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THE ETA INVARIANT OF PIN MANIFOLDS

WITH CYCLIC FUNDAMENTAL GROUPS

PETER B. GILKEvt

ABSTHACT. Let l = 2v > 1. Let M be an orientable manifold of odd dimension :m

with 7("1 (M) = Zl whose universal cover M is spin. We define a fixed point free action
of Zu on the product Mx M and let N := Mx M/Z'u; N(M) is non-oricntable and
admits a natural pin- structllTe. We express the eta invariant of N(M) in terms of
the eta invariant of M and show the map M -+ N(M) extends to a IllUP of suitably
chosen equivariant connective K -theory groups. Let X be a non-orientable manifold
with 11"1 (X) = Zu of even dimension m ~ 6 whose universal cover is spin. We show
that if X admits a metric of positive scalar cllTvaturc, thon the moduli space of all
metrics of positive scalar curvature on X has an infinite number of arc components.
If m == 2 mod 4 and if W2 (X) = 0, we show X admits ametrie of positive scalar
curvatllTe if and only if the A genus of the universal cover X vanishes; this establishes
the Gromov-Lawson conjecture in this special case.

§1 INTRODUCTION

1.1 Notational conventions. We work in the category of snlOoth manifolds alld
smooth vcetor bundles in this paper. All mallifolds are assumcd to bc dosed and
cOllnected unless otherwisc notcd. Let I! = 2V > 1 be a non-trivial power of 2 alld
let 9l := e27r .,;=T/l be thc canonical generator of 'Li := {>.. E C : >..e = I}. Let
P8(>") = ,,\8 define linear reprcscntations of 'Le for 8 in thc dual group Zi = Z/I!Z.
Let 1r be a finite group. A 1r structure on a manifolcl M of diu1811sion rn is a luap
f from M to the classifying space B1r of 1r. Let Z(B1r) be the classifyillg principal
1r bundle over B1r and let Z(M) = f* Z(B1r) be the a.s~ociated principal1r bundle
over M. If 1rdM) = 1r, we give M the nat.ural 1r structure; Z(M) = M is the
univcrsal cover of M.

Ir 171, is odd and if M adnlits a spinc structurc, let PM be the Dirac operator
on M; PM is the tangential operator of the spinc cOIuplex. If rn is evcn anel if M
admits a pinc structure, let P/I,./ be the Dirac operator on M; PM is the tangential
operator of the pinc complex. The operator PM is a self-adjoint clliptic operator.
If M ha..., a 1r structure fand if P is a representat ion of 1r, let 1}(M, p) be thc eta
invariant of the Dirac operator PM with coefficients in the associated flat bundle.

We say t.hat a luanifold M is a spherical sJleLce form if M adnlits a Rimuanllian
metric of COllstaqt sectiOIlal curvaturc +1. We say that a finite group 1r is a spher­
ical space form gr'ou]) if 1r is the fundamental grollp of a spherical space form 01'
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equivalently if there exists a fixcd point free rcprcsentation of 1r to the orthogonal
group O(rn + 1) for SOIne rn.

1.2 Previous results für orientable manifülds. In [14, 18] we showed the eta
invariant cOInpletcly detccts thc reduced cOInplex, real, and quaternion K-theory
groups K(M), KO(M), anel KSp(M) if M is a spherical space fonn. In (16], we
showeel thc eta invariant. and thc equivariant characteristic numbers completely
eletect the equivariant spinC bordism groups M Spin; (B7l t ). La.ter joint work with
Bahri, Bendersky, and Davis [3] then gave the additive strllcturc of these groups. In
related work [17], we studicd the equivariant unitary bordisllI groups MU. (BZe).

Let rn ~ 5 be odel. In joint work with B. Botvinnik [7, 8], we used the eta
invariant to construct exotic lllctrics of positive scalar curvatllre on a wide dass of
manifolds with finite fundamental groups whose universal cover is spin.

Thc Gromov-Lawson conjecture as generalized by Rosenberg asserts that a. man­
ifold of dimcnsion rn ;::: 5 whose universal cover is spin adnüts a nlCtric of positive
scalal' curvature if and ollly if a generalized index of the Dirac operator vanishes.
In joint work with Botviullik and Stolz [10], we used the eta invariant to prove this
conjecture for a spin mallifold M whose fUlldarnental grOllp is a spherical space
form group. In joint work with Botviullik [9], we extended these results to t.he case
in which M is an orientablc manifold with cyclic fundamental group and whose
universal cover admits a spin strllcturc.

The proof of all of these results used formulas of Donnelly [12] which COlnpute
the eta invariant of the tangential operators of the classical elliptic conlplcxes in
tenns of Dedekind SUlns if M is a spherical space form. We also used generalizations
of these formulas to manifolds M which are lens space bundles over S2.

1.3 Previous results for non orientable manifolds. In [15], we developcd thc
basic theory of the Dirac operator for a pinc manifold. In joint. work with Bahri [4],
we uscd t.hese rcsult.s to dcterminc the bordiHlll groups M Pin;. Oleelzki [26, 27]
has used thc eta invariant to detcct exotic 4 dimensional projective spaces. In these
results for evcn dimensionallnanifolds, the only fundamental group which enters is
the cyclic group Z2 of order 2.

1.4 Outline of the paper. This paper is devot.ed to conlput.ing the eta invariant
for a wider class of pin- lllanifolcls than those with fllndalllcntal group Z2 and to
giving sonle applications of this cmnputation. In §2, wc disClISS thc Dirac operator
for odd diIuensiolla1 spin and spinc mauifolds and for even dilnensional pin± and
pinc manifolds. Let 1r be a finite group. Ir rn is even, we will show that the Inap
which sends M to rl(M, p) E R/Z extends to a homomorphislll from' the equivariant
pin- bordislll groups M Pin~ (B1r) to R/7L Ir rn == 2 (8) and if p is real or if m == 6
(8) and if (J is quaternion, then this invariant takes values in R/2Z.

Let f be a Zl structure on au orientable Inanifold M of oelel diIuellsion rn; we
asStllllC the associated principal bundle Z = Z(M) is spin. Let V/l.J denote thc
act.ion of Z, on Z. Defillc a fixcd point free action 'DN of Zu on Z x Z by

In Lcmma 3.4 we will show t.hat N(M) illherits a natural pin- structure. In Theo­
renl 3.7, we will cxpress thc eta invariant of N(M) in terms of the eta invariant of
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M; this is the main analytical result of this paper. Therc is an analogow~ rmmlt for
N(M) if M is an even dimensional non-orientable manifold due to Barrera-Yanez
[5}. We can also take twisted products. Let M bc an even dimensional pin- lllani­
fold with a 7l l structure. Let U be an even dimensional spin Inanifold with a spinor

·"Le action. In Theorem 3.11 we express the eta invariant of U xZ t Z(M) in terms
of the eta invariant of M and the equivariant index of thc spin complcx on U.

Let M be either a lens space or a lens space bundle bundle over S2. In §4, wc
use the results of §3 to compllt.e the eta invariant of N(M). This gives a wholo new
dass of pin- manifolds with eyclic fundamental group Z21 for which we ean cOInpute
the et.a invariant eombinatorially. We estimate thc range of the eta invariaut and
establish Home t.cchnical rcsults wo will uso in later soctions.

Let X be a manifold of dimension m ~ 5 with 1r1 (X) = 1r whose universal cover
is spin and which adnlits ametrie of positive scalar ellrvature. Ir 1ft is odd, we
asSllIllC X is orientable and if 171, is cven, wo assuIue X is not oricntable. Let 'R.(X)
be the spaee of all mctries of positive scalar curvaturc on X and let M(X) be
thc moduli space 'R.(X)jDiff(X). In ThcoreIus 5.6, 5.7, 5.10, and 5.12 we show
under eertain eonditiolls that M (X) has an infinite nurnber of are eomponents and
that X admits infinitcly many metries of positive sealar eluvature which are not
concordant. TheoreIns 5.6 and 5.7 follow from results of [7, 8]; Theorem 5.6 deals
with the case m odd and 1r cyclie and Theorem 5.7 deals with the ca..l;je of genoral1r
if X itself is spin. Tht:."'Orcms 5.10 anel 5.12 are newi they use the analytic results of
§3. Theorem 5.10 deals with the ease rn even and 1r cyclic and Theorem 5.12 deals
with the Calie of general 1r if X admits a pin- structure and if 171 == 2 IllOd 4. We
also refer to related work by Kreck and Stolz [22] if 171 ~ 3 mod 4, if Hl (X; Z2) .:= 0,
if thc POllt.l'jagin dasses of X vallish, and if X is spin.

In the gelleralized Grolllov-Lawson-Rosenberg cOlljeeture , it is stated that a Illall­
ifold M of ditnension rn ~ 5 whose universal cover is spin admits CL llletric of positive
sealar curvature if and only if a eertain gelleralized equivariant index of the Dirac
operator vanishes. Stolz [34] has established this conjecture if M is siInply con­
ueetod. Thc fundatnental grollp 1r of M plays a crucial role. This conjecturc has
been established if 1r is a spherieal spaee fonu gronp and M is spin by Botvinnik,
Gilkcy and Stolz [10], if 1r is cyclic and if M adrnits a flat spinc struct.urc by Botvin­
nik and Gilkey [9] aud by Kwasik and SchnItz [24], if 1r = Zp EB 7lp for p an odd
prinle by Schultz [32], and for a short list of infinite fundatnental groups, including
free groups, frec abelian grOllpS, and fundamental groups of oriclltable surfaees by
Roscllberg and Stolz [30]. In §6, we prove the Gromov-Lawson conjecture for Ilon­
orientable pin- IIlanifolds of dimension m = 4k + 2 wit.h flludmllcutal group Zu.
As a byproduct of our investigation, we show the et.a invariant. eomplctely detects
certain twisted connective K-theory groups and we show the map M --7 N(M)
extends to a. nlap in connectivc K-thcory, see Theorem 6.6 for details.

It is a pleasallt task to thank E. Barrera-Yanez, B. Botvinnik, and S. Stolz for
helpful convcrsations regarding these maUers.

§2 THE DIR.AC OPERATOR FOn. SPIN AND PIN MANIFOLDS

2.1 C lifford algebras. Let Clir± (171,) denote the real Clifford algebra on IRm ; this
is the universal unital algebra gellcrat.cd by IRm subjcct to the Clifford commutat.iOll
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relations v *W +W *v = ± (v, w) . 1. Let Clir (1n) := Clir- (1n) 0R C bc the complexi­
fication. Let pin± (rn) C Clif± (1n) be the mnltiplicative subgroup generated by the
unit sphcre of IR1n; this is the set of all clCluents x which can be written as a finite
product x = VI * ... * Vk of elements Vi of length 1 in JRTH. We cOluplexify to define

where we identify (9,"\) ~ (-g, -"\).

2.2 Definition. Ir v E V and lvi = 1, thcn V-I = ±v so (VI * ... * vd- I is given
by (±l)kvk * ... *VI. Let

(1) det(x,"\) = ,.\2 : pinr::(m) -t SI.

(2) X(VI * * vd := (_l)k : pin± (1n) -t Z2.

X(VI * * Vk'..\) := (-l)k : pinC(1n) -t Z2'

(3) =:(x) : W I---T X(x)x *W *X-I: pin±(m) ---+ 0(7n).
=:(x,..\) : W f-+ X(X, "\)x * 'lJ) * X-I: pinC(m) -t 0(771).

(4) spin(m) = spin- (rn) := kcr(x) npin+(1n) and spinC(1n) := ker(x) npinC(rn).

Ir v is a unit vector in IRm , B(v) is reReet ion in the hyperplane perpendicular to v.
Thus =: defines a surjective group homomorphism from pin±(m) to O(m) anel frOlll
spin(1n) to SO(m). Let 7n ~ 3. Since spin(1n) is connected, since 7fdSO(rn)) = Z2,
anel since ker(=:) is {±1} E spin(7n), spin(7n) is the universal cover of SO(1n). A
similar argument shows that. pin±(1n) is a universal cover of O(rn). Since O(m) is
not connected, thc universal cover is not uniquely defined a~ a group; pin±(7n) are
the two possible universal covering groups of O(7n).

Let t: = -, t: = +, 01' t: = c. We say that a manifold M admits a pin f structure if
we cau lift the transition functions of the tangent bundle TM frorn the orthogonal
group 0(711) to pinl:(m). We say that an orientable rnanifold M aclmits a spin
structure 01' a spine strueture if we can lift the transition functions of the tangent
bllndle TM from the special orthogonal group SO(1n) to spin(rn) 01' to spinC (1n).
Ir M adnüts a (s)pinC structure SM, the deterrninant line bundle det(sJ\t} is the
associated cmnplex line bunclle over M. Let Wi bc the Stiefel-Whitney classes of
TM. The following is well knOWllj see for exarnplc Giambalvo [13].

2.3 Lemma.

(1) M adm,its a spin struc tU7'e {:::::::} W I = 0 and W2 = O.

(2) M adrnits a spinc strueture ~ WI = 0 and W2 lifts to H 2 (M; Z).

(3) M admits a pin- Ht1'1letU1"C ~ w~ + W2 = O.

(4) M admits a pin+ strticture ~ W2 = O.

(5) M admits a pinC st1'tJ,cturc -{::::=> W2 lifts ta H 2 (M; Z) .

2.4 Example. Let L be the classifying real line bundle over IRlP k := sk /7.. 2 anel
let vL = LEB ... EB L. Let W y := Cl * ... * C y . Then 3(wy ) = -Iv is a lift. of the
transition [unetions of vL frorn O(v) to pinf(rn). Then vL admits a pin± structure
if anel ouly if w~ = 1 01' equivalently if (±l)V( _1)V(Y-l)j2 = 1; by rcplacing W y by
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V=Iwv if necessary we sec vL always adnlits a pinc structure. These structures
rcduce to spin f strllctures if anel only if v is even. Since T(}RW'k) EB 1 = (k + I)L,

(1) (4k + I)L anel JRll1'4k admit. pin+ strllcturcs; 'W2 = O.

(2) (4k + 2)L anel JRllD4k+l admit spinc struetul"csj 'Wl = 0, and 'W2 lifts.

(3) (4k + 3)L anel JRllD4k+2 aelluit pin- strutures; 'WI + 'W2 = O.

(4) (4k + 4)L anel IRIP4k +3 admit spin struetures; w 1 = 0 anel 'W2 = 0.

2.5 Operators of Dirac type. We say a second order part.ial differential operator
D on the spaee of Slllooth seetions COO(V) of a vcct.or bundle V is of Laplace type
if locally D has thc fornl D = _gi j Iv Oi Oj + Akok + B or eqllivalently if thc leading
symbol of D is given by the metric tensor. We say a first order partial differential
operator P is of Dirac type if p2 is of Laplace type. The leading sYlnbol P of P gives
V a CEr- (M) nlodule structure i.e. p is alinear map from the cotangent bundlc
to the bundle of endomorphislns of V so that p(~)2 = -lel 2Iv. Conversely, given
a Clir- (TM) module structure p on V and a connection \7 on V, then P := po \7
is an operator of Dirae type on V. Fix a fiber nletric on V so p is skew-adjoint.
The connection \7 is said to be compatible with the Clifford module structure if \7
is Rielnannian and if \7]) = O. Such. connections always cxist and the associated
operator P is self-adjointj see Branson-Gilkey [11].

Let Mv(lF) be t.hc v x v matrix algebra over the division algebra IF = IR, IF = C, or
IF = IHI; wc use thc notation M_ (IF) whcn wc wish to simplify notation by onlitting
the parameter v. We recall the strllcture of some of the Clifford algebras; see [1]
fOl" furt her details:

2.6 Lemma.

(1) The isomorphism Clif(2k) = M2k (C) defines an irreducible Clif(2k) mod­
ule .6.2k . Every Cli{(2k) module is isomorphie the direet 811.711, 0/ copies 0/

this module.

(2) The isomorphisrn Clif(2k + 1) = M 2k (C) EB M 2k (C) defines two ifTeducible

Clif(2k + 1) modules .6. 2k+1 and 6.2k+1 ; 6. 2k+1(0 = -.6. 2k+1 (e). Every
Clif(2k + 1) module is is01norphic to the direet Sti1n. 0/ copies 0/ these two
modules.

(3) Clif"(8k) = M_(IR) and Clif"(8k + 1) = Clit+(8k) EB Clit+(8k).

(4) Clir (8k + 2) = M _ (lHI) and Clir (8k + 3) = Clir (8k + 2) EB Clir (8k + 2).

(5) Clif" (8k + 4) = M _(IHI) and Clij+ (8k + 5) = Clif" (8k + 4) EB Clif" (8k + 4).

(6) Clir(8k + 6) = M_(IR:) and Clir(8k + 7) = Clir(8k + 6) EB Clir(8k + 6).

Let u bc a rcprcsentation of Clif(rn) on a finite dilnensional vector spaee I;. Ir
x E spin f (1n), the followillg diagraul cOlnmutes:

(2.7)
IRm 02::

J, 3(x) 0 u(x)
IRm

~ I;

If M achnits a spine struetllre 1 we use diagram (2.7) to dcfine an elliptic operator
P(1 : = U 0 \7 of Dirac type on thc associated bundlc 2:: (M). If .6. is the fundamental
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reprcsentation, P is the Dirac operator on thc spin bundlc ~(M). If m is odd, P
is thc tangential operator of thc spinc eomplex. If m is even, thc decOInposition
P = P+ EB P- gives the spinc complex.

If, on the othcr hand, M is not orielltable, the situation is a bit more complicated.
Let ~ E IR.tn • Because

a(=:(x)~)a(x) = x(x)a(x)a(~)a(x)-la(x) = x(x)a(x)a(~),

E0Lx
-!. a(x) 0 X(x)

E0Lx

(2.8)

diagranl (2.7) does not COIlUHUto if x(x) = -1. To remedy this difficlli ty, we
introduce X on thc right hand side. Let X act on the one dimensional vect.or space
Lx. The following diagram does conunute:

IRm0~ ~

-!. 3(x) 0 a(x) 0

IRm 0E ~

(2.9)

Let M be a manifold which admits a pin f structure. Then Lx(M) is the oricntation
line bundle. Wo u.so cliagrmn(2.8) to define an elliptic sYlnbol and, allee a compatible
connection \7 is chosen, an elliptic cOlnplex

a : T'" M 0 E(M) --+ E(M) 0 Lx(M), and

Da := a 0 \7 : COO(E(M)) --+ COO(E(M) 0 Lx(M)).

Ifm is cven , therc is anothcr way to solve the difficulty involved in diagranl (2.7).
Let {ed be the standard orthonormal basis for JRfTl. Let W m := 6(rn, E)el * ... * em

wherc 6(m, €) is chosen so that w~ = -1 if € == -, c and w~ = +1 if € = +. More
precisely

&(m,E) = Uif m == 2 (4) and € = - 01' € = c,

if m == 0 (4) and € = +,
if m == 0 (4) and € = - 01' € = c,

if m == 2 (4) and € = +.

Since m is cvcn, W m anti-cOlumutes with ~ E IRm C Clifl(m). We extend er to a
represcntatiou of Clif't:(rn + 1) on E by dcfining er(em +l) = a(wm ). Wo also define
a new represeutation U of Clir(rn) on E by u(~) := a(wm)a(~); cvon if € = +, u is
a representation of Clir-. If x E pinl(rn), then XWm = X(x)wmx and the following
diagraru COllllllutes:

(2.10)
JR'TTl ® L:

-!. 3(x) 0 a(x)
llF 0 L:

~ L:
o .!- a(x) .
~ E

Ir M adlni ts a pin l (rn) structure, thon diagram (2.10) gives rise to a self-adjoint
operator of Dirac type

(2.11)

We cmphasize that the represcntatioll er defines E(M) and the representation ä
deRnes P. If E is complex, a aud u are abstractly isomorphic, hut aet differently
upon the representation space E. Ir € = - 01' if E = c, the rolcs of er and u are
sYlnmetric; if we wish to use a to define a.n operator P 1 wc can use u to deRne the
bundle. Wc take the fundamental representation to deRne the Dirac operator on
M; this is thc tangential opera.tor of the pinc cOlnplex.
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2.12 Remark. Ir m is even, let Da be thc operator defined in equation (2.9)
and let FiT be thc operator clefincd in eqllation (2.11). Thcn a (wnJ defines an
isomorphisBl betwccn ~ and E 0 Lx which extends to an isomorphisßl between
E(M) allel E(M) 0 Lx(M) and IllOdll10 a possible sign eonvention, FiT = a(wm)Da .

Furthermore, if wc extend a to a representation of Clir(rn + 1), then PiT is the
tangential operator associated to the resulting elliptic cOlnplex on M x [0,00).

2.13 The eta invariant. Ir P is a self-adjoint operator of Dirac type, let

be the eta invariant of Atiyah-Patodi-Singer [2]. The function 1](z, P) has a mcro­
morphic extension to C with isolated siIuple poles on the real axis. The origin is a
regular value ~nd we define

71(P) := ~{7J(Z, P) + diInker{P)}lz=o

a..'3 a IllCasurc of the spectral asymmctry of P. A representation p of a finite group
7r defines a flat vector bundlc V(p) over the classifying spaee B7f. Let J give M a
7f structure. The pull back bllndlc j'''(V(p)) is a flat bundle ovcr M wit.h holoIlOIUY
pJ•. Ir m is eveu, we assumc M has a pinc structure; if m is odd, we assunle M has
a spinc strllcture. Let TJ(M, p) be the eta invariant of thc Dirac operator on M with
coefficients in J*V(p). Ir 7n is even and if M is orientable, then Pp is conjugat.c to
-Pp and therefore 11(M, p) = dim ker{Pp)/2. This vanishes if Al adluits a Iuetric of
positive sealar eurvature. We refcr to [19] for further details.

2.14 Equivariant pin bordism. The equivariant. borclism groups MSpin;n(B1r)
and M Spin~n(B1r) consist of tripies (M, I, s) where f is a 1r structure Oll a manifold
M of diIlwllsion rn and where s is CL (s) pint' strllcture on M; we assllIlle M is cIosed
but not necessarily connect.ed. We impose the equivalence relation (M, f, s) I"'V 0 if
there exists a cmnpact Iuallifold N (which need not be connccted) with boundary
M so the structures (1, s) extend over N. Thc group structure is definccl by disjoint
union. There are twisted borclislu groups we will discuss in §5. Let R(w) be the
group rcpresentation ring of a finite group 1r and let Ho (1r) be the augmentation
ideal of virtual representations of virtual dituension O. The Inap p --+ rJ(M, p) is
additive in p and extends to R(w).

2.15 Lemma.

(1) If 7ft is odd and iJ p E Ro(1r), the map (M, J, s) ~ 17(M, p) extends to a
homo1norphism Irom M Spi71~ (B1r) to JItjZ which takes values in R/2Z lor
M Spinm (B1r) in the lollowing Gases:

a) 117n == 3 mod 8 and p is real.

b) 111n == 7 mod 8 and p is quaternion.

(2) 117Tl is even and ij p E R(w), then the map (M, I, s) H TJ(M, p) extends to
a homomorphism 17'om M Pin:n (B1r) to JIt/Z which takes values in JItj2Z in
the Jollowing cases:

a) 1J m == 0 mod 8, il E = +, and if p is quaternion.
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(3.3)

b) Ifrn == 2 mod 8, if E = -, and if p is real.

e) If rn == 4 mod 8, if E = +, and ij P is real.

e) If m == 6 mod 8, if E = -, and ij p is qtiaternion.

Proof. We refer to [9] for the proof of assertion (1). Suppose timt. M = oN where
the pint: anel tr strllctllres extenel from M to N. Choose a Inetric on N which is
product near the boundary. We use Remark 2.12 to see that modulo a possible sign
convcntion, P is the tangential operator of an elliptie cmuplex D dcfined over N.
Thc Atiyah-Patodi Singer index theorem [2-1, ThcoreIll 3.10] then yields

Index(D(p)) = JNP ± fJ(M, p)

where P is the constant term in the asymptotic expansion of the heat eqllation; P
vanishcs as dim(N) is odd. This proves that l1{M, p) is a bordisIIl invariant wit.h
values in IR/Z. To cmuplete thc proof, we use Lenuua 2.6 to squceze out an extra
factor of 2. In the cases discussed, 6" (E, m) = 1 so we do not have to COInplex ify.
If rn :;;; 2 Iuod 8, 6(N) alld D admit a quaternion strllet.ure; wc assllmed p is
real. Ir rn == 6 IllOd 8, b.(N) and D are real; we assuIlled P is quaternion. Thus
6 (N) 09 f N(V (p)) anel D p ael mit a CIllaternion structure so the (emuplex) cl iInension
of the kernel and cokernel is even. 0

§3 TWISTED CYCLIC ACTIONS

3.1 spine structures with flat determinant line bundles. Let M be an ocld
dimensional orientable manifold with funclanwntal group trdM) = Zl whose uni­
versal cover M is spin. Let PM(gl) be a lift to thc principal spin bundle on M of
the orientation preserving iSOIlletry VM(ge) of M. Then PAt{gl)l = 1 {::::::::} M
aelmits a spin struet.ure. IfPM(gl)l = -1, we let PAI (ge) := e1r .,;=T/lPM(Ue) on the
principal spint: bunelle. Then PA1 (9l)l = 1 so M achnits a spinc structure with ftat
associated line bundle givell by PI.

Convcrsely, suppose f is a 'Li st.ructure on a manifold M and suppose timt
M adlnits a spinc structurc with associated ftat detenninant line bundle given by
Pb. Then Z(M) adInits a spine structure with trivial detenninant line bundle anel
hence a spin structllre; gl preserves t.his spin structure and the action of 'Li on the
principal spinc bundle of Z is given by ±PM(gl) := ebrr.;=T/lPM(gt).

3.2 Definition. Wc definc the external tensor product [RJ as follows. Let

lV1 n (PI ® 1 1 ® Pz )P l l2lli-z := PI 09 1 09 al + 1 ® Pz ® az = 1 09 P
z

-PI ® 1 for

a\:=O _n,a2:=(~ ~),a3:=C _i)/V2;
Z 2 2 1 0al = az = a3 = 1 alaZ + a2 a l = , ala3 = a3 aZ, aZa3 = a3a l·

3.4 Lemma. Let Z be the lJrincipal Zl bundle defined by a Ze struet1J,1Y~ f on an
oriented odd dimensional manifold M. Assume M admits a spinc structure with
associated flat dete17ninant line bundle given by f· Pb.

(1) The twisted prodtiet N(M) := (Z x Z)/Zu is a non-orientable manijold
with natural ZZl and pin- str'Uctures.
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(2) Wc may identi/y 6(Z x Z) = 6(Z) (8) 6(Z) l&dC2
. Under' this identification,

P(Z x Z) = P(Z)[Rlp(Z).

(3) Let C(ge) and C(Y2t) give the action 0/ gt and gu on 6(Z) and 6(Z x Z)
re.o;pectively. Let € = 1 i/ m == 3 mod 4 and E = yCT i/ rft == 1 mod 4. Then
C(Y21)(VI (8) V2 (8) z) = €C(Yl)V2 ® VI ® {L3 Z •

Pro0/. Let. V M give the natural action of 'L, on Z. Let

Then V N(YU)2 : (Z1, Z2) H (VM(g,)Z1 J V M (ge)Z2) so 'DAdY21)21 = 1. We have V N
defines a fixed point free isonletric action of Zu on Z x Z. Clifford mllltiplication
defines an etnbedding spin(m) x spin(7n) C spin(2711). Since the spinc structure on
M lifts t.o a spin structure on Z, Z x Z admit.s a natural spin structure. Since
the dinlCnsion 1n of M is odd, the flip (Z1, Z2) ~ (Z2, zd rcverses the orientation of
Z x Z. Sinec V M (gi) preserves t he orientation of Z I V N(g21) reverscs the orientation
of Z x Z so N is not oricutable. Let PN(g21) be a lift of V N (g21) to thc prineipal
pin- bundle over Z x Z; the sign will be normaliJo:ed by assertion (3). Then we
have PN(Y21)2 = ±PM(gt) x PM(g,) so PN(9U)21 = PM(gf)l x PM(g,)e = 1 so
N(M) admits a nat.ural pin- st.ructure. This provcs the first assertion.

Let c,.n : Clif- (rn) ~ End(6m) be the canononical spin reprcscntation discussed
in Lemma 2.6. Siuce ((Cm(~1)0:m(~2))2= -I~rl-I~~I, c,.n~ defines a represen­
tation of Clirc(2rn); for dimensional reasons this represelltation is irreducible and
can be ident ified wi th C2m' This proves the second assertion.

Let F(~1,~2) := (~2,~d E O(2rn) int.erchange the factors of IRm x nrn
. Let F 1

be a lift of F from 0(2111) to Pin- (21n). Let Ci be an ort.honormal basis for IRm.
Then cl := Ci EB 0 and er := 0 EB Ci form an orthonormal basis for IRTn EB Rm = R2m .

Refiection in the hyperplane defined by (eI - e7) / J2 interchanges e; and er and
prescrves cj for i ~ j. Conscqllcntly F I = 2-m / 2TI j (c; - e7). This shows Fr = -1

if 7n == 1 mod 4 and F; = +1 if m == 3 mod 4. Let F 2 give the action of F I on
the spin bllndle 6(Z x Z); we used C2m to define the operator and tlms we use
C2m to define the bunelles; see §2 for details. Let F 3(VI ® V2 <8) z) := V2 ® VI ® aaZ.
Since C(921) = (C(ge) 0 I 0 1)F2, to eomplete the proof of (3) wc IUust show tlmt.
F2 = €Fa for suitably chosen E. By equation (2.10), F2C2m(6,~2) = C2m(~2,6)F2'

By cquation (3.3), aaa2 = a1Q.a and (LaQ.I = a2{La so FaC2m(~I,~2) = C2m(~2,6)F3'

Since C2m is irredllcible, F2 = €F3 for SOlue € E C. Since a~ = 1, Fj = 1. If 1n == 3
mod 4, then F; = 1 so Fi; = 1 anel E2 = 1. If 1TL == 1mod 4, then Fr = -1 so
Fi; = -1 allel €2 = -1. Since we can replace € by -E by changing the Sigll of C(gu),
thc third a."lsertion follows; we usc this choice of sign to normalizc the pin structure
chosen in a.'3sertion (1). D

3.5 Equivariant computation of eta invariant. Let Zx be the principal Ze
bundle defined by a Ze structure / on a manifold X whieh admits a (s)pinC struc­
ture with associated flat detenninant line bundle given by j" Pb; we aSSUlue Zx
orientable. We may deCOlllpose L2 (ß(Zx)) = EB>.E(A , Zx) into the eigenspaces of
thc Dirac operator on Zx. Thc action C of 'Le on L 2(6(Zx)) cornrllutes with the
Dirac operator so the eigenspaces E(A, Zx) are representation spaces for 'lll. We
decompose E(A1ZX) = EBBEs(A,Zx) where C(g,) = PlJ(gl) on EB(A,ZX)' We may
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identify E ß (.A, Zx) with the corresponding eigenspace of the Dirac operator on X
with coefficiellts in the representation P[J' Let {.Ai,,'l' VJi ,ß} for 0 ::; S < v and i E N
be an equivariant spectral resolution for the Dirac operator on Zx. The 'l/Ji,s are a
conlplete orthononnal basis for L2(6(Zx)) so that 'l/Ji,8 E Es(.Ai,s, Zx). Then

Wc IlOW come to thc main analyt.ic result. of this paper.

3.7 Theorem. Let Z be the principfll Z, bundle defined by a Z, strlleture f on an
orientable odd dimensional manifold M. AB,'mme M admits a spine st11J,CtU1'e with
aSSocülted flat determinant line bundle given by f" Pb· If rH == 3 mod 4, let ß = 0;
if m == 1 mod 4, let ß = e/2.

(1) If u = 2v - b+ ß, 1](N, Pu) = 1](M, Pv) -1](M, Pv+l/2) in IR/Z.

(2) If u = 2v - b+ ß + 1, 1J(N, Pu) = 0 in IR/Z.

(3) /f the1'e are no hannonic spinOTs on Z7 these equalities hold in IR.

Proof. We apply equation (3.6) and work equivariantly to COlllpute the et.a invari­
ant. Let. {J-.Li,s,1Ji,s} be an equivariant spectral resolution of the Dirac operator 011

2. Let E(i, s, j, t) := 1Ji,ß (2)1Jj,t (2) C2 • Then L 2(6(2 x Z)) = ffii,ß,j,tE(i, s, j, t) and

If (i, s) -# (j, t), thc 4 dimensional space [; := E(i, s,j, t) ffiE(j, t, i, 8) is invariant
under the action of both the Dirac operator and the group Zu. We cOlllpute

(3.9)
C(g2f.)(cPi,s 0 <pj,t (2) Vi ffi 1Jj,t (2)1Ji,s (2) V2)

=P-b+ß+2,'l (gU)1Ji,s (2) cPj,t (2) a3 v2 ffi P-b+ß+2t (gU )<pj,t (2) 1Ji,s (2) a3v i·

A word of explaination is in order. The action of Z, on the principal spine bundle
of Z is given by e1f~b/lPkdgf.); we must undo this eomplex factor in cOIuputing
the Zu action; this creates the factor of p-b(g2f.). The factor of Pß(g2f.) COInes frOIn
the eorreetion factor of € rclating :F2 and :F3 as was diseussed in LeIullla 3.4. The
remaining factors eome frolll the pararneters .9 and t. Let

V€ := 1Ji,s (2) <pj,t ® v + E1Jj,t (2) <Pi,~ (2) a3v ,

C(g2dv€ = P-b+ß+t+s(9u)vE if E = Pt-s(g2f.),

C(g2l)VE= P-b+ß+t+s+,(gu)vt: if € = Pt-s+,(9U).

Thus this gives the equivariant decomposition of G. Let Gt: be the span of the
V~ for v E C2. We lISC equation (3.8) and the cOIulllutation relations of equation
(3.3) to sec that. the Dirae operator Inaps VE to ((tli,sal + J-Lj,ta2)V)E' Sillce thc ai
are trace free, this operator ha.., eigenvalues whieh oeeur in with opposite signs. If
(J-Li,s, J-.Lj,d :f (0,0) these eigellvalucs are nOIl-zero and eaneel in the ealclllation of
the eta invariant. Ir (J-Li,IJl/lj,t) = (0,0), thcre are two 0 eigenvalucs whieh do not
eontribute to the JR./Z valued invariant.
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The argument given above shows that to eompute 1](N, p), we may suppose i = j
and s = t. Thc eigcnvalues of a3 = (al + a2)/2 l /2 are ±l. Let a3v± = ±v± and let
'I/J±,i,~ := cjJi,8 0 cjJi,8 0 v±. Then C(g2tJ'I/J±,i,~ = ±P-b+ß+28(g2i)'I/J±,i,8, and

The uormalizing eonstant of 21/ 2 plays uo role in thc eta invariant when wc evaluate
at z = 0 and Iuay bc ignorecl. Let u = -b + ß + 2v. The eigenfunctions 'I/J+,i,B
eorrespond to the representation Pu preeisc1y when s = v; the eigenvalues lJ,i,u then
give rise to 1](M, Pu) in the ca1culation of 7](N, Pu)' Since

the eigenfunctions 'ljJ-,i,~ eorrespond to thc representation Pu when 8 = v + P../2;
thc cigenvalucs -J-.Li,v+l/2 thcn give rise to dirnEv+l/2(O, Z) - 'f}(M, PV+l/2) in thc
ealculation of 7](N, Pu); wc mllst correct for the sign of the zero eigen values but this
plays no role Iuod Z. This proves assertion (1). Assertion (2) follows sinee there are
no eqllivariallt eigenspaees of this form eorrcsponding to Pu if u = -b + ß+ 2v + l.
Ir there arc no harmonie spinors, thc 0 spectrum plays uo role anel the ideutitics of
assertions (1) and (2) hold in IR. 0

Oue ean also study even diIueIlsional twisted produets; we refer to thc thesis of
Barrera-Yanez {5] for the proof of the following result.

3.10 Theorem (Barrera-Yanez). Let Z be the prinei[Jal 'Li lmndle defined by
a 'Le 8tnJ.cture J on a non-orientable even dimensional l1wniJold M. AS8ume M
admits a pinc structure with associated jl(J,t detennin(J,nt liTte bundle given by f* Pb
(J,nd that Z is O1'ientable. Use equation (1.5) to define an action oJ Z2e on Z x Z
and let N := (2 x Z)/,L2l .

(1) IJ P.. = 2, then N is a non-oTientable maniJold with 7rdN) = Z4 whieh admits
a canonical pinc strueture with assoeiated detenninant Une bundle given by

PI'
i) IJ'U = 28 - b + m/2, then 71(N, Pu) = 7J(M l PB) in R/Z.
ii IJ tL = 28 - b + 1 + 7n/2, thert 'f}(N, Pu) = 0 in ~/Z.

(2) IJ P.. > 2, theu N is a non-orientable manifold with 7rdN) = Zu whieh
admits a canonical pin- strueture.

i) If u = 2s - b+ m/2 + [/4, tILen 1](N, Pu) = 1](M, PB) + 7J(M,P8+i/4)
in IR/Z.

ii) IJ u = 28 + 1 - b + 7n/2 + (/4, then 1](N, Pu) = 0 in lR/Z.

(3) IJ there are no hamwnic spinaTs on Z, these equalities hold in IR.

There is another twisted produet formula that is usefn!.

3.11 Theorem. Let Z be the principal Zl bundle defined by a 'Li structure f on a
non-orientable even dimensional maniJold M. Assume M admits a pinc stnJ.eture
with assoeiated flat deteNninant line bundle given by f* Pb, that Z is 07'ientable,
and that Z Iws no harmonie spinaTs. Let U be an even dimensional spin maniJold
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which admits a 'Li spin action. Give U(M) := U xZ t Z the natural 'Li stT'ueture
and pinc stn-,cture with (-,ssociated flat determinant line bundle given by f* Pb·

(1) The 'Li action on U induces representations pt on the kernel of the half
spin operators. DecornIJose pt - Pü = ~SnSPfJ' Then we have
17(U(M), P,J = ~sns7J(A1, Pu-s)'

(2) Give U = SI X SI the spin structtire with trivial principf!'l spin bundle. Let
f. ~ 4. The rnap 91 : u 1-7 -u defines a spinor action of Zi on U and
rj(U(M), Pu) = 7J(M, Pu-i/4 (Po - Pi/2))'

Proof. Let Wv be the normalized orientation of U; c(wu) anti-conunutes with Pu
and c(wu) = ±1 on ker P~. Wc cau dccomposc .6.(U x Z) = .6.(U) 0.6.(Z). Under
this elecoIllpositiou the Dirac operator on U x Z takes the form Pu 01 + c(Wv )0 PM'
The action of 'L, is the tensor product of thc two aetions and COIllluutes with c(wu).
Let {4>i,fJ' Ai,s} allel {'l/Jj,t, J-Lj,d be an equivariant spectral resolution of the Dirac
operators on U and on Z. Wc have c(wu )epi,s E E s(-Ai,~, Pu). Ir Ai,s /; 0, let

Then 'Li acts diagonally on E(i, s,j, t). Since the eigenvalues of P on E(i, s,j, t)
are ± (Al,s + J-L;' t) 1/2, these spaccs play .no role in thc eomplit.ation of the cquivariant

eta invariant. Ir 4>i,~ E ker(P~), then

We set s + t = 1L anel surn t.o derive the dcsired forultlla. We asStllUe Z has
110 hanllonie spinors to cnsuro that U x Z(M) has no harmonie spinors to avoid
difficllities with thc zero eigenspaee.

Give U = SI X SI the spin structure s which has trivial principal spin bundle.
Paradoxically, s is often called thc non-trivial spin structure since [U, s] generates
M Slnn2 = Z2- The spinor bundle Oll U is a trivial bundle of cOluplex dimension
2. The kerneis of P~ are 1 diIuensional and 9i acts by ±A on ker(P~). Thc
second asRertioll now follows from the first. 0

§4 SPHERICAL SPACE FORMS AND SPHERICAL SPACE FORM BUNDLES

In this sectiou, we €stablish some technical rcsults wo will use in §5 and §6
to study nwtrics of positive scrtlar curvaturc. In LCIluua 4.3, wo express thc eta
invariant of lens spaces and lens space bundles in tern}s of Dedekilld sums; in
Lenuua 4.4, we use the rcsult.s of §3 to compllte thc eta invariant for the associated
twisted prodllcts. Lemma 4.5 is a techllical Lemma we will usc to provc Lenuna
4.8 which gives the order of the range of the eta invariant.

4.1 Definition (Lens spaces and lens space bundles). Ir ä = (al, ... ,ad is
a collection of odd integers, let. r(ii) := Pal EB ... EB Pak define a fixed point frce
representatioll from 'Li to the ullitary group U(k). Let
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be thc resulting lens space. Let H02 EB (k - 1)1 be the Whitney sum of the tensor
square of thc cOInplex Hopf line bundle with (k - 1) copies of thc trivial conlplox
line bundle over the sphere S2. Let A E SI act by multiplication by Aa .. on the
vth smnnland. This action restricts to a fixcd point free action of 7li on the sphcre
bundle S(H02 €B (k - 1)1). Let

X 2k+ 1 (e; Ci) := S(H02 €B (k - l)l)jr(a)(Ze);

this a bunelle over S2 with fiber L 2k -l(f; a).

4.2 Definition (Notational Conventions). Let 9r allel GY< be the free Abelian
groups generated by thc lens spaces anel by the lens space bundles of dimension 1n.
The eta invariant is additive alld cxtencls ta these graups.

(1) If k is even, let WL(a; A) = A-151/2 det(I - r(ä)(A)).

(2) Ir k is add, let WL(ä; A) = A-(läl+l)/2 det(1 - r(a)(A)).

(3) If A f- 1, let FL(a; A) = WL{ii; A)-I. If A = 1, let FL(Ci; A) = O.

(4) Let Fx(ä; A) = (1 + Aal )(l - Aal )-1FL(iij A).

(5) Define ß : GI: ---+ 9~+4 alld B : 9'X ---+ 9X+4 by

L 1TL (e· Ci) f---7 L t1t +4(f· ii 1 1) - 3L711+4(f.. ii 1 3) auel, , , , , , , ,
Xm(e; ii) f---7 xm+4(f; ii, 1, 1) - 3Xm+4(f.; Ci, 1,3).

4"+1 4" 3 4"+1(6) LetKl:=L1(f.;1)audlctKi :=BKLJ- E9i .
4'+3 4" 1 4"+3(7) Let 1(1 := X 3 (ij 1) allel let K j := BK1- E 9j .

(8) Let. 1/J := WL (1,1) = [J-l (po - pd 2 auel let 0 := Po - Pi/2'

(9) Sillce WL(j . 1, j . 3) E Ra (Zl)2 j = 'lj;2 j R(Zl), wc cau choose cPj so tltat
cPj'lj;j = \JJ L(j . I,J" . 3).

We refer to [9,10] for the proof of the following result; the assertiolls concernillg
the eta invariant are bascd on result.s of DOIlllClly [12].

4.3 Lemma. Let~.,\:= ~"\EZII and let t.,\ := ~"\EZt,"\#I'

(1) For rn ~ 3, L711(f.; ä) and Xm(f.; a) ad1nit metnes oJ positive sealar curva­
ture.

(2) 1J k is even, then L 2k - 1 (i; ä) and X 2k+1 (i; a) admit spin struetures.

(3) 1J k is add, then L2k-l(f; ä) and X2k+l(f; ä) have SlJinc struettires with
determinant line btindle given by PI'

(4) We have ry(L2k - l (i; ä), p) = f- 1 t>.Tr(p)FL(ii; A) E Q.

(5) We have T/(X 2k+1 (f; a),p) = p-lfj>.Tr(p)Fx(ä; A) E Q.

The manifolcls N(Lm(f; Ci)) and N(X'm(f; ä)) adnüt IIlCtriCS of positive scalar
curvature for Tn ~ 3. Thus the formula of Lichnerowicz [25] shows there are no
hannollic spinars. Thc following is an inllnediat.e conscqllcncc of Lemma 4.3 anel
of Thcorem 3.7.
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4.4 Lemma.

(1) 1J 1n == 3 mod 4, then 11(N(Lm (E; Ci)), P2v) = TJ(Lm (i; Ci), opv)'

(2) 1J 1n == 3 mod 4, then ry(N(Xm (i; ä)), P2v-1) = 11(Xm (E; a), rSpv)'

(3) /f 1n == 1 mod 4, then 11(N(Lm (l; ä)), P2v-1+l/2) = ry(Lfn(l; ä), OPv).

(4) If 1n == 1 mod 4, the1l 11(N(Xm (l; ä)), P2v+i/2) = ''1(X m (i; a), rSpv).

(5) Otherwise 11(N(Lm (l; a)), Pu) = 0 and ry(N(Xm(li a)), Pu) = O.

We shall nced thc following technical result.

4.5 Lemma. Let i ;::: 4, P E R(Zl), ii = (al, ... , lLk), and b= (h, ... ,bk-I).

(1) Fm' k == 0 mod i, i-I E,\..\k = 1,. ihis vanishes 0 therwise.

(2) We have 71(Kl, rS) == 1/(Kl, 0) == 1/2 mod Z.

(3) 1f, E RO(Zl)k+1, then i-1E,\ Tr(,(..\))It.. (1- ..\a.,)-l E Z,

11(L2k - 1(l;ä),,) E Z, and rl(X2k - 1(l;b),,) E Z.

(4) We have 1](L2k-1(f;a, 1) - 3L2k - 1(l;a,3),p) = 11(L2k - 1(l;a,3),7/Jp).

(5) We have 11(X2k - 1(i; b, 1) - 3X2k - 1(l; b, 3), p) = r/(X2k - 1(l; b, 3),VJP)'

(6) /f Y E Qft or ifY E Q~YJ then ry(ßjy, <Pjp) = 11(Y,P)·
4 '+1 4 '+3(7) /1 j 2: 1, then 11(KL

J ,'ljJop) E Z and 11(Kj ,'ljJrSp) E Z.

(8) We have 11(K1j
+1 ,<PjO) == ry(Kj!+3, <PjrS) == ~ mod Z.

(9) /f X 5 := X 5 (l; 1,1) - 3X 5 (e; 1,3), then 11(X5 , rSp) == 0 mod Z (Lnd
ry(X5

, I5Pl/4) == 1 mod 2Z.

Prooj. The first assertion follows froIll thc ort.hogonality relations. Wo cOlupute

11(J<l ,0) = e- 1 E,\..\(1 - ..\l/2)(1 - ..\)-1

= i-1f:,\..\(1 +..\ + ... + X~/2-1)

= _/!-1 (i/2) + i-I E>.>'(l + >. + ... + ..\l/2-1) = -1/2.

Wo use the identity rS2 = 25 to compllte:

ry(Ki, <5) = (2i)-1 t l ..\(l + ..\)(1 - ..\i/2)2(1 - ..\)-2

= (2i)-1f:.\>'(1 + ..\)(1 + ..\ + ... + >.l/2-1)2

= -i/4 + (2In- 1E>...\(1 + ..\)(1 +..\ + ... + ..\l/2-1)2

= -i/4 + 1/2.
Thc sccolld assertion now follows since e2: 4. We set ,1 = IlI<v<k (Po - Pa.,). Then
'IRO(.Zl) = Ro(Zl)k+1 SO , = '1~ for SOlllC ~ E RarE t} Thus- -

g-lf:>. Tr(,(>.))Ilv(1 - >.a.,)-1 = e-1f:,\ Tr(f(>')).

Sincc Tr(E(l)) = 0, WO may roplaco t.\ by E>. and USO (1) to sec e- 1 E>. 'I\'(~(..\)) E Z;
this provos thc first part of (3); the relnaining parts now follow from Lemma 4.3.
Assortions (4) and (5) follow from tho idellti ties

(4.6)
:FL (äl 1)('\) - 3:FLUi, 3)(..\) = VJ(..\):FL(a, 3)(..\),

:Fx (all) (>.) - 3.1"x (ä, 3)(..\) = 1/1(..\):Fx (a, 3)(>').
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(4.7)

(4.9)

Assertion (6) follows from equation (4.6) since cPj'IjJj:F_ (ä, j 1, j 3) = :F_ (ä) for L
and X. We use equation (4.6) to see that for any '"'( E R(Ze):

1](K1j +I J') = 1](L4j+l(e; (j + 1)I,j3),'ljJj,)

1](K'J/+3,,) = 1](X4j+3(1:; (j + 1)1,j3),V;1,).

We apply equation (4.7) to , = 'ljJop. Since 'ljJj+l po E Ro(Zl)2j +3, clSHcrtiou (7)
follows from assertion (3). Assertion (8) follows frmn assertion (2) anel assertion
(6). Since )././2 = A31./2 for A E Zt, we have

1](XS,tJPI./4) = 1](XS(e; 1,3), Jpl/41/J)

= e- I EAAl / 4 A(1 + A)(1 - AI./2)/(1 - A3)

= 1:- l EAAl / 4 (A + A2)(1 + A3 + ... + ).3l/2-3)

= -1 + e-l~).Al/4(A + A2)(1 + A3+ ... + A3l/2- 3).

By (1), i-I ~AAt" = 0 unless i divides v. The powers of A t.hat appear in this sum
are v = e/4 + 1 + 3k 01' v = i/4 + 2 + 3k for 0 ::; k < 3i/2. Since 1) ~ 1 and
siuce 3i/2 - 3 + e/4 + 2 < 2i, we nced only cOllsider v = i HO 1 = f- 1:/4 - 3k or
2 = l - l/4 - 3k. This is not possiblc as l - l/4 - 3k = 3(-k + 1:/4) anel 3 does not
divide 1 or 2. Thus 1](XS

, Pl/4) = -1. We can elecompose any P = nlPI./4 +, for
, E RoCLl) and tlms

'f}(X5,op) = -nI + Tt21](X5 (f; 1,3), J'"'(1j;).

Since ,J'lj; E 110 (Zl)4, 1](XS, J,1/J) E Z. 0

The Poincare dual A* of an Abelian group A is thc group of hmnomorphislns
from A to IR/Z. ThllS, for example, Zi = Z/fZ. -

(1) Let 1]* (M) E R(Zl)* bc the homomorphism 1]. (M) : P I----t 1](M, Jp) E QjZ.

(2) For k ~ 1, let L:2k - l (f) := spauz {1].0 (L2k - l (ei al, , ad)} ~ R(Zl)*.

(3) For k ~ 1, let X2k+1(i) := spanz{1]. (X2k+l (f; al, , ak))} ~ R(Zl)*'

4.8 Lemma. Let j ~ O.

(1) We have 2j + l ~ lL:2j + l (2) I.
(2) /1 i ~ 4, then 2j +1

::; IL4,i+x{f)1 ::; 1L:4j+3 (e)l.
( )

'+13 If f ~ 4, then 2J ::; IX4j+3 (f)1 ::; IX4j+S (e)I.

Proof. We lIse Leullua 4.3 to provc the first assertion: 1]. (RP2 j +1, Po) = ±2-j - 1.
Let a2j := p;-x{po - PI) aud let a2j-l := (Po - pr). Let Ci = (all "'1 ak) for k ;::: 1.
Then

akFL(Ci,l) = FL(Ci) so 1](L2k+l (f; Ci, 1), pak) = 1}(L2k - l (fj Ci), p);

ak:Fx(ii, 1) = :Fx(fi) so 1](X2k+3(f;ii, 1), pak) = T/(X2k+1 (ejii),p).

The Inap p I----t (YkP induces a dual map ak : R(Zl)* ---7 R(Zl)*' By equation (4.9),
ak1].(L2k+l (e;ä,I)) = T/*(L 2k - l (f;a)) anel (Yk1]*(X2k+3 (fjCi,l)) = 1}.(X2k+l (fiii))
so

L2k-df) C akL:2k+1(f), 1L:2k - l (l)1 ~ 1L:2k+df)l,

X2k+l (f) C aZX2k+3 (l), and IX2k+di)1 ~ IX2k+3 (l)l.
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By Lelnma 4.5 (2), we have l.cde)! ~ 2 and Ix3 (e)1 ~ 2. Since'tj; = WL(I, 1), a
similar argulllcnt shows 'IjJ'" is surjective so

1.c4k+l(e)1 ~ 1.c4k-3(e)I·lkcr(4'''') n17'" .c4k +1 (e)I, and

Ix4k +3 (e)1 ~ ]X4k-l (e)1 'Iker(v/) n 17'" X4k+3(~)!'

By Lemma 4.5 (7), Tl'" K1k +1 E ker('IjJ"') and TJ'" K1:k +3 E ker(1/J"'); by Lemma 4.5 (8),
these elements havc order at lca.."t 2. Assortion (2) 1l0W follows by indllction. D

§5 EXOTIC METRICS OF POSITIVE SCALAR CURVATURE

5.1 Twisted bordism groups. Wo generalizc the cquivariant pin bonlism groups
defincd in §2.14. Let. ~ be areal vector bllndlc over the classifying space B1r of a
finite group 1r. The cquivariant. twisted bordism group M Spinm(B1r,~) consists
of tripies (M, I, s) whcre 1 is a n structurc on a manifold M of dimension 171, and
where s is a spin st.ructure on the bundle T(M) EB I'" (~); wo asslune M is closcel
hut not necessarily connected. Wc impose the equivalcllce relation ((M, I, s)] = 0 if
thore exists a compact manifolel N (which need not be connectcel) with boundary
M so the structures (I, s) extenel ovor N. Thc group structure is defineel by disjoint
union. Ir 7fdM) = 1r, we shall give M the canonical1r structure.

If the Stiefel Whitney classes Wl and W2 of ~ and t agree, then the groups
MSpin'fTl(B1r,O anel MSpin'fTl(B1r,~) agree; thus only Wi(~) for i = 1,2 are rele­
vant.. If 11)1 (~) = 0 and if Wz (~) = 0, then M Spin'fTl (B7f 1 t,) = M Spinm (Bn). If
WI (~) + Wz (0 = 0, then ~ adnli ts a pin- structure and therc is a natural map from
M Spinm (B1r, 0 to M Pin~ (B7f). If ~ admits a spine structure 01' a pine strllcture,
therc is a Ilaturallnap from MSpinm(B7f,~) to MSpinr:-n(B1r) 01' MPin~n,(B7f); wo
uso these luaps to extend the et.a invariant t.o this setting.

Note that not every pair of COhOIllOlogy classes (Ul'UZ) for Ui E H i (B7f;Zz) can
be rcalized as thc first. two St.iefel Whitney classes of a vector bundle~. Nevert.hcless ,
there is a generalization of the twisted spin borelism groups defined above which
associates an Abelian grOllp to every such pair (Ul' U2) which is iSOInorphic to
M S]Jinm (B1r 1~) if (Ul' U2) = (wd~), W2 (~)). We refcr to Stolz [35] for fllrthcr
details.

Supposc 7f = Zn is cyclic. We take ~ trivial if n is odd. Ir n is even, let. x
generate H 1 (BZ n ; 1.,2) = Z2 anel let y generate H 2 (BZ n ; Z2) = Z2- If n == 0 Inod
4, then x 2 = 0; if n == 2 mod 4, then x 2 = y. Wo define real bundles ei over BZn

by requiring

Wl(t,O) =0, W2(~O)=0, wl(6)=O, wl(6)=y

Wl(~2) = x, W2(~2) = 0, Wl(~3) = X, W2(~3) = y.

For cxample, wc coulel take ~o to be the trivial real line bllndle, €2 to be thc real
line bundlc defined by Pn/2, 6 to be t.he real 2-plane buudle defined by thc complex
reprcscnt.ation Pi, anel €3 = 6 EB ~2'

Lot 7fl (NI) = Zn' ASSUIIlC that the universal cover of M achnits a spin structure.
Thoro exists a structUl'e s Oll M; that [(M, 1,8)] E M Spin'fTl(BZn, e). If n == 0 IllOd
4:

0) Wo t.ake ~ = €o if wr(M) = 0 a.nd w2(M) = 0; M adlnits a spin structure.
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1) We take ~ = ~1 if Wl (M) = 0 anel w2(M) -=I 0; M achllits a spinG structure
with determinant line b.undle given by PI.

2) We take ~ = ~2 if Wl (M) -=I 0 anel 'W2 (M) = 0; M admits a pin - structure.

3) We take ~ = ~3 if Wl (M) -=I 0 and w2(M) -=I 0; M aelmits a pine structure
wi th detenninant line bundlc giVCIl by PI.

If 11 is odd, M is spin and we take ~ = ~o. If 11 == 2 mod 4, we take t. = ~3 and give
M a pine strllcture in 2) and we take ~ = ~2 and give M a pin- strueture in 3).

Give U = SI X SI the spin structllre with associated trivial principal spin bunelle.
Let 1/ == 0 mod 4. If Y is an even dimensional pin- Dlanifold with a Zv structurc
which carries the oricntation, let U(Y) := U xz., Z(Y) where Z(Y) is the associated
principal Zv bundle over Y. We have tlIat:

a) JRIF4k E M Spin(BZ 21 ~3), JRIF4k+2 E M Spin(BZ2, C.2),

b) L4k+1 (e; -) E MSpi114k+l(BZl,~d, L4k+3 (ej -) E MSpin4k+3(BZ,,~O),

c) X 4k+ 1 (f; -) E M Spin4k+l(BZl1 ~o), X 4k+3 {f; -) E MSpin4k+3(BZl1 t.d,
d) N(Ltn(l!; -)) E M Spin2m(BZ2l, ~2), N(Xtn(l!; -)) E MSpin2m(BZu , ~2),

e) UN(Lm(f; -)) E M Spin2m+2(BZ2l1 ~2), and

U N(Xtn{f; -)) E MSpin2m+2(BZ2l, t.2)'

5.2 Twisted geometrical bordism groups. The group +M Spinm (B1f, t,) is c1c­
filleel sirnilarly. It consists of quadrllples (M, 1, ''', g) where (M, 1, s) is as above and
where 9 is ametrie of positive scalar curvature on M. We impose the equivalence
relation +[(M, 1, S, 9)] = 0 if there exists a cmnpact luanifold N (which noed not
be connectcd) with boundary M so the structures (1, s) extclld ovcr N and so timt
thc lnetrie on M extcnds as a lnetric of positive scalar curvature over N whieh
is product near M. Again, the group structure is defined by disjoint union. If
[(M,1,s,gd] = [(M,1,s,g2)] in +MSpinm(B1f,~), thc metries 91 and g2 are sa.id
to be ge01netrically bordant.

We say that two lnctrics of positive sealar curvature 9i Oll Mare concordant if
thcre exists a Illetric 9 on M x [0, 1] whieh has positive sealar curvature, whieh is
product. Bear thc boundary, and which restricts to the giveB n18trics at M x i for
i = 0,1. Let R(M) be t.he space of Inet.rics of positive scalar curvature Oll M and
let M(M) := R(M)jDiff(M) be the associatecl moduli space. Two metries which
are in the same are componcnt of R(M) arc necessarily cOllcorelant; it is not known
if the converse holds,

A special ca."c of thc following Theorem for ~ orientable wa...'3 provcd. by Botvin­
nik and Gilkey [7, 8]; it uses work of Gromov and Lawson [20, 21]' Rosenberg
[28], Rosenberg and Stolz [29], anel ScllOen and Yau [31]. Thc extension. to the
nonorientable setting iH ent.ircly straightforward and is therefore ollütted.

5.3 Theorem. Let?T be a finite ,Q1'OUp. Let p be a virtual representation 017r arul
let ~ be areal vector bundle Dver the classilying space B1f. I1 m is even, assume
that ~ is non-orientable and that ~ admits a pinc str"cture. IJ m is odd, assurne
that ~ admits a spinc stf"llctur'e and that p has virtual dimension O. Let M be a
conneeted closed maniJold oJ dimension 7n ~ 5 with ?Tl (M) = 1f. Let 1 be the
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eanoniealn st7"Uetu1'e on M. Assllme there exists a spin structure s on T(M) EB f* ~

so [(M, f, s)] E M Spinm(Bn,~).

(1) Suppose there exists a closed mani/old MI which ad1nits ametrie 91 0/ pos­
itive sealar curvature so that [(M, I, s)] = [(MI, 11, SI)] in M Spinm (Bn,~);

MI need not be c07Lnected. Then M admits a metne 01 positive smlar cur­
vature 9 so that [(M, s, I, g)] = [(MI, SI, 11, 9d] in +MSpinrn(Bn, ~).

(2) Let [(Mz ,lz,s2,92)] = 0 in +MSPinm(En,O. Then 1](M2,p) = 0 in IR.

(3) Suppose that there exists [(M3, 13, s3, 93)] in +M SPinm (Bn,~) such that
1/(M3, 131 83,93, p) -=I- 0 in IR. Suppose that M admits ametrie 01 positive
sealar eurvature. Then M (M) has an infinite number 01 com,ponents and
there exists a countable lamily 01 metries Vi 01 positive scalar CllTvature on
M whieh are not geomet7'ically bordant and which are not concordant.

To apply TheorcIll 5.3, we mllst constrllct manifolds which admit mctrics of
positive scalar curvaturc and which have non-vanishing eta invariant. If a is a
group homomorphislll froIll G to H, we have natural maps

aB : BG --+ EH, aR : RH -7 RG, and

aM : MSpinm(BG,aBE) -7 MSpinrn(BH,E).

(Whcn discussing the case m is even, we shall need to asStißle that both ~ and
aDE are non-orientable). Inequivalent spine structures on EH are parametrized by
cOlnplex line bllndles; there exists a suitable linear rcpresentat.ion p!: which reflects
choice of the detenninant line bllndle on aB~ so timt:

(5.4)

For example, let a be thc natural surjective Illap from ZZI. to 'LI.. Then aB~1 = ~o

aud we take p!: = PI' We can usc equation (5.4) to redllce the existence of non­
trivial eta invariant. to a corresponding quest ion coucerning cyclic groups in many
instanccs.

We bcgin with t.hc add diIncllsional case:

5.5 Lemma. Let 171 ;:: 5 be odd, let n ~ 2, and let i = 0, 1. 11 i = 0 (-,nd il rn == 1
mod 4 or ili = 1 and if171 == 3 mori 4, assume n ~ 3. Then there exists [(M, I, 8,9)]
in +M Spinm(BZn, ~i) and P E Ro{Zn) so that TJ(M, p) -=I- O.

Proof. This was pravcd in [7, 8]. We sketch the proof briefly. Let m be add and
let n = ab whcrc a anel bare coprime and let a be the natural indusion of Za in
Zn- Thcn an is surjcetive. Thus by equation (5.4), we nIay SllPPOSC withollt loss
of gencrality that n = pI) is a non-trivial prilne power. Supposc n is odd. Thc lens
space L 1n (n; ä) adlllit spin struct.llres. We use a suitable gClleralization of LCIllilla
4.3 (4) to cmnpute 11(Lm(n; ä), WL(ä)) = (n - 1)/n -=I- O. Suppose n = f. is a 11011­

trivial power of 2. We usc the same argulllent if 1n == 3 tllod 4 aud e= ~o or if
1TL == 1 mod 4 and if ~ = 6. If rn == 3 lllod 4 and e= 6 01' if m == 1 mad 4 and if
~ = ~o, we cmnpute

1]{Xm{e; ä), WL(ä)(po - Pa!)) = f.- 1 t(1 + Aal) = f.- l (f. - 2)

so this is non-trivial for f. > 2. 0

The following is now inllnediatc
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(5.9)

5.6 Theorem. Let X be an orientable ma,nifold of odd dirnension -rTl 2:: 5 with
non-trivial cyclic fundamental graUT) Zn whose universal cover is spin and which
adrnits ametrie of positive scalar curvatuTe. If 7n == 3 mod 4 and if W2(X) -=I- 0 or if
7n == 1 morl4 and ifw2(X) = 0, assume n 2:: 3. Then M(X) has an infinite number
of c01nponents and there exists a countable family of metrics 9i of positive scalar
curvature on X which are not geometrically bordant and which are not concorrlant.

There are suitable gcneralizations of this theorem to Illanifolds with other finite
fundament.al grouPSj we restrict to spin Inanifolds for the sake of simplicity and we
refer to [7, 8] for the proof of the following resuIt.

5.7 Theorem. Let X be a spin manifold of odd dimension m ;::: 5 with non-t1'ivial
finite fundamental group 1r whieh admits a metne of positive sealar curvat1.J,1'e. 1f
m == 1 mod 3, assume 1r eontains an element 9 whieh is not eonjugate to g-l. Then
M (X) has an infinite numbc1' of components and there exists a countaule family
0] metNcs gi of positive sealar eurvature on X whieh are not ge01netrico.lly bordant
and whieh are not concQ1'dant.

For thc remainder of this scctiOIl, we shall be interesteel in thc case 711, even and
M non orientable. We first take 7r cyclic.

5.8 Lemma. Let m ;::: 6 be even, let n be even, and let i = 2,3. 1f i = 2 and i]
m == 0 mod 4 or if i = 3 and if 7n == 2 mod 4, assume n == 0 mod 4. Then there
exists [(M,f,s,g)] in +MSpinm(BZn,~i) aud pE R(Zn) so that 'T}(M,p) -=I- O.

Proof. We mayassurne without loss of generality that n = eis apower of 2. Ire= 2,
we take M = ImP tH anel llse [15, TheorCIll 3.3] to see 1/(JRIIDm , Po) = ±2-{m+2)/2 # O.
We therefore suppose [ ;::: 4.

Let 'fn = 2(2k - 1). We com~ider the following ca..<.;es

(1) Ir ~ = ~2 and if2k -1 == 3 mod 4, let f = 0, let v(u) = u, and let Y = L.

(2) Ir ~ = ~3 anel if 2k - 1 == 3 mod 4, let € = I, let v (u) = u + 1, anel let Y = X.

(3) Ir E. = ~2 and if 2k - 1 == 1 mod 4, let f = 0, let v(u) = u - [/4, and let
Y=X.

(4) Ir E. = ~3 alld if 2k - 1 == 1 mocl 4, let € = 1, let v (u) = u - i /4 + 1, and let
Y=L.

Let a be thc natural projcction from Z2l to 'Li. We llse equation (5.4) allel Lemma
4.4 to see

'T}(aM N(y2k - 1(E; ä)), Pu) = 7j(N(y 2k - 1(i; ii)), P2u+t.)

='T}(y2k-l(Ej ii), Pv{u)8).

Since 7}(N(y2k-1(Ejii)),pw) is Hupported on the reprcsent.ations 1lJ == 2u+€ rnocl2,
we llSC Lemma 4.10 to see the eta invariant in equation (5.!)) is l1on-trivial.

Ir M is an m - 2 dirncllsional pin- manifold with a Zu structure, then we use
TheoreIll 3.11 (2) to dimcnsion shift. We llSC equation (5.9) anel cOlnpute

'T}(aMUN(y2k-1 (e; ii)), Pu) = 71(UN(y2k - 1 (E; a)), P21L+()

=71(N (y2k-1 (Ej ä)) I P2u+(+l/2 (Po - Pl))

=11(y2k-l(E; Ci), (Jv{u)+i/4 82 )

=2'T}(y2k-l (ij Ci), Pv{u)+i/4 8).
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Since we are working in IR/Z, the additiona.l factor of 2 plays no role and we use
Lcuuua 4.4 to see these invariants are non-trivial. 0

Thc following Theoreul is CL consequence of the discussion given abovej thc C<lSe

m:=:O mod 4 has also been dcrived by Barrcra-Yanez [5] using a different met.hod
to cstablish thc uon-triviality of the ct.a invariant.

5.10 Theorem. Let X be (j non orientable manifold oJ even dimension 171 ~ 6
with eyclie Jundarrtental gro1J.p_ Zn whose universal eover is spin and whieh admits
a metne oJ positive sealar eurvature. If rn :=: 0 mod 4 and iJ W2(X) =I- 0 or iJ m :=: 2
mod 4 and ifw2(X) = 0, assume n:=:O mod 4. Then M(X) has an infinite number
oJ components and there exists a countable Jamily 0/ metncs gi oJ positive sealar
curvature on X whieh are not geometrically bordant and which are not concordant.

We can gencralize these results to certain other finite groups. For the sake of
siluplicity, we will work with pin- structures on lllanifolds of diluension 1ft :=: 2
mod 4; there are ot.her theorems of this type for the other cases but they are more
cOluplicated to state. Again, we begin by constructing manifolds with non-vanishing
eta invariants. Let Po be thc trivial reprcsentation of 7r.

5.11 Lemma. Let 1n = 4k+2 ~ 6. Let ~ be the realline bu,ndle oveT' the classi/ying
space 0/ a finite group 7r defined by a non-trivial representation B f,om 7r to Z2'
There exists [(M,f,s,g)] in +MSpin~(B1r,fJ so that 1/(M,po) =I- O.

Proo/. Suppose that 7r contaills an elelncnt gof order 2 so t.hat 3(g) = -1. The lllap
92 ~ [J defines an clubeddillg a : 2,2 -)- 7r and aM [lRIfDmJ belongs to M Spinm (Bn l~)'

We llse [15] to see 1l (aM lRIfDm , Po) = 1J (JRllIlfn , Po) =I- O.
Suppose n contains an element 9 of order P ~ 4 so that 3 (9) = -1. Give

y4j+6 := U2j N(L3(lj 1, 1)) thc natural pill- structurc and Z2t structure. Thc map
a : 921. t-+ 9 defines a map a : Z2f. -)- 7r. Then

1J(aMU2j N(L3(lj 1, 1)), Po) = 1](N(L3(ij 1, 1)), pjdpo - Pl)2j )

= 1](L3(i; 1,I),pjt/202j+l) = 22j-ll-1E~jl/2+1(l_ ~l/2)2/(I_ ~)2

= 22j - 1p- 1tA jl/ 2+ 1 (1 + ~ + ,,\2 + ,,\l/2-1)2

= 22j - 1p-l (-€2/4 + ~~jl/2+1 (1 + + €/2~e;2-1 + ... + )..tf2 - 2 )

= ±22j - 1lj4. 0

The followillg theoreln is 1l0W i~mediate.

5.12 Theorem. Let X be a ]Jin- manifold 0/ dimension m = 4k+2 ~ 6 with finite
Jundamental group n. Assume X admits a metnc oJ positive scalar e'UT'Vature. Then
M (X) has an infinite number oJ components. Furthernwre there exists a countable
Jamily oJ metrics gi oJ positive scalar curvature on X whieh are not geometrically
bordant and which are not concordant.

§6 THE GnoMov-LAWSON CONJECTURE

Let M be a spin manifold of dimension rn :=: 0 Illod 4. Let A(M) E Z be the
index of the Dirac operator on M; by thc index theorcln, wc can cOlnpute A(M) as
thc int.egral of a polynOluial in the Pont.rjagin classes of M so A(M) is independent
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of the metric Oll M anel of t.he Hpin structure which is chosen on M. If M achllits
a nletric of pOHitive scalar curvature, thcre are no harmonic spinors on M by the
Lichnerowicz formula [25] anel thus A(M) = O. Consequently, if Ä(M) i=- 0, then
M eloes not admit a Illetric of positive scalar curvature. The Kunlmer surface

K 4 := {(z) E Cp3
: z~ + zt + z~ + z~ = O}

is an algebraic sllrface which aclmits a spin structurc with A(K4 ) = 2. Thus K 4

does not admit a metric of positive scalar curvature. If m == 0 mod 4, A is Z valllcd.
We call define a Z2 valuecl indcx if rn == 1 Of if m == 2 nlOd 8. Let P" be the Dirac
opcrator defined by a spin structure s on a manifolcl of dimension m. Ir 1n == 1
mod 8, let Ä(M, s) E 1.2 be the mod 2 reduction of dim(ker(P,,)). If m == 2 Illod
8, then dim(kcr(P,,)) is even alld we let A(M, s) = dim(ker(P,,))/2 E 2.2 , We set
A= 0 for othcr vallIes of 1n. Then A(M, s) depends on t.hc spin structure s but not
on the Riemannian metric. For exaluple, the circle SI adlnits two spin structurcs
Si. If 81 defines the trivial principal spin bundle anel S2 defines the non-trivial
principal spin bllndle, A(8 1 , sd i=- 0 and A(81, S2) = O. We cxtend A to the groups
MSpinm(BZt, ~d for i = 1,2,3 by clefining A(M) = A(Z(M)).

If M is SilUply connected, the spin structure is unique and we drop thc dc­
pendcnce upon 8. The A genus vanishes if M admits a metric of positive scalar
curvat.ure. Stoll'; [34] has shown that the converse holds in thc simply connected
casc if 171 2: 5.

6.1 Theorem. Let M be a spin mani/old 0/ dimension 1n ;::: 5. Tlten M admits a
rnetric 0/ positive scalar curvature <===:> A(M) = O.

If thc fundamcntal group 1f of a spin manifold M is non-trivial, Rosenberg [28]
ha..-; dcfincd an element a(M) generali~iIlg the A-roof genus which takes valllcs in
thc K theory of the reduccd C· algebra C;(1f). Ir M is not spin, but the universal
cover of M is spin, then Q' extends suitably; if M admits a metric of positive scalar
cllrvature, then a(M) = 0. The Gromov-Lawson-Rosenberg conjccture is that this
is thc only obstruction to thc existence of a metric of positive scalar curvatllre
if 7n 2: 5. Wc refer to Roscnberg and Stolz [29] for a general disCllssion of this
conjecture.

The fundamental group of M is crucial in this subject. We refer to [9, 10] für
thc proof of the following theorem:

6.2 Theorem. Let M be an orientable 1fwni/old 0/ dimension 171 ;::: 5 with cyclic
/unda111ental group whose universal cover !VI is a spin mani/old.

(1) // M is SlJin, then M admits a metric 0/ positive scalar curvature i/ and
only i/ A(M, s) = 0 tor every spin strueture .'l on M.

(2) // M is not spin, then M admits (j metNc 0/ positive scalar curvature i/ and

only i/ A(M) = O.

In this section, wc will establish a special case of the Gromov-Lawson conjccturc
in the non-oricntablc setting.
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6.3 Theorem. Let M be a non-orientable oJ dimension rn = 4k + 2 ~ 6 with
cyclie Jundamental gro1J.p whieh admits a pin- strueture. Then M ad1nits a metne
oJ positive scalar eurvattire iJ and only iJ Ä(M) = O.

By a theorem of Kwasik and SchuItz [23], thc Gromov-Lawson-Rosenberg Con­
jecture is true for a finite group 7f if a.nd only if it is truc for all Sylow subgroups of
7f. Thus we can work one prime at a time. Thc odd primes are covered by Theorem
6.2 so we assumc 7Tl (M) = Zl' The case I! = 2 is covered by work of Rosenberg and
Stolz [29) so wo assllIne I! ~ 4. The rest of this section is devoted to consideration
of this case. We lnust first establish some additional technical results.

Theorem 5.3 rcchlces the question of constructing a metric of positive scalar
curvature on M to a question in equivariant bordism. Gur next step is to reducc
to a question in conncctive k theory. Let IHIJF2 be quaternion projective space with
the usual hOlllogencous llletric and let IHIJF2 ~ E ~ B bc a fiber bundle whcrc
the transition functions are thc group of iSOllletries PSp(3) of IHIJF2. Since JHillD2 is
siInply connected, the projectioll P : E ---t Binduces an isolllorphisill of fundamental
groups; allY 'L l structure on E ariscs frolll a 'Lt ·structure on B. Let Tm (B'L e, ~d bc
thc subgroup of MSpinm(BZll~i)generated by luanifolds E arising in this fashion.
Let

tOrrJBZl1 ~i) := M Spinm(BZtl ~i)/Tm(BZll~i)'

Let to~ (BZ e, ~i) bc the image of the subgrollp generated by classes [(M, s, f)] where
M admits a metric of positive scalar curvature. Let kOm (BZ e,~d be the twisted
conncctive K-theory groups. Ir M has a Zl structure, let Z(M) be thc associatcd
'Li principal bundle.

6.4 Lemma.

(1) We have tom(BZe, ~i) ::::: kom(BZl1 ~i)'

(2) IJ e> 2, then Iko8k+2 (BZe, ~2)1~ 22k+3 and Iko8k+6 (BZ l1 ~2) I ~ 22k+2
.

(3) If ra is odd, iJ p E RO(Zl), and iJ i = O,l, thc1l the map M ---t 'TJ(M,p)
extends to homomorphisms 17p Jrom tOm (B'L ll ~d to IR/Z. IJ ra == 3 mod 8,
iJ i = 0, and iJ p is real, we can extend fJp to take values in IR/2Z.

(4) IJ m is evel1, iJ p E R(Zl), and iJ i = 2,3, then the map M ~ fJ(M, p)
extends to homomorphis1Hs 17p from tOm(BZll ~d to IR/tl. If 1n == 2 mod 8,
iJ i = 2, a1ld iJ p is 1·cfJ.I, we can extend fJp to take vfllues in IR/2Z.

(5) /1 e> 2, A extends to a SHrjective h01nomorphism from t02+8k (B Z l; ~2) to

Z2-
(6) Let m = 4k + 2 ~ 6. To prove Theorem 6.3, it sujfices to show that

+ ~
tOm(BZt,~2) = kcr(A) n tOm(BZi,~2)'

Proo]. The first assertion follows frmn results of Stolz [33] and is a crucial link
between the gemnetry of IHIJF2 fibrations and SOlllC powerful methods of algebraic
topology. Thc secand assertion follows from [9, Theorclll 1.5J. It is based on a
calculation using the Adallis spcctral scquellce. We use Lelluua 2.15 to extend
the eta invariant to M Spinm(Zt, ~i)' Let E be the total space of a IHIIP 2 fibration.
Botvinllik and Gilkcy [9] showed that E admits ametrie 9 so that 1}(E, p) = 0 in
IR and so that 9 has positive scalar curvature. The extension of the eta invariant
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and thc A genus to connective K theory now folIows. Let M = N(SI). Thcn
Z(M) = SI X SI has the trivial (i.e. non-bounding) spin structure. Since the

diulension of the kerncl of thc Dirac operator is 2, A(N (SI)) = A(SI X S I
) = 1 aud

A is surjective if m = 2. Let B S bc the Bott manifold; this is a simply connected
spin manifold with A(BS) = 1. Thc CartesiaIl product N(SI) X BS inherits natural
pin - anel 'Li structllres. Wo use the multiplicative na.ture of the Agenus to cOlnplete
the proof of assertion (4) by checking

The elmuents of Tm (B Z l, ~2) can bc reprcsentcd by Inanifolds that admit metrics of
positive scalar curvature. If assertion (5) holds, then we can represent any element
of ker(A) nMSpinm (BZ1, ~2) by a manifolel that admits a Inetric of positive scalar
curvature. We then use Theorem 5.3 to establish thc GroInov-Lawson conjectllre
in this case. 0

Praolol Theorem 6.3. Let TL = 2v ~ 4. Since A is non-trivial, we use LeInma 6.4
to see

By LOlIlIna 6.4, to prove Theorem 6.3, we IIlUSt show

Suppose first n = 4. Wo use Lemmas 4.3 and 4.4 to cOInputc

1](N(iRIP4k+1
), Po) = 1] (iRIP 4k +1, 0) = 2-2k - 1

, anel

1](N(IRJ?4k+3), Po) = 1](IRTID4k+3 , 0) = 2-2k - 2.

By Lemma 6.4, N --+ 1](N,po) extcnels to a map fr01n tOm(BZ4,~2) to IR/2Z for
rn = Bk + 2 and to IR/Z for rn = Bk + 6. Thus N(JRIP4k+l) anel N(JRTID4k+3) are

cleUlents of order at least 22k+2 in totk+2(BZ4, ~2) anel kotk+6 (BZ4, ~2) so the
estimate of equation (6.5) holds.

Now Sllppose n = 2l for f. ~ 4. Let. Tm (L, 2€) anel Tm (X, 2.e) bc the subspaces of
tom(BZ 2l1 ~2) spanned by thc ilnagcs of N(Lm(f; *)) anel N(Xm(f; *)) respectively.
The map M f--7 1]* (M) E R(Zu)* defincd in §3 extends to these two spaces with
disjoint. supports; thc relevant. paritics in Lemma 4.4 are opposite. Thus the eta
invariant decouples anel we may usc Lcnllna 4.8 to see

Ir(tot (BZu, ~2) I ~ 11]'" (7:n (L, 2i)) I . 11]* (Tm (X, 2f)) I = l.em(2i) 1. JXm(2i) 1so

11]*tot+2(BZ2t, ~2)1 ~ 22j+1 and Ir(totj+6(BZ2t, ~2)1 ~ 22j
+2.

This shows tImt estimate (6.5) holeIs if rn = Bj + 6; to obtain the desireel estimate
if m = 8j + 2, we necd only show:
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We will use thc refincd eta invariant 7Jo(N) := 1](N, Po) E IR/2Z to dctect the kernel
of 1/*. Let XG := X 5 (E; 1,1) - 3X5 (f; 1,3). By LCIIuna 4.8, 1]*(N(X5

)) = °aud
1]o(N(X5

)) = TJ(X 5 , Jpl/4) = 1. Thus N(X 5
) is a non-trivial elenlellt of order at

least 2 in ker(1}*). Give the manifold B S the trivial Zu structure. By Theorem
3.11, 1}(N(X5 ) x BB) = 1!(N(X5 ))A(BB):i = 1](N(X5 )) allel the gencral casc llOW
folIows. D

We can draw sonle consequences from the discussion given above. We use the
resul t. of Stolz cited above to identify kOm with tOm j let. kO;;l (ZE, t.i) be the subgroup
generated by the mallifolds that admit metries of positive scalar curvaturc. By
Theoreills 6.2 anel 6.3} if 1n :2: 5

kO~(Zl, c,o) = ker(A) n komCLe, t.o)
+ ~

kOm(Zl, c'1) = ker(A) n kOm(Zl,6)
+ ~ .

kOm (Zl, t,2) = ker(A) n kam (lEe, t.2) If m == 2 Illod 4.

In [9} 10] we showed the eta invariant aud the A genus provided the eharaeteris­
tic nllInbers of the cOllnective K theory groups kOm (1.,e, ed for i = 0,1. We can
generalize this result to c'2 if rn == 2 IllOd 4.

6.6 Theorem. Let k :2: 1.

(1) Let x E kOBk+2(BZu,c'2)' 1f A(x) = 0, if1((X) = 0, and if1!O(X) = 0, then
:c = O.

(2) Let x E kOSk+6(BZu ,t.2). If 1]* (x) = 0, thel1 x = O.

(3) Let i = 0 or i = 1; if 4k + 2 == 2 mod 8 und ij e = 2, assume i = O.
The map M H N(M) 'cxtends tu a homomorphism from kotk+l (BlEi, t.d to

k04k+2(BZ2e) c'2)'

Prooj. The first two assertions follow frolll the proof of Theorem 6.3. Lemllut 4.4
expresses 11* (N(M 2k+1 )) in tenns of T}* (M 2k+1 ). By Lemllm 6.4, the eta invariant
exteI~ds to eoullective K theory so [M] = 0 in k02k+1 (BZe)ed illlplies 1]* (M) = 0 so
1]* N(M) = 0; this shows M H N(M) extends to connective K theory if 4k + 2 == 6
nlod 8. Let 4k + 2 == 2 mod 8. We Sllppose M achnits ametrie of positive scalar
curvature. This inlplies A(N(M)) = 0 so to complete the proof we lllUSt show
1]o(M) = O. We apply the identities of Theorem 3.7 to thc case 'lL = O. We have
1]0 = 0 if'lL - b+ f/2 is odd which handlcs the cases i = 0 allel f. = 2 anel i = 1 aud
f> 2.

If i = 0 alld if l! > 2, then 17o(N(M)) = 17(M, Pl/4 - P-t/4)' There are two
fundalnental representations ~± of the cOlllplex Clifford algebra Cli~(2k + 1) whieh
lllay be distinguishcd by the iclentit.y ~±(wm) = ±1. Since 2k + 1 == 1 mod 4, we
have wm = -Wm . Consequelltly complex conjugation deRnes a conjugate linear
iSOl1l0rphism

E(A, P(Ps)) ~ E(-A, P(p-s));

it is cfucial at this point that we are dealing with a spin strueture not. with a spine
strllctllfe. Since there are no harmonie spinors} 1}(M, Ps) = -1](M, p-s). Thus

7Jo(N(M)) =1/(M, Pl/4 - P-l/4) = 1](M, Pl/4 - Po) - 11(M, P-E/4 - Po)

=21](M, Pl/4 - Po).
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Sincc [M] = 0 in conncetivc K thcory anel sinee thc eta invariant extcnds to con­
nective K theory, 1J(M,Pl/4 - Po) E Z and thus 1Jo(N(M)) E 2Z.

This shows the map M l-t N(M) is well elefined lllap in eonneetivc K theory. Wc
eomplcte thc proof by showing it is a group homomorphislll. Let M = MI U M 2

be the disjoint. union of t.wo Inanifolds Mi. Let

Thell N(M) = N(Md UN(M2 ) UN 3 . Wc Inay ehoose an orientation of X so the
flip whieh intcrchangcs thc two pieees preserves the orientation. Thcn Z2l aets on
X by orientat.ion preserving iSOlnetries so N 3 is oricntable anel the pin- struet.ure on
N 3 is a spin st.rueturc. Thc action of thc oricntatioll form H.llti-eOlnmlltes with thc
Dirae operator in even dimensions so E(A, ppJ ~ E( -A, Pp,). Sinee there are no
harmonie spinors, this shows 7](N3 ,ps) = 0 and henee [N3 ] = 0 in kOm('Z.l,~2)' 0
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