KÜNNETH FORMULA IN CYCLIC HOMOLOGY

by

Dan BURGHELEA and Crighton OGLE

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3 Sonderforschungsbereich 40 Theoretische Mathematik Beringstraße 4 D-5300 Bonn 1

SFB/MPI 85-49

KUNNETH FORMULA IN CYCLIC HOMOLOGY

by

Dan BURGHELEA and Crighton OGLE

0. INTRODUCTION:

The cyclic homology $HC_*(A)$ of an associative algebra with identity (unital algebra) A over a field of characteristic zero k was introduced by A. Connes [C] (see also [L,Q]). It comes equipped with a natural degree (-2) k-linear map S : $HC_*(A) \rightarrow HC_{*-2}(A)$, which provides $HC_*(A)$ with a k[u] co-module structure, where $HC_*(k) = k[u]$ is the polynomial algebra in the variable u of degree 2 regarded as a coalgebra (see section 3). The purpose of this paper is to prove the following theorem

THEOREM A: 1) Given two unital k-algebras A and B, there exists a short exact sequence

 $0 \rightarrow \Sigma \operatorname{Cotor}(\operatorname{HC}_{\star}(A), \operatorname{HC}_{\star}(B)) \xrightarrow{\psi} \operatorname{HC}_{\star}(A \circ B) \xrightarrow{h} \operatorname{HC}_{\star}(A) = \operatorname{HC}_{\star}(B) \rightarrow 0$ k[u]

natural in A and B, where a denotes the cotensor product.

2) If $HC_{\star}(B)$ is a quasi-free comodule (+ i.e. $HC_{\star}(B) = k[u] \bullet V_{\star} + W_{\star}$, then $HC_{\star}(A \bullet B) = HC_{\star}(A) \bullet W_{\star} + HH_{\star}(A) \bullet V_{\star}$.

As an application we have the following calculation of the cyclic homology of the polynomial algebra A[t] resp. Laurent polynomial algebra $A[t,t^{-1}]$.

<u>COROLLARY B</u>: 1) If A[t] <u>denotes the polynomial algebra</u> with coefficients in A then

> $HC_{\star}(A[t]) = HC_{\star}(A) + \odot (HH_{\star}(A))_{\alpha}$ $\alpha \in N$

with N denoting the natural numbers, $HH_{\star}(A)_{\alpha}$ being a copy of $HH_{\star}(A)$;

2) If $A[t,t^{-1}]$ denotes the algebra of Laurent polynomials with coefficients in A then $HC_*(A[t,t^{-1}]) = HC_*(A) + HC_{*-1}(A) + Nill HC_*(A)$ with Nill $HC_*(A) = \bigoplus_{\alpha \in \mathbb{Z} \setminus \{0\}} (HH_*(A))_{\alpha}$. This can be re-written as $\alpha \in \mathbb{Z} \setminus \{0\}$ 3) $HC_*(A[t,t^{-1}]) = HC_*(A[t]) + HC_{*-1}(A) + Nill_HC_*(A)$ with Nill_ $HC_*(A) = \bigoplus_{\alpha \in \mathbb{Z} \setminus \{0 \cup N\}} (HH_*(A))_{\alpha}$ where $nill_+HC_*(A) = \bigoplus_{\alpha \in \mathbb{N}} (HH_*(A))_{\alpha}$, and Nill $HC_*(A) =$ $Nill_+HC_*(A) + Nill_HC_*(A)$.

(+ See Section 3 for definition.

The above theorem has a corresponding generalization to differential graded algebras with differential of degree = 1. Nill HC_{*}(A) has interesting geometric applications. Note the above corollary is also verified in $[B]_2$ for A = k[G]a group ring.

In the particular cases of A and B group rings, both Theorem A and Corollary have been verified in [B]₂. Theorem A was conjectured by Burghelea and Karoubi in May, 1984 and both of them have provided proofs through different arguments. A subsequent proof was given by C. Ogle [O].⁽⁺

The results of this paper have been announced in Oberwolfach, August 1984.

This paper is a substitute for $[B]_3$ and [O], and being shorter than both of them better suitted for publication. The arguments of $[B]_3$ permit stronger conclusions (in particular the fact that ψ resp. \uparrow in Theorem A identify to the Loday Quillen product [L,Q] resp. the dual of Connes product in cyclic cohomology), but they are less conceptual and more complicated.

The paper is organized as follows: In section I we review the concept of algebraic S^1 -chain complex introduced in $[B]_1$ and describe the "tensor product" of two algebraic S^1 -chain complexes. In section II we prove the Künneth formula for the tensor product of two algebraic S^1 -chain complexes. In

- 3 -

⁽⁺ C. Kassel K and J. Jones & C. Hood have also announced the Künneth formula for cyclic homology of algebras.

section III we use "acyclic models" to show that Hochschild and cyclic homology of the algebraic S^1 -chain complex associated with the tensor product of two cyclic R-modules is the same as of the tensor product of the associated algebraic S^1 -chain complexes. In section IV we derive Theorem A and Corollary B.

SECTION 1:

Let R be a commutative ring with unit. An algebraic S^{1} -chain complex (a chain complex equipped with an algebraic circle action) $\widetilde{C} = (C_{*}, d_{*}, \beta_{*})$ consists of the chain complex of R-modules $(C_{*}, d_{*}), d_{*} : C_{n} \rightarrow C_{n-1}$ satisfying $d_{n+1} d_{n} = 0$, with the algebraic circle action β_{*} given by R-linear maps $\beta_{*} : C_{n} \rightarrow C_{n+1}$ which satisfy $\beta_{n+1}\beta_{n} = 0, d_{n+1}\beta_{n} + \beta_{n-1}d_{n} = 0$.

A morphism of algebraic S¹-chain complexes $f_*: (C_*, d_*, \beta_*) \rightarrow (C'_*, d'_*, \beta'_*)$ consists of R-linear maps $f_n: C_n \rightarrow C'_n$ which commute with the d's and β 's.

To an algebraic S^1 -chain complex (C_*, d_*, β_*) one can associate the chain complex $({}_{\beta}C_*, {}_{\beta}d_*)$ with ${}_{\beta}C_n = C_n + C_{n-2} + \cdots, {}_{\beta}d_n(x_n, x_{n-2}, \cdots) = (dx_n + \beta x_{n-2}, dx_{n-2} + \beta x_{n-4}, \cdots)$ and the following short exact sequence of chain complexes

$$(*) \qquad 0 \rightarrow (\mathsf{C}_{\star},\mathsf{d}_{\star}) \xrightarrow{\mathtt{I}} ({}_{\beta}\mathsf{C}_{\star},{}_{\beta}\mathsf{d}_{\star}) \xrightarrow{\pi} \Sigma^{2} ({}_{\beta}\mathsf{C}_{\star},{}_{\beta}\mathsf{d}_{\star}) \rightarrow 0 \ .$$

Here I is the inclusion $I(x_n) = (x_n, 0, \dots 0)$, Σ denotes the suspension $\Sigma(C_*, d_*) = (B_*, d_*^{\dagger})$ with $B_{n+1} = C_n, B_0 = 0, d_{n+1}^{\dagger} = d_n$, and π is the projection $\pi(x_n, x_{n-2}, \ldots) = (x_{n-2}, x_{n-4}, \ldots)$

The homology groups $H_*(C_*,d_*)$, resp. $H_*({}_{\beta}C_*,{}_{\beta}J_*)$ are by definition the <u>Hochschild</u> resp. <u>cyclic or equivariant</u> homology of $\widetilde{C} = (C_*,d_*,\beta_*)$. The long exact homology sequence associated with the short exact sequence (*) becomes, with the above notation:

$$(**) \longrightarrow HH_{*}(\widetilde{C}) \xrightarrow{I} HC_{*}(\widetilde{C}) \xrightarrow{S} HC_{*-2}(\widetilde{C}) \longrightarrow HH_{*-1}(\widetilde{C}) \longrightarrow$$

and will be called the Gysin-Connes exact sequence. Obviously a morphism of algebraic S^1 -chain complexes $f : \widetilde{C} \rightarrow \widetilde{C}'$ provides a commutative diagram

$$(***) \rightarrow HH_{*}(\widetilde{C}) \rightarrow HC_{*}(\widetilde{C}) \rightarrow HC_{*-2}(\widetilde{C}) \rightarrow HH_{*-1}(\widetilde{C}) \rightarrow HH_{*}(\widetilde{C}) \rightarrow HC_{*}(\widetilde{C}) \rightarrow HC_{*-2}(\widetilde{C}) \rightarrow HH_{*-1}(\widetilde{C}) \rightarrow HH_{$$

Given two algebraic s^1 -chain complexes \widetilde{C}' and \widetilde{C}'' one defines the tensor product $\widetilde{C}' \otimes \widetilde{C}''$ as being the chain complex $(C_*' \otimes C_*', D_*)$ with $(C' \otimes C'')_n = \int_{k=0}^n C_k' \otimes C_{n-k}', D_n (x_k \otimes y_{n-k}) = d'x_k \otimes y_{n-k} + (-1)^k x_k \otimes d'' y_{n-k},$ equipped with the algebraic circle action $\overline{\beta}_*$, $\overline{\beta}_n (x_k \otimes y_{n-k}) = \beta' x_k \otimes y_{n-k} + (-1)^k x_k \otimes \beta'' y_{n-k}$.

We denote by $chains_R$ (resp. S^1 -chains_R) the category of chain complexes resp. algebraic S^1 -chain complexes of R-modules and by F, T : S^1 -chains_R ~~~> chains_R the functors which associate with (C_*, d_*, β_*) the chain complexes (C_*, d_*) resp. $({}_{\beta}C_*, {}_{\beta}d_*)$.

SECTION II:

Let k be a field of characteristic zero and let k[u] be the graded commutative algebra generated by of degree 2. k[u] can be also viewed as a co-commutative coalgebra with commultiplication Δ : k[u] \rightarrow k[u] \bullet k[u] given by $\Delta(u^{P}) = \Sigma u^{1} \bullet u^{P-1}$ and co-unit given by $\varepsilon(u^{1}) = \begin{cases} 0 & \text{if } 1 > 0 \\ 1 & \text{if } 1 = 0 \end{cases}$. A k[u]-comodule is a graded vector space M_{\star} equipped with the k-linear map $\Delta_{M}: M_{\star} \rightarrow$ k[u] $\bullet M_{\star}$ which satisfies the expected axioms. These axioms imply that $\Delta_{M}(m) = m + u \bullet S(m) + u^{2} \bullet S^{2}(m) + \dots$, where S is a degree -2 k-linear map of M_{\star} . Conversely, any S : $M_{\star} \rightarrow M_{\star-2}$ provides a k[u]-comodule structure on M_{\star} , hence the k[u]-comodule structures on a graded vector space M_{\star} identify to the k-linear maps of degree -2.

EXAMPLE: 1) Suppose V_* is a k-graded vector space. Then $V_* \bullet k[u]$ is equipped with a canonical k[u]-comodule structure given by $S(x \bullet u^n) = x \bullet u^{n-1}$ and S(x) = 0. This is called the free k[u]-comodule of base $V_* \cdot A$ k[u]-comodule M_* is free iff $S : M_* \to M_{*-2}$ is surjective in which case a base is provided by ker S. 2) Suppose V_* is a k-graded vector space and S = 0The k[u]-comodule structure given by this S is called the trivial structure.

DEFINITION 2.1: A k[u]-comodule M_* is called quasifree if M_* is the direct sum $M'_* + M''_*$ of two k[u]-comodules $(S_{M_*} = S_{M'_*} + S_{M''_*})$ with M'_* free $(S_{M'_*}$ surjective) and M''_* trivial $(S_{M_*} = 0)$.

Given two k[u]-comodules M_* and N_* one defines the graded vector space $M_* \square_{k[u]} N_*$ and $\Sigma^2 \operatorname{Coker}_{k[u]}(M_*,N_*)$ as the kernel resp. cokernel of the linear map $D: M_* \otimes N_* \to \Sigma^2 (M_* \otimes N_*)$ given by $D(m \otimes n) = S_M(m) \otimes n - m \otimes S_N(n)$; S_M and S_N are the degree (-2) - linear maps which define the k[u]-comodule structures of M_* and N_* and $\Sigma^n K_*$ denotes the n-fold suspension of K_* .

If $\widetilde{C} = (C_*, d_*, \beta_*)$ is an algebraic S¹-chain complex, then $HC_*(\widetilde{C})$ has a k[u]-comodule structure induced by S : $HC_*(\widetilde{C}) \rightarrow HC_{*-2}(\widetilde{C})$.

<u>PROPOSITION 2.2</u>: If $\tilde{C}' = (C_*, d_*, \beta_*')$ and $\tilde{C}'' = (C_*, d_*', \beta_*')$ are two algebraic S^1 -chain complexes then there exists a (natural) short exact sequence

$$0 \rightarrow \Sigma \operatorname{Coker}_{\mathbf{k}[\mathbf{u}]}(\mathrm{HC}_{*}(\widetilde{\mathbf{C}}') , \mathrm{HC}_{*}(\widetilde{\mathbf{C}}')) \xrightarrow{\psi} \mathrm{HC}_{*}(\widetilde{\mathbf{C}}' \otimes \widetilde{\mathbf{C}}') \xrightarrow{\phi} \mathrm{HC}_{*}(\widetilde{\mathbf{C}}') = \mathrm{HC}_{*}(\widetilde{\mathbf{C}}') \rightarrow 0 .$$

If moreover $HC_{*}(\tilde{C}^{*})$ is quasifree and $HC_{*}(\tilde{C}^{*}) = V_{*} \bullet k[u] + W_{*}$ where $V_{*} \bullet k[u]$ is the free part and W_{*} the trivial part, then

$$HC_{\star}(\widetilde{C}' \otimes \widetilde{C}'') = HC_{\star}(\widetilde{C}') \otimes V_{\star} + H_{\star}(C'', d_{\star}'') \otimes W_{\star}.$$

<u>PROOF OF PROPOSITION 2.2</u>: Note that if (C_*, d_*, β_*) is an algebraic S¹-chain complex, then the chain complex $({}_{\beta}C_*, {}_{\beta}d_*)$ is a chain complex of free k[u]-comodules with ${}_{\beta}d_*$ being a morphism of k[u]-comodules. If (C_*, d_*, β_*) and (C_*, d_*, β_*) are two algebraic S¹-chain complexes, we have the following short exact sequence of chain complexes

(*)
$$0 \longrightarrow_{\tilde{\beta}} (C^{i}_{\star} \oplus C^{i}_{\star}) \xrightarrow{\mathbf{I}} C^{i}_{\star} \oplus C^{i}_{\star} \longrightarrow \Sigma^{2} (C_{\star} \oplus C^{i}_{\star}) \longrightarrow 0$$

The differential δ in ${}_{\beta}C_{*}^{*} \circ {}_{\beta}C_{*}^{*}$ is given by the tensor product differential, D is defined by $D(\bar{x} \circ \bar{y}) = S'\bar{x} \circ \bar{y} - \bar{x} \circ S''\bar{y}$, $\bar{x} \in {}_{\beta}C_{*}^{*}, \bar{y} \in {}_{\beta}C_{*}^{*}$ with S' resp. S" defining the k[u]-comodule structure of ${}_{\beta}C_{*}^{*}$ resp. ${}_{\beta}C_{*}^{*}$ and I as follows. We formally write $\bar{x} = (x_{n}, x_{n-2}, x_{n-4}, \ldots) \in {}_{\beta}C_{n}^{*}$ $\bar{x} = \Sigma x_{n-2k}u^{k}$, $\bar{y} = (y_{r}, y_{r-2}, y_{r-4}, \ldots) \in {}_{\beta}"C_{r}$ as $\bar{y} = \Sigma y_{r-2k}v^{k}$ and $\bar{z} = (z_{s}, z_{s-2}, z_{2-4}, \ldots) \in {}_{\beta}(C_{*}^{*} \circ C_{*}^{*})$ as $\bar{z} = \Sigma z_{s-2k}u^{k}$; then I is given by $I(x_{m} \circ y_{n}u^{r}) = \sum_{k=0}^{r} (x_{m}u^{k}) \circ (y_{n}v^{r-k})$. The reader can easily check the exactness of this sequence.

as

Moreover, if one equippes ${}_{\beta}{}_{*}C_{*}^{*} \otimes_{\beta}{}_{"}C''$ with the degree -2 morphism of chain complexes $S = S \otimes id + id \otimes S$, then ${}_{\beta}{}^{*}C_{*}^{*} \otimes_{\beta}{}_{"}C_{*}^{"}$ is a chain complex of k[u]-comodules and both I and D are morphisms of chain complexes of k[u]-comodules. Since $H_{*}({}_{\beta}{}_{!}C_{*}^{*} \otimes_{\beta}{}_{"}C_{*}^{"}) = HC_{*}(\widetilde{C}{}_{!}) \otimes HC_{*}(\widetilde{C}{}_{"})$ and $H_{*}(D) = S_{HC_{*}}(\widetilde{C}{}_{!}) \otimes id - id \otimes S_{HC_{*}}(\widetilde{C}{}_{"})$ the long exact sequence for homology induced by (*) is

$$\longrightarrow \Sigma^{3}(\mathrm{HC}_{*}(\widetilde{C}_{*}^{!}) \otimes \mathrm{HC}_{*}(\widetilde{C}_{*}^{"})) \to \mathrm{HC}_{*}(\widetilde{C}_{*}^{!} \otimes \widetilde{C}_{*}^{"}) \to \mathrm{HC}_{*}(\widetilde{C}_{*}^{!}) \otimes \mathrm{HC}_{*}(\widetilde{C}_{*}^{"}) \xrightarrow{S \otimes \mathrm{id} - \mathrm{id} \otimes S}$$
$$\longrightarrow \Sigma^{2}(\mathrm{HC}_{*}(\widetilde{C}_{*}^{!}) \otimes \mathrm{HC}_{*}(\widetilde{C}_{*}^{"})) \to \ldots ,$$

which clearly provides the following short exact sequence

$$0 \rightarrow \Sigma \operatorname{Coker}(\operatorname{HC}_{*}(\widetilde{C}_{*}^{!}), \operatorname{HC}_{*}(\widetilde{C}_{*}^{"})) \rightarrow \operatorname{HC}_{*}(\widetilde{C}_{*}^{!} \otimes \widetilde{C}_{*}^{"}) \rightarrow \operatorname{HC}_{*}(\widetilde{C}_{*}^{!}) \square \operatorname{HC}_{*}(\widetilde{C}_{*}^{"}) \rightarrow 0$$

$$k[u]$$

or equivalently $HC_*(\widetilde{C}_*' \otimes \widetilde{C}_*') = \text{Ker } D + \text{Coker } \Sigma D$.

Suppose now that $HC_*(\widetilde{C}^*) = k[u] \otimes V_* + W_*$ is quasifree. Then $D: HC_*(\widetilde{C}^*) \otimes HC_*(\widetilde{C}^*) \to HC_*(\widetilde{C}^*) \otimes HC_*(\widetilde{C}^*)$ is $D_1 + D_2$ with $D_1: \widetilde{H}C_*(C^*) \otimes k[u] + V_* \to HC_*(\widetilde{C}^*) \otimes k[u] + V_*$ defined by $D_1(x \otimes u^n \otimes v) = Sx \otimes u^n \otimes v - x \otimes u^{n-1} \otimes v$ and $D_2: HC_*(\widetilde{C}) \otimes W_* \to HC_*(\widetilde{C}^*) \otimes W_*$ defined by $D_2(x \otimes w) = Sx \otimes w$. Clearly Coker $D_1 = 0$, Ker $D_1 = HC_*(\widetilde{C}^*) \otimes V_*$. The Gysin Connes exact sequence tensored by W_* gives the exact sequence

$$\longrightarrow \Sigma^{-2} HC_{*}(\widetilde{C}') \bullet W_{*}) \xrightarrow{\Sigma^{-1}D_{2}} H\widetilde{C}_{*}(C') \bullet W_{*} \xrightarrow{\Sigma B \bullet id} HH_{*}(\widetilde{C}') \bullet W_{*} \xrightarrow{I \bullet id}$$
$$\longrightarrow \Sigma^{-1} HC_{*}(\widetilde{C}') \bullet W_{*} \xrightarrow{D_{2}} \Sigma HC_{*}(\widetilde{C}') \bullet W_{*} \xrightarrow{--} \dots$$

This implies $HH_{\star}(\widetilde{C}') \oplus W_{\star} = Coker \Sigma^{-1}D_2 + Ker D_2$, which implies that

Ker D + Coker
$$\Sigma$$
 D = HC_{*}(\widetilde{C} ') • V_{*} + HH_{*}(\widetilde{C} ') • W_{*}.

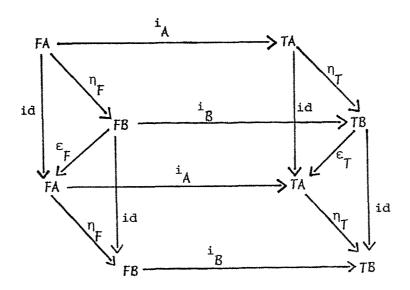
SECTION III:

We recall that a cyclic set (R-module) see [C] or [BF], (X_*,t_*) consists of a simplicial set (R-module) $X_* = (X_n, d_n^i, s_n^i; 0 \le i \le n)$ and a cyclic structure $t_* = (t_n : X_n + X_n)$ which satisfies $t_n^{n+1} = id$, $t_{n-1}d_n^{i-1} = d_n^i t_n$, $t_n s_n^{i-1} = s_n^i t_n$ for $1 \le i \le n$. Let A_R resp. \widetilde{A}_R denote the category of simplicial R-modules resp. cyclic R-modules (when there is no danger of confusion we will write A, \widetilde{A} , chains, S¹-chains instead of A_R, \widetilde{A}_R , chains_R, S¹-chains_R).

As with A, \tilde{A} is equipped with an internal tensor product $(G_n, d_n^i, s_n^i, t_n) \otimes (G_n^i, d_n^{ii}, s_n^{ii}, t_n^i) = (G_n \otimes G_n^i, d_n^i \otimes d_n^{ii}, s_n^i \otimes s_n^{ii}, t_n \otimes t_n^i)$. With any cyclic R-module (G_n, d_n^i, s_n^i, t_n) one associates the S^1 -algebraic chain complex

 $(G_{n}, d_{n} = \sum_{i=0}^{n} (-1)^{i} d_{n}^{i}, \beta_{n} = (-1)^{n} (1 - (-1)^{n+1} t_{n+1}) s_{n}^{n} (1 + (-1)^{n} t_{n} + \dots (-1)^{n^{2}} t_{n}^{n})$ denote by $\widetilde{C}(C_{\star}, t_{\star})$. The purpose of this section is to prove that Hochschild resp. cyclic homology of $\widetilde{C}(G_*,t_*) \otimes \widetilde{C}(G_*',t_*')$ and $\widetilde{C}(G_* \oplus G_*', t_* \oplus t_*')$ are naturally isomorphic. Precise $A, B : \widetilde{A} \times \widetilde{A} \longrightarrow S^1$ -chains are the functors defined by $A((G_*,t_*), (G_*',t_*')) = \widetilde{C}(G_* \oplus G_*', t_* \oplus t_*'), B((G_*,t_*), (G_*',t_*')) =$ $= \widetilde{C}(G_*,t_*) \oplus \widetilde{C}(G_*',t_*')$ then we have

THEOREM 3.1: There exists the diagram of functors and natural transformations which is naturally homotopy commutative.



The proof will require the Theorem of acyclic models [M,p.128] which we will review below.

Let \underline{C} be a category and $M \subset ob \underline{C}$ a set of objects called <u>models</u>. Given a covariant functor $L : \underline{C} \longrightarrow Ab$, A = the category of abelian groups one can define a new covariant functor $L : \underline{C} \longrightarrow As$ and a natural transformation $\eta : \underline{L} \longrightarrow L$ by $\underline{L}(K) =$ the free abelian group generated by $X(K) = \bigcup_{M \in M} (Hom(M,K) \times L(M))$ for $K \in ob \underline{C}$, $\underline{L}(f)(\alpha, u) = (f \circ \alpha, u)$ for $f \in Hom(K,L)$, $\alpha \in Hom(M,K)$ and $u \in L(M)$, with η^{K} : $\underline{L}(K) \longrightarrow L(K)$ given by $\eta^{K}(\alpha, u) = A(\alpha)(u)$. The functor L is called <u>representable with respect to</u> M iff η admits a right inverse, i.e. a natural transformation $\phi^{L}: L \longrightarrow L$ with $\eta \circ \phi = id$.

THEOREM of acyclic models [M, p. 128]: Let $A, B : \subseteq \longrightarrow$ chains be two covariant functors, $f = \{f_i : (A)_i \longrightarrow (B)_i, 0 \le i \le n\}$ a natural transformation of chain complex functors through dimension n and M a set of models in $\subseteq \cdot If A_i$ is representable for all i, B(M) is acyclic in dimension >nfor all $M \in M$ and $f_n(Im d_{n+1}^A) \subset Im(d_{n+1}^B)$ then there exists a natural transformation $f : A \longrightarrow B$ extending $\{f_i\}_{i \le n}$. Moreover the extension f is unique up to all higher homotopies.

<u>PROOF of Theorem 3.1</u>: We take n_F and ε_F as given by the "Alexander Whitney map" resp. "shuffle map"; $n_F \circ \varepsilon_F$ resp. $n_F \circ \varepsilon_F$ are naturally homotopic to the identity, see [M]pp. §§29. We also take $(n_T)_0 = id$ and $(\varepsilon_T)_0 = id$ and we will verify that all functors involving T and F are representable with respect to the class of models $M_A \in ob(\widetilde{A} \times \widetilde{A})$ defined below. By verifying the acyclicity of TA and TB applied to the models we can use the Theorem of acyclic models as follows: i) Take A = TA and B = TB resp. A = TB and B = TA to obtain the extensions n_T resp. ε_T . 11) Take A = B = TA = TB to obtain the natural homotopy between $\varepsilon_T \circ \eta_T$ and id resp. $\eta_T \circ \varepsilon_T$ and id. 111) Take A = FA and B = TB resp. A = FB and A = TAto obtain the natural homotopy between $\eta_T \circ i_A$ and $i_B \circ \eta_T$ resp. $\varepsilon_T \circ i_B$ and $i_A \circ \varepsilon_F$.

<u>MODELS</u>: In [M]pp. 130, $M_{\star}^{p} = (M_{n}^{p}, d_{n}^{i}, s_{\star}^{i})$ is defined to be the free simplicial R-module generated by the standard p-simplex $\Delta[p] (\Delta[p]_{n} = \operatorname{Hom}_{\Delta}(\underline{n},\underline{p}))$ and $M = \{(M_{\star}^{p}, M_{\star}^{r}) | p, r \ge 0\} \subset \operatorname{ob} \mathbb{A} \times \mathbb{A}$ the set of models used to prove the standard Eilenberg Zilber theorem. In analogy let M_{λ}^{p} be the free cyclic R-module generated by the cyclic set $\Lambda[p]$. By $\Lambda[p]$ we denote the "free" cyclic set generated by $\Delta[p]$ (see [B.F] definition 1.3). It follows from [BF] (Proposition 1.4 that the geometric realization of the underlying simplicial set $\Lambda[p]$ is homotopy equivalent to S^{1} by an S^{1} -equivariant map. Let $M_{\lambda} = \{(M_{\lambda}^{p}, M_{\lambda}^{q})| p, q \ge 0\} \subset \operatorname{ob} \widetilde{\mathbb{A}} \times \widetilde{\mathbb{A}}$.

<u>REPRESENTABILITY</u>: $(TA)_n$ and $(TB)_n$ are direct sums of functors of type $(FA)_n = \tilde{A}_n$ resp. $(FB)_n = \tilde{B}_n$ so it suffices to check the representability for \tilde{A}_n resp. \tilde{B}_n in order to do it for $(TA)_n$ and $(TB)_n$. This is done as in [M] Lemma 2.9.1 by using the "free-ness" of our models. Precisely if $x_n \in K_n$ $K \in ob \tilde{A}$ it induces a simplicial map $\Delta[n] \xrightarrow{\hat{X}_n} > K$ and then a cyclic \tilde{X}_n map $\Lambda[n] \xrightarrow{\hat{X}_n} > K$. This induces the homomorphism of cyclic

R-modules
$$M_{\Lambda}^{n} \xrightarrow{\overline{x}_{n}} K$$
. So if $(K,L) \in ob \widetilde{A} \times \widetilde{A}$
 \widetilde{A}_{n}^{n} : $\widetilde{A}_{n}(K,L) = K_{n} \bullet L_{n} \longrightarrow \widetilde{A}_{n}(K,L)$ and
 \widetilde{B}_{n}^{n} : $\widetilde{B}_{n}(K,L) = \sum_{r=0}^{r} K_{r} \bullet L_{n-r} \longrightarrow \widetilde{B}_{n}(K,L)$ are defined by the
formulas $\phi^{n}(x_{n} \bullet y_{n}) = (\overline{x}_{n} \times \overline{y}_{n}, \lambda_{n} \bullet \lambda_{n}) \in \operatorname{Hom}_{\widetilde{A} \times \widetilde{A}}(M_{\Lambda}^{n} \times M_{\Lambda}^{n}, K \times L) \times A_{n}(M_{\Lambda}^{n}, M_{\Lambda}^{n}), \phi^{n}(x_{p} \bullet x_{n-p}) = (\overline{x}_{p} \times \overline{x}_{n-p}, \lambda_{p} \bullet \lambda_{n}) \in$
 $\in \operatorname{Hom}_{\widetilde{A} \times \widetilde{A}}(M_{\Lambda}^{p} \times M_{\Lambda}^{n-p}; K \times L) \times B_{n}(M_{\Lambda}^{p}, M_{\Lambda}^{n-p})$ with λ_{\star} the prefered
generator of M_{Λ}^{n} . It is straightforward to verify ϕ^{n} and $\phi^{\widetilde{B}_{n}}$
are natural transformations inverse to η^{n} and η^{n} .

ACYCLICITY: By definition
$$H_{\star}(TA(M_{\Lambda}^{n}, M_{\Lambda}^{p})) = HC_{\star}(\widetilde{C}_{\star}(M_{\Lambda}^{n}) \circ \widetilde{C}_{\star}(M_{\Lambda}^{p}))$$

and $H_{\star}(TB(M_{\Lambda}^{n}, M_{\Lambda}^{p})) = HC_{\star}(\widetilde{C}_{\star}(M_{\Lambda}^{n} \circ M_{\Lambda}^{p})) (M_{\Lambda}^{n} \circ M_{\Lambda}^{p} \text{ in the free}$
cyclic R-module generated by the cyclic set $\Lambda[n] \star \Lambda[p]$). By
[BF] section I $HC_{\star}(\widetilde{C}_{\star}(M_{\Lambda}^{n})) = H_{\star}(|\Delta[n]|; R)$ and
 $HC_{\star}(\widetilde{C}_{\star}(M_{\Lambda}^{n} \circ M_{\Lambda}^{p}) = H_{\star}(\Delta[n] \star \Delta[p]; R)$ and $HH_{\star}(\widetilde{C}_{\star}(M_{\Lambda}^{n})) = H_{\star}(S^{1}; R)$
Combined with Proposition 2.2 one concludes that
 $H_{\star}(TA(M_{\Lambda}^{n}, M_{\Lambda}^{p})) = H_{\star}(TB(M_{\Lambda}^{n}, M_{\Lambda}^{p})) = \begin{cases} 0 \text{ if } \star > 0 \\ R \text{ if } \star = 0 \end{cases}$

Q.E.D.

•

SECTION IV:

<u>PROOF of Theorem A</u>: Given an R-algebra A the Hochschild resp. cyclic homology of A are calculated by the algebraic S^1 -chain complex $(T_n(A), d_n^i, s_n^i, t_n)$ with $T_n(A) = A \bigotimes_{n+1} \bigotimes A$

$$d_{n}^{i}(a_{0} \circ \cdots \circ a_{n}) = \begin{cases} a_{0} \circ \cdots \circ a_{i}a_{i+1} \circ \cdots \circ a_{n} & \text{if } i \leq n-1 \\ a_{n}a_{0} \circ \cdots \circ a_{i} \circ \cdots \circ a_{n-1} & \text{if } i = n \end{cases}$$
$$s_{n}^{i}(a_{0} \circ \cdots \circ a_{n}) = a_{0} \circ \cdots \circ a_{i} \circ 1 \circ a_{i+1} \circ \cdots \circ a_{n}$$
$$t_{n}^{A}(a_{0} \circ \cdots \circ a_{n}) = a_{n} \circ a_{0} \circ \cdots \circ a_{n-1} .$$

Theorem 3.1 implies that Hochschild resp. cyclic homology of $\widetilde{C}(T_*(A \otimes B), t_*^A)$, and of $\widetilde{C}(T_*(A), t_*^A) \otimes \widetilde{C}(T_*(B), t_*^B)$ are naturaly isomorphic. Theorem A follows then from Proposition 2.2.

<u>PROOF of Corollary B</u>: This follows from the calculation of the Hochschild resp. cyclic homology of k[t] and $k[t,t^{-1}]$ given in [LQ] section 2. In both cases the cyclic homology is quasifree k[u]-comodule with the free part isomorphic to k[t]resp. $k[t,t^{-1}]$ regarded as graded vector spaces concentrated in degree zero.

Q.E.D.

REFERENCES:

- [B] BURGHELEA, D.: Cyclic homology and algebraic K-theory of topological spaces I, to appear in Boulder conference on Algebraic K-theory (1983).
- [B] BURGHELEA, D.: Cyclic homology of group rings, Comm. Math. Helv. No.3 Vol. 60 (1985).
- [B] BURGHELEA, D.: Künneth formula in cyclic homology, Preprint (1984).
- [BF] BURGHELEA, D. and FIEDOROVICZ, Z.: Cyclic homology and algebraic K-theory of topological spaces II, to appear in Topology (1985).
- [C] CONNES, A.: De Rham homology and noncommutative algebras, to appear in Publ. I.H.E.S.
- [LQ] LODAY, J.L. and QUILLEN, D.: Cyclic homology and the Lie algebra homology of matices, Comm. Math. Helv. No. 4 Vol. 59 (1984).
- [M] MAY, P.: Simplicial aspects in algebraic topology,D. van Nostrand Company Inc..
- [0] OGLE, C.: A note on cyclic Eilenberg-Zilber theorem, Preprint (1985).