MAPS BETWEEN SPACES WHOSE COHOMOLOGY ARE FINITELY GENERATED POLYNOMIAL ALGEBRAS

by

Zdzisław Wojtkowiak*

* This is a revised version of the preprint No. 80 of CRM (Bellaterra)

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany Universitat Autònoma de Barcelona Departament de Matemàtiques 08193 Bellaterra (Barcelona)

Spain

. ۲

MAPS BETWEEN SPACES WHOSE COHOMOLOGY ARE FINITELY GENERATED POLYNOMIAL ALGEBRAS

Zdzisław Wojtkowiak

Abstract. We classified homotopy classes of maps between p-completed spaces whose cohomology are finitely generated polynomial algebras with Weyl groups of orders prime to p.

0. INTRODUCTION

The aim of this paper is to apply the program from [1] to study maps between spaces whose cohomology with F_p -coefficients are finitely generated polynomial algebras concentrated in even degrees. The starting point was an attempt to generalize one result of Hubbuck (see [7] Theorem 1.1.). The plan of work will follow closely that of [3] and [12].

Let X be a space whose cohomology with F_p -coefficients is a finitely generated polynomial algebra concentrated in even degrees. Let T be a torus. For a torus T, the solutions in T of $t^{p^n} = 1$ make up a subgroup T(n); let $T(\varpi) = \bigcup_n T(n)$. Let $\prod_n W \subset \operatorname{Aut}(T(\varpi))$ be a finite subgroup. Then W acts on a classifying space $\operatorname{BT}(\varpi)$ and therefore also on $\operatorname{H}^*(\operatorname{BT}, F_p)$.

We say that X has a maximal torus T and a Weyl group W if there is a map $i: BT \longrightarrow X$ which satisfies

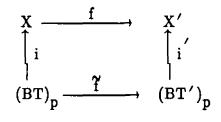
$$\mathrm{H}^{*}(\mathrm{X},\mathrm{F}_{p})=\mathrm{H}^{*}(\mathrm{BT}(\boldsymbol{\omega}),\mathrm{F}_{p})^{W}.$$

We shall call $i: BT \longrightarrow X$ a structure map for X.

We assume throughout that X,X' are p-completed spaces, whose cohomology with F_p -coefficients are finitely generated polynomial algebras concentrated in even degrees. We assume that X and X' have maximal tori and Weyl groups; T,T' are their maximal tori, $i: BT \longrightarrow X$ and $i': BT' \longrightarrow X'$ are structure maps and W and W' are their Weyl groups. We shall denote by Y_p the p-completion of Y. Let us observe that $i: BT \longrightarrow X$ induces a unique map, which we denote also by $i: (BT)_p \longrightarrow X$ because X is p-complete.

Now we shall state our main results.

THEOREM 1. Assume that p does not divide the orders of W and W'. Then for any map $f: X \longrightarrow X'$ there is a map $\tilde{f}: (BT)_p \longrightarrow (BT')_p$ such that the diagram



commutes up to homotopy. Moreover we have:

a) if $\tilde{1}': (BT)_p \longrightarrow (BT')_p$ is such that i of is homotopic to $\tilde{1}' \circ i'$ then there is $w \in W'$ such that $w \circ \tilde{1}'$ is homotopic to $\tilde{1}$, b) for any $w \in W$ there is $w' \in W'$ such that $\tilde{1} \circ w$ is homotopic to $w' \circ \tilde{1}$.

The group W acts on $T(\omega)$, hence W acts also on $\pi_2((BT(\omega))_p) = \pi_1(T) \otimes Z_p$, and consequently on $\pi_1(T) \otimes R$ for any Z_p -module R.

DEFINITION 1. Let R be a Z_p -algebra. We say that a homomorphism of R-modules

$$\varphi: \pi_1(\mathbf{T}) \otimes \mathbf{R} \longrightarrow \pi_1(\mathbf{T'}) \otimes \mathbf{R}$$

is admissible if for any $w \in W$ there is $w' \in W'$ such that $\varphi \circ w = w' \circ \varphi$. We say that two admissible maps φ and ψ from $\pi_1(T) \otimes R$ to $\pi_1(T') \otimes R$ are equivalent if there is $w \in W'$ such that $w \circ \varphi = \psi$.

It is clear that the relation defined above is an equivalence relation on the set of admissible maps from $\pi_1(T) \otimes R$ to $\pi_1(T') \otimes R$. We shall denote by $Ahom_R(T,T')$ the set of equivalence classes of admissible maps from $\pi_1(T) \otimes R$ to $\pi_1(T') \otimes R$.

Let us notice that the map $\pi_1(\tilde{f})$ induced by \tilde{f} from Theorem 1 on fundamental groups is admissible for $R = Z_p$. This map is unique up to the action of W', so any map $f: X \longrightarrow X'$ determines uniquely an equivalence class of $\pi_1(\tilde{f})$ in Ahom_{Z_p}(T,T') which we shall denote by $\chi(f)$.

THEOREM 2. Let us assume that p does not divide the orders of W and W'. Then the natural map

$$\chi: [X, X'] \longrightarrow Ahom_{Z_p}(T, T')$$

is bijective.

For any space X we set

$$\operatorname{H}^{*}(\operatorname{X}, \operatorname{Q}_{p}) := \operatorname{H}^{*}(\operatorname{X}, \operatorname{Z}_{p}) \otimes \operatorname{Q};$$

where Q_p is a field of p-adic numbers.

THEOREM 3. Let us assume that p does not divide the orders of W and W'. Then the natural map

$$\phi: [\mathbf{X}, \mathbf{X}'] \longrightarrow \operatorname{Hom}(\operatorname{H}^{*}(\mathbf{X}', \mathbf{Q}_{p}), \operatorname{H}^{*}(\mathbf{X}, \mathbf{Q}_{p}))$$

is injective.

We denote by $K^{0}(,R)$ the 0^{th} -term of complex K-theory with R-coefficients. Let \mathcal{O}_{R} be the set of operations in $K^{0}(,R)$. The functor $K^{0}(,R)$ is equipped with the natural augmentation $K^{0}(,R) \longrightarrow R$. Let $\operatorname{Hom}_{\mathcal{O}_{R}}(K^{0}(X',R),K^{0}(X,R))$ be the set of R-algebra homomorphisms which commute with the action of \mathcal{O}_{R} and augmentations.

THEOREM 4. If p does not divides the orders of W and W', then the natural map

$$\psi: [\mathbf{X}, \mathbf{X'}] \longrightarrow \operatorname{Hom}_{\mathcal{O}_{\mathbf{Z}_{p}}}(\mathbf{K}^{0}(\mathbf{X'}, \mathbf{Z}_{p}), \mathbf{K}^{0}(\mathbf{X}, \mathbf{Z}_{p}))$$

is bijective.

The result from [15] about the homotopy uniqueness of classifying spaces and Theorem 2 suggest that the homotopy category of spaces whose cohomology are finitely generated polynomial algebras over F_p should be equivalent to some algebraic category. Below we make this hope more precise in the special case considered in this paper. But first we give a definition.

Let V be a vector space or a free Z_p -module. One says that an endomorphism s of V is a generalized reflection if id -s has rank 1. A group W C GL(V) is a generalized reflection group if it is generated by generalized reflections.

Let M be a finitely generated, free Z_p -module and let $W \subset GL_{Z_p}(M)$ be a finite generalized reflection group. We shall view the inclusion $W \subset GL_{Z_p}(M)$ as a representation $\rho: W \longrightarrow GL_{Z_p}(M)$. We shall define a category $P \operatorname{Ref}_p$ in the following way. The objects of the category $P \operatorname{Ref}_p$ are representations $\rho: W \longrightarrow \operatorname{GL}_{Z_p}(M)$ described above such that p does not divide the order of W. It rests to define morphisms in this category. If $\theta: W \longrightarrow \operatorname{GL}(M)$ and $\theta': W' \longrightarrow \operatorname{GL}(M')$ are two objects of PRef_p , we say that a homomorphism of Z_p -modules $f: M \longrightarrow M'$ is admissible if for each $w \in W$ there is $w' \in W'$ such that $f \circ w = w' \circ f$. We say that two admissible homomorphisms f and g from M to M' are equivalent if there is $w \in W'$ such that $f \circ w = w' \circ f$. We say that two admissible homomorphisms f and g from M to M'. The set of equivalence classes of admissible homomorphisms from θ to θ' in the category PRef_p . The category PRef_p is equipped with the product defined in the following way:

$$(\theta: W \longrightarrow \operatorname{GL}(M)) \oplus (\theta'; W' \longrightarrow \operatorname{GL}(M')) = \theta \oplus \theta' : W \times W' \longrightarrow \operatorname{GL}(M \oplus M').$$

The product of morphisms is defined in the obvious way.

We denote by $HPol_p$ the category whose objects are p-completed spaces X such that their cohomology with F_p -coefficients are finitely generated polynomial algebras. We assume further that any X in $HPol_p$ has a maximal torus and a Weyl group and that p does not divide the order of the Weyl group of X. Morphisms in $HPol_p$ are homotopy classes of maps. The category $HPol_p$ also has products define in an obvious way.

THEOREM 5. There is an equivalence of categories

$$\mathbf{R}: \mathbf{PRef}_{\mathbf{p}} \longrightarrow \mathbf{HPol}_{\mathbf{p}}$$

with products.

If we drop out the assumption that p does not divide the orders of W and W' we get weaker results.

THEOREM 6. In Theorems 1,2,3 and 4 we can drop out the assumption "p does not divide the order of W'" if $X' = (BG)_p$, where G is a connected, compact Lie group.

THEOREM7. For any $f: X \longrightarrow X'$ there is a map $\tilde{f}: (BT)_p \longrightarrow (BT')_p$ such that the diagrams

$$\begin{array}{cccc} \mathbf{K}^{0}(\mathbf{X}',\mathbf{Z}_{p}) & \underline{f^{*}} & \mathbf{K}^{0}(\mathbf{X},\mathbf{Z}_{p}) \\ \downarrow^{i'*} & \downarrow^{i^{*}} \\ \mathbf{K}^{0}((\mathbf{BT}')_{p},\mathbf{Z}_{p}) & \underline{f^{*}} & \mathbf{K}^{0}((\mathbf{BT})_{p},\mathbf{Z}_{p}) \end{array}$$

and

$$\begin{array}{cccc} H^{*}(X', \mathbf{Q}_{p}) & \stackrel{f^{*}}{\longrightarrow} & H^{*}(X, \mathbf{Q}_{p}) \\ & & \downarrow^{i'*} & & \downarrow^{i^{*}} \\ H^{*}((BT')_{p}, \mathbf{Q}_{p}) & \stackrel{\Upsilon^{*}}{\longrightarrow} & H^{*}((BT)_{p}, \mathbf{Q}_{p}) \end{array}$$

are commutative.

a) If $\tilde{f}': (BT)_p \longrightarrow (BT')_p$ is such that $i'^* \circ f^* = \tilde{f}'^* \circ i^*$ then there is $w \in W'$ such that $w \circ \tilde{f}'$ is homotopic to \tilde{f} . b) For any $w \in W$ there is $w' \in W'$ such that $\tilde{f} \circ w$ is homotopic to $w' \circ \tilde{f}$.

COROLLARY8. Let us assume that the natural representation of W on $\pi_1(T) \otimes \mathbb{Q}_p$ is irreducible. Then there is a finite number of self-maps I_1, \ldots, I_n of X such that for any $f: X \longrightarrow X$ there is k for which $f \circ I_k$ is an Adams ψ^{α} -map i.e. the map induced by $f \circ I_k$ on $H^{2i}(X, \mathbb{Q}_p)$ is a multiplication by α^i . The number n is smaller or equal to a number of elements of Aut(W)/Inn(W) which preserve the natural representation of W on $\pi_1(T) \otimes Q_p$.

Example. (see also [3]) Let $X = BSU(n)_p$. The Weyl group of SU(n) is Σ_n . If $n \neq 6$ then Aut $\Sigma = Inn \Sigma_n$ and for n = 6 the outer automorphism does not preserve the natural representation of Σ_6 on $\pi_1(T) \otimes \mathbb{Q}_p$. This implies that the self-maps of $BSU(n)_p$ are Adams ψ^a -maps.

We point out that Corollary 8 can be view as a generalization of a result of Hubbuck (see [7] Theorem 1.1.) The example is a special case of the result of Hubbuck. However, it concerns maps between p-completed spaces $BSU(n)_p$ while Hubbuck is dealing with classical spaces BG.

Let us notice that a homomorphism $\tilde{f}_*: \pi_1(T) \otimes Z_p \longrightarrow \pi_1(T') \otimes Z_p$ from Theorem 7 induced by \tilde{f} is admissible. An equivalence class of \tilde{f}_* in Ahom_{Z_p}(T,T') we shall denote by $\chi(f)$.

THEOREM 9. Let f and g be two maps from X to X'. Then the following conditions are equivalent:

a) $\chi(f) = \chi(g)$ in Ahom_{Z_p}(T,T'); b) $K^{0}(f,Z_{p}) = K^{0}(g,Z_{p})$; c) $H^{*}(f,Q_{p}) = H^{*}(g,Q_{p})$.

;

f

1. THE LANNES T FUNCTOR FOR SPACES WHOSE COHOMOLOGY ARE FINITELY GENERATED POLYNOMIAL ALGEBRAS

In this section we shall compute the cohomology of the mapping space map(BV,X)and its connected component $map_f(BV,X)$ where V is an elementary abelian p-group and X is a p-complete space whose cohomology is a finitely generated polynomial algebra over F_p . We assume that X has a maximal torus T and a Weyl group W.

Let us suppose that

$$\mathrm{H}^{*}(\mathrm{X},\mathrm{F}_{p})=\mathrm{H}^{*}(\mathrm{BT},\mathrm{F}_{p})^{\mathrm{W}}$$

The map f: $BV \to X$ induces a map $f^*: H^*(X,F_p) \to H^*(BV,F_p)$. It follows from [2] Proposition 1.10 and the fact that $H^*(X,F_p)$ is concentrated in even degrees that there is $g^*: H^*(BT,F_p) \to H^*(BV,F_p)$ such that $f^* = g^* \circ i^*$ where $i^*: H^*(X,F_p) \to H^*(BT,F_p)$ is the inclusion induced by a structure map $i: BT \to X$.

We recall that for a torus T, the solutions in T of $t^p = 1$ make up a subgroup T(1). The map g^* is induced by a homomorphism $\varphi: V \longrightarrow T(1)$. This follows from [8] Theorem 0.4. Let $\Lambda_f: V \otimes T(1)^* \longrightarrow F_p$ be an adjoint map of φ . The group W acts on $Hom(V \otimes T(1)^*, F_p)$ through its action on $T(1)^*$. Let W_f be the isotropy subgroup of Λ_f .

PROPOSITION 1.1. Let X be a p-complete space whose cohomology with F_p -coefficients is a finitely generated polynomial algebra over F_p concentrated in even degrees. We assume that X has a maximal torus T and a Weyl group W. Let V be an elementary abelian p-group and let $f: BV \longrightarrow X$ be any map. Then we have an isomorphism

$$\mathbf{H}^{*}(\operatorname{map}_{f}(\mathbf{BV},\mathbf{X});\mathbf{F}_{p})=\mathbf{P}^{\mathbf{W}_{f}}$$

where $P = H^*(BT,F_p)$.

PROOF: For a vector space U over F_p let us denote by P(U) the polynomial algebra on U, by $\Lambda(U)$ the exterior algebra on U and by A(U) the symmetric algebra on U divided by the ideal generated by all polynomials $x^p - x$ for $x \in U$. The polynomial $x^p - x$ splits completely over F_p . Hence we have an isomorphism of F_p -algebras $A(U) = \bigoplus_{a \in U} F_p$. We point out that A(U) is concentrated in degree actions.

Let us notice that we have the following natural identifications

$$P = H^*(BT,F_p) = P(T(1)^*)$$

and

; •••.

$$\mathrm{H}^{*}(\mathrm{BV},\mathrm{F}_{\mathrm{p}})=\mathrm{P}(\mathrm{V}^{*})\otimes\Lambda(\beta^{-1}\mathrm{V}^{*}).$$

It follows from Corollary 2 in [4] that for any unstable A_p -algebra M and any A_p -algebra homomorphism $f: P((Z/p)^*) \longrightarrow M \otimes H^*(BZ/p,F_p)$ we have

$$f(t^*) = m_{t*} \otimes 1 + m_{v*} \otimes v^*.$$

This implies that we have a natural isomorphism

$$Φ_M$$
 : Hom_{unA_p}(P(T(1)^{*}); M ⊗ H^{*}(BV)) ≈
Hom_{unA_p}(A(V ⊗ T(1)^{*}) ⊗ P(T(1)^{*});M).

where $\operatorname{Hom}_{unA_p}(,)$ is in the category of unstable A_p -algebras. If $f(t^*) =$

$$\mathbf{m}_{\mathbf{t}*} \otimes 1 + \sum_{\mathbf{v}*\in \mathbf{V}*} \mathbf{m}_{\mathbf{v}*} \otimes \mathbf{v}^* \text{ then } \Phi_{\mathbf{M}}(\mathbf{f})([\mathbf{v} \otimes \mathbf{t}^*] \otimes 1) = \sum_{\mathbf{v}*\in \mathbf{V}*} \mathbf{m}_{\mathbf{v}*} \cdot \mathbf{v}^*(\mathbf{v})$$

and $\Phi_{\mathbf{M}}(\mathbf{f})(1 \otimes \mathbf{t}^*) = \mathbf{m}_{\mathbf{t}*}$.

Hence it follows that

(*)
$$T_{V}(P) = A(V \otimes T(1)^{*}) \otimes P.$$

If $M = F_p$ then we have an isomorphism

 ϕ_{F_p} : Hom(P(T(1)^{*}), H^{*}(BV)) \approx Hom(A(V \otimes T(1)^{*}), F_p). The group W acts on P(T(1)^{*}) through its action on T(1)^{*} hence W acts also on A(V \otimes T(1)^{*}) through the action on T(1)^{*}. The isomorphism (*) implies that

(**)
$$T_{V}(P^{W}) = (A(V \otimes T(1)^{*}) \otimes P)^{W}$$

(see [4] Proposition 3).

Let $f^*: H^*(X, F_p) \longrightarrow H^*(BV, F_p)$ be the map induced by f on cohomology. Let $\lambda: T_V(H^*(X, F_p)) \longrightarrow F_p$ be the adjoint map of f^* and let $\overline{\lambda}: T_V(P) \longrightarrow F_p$ be the adjoint map of g^* . The restriction of $\overline{\lambda}$ to $V \otimes T(1)^*$ is equal to Λ_f

It follows from [5] 2.3 Theorem and the equality (**) that

$$H^{*}(\operatorname{map}_{f}(BV,X),F_{p}) \approx T_{V}(H^{*}(X,F_{p})) \otimes F_{p} \approx (A \otimes P)^{W} \bigotimes_{A^{W}}^{\otimes} F_{p}$$

where $A = A(V \otimes T(1)^*)$.

If $V^* \otimes T(1) = \coprod W/W'$, as a W-set then $A \approx \otimes F_p[W/W']$ as a W-module. For any W' C W, $F_p[W/W']^W \approx F_p$. The maps $\overline{\lambda}$ and λ induce $\widetilde{\lambda} : A \longrightarrow F_p$ and $\tilde{\lambda}: A^W = \bigoplus F_p \longrightarrow F_p$. The algebra homomorphism $\tilde{\lambda}$ is the identity on one's of F_p 's and it is zero on all others. The fact that $\tilde{\lambda}$ restricts to Λ_f on $V \otimes T(1)^*$ implies that $\tilde{\lambda}$ is the identity on $F_p[W/W_f]^W$. Hence we have the following isomorphisms

$$(\mathbf{A} \otimes \mathbf{P})^{\mathbf{W}} \underset{\mathbf{A}^{\mathbf{W}}}{\overset{\otimes}{=}} \mathbf{F}_{\mathbf{p}} \approx (\mathbf{F}_{\mathbf{p}}[\mathbf{W}/\mathbf{W}_{\mathbf{f}}] \otimes \mathbf{P})^{\mathbf{W}} \underset{\mathbf{F}_{\mathbf{p}}}{\overset{\otimes}{=}} \mathbf{F}_{\mathbf{p}} \approx \mathbf{P}^{\mathbf{W}_{\mathbf{f}}}. \qquad \Box$$

2. MAPS FROM BP TO X

:

; ``.

Let M be a finitely generated, free Z_p -module. Let W C $GL_{Z_p}(M)$ be a finite generalized reflection group. The action of W on M extends to the action of W on M $\otimes Q$. The lattice M in $M \otimes Q$ is invariant therefore W acts also on $M \otimes Q/_M$. Observe that $M \otimes Q/_M = T(\omega)$ for some torus T. From the action of W on $T(\omega)$ we can recover the original action of W on M if we take the induced action of W on $(H^2(BT(\omega);Z_p))^*$. Hence if $W \subset GL_{Z_p}(M)$ is a finite generalized reflection group then W can be realized as a subgroup of $Aut(T(\omega))$.

PROPOSITION 2.1. Let $W \subset GL_{Z_p}(M)$ be a finite generalized reflection-

tion group which we consider as a subgroup of $\operatorname{Aut}(T(\varpi))$. Let us assume that p does not divide the order of W. If P is a finite p-group then any map $f: BP \longrightarrow (B(T(\varpi)^{\times}W))_p$ is induced by a homomorphism $\varphi: P \longrightarrow T(\varpi)^{\times}W$.

We were informed that a similar result was also known to W. Dwyer.

This proposition is an analog of the theorem of Dwyer and Zabrodsky (see [6] 1.1. Theorem). The proof will follow closely the proof of the Dwyer and Zabrodsky theorem contained in [13], which depends very much on [9]. Let us set $G = T(\omega) \approx W$.

LEMMA 2.2. Let V = Z/p, let $\varphi: V \longrightarrow G$ be a homomorphism, let G_0 be the centralizer of im φ in G and let $\varphi_0: V \longrightarrow G_0$ be the map induced by φ . Then the map

$$\operatorname{map}_{B_{\varphi_0}}(BV,(BG_0)_p) \longrightarrow \operatorname{map}_{B_{\varphi}}(BV,(BG)_p)$$

is a homotopy equivalence.

PROOF: It follows from Proposition 1.1 that $H^*(map_{B\varphi}(BV,(BG)_p),F_p) \approx P^{W_0}$ where $P \approx H^*(BT,F_p)$ and $W_0 = G_0/T(\omega)$ is the isotropy subgroup of $\varphi: V \longrightarrow T(\omega)$. In the same way we get $H^*(map_{B\varphi_0}(BV,(BG_0)_p),F_p) = P^{W_0}$. Hence the map considered by us is a homotopy equivalence. \Box

LEMMA 2.3. Let P be a p-group, let Z/p = V be a subgroup of the center of P. Let $\varphi: V \longrightarrow G$ be a homomorphism, let G_0 be the centralizer of $\operatorname{im} \varphi$ in G and let $\varphi_0: V \longrightarrow G_0$ be the induced homomorphism. Let

$$[BP,(BG)_{p}](B\varphi) = \{f \in [BP,(BG)_{p}] : f_{|BV} \sim B\varphi\}$$

and let $[BP,(BG_0)_p](B\varphi_0)$ be defined in an analogous way. Then the inclusion map $i: G_0 \longrightarrow G$ induces a bijection

(*)
$$[BP,(BG_0)_p](B\varphi_0) \longrightarrow [BP,(BG)_p](B\varphi)$$
.

PROOF: We have a fibration $BV \longrightarrow BP \longrightarrow B(P/V)$. Let $BV \longrightarrow BV \longrightarrow E(P/V)$ be a fibration induced by $pr : E(P/V) \longrightarrow B(P/V)$. Then P/V acts on BV through maps homotopics to the identity and BV is a model for BV. It follows from Lemma 2.2 that the map

$$\operatorname{map}_{P/V}(E(P/V),\operatorname{map}_{B\varphi_0}(BV,(BG_0)_p) \longrightarrow \operatorname{map}_{P/V}(E(P/V),\operatorname{map}_{B\varphi}(BV,(BG)_p))$$

is a homotopy equivalence. The induced map on π_0 is the map (*). This finishes the proof.

LEMMA 2.4. (see [14] 1.5. Lemma) Let $\varphi: L \longrightarrow K$ be a simplicial map. Let $V_0^{\varphi}(L,X)$ be the subspace of the space map.(L,X) of pointed maps from L to X consisting of maps $f: L \longrightarrow X$ such that $f \longrightarrow *$ for $|\varphi^{-1}(k)|^{-1}(k)$ every $k \in K$. Let map_{*}($\varphi^{-1}(k),X)$ be the path component of the constant map in the space of pointed maps map.($\varphi^{-1}(k),X)$. Let us assume that for every $k \in K$, the space map_{*}($\varphi^{-1}(k),X)$ is weakly homotopy equivalence

$$\varphi^*: \operatorname{map.}(\mathrm{K},\mathrm{X}) \xrightarrow{\approx} \mathrm{V}_0^{\varphi}(\mathrm{L},\mathrm{X})$$

PROOF OF PROPOSITION 2.1: Let us assume that P = Z/p. It follows from [2] Proposition 1.10 that $f^*: H^*(BG, F_p) \longrightarrow H^*(BP, F_p)$ factors through $H^*(BT(\varpi), F_p)$. But any morphism $H^*(BT(\varpi), F_p) \longrightarrow H^*(BT, F_p)$ is of the form $B\varphi$ (see [8] Theorem 0.4). Hence f is induced by a homomorphism.

Let us suppose that any map $f: BP \longrightarrow (BG)_p$ is induced by a homomorphism if the order of P is less or equal to p^{n-1} .

Let the order of P be equal to p^n and let $f: BP \longrightarrow (BG)_p$ be a map. Let V = Z/p be contained in the center of P and let $i: V \longrightarrow P$ be the inclusion.

Assume that the composition

$$BV \xrightarrow{Bi} BP \xrightarrow{f} X$$

is null homotopic. We want to show that f is homotopic to $f_1 \circ Bpr$ where $pr: P \longrightarrow P/V$ is the natural homomorphism and $f_1: B(P/V) \longrightarrow X$ is a map. First we show that the space map_{*}(BV,X) is weakly contractible. This space is p-local because BV and X are p-local. Let map_{const}(BV,X) be the connected component containing a constant map of map (BV,X). It follows from Proposition 1.1 that

$$H^{*}(map_{const}(BV,X),F_{p}) = H^{*}(BT(\omega),F_{p})^{W}$$

The last group is of course $H^*(X,F_p)$. Hence the evaluation map $map_{const}(BV,X) \longrightarrow X$ is a weak homotopy equivalence and consequently the space $nap_*(BV,X)$ is weakly contractible. Lemma 2.4 implies that f is homotopic to $f_1 \circ Bpr$. By the inductive assumption f_1 is induced by a homomorphism.

Let us suppose that foi is induced by a homomorphism $\varphi: V \longrightarrow G$ and $\varphi(V) \neq 0$. Let G_0 be the centralizer of $\varphi(V)$ in G. It follows from Lemma 2.3 that up to homotopy there is a unique map $f_0: BP \longrightarrow (BG_0)_p$ such that

 $BP \xrightarrow{t_0} (BG_0)_p \longrightarrow (BG)_p$ is homotopic to f and f_0 restricted to BV is induced by φ . Let $\rho: G_0 \longrightarrow G_0/\varphi(V)$ be the natural projection. The composition

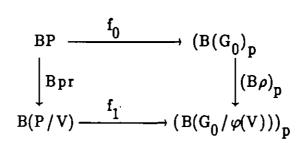
$$BV \longrightarrow BP \xrightarrow{f_0} (BG_0)_p \xrightarrow{(B\rho)_p} (BG_0/\varphi(V))_p$$

is null-homotopic hence $(B\rho)_p \circ f_0$ factors uniquely as

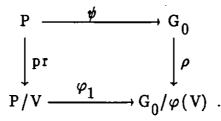
$$BP \xrightarrow{Bpr} B(P/V) \xrightarrow{f_1} B(G_0/\varphi(V))_p$$

This follows from the previous discussion.

One has the homotopy pullback



because $\varphi(V)$ is contained in the center of G_0 . By the inductive assumption f_1 is induced by a homomorphism $\varphi_1 : P/V \longrightarrow G_0/\varphi(V)$. We have a pullback of groups



After applying the functor $(B)_{D}$ we get a homotopy pullback

$$BP \xrightarrow{(B\psi)_{p}} (BG_{0})_{p}$$

$$\downarrow Bpr \qquad \qquad \downarrow (B\rho)_{p}$$

$$B(P/V) \xrightarrow{(B\varphi_{1})_{p}} B(G_{0}/\varphi(V))_{p}$$

The map f_0 is homotopic to $(B\psi)_p$ hence f is homotopic to $(B\rho)_p \circ (B\psi)_p$. \Box

COROLLARY 2.5. Let T' by any torus. Then any map $BT'(\varpi) \longrightarrow (BG)_p$ is induced by a homomorphism.

This follows directly from Proposition 2.1.

3. PROOFS

We shall need a result from [15].

PROPOSITION 3.1. (see [15] pages 1 and 8) Let $W \subset Aut(T(\varpi))$ be a finite generalized reflection group. Assume that p does not divide the order of W. Let X be a p-complete space such that there is an isomorphism

(*)
$$H^{*}(X,F_{p}) = H^{*}(BT(\omega),F_{p})^{W}$$

of A_p -algebras. Then there is a map $i: BT(\omega) \longrightarrow X$ which realizes the isomorphism (*). Moreover for any $w \in W, i \circ w$ is homotopic to i.

PROOF OF THEOREM 1:

It follows from Proposition 3.1 that we can assume that $X \approx (B(T(\omega) \stackrel{\sim}{\times} W))_p$ and $X' \simeq (B(T'(\omega) \stackrel{\sim}{\times} W'))_p$. It follows from Corollary 2.5 that $f \circ i$ is induced by a homomorphisms $\varphi: T(\omega) \longrightarrow T'(\omega)$. We set $\tilde{f} = (B\varphi)_p$.

The proof of the point a) is the same as the proof of Theorem 1.7 in [1]. The point b) follows from a). \Box

PROOF OF THEOREM 3:

Let $f,g: X \to X'$ be two maps such that $H^*(f, \mathbf{Q}_p) = H^*(g, \mathbf{Q}_p)$. Let $i: BT_p \to X$ be the map induced by an inclusion of a maximal torus. Proposition 3.1 and Corollary 2.5 imply that $f \circ i$ and $g \circ i$ are induced by two homomorphisms $\varphi, \psi: T(\varpi) \to T'(\varpi) \cong W'$. The Chern character $ch: K^0(BT'(\varpi), Z_p) \to H^*(BT'(\varpi), \mathbf{Q}_p)$ is injective for any torus T'. It is also injective for the space $B(T'(\varpi) \cong W')$. For a finite group π let $R(\pi)$ be its complex representation ring. The group $R(T(\varpi)) := \lim_{n \to \infty} R(T(n))$ is mapped injectively into $K^0(BT(\varpi), Z_p)$. Hence we have

$$\mathbf{R}(\varphi) = \mathbf{R}(\psi) : \mathbf{R}(\mathbf{T}'(\mathbf{\omega}) \stackrel{\sim}{\times} \mathbf{W}') \longrightarrow \mathbf{R}(\mathbf{T}(\mathbf{\omega})).$$

where $R(T', \omega) \stackrel{\sim}{\times} W) := \lim_{n \to \infty} R(T'(n) \stackrel{\sim}{\times} W').$

We must show that φ and ψ are conjugate homomorphisms. For each subgroup $S = Z/p^{\varpi}$ of $T(\varpi)$ the restrictions of φ and ψ to S are conjugate by some element of W. The fact that W is finite implies that φ and ψ are conjugate. Hence $f \circ i$ and $g \circ i$ are homotopic. It follows from [11] Theorem 1 that f and g are homotopic.

PROOF OF THEOREM 2:

We set $\chi(f) = \pi_1(f)$ where f is the map from Theorem 1. The injectivity of χ follows from Theorem 3. The surjectivity is obvious.

PROOF OF THEOREM 4:

The fact that ψ is injective follows from Theorem 3 and the injectivity of Chern character. The proof of surjectivity is the same as in Theorem 4 in [12]. \Box

PROOF OF THEOREM 5:

It follows from [15] (see Proposition 3.1 in this paper) that R is an essential surjection. Theorem 2 implies that the functor R is faithful and full. \Box

PROOF OF THEOREM 6:

This follows from the fact that any map from $BT(\omega)$ to $(BG)_p$ is induced by a homomorphism, what is an immediate consequence of [6] 1.1 Theorem.

PROOF OF THEOREM 7:

We would like to construct $f: (BT)_p \longrightarrow (BT')_p$ such that the following diagram

(*)
$$\begin{array}{cccc} X & & f & & X' \\ & & & & & \uparrow i' \\ & & & & & \uparrow i' \\ & & & & & \uparrow i' \\ & & & & & & (BT')_p \end{array}$$

is homotopy commutative where i and i' are structure maps. However, we do not know how to do it. So we shall proceed in the following way. It follows from [10] theorem 4.1. that there is $\Phi: K^0(BT')_p, Z_p) \longrightarrow K^0(BT)_p, Z_p)$ such that $\Phi \circ i'^* = i^* \circ f^*$. Let us notice that Φ commutes with operations in $K^0(, Z_p)$ and augmentations (see [10] pages 326 and 327). It follows from [12] lemma 2.1 that there is $f: (BT)_p \longrightarrow (BT')_p$ such that $f^* = \Phi$. Using Chern character and passing to cohomology with Φ_p -coefficients we get that the diagram (*) commutes after applying $H^*(, \Phi_p)$. Point a) follows in the same way as Theorem 1.7 in [1]. Point b) follows from a).

PROOF OF COROLLARY 8: If the natural representation of W on $\pi_1(T) \otimes \mathbb{Q}_p$ is irreducible then $\pi_1(f): \pi_2((BT)_p) \longrightarrow \pi_2((BT)_p)$ is an isomorphism or a trivial map. The correspondence $w \longrightarrow w'$ from Theorem 7 point b) is then an isomorphism. The rest is obvious.

PROOF OF THEOREM 9:

The proof is the same as the proof of Theorem 1.7 in [12].

Whilst writing this paper we were partially supported by Centre de Recerca Mathemàtica, Bellaterra (Barcelona).

REFERENCES

- 1. J.F. Adams, Z. Muhmud, Maps between classifying spaces, Inventions Math. 35 (1976), 1-41.
- 2. J.F. Adams, C.W. Wilkerson, Finite H-spaces and algebras over the Steenrod algebra, Annals of Mathematics 111 (1980), 95-143.
- 3. J.F. Adams, Z. Wojtkowiak, Maps between p-completed classifying spaces. Proceedings of the Royal Society of Edingburgh, 112 A (1989), 231-235.
- 4. J. Aguadé, Computing Lannes T functor. Israel Journal of Mathematics, Vol. 62, No. 3, 1988, 1-8.

- 5. W.G. Dwyer, H.R. Miller, C.W. Wilkerson, The Homotopic Uniqueness of BS³, in "Algebraic Topology Barcelona 1986," L.N. in Math. 1298, Springer-Verlag, 1987, pp. 90-105.
- 6. W.G. Dwyer, A. Zabrodsky, Maps between classifying spaces, in "Algebraic Topology Barcelona 1986," L.N. in Math. 1298, Springer-Verlag, 1987, pp. 106-119.
- 7. J.R. Hubbuck, Mapping degree for classifying spaces I, Quart. J. Math. Oxford (2) 25 (1974), 113-133.
- 8. J. Lannes, Sur la cohomologie modulo p des p-groupes abeliens elementaires, in "Homotopy Theory" Proc. of the Durham Symposium 1985, Cambridge University Press pp. 97-116.
- 9. H. Miller, The Sullivan conjecture on maps from classifying spaces, Annals of Math. 120 (1984), 39-87.
- 10. C. Wilkerson, Lambda-Rings, Binomial Domains and Vector Bundles over CP(ω), Communications in Algebra 10 (3) (1982), 311-328.
- 11. Z. Wojtkowiak, Maps from $B\pi$ into X, Quart. J. Math. Oxford (2) 39 (1988), 117-127.
- 12. Z. Wojtkowiak, Maps between p-completed classifying spaces II.
- 13. A. Zabrodsky, Maps between classifying spaces, p-groups and tori.
- 14 A. Zabrodsky, Maps between classifying spaces.
- 15. W.G. Dwyer, H.R. Miller, C.W. Wilkerson, Talk given by C.W. Wilkerson in the conference Algebraic Topology Barcelona 1986 and notes distributed by him.

Universitat Autònoma de Barcelona Departament de Matèmatiques 08193 Bellaterra (Barcelona) Spain Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 Federal Republic of Germany