KÜNNETH FORMULA IN CYCLIC HOMOLOGY

by

Dan BURGHELEA and Crighton OGLE

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3

Sonderforschungsbereich 40
Theoretische Mathematik
Beringstraße 4
D-5300 Bonn 1

KUNNETH FORMULA IN CYCLIC HOMOLOGY

by

Dan Burghelea and Crighton OGLE

0. INTRODUCTION:

The cyclic homology $H C_{*}(A)$ of an associative algebra with identity (unital algebra) A over a field of characteristic zero k was introduced by A. Connes [C] (see also [L,Q]). It comes equipped with a natural degree (-2) k-1ineay map $S: H C_{*}(A) \rightarrow H C_{*-2}(A)$, which provides $H C_{*}(A)$ with a $k[u]$ co-module structure, where $\mathrm{HC}_{*}(\mathrm{k})=\mathrm{k}[\mathrm{u}]$ is the poly nomial algebra in the variable u of degree 2 regarded as a coalgebra (see section 3). The purpose of this paper is to prove the following theorem

THEOREM $A:$ 1) Given two unital k-algebras A and B, there exists a short exact sequence

$$
0 \rightarrow \sum \operatorname{Cotor}\left(H C_{\star}(A), H C_{\star}(B)\right) \stackrel{\Psi}{\rightarrow} H C_{*}(A \otimes B) \xrightarrow{\phi} H C_{*}(A) \underset{k[u]}{\square} H C_{*}(B) \rightarrow 0
$$

natural in A and B, where a denotes the cotensor product.
2) If HC_{\star} (B) is a quasi-free comodule ${ }^{(+}$i.e.
$H C_{*}(B)=k[u] \bullet V_{*}+W_{*}$, then
$H C_{*}(A \odot B)=H C_{*}(A) \oplus W_{*}+H H_{*}(A) \oplus V_{*}$.
As an application we have the following calculation of the cyclic homology of the polynomial algebra $A[t]$ resp. Laurent polynomial algebra $A\left[t, t^{-1}\right]$.

COROLLARY B: 1) If $A[t]$ denotes the polynomial algebra with coefficients in A then

$$
H C_{*}(A[t])=H C_{*}(A)+\bigoplus_{\alpha \in \mathbb{N}}\left(H H_{*}(A)\right)_{\alpha}
$$

with N denoting the natural numbers, $H H_{*}(A)$ a being a copy of $\mathrm{HH}_{*}(\mathrm{~A})$;
2) If $A\left[t, t^{-1}\right]$ denotes the algebra of Laurent poly-
nomials with coefficients in A then
$H C_{*}\left(A\left[t, t^{-1}\right]\right)=H C_{*}(A)+H C_{*-1}(A)+N i l l H C_{*}(A)$ with
Nill $H C_{*}(A)=\underset{\alpha \in Z \backslash\{0\}}{\oplus}\left(\mathrm{HH}_{\star}(A)\right)_{\alpha}$. This can be re-written as
3) $\mathrm{HC}_{*}\left(\mathrm{~A}\left[\mathrm{t}, \mathrm{t}^{-1}\right]\right)=\mathrm{HC}_{*}(\mathrm{~A}[\mathrm{t}])+\mathrm{HC} \boldsymbol{* - 1}(\mathrm{A})+\mathrm{Ni} 11 \mathrm{H}_{-} \mathrm{HC}_{*}(\mathrm{~A})$
with N ill_HC $(A)=\underset{\alpha \in Z \backslash\{O U N\}}{\oplus}\left(\mathrm{HH}_{*}(A)\right)_{\alpha}$ where
$\mathrm{Nill}_{+} \mathrm{HC}_{*}(\mathrm{~A})=\underset{\alpha \in \mathrm{N}}{\oplus}\left(\mathrm{HH}_{*}(\mathrm{~A})\right)_{\alpha}$, and $\operatorname{NillHC_{*}(A)=}$
$=\mathrm{Nill}_{+} \mathrm{HC}_{*}(\mathrm{~A})+\mathrm{Nill}_{-} \mathrm{HC}_{*}(\mathrm{~A})$.
$\overline{{ }^{+} \text {See Section } 3 \text { for definition. }}$

The above theorem has a corresponding generalization to differential graded algebras with differential of dsgre. $=1$. Nill $\mathrm{HC}_{*}(\mathrm{~A})$ has interesting geometric applications. Note the above corollary is also verified in [B] for $A=k[G]$ a group ring.

In the particular cases of A and B group rings, both Theorem A and Corollary have been verified in [B] ${ }_{2}$. Theorem A was conjectured by Burghelea and Karoubi in May, 1984 and both of them have provided proofs through different arguments. A subsequent proof was given by C. Ogle [O]. ${ }^{+}$

The results of this paper have been announced in Oberwolfach, August 1984.

This paper is a substitute for $[B]_{3}$ and [0], and being shorter than both of them better suitted for publication. The arguments of $[B]_{3}$ permit stronger conclusions (in particular the fact that ψ resp. ϕ in Theorem A identify to the Loday Quillen product [L,Q] resp. the dual of Connes product in cyclic cohomology), but they are less conceptual and more complicated.

The paper is organized as follows: In section I we review the concept of algebraic S^{1}-chain complex introduced in [B] 1 and describe the "tensor product" of two algebraic s^{1}-chain complexes. In section II we prove the Künneth formula for the tensor product of two algebraic s^{1}-chain complexes. In
(+ C. Kassel K and J. Jones \& C. Hood have also announced the Kunneth formula for cyclic homology of algebras.
section III we use "acyclic models" to show that Hochschild and cyclic homology of the algebraic s^{1}-chain complex associated with the tensor product of two cyclic R-modules is the same as of the tensor product of the associated algebraic S^{1}-chain complexes. In section IV we derive Theorem A and Corollary B.

SECTION 1:

Let R be a commatative ring with unit. An algebraic S^{1}-chain complex (a chain complex equipped with an algebraic circle action) $\widetilde{C} m\left(C_{*}, d_{*}, \beta_{*}\right)$ consists of the chain complex of R-modules $\left(C_{*}, d_{*}\right), d_{*}: C_{n} \rightarrow C_{n-1}$ satisfying $d_{n+1} d_{n}=0$, with the algebraic circle action β_{\star} given by R-linear maps $\beta_{*}: C_{n} \rightarrow C_{n+1}$ which satisfy $\beta_{n+1} \beta_{n}=0, d_{n+1} \beta_{n}+\beta_{n-1} d_{n}=0$.

A morphism of algebraic S^{1}-chain complexes $\mathrm{f}_{\star}:\left(C_{\star}, \mathrm{d}_{\star}, \beta_{\star}\right) \rightarrow\left(C_{\star}^{\prime}, \mathrm{d}_{\star}^{\prime}, \beta_{\star}^{\prime}\right) \quad$ consists of R -linear maps $f_{n}: C_{n} \rightarrow C_{n}^{\prime}$ which commute with the $d^{\prime} s$ and $\beta^{\prime} s$.

To an algebraic S^{1}-chain complex $\left(C_{\star}, d_{*}, \beta_{*}\right)$ one can associate the chain complex $\left({ }_{B} C_{*} \beta^{\prime}{ }^{\alpha_{*}}\right)$ with $\beta_{n} C_{n}=C_{n}+C_{n-2}+\ldots, \beta_{n}\left(x_{n}, x_{n-2}, \ldots\right)=\left(d x_{n}+\beta x_{n-2}, d x_{n-2}+\beta x_{n-4}, \ldots\right)$ and the following short exact sequence of chain complexes

$$
\begin{equation*}
0 \rightarrow\left(C_{*}, d_{*}\right) \xrightarrow{I}\left({ }_{\beta} C_{*^{\prime}} A^{d_{*}}\right) \xrightarrow{\Pi} \Sigma^{2}\left({ }_{\beta} C_{*} \beta^{d_{*}}\right) \rightarrow 0 . \tag{*}
\end{equation*}
$$

Here I is the inclusion $I\left(x_{n}\right)=\left(x_{n}, 0, \ldots 0\right), \Sigma$ denotes the suspension $\Sigma\left(C_{*}, d_{*}\right)=\left(B_{*}, d_{*}^{\prime}\right)$ with $B_{n+1}=C_{n}, B_{0}=0, d_{n+1}^{\prime}=d_{n}$,
and π is the projection $\pi\left(x_{n}, x_{n-2}, \ldots\right)=\left(x_{n-2}, x_{n-4}, \ldots\right)$ The homology groups $H_{*}\left(C_{*}, d_{*}\right)$, resp. $H_{*}\left({ }_{\beta} C_{*} \beta^{\mathcal{D}_{*}}\right)$, by definition the Hochschild resp. cyclic or equivariant homology of $\tilde{C} \equiv\left(C_{*}, d_{*}, \beta_{*}\right)$. The long exact homology sequence associated with the short exact sequence (*) becomes, with the above notation:
$(* *) \longrightarrow \mathrm{HH}_{*}(\widetilde{\mathrm{C}}) \xrightarrow{\mathrm{I}} \mathrm{HC}_{*}(\widetilde{\mathrm{C}}) \xrightarrow{\mathrm{S}} \mathrm{HC}_{*-2}(\widetilde{\mathrm{C}}) \longrightarrow \mathrm{HH}_{*-1}(\widetilde{\mathrm{C}}) \longrightarrow$
and will be called the Gysin-Connes exact sequence. Obviously a morphism of algebraic S^{1}-chain complexes $f: \widetilde{C} \rightarrow \widetilde{C}^{\prime}$ provides a commutative diagram

Given two algebraic S^{1}-chain complexes \widetilde{C}^{\prime} and $\widetilde{C}^{\prime \prime}$ one defines the tensor product $\tilde{\mathrm{C}}^{\prime} \otimes \tilde{\mathrm{C}}^{\prime \prime}$ as being the chain complex $\left(C_{*}^{\prime} \otimes C_{*}^{\prime \prime}, D_{*}\right)$ with
$\left(C^{\prime} \otimes C^{\prime \prime}\right)_{n}=\stackrel{n}{\oplus_{=0}} C_{k}^{\prime} \otimes C_{n-k}^{\prime \prime}, D_{n}\left(x_{k} \otimes y_{n-k}\right)=d^{\prime} x_{k} \otimes y_{n-k}+(-1)^{k} x_{k} \otimes d^{\prime \prime} y_{n-k}$, equipped with the algebraic circle action $\bar{\beta}_{*}$, $\bar{\beta}_{n}\left(x_{k} \otimes y_{n-k}\right)=\beta^{\prime} x_{k} \otimes y_{n-k}+(-1)^{k_{k}} x_{k} \otimes \beta^{\prime \prime} y_{n-k}$.

We denote by chains ${ }_{R}$ (resp. S^{1}-chains $_{R}$) the category of chain complexes resp. algebraic S^{1}-chain complexes of R-modules and by $F, T: S^{1}$-chains ${ }_{R} \leadsto m$ chains $_{R}$
the functors which associate with $\left(C_{*}, d_{*} \beta_{*}\right)$ the chain complexes $\left(C_{*}, d_{*}\right)$ resp. $\left(\mathcal{C}_{\star}, \beta^{d_{*}}\right)$.

SECTION II:

Let k be a field of characteristic zero and let $k[u]$ be the graded commutative algebra generated by of degree 2 . $k[u]$ can be also viewed as a co-commutative coalgebra with commultiplication $\Delta: k[u] \rightarrow k[u] \oplus k[u]$ given by $\Delta\left(u^{p}\right)=\Sigma u^{i} * u^{p-i}$ and co-unit given by $\varepsilon\left(u^{i}\right)=\left\{\begin{array}{lll}0 & \text { if } & i>0 \\ 1 & \text { if } & i=0\end{array}\right.$. A $k[u]$-comodule is a graded vector space M_{*} equipped with the k-linear map $\Delta_{M}: M_{*} \rightarrow k[u] \otimes M_{*}$ which satisfies the expected axioms. These axioms imply that $\Delta_{M}(m)=m+u \in S(m)+u^{2} \operatorname{SS}^{2}(m)+\ldots$, where S is a degree -2 $k-l i n e a r$ map of M_{*}. Conversely, any $S: M_{*} \rightarrow M_{*-2}$ provides a $k[u]$-comodule structure on M_{*}, hence the $k[u]$-comodule structures on a graded vector space M_{*} identify to the k -linear maps of degree -2 .

EXAMPLE: 1) Suppose V_{*} is a k-graded vector space. Then $V_{*} \oplus k[u]$ is equipped with a canonical $k[u]$-comodule structure given by $S\left(x * u^{n}\right)=x * u^{n-1}$ and $S(x)=0$. This is called the free $k[u]$-comodule of base V_{*}. A $k[u]$-comodule M_{*} is free iff $S: M_{*} \rightarrow M_{*-2}$ is surjective in which case a base is provided by kers.
2) Suppose V_{*} is a k-graded vector space and $S=0$ The $k[u]$-comodule structure given by this S is called fos trivial structure.

DEFINITION 2.1: A $k[u]$-comodule M_{*} is called quasifree if M_{*} is the direct sum $M_{*}^{\prime}+M_{*}^{\prime \prime}$ of two $k[u]$-comodules $\left(S_{M_{*}}=S_{M_{*}^{\prime}}+S_{M_{*}^{\prime \prime}}\right)$ with M_{*}^{\prime} free $\left(S_{M_{*}^{\prime}}\right.$ surjective $)$ and $M_{*}^{\prime \prime}$ trivial $\left(S_{M_{*}}=0\right)$.

Given two $k[u]$-comodules M_{*} and N_{*} one defines the graded vector space $M_{*}{ }_{k}[u] N_{*}$ and $\Sigma^{2} \operatorname{Coker}_{k[u]}\left(M_{*}, N_{*}\right)$ as the kernel resp. cokernel of the linear map $D: M_{*} \otimes N_{*} \rightarrow \Sigma^{2}\left(M_{*} \otimes N_{*}\right)$ given by $D(m \otimes n)=S_{M}(m) \otimes n-m \otimes S_{N}(n) ; \quad S_{M}$ and S_{N} are the degree (-2)-linear maps which define the $k[u]$-comodule structures of M_{*} and N_{*} and $\sum^{n} K_{*}$ denotes the n-fold suspension of K_{*}.

If $\tilde{C}=\left(C_{*}, \alpha_{*}, \beta_{*}\right)$ is an algebraic S^{1}-chain complex, then $\mathrm{HC}_{*}(\widetilde{\mathrm{C}})$ has a $\mathrm{k}[\mathrm{u}]$-comodule structure induced by $S: H C_{*}(\widetilde{\mathrm{C}}) \rightarrow \mathrm{HC}_{*-2}(\widetilde{\mathrm{C}})$.

PROPOSITION 2.2: If $\tilde{C}^{\prime}=\left(C_{*}^{\prime}, d_{*}^{\prime}, B_{*}^{\prime}\right)$ and $\tilde{C}^{\prime \prime}=\left(C_{*}^{\prime \prime}, d_{*}^{\prime \prime}, B_{*}^{\prime \prime}\right)$ are two algebraic s^{1}-chain complexes then there exists a (natural) short exact sequence

If moreover $H C_{*}\left(\widetilde{C}^{n}\right)$ is quasifree and $H C_{*}\left(\widetilde{C}^{\prime \prime}\right)=V_{*} \operatorname{k}[u]+W_{*}$ where $V_{*} \oplus k[u]$ is the free part and W_{*} the trivial part, then

$$
H C_{*}\left(\widetilde{C}^{\prime} \oplus \widetilde{C}^{\prime \prime}\right)=H C_{*}\left(\widetilde{C}^{\prime}\right) \oplus V_{*}+H_{*}\left(C^{n}, d_{*}^{n}\right) \oplus W_{*} .
$$

PROOF OF PROPOSITION 2.2: Note that if $\left(C_{*}, d_{\star}, B_{*}\right)$ is an algebraic S^{1}-chain complex, then the chain complex $\left({ }_{\beta} C_{*}{ }_{\beta}{ }^{d_{*}}\right.$) is a chain complex of free $k[u]$-comodules with β^{d} * being a morphism of $k[u]$-comodules. If $\left(C_{*}^{\prime}, \alpha_{*}^{\prime}, B_{*}^{\prime}\right)$ and ($\left.C_{*}^{\prime \prime}, \alpha_{*}^{\prime \prime}, \beta_{*}^{\prime \prime}\right)$ are two algebraic s^{1}-chain complexes, we have the following short exact sequence of chain complexes

The differential δ in $\beta^{C_{*}^{\prime}}{ }_{\beta}{ }_{\beta}^{C_{*}^{\prime \prime}}$ is given by the tensor product differential, D is defined by
$D(\bar{x} \otimes \bar{y})=S^{\prime} \bar{x} \otimes \bar{y}-\bar{x} \otimes S^{\prime \prime} \bar{y}, \bar{x} \in{ }_{\beta} C_{*}^{\prime}, \bar{y} \in_{\beta} C_{*}^{\prime \prime}$ with S^{\prime} resp. $S^{\prime \prime}$ defining the $k[u]$-comodule structure of $\beta_{\beta_{*}^{\prime}}^{\prime}$ resp. $\beta_{C_{*}^{\prime \prime}}$ and I as follows. We formally write $\bar{x}=\left(x_{n}, x_{n-2}, x_{n-4}, \ldots\right) \epsilon_{g^{\prime}} C_{n}^{\prime}$ as $\bar{x}=\Sigma x_{n-2 k} u^{k}, \bar{y}=\left(y_{r}, y_{r-2}, y_{r-4}, \ldots\right) \epsilon_{\beta^{\prime \prime}} C_{r} \quad$ as $\quad \bar{y}=\Sigma y_{r-2 k} v^{k}$ and $\bar{z}=\left(z_{s}, z_{s-2}, z_{2-4}, \ldots\right) \in_{\tilde{\beta}}\left(C_{\star}^{\prime} \circ C_{\star}^{\prime \prime}\right)$ as $\bar{z}=\Sigma z_{s-2 k} U^{k}$; then I is given by $I\left(x_{m} \circ y_{n} U^{r}\right)=\sum_{\ell=0}^{r}\left(x_{m} u^{\ell}\right) \circ\left(y_{n} v^{r-\ell}\right)$. The reader can easily check the exactness of this sequence.

Moreover, if one equippes ${ }_{\beta} C_{*}^{\prime}{ }_{\beta}{ }^{\prime \prime} C^{\prime \prime}$ with the degree -2 morphism of chain complexes $S=S \otimes i d+i d \otimes S$, then $\beta^{\prime} C_{*}^{\prime}{ }_{\beta}{ }^{\prime \prime} C_{*}^{n}$ is a chain complex of $k[u]$-comodules and both I and D are morphisms of chain complexes of $k[u]-c o m o d u l e s$. Since $H_{*}\left({ }_{\beta} C_{*}^{\prime}{ }_{\beta}{ }^{\prime \prime} C_{*}^{\prime \prime}\right)=H C_{*}\left(\widetilde{C}^{\prime}\right) \otimes \mathrm{HC}_{*}\left(\widetilde{C}^{\prime \prime}\right)$ and $H_{*}(D)=S_{H C_{*}}\left(\tilde{C}^{\prime}\right)$ id-id $\otimes S_{H C_{*}}\left(\tilde{\mathrm{C}}^{\prime \prime}\right) \quad$ the long exact sequence for homology induced by (*) is
$\rightarrow \Sigma^{3}\left(\mathrm{HC}_{*}\left(\tilde{C}_{*}^{\prime}\right) \otimes \mathrm{HC}_{*}\left(\tilde{C}_{*}^{\prime \prime}\right)\right) \rightarrow \mathrm{HC}_{*}\left(\tilde{\mathrm{C}}_{*}^{\prime} \otimes \tilde{\mathrm{C}}_{*}^{\prime \prime}\right) \rightarrow \mathrm{HC}_{*}\left(\tilde{\mathrm{C}}_{*}^{\prime}\right) \otimes \mathrm{HC}_{*}\left(\tilde{\mathrm{C}}_{*}^{\prime \prime}\right) \xrightarrow{\text { Soid-ideS}}$ $\rightarrow \Sigma^{2}\left(\mathrm{HC}_{*}\left(\tilde{\mathrm{C}}_{*}^{\prime}\right) \oplus \mathrm{HC}_{*}\left(\tilde{\mathrm{C}}_{*}^{\prime \prime}\right)\right) \rightarrow \ldots$,
which clearly provides the following short exact sequence

$$
0 \rightarrow \sum \operatorname{Coker}\left(\mathrm{HC}_{*}\left(\tilde{\mathrm{C}}_{\star}^{\prime}\right), \mathrm{HC}_{*}\left(\tilde{\mathrm{C}}_{*}^{\prime}\right)\right) \rightarrow \mathrm{HC}_{*}\left(\tilde{\mathrm{C}}_{\star}^{\prime} \otimes \widetilde{\mathrm{C}}_{*}^{n}\right) \rightarrow \mathrm{HC}_{*}\left(\widetilde{\mathrm{C}}_{\star}\right) \underset{\mathrm{k}[\mathrm{u}]}{\mathrm{HC}} \underset{*}{ }\left(\widetilde{\mathrm{C}}_{*}^{\prime \prime}\right) \rightarrow 0
$$

or equivalently $\operatorname{HC}_{*}\left(\tilde{C}_{*} \otimes \tilde{C}_{*}^{\prime \prime}\right)=\operatorname{Ker} D+\operatorname{Coker} \Sigma D$.
Suppose now that $\mathrm{HC}_{*}\left(\tilde{\mathrm{C}}^{\prime \prime}\right)=\mathrm{k}[\mathrm{u}] \otimes \mathrm{V}_{*}+W_{*}$ is quasifree. Then $D: H C_{*}\left(\tilde{C}^{\prime}\right) \otimes H C_{*}\left(\tilde{C}^{\prime \prime}\right) \rightarrow H C_{*}\left(\tilde{C}^{\prime}\right) \otimes H C_{*}\left(\tilde{C}^{\prime \prime}\right)$ is $D_{1}+D_{2}$ with $D_{1}: \tilde{H} C_{*}\left(C^{\prime}\right) \otimes k[u]+V_{*} \rightarrow H C_{*}\left(\tilde{C}^{\prime}\right) \otimes k[u]+V_{*}$ defined by $D_{1}\left(x \otimes u^{n} \otimes v\right)=S x \otimes u^{n} \otimes v-x \otimes u^{n-1} \otimes v \quad$ and $D_{2}: H C_{*}(\tilde{C}) \otimes W_{*} \rightarrow H C_{*}\left(\tilde{C}^{1}\right) \otimes W_{*}$ defined by $D_{2}(x \otimes w)=S x \otimes w$. Clearly Coker $D_{1}=0$, Ker $D_{1}=H C_{*}\left(\tilde{C}^{\prime}\right) \otimes V_{*}$. The Gysin Connes exact sequence tensored by W_{*} gives the exact sequence

$$
\begin{aligned}
& \longrightarrow \Sigma^{-1} \mathrm{HC}_{*}\left(\tilde{\mathrm{C}}^{\prime}\right) \bullet \mathrm{W}_{*} \xrightarrow{\mathrm{D}_{2}} \Sigma \mathrm{HC}_{*}\left(\tilde{C}^{1}\right) \bullet \mathrm{W}_{*} \longrightarrow \ldots \text {. }
\end{aligned}
$$

This implies $H_{*}\left(\tilde{C}^{\prime}\right) \oplus W_{*}=\operatorname{Coker} \Sigma^{-1} D_{2}+\operatorname{Ker} D_{2}$, which implies that

Ker $D+\operatorname{Coker} \Sigma D=H C_{*}\left(\tilde{C}^{1}\right) \cdot V_{*}+H H_{*}\left(\tilde{C}^{1}\right) \bullet W_{*} \cdot$

SECTION III:

We recall that a cyclic set (R-module) see [C] or [BF], (X_{*}, t_{*}) consists of a simplicial set (R-module) $x_{*}=\left(X_{n}, d_{n}^{i}, s_{n}^{i} ; 0 \leq i \leq n\right)$ and a cyclic structure $t_{*}=\left(t_{n}: X_{n} \rightarrow X_{n}\right)$ which satisfies $t_{n}^{n+1}=i d, t_{n-1} d_{n}^{i-1}=d_{n}^{i} t_{n}$, $t_{n} s_{n}^{i-1}=s_{n}^{i} t_{n}$ for $1 \leq i \leq n$. Let A_{R} resp. \tilde{A}_{R} denote the category of simplicial R-modules resp. cyclic R-modules (when there is no danger of confusion we will write A, \tilde{A}, chains, S^{1}-chains instead of A_{R}, \tilde{A}_{R}, chains $_{R}, S^{1}$-chains $\left._{R}\right)$.

As with A, \tilde{A} is equipped with an internal tensor product $\left(G_{n}, d_{n}^{i}, s_{n}^{i}, t_{n}\right) \otimes\left(G_{n}^{\prime}, d_{n}^{\prime i}, s_{n}^{\prime}, t_{n}^{\prime}\right)=\left(G_{n} \otimes G_{n}^{\prime}, d_{n}^{i} \odot d_{n}^{i}, s_{n}^{i} \odot s_{n}^{\prime i}, t_{n} \odot t_{n}^{\prime}\right) \quad$ With any cyclic R-module $\left(G_{n}, d_{n}^{i}, s_{n}^{i}, t_{n}\right)$ one associates the s^{1}-algebraic chain complex
$\left(G_{n} d_{n}=\sum_{i=0}^{n}(-1)^{i} d_{n}^{1}, \beta_{n}=(-1)^{n}\left(1-(-1)^{n+1} t_{n+1}\right) s_{n}^{n}\left(1+(-1)^{n} t_{n}+\ldots(-1)^{n^{2}} t_{n}^{n}\right)\right.$ denote by $\widetilde{C}\left(C_{*}, t_{*}\right)$. The purpose of this section is to prove
that Hochschild resp. cyclic homology of $\widetilde{C}\left(G_{*}, t_{*}\right) \otimes \tilde{C}\left(G_{*}^{\prime}, t_{:}^{\prime}\right)$ and $\tilde{C}\left(G_{*} G_{\star}^{!}, t_{*} \otimes t_{\star}^{\prime}\right)$ are naturally isomorphic. Prectec $A, B: \tilde{A} \times \tilde{A} \sim s^{1}$-chains are the functors defined by $A\left(\left(G_{*}, t_{*}\right),\left(G_{*}^{\prime}, t_{*}^{\prime}\right)\right)=\widetilde{C}\left(G_{*} \otimes G_{*}^{\prime}, t_{*} \otimes t_{*}^{\prime}\right), B\left(\left(G_{*}, t_{*}\right),\left(G_{*}^{\prime}, t_{*}^{\prime}\right)\right)=$ $=\tilde{C}\left(G_{*}, t_{*}\right) \tilde{C}\left(G_{*}^{\prime}, t_{*}^{\prime}\right) \quad$ then we have

THEOREM 3.1: There exists the diagram of functors and natural transformations which is naturally homotopy commutative.

The proof will require the Theorem of acyclic models [M, p. 128] which we will review below.

Let \subseteq be a category and $M \subset o b \subseteq$ a set of objects called models. Given a covariant functor $L: C \longrightarrow A b, A=$ the category of abelian groups one can define a new covariant functor $L: \subseteq \rightarrow$ As and a natural transformation $\eta: L \leadsto L$ by $\underline{L}(K)=$ the free abelian group generated by
 for $f \in \operatorname{Hom}(K, L), \alpha \in \operatorname{Hom}(M, K)$ and $u \in L(M)$, with
$\eta^{K}: L(K) \rightarrow L(K)$ given by $\eta^{K}(\alpha, u)=A(\alpha)(u)$. The functor L is called representable with respect to M iff η admits a right inverse, $1 . e$ a natural transformation $\phi^{L}: L \sim L$ with $\eta \circ \phi=1 d$.

THEOREM of acyclic models [M,P.128]: Let $A, B: C \rightarrow m$ chains be two covariant functors, $f=\left\{f_{i}:(A)_{i} \rightarrow(B)_{i}, 0 \leq i \leq n\right\}$ a natural transformation of chain complex functors through dimension n and M a set of models in C If A_{i} is representable for all $1, B(M)$ is acyclic in dimension $>n$ for all $M \in M$ and $f_{n}\left(\operatorname{Im} d_{n+1}^{A}\right) \subset \operatorname{Im}\left(d_{n+1}^{B}\right)$ then there exists a natural transformation $f: A \leadsto B$ extending $\left\{f_{i}\right\}_{i} \leq n$. Moreover the extension f is unique up to all higher homotopies.

PROOF of Theorem 3.1: We take η_{F} and ε_{F} as given by the "Alexander Whitney map" resp. "shuffle map"; $\eta_{F}{ }^{\circ} \varepsilon_{F}$ resp. $n_{F}{ }^{\circ} E_{F}$ are naturally homotopic to the identity, see [M]pp. §§29. We also take $\left(\eta_{T}\right)_{0}=i d$ and $\left(\varepsilon_{T}\right)_{0}=i d$ and we will verify that all functors involving T and F are representable with respect to the class of models $M_{A} \in \operatorname{ob}(\tilde{A} \times \tilde{A})$ defined below. By verifying the acyclicity of $T A$ and $T B$ applied to the models we can use the Theorem of acyclic models as follows: i) Take $A=T A$ and $B=T B$ resp. $A=T B$ and $B=T A$ to obtain the extensions η_{T} resp. ε_{T}.
ii) Take $A=B=T A=T B$ to obtain the natural homotopy between $\varepsilon_{T} \circ \eta_{T}$ and id resp. $\eta_{T}{ }^{\circ} \varepsilon_{T}$ and id. iii) Take $A=F A$ and $B=T B$ resp. $A=F B$ and $A=T A$ to obtain the natural homotopy between $\eta_{T}{ }^{\circ} i_{A}$ and $i_{B}{ }^{\circ} \eta_{T}$ resp. $\varepsilon_{T} \circ i_{B}$ and $i_{A} \circ \varepsilon_{F}$.

MODELS: In [M]pp. 130, $M_{*}^{p}=\left(M_{n}^{p}, d_{n}^{i}, s_{*}^{i}\right)$ is defined to be the free simplicial R-module generated by the standard p-simplex $\Delta[p]\left(\Delta[p]_{n}=\operatorname{Hom}_{\Delta}(\underline{n}, p)\right)$ and $M=\left\{\left(M_{*}^{p}, M_{*}^{r}\right) \mid p, r \geq 0\right\} \operatorname{cob} A \times A$ the set of models used to prove the standard Eilenberg Zilber theorem. In analogy let M_{\wedge}^{p} be the free cyclic R-module generated by the cyclic set $\Lambda[p]$. By $\Lambda[p]$ we denote the "free" cyclic set generated by $\Delta[p]$ (see [B.F] definition 1.3). It follows from [BF] (Proposition 1.4 that the geometric realization of the underlying simplicial set $\Lambda[p]$ is homotopy equivalent to s^{1} by an s^{1}-equivariant map. Let $M_{\Lambda}=\left\{\left(M_{\Lambda}^{p}, M_{\Lambda}^{q}\right) \mid p, q \geqslant 0\right\} \operatorname{cob} \tilde{A} \times \tilde{A}$.

REPRESENTABILITY: (TA) ${ }_{n}$ and $(T B)_{n}$ are direct sums of functors of type $(F A)_{n}=\tilde{A}_{n}$ resp. (FB) ${ }_{n}=\widetilde{B}_{n}$ so it suffices to check the representability for \tilde{A}_{n} resp. \tilde{B}_{n} in order to do it for $(T A)_{n}$ and $(T B)_{n}$. This is done as in $[M$] Lemma 2.9 .1 by using the "free-ness" of our models. Precisely if $x_{n} \in K_{n} \quad K \in o b \widetilde{A}$ it induces a simplicial map $\Delta[n] \xrightarrow{\hat{X}_{n}} K$ and then a cyclic $\operatorname{map} \Lambda[n] \xrightarrow{\hat{\delta}_{n}} K$. This induces the homomorphism of cyclic

R-modules $M_{A}^{n} \xrightarrow{\bar{x}_{n}} K$. So if $(K, L) \in$ ob $\tilde{A} \times \tilde{A}$

$\phi^{n}: \widetilde{A}_{n}(X, L)=K_{n} \bullet L_{n} \longrightarrow \tilde{\mathbb{A}}_{n}(K, L)$ and
$\phi^{\widetilde{B}_{n}}: \tilde{B}_{n}(K, L)=\sum_{r=0}^{r} K_{r} \oplus L_{n-r} \rightarrow \tilde{B}_{n}(K, L)$ are defined by the formulas $\left.\phi^{\tilde{A}_{n}}\left(x_{n} \oplus y_{n}\right)=\left(\bar{x}_{n} \times \bar{Y}_{n}, \lambda_{n} \oplus \lambda_{n}\right) \in \operatorname{Hom} \tilde{A}_{A} \times \tilde{A}^{\left(M_{A}^{n}\right.} \times M_{A}^{n}, K \times L\right) \times$
$\times A_{n}\left(M_{\wedge}^{n}, M_{\Lambda}^{n}\right), \phi^{\widetilde{B}_{n}^{n}}\left(x_{p} \oplus x_{n-p}\right)=\left(\bar{x}_{p} \times \bar{x}_{n-p}, \lambda_{p} \cdot \lambda_{n}\right) \epsilon$
 generator of M_{Λ}^{n}. It is straightforward to verify $\phi^{\tilde{A}_{n}}$ and $\phi^{\widetilde{B}_{n}}$ are natural transformations inverse to $\eta^{\widetilde{A}}$ and $n^{\widetilde{B}_{n}}$.

ACYCLICITY: By definition $H_{*}\left(T A\left(M_{A}^{n}, M_{A}^{P}\right)\right)=H_{*}\left(\mathbb{C}_{*}\left(M_{\Lambda}^{n}\right) \oplus \tilde{C}_{*}\left(M_{\Lambda}^{P}\right)\right)$ and $H_{*}\left(T B\left(M_{\Lambda}^{n}, M_{\Lambda}^{p}\right)\right)=H C_{*}\left(\widetilde{C}_{*}\left(M_{\Lambda}^{n} \otimes M_{\Lambda}^{p}\right)\right) \quad\left(M_{\Lambda}^{n} \otimes M_{\Lambda}^{p}\right.$ in the free cyclic R-module generated by the cyclic set $\Lambda[n] \times \Lambda[p])$. By [BF] section $I \quad H C_{*}\left(\widetilde{C}_{*}\left(M_{\lambda}^{n}\right)\right)=H_{*}(|\Delta[n]| ; R) \quad$ and $H C_{*}\left(\widetilde{C}_{*}\left(M_{\Lambda}^{n} \otimes M_{\Lambda}^{p}\right)=H_{*}(\Delta[n] \times \Delta[p] ; R) \quad\right.$ and $H H_{*}\left(\widetilde{C}_{*}\left(M_{\Lambda}^{n}\right)\right)=H_{*}\left(S^{1} ; R\right)$. Combined with Proposition 2.2 one concludes that $H_{*}\left(T A\left(M_{\Lambda}^{n}, M_{\Lambda}^{p}\right)\right)=H_{*}\left(T B\left(M_{\Lambda}^{n}, M_{\Lambda}^{p}\right)\right)=\left\{\begin{array}{lll}0 & \text { if } & *>0 \\ R & \text { if } & *=0\end{array}\right.$
Q.E.D.

SECTION IV:

PROOF of Theorem A: Given an R-algebra A the Hochschild resp. cyclic homology of A are calculated by the algebraic S^{1}-chain complex $\left(T_{n}(A), d_{n}^{i}, s_{n}^{i}, t_{n}\right)$ with $T_{n}(A)=A \underbrace{\ldots A}_{n+1}$

$$
\begin{aligned}
& d_{n}^{i}\left(a_{0} \otimes \ldots \otimes a_{n}\right)= \begin{cases}a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n} & \text { if } \\
a_{n} a_{0} \otimes \ldots \otimes a_{i} \otimes \ldots \otimes a_{n-1} & \text { if } \\
i=n\end{cases} \\
& s_{n}^{i}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=a_{0} \otimes \ldots \otimes a_{i} \otimes 1 \otimes a_{i+1} \otimes \ldots \otimes a_{n} \\
& t_{n}^{A}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1} .
\end{aligned}
$$

Theorem 3.1 implies that Hochschild resp. cyclic homology of $\widetilde{C}\left(T_{*}(A \otimes B), t_{*}^{A}\right)$, and of $\tilde{C}\left(T_{*}(A), t_{*}^{A}\right) \otimes \widetilde{C}\left(T_{*}(B), t_{*}^{B}\right)$ are naturaly isomorphic. Theorem A follows then from Proposition 2.2 .

PROOF of Corollary B: This follows from the calculation of the Hochschild resp. cyclic homology of $k[t]$ and $k\left[t, t^{-1}\right]$ given in [LQ] section 2. In both cases the cyclic homology is quasifree $k[u]$-comodule with the free part isomorphic to $k[t]$ resp. $k\left[t, t^{-1}\right]$ regarded as graded vector spaces concentrated in degree zero.
Q.E.D.

REFERENCES:

[B] 1 BURGHELEA, D.: Cyclic homology and algebraic K-theory of topological spaces I, to appear in Boulder conference on Algebraic K-theory (1983).
[B] ${ }_{2}$ BURGHELEA, D.: Cyclic homology of group rings, Comm. Math. Helv. No. 3 Vo1. 60 (1985).
[B] 3 BURGHELEA, D.: Kunneth formula in cyclic homology, Preprint (1984).
[BF] BURGHELEA, D. and FIEDOROVICZ, Z.: CYclic homology and algebraic K-theory of topological spaces II, to appear in Topology (1985).
[C] CONNES, A.: De Rham homology and noncommutative algebras, to appear in Publ. I.H.E.S.
[LQ] LODAY, J.L. and QUILLEN, D.: Cyclic homology and the Lie algebra homology of matices, Comm. Math. Helv. No. 4 Vol. 59 (1984).
[M] MAY, P.: Simplicial aspects in algebraic topology, D. van Nostrand Company Inc..
[0] OGLE, C.: A note on cyclic Eilenberg-zilber theorem, Preprint (1985).

