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Abstract.

We show that affine Poisson structures on Lie groups may be deformed by means of the
morphisms of their (left and right) tangent Lie bialgebras. These twisted structures are
then used to ”integrate” the double Lie algebras for (non-skew) graded R-matrices on semi-
simple Lie algebras and to formulate the Hamiltonian theory of the associated generalized
Lax equations. We construct a symplectic dual pair for the twisted brackets. The explicit
description of the symmetric morphisms of a natural Lie bialgebra yields a large class of
examples of twisted affine Poisson structures as well as of new (non-graded) R-matrices on
semi-simple Lie algebras.

1. Introduction.

Poisson Lie groups (first defined in [D 83], see also [D 86]) and the classical Yang-Baxter
equation (first derived in [S 79], see also [S 82], [RF 83], and the book [FT 87]) as well
as its modified form (MCYB) (see [S-T-S 83} and [S-T-S 85]) have, in recent years, been
shown to play a central role in the theory of classical integrable systems.

A Poisson Lie group is defined as a Lie group G(T.G ~ G) equipped with a Poisson
structure compatible with the group multiplication. Such a Poisson bracket vanishes at
the identity e of G, and its linearization at e equips (G*, G) (here, G* is the dual of G) with
the structure of a Lie bialgebra (i.e. the G* Lie co-bracket is a 1 — G cocycle). Drinfel’d
has proved the following theorem.

Theorem 1.1[D 83]

If G is connected 1-connected, Cat (Poisson Lie group) ~ Cat (Lie bialgebra).

Let G be semi-simple and let (, ) be the Killing form on G. Lie bialgebras are related to
(MCYB) as follows:

Let ¢, n € G. To any solution R € End(G) of

[R(¢), R(n)] — R([R(C), n] + [¢, R(n)]) = —[¢, 7] (MCYB)

we may associate the double Lie algebra (Gr = (G, [, |r), G) where [{, n]r = 3([R(¢), n]+
[¢, R(n)]). When R is skew-symmetric (w.r.t. (, )) the latter double is a Lie bialgebra.

The following natural question thus arises: If, in Theorem 1.1, we enlarge "Lie bialgebra”
to "double Lie algebra”, how should we enlarge ”Poisson Lie group”, with the further
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requirement that, for the purposes of integrable system theory, these new Poisson algebras
retain the essential features of Poisson Lie groups ?

For a class of (non-skewsymmetric) solutions of (MCYB) (containing the Iwasawa and
root space decompositions) such Poisson algebras were constructed in [LP 89]. This was
achieved by means of twisted Poisson brackets parametrized by the set of tangent Lie
bialgebra morphisms (see [LP 91]).

One of the main results of the present paper is that such Poisson algebras may also be
defined for the class of graded solutions of (MCYB) (see [S-T-S 83]) associated with
the generalized Gauss decompositions (see (3.10) and (3.11)). Our basic observation (see
Theorem 3.1) is that affine Poisson structures (studied in [DS 91], see also [Lu 90}, [W
90], and references therein) may also be twisted by means of morphisms of their left and
right tangent Lie bialgebras. Moreover, in some cases, these twisted affine structures
may be linearized at e of G. Specializing to the generalized Gauss decompositions, the
result (see Theorem 3.2) is the construction of a family of Poisson algebras {, }(r ¢ ),
where I' is any subset of simple roots of G, C € End(Hg) (see (3.3)) and 7 is a suitable
orthogonal automorphism of G . For these brackets, the R-matrix approach to generalized
Lax equations is feasible ( as in [S-T-S 85] and [LP 89]). In particular, when formulated .
on the product G¥ = G x --- x G (N is the number of lattice sites) they provide the
(non-ultralocal) Hamiltonian representation of the lattice Lax systems associated with the
graded R-matrices. When 7 is taken to be the identity, the family {, }(r,c,1) of twisted
affine Poisson brackets is linearizable and interpolates (see Remark 3.3 a) between the pair
of Poisson Lie groups in duality associated with the Lie bialgebras (G;+, G) and (G, Gj+),
where J¥ = I+ —Ha-, G = NT @ H® N~ is a root space decomposition, and 114
denotes projection onto the Lie subalgebra .4 .

In section 3.2, we proceed to construct a local symplectic dual pair (see Theorem 3.3) for
the twisted affine structures. This is achieved, in a way similar to that in [LP 89], by
twisting the dual pair for affine Poisson brackets described in [Lu 90] — suitably restated
in the language of [S-T-S 85] for semi-simple Lie groups (see Comment b at the end of
section 3.2).

Section 4 is devoted to questions of classification. Our main result is Proposition 4.1 where
we characterize the set of symmetric morphisms of the Lie bialgebra (G+, G) subject to
a (natural) additional constraint (see (4.1)). Here, the relevant parameters are quadruples
(r+, I, o, 07) where I'* are mutually orthogonal subsets of simple roots of G and o=
are orthogonal involutions of I'*. This allows us to give (see Proposition 4.2) an explicit
list (up to (4.1)) of the linearizable twisted Poisson algebras (introduced in [LP 89}) asso-
ciated with (G s+, G) (and hence, of the R-matrices which arise in their tangent double Lie
algebras). In addition (see the lemmas 4.2, 4.3, and Corollary 4.1) this knowledge enables
us to construct a large number of natural examples of twisted affine Poisson algebras. In
this section, the presentation of our results is influenced by [BD 84].
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2. Preliminaries.

In this section, we briefly recall some basic results and constructs which we shall use in
the rest of the paper. The material presented here is mainly taken from [D 83], [S-T-S 83],
and [S-T-S 85].

(G,[,]) denotes a Lie algebra equipped with a nondegenerate ad-invariant pairing (, ),
R € End(G) a solution of (MCYB) with associated double Lie algebra (Gr, G). The
foliowing observation due to Semenov-Tian-Shansky [S-T-S 83] is basic.

Lemma 2.1
The linear maps Ry = $(R+1): Ggr — G are Lie algebra homomorphisms.

Let G and G g be local Lie groups corresponding to the Lie algebras Gr and ¢. By Lemma
2.1, there exist unique Lie group homomorphisms

Ri:Gr—G (2.1)
such that Tcé; = Ry. For g € Gp, we shall write g4 := }/E;(g) Now, consider the map
m:Gr— G, gr— gyg”! (2.2)

Since Tem = Ry — R_. = Id, m is a local diffeomorphism. For z € G, we shall write
z = z,x_'. Note that, when read via the map m, the group operation % in G is given
by sy =zeyz_'.

Assume now that R is skew-symmetric w.r.t. (, ). The square of the Lie bialgebra (Gr, G)
is then defined as follows: Set § = G @ G, and equip it with the ad-invariant pairing

((¢1, m), (€2, m2)) = (C1, C2) = (m, m2), Gimi €G,i=1,2. (2.3)

Let °G C § be the diagonal Lie subalgebra. If we embed Ggr = § via ¢ — (R4 (¢), R—(¢)),
then, as a linear space, § =° G @ Gr. The associated solution of (MCYB)

Rs =1l — Ilg, (2.4)

is skew-symmetric w.r.t. (, ), and the resulting Lie bialgebra (ég,, 6) is called the square
of (Gr,G). Note that ér, =° G © Gr (Lie algebra anti-direct sum).

Let us now recall the precise definition of a Poisson Lie group.
Definition 2.1 [D 83]

A Lie group G equipped with a Poisson structure is called a Poisson Lie group if group
multiplication is a Poisson map from G x G (equipped with the product structure) onto
G.

For ¢ € C*™(G), the right and left gradients Dy, D'p € G are defined by
d t¢ !
) =7 s g} =
(De(9)s €) @, e 9), (D'wlg), ¢)

t=0

4

d o(ge’). (2.5)

0



4 Serge Parmentier

Let J; and J2 € End G be skew-symmetric (w.r.t.(, )) solutions of (MCYB).
Theorem 2.1 [S-T-S 83]
The formula ) )

{e, ¥}, 1) = =5(11(De), DY) + 5(J2(D'p), D')

defines a Poisson structure on G.

Note that {, }(—s,,J,) vanishes at the identity e of G if and only if J, = J;, in which
case it equips G with the structure of a Poisson Lie group whose tangent Lie bialgebra
is (GJ,, G). The bracket {, }(—j, 1) is known as the Sklyanin bracket. When Ji # Jz,
the Poisson structures of Theorem 1.1 are examples of affine Poisson structures studied in
[DS 91)]. In the following sections we shall use, as in [S-T-S 85], the notation G(_j,, 5,) :=

(Ga {, }(—Jl, Jz))'
Definition 2.2
Let G be a Poisson Lie group, M a Poisson manifold. A Lie group action L : GXM —+ Mis
called a Poisson Lie group action if it is a Poisson map from G x M (equipped with the
product structure) onto M.
Let

([C) 7)]«, X) = d{‘P: ¢}G(6)-X,
(¢, x) = dol(e).x, (n, x) = dp(e).x,x € G, be the Lie algebra tangent to the Poisson Lie
group (G, {, }o).
We shall need the following proposition.

Proposition 2.1 [S-T-S 85]

Let L : G x M —> M be a Poisson group action. Let H C G be a connected Lie subgroup
with Lie algebra H. If [HL,H']. C H*, then the algebra of H—invariant functions is a
Lie subalgebra of (C*°(M), {, }m), i.e. L | Hx M is admissible. In this case, there exists
a unique Poisson structure on the quotient H\M such that the projection is a Poisson
map.

To close this section, we recall the definition of a symplectic dual pair due to A.Weinstein
[W 83].
Definition 2.3

A pair of constant rank Poisson maps P,<—S-=%P, from the symplectic manifold S to
the Poisson manifolds Py and P, is called a dual pair if either of the following equivalent
conditions is satisfied:

(i) 7T C°(P;) and 7;C°°(P,) are mutual centralizers in C™°(S)
(i) at each z € S, Ker Tym; = (Ker Tymp)t.

The dual pair is said to be full if my, ®o are submersions onto P, and P,.
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3. Twisted affine Poisson algebras.

3.1 Twisted affine Poisson algebras and the generalized Gauss decomposition.

In this subsection we define the twisted affine Poisson structures and use them to ’integrate’
the double Lie algebras associated with a class of graded R-matrices on semisimple Lie
algebras.

G denotes a Lie algebra equipped with a nondegenerate ad-invariant pairing (, ), G a Lie
group with Lie algebra G. If L € End G, the adjoint operator L* € End G is defined by
(L*((), n) == (¢, L(n)), ¢,n € G. We consider triples Jy, Jo, ¥ € End G subject to the

basic assumption

J1 and J; are skew-symmetric solutions of (MCYB) ,

+ . +* + (A)
¥ € Hom™ (G, G) is such that ¥* € Hom™ (G1,, G).

Here and below, if A, B are two Lie algebras (groups), Hom(_)+(A, B) denotes the set of
Lie algebra (group) (anti-) homomorphisms.

Theorem 3.1

Let ¢, € C*(G). Under the assumption (A), the formula

{8}y = —3 (D), DY) + 5 (1(D'(9)), D'Y)

+(U(Dy), D'$) — (¥(D'y), DY)
defines a Poisson structure on G.

Theorem 3.1 may be checked by a direct computation which we omit here as we shall
describe the reduction theory for the bracket in subsection 3.2.4

Remarks 3.1

a) If . denotes the inversion map on G, then {potg, Yoig}(—1,5,%) = —{¥; Y} (s, 1,9
oLG.

b) {, }(—4,7,,%) vanishes at the identity of G iff Jo = J1 + 2(¥* — ¥), in which case it
linearizes to the Lie algebra G429 = G, +29*.

c) When J; = Ja2, Theorem 3.1 reduces to Theorem 2 Sect.3 of [LP 89].

d) Theorem 3.1 may be easily restated for arbitrary affine Poisson structures as defined in
[DS 91]. We leave this to the interested reader.

d) As in [S-T-S- 83] (see also [LP 89]), one may define a formal analogue of Theorem 3.1
on associative algebras.

We now apply Theorem 3.1 to the generalized Gauss decomposition. To this end we begin
by setting up some Lie algebraic notations and by defining the basic Lie subalgebras and
decompositions needed to state our next theorem.
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Let (G, [,]) denote a split real (or complex) semi-simple Lie algebra with Killing form
(,). Fix a Cartan subalgebra H C G and respectively denote by ®, A ¢ @, and * C &,
the system of roots, a fixed basis of simple roots, and the corresponding positive/negative
root subsets. For @ € ®, G* C G denotes the associated root subspace, and let a* be
the unique element of H such that (a*, H) = a(H) for all H € H. Let f € ®. We set
(@, B) :=(a*, p*), and let Hy =272
Set

NE=T,cs: G°. (3.1)

ForI' C A, we denote by I' C ® the set of roots supported by I', and consider the following
Lie subalgebras of G:

Hr := Uaer k Ho C H, where k is either R or C, (3.2)
Hi := the orthogonal complement of Hr w.r.t. (, )|axn (H = Hr ® HE), (3.3)
Lr =HO Hae'f Gge, (3.4)
+ . a
NI" S Hae(q>:k\fn¢:l:) g ’ (3'5)
pft = Lr @Nf‘t (3.6)

Here, and henceforth, @ denotes vector space direct sum.

We recall that 'Pf«t are the standard parabolic subalgebras supported by I'. Their Levi
component Lr and nilpotent radicals AVE satisfy

[Lr, HE] =0 (HE is the center of Lr), (3.7
INVF, Lr] C N (3.8)

Note that Ly = H, Nif = N %, and ’P;: = B* (opposite Borel subalgebras), while £ =
G=PL and NF =0.
We shall consider the decomposition

G =Pt dNT, (3.9)

which further splits as
G=MoLlroN. (3.10)

(3.8) then says that the latter decomposition is triangular; we shall refer to it as the
generalized Gauss decomposition.

Notations

As in the previous sections, if the Lie subalgebra A C G appears as a factor in a direct
sum decomposition of G, Il 4 denotes the projection onto A. If L € End A, we use the
same letter to denote its natural extension to G.

Let T € EndLr, C € EndHi. We shall need the following lemma whose proof follows
easily from (3.7) and (3.8).
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Lemma 3.1

a) T= HN; — HN; +T satisfies (MCYB) on G if and only if T satisfies (MCYB) on
Lr .

b) IfT satisfies (MCYB) on Lr , so does T+C. &

The basic family of R-matrices which we shall consider is then given by (set T = e +C
in Lemma 3.1)

R(]",C) = H,pl-_!- — HNrT + C. (3.11)

For G complex, Semenov-Tian-Shansky has proved (see Prop. (26) in [STS 83]) that the
R-matrices (3.11) exhaust the class of generic graded (w.r.t. root height) solutions of
(MCYB) subordinate to the pair (P{, Py ) ; i.e. such that Ry(G) C PE and Ker Ry D
Let £ = Lr NNE. In order to relate the R-matrices (3.11) to the Poisson structures of
Theorem 3.1, we further define the maps J* and ¥* ¢ End G by

TV =My =My + (s — o) =Ty — Ty, (3.12)
I =T =M — (Ty — 1,2, (3.13)
I
+ En
U =M. + 5 - (3.14)
Note that
Rr,c=0y=J" +207 =J~ + 207, (3.15)

Finally, set A¢c = C‘QC*, Sc = -C;‘I‘,Q ,where C* is the adjoint of C w.r.t.(, )|nxn -
By Lemma 3.1, J* + A¢ are (skew-symmetric) solutions of (MCYB).

The following relations between these maps play a basic role.

Lemma 3.2
U* 4+ 52 € Hom™ (G s+ 4 4,5 §) NHom™ (G-, 4.5 G)-

Proof:
First, observe that, viewed as an element of End(p,

+1

g =
2

((Hc,’: - Hc;) + Ider) (*)

For ( ,n € G, we have
(T +58) (6 nl st a, )
= (U +52) ([T ¢, ey ) (T4 ~T1, )+ Ac ), by (3.8),
=9F ([ ¢, Mern]uqm,,-n, ) ), by (3.7),
r o fr

=4 [T+, Ut p], by (%) and Lemma 2.1,
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=+ [(TF+32)¢, (T +32)9], by (3.7).

Proceed identically for ¢~.&
Remark 3.2
Lemma 3.2 will be generalized in Corollary 4.1 (see also Example 4.2).

For later purposes (see Theorem 3.2 below and the remark thereafter), we let, as in [ S-T-S
85 ], 7 € Aut G be an automorphism whose induced map on G (denoted by the same letter)
is orthogonal and commutes with all previously defined linear maps on G .

If we put
Ji=J 4+ Ac, Ja=J" + Ac,
3.16
l];"=’1"°(‘I’_-f-%),sotha,t\Il*-—-'z' o(\I!++S;ZC ( )
then, by Lemma 3.2, the hypothesis of Theorem 3.1 is satisfied.

The following theorem shows that the Lie algebra G B oy is tangent to a twisted affine

Poisson structure and provides the Hamiltonian descnptlon of the generalized Lax equa-
tions on G associated with Rr, ¢).

Theorem 3.2 (Poisson algebra for the generalized Gauss decomposition.)

Let o, € C°(G).
(a) The formula

{e, Y} ron = —3((J7+Ac) (D), DY) + 3 (J* + Ac)(D'p), D'4)
+ (o (¥~ + 28)(Dy), D'¥) — (171 o (T + 52)(D'y), D)

defines a Poisson structure on G. When v € Aut G is the identity map, the bracket vanishes
at the identity element of G and linearizes to the Lie algebra Gr

(rey”
(b) If ¢ € C*®(Q) is invariant under twisted conjugation g — hg(r(h))™', ¢, h € G,
the equation of motion defined by the Hamiltonian ¢ in the structure {, } . ,, is given
by '
1
g° =§TR (R(r c)(D‘P(g))) _TL (TOR(I‘ C)(D¢(g)))

(c) Let ha(t) = R(r’c)i (h(?)) (see(2.1)), h(t) € Grr, c,, be the solution of the factoriza-
tion problem
exp (—t Di(g0)) = ha ()1 h(2),

for those values of t for which the left-hand side is in the image of the map m (see 2.2).
Then the solution of the initial value problem associated with the equation in (b) is given

by
9(t) = hy(t) go T(h1(8)™") = h—(t) go T(h_(t)™").

(d) Functions which are invariant under twisted conjugation commute in {, } 1 . ,,-



Twisted affine Poisson structures ... 9

The claims (b), (c), and (d) above are the analogues of those for Poisson Lie groups in [S-T-
S 85] and their twisted extensionsin {LP 89]. They may be verified by direct computations
which we shall omit here (see however Remark 3.3 b).é

Remarks 3.3

a) Assume that 7 = Idg. It is then instructive to consider the above Poisson algebra in

two special cases:
1) When ' =9, Jt = J~, and ¥% = g—,}‘ Since 'Hs' = H, we may choose C = —IIy for
which A¢ = 0, and hence S¢ = C. The bracket then reduces to

(0¥}, my, = —3 (I (D), D) +3 (JH(D'y), D'¥),

i.e. to the Poisson Lie group structure associated with the Lie bialgebra ( G+, G ).
2) On the other hand, when I' = A, J* = —J—, ¥% = 4 (J+), . Note that, since Hf =
0, C must vanish. The bracket thus reduces to

{@: ¥ }aony =3(JH(Dy), DY) + 3 (J* (D'g), D'y)
— ((JF)_(De), D'¥) — ((JF); (D'p), DY)
i.e. to the Poisson Lie group associated with the Lie bialgebra (G, G s+ ).

Thus, {, } ¢ ., Provides a family of linearizable twisted affine Poisson algebras which
suitably interpolates between the pair of Poisson Lie groups in duality associated with J¥.

b) In the appendix we indicate how, by extending an argument in [STS 85], one may
describe part (c) of Theorem 3.2 geometrically.

c) Asin [STS 85], Theorem 3.2 allows us to formulate the Hamiltonian theory of the lattice
Lax systems associated with the graded R-matrices R . c,- For this purpose, we need to

specialize Theorem 3.2 as follows: As Lie group, take G = G x -+ x G (N is the number
of lattice sites) and equip the Lie algebra GV with the ad-invariant pairing

N
G A=Y (G ) =, Cn), 7= (m,...,nv) € G".

=1

Choose 7 € Aut GV as

7(91,92,--.,9~8) = (92, .-, gN, g1)-

Finally, extend the linear operators J*,%%, C componentwise to G¥ .

We shall however leave out the explicit restatement of Theorem 3.3 using the above choices.
Indeed, aside from the expression of the bracket, which, as in {LP 89] but unlike in [S-T-S
85], is neither a product structure nor linearizable at the identity of G N the statement is
identical to those in the latter references.
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3.2 Symplectic dual pair for twisted affine Poisson algebras.

We devote this subsection to the reduction theory of the twisted affine Poisson algebras.
The reader will notice that the construction below is a natural extension of that given in
[LP 89].

In what follows, as in Section 2, we shall deal with local Lie groups without further nota-
tional specification.

Let D = G x G. As symplectic manifold, we take Dy, 1,,) (see Section 2), and consider
the natural left (L) and right (R) Poisson Lie group actions:
L : D(Jlgi“‘fls) X D(Jz‘sr_‘]zg) X D(Jlsyjig) - D(‘]lsl‘]zs)
(513,5) — ? T '?1—1:
and
R : D(Jl,s’J?s) X D(_Jlgvjlg) x D("‘I?gs‘jz,s) - D(J151J25)
,,h)— G -5k, G h TeD.

Let ¥ € Hom* (Gj,,G) and ¥* € Hom" (G1,,G) be the unique Lie group homomor-
phisms with T,V = ¥, T,¥* = ¥*  and embed G, and G, in D via

u: Gy, — D(Jls’_.]l‘) x D(st,__]%)

g — (71, (9), Ti_(9), ¥(g), ¥(g)),

and
ir . GJz — D(—JIG’J"‘) x D(_J26)J25)

h s (T(h), T¥(h), Ty, (h), To_ (R)).

We denote by ! and r the left G, — and right G;,— actions on D obtained by restricting
L and R to 4(Gy,) and (G 1,).
Lemma 3.3

The actions I and r are admissible, i.e. left G j, — and right G j,— invariant functions form

Lie subalgebras of (C* (D), {, }(s,,n,))-
Proof:
We do it for the right action r.
The Lie bialgebra tangent to D(_ 1, ,01,) X D(_szjzs) is (6sy, @by, ,60 §).
Therefore, if we embed G, into 6§ § § via
Tetr: Gy, — 6B 6

C — (\I'*(C), lI;*(C): J2+(C)a JZ-(()) H
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by Proposition 2.1, to show that r is admissible, it suffices to verify that g:}; Cén, ®bn,
is a Lie subalgebra. Here, Q_sz is the orthogonal complement of G, w.r.t. the pairing

(((Cl,fh,(z,fiz),(C{,ULCLTI;))) = ((Cl:nl)) ((iﬁii)) + (((2)’72)) (Céari;)) a(:i:niaqﬂ; €0G.

Now, upon using simultaneously
65,='60Gys, b65,=G0Gs (Lie algebra anti-direct sums) ,

we find g}z = {((X, X) + (1, Y, h V), (X, X) 4+ (.Y, . Y')NIX, X' € G Y €
G5, Y €6y, ¥(Y)=-X"}.
Hence, to conclude it remains to check that

() =-X;, ¥12)=-X;
implies
‘I’(_Dfla },‘2]‘]1) = _[X{aXé] .
But this holds since, by assumption, ¥ € Hom*(Gj,,G).#
By Lemma 3.3, there is a unique Poisson structure on the left (right) quotient, such that

the projection

(7)) s Dy, 0y) — G \D (D/Gy,)
is a Poisson map. If we now identify G;,\D and D/G, with °G ~ G, we have

m(z, y) = (ay ™)) e T omp (ay ), (3.17)

me(z, y) = (¥ omy (27 y)) 2 (a7 )4, - (3.18)
Here, the symbols +; and +2 refer to the factorisations relative to J; and J2, and my(y) :
. G,y — G are the isomorphisms (2.2).
Lemma 3.4

a) The reduced Poisson bracket on D/G j,, ( G 5,\D) coincides (up to sign) with the twisted
affine Poisson structure of Theorem 3.1.

b) Left G, — and right G 5,— invariant functions commute in {, }( 1, 1,,)-
Proof:

For ¢, ¢ € C®(G), let § = p o 7y, b=von € C°(D). By definition, the right reduced
bracket is given by

(11,(D(z, 2)), DIz, 2)) + 3{J2s(D'B(z, 2)), D'z, 2)).

[N

{903 "tb}ﬂ!d-(m) =
The claim then follows easily upon inserting the gradients

D'3(z, ) = (¥(De(a)) + 2, (D'p(x)), ¥(Dp(x)) + Jo_(D'p(z))
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D@(z, z) = Ad(z, ) D'P(z, z),

in the expression above.
b) Let $ € C°(D) be left G j,—invariant and ¥ € C°(D) be right G j,—invariant.Set
ng:(ma y) = (Xla XQ)! D¢($a y) = (Y'la 1/2): D’Q(za y) = (Xi, Xé)’
D'(z, y) = (Y], ¥7).
The left invariance of @ implies

J1+(X2) —Ji_(X1) + M (X3 - X]) =0,
while the right invariance of 1 implies

T (Y3) = Jo_(¥{) + (Y3 — Y1) = 0.

Inserting these conditions into the Poisson bracket

-~ 1 1
{(PJ ¢}(J16,J26) = E(H(Eg)l(xla X2)7 (}qv },‘2)) - E((Xi, Xé)a H(ﬁg)z(}fl’! Y‘Z'))

1 1

_5( HG.ﬁ (Xli X2)1 (Yla YZ’) ) + 5( (X{a Xé): HGJ, (YI'a },2')):

the two first and two last terms are seen to cancel out separately. Here, H(gc)', refers to
the decompositions 6-"‘5 =go Gr,i=1,2. &

Now, noting that 7, and 7; are both submersions onto G, we may collect the above results
in the following theorem.

Theorem 3.3

The diagram G«——(G x G)(JI"st) Iy G provides a full symplectic dual pair for the
twisted affine structure of Theorem 3.1.8

Theorem 3.3 has the immediate corollary:
Corollary 3.1

The connected component of the symplectic leaf of the twisted affine Poisson structure of
Theorem 3.1 passing through z € G is given by

{ (T omz'(B(g)e ' ma(g™)2B(g7") -

T, (9)2%(g™) (B(9)z'mu(g™ )z (g 7Y)),, l9€Ga)

Proof:

This follows from a general result of A.Weinstein [W 83} according to which , for a full

symplectic dual pair, the connected components of the symplectic leaves are given by
~1

. 0m (I).
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Now, 77} (z) = Gy, - (2, 2) = {(T1,(9) =(¥(9))™", T1_(9) =(¥(9))™") | ¢ € Gy}, from
which the statement is clear.d

We close this section with two comments.
Comments

a) The Poisson manifold (G, {, }a,o,1)) (see Theorem 3.2 ) coincides (see Remark 3.3
a) with the Poisson Lie group dual to (G, {, }(s+,-s+)). In [STS 85] it is shown that the
diagram

L !

77;(31 y) = y_lzv W;(I: y) = -Ty_l, z,y€G,
provides a full symplectic dual pair for {, }(a,o,1)- In particular, its symplectic leaves are
the conjugacy classes of G.
For z € G, z4 denote the factors of the decomposition (2.2) relative to J*.
Setting J1 = —Jt, J, = J*, ¥ = —(J*)_, and hence ¥* = (J*); (see Remark 3.1 and
(3.16)), we find
(2)4, = (z7V)_ = T om[(z2), T* o m;'(2) = z;. Theorem 3.3 then asserts that the
diagram
T L
GD((yay,, 3 G

m(z, y) =@y ) alye ™), w(z y) = (7T (@ )+

also provides a full symplectic dual pair for {, }(a,0,1)- The symplectic leaf £, C G passing
through z is now given by (see Corollary 3.1)

Lr=mon] (z) = {(kz™ k7 2)7 e (k2™ k" 2)- | k€ G},

where we have used g+24 = (g4+2¢~")+ for all ¢ € G+ and z € G and have set m(g) = k.
The leaf £, is (as it should be) diffeomorphic to the G-conjugacy class of z. Indeed, if we
let eo(2) =271, 1g,, (2) = z7'2_, and iy(z) = y zy~!, one easily verifies that

tG0ir, 01g,, (L) ={kzk™! |keG}.

b) J-H Lu, in her Doctoral Thesis [Lu 90] (see also the remark at the end of [Lu 91]),
has described the symplectic transformation groupoid for affine Poisson structures. Her
description makes use of a (nondegenerate) semi-direct Poisson structure {, }x 3 which,

for the bracket {, }(_,,7,) of Theorem 2.1, is constructed as follows.
Let {, }+ be the (nondegenerate) Poisson structure on G x Gy, induced by the isomorphism
(see (22))

M: Gx Gy, =D, 5, (9 B) (g, 9) - (T2, (B), To_ ().



14 Serge Parmentier

The restriction of the right Poisson action
pi (Gen,my X (G X Gr)i,),) X (Gegm) X Clami)) — G,y X (G X Gr)y ),

((p7 (.'L', y))’ (hl‘i hg)) — (p hl': hz_lxa y)a
to *G c D is admissible. {, }x 3 is then defined as the corresponding induced Poisson

bracket on the quotient (G x G x G1,)/°G ~ G x Gy, .
It is isomorphic to {, }(s,,5,) which we used in Theorem 3.3. Indeed, a direct calculation
shows that

M:(Gx Gl 1wy Do)

is a symplectomorphism.

We shall not pursue further the study of the symplectic leaves of the Poisson brackets of
Theorem 3.2 and hope to return to this elsewhere.

4. A class of morphisms of the Lie bialgebras (G;+,G) and solutions of (MCYB).

(G,1,]) denotes either a complex semi-simple Lie algebra or its split real form (see below),
and (, ) is the Killing form. We retain the notations of section 3.1.

Our main purpose in this section is to provide an explicit characterization of the set of
symmetric (w.r.t.(, )) Lie algebra homomorphisms Hom;"ym (G j+, G) subject to a (natural)
additional constraint (see (4.1)).

Let (J1,J2,¥) be a triple satisfying assumption (A4). Recall (see Remark 3.1 b) that if
Jo = J1 + 2(¥* — V), the bracket {, }(—j,,s,,9) of Theorem 3.1 is linearizable at the
identity of G (with associated R-matrix R = J; + 2% = J; + 2¥¢*). When J, = J2 =
J*, Hom} sym (G 1+, G) thus parametrizes the class of linearizable twisted Poisson Lie groups
{, ]( J+,7+,w) introduced in [LP 89]. It is a simple fact (see Lemma 4.2) that such ho-
momorphisms also belong to Hom™ (G-, G) for a suitable choice of ' C A (see (3.13))
and that they may further be composed with a natural involution of G (see Lemma 4.3
and Corollary 4.1). Therefore, the knowledge of Hom}, sym (Gs+, G) also provides us with a
large class of natural examples of twisted affine Poisson algebras associated with the pair
(J*,J7) of skew-symmetric solutions of (MCYB). We have used [B 75] and [H 80] as
references on Lie algebras.

Before stating the main proposition of this section, we need a preparatory lemma and some
definitions.

Lemma 4.1

The Lie algebra G+ is solvable.

Proof:

We have to show that the derived sequence

GO =G4, 60} =G, Greloe, -, G = (g7 LGSV
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terminates. Now, as a Lie algebra,
g.]+ :H@% (N+8N_):

where the semi-direct sum is defined by ¢ : H — Der Wt O N ™), o(H)((T +¢7) =
1[H, ¢t - (), H € H,{* € N*. Therefore,

g c(WHB o (W)W,

which terminates since A% are nilpotent.

Let ¢ € Homj'ym (Gs+, G). Since solvability is preserved by homomorphisms, ¢(G;+) C G
is a solvable Lie subalgebra. As such it must lie in a Borel subalgebra B’ C G . For the rest
of the section we shall assume that B’ is standard w.r.t. H. Thus, we shall impose that

$(Gr) CB' =H @ Uqean G°, (4.1)

for some base A’ C & with associated positive/negative root subsets &% C .
Remark 4.1

In general, A’ # A.

Notations R

As in Section 3, if A C A, we denote by A C & the set of roots supported by A.
Choose two subsets I'* C A with T NI~ =, and let 0% : T* — 't be bijections.

Definition 4.1

We shall say that the quadruple (I't,I'~,0%,07) is admissible if (g, f_) = 0 and
(6% (ay), 0t (B1)) = (ax, Bi) for all ay, B € T*.

Remark 4.2

The quadruple (I't, @, i¢dr+, 0) is always admissible. If I't and '~ are mutually orthogo-
nal, the quadruple (I'*, '™, idp+, idp-) is admissible.

Example 4.1

Let G = sl(n,C) with Cartan subalgebra H = { (traceless) diagonal matrices }, and root
system ® = {a;;,1 <t # j < n}, where a;;(H) = H;; — H;j, H € H. We shall take the
base A = {(1’“,‘.].1, 1 SzSn—l}

Choose integers I1,u4+ such that 1 <1y Suy <l —1<u_ —1<n—2, set

P = {aiit | e <7< ugl,
and let the bijections o* : I'* — T't be given by
Ui(a'li-l-j la+i+1) = Qug—jug—j+1, 07 Sug —lg.

The quadruple (I't, ['", ¢%, ¢7) is then admissible (this is clear from (@;it1, @jj+1) =
27’&(25,'3' —bij_1 — 5,’j+1)).
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Recall [H 80, sect.25.2 p.146] that a complex semi-simple Lie algebra £ admits a Weyl —
Chevalley basis { Zs, Ha |B € ®,a € A} : Z5 € G, Hp = 355, (2, Z_g] = Hp,
and if a + f € ®, [Z,, Zg] = ca,p Za+s, then ca 3 = —C_q,—p. Moreover, the structure
constants ¢, g are real (in fact integer). The split real form of £ is defined as the real span
of such a basis.

Let (T, I'", o, 0~) be admissible, and define the isomorphisms of Lie subalgebras

+ . ™ + o -
$HiU o GTNNY T G7 AN,

- . — O — — +
¢ .Haer_g NN —>Haer_g NN,

by the assignment of generators
0T (Zay) = Aay Z—ot(ay)y 8 (Z-a_)=Aa_ Zy-(a_) forall ay € TF, (4.2)

where Ay, € R* or C*. Set I' = ' UT'~. Further, let the map

P H—H
be subject to
S (Ho )= —= Horiasy, ¢°(Ha )= ~H, (o, forallag el (4.3)
+ 2 ( +) 2 ( )
and
$°(Hi) C M. (4.4)
Remark 4.3

That the maps ¢$* may be defined as above follows from the fact that if 6% are orthogonal
then, for a;y € I*, 3. o;y € @ implies Y_; 0% (aiy) € .

Finally, let ¢ € End (Gj+, G) be given by

(67 — ¢~ + ¢°)(C), if ¢ lies in the domain of these maps,

0, otherwise.

%0 ={ (45)

Proposition 4.1

a) If ¢ is defined by (4.5) for some admissible quadruple (I't, '~ 0%, 07), then ¢ €
Hom™ (G+,G).

b)If¥ € Hom;*'ym (Gs+,0) satisfies (4.1), then there exist an admissible quadruple (T, '™,
ot,07) with (¢%)? = Idr+ and maps ¢, ¢° (as above) such that ¥ is given by (4.5) where
Aay = Agi(ay) forall ay € I't | and ¢° is symmetric w.r.t. (, ) IrxH -

Proposition 4.1 b, Theorem 3.1, and Remark 3.1 b yield the following proposition.
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Proposition 4.2

Under the assumption (4.1), the linearizable (at e of G ) twisted Poisson brackets associated
with the Lie bialgebra (G s+, G) are given by {, }—j+ s+ ¢+—¢-+¢0), Where the admissi-
ble quadruple (I't,T'~, o%, 07) and the maps ¢*, c,zSd are subject to the conditions in
Proposition 4.1 b.& '

Remark 4.4

The R—matrices which arise in the double Lie algebras tangent to the brackets of Propo-
sition 4.2 (see Remark 3.1 b) read as

R=(1+2¢)olln+ — (142¢7) o Iy +2¢°.
Note that Rs(Gs+) C Py, with Ry (Gs+) N R_(Gr+) = (4° + 2) (H) N (¢° = 3)(H), and
that Ker Ry D N;. Remark also that these R-matrices are not graded w.r.t. root height.

Before providing a proof of Proposition 4.1 we shall state two elementary lemmas (whose
proof we leave to the reader) which relate elements of Hom™ (G J+,G) and of Hom™
(Gs-,6) (J™ isasin (3.13) with ' = TY UT~). Let (I'",I'",0%,07) be admissible,
¢ € Hom™(Gs+,G) be defined by (4.5).

Lemma 4.2

¢ € Hom™(G;-,G).4

Remark 4.5
Let ¥ be as in Proposition 4.1 b. From Lemma 4.2, it follows that {, }—s_,s_,—y¢)isa
twisted Poisson bracket with associated tangent R-matrix J— — 20.

Let 8 € Aut G be the involution: §(Z4) = —-2_,, 6(H)=—-H, a€c®, HeH.
Lemma 4.3

e Aut™(Gs).®

Corollary 4.1

fo¢ € Hom*(Gs+,0)N Hom™(G;-,G),
¢o06€ Hom™(Gs+,G)N Hom*(Gs-,G).4

Remark 4.6

Note that if ¢ is symmetric, §o¢ = (#08)*. Therefore, {, }(_s+, s~ 90¢) is a twisted affine
Poisson bracket.

Example 4.2 ( Iwasawa and generalized Gauss class on sl(n, R). )

Let ¢ = sl(n,R) with Cartan subalgebra H = { (traceless) diagonal matrices }, root
system ®, and base A, as in Example 4.1. If ¢;; is the matrix whose ij entry is 1 and which
has 0 elsewhere, then G*% = Re;j, and {Zq,; = €ij, aij € ®; Ho,,\, = €ii — €i1i41,
@ii+1 € A} is a Weyl —Chevalley basis. The involution 8 is now given by: 6(¢) = —(¢7.

We consider the simplest class of admissible quadruples: (['t, 0, Idr+,0) where I'" ranges
from @ to A. Set Aa, = ~1for all ay € I't, and take ¢° = —I—‘;ﬂ-. With these choices
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¢ =68o(ll ct, + Ba) (Lf, = Lr+ NN ). By linearizing the corresponding twisted brackets
r

of proposition 4.2, we obtain the family of R—matrices:

Il
R=J*"+200 (Il + 7).

When I't = A,
R=((1+6)oly+)— (My- —BoTly+ + IIx),
or
R=Hao(n) —HB—:
where

G =so(n)® B~

is the Iwasawa decomposition of si(n, R) relative to the maximal abelian subalgebra H.
On the other hand, o ¢ = ¥+ and ¢ 08 = ¥~ (cf.(3.14)); the corresponding family of

twisted Poisson brackets {, }(—j+, - 804) linearizes to G- 12609 = Q’R(H 0 (see (3.11)).

Proof of Proposition 4.1 a
From the explicit expression of [, ] s+

[C) ’7]J+ = [HJV"'C’ HJ\!""”] - [HN' C$ HN‘ 7?]
+ 300, (Mage = Tar= )+ 3 (T = Tag- )¢, Taer),

it follows that ¢ € Hom™(G+, G) if and only if the following six relations

$([¢*, ™)) = £[8(¢F), 6], (4.6)
$((H, n*)) = £2(¢(H), $(n ™)), (4.7)
[8(¢T), ¢(n7)] = 0 = [4(H), 6(H")], (4.8)

hold, ¢(*, n* e N*, H, H' € H.
Clearly, the relations (4.6) are satisfied by construction (see (4.2) and (4.5)). Let ay € T'+.
For nt = Z,, and n™ = Z_,_, (4.7) says that

az(H) = F20*(az)($(H)) (4.9)
For a; and H = H,,, v+ € T#, the Lh.s. of (4.9) reads as
(7:!:1 7:!:) ’

while the r.h.s. is (see (4.3))
iz(‘74'(04), o%(74))
(6% (vx), 0% (71))’
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They clearly are equal since (I't,I'", 0%, 7) is admissible. The same is true for a_. On
the other hand, H € Hj means that a4 (H) = 0 for all @y € I'*. Thus (4.9) also holds in
this case by (4.4), and hence it holds for all H € H since H = Hr @ Hf (T =Tt UT").
Finally, note that if (4.7) holds for the generators Z,, and Z_,_, it also holds for all
nt by the Jacobi identity. It remains to verify (4.8). Clearly, [¢(H), $(H')] = 0 by

construction. Now, if 74 € I’;}ﬂ@;, the condition ' NI~ = @ implies that [G7+, G7-] = 0.
Therefore, [$(C7), (n7)] = —[67(¢F), (TN €M, g55- 9™ I 5204 971=0,
which concludes the proof. #

Proof of Proposition 4.1 b
We shall need the orthogonality properties

(G*,GPY=0, unless « + 8 =0, and (¢, H) =0, «,B € . (4.10)

et ¥ € Hom,,,.(¥j+, satisiy (4.1). call that the sets C ¢ satisty
Let ¥ € Hom},,.(Gs+, G) satisfy (4.1). Recall that th ®'* C & satisf

-3t =9, 9" N®" =0, and T UP =, (4.11)
and that, if we set N’ = O ce:2 G%,

[B'F, Bt = A", (4.12)

Lemma 4.4

a) N't C Ker (¥). b) U(N'")C N ¢) ¥(H) C H.

Proof:

a) follows from the assumption (4.1), the symmetry of ¥, and the orthogonality properties
(4.10). b) follows from (4.7), (4.1), and (4.12). ¢) follows from a), b), and (4.10). &

Let ©* C ®% be defined by
v = {‘)’0-|-’)’1+'-'-|-'7ki, for some k‘iZO,’mGQ’H'ﬂ(I)i and*y,-e‘I‘i,lSiSki}

Lemma 4.5

U,ex+us-G* C Ker(¥).

Proof:

Recall (see the proof of Lemma 4.1) that G;+ = H @y (Mt & 7). From Lemma 4.4,
Ker(¥) D N'*. Now, since ¥ € Hom *(G+, G), Ker (¥) C G+ is a Lie ideal. Thus

W't ONE NE] 5 = VT nNE NVE] € Ker (D).

Iterating gives

[ W NNE NE], - NE] C Ker(T).
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The claim then follows from [G*, G#] = G**# for all a, 8 € ® such that a + 5 € D.#
Let Ay = ®'+tNA, Ry =\ TF,

Let us make a parenthetical remark.

Remark 4.7

First, note that Ry C A\A+ N &+ and (usmg (4.11)) R_ C A N &. Further note
that (4.11) and Ay = &+ N A imply (A\A+) N@+Net) =0 = A+ N(@+Ne-),
and hence, £t N (A\A+) =@ = S~ NAL. This shows that Ry = (A \ Ap)N @, and
R_=A;Nd-.

By Lemma 4.4 and Lemma 4.5, it now remains to characterize the restrictions ¥
aer,ur. G — N'F and ¥ :H — H.Fora € Ry UR_, let us write

U(Za)= Y. TapZu+ Y Vo, (4.13)

ped'+nd+ ved'tnd -

Lemma 4.6

Let ay € Ry. F G+ ¢ Ker U, then ¥(G*+) = G P+ for some B4 € Ry and ¥(GP+) =
G+, If ay is simple (w.r.t. A), so is f4+. The same assertion holds if the index + is
replaced by —.

Proof:

The verification consists of four simple observations.

Observation 1. ¥(aer,or. G%) C Uae—(r,um_) %

Proof: The symmetry of ¥, together with the orthogonality (4.10) and Lemma 4.5 imply
Vou=0if pe-2"NP* and ¥,, = 0if v € —Z+ N J'*. Thus, it suffices to check that
—Rg = (¥"* N&%)\ (=ZF N &'*). But this follows from the definitions and (4.11).

Observation 2. Let y € Ry UR_. ¥y _ # 0 for at most one « € Ry UR_.

Proof: Let ay € Ry (here, by +, we mean + or —), H € H. If ¥,, _, # 0, (4.7) implies
+iai(H) = —y(¥(H)). Thus, if S+ € Ry is such that ¥g, 4 # 0 also, we must have
either a4 = B+ or oy = —f5. The second case cannot hold however since Ry N —R_ = 0§
(see Remark 4.7).

Observation 3. If G ¢ Ker(¥), then ¥(G%) = G~ for some B € (R+ UR_) and
V(GP) =G> If a issimple (w.r.t. A), so is f.

Proof: By symmetry ¥, _s(Z_s, Z5) = Vs _~(Zy, Z_4) forally,6§ € Ry UR_ - . The
first assertion is then clear from observation 2 (see 4.13). Now, assume ¥(G?) = Q'_‘* i
a is simple, so is B, by (4.6). By symmetry, ¥(G*) = G~7, from which the claim follows.

Observation 4. ¥(q4ery G%) C Hae-ry G°.

Proof: Assume that the assertion is false. Then, by Observation 3., there is a pair of roots
v+ € Ry, and y_ € R_ with ¥(G") = G~7%. (4.7) then implies y4(H) = Fy(¥(H))
for all H € H. For H = 7], the latter relation reads as 3(v+, 7+) = F(v%, ¥(71)). The
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symmetry of ¥|y then implies (4, v4+) = —(7-, 7~). But this contradicts the positive
definiteness of (, )l(real span of roots)"

Let £T'F C Ry N(Z+A) be the subsets of simple roots such that ¥(G*) # 0 if @ € £I'*.
Note that I'¥ N T~ = @. Lemma 4.6 then implies that there exist bijections o* : T —
I't) with (0%)? = Idrs, such that the restriction of ¥ to N @& A~ is given by (4.2)
and (4.5), where, by symmetry (use (Z,, Z_,) = f%j)’ Aag « (o, ag) = Ajt(ay) -
(0%(ax), 0% (at)), @+ € I'*. Furthermore, since ¥(H) C H and T NI~ = § (4.8)
imposes no further restrictions.

Let us now consider the compatibility of the remaining conditions (4.7) with the symmetry
(¢(H), H')=(H, v(H')), H,H eH (4.14)

Lemma 4.7

The system of equations (4.7) and (4.14) is compatible if and only if (T, T~ 0% ,07) is
an admissible quadruple.

Proof:

Set rq,8 = (a*, ¥(B*)), o, € A. (4.7) and (4.14) are then equivalent to the relations (use
(0*)2 = Idrs)

L Tay,y = _%(0+(a+)’ 7): oy € F+a7 €A,

2. Ta_,y = %(0'_(‘1—)’ 7): a_ € P_a7 € Aa

3. Ta,8=Tga; a,B €A,

If ay, v+ € 't (respectively a_,y_ € I'"), 1. (resp. 2.) is compatible with 3. iff o& (resp.
0~ ) is orthogonal. Now, if ay € I'* and y_ € '™, the compatibility of 1., 2., and 3. is
equivalent to (¢ ¥ (a4 ), 07 (v=)) = —(a4, 7-). But it is known [H 80, Sect.10.1 p.47] that
if a,8 € A, then (e, ) <0 for @ # 8. Thus (ay, v_) = 0.4 :

To conclude the proof of Proposition 4.1 b it suffices to note that for 0% orthogonal, 1.
and 2. in the latter proof are equivalent to (4.3), while (4.9) implies (4.4) where ¥ It is
symmetric.®
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Appendix.

In this appendix, we sketch how one may adapt an argument of Semenov-Tian-Shansky in
[S-T-S 85] to provide a geometric description of the statement ¢ of Theorem 3.2.
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Let J, R € End G be two solutions of (MCYB) with J skew-symmetric w.r.t. (,). Let
7 € Aut G be an automorphism of G whose induced map on G (denoted by the same letter)
commutes with J and R. Let § = G®G, and define T € Aut § by 7(¢, n) = (¢, 7(n)), (, n €
G. The map "Js := To Js o7 ! is then a solution of (MCYB) which is skew-symmetric
w.r.t. the pairing {, ) (see (2.3)). The Lie bialgebra (8- j,, 8) is called the twisted square
of (Gs, G). Let D = G x G. We embed Gr into D x D by

it: G = D x D, g— (g4, 7(94), 9=, 9-), 9+ = R1(g),

and embed Gg into § @ § via T.i;. We denote by G C 6 @ § the orthogonal complement
of Gr w.r.t. the pairing {{, )} (see the proof of Lemma 3.3).

Lemma A.1

gé C érj, ® 63, is a Lie subalgebra if and only if

Ry ([RZ(0), RZ(m)s) = —RL({R3(C), Ri(m)y).
The proof of this lemma is similar to that of Lemma 3.3; we shall leave it to the reader.#

Remark
Note that a sign mistake was made in a similar statement in [LP 89, p.553, Remark b].

Now, consider the left Poisson action

L: (D('Ja,—'Js) X Dy, - g5) ) X D(r g5, 35y — D7 g5, 1)

((.‘?13 9/'\2)1 E) "_}g?l -z .‘ﬁ_la
and let ! be the action of Ggr on D, 5,) obtained by restricting L to ¢ (Gr). By
Proposition 2.1, if the condition of Lemma A.1 is satisfied, the action ! is admissible so
that there exists a unique Poisson structure {, }r.s. on the quotient Gr\D such that the
projection 7 : D¢ ., 7,y — Gr\D =~ G, (z,y) — 7~ 1(y; ")z y_, is a Poisson map (here
y+ are the factors of the decomposition (2.2) relative to R). To specialize to Theorem 3.2,
we take R = R(r ¢y and J = J~ + Ac. It is then easy to see that, for this choice, the
Lh.s. and the r.h.s. of the condition in lemma 4.1 are both zero. A somewhat lengthy
computation then yields

Ulree =4 oen+1{s b

where the perturbation reads as

{p:¥}ax =(P(C)(Dy), DY) + (P(C)(D'¢), D'¢)
— (P(C)o1(Dy), D'¢p) — (P(C)or~}(D'y), D).

Here, P(C) € End Hj is a cubic polynomial in C' which vanishes when C is symmetric.
Note that such a perturbation of the Poisson bracket does not change the Hamiltonian
vector fields of twisted invariant functions. The rest of the argument of Semenov-Tian-
Shansky in [S-T-S 85] remains unchanged and we shall not repeat it here.
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