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KUNNETH FORMULA IN CYCLIC HOMOLOGY 

by 

Dan BURGHELEA and Crighton OGLE 

O. INTRODUCTION: 

The cyclic homology HC*(A) of an associative algebra 

with identity (unital algebra) A over a field of characte

ristic zero k was introduced by A. Connes [C] (see also 

[L,Q]). It comes equipped with a natural degree (-2) k-lineaY' 

map S : HC* (A) .... HC*_2 (A) I which provides HC* (A) with a 

k[u] co-module structure, where HC*(k) = k[u] is the poly-

nomial algebra in the variable u of degree 2 regarJed as a 

coalgebra (see section 3). The purpose of this paper is to 

prove the following theorem 

THEOREM A: 1) Given two unital k-algebras A and B ( 

exists a short exact sequence 

o .... 1: Cotor (HC* CA) I HCll' (B) ! HC* (A ca B) ~ HC* (A) 0 HC* (B) ... 
k[u] 

natural in A and B, where 0 denotes the cotensor produc~. 
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2) If HC.(B) is a quasi-free comodule (+ i.e. 

HC. (B) = k [u J • V. + W* , then 

HC*(A&B) = HC.(A) .W. + HH.(A) eV. 

As an application we have the following calculation of the 

cyclic homology of the polynomial algebra A[t] resp. Laurent 

-1 polynomial algebra A[t,t ] • 

COROLLARY B: 1) If A[t] denotes the polynomial algebra 

with coefficients in A then 

HC*(A[t) = HC*(A) + • (HH.(A»a 
aEN 

with N denoting the natural numbers, HH*(A)a being a copy 

of HH. (A) ; 

2) If A[t,t- 1 ) denotes the alsebra of Laurent poly-

nomials with coefficients in A then 

HC.(A[t,t- 1
}) = HC.(A) + HC*_1(A) + Nill HC*(A) with 

Nill HC* (A) = tD (HH. (A) ) • This can be re-written as 
aEZ\{O} a 

3) HC.(A[t,t- 1
]) = HC.(A[t]) + HC._

1
(A) + Nill_HC*(A) 

with Nill_HC*(A) = tD (HH*(A» where 
aEZ\{OUN} a 

Nill HC. (A) = ED (HH. (A) ) , and Nill HC* (A) = 
+ aEN a---

= Nill+HC* (A) + Nill_HC* (A) • 

(+ See Section 3 for definition. 
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The above theorem has a corresponding generalization 

to differential graded algebras with differential of d~0~' 

= 1 . Nill HC*(A) has interesting geometric applications. Note 

the above corollary is also verified in [B]2 for A = keG] 

a group ring. 

In the particular cases of A and B group rings, 

both Theorem A and Corollary have been verified 'in [B]2 • 

Theorem A was conjectured by Burghelea and Karoubi in May, 

1984 and both of them have provided proofs through different 

arguments. A subsequent proof was given by C. Ogle [0]. (+ 

The results of this paper have been announced in Ober-

wolfach, August 1984. 

This paper is a substitute for [B]3 and [0], and being 

shorter than both of them better suitted for publication. 

The arguments of [B]3 permit stronger conclusions (in 

particular the fact that ~ resp. ~ in Theorem A identify 

to the Loday Quillen product (L,Q1 resp. the dual of Connes 

product in cyclic cohomology), but they are less conceptual 

and more-complicated. 

The paper is organized as follows: In section I we review 

the concept of algebraic s1-chain complex introduced in [Bl 1 

and describe the "tensor product" of two algebraic s1-chain 

complexes. In section II we prove the Kunneth formula for the 

tensor product of two algebraic S1-chain complexes. In 

(+ C. Kassel K and J. Jones & C. Hood have also announced 

the KUnneth formula for cyclic homology of algebras. 
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section III we use "acyclic models" to show that Hochschild 

and cyclic homology of the algebraic s1-chain complex asso

ciated with the tensor product of two cyclic R-modules is 

the same as of the tensor product of the associated algebraic 

S1-chain complexes. In section IV we derive Theorem A and 

Corollary B. 

SECTION 1: 

Let R be a commutative ring with unit. An-algebraic 

s1-chain complex (a chain complex equipped with an algebraic 

circle action) C. (C*, d., 8.) consists of the chain complex 

of R-modules (C.,d.) I d. : Cn -+Cn- 1 satisfying dn+1 dn = 0 , 

with the algebraic circle action 8. given by R-linear maps 

B. : C .... C 1 n n+ which satisfy B 8 = 0 d B + B ,d = 0 • n+1 n ' n+1 n n- n 

A morphism of algebraic s1-chain complexes 

f*: (C.,d.,B*) -+ (C!,d!,B!) consists of R-linear maps 

f : C .... C' which conunute with the d's and B' s . n n n 

To an algebraic s1-chain complex (C.,d.,B.) one can 

associate the chain complex (aC*'ad., with 

BCn = Cn T Cn- 2 + ••• , Bdn (xn 'xn_2 , ••• ) == (dxn + aXn_2,dxn_2 + axn_4, •.. ) 

and the following short exact sequence of chain complexes 

( *) 

Here I is the inclusion I(Xn ) = (xn'O, ••• O) I E denotes 

the suspension E(C.,d*) = (B.,d!) with Bn+1 =Cn,BO = O,d~+1 =dn , 
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and IT is the projection IT(x ,X 2'·") = (x 2'x 4"'·\ n n- n- n-

The homology groups H*(C*,d*) , resp. H*(SC*'!31*} ~:.,.'':; 

by definition the Hochschild resp. cyclic or equivariant 

'" homology of C =(C*,d*,S*) • The long exact homology sequence 

associated with the short exact sequence (*) becomes, with the 

above notation: 

and will be called the Gysin-Connes exact sequence. Obviously 

a morphism of algebraic S 1-chain complexes f: C -+ C I 

provides a commutative diagram 

(***) 

Given two algebraic S1-chain complexes C' and CII one 

'" ,." defines the tensor product C' (j/) C" as being the chain complex 

(C~ (j/) C: ,D*) with 

(C I ~C") = ~ C' &C" D (x &y ) =d'x ®y +(-1)kx @d"y n k=O k n-k Ink n-k k n-k k n-k 1 

equipped with the algebraic circle action S* 1 

an (Xk Cl Yn-k) = a' Xk @ Yn-k + (-1 )kxk @ a"Yn-k 

We denote by chainsR (resp. s1-chainsR) the category 

of chain complexes resp. algebraic S1-chain complexes of 

R-modules and by F,T : S 1-chains ~> chains 
R R 
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the functors which associate with (C.,d*,~*) the chain 

complexes (C.,d.) resp. (aC*'ad*). 

SECTION II: 

Let k be a field of characteristic zero and let 

k[u] be the graded commutative algebra generated by of 

degree 2. k[u] can be also viewed as a co-commutative 

coalgebra with commultiplication 6. : k[u] .... k[ul • k[ul given 

by 6. (uP) 

e:(u
i

} ={~ 
= Lui.., up- i 

if i> 0 
if i = 0 

and co-unit given by 

• A k[u]-comodule is a graded vector 

space M. equipped with the k-linear map AM.: M* .... k[u] .., M. 

which satisfies the expected axioms. These axiQms imply that 

D.M (m) = m + u. S (m) + u 2 .., s2 (m) +... , where S is a degree -2 

k-linear map of M •• Conversely I any S: M* .... M*_2 provides 

a k[u]-comodule structure on M. , hence the k[u]-comodule 

structures on a graded vector space M. identify to the 

k-linear maps of degree -2. 

EX~1PLE: 1) Suppose V. is a k-graded vector space. Then 

V •• k[u] is equipped with a canonical k[u]-comodule struc-

ture given by n n-l S(XQDu) = xeu and s(x) = 0 • This is 

called the free k[u]-comodule of base V* • A k[u]-comodule 

M. is free iff S: M ..... M*_2 is surjective in which case 

a base is provided by ker S • 
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2) Suppose V* is a k-graded vector space and S = r, 
" 

The k[u]-comodule structure given by this S is callr:::d ~.; 

trivial structure. 

DEFINITION 2.1: ~ k[u]-comodule M* is called quasifree if 

M* is the direct sum M~ + M~ of two k[u]-comodules 

(SM = SM' + SM") with M! 
* * * 

free surjective) and 

trivial (SM = 0) • 
* 

Mil 
* 

Given two k[u]-comodules M* and N* one defines the graded 

2 
vector space M*Dk[U]N* and E cokerk[u] (M*,N*) as the 

2 
kernel resp. cokernel of the linear map D: M* ® N* ... Z (M* ® N*) 

given by D(men) = SM(m) ®n-m®SN(n) i SM and SN are 

the degree (-2) - linear maps which define the k[u]-comodule 

structures of M* and N* and denotes the n - fold 

suspension of K*. 

If C = (C*,d*,B*) is an algebraic S1-chain complex, 

then HC*(C) has a k[u]-comodule structure induced by 
('oJ rv 

S : He* (e) ... He*_2 (e) • 

PROPOSITION 2.2: If C· = (C~/d~,B~) and C" = (C:,d~,B:) 
are two algebraic S1-chain complexes then there exists a 

(natural) short exact sequence 
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If moreover HC. (~II) is quasifree and He. (~") == v. e k[u] + W. 

where V*ek[u] is the free Eart and W. the trivial part, 

then 

PROOF OF PROPOSITION 2.2: Note that if (C*,d*,B*) is an 

algebraic S1-chain complex, then the chain comvlex (aC.'sd.) 

is a chain complex of free k[u1-comodules with 89* being 

a morphism of k[u]-comodules. If (C~,d~,S~) and (C:,d:,a:) 

are two algebraic S1-chain complexes, we have the following 

short exact sequence of chain complexes 

( *) o -> (C' <II> C") ~> C' <II> C" -> r 2 ( C 1.1 C .. ) -> 0 
6 * * Sf * s" * af * B" * 

The differential IS in C' 1.1 CM is given by the tensor a * 8 * 
product differential, D is defined by 

sit 

defining the k[u]-comodule structure of C' resp. C" and 
8 * a • 

I as follows. We formally write x= (xn,xn-2,xn-4'··') EffC~ 
- k - k x = rxn_ 2ku y = (Yr'Yr-2'Yr-4" •• )Es"Cr as y= r Yr-2kv 

(zs,zs_2'Z2_4" •• ) E a(C~.C:) - k 
and z = as z =·r zs_2kU 

r 
( r- t) then is given by 

r I (x u t
) The I I (Xm 1.1 YnU ) = 1.1 Ynv . 

t=O m 

reader can easily check the exactness of this sequence. 

as 
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Moreover, if one equippes S I C~ ® S"C" with the degree - 2 

morphism of chain complexes S = S ~ id + id 0 S , then 

S I C~ ~ S" C: is a chain complex of k[u]-comodules and both 

I and Dare morphisms of chain complexes of k[u]-comodules. 

Since H* (S,C~ ~ S"C:) = HC* (C') ~ HC* (e") and 

H* (D) = SHC* (e l ) <» id - id QI\ SHC* (e") the long exact sequence 

for homology induced by (*) is 

, 

which clearly provides the following short exact sequence 

o ... r Coker (HC* (C~) , HC* (C:» ... HC* (c~ ® e:) ... HC* (e~) 0 HC* (e:) ... 0 
k[uJ 

'" '" or equivalently HC*(C~ 4/) C:) = Ker D + Coker ED 

,... 
Suppose now that HC* (C") = k[u] ® V* + W* is quasifree. 

Then D~HC*(CI)®HC*(CII) ... Hc*(el)QI\Hc*(CII) is D1+D2 with 
IV ,.... 

D1 : HC* (C ' ) 4/) k[u] + V* ... HC* (C') QI\ k[u] + V* defined by 

n n n-1 
D1 (x <» u <» v) = Sx <» u QI\ v - X QI\ U QI\ v and 

'" '" D2 : He* (e) <» W* ... HC* (e') QI\ W* defined by D2 (x QI\ w) = Sx ® w • 

"... 

Clearly Coker D1 = 0 I Ker D1 = HC* (e') QI\ V * • The Gysin Connes 

exact sequence tensored by W* gives the exact sequence 
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1:- 10 
-> t- 2HC. (C ' ) • W.) 2> HC. (C') • W. tB. ii HH. (C') • W. I. id> 

-> 
1 D2 ..... 

t- HC. (e' ) • w. -> t HC. (C' ) • W. -> ... 

This implies HH. (C') • W. = Coker t- 1D2 + Ker D2 ' which 

implies that 

SECTION III: 

We recall that a cyclic set (R-module) see [C] or [BF], 

(X.,t.) consists of a simpli~ial set (R-module) 

i i x. = (Xn I dn , sn; 0 ~ 1 !i n) and a cyclic structure 

t* = (t : x .... X) which satisfies t n +1 = id t d i - 1 
= dit n n n n' n-1 n n n ' 

t s1-1 = sit for 1 ~ i !i n • Let AR resp. AR denote 
n n n n 

the category of simplicial R-modules resp. cycliC R-modules 

(when there is no danger of confusion we will wrIte A, i, 

chains,s'-chains instead of AR' AR ' chainsR ' s'-chainSR) 

...., 
As with A, A is equipped with an internal tensor product 

(G d i it) (G 1 d ,i sci tl) = (G -G' di.d,i si.s,i t -t') • 
n' n,sn' n & n' n In' n n- n' n n' n n' n- n 

With any cyclic R-module (G ,di,si,t) one associates the 
n n n n 

s1-algebraic chain complex 

n i i n n+ 1 n n n 2 n 
(Gn,dn = I (-1) dn,Bn = (-1) (1-(-1) t n +,)Sn(1+(-1) tn + ... (-1) t n ) 

1=0 
denote by 

...., 
C(C*,t.) • The purpose of this section is to prove 
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that Hochschild resp. cyclic homology of C(G*,t.) ®C(G!,t!' 

and C (G* <t G~, t* 4D t~) are naturally isomorphic. Pree ~ 

A, B : f x A ~ S 1-chains are the functors defined Ly 

then we have 

THEOREM 3. 1 : There exists the diagram of functors and natural 

transformations which is naturally homotopy commutative. 

The proof will require the Theorem of acyclic models [M,p.128] 

which we will review below. 

Let ~ be a category and M c: ob ~ a set of objects called 

models. Given a covariant functor L: ~ --> Ab I A =: the 

category of abelian groups one can define a new covariant functor 

L : ~ --> As and a natural transformation n : L ~> L by 

~(K) = the free abelian group generated by 

X(K) = M~M(Hom(M,K} x L(M» for KE:obC, L(f} (a,u) =: (foa,u) 
= -

for f € Hom(K,L) I a E: Hom(M,K) and u E: L(M) , with 
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given by K n (a,u) "" A(a) (u) • The 

functor L is called reeresentable with respect to Miff 

n admits a right inverse, i.e. a natural transformation 

L cp : L ~>!! wi th no. = id. 

THEO~ of acxclic models [M,p.128]: Let A,B: ~ ~ chains 

be two covariant functors, f = {f i: (A) i-> (B) i I 0:;'; i !i n} 

a natural transformation of chain complex functors through 

dimension n and M a set of models in ~ . If Ai is repre-

sentable for all i , B(M) is acxclic in dimension >n 

for all M€M and f (1m d
A 

1) c:: Im(d
B 

+1) n n+ n then there exists 

a natural transformation f : A ""-'> B extending {fi }, < . 
~_n 

Moreover the extension f is unique up to all higher homotopies. 

PROOF of Theorem 3.1: We take and as given by the 

"Alexander Whitney map" resp. "shuffle map"; 

nf 0 £r are naturally homotopic to the identity, see [M1pp. §§29. 

We also take (nT)O = id and (£r}o = id and we will verify 

that all functors involving rand f are representable with 

respect to the class of models M E ob (A x A) 

" 
defined below. 

By verifying the acyclicity of TA and T8 applied to the 

models we can use the' Theorem of acyclic models as follows: 

i) Take A = TA and B = T8 resp. A = T8 and B = TA 

to obtain the extensions "T resp. £1. 
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ii) Take A = B = TA = TS to obtain the natural homotopy 

and id resp. nT 0 c.r and id. 

iii) Take A = FA and B = TS resp. A = FS and A = TA 

to obtain the natural homotopy between nT 0 iA and is 0 nT 

resp. C.T 0 iB and 

MODELS: In [M]pp. 130, is defined to be the 

free simplicial R-module generated by the standard p-simplex 

A[p] (A[p]n = HomA (!!,12» and M = {(M~,}'l;) Ip,r ~ O} cob A x A 

the set of models used to prove the standard Eilenberg Zilber 

theorem. In analogy let MP be the free cyclic R-module 
A 

generated by the cyclic set A[p] • By A[p] we denote the 

"free" cyclic set generated by A[p] (see [B.F] definition 1.3). 

It follows from [BF] (Proposition 1.4 that the geometric reali

zation of the underlying simplicial set A[p] is homotopy 

equivalent to S1 by an s1-equivariant map. Let 

M = {(MP,Mq,1 p,q~O}cob AXA'. 
A A A 

REPRESENTABILITY: (TA)n and (TS}n are direct sums of functors 

"" 
,.... 

of type (FA)n = An resp. (FS) = B n n so it suffices to check 

'" the representability for An resp. Bn in order to do it for 

(TA)n and (TB) . n This is done as in [M) Lemma 2.9.1 by using 

'" the "free-ness" of our models. Precisely if xn € Kn 
~ 

A[n] -2L> K and then a cyclic 

K € ob A 

it induces a simplicial map 

~ 
map A[n] ~> K • This induces the homomorphism of cyclic 
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x 
R-modules Nn ~> v So if 

1\ '" • 
(K,L) € ob A x A 

A 
cp n 

13 
cp n 

An(K,L) = 

Bn(K,L) = 
A 

K CDL -> A (K,L) 
n n -n and 

r 
. \' K CD L -> 13 (K,L) 

I. r n-r -n r=O 
are defined by the 

formulas cp n(x CDy ) = (x xy , A _A ) EHom ........... (Mfl XMn,KxL) x 
n n n n n n AxA 1\ 1\ 

B 
x An (Mn ,Mn) , cp n (x • x ) = (i x X , A CD A ) E 

/\ 1\ P n-p P n-p P n 

E Hom (M P x M
n- p • K x L) x B (MP Mn - p ) with A* 1 xA /\ 1\' n /\' 1\ 

the prefered 

An 
generator of Mn. It is straightforward to 

/\ 
verify 

B 
cp and 

are natural transformations inverse to nAn and n n • 

ACYCLICITY: By definition H*(TA(Mn,MP » = HC*(~*(Mn) ClDC*(MP» 
1\ 1\ /\ /\ 

and H* (TB (N
n 

,MP» = HC* (C* (Mn • MP) ) (Mn • MP in the free 
/\ /\ /\ /\ /\ /\ 

cyclic R-module generated by the cyclic set A[nl x A[p] ) • By 

[BF] section I HC* (C* (M~» = H* (16[n] I ; R) and 

B 
cp n 

HC*(C*(M~.M~) = H*(6[n] x 6(p] i R) and HH*(C*{M~» = H*(S1;R) • 

Combined with Proposition 2.2 one concludes that 

if * > 0 

if 

Q.E.D. 
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SECTION IV: 

PROOF of Theorem A: Given an R-algebra A the Hochschild 

resp. cyclic homology of A are calculated by the algebraic 

S1-chain complex with 

a Q!) aO 4D • • • Q!) a 1 n n-

T (A) = 
n 

AQ!) .•• Q!)A 
~ 

n+1 

if i ~ n-1 

if i=n 

Theorem 3.1 implies that Hochschild resp. cyclic homology of 

'" A ..... A '" B C(T*(AQ!)B) , t*) , and of C(T*(A) , t*) Q!)C(T*(B) ,t*) are 

naturaly isomorphic. Theorem A follows then from Proposition 2.2. 

PROOF of Corollary B: This follows from the calculation of 

the Hochschild resp. cyclic homology of k[t] and k[t,t-1] 

given in [LQ] section 2. In both cases the cyclic homology is 

quasifree k[u]-comodule with the free part isomorphic to k[t) 

resp. k[t,t-1] regarded as graded vector spaces concentrated 

in degree zero. 

Q.E.D. 
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