x spin(m} C spin(2m). Since the spin® structure on
M lifts to a spin structure on Z, Z x Z admits a natural spin structure. Since
the dimension m of M is odd, the flip (21, 22) — (22, z1) reverses the orientation of
ZxZ. Since Dys(ge) preserves the orientation of Z, Dy (ga¢) reverses the orientation
of Z x 2 so N is not orientable. Let Py (gae) be a lift of Dy (g2¢) to the principal
pin~ bundle over Z x Z; the sign will be normalized by assertion (3). Then we
have Pn(gae)® = £Par(ge) X Par(ge) s0 Pn(g2e)*t = Par(ge)t x Par(ge)t = 1 s0
N (M) admits a natural pin~ structure. This proves the first assertion.

Let ¢, : Clif ™ {rn) — End(A,,) be the canononical spin represcntation discussed
in Lemma 2.6. Since ((cn (€1)Eem(€2))? = —|€2| — |€2|, cm®e,y, defines a represen-
tation of Clif®(2m); for dimensional rcasons this representation is irreducible and
can be identified with ¢z,,. This proves the second assertion.

Let F(&1,£€2) := (€2,&1) € O(2m) interchange the factors of R™ x R™. Let JFy
be a lift of F from O(2m) to Pin™(2m). Let e; be an orthonormal basis for R™.
Then e,-l = ¢; 0 and c? = 0@ e; form an orthonormal basis for R @ R = R2™,
Reflection in the hyperplane defined by (e} — €?)/v/2 interchanges e} and e? and
prescrves e for ¢ # j. Consequently Fy = 2_"'/2TI‘,-(<3,1 — e?). This shows FZ = —1
if m=1mod 4 and F} = +1 if m = 3 mod 4. Let F, give the action of F; on
the spin bundle A(Z x Z); we used ¢y, to define the operator and thus we use
Com to define the bundles; see §2 for details. Let Fa{vy Q vo ® z) := v2 ® v1 ® a3z.
Since C(g2¢) = (C{g¢) ® 1 ® 1)F2, to complete the proof of (3) we must show that
Fo = €3 for suitably chosen €. By equation (2.10), Fpcom (€1, &2) = com (€2, €1) Fa.
By equation (3.3), azaz = ajas and aga; = azaz 50 Facom(&1,£2) = com(€2,61)F;.
Since cg,, is irreducible, Fp = €F3 for some e € C. Since a2 =1, Ff=1. Ifm =3
mod 4, then Ff = 1s0o F7 = 1 and 2 = 1. If m = 1 mod 4, then F2 = ~1 so
F2 = —1and €2 = —1. Since we can replace € by —e by changing the sign of C(ga¢),
the third assertion follows; we use this choice of sign to normalize the pin structure
chosen in assertion (1). O

3.5 Equivariant computation of eta invariant. Let Zx be the principal Z,
bundle defined by a Z, structure f on a manifold X which admits a (s)pin® struc-
ture with associated flat determinant line bundle given by f*p,; we assume Zx
orientable. We may decompose L?(A(Zx)) = ®rE(A, Zx) into the eigenspaces of
the Dirac operator on Zx. The action C of Zg on L?(A(Zx)) commutes with the
Dirac operator so the eigenspaces E(A, Zx) are representation spaces for Z,. We
decompose E(\, Zx)} = @ F,(A, Zx) where C(ge) = ps(ge) on E (X, Zx). We may
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identify E,(A, Zx) with the corresponding eigenspace of the Dirac operator on X
with coeflicients in the representation p,. Let {A; ., i} for 0 < s <vandieN
be an equivariant spectral resolution for the Dirac operator on Zx. The v; ; are a
complete orthonormal basis for L#(A(Zx)) so that 9; , € Es(); 5, Zx). Then

(3.6) (X, ps)(z) =L sign(A)|A|7F dim E, (X, Zx) = Z;sign{A; ,)|Ais| 77

We now come to the main analytic result of this paper.

3.7 Theorem. Let Z be the principal Z4 bundle defined by a Z, structure f on an
orientable odd dimensional manifold M. Assume M admits a spin® structure with
associated flat determinant line bundle given by f*py. If tn =3 mod 4, let 8 =0;
ifm=1mod4, let p=12¢/2.

(1) Ifu=2v-b+ B, n(N,p.}) =n(M,p,) —n(M, pv+(/2) in R/Z.
(2) fu=2v—-b+8+1, n(N,p,) =0 in R/Z.
(3) If there are no harmonic spinors on Z, these equalities hold in R.

Proof. We apply equation (3.6) and work equivariantly to compute the eta invari-
ant. Let {44, ¢ s} be an equivariant spectral resolution of the Dirac operator on
Z. Let E(i,s,5,t) = i,s ® ¢j, ®C?. Then L2(A(Z x Z)) = @;,,;.E(4,s,7,t) and

(3.8) P(Z X Z)(¢is @pPjs ®U) = i s @ Pyt ® (i 501 + f15,102)0.

If (3,8) # (4,1), the 4 dimensional space £ := E(1,s,7,t) ® E(j, 1,1, s) is invariant
under the action of both the Dirac operator and the group Z,, We compute

Clgae)(di,s © ¢ BV B P @ Pis @ v2)

(3.9)
=p_pr8+20(026)0i,s ® Djt @ Q32 B p_pipr2e(g2e) D @ P @ azvy.

A word of explaination is in order. The action of Z, on the principal spin® bundle
of Z is given by e"V=Ib/tp, {ge); we must undo this complex factor in computing
the Zy¢ action; this creates the factor of p_p{g2¢). The factor of pg(g2¢) comes from
the correction factor of € relating F; and F3 as was discussed in Lemma 3.4. The
remaining factors come from the parameters s and t. Let

Ve 1= ¢:‘,s ® ¢j'¢ Qv+ 5¢j,t @ qbi,a ® ajv,
C(g2)ve = p-b+p+t+s(g20)ve if € = pr—s(g2e),
C(g26)Ve = p-brpte+ste(920)ve if € = prsye(gae).

Thus this gives the cquivariant decomposition of £. Let £ be the span of the
ve for v € C?. We use equation (3.8) and the commutation relations of equation
{3.3) to sec that the Dirac operator maps v, to ((ji,sa1 + p5,1a2)v)e. Since the g;
are trace free, this operator has eigenvalues which occur in with opposite signs. If
(4,8, 145¢) # (0,0) these eigenvalues are non-zero and cancel in the calenlation of
the eta invariant. If (i;,,5:) = (0,0), there are two 0 eigenvalues which do not
contribute to the R/Z valued invariant.
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The argument given above shows that to compute n(N, p), we may suppose 7 = j
and s = t. The eigenvalues of a3 = (a; +a3)/2'/? are £1. Let azv+ = +v4 and let
Pais = Dis @ i @ V. Then Cgoe) P in = TP-ptB+25(92¢) Y+ i 5, and

P(Z X 2)pxis = tidis ® bis ® (a1 + ag)v = 2220, jaby ;..

The normalizing constant of 2!/2 plays no role in the eta invariant when we evaluate
at z = 0 and may be ignored. Let ©w = —b+ 8+ 2v. The eigenfunctions 94 ; ,
correspond to the representation p, precisely when s = v; the eigenvalues p; , then
give rise to (M, p,) in the calculation of (N, p,). Since

—p—b+p+2s(92¢) = Pbrpra(a—t/2)(g2t),

the eigenfunctions ¢_ ; , correspond to the representation p, when s = v 4 ¢/2;
the cigenvalues —p; 1472 then give rise to dim E, 1 4/5(0, ) — 9(M, pyy.g/2) in the
calculation of n(V, py, ); we must correct for the sign of the zero eigen values but this
plays no role mod Z. This proves assertion (1}. Assertion (2) follows since there are
no equivariant eigenspaces of this forn corresponding to p, ifu= b+ 3+ 2v + 1.
If there are no harmonic spinors, the 0 spectrum plays no role and the identities of
assertions (1) and (2) hold in R. O

One can also study even dimensional twisted products; we refer to the thesis of
Barrera-Yanez {5] for the proof of the following result.

3.10 Theorem (Barrera-Yanez). Let Z be the principal Z; bundle defined by
a Z; structure f on a non-orientable even dimensional manifold M. Assume M
admits a pin® structure with associated flat determinant line bundle given by f*py

and that Z is orientable. Use equation (1.5) to define an action of Zog on Z x 2
and let N := (Z x Z)/Zys.

(1) If£ =2, then N is a non-orientable manifold with m{(N) = Z4 which admits
a canonical pin® structure with associated determinant line bundle given by
P1.
i) Ifu=2s—b+m/2, then n(N, p,) = n(M,p,) in R/Z.
i Ifu=2s—b+1+m/2, then n(N,p,) =0 in R/Z.
(2) If £ > 2, then N is a non-orienteble manifold with w(N) = Zge which
admils a canonical pin~ structure.
) Ifu=2s—b+m/2+ /4, then n(N,pu) = n(M, ps) + 1M, pyye4)
in R/Z.
i) Ifu=28+1-b+m/2+ £/4, then n(N, p,) =0 in R/Z.
(3) If there are no harmonic spinors on Z, these equalities hold in R.

There is another twisted product formula that is useful.

3.11 Theorem. Let Z be the principal Z, bundle defined by a Zg structure f on a
non-orientable even dimensional manifold M. Assume M admits a pin® structure
with associated flal determinant line bundle given by f*py, that Z is orientable,
and that Z has no harmonic spinors. Let U be an even dimensional spin manifold
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which admits a Z¢ spin action. Give U(M) = U xgz, Z the natural Z; structure
and pin® structure with associated flat determinant line bundle given by f*py.

(1) The Zy action on U induces representations pﬁ on the kernel of the half
spin operators. Decompose pg — py = Lgngps. Then we have
NU(M), pu) = Banen(M, pu—s).

(2) Give U = S x S! the spin structure with trivial principal spin bundle. Let
£ > 4. The map gr : u — —u defines a spinor action of Zg on U and

U (M), pu) = n(M, pu_tjalpo — pe2))-

Proof. Let wy be the normalized orientation of U; c(wy) anti-commutes with Py
and c(wy) = 1 on ker PF. We can decompose A(U x 2) = A(U) @ A(Z). Under
this decomposition the Dirac operator on U x Z takes the form Py ®@1+c(wy)® Pay.
The action of Z is the tensor product of the two actions and commutes with c{wy ).
Let {5, Ais} and {9, ., 1;+} be an equivariant spectral resolution of the Dirac
operators on U and on Z. We have c(wy )i s € E(—Xi,, Py). If X, #0, let

E(%, S;js t) = Span{¢i,a @ ¢j,h C(‘”U)‘ﬁi,a ® 1/)j,t}'

Then Z; acts diagonally on E(i,s,j,t). Since the eigenvalues of P on E(i,s, j,t)
are (A}, +42,)'/2, these spaces play no role in the computation of the equivariant
eta invariant. If ¢; , € ker(P,}t), then

Pl s @) = Epj i s © Py

We set s + ¢ = u and sum to derive the desired formula. We assume Z has
no harmonic spinors to ensure that U x Z(M) has no harmonic spinors to avoid
difficulties with the zero cigenspace.

Give U = §' x 8! the spin structure s which has trivial principal spin bundle.
Paradoxically, s is often called the non-trivial spin structure since [U, 5] generates
M Sping = Z,. The spinor bundle on U is a trivial bundle of complex dimeunsion
2. The kernels of P{ are 1 dimensional and g, acts by £v/—1 on ker(PE). The
second assertion now follows from the first. O

§4 SPHERICAL SPACE FORMS AND SPHERICAL SPACE FORM BUNDLES

In this section, we establish some technical results we will use in §5 and §6
to study metrics of positive scalar curvature. In Lemma 4.3, we express the eta
invariant of lens spaces and lens space bundles in terms of Dedekind sums; in
Lemma 4.4, we use the results of §3 to compute the eta invariani for the associated
twisted products. Lemma 4.5 is a techuical Lemma we will use to prove Lemuna
4.8 which gives the order of the range of the cta invariant.

4.1 Definition (Lens spaces and lens space bundles). If @ = (ay,...,a;) is
a collection of odd integers, let 7(@) := pg, ® ... ® pa, define a fixed point free
representation from Z; to the unitary group U(k). Let

L=1(8a) = 5% /r(@)(Zo)
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be the resulting lens space. Let H®? @ (k — 1)1 be the Whitney sum of the tensor
square of the complex Hopf line bundle with (k — 1) copies of the trivial complex
line bundle over the sphere S2. Let A € S! act by multiplication by A% on the
v summand. This action restricts to a fixed point free action of Z, on the sphere
bundle S(H®? @ (k —1)1). Let

X#*(gd) == S(H®? @ (k — 1)1)/7(@)(Ze);

this a bundle over 82 with fiber L2*~1(¢; &).

4.2 Definition (Notational Conventions). Let §7* and G} be the free Abelian
groups generated by the lens spaces and by the lens space bundles of dimension m.
The eta invariant is additive and extends to these groups.

(1) If k is even, let W (@;A) = A8/ 2 det (1 — 7(@)()\)).

(2) If k is odd, let ¥ (a; ) = A~UEHD/2 det(] — 7(@)(N)).

(3) TEX # 1, let Fr(@A) = Or(@AN)"1 If A =1, let Fr(d;A) =0.
(4) Let Fx (@A) = (1 + A%){(1 = A*)~LFL(G;N).

(5) Define B:GP — G+ and B: G — G+ by

L™(6;&@) — L™*4(¢;a,1,1) — 3L™+4(¢;d,1,3), and

X™(8a) = X™H(0d,1,1) — 3X™mH(6:d, 1, 3).

(6) Let K1 := L1(£1) and let K71 .= BK43"3 € Gl

(7) Let K% := X3(£;1) and let K™ .= BKY ™' € g¥+5.

(8) Let 9 := W, (1,1) = p_1(po — p1)* and let § := pg — pe/2.

(9) Since (51,7 -3) € Ro(Zy)% = ¢ R(Z,), we can choose ¢; so that

¢’ = Vr(j-1,5-3).
We refer to [9,10] for the proof of the following result; the assertions concerning
the eta invariant are based on results of Donuelly [12].
4.3 Lemma. Let 3y := Ejy¢z,, ond let )3,\ = TAZoa#]-
(1) For m > 3, L™(¢;d) and X™(£;d) admit metrics of posilive scalar curva-
fure.
(2) If k is even, then L?*=1(£;&) and X2*+1(£,d@) admit spin structures.
(3) If k is odd, then L¥*~1(£;d) and X?k+1(¢;&) have spin® structures with
determinant line bundle given by py.
(4) We have n(L*1(6;), p) = €' SxTr(p) FL(@ ) € Q
(5) We have n(X2*+1(£;@),p) = £ ExTr(p) Fx (@ )) € Q.
The manifolds N(L™(¢;&@)) and N(X™(¢;@)) admit metrics of positive scalar
curvature for m > 3. Thus the formula of Lichnerowicz {25] shows there are no

harmonic spinors. The following is an immediate consequence of Lemnma 4.3 and
of Theorem 3.7.
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4.4 Lemma.
(1) If in =3 mod 4, then n(N(L™(¢;@)), pov) = n(L™(¢; @), dpy ).
(2) If n =3 mod 4, then n(N(X™(£; @), pay-1) = n(X™(&;d),dp,).
(3) If m =1 mod 4, then n(N(L™ (£, d)), pav—1+272) = n(L"(£;a), py).
(4) If m =1 mod 4, then n(N{X™(£; @), paytes2) = n(X™ (@), 0p,).
(5) Otherwise n{N(L™(£;@)),pu) =0 and n(N(X™(¢;d)),p.) = 0.

We shall need the following technical result.
4.5 Lemma. Let £> 4, p € R(Zy), @= (a1,...,ax), and b= (by, ..., bg_1).
(1) For k=0 mod £, £7155A% = 1, this vanishes otherwise.
(2) We have n(K},8) = n(K%,8) =1/2 mod Z.
(3) If v € Ro(Z)*tY, then €718, Tr(y(ML, (1 — A} 1 € Z,
W L2*=1(8;&),7) € Z, and n(X2*~1(£;D),~) € Z.

(4) We have n(L?*~1(£;d,1) — 3L**~1(£,E,3), p) = n(L*~1(;@,3), ¥p).
(5) We have n(X2*~1(€;b,1) — 3X2k=1(£;5,3), p) = n(X2*=1(¢; b, 3),¥p).
(6) If Y € G or if Y € G, then n(B?Y, ¢;p) = n(Y, p).

(7) If§ > 1, then n(K7 "', 4p6p) € Z and n(K4J+3,¢5/)) €Z.

(8) We have n(KE""l,q‘)j y=n(K 43+3,¢16) = 1 mod Z.

(9) If X°:= X5(£;1,1) = 3X5(¢;1,3), then 7)(X5, ép) =0 mod Z and

n(X®,8pga) =1 mod 2Z.

Proof. The first assertion follows from the orthogonality relations. We compute
(K}, 8) = 6718 (1 = AU (1 - A2
=071 + A 4.+ A2
=—07YE/2) + IS NI+ A+ LAY = 12,
We use the identity 62 = 2§ to compute:
N(K,5) = (207 5M1 + A)(1 — A/2)2(1 = )2
= (20)7TEAA1 + A1+ A 4 ... 4 At/2-1)2
= —£/4+ (20)7TIZAL + X)L+ A+ ... 4 2212
=—{/4+1/2.
The secoud assertion now follows since £ > 4. We set 11 = Hlsygk(po = Pa, )- Then
11 Ro(Z¢) = Ro(Ze)**! s0 v = 1€ for some € € Ry(Z¢). Thus

€78 Tr(y )L (1 = A%) ™" = €718 Tr(e()).

Since Tr(e(1)) = 0, we may replace £y by £y and use (1) to sec £-15) Tr(e())) € Z;
this proves the first part of (3); the remaining parts now follow from Lemma 4.3.
Assertions (4) and (5) follow from the identities

Fo(@ 1)(A) = 3FL(@, 3)(A) = $(A\)Fr(d,3)(A)

(4.6) Fx(@1)(N) = 3Fx (& 3)(A) = p(\)Fx (@ 3)(V).
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Assertion (6) follows from equation (4.6) since ¢;97F_(d,j1,43) = F_(d) for L
and X. We use equation (4.6) to see that for any vy € R(Z,):

(KT ) = 0L (G + 1)1, 53),47)
NI y) = (X6 G +1)1,53),477).
We apply equation (4.7) to v = dp. Since ¥/ 1pd € Ry(Z,)%*3, assertion (7)
follows from assertion (3). Assertion (8) follows from assertion (2} and assertion
(6). Since X2 = X3¥/2 for \ € Z;, we have
(X%, 8pesa) = n(X®(£1,3),8p4/47)

= ETIEAYANL + A)(1 — AY2) /(1 — A%)

= IS AN+ AZ) (1 + A3 L 4 A28

= =1 IS+ A1+ A3 L+ N33,
By (1), 718,52 = 0 unless ¢ divides v. The powers of A that appear in this sum
are v =£0/4+1+3korv =4¢/4+2+ 3k for 0 < k < 34/2. Since v > 1 and
since 3£/2 — 3 + £/4 + 2 < 2¢, we need only consider v =€s01=£—-£/4 — 3k or
2 =¢—£/4 —3k. This is not possible as £ — £/4 — 3k = 3(—k + £/4) and 3 does not
divide 1 or 2. Thus (X5, py74) = —1. We can decompose any p = nype/q +y for
v € Ro(Z¢) and thus

(X%, 6p) = —ny + nan(X3(6;1,3), dvyp).
Since Y89 € Ro(Ze)*, n(X®,0v¢) € Z. O

The Poincare dual A* of an Abelian group A is the group of homomorphisms
from A to R/Z. Thus, for examnple, Z, = Z/{Z.

(1) Let n* (M) € R(Z¢)* be the homomorphism (M) : p = n(M, ép) € Q/Z.
(2) For k > 1, let Log_1(£) := spang{n* (L¥* (¢ a1,...,a))} C R(Zy)".
(3) For k > 1, let Xoky1(€) :=spang{n*(XZ**+1(Lay,...,ax))} C R(Z))*.
4.8 Lemma. Let 5> 0.
(1) We have 29%! < 1L4;41(2)]-
(2) If €2 4, then 2! < |Lags1(0)]  [Lajs(O).
(3) If £ >4, then 27F! < |Xyj13(8)] < | Xajrs(P)].

(4.7)

Proof. We use Lemma 4.3 to prove the first assertion: n*(RP%+1 pg) = £2-7-1,
Let og5 := p_1(po — p1) and let og;_1 := (po — p1). Let @ = (a1,...,ax) for k > 1.
Then

ox Fr(@,1) = Fr(@) so n(L¥*+1(€;@,1), pog) = n(L*1(¢;a), p);

4.9
(“9) oxFx(d,1) = Fx(@) so n(X*+3(8,a,1), poy) = n(X*+1(4;a), p).

The map p = oy p induces a dual map of : R(Z;)* — R(Z,)*. By equation (4.9),
orn (L#H1(6,a,1) = 7*(L*-1(6,@)) and opn* (X368, 1)) = 7 (X241 (8;@))
S0

Lok-1(€) C o Lag1(8), |Lak-1(8)] < |Lory1(£)],

Xop11(£) C ogXoya(€), and |Xopq1 ()] < |Xakya()].
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By Lemma 4.5 (2), we have |£1(€)} > 2 and |A3(€)| > 2. Since ¢ = ¥r(1,1), a
stmilar argument shows %" is surjective so

|Lax+1(8)] < [Lar—3(€)] - [ker(s*) N" Lag41(£)], and
| Xas3(€)] < 1 Xap—1(8)] - [ker(p*) N 0" Xagya(€)).

By Lemma 4.5 (7), n’sz'H € ker(y") and 7" K3¥+2 € ker(¢*); by Lemma 4.5 (8),
these elements have order at least 2. Assertion (2) now follows by induction. O

§5 EXOTIC METRICS OF POSITIVE SCALAR CURVATURE

5.1 Twisted bordism groups. We generalizc the equivariant pin bordism groups
defined in §2.14. Let £ be a real vector bundle over the classifying space Bm of a
finite group 7. The equivariant twisted bordism group M Spin,,(Bm, £) consists
of triples (M, f,s) where f is a 7 structure on a manifold M of dimension m and
where s is a spin structure on the bundle T'(M) @ f*(£); we assume M is closed
but not necessarily connected. We impose the equivalence relation [(M, £, s)] = 0 if
there exists a compact manifold N (which need not be connected) with boundary
M so the structures (f, s) extend over N. The group structure is defined by disjoint
union. If (M) = m, we shall give M the canonical 7 structure.

If the Stiefel Whitney classes w; and w of £ and £ agree, then the groups
M Sping,(Bw, &) and M Spin,,(Bn,£) agree; thus only w;(£) for 1 = 1,2 are rele-
vant. If wy{€) = 0 and if wy(€) = 0, then M Spin, (Bn, &) = MSpin,(Bnr). If
w2 (&) +w, (&) = 0, then & admits a pin~ structure and there is a natural map from
M Spin,,(Br,€) to MPin,, (Br). If £ admits a spin® structure or a pin® structure,
there is a natural map from M Spin,,(B7,§£) to MSpint,(Br) or M Pint (Bw); we
use these maps to extend the efa invariant to this setting.

Note that not every pair of cohomology classes (uy,up) for u; € H*(Bn; Z,) can
be realized as the first two Stiefel Whitney classes of a vector bundle £. Nevertheless,
there is a generalization of the twisted spin bordism groups defined above which
associates an Abelian group to every such pair (uy,u2) which is isomorphic to
MSping, (Br, &) if (uy,uz) = (wi(€),w2(£)). We refer to Stolz [35] for further
details.

Suppose m = Z,, is cyclic. We take ¢ trivial if n is odd. If n is even, let =
gencrate H(BZ,;Z,) = Z, and let y generate H2(BZ,;Z3) = Z,. If n = 0 mod
4, then z? = 0; if n = 2 mod 4, then z2 = y. We define real bundles &; over BZ,,
by requiring

wy(€o) =0, walbo) =0, wi(&1) =0, wi(é1) =y
wi(é2) =z, wel62) =0, wi(&3) =z, wa(la) =y

For example, we could take & to be the trivial real line bundle, & to be the real
line bundle defined by p, /2, £; to be the real 2-plane bundle defined by the complex
representation p), and &3 = &; @ &;.

Let m(M) = Z,. Assume that the universal cover of M admits a spin structure.
There exists a structure s on M; that {(M, f, s)] € MSpin,(BZ,,£). If n =0 mod
4:

0) We take & = &y if wi(M) = 0 and we(M) = 0; M admits a spin structure.
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1) We take £ = ¢&; if w(M) = 0 and we(M) # 0; M admits a spin® structure
with determinant line bundie given by py.

2) We take £ = & if wi(M) # 0 and wo(M) = 0; M admits a pin~ structure.

3) We take £ = &3 if wy (M) # 0 and w2(M) # 0; M admits a pin® structure
with determinant line bundle given by p,.

If n is odd, M is spin and we take £ = §p. If n = 2 mod 4, we take { = &3 and give
M a pin® structure in 2) and we take £ = £ and give M a pin~ structure in 3).

Give U = §! x 8! the spin structure with associated trivial principal spin bundle.
Let ¥ = 0 mod 4. If Y is an even dimensional pin~ manifold with a Z, structure
which carries the orientation, let U(Y') := U xz, Z(Y) where Z(Y') is the associated
principal Z, bundle over Y. We have that:

a) RP** € MSpin(BZ,, &), RP¥12 € MSpin(BZ,,£,),
b) L*+1(8 —) € MSpingxy1(BZe, &1), L*3(£; ~) € M Spinggi3(BZy, &o),
) X**+1(l; —) € MSpingky1(BZe,Eo), X34 ) € MSpinarys(BZe, &),
d) N(L™(€—)) € MSpingm(BZae, §2), N(X™ (¢ —)) € MSping,(BZae, &2),
e) UN(L™(&—)) € MSpingm2(BZae, §2), and

UN(X™(£—)) € MSpinamy2(BZae, &2).

5.2 Twisted geometrical bordism groups. The group * M Spin,, (B, £) is de-
fined similarly. Tt consists of quadruples (M, f, s, g) where (M, f, s) is as above and
where g is a metric of positive scalar curvature on M. We impose the equivalence
relation T[(M, f,5,9)] = 0 if there exists a compact manifold N (which need not
be connected) with boundary M so the structures (f, s) extend over N and so that
the metric on M extends as a metric of positive scalar curvature over N which
is product near M. Again, the group structure is defined by disjoint union. If
(M, f,s,91)] = [(M, f,s,g2)] in TMSpin,,(B, &), the metrics g; and g, are said
to be geometrically bordant.

We say that two metrics of positive scalar curvature g; on M are concordant if
there exists a metric g on M x [0, 1] which has positive scalar curvature, which is
product near the boundary, and which restricts to the given metrics at M x 1 for
i =0,1. Let R(M) be the space of metrics of positive scalar curvature on M and
let M(M) := R(M)/Diff(M) be the associated moduli space. Two metrics which
are in the same arc component of R(M) are necessarily concordant; it is not known
if the converse holds.

A special case of the following Theorem for £ orientable was proved. by Botvin-
nik and Gilkey (7, 8]; it uscs work of Gromov and Lawson [20, 21], Rosenberg
[28], Rosenberg and Stolz [29], and Schoen and Yau [31]. The extension to the
nonorientable setting is entircly straightforward and is therefore omitted.

5.3 Theorem. Lei 7 be a finite group. Let p be a virtual representation of m and
let & be a real vector bundle over the classifying space Bw. If m is even, assume
that £ is non-orientable and that £ admits a pin® sitructure. If m is odd, assume
that & admits a spin® structure and that p has virtual dimension 0. Let M be a
connected closed manifold of dimension m > 5 with my(M) = n. Let [ be the
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canonicel m structure on M. Assume there exists a spin structure s on T(M) @ f*¢
so [((M, f,s)] € M Spin,(Bnr,£).

(1) Suppose there exists a closed manifold My which admits a metric g; of pos-
itive scalar curvature so that (M, f,s)] = [((My, f1, $1)] in M Sping, (B, §);
M1 need not be connected. Then M admits a metric of positive scalar cur-
vature g so that [(M’S?f?g)] = [(Mh Slaflagl)] in +MSpmm(B7r,£)

(2) Let [(Ma, f2,52,92)] = 0 in Y MSpin,,(Bn,£). Then n{Mz,p) =0 in R.

(3) Suppose that there ezxists [(Ma, f3, $3,93)) in TMSpin,(Bn, &) such that
(M3, f3,83,93,0) # 0 in R Suppose that M admits a metric of positive
scalar curvature. Then M(M) has an infinite number of components and
there ezists a countable family of metrics g; of positive scalar curvature on
M which are not geometrically bordant and which are not concordant.

To apply Theorem 5.3, we must construct manifolds which admit mectrics of
positive scalar curvature and which have non-vanishing eta invariant. If ¢ is a
group homomorphism from G to H, we have natural maps

op: BG — BH, og: RH — RG, and
oum  MSping (BG,o58) - MSpin,,(BH, ).

(When discussing the case m is cven, we shall need to assume that both £ and
og€ are non-orientable). Inequivalent spin® structures on £y are parametrized by
complex line bundles; there exists a suitable linear representation p® which reflects
choice of the determinant line bundle on 3£ so that:

(5.4) om (M), p) = n(M, p°or(p)).

For example, let o be the natural surjective map from Zy, to Zg. Then ojé; =&
and we take p* = p;. We can use equation (5.4) to reduce the existence of non-
trivial eta invariant to a corresponding question concerning cyclic groups in many
instances.

We begin with the odd dimensional case:

5.5 Lemma. Letm > 5 be odd, let n > 2, and let 1 =0,1. Ifi=0and ifm=1
mod 4 orifi =1 and if m = 3 mod 4, assume n > 3. Then there exists [(M, f, s, g}]
in YMSpin, (BZ,,£;) and p € Ro(Z,,) s0 that n(M, p) # 0.

Proof. This was proved in [7, 8]. We sketch the proof briefly. Let m be odd and
let n = ab where a and b are coprime and let ¢ be the natural inclusion of Z,; in
Z,. Then og is surjective. Thus by equation (5.4), we may suppose without loss
of generality that n = p” is a non-trivial prime power. Suppose n is odd. The lens
space L' (n;d) admit spin structures. We usc a suitable generalization of Lemma
4.3 (4) to compute n(L™(n;@), ¥.(@)) = (n —1)/n # 0. Suppose n = £ is a non-
trivial power of 2. We use the same argument if 'n = 3 mod 4 and & = &, or if
m=1moddandifé =&. Hm=3mod4and £ =& orif m =1 mod 4 and if
¢ = &y, we compute

n(X™(6), V(@) (po ~ pa,)) = €' E(1+A") =271 (€ - 2)
so this is non-trivial for £ > 2. O

The following is now immediate
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5.6 Theorem. Let X be an orientable manifold of odd dimension m > 5 with
non-trivial cyclic fundamental group Z, whose universal cover is spin and which
admits a metric of positive scalar curvature. If m = 3 mod 4 and if wo2(X) # 0 or if
m =1 mod 4 and tf wa(X) =0, assume n > 3. Then M(X) has an infinite numnber
of components and there exists a countable family of metrics g; of positive scalar
curvature on X which are not geometrically bordant and which are not concordant.

There are suitable generalizations of this theorem to manifolds with other finite
fundamental groups; we restrict to spin manifolds for the sake of simplicity and we
refer to [7, 8] for the proof of the following result.

5.7 Theorem. Let X be a spin manifold of odd dimension m > 5 with non-trivial
finite fundamental group m which admits a metric of positive scalar curvature. If
m =1 mod 3, assume w contains an element g which is not conjugate to g='. Then
M(X) has an infinite number of components and there exists a countable family
of metrics g; of positive scalar curvature on X which are not geometrically bordant
and which are not concordant.

For the remainder of this section, we shall be interested in the case m even and
M non orientable. We first take 7 cyclic.

5.8 Lemma. Let m 2> 6 be even, let n be even, and let i = 2,3. If 1 =2 and if
m=0mod4orifi=3and if m =2 mod 4, assume n =0 mod 4. Then there
exists [(M, f,s,g)] in TMSpin,,(BZ,, &) and p € R(Z,) so that n(M, p) # 0.

Proof. We may assume without loss of generality that n = £is a power of 2. If £ = 2,
we take M = RP™ and use [15, Theorcm 3.3] to sec n(RP™, pg) = +2-{m+2)/2 £ .
We therefore suppose £ > 4.
Let m = 2(2k — 1). We consider the following cases
(1) If¢ = ¢, and if 2k — 1 = 3 mod 4, let e =0, let v{u}) = u, and let Y = L.
(2) fé=¢sandif2k—1=3modd,lete=1,let v(u) =u+1,andlet Y = X.
(3) If ¢ =& and if 2k — 1 =1 mod 4, let € = 0, let v(u) = u — £/4, and let

Y =X.
(4) f{ =& and if2k—1=1mod 4, let e =1, let v(u) =u—£€/4+ 1, and let
Y = L.

Let o be the natural projection from Zy, to Z;. We use equation {5.4) and Lemma
4.4 to see |

o N(Y*718a)), pu) = n(N(Y*71(6@)), p2ute)
=n(Y =14 a), py(u)6)-

Since D{N(Y2~1(¢;@)), pw) is supported on the representations w = 2w + € mod 2,
we use Lemma 4.10 to see the eta invariant in equation (5.9) is non-trivial.

I M is an m — 2 dimcusional pin~ manifold with a Z,, structure, then we use
Theorem 3.11 (2) to dimcension shift. We use equation (5.9) and compute

MomUN(Y*7H5a), pu) = fUNY**71(6)), prute)
=n(N(Y?*71(£;@)), paureres2(po — pe))
=n(Y 1), po(uy+/49%)
=20(Y** 718 &), po(u)se/40)-

(5.9)
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Since we are working in R/Z, the additional factor of 2 plays no role and we use
Lemma 4.4 to see these invariants are non-trivial. O

The following Theorem is a consequence of the discussion given above; the case
m = 0 mod 4 has also been derived by Barrera-Yanez [5] using a different method
to establish the non-triviality of the eta invariant.

5.10 Theorem. Let X be a non orientable manifold of even dimension m > 6
with cyclic fundamental group Z, whose universal cover is spin and which admits
a metric of positive scalar curvature. If m =0 mod 4 ond if wo(X) #£ 0 or if m =2
mod 4 and if wa(X) =0, assume n =0 mod 4. Then M(X) has an infinite number
of components and there erists a countable family of metrics g; of positive scalar
curvature on X which are not geometricully bordant and which are not concordant.

We can generalize these results to certain other finite groups. For the sake of
simplicity, we will work with pin~ structures on manifolds of dimension m = 2
mod 4; there are other theorems of this type for the other cases but they are more
complicated to state. Again, we begin by constructing manifolds with non-vanishing
eta invariants. Let py be the trivial representation of #.

5.11 Lemima. Letm =4k+2 > 6. Let & be the real line bundle over the classifying
space of a finite group w defined by a non-trivial representation 2 from w to Z,.
There exists [((M, f,s,g)] in TMSpin_, (Br,€) so that n(M, py) # 0.

Proof. Suppose that 7 contains an element g of order 2 so that Z(g) = —1. The map
g2 = g defines an embedding o : Z3 — 7 and o [RP™] belongs to M Spin,,, (Br, £).
We use [15] to see n{opRP™, pp) = n(RP™, po) # 0.

Suppose 7 contains an element g of order £ > 4 so that Z(g) = —1. Give
Y46 .= U2 N(L3(4;1,1)) the natural pin~ structure and Zo structure. The map
o @ goe — g defines a map o : Zy — 7. Then

NWomUP N(L3(€;1,1)), po) = n(N(L*(61,1)), pje(po — pe)*)
— T)(La(e; 1, 1),pj£/252j+1) — 22j—1e—1i/\jt/2+1(1 _ )\1/2)2/(1 _ /\)2
= 2% 1T DN (L 4+ X+ A2 o LAE271)2
= QWL (2[4 4 DNH2TL(L 4 L /20271 L A2-2
= +2%-1¢/4. O

The following theorem is now immediate.

5.12 Theorem. Let X be a pin~ manifold of dimension m = 4k+2 > 6 with finite
fundemental group . Assume X admits a melric of positive scalar curvature. Then
M(X) has an infinite number of components. Furthermore there ezists a countable
family of metrics gi of positive scalar curvature on X which are not geometrically
bordant and which are not concordant.

§6 THE GROMOV-LAWSON CONJECTURE

Let M be a spin manifold of dimension m = 0 mod 4. Let A(M) € Z be the
index of the Dirac operator on M; by the index theorem, we can comnpute A(M) as
the integral of a polynomial in the Pontrjagin classes of M so A(M)} is independent
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of the metric on M and of the spin structure which is chosen on M. If M admits
a metric of positive scalar curvature, there are no harmonic spinors on M by the
Lichnerowicz formula [25] and thus A(M) = 0. Consequently, if A(M) # 0, then
M does not admit a metric of positive scalar curvature. The Kummer surface

K':={(2) eCP®: 20 + 2t + 28 + 23 = 0}

is an algebraic surface which admits a spin structure with fi(K %) = 2. Thus K*
does not admit a metric of positive scalar curvature. If m = 0 mod 4, A is Z valued.
We can define a Zg valued index if rn =1 or if m = 2 mod 8. Let P, be the Dirac
operator defined by a spin structure s on a manifold of dimension m. If m = 1
mod 8, let A(M,s) € Z, be the mod 2 reduction of dim(ker(P,)). If m = 2 mod
8, then dim(ker(P,)) is even and we let A(M,s) = dim(ker(P,)}/2 € Z,. We set
A = 0 for other values of . Then A(M ,§) depends on the spin structure s but not
on the Riemannian metric. For example, the circle §' admits two spin structures
s;. If sy defines the trivial principal spin bundle and s, defines the non-trivial
principal spin bundle, A(S?,s;) # 0 and A(S?, s2) = 0. We extend A to the groups
M Sping, (BZ4, &) for i = 1,2,3 by defining A(M) = A(Z(M)).

If M is simply connected, the spin structure is unique and we drop the de-
pendence upon s. The A genus vanishes if M admits a metric of positive scalar
curvature. Stolz [34] has shown that the converse holds in the simply connected
case if m > 5.

6.1 Theorem. Let M be a spin manifold of dimension m > 5. Then M admits a
metric of positive scelar curvature <= A(M) = 0.

If the fundamental group 7 of a spin manifold M is non-trivial, Rosenberg [28]
has defined an element (M) generalizing the A-roof genus which takes valucs in
the K theory of the reduced C* algebra C;(w). If M is not spin, but the universal
cover of M is spin, then « extends suitably; if M admits a metric of positive scalar
curvature, then a(M} = 0. The Gromov-Lawson-Rosenberg conjecture is that this
is the only obstruction to the existence of a metric of positive scalar curvature
if m > 5. We refer to Rosenberg and Stolz [29] for a general discussion of this
conjecture.

The fundamental group of M is crucial in this subject. We refer to [9, 10] for
the proof of the following theorem:

6.2 Theorem. Let M be an orientable manifold of dimension m > 5 with cyclic
fundamental group whose universal cover M is a spin manifold.

(1) If M 1is spin, then M admits a metric of positive scalar curvature if and
only if A(M,s) = 0 for every spin structure s on M.

(2) If M is not spin, then M admits a metric of positive scalar curvature if and
only if A(M) =0.

In this section, we will establish a special case of the Gromov-Lawson conjecture
in the non-oricntable setting.
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6.3 Theorem. Let M be a non-orientable of dimension mm = 4k + 2 > 6 with
cyclic fundamental group which admils a pin~ structure. Then M admits a metric
of positive scalar curvature if and only if A(M) =0.

By a theorem of Kwasik and Schultz [23], the Gromov-Lawson-Rosenberg Con-
jecture is true for a finite group 7 if and only if it is true for all Sylow subgroups of
7. Thus we can work one prime at a time. The odd primes are covered by Theorem
6.2 so we assume 7 (M) = Z,. The case £ = 2 is covered by work of Rosenberg and
Stolz [29] so we assume £ > 4. The rest of this section is devoted to consideration
of this case. We must first establish some additional technical results.

Theorem 5.3 reduces the question of constructing a metric of positive scalar
curvature on M to a question in equivariant bordism. Our next step is to reduce
to a question in connective k theory. Let HP? be quaternion projective space with
the usual homogencous metric and let HP? — E — B be a fiber bundle where
the transition functions are the group of isometries PSp(3) of HP?. Since HP? is
simply connected, the projection p : £ — B induces an isomorphism of fundamental
groups; any Z, structure on F arises from a Zg structure on B. Let T}, (BZy, ;) be
the subgroup of M Spin,, (BZ,,&;) generated by manifolds E arising in this fashion.
Let.

tOm.(BZb 61) = Msp?'nm(BZh 61)/Tm(BZb 61)

Let to}},(BZ¢, &) be the image of the subgroup generated by classes [(M, s, f)] where
M admits a metric of positive scalar curvature. Let ko, (BZ¢, ;) be the twisted
connective K-theory groups. If M has a Z, structure, let Z(M) be the associated
Z¢ principal bundle.

6.4 Lemma.

(1) We have to,,(BZ¢,&;) = ko, (BZy, ;).

(2) If £ > 2, then |kogg2(BZ¢, E2)) < 22%%3 and |kogry6(BZy, £2)| < 22642,

(3) If rn is odd, if p € Ro(Ze¢), and if 1 = 0,1, then the map M — n(M,p)
extends to homomorphisms n, from ton,(BZ¢, &) to R/Z. If m = 3 mod 8,
if i = 0, and if p is real, we can extend 1, to take values in R/2Z.

(4) If m 1is even, if p € R(Z,), and if i = 2,3, then the map M — n(M, p)
extends to homomorphisms n, from ton,(BZge &) to R/Z. If mn = 2 mod 8,
if i =2, and if p is real, we can extend 1, to take values in R/2Z.

(5) If£> 2, A estends to a surjective homomorphism from tosigx(BZe &) to
Zs.

(6) Let m =4k + 2 > 6. To prove Theorem 6.3, it suffices to show that
to} (BZy, &3) = ker(A) N to,, (BZe, &5).

Proof. The first assertion follows from results of Stolz [33] and is a crucial link
between the geometry of HIP? fibrations and some powerful methods of algebraic
topology. The second assertion follows fromn [9, Theorem 1.5]. It is based on a
calculation using the Adams spectral sequence. We use Lemma 2.15 to extend
the eta invariant to M Spin,, (Ze, &;). Let E be the total space of a HIP? fibration.
Botvinnik and Gilkey [9] showed that E admits a metric g so that n(E,p) = 0 in
R and so that g has positive scalar curvature. The extension of the eta invariant
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and the A genus to connective K theory now follows. Let M = N(S'). Then
Z(M) = 8! x 8! has the trivial (i.e. non-bounding) spin structure. Since the
dimension of the kernel of the Dirac operator is 2, A(N(S?)) = A(S! x §') = 1 and
A is surjective if m = 2. Let B® be the Bott manifold; this is a simply connected
spin manifold with A(B8) = 1. The Cartesian product N(S') x B® inherits natural

pin~ and Z; structures. We use the multiplicative nature of the A genus to complete
the proof of assertion (4) by checking

A(N(SY) x (B®)) = A(N(S)A(B®Y = 1.

The elements of T,,,(BZ,, £5) can be represented by manifolds that admit metrics of
positive scalar curvature. If assertion (5) holds, then we can represent any element
of ker(A) N M Spin,, (BZg, &) by a manifold that admits a metric of positive scalar
curvature. We then use Theorem 5.3 to establish the Gromov-Lawson conjecture
in this case. O

Proof of Theorem 6.3. Let n = 2¥ > 4. Since Ais non-trivial, we use Lemma 6.4
to see
| ker(A) N tog+2(BZy, £2)] < 22642 and |togrs6(BZa, &2)| < 225F2,
By Lemma 6.4, to prove Theorem 6.3, we must show
(6.5) |tog 12(BZn, &2)| > 22512 and |tod,  o(BZa; &o)| > 27442,

Suppose first n = 4. We use Lemnas 4.3 and 4.4 to compute

n(N(]RP4k+1),p0) = H(Rp4k+1,(5) — 2—2.‘:—1! and
T](N(Rp4k+3),po) — ‘T](IR]P4k+3,6) _— 2—2k—2.

By Lemma 6.4, N — 5n(N, pp) exiends to a map from to,,(BZ,4,&) to R/2Z for
m = 8k + 2 and to R/Z for o = 8k + 6. Thus N(RP***1) and N(RP***3) are
elements of order at least 225+2 in tof, , ,(BZ4,&) and kogyy(BZ4,&2) so the
estimate of equation (6.5) holds.

Now supposc n = 2 for £ > 4. Let T,,,(L, 2¢) and T, (X, 2¢) be the subspaces of
tom (BZ&ay, £2) spanned by the images of N{L™(Z; %)) and N(X™(¢; *)) respectively.
The map M — n*(M} € R(Zq2)* defined in §3 extends to these two spaces with
disjoint supports; the relevant parities in Lemma 4.4 are opposite. Thus the eta
invariant decouples and we may use Lemma 4.8 to see

In'to;(BZZb {2” _>_ |"7*(7:n(L=23))| ' |n*(Tm(X:2E))‘ = I['m(ze)l ' le(zg)l S50
|’7'“’§3+2(Bzze= £2)| > 2%+ and |7)'to§j+6(Bzze,§2)| > 92042

This shows that estimate (6.5) holds if mn = 85 + 6; to obtain the desired estimate
if m = 85 + 2, we need only show:

[ker(n®) Ntog;,o(BZar, €2)| > 2.
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We will use the refined eta invariant 7o(N) := (N, po) € R/2Z to detect the kernel
of *. Let X% := X%(¢£;1,1) — 3X5(¢;1,3). By Lemma 4.8, n*(N(X®)) = 0 and
no(N(X3)) = n(X®,8pys) = 1. Thus N(X?®) is a non-trivial element of order at
least 2 in ker(n*). Give the manifold B® the trivial Z,, structure. By Theorem
3.11, n(N(X®) x BY) = n(N(X%)A(B®) = n(N(X®)) and the general case now
follows. O

We can draw some consequences from the discussion given above. We use the
result. of Stolz cited above to identify ko,, with to,,; let kol (Z,, &) be the subgroup
generated by the manifolds that admit metrics of positive scalar curvature. By
Theorems 6.2 and 6.3, if m > 5

kot (Zy, &) =ker(A) M ko (Ze, &)
kot (Ze, &1) =ker(A) N ko (Z¢, 1)
kot (Ze, £2) =ker(A) M ko (Ze, &) if m = 2 mod 4.

In [9, 10] we showed the eta invariant and the A genus provided the characteris-
tic numbers of the connective K theory groups ko,,(Z¢, &) for 1 = 0,1. We can
generalize this result to £, if m = 2 mod 4.

6.6 Theorem. Let k > 1.

(1) Let z € koggyo(BZog, &2). If Alz) =0, if 5* (z) = 0, and if no(z) = 0, then
x = 0. :

(2) Letz € k03k+5(BZQQ, £2). If n*(z) =0, then z = 0.

(3) Let i = 0 or i = 1; ifdk +2 = 2 mod 8 and if £ = 2, assume ¢ = 0.
The map M — N(M) extends to a homomorphism from ko;'k+1(BZ¢, ;) to
kosk+2(BZ2e, §2).

Proof. The first two assertions follow from the proof of Theorem 6.3. Lemma 4.4
expresses 7* (N (M?*+1)) in terms of n*(M2¥*+1), By Lemma 6.4, the eta invariant
extends to connective K theory so [M] = 0 in kogg+1(BZ¢, &;) implies n* (M) = 0 so
n* N (M) = 0; this shows M — N (M) extends to connective K theory if 4k +2 =6
mod 8. Let 4k + 2 = 2 mod 8 We suppose M admits a metric of positive scalar
curvature. This implies fi(N (M)) = 0 so to complete the proof we must show
o(M) = 0. We apply the identities of Theorem 3.7 to the case u = 0. We have
7o =0 if u — b+ £/2 is odd which handles the cases i =0 and £ =2 and i = 1 and
2> 2 '

If i = 0 and if £ > 2, then no(N(M)) = n(M,pga — p_¢7a). There are two
fundamental representations A* of the complex Clifford algebra Clif*(2k+1) which
may be distinguished by the identity A*(w,,) = £1. Since 2k + 1 = 1 mod 4, we
have @,, = —w,,. Consequently complex conjugation decfines a conjugate linear
isomorphism

E(X, P(ps)) = E(=A, P(p-s));

it is crucial at this point that we are dealing with a spin structure not with a spin®
structure. Since there are no harmonic spinors, (M, ps} = —n{M, p_,). Thus

Mo(N(M)) =n(M, peja — p—eja) = (M, pess — po) — 71(M, p_¢s4 — po)
=2n(M, pesa — po)-
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Since [M] = 0 in connective K theory and since the eta invariant extends to con-
nective K theory, n(M, pgy4 — po) € Z and thus no(N(M)) € 2Z.

This shows the map M — N(M) is well defined map in connective K theory. We
complete the proof by showing it is a group homomorphism. Let M = M, U M,
be the disjoint union of two manifolds M;. Let

X = (Zl X 22) L| (Zg X Zl) and N3 = )(/Zze.

Then N{(M) = N(M;) U N(M,) LU N3. We may choose an orientation of X so the
flip which interchanges the two picces preserves the orientation. Then Zg, acts on
X by orientation preserving isometries so /N3 is orientable and the pin™ structure on
N3 is a spin structure. The action of the orientation form anti-commutes with the
Dirac operator in even dimensions so E(X, P,,) = E(—A, P,,). Since there are no
harmonic spinors, this shows n(N3, p,) = 0 and hence [N3] = 0 in ko,,(Z¢, &2). O
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