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MAPS BETWEEN SPACES WHOSE COHOMOLOGY

ARE FINITELY GENERATED

POLYNOMaALALGEBRAS

Zdzislaw Wojtkowiak

Abstract. We classified homotopy classes of maps between p-completed spaces whose

cohomology are finitely generated polynomial algebras with Weyl groups of orders

prime to p.

O. INTRODUCTION

The aim of this paper is to apply the program from [1] to study maps between spaces

whose cohomology with Fp~oefficients are finitely generated polynomial algebras

concentrated in even degrees. The starting point was an attempt to generalize one

result of Hubbuck (see [7] Theorem 1.1.). The plan of work will follow closely that of

[3] and [12].

Let X be aspace whose cohomology with F ~oefficients is a finitely generated
- p

polynomial algebra concentrated in even degrees. Let T be a torus. For a torus T,
n

the solutions in T of tP = 1 make up a subgroup T(n); let T(m) = UT(n). Let
n

W ( Aut(T(m)) be a finite subgronp. Then W acts on a classifying space BT(CD)

and therefore also on H*(BT,F ).
P

We say that X has a. maximal torus T and a Weyl group W if there is a. map

i : BT ---t X which satisfies

* * WH (X,Fp) = H (BT(m),Fp) .

We shall call i: BT ---t X a. structure map far X.
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We assume throughout that X,X I are p-completed spaces, whose cohomology with

F -eoefficients are finitely generated polynomial algebras concentrated in even de-
p

grees. We assume that X and X' have maximal tori and Weyl groups; T,T ' are

their maximal tori, i : BT -+ X and' i I : BT ' -+ X' are strocture maps and W

and W I are their Weyl groups.· We shall denote by Yp the p-eompletion cf Y.

Let us observe that i: BT~ X induces a unique map, which we denote also by

i : (BT)p --+ X because X is p-complete.

Now we shall state our main results.

THE01E61. Assume that p does not divide the orders 0/ Wand W / .
Then for anll map f: X -+ X I there is a map 1': (BT)p -+ (BT/)p such

that the diagram

fX -----t

\ i

(BT)p----t

'commutes up to homotopy. Koreover we have:

a) if l' I : (BT)p ---+ (BT/)p is such tha t i 0 f is homo top i c to l' I 0 i I

then there is w E W ' such that W 0 l' I is homotopic to 1',
b) for any w E W there iso w' EW ' such that l' 0 w is homotopic to

w' 0 1'.

The group W acts on T(m), hence W acta also on '"2((BT(m))p) = 7r1(T) ~ Zp'

and consequently on 7r1(T) ~ R for any Zp-module R.

DEFINITION 1. Let R be a Zp-algebra. Fe say that a homomorphism of

R-modules
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is admissible if for any w E W there is w' EW' such tkat,
tp 0 W = W 0 tp.

Ye say that two admissibl~ maps tp and ~ from ~1(T)8R to

1'1(T') GD Rare equiva len t i/ there is w EW' such tha t w 0 tp = t/J.

It ia clear that the relation defined above ia an equivalence relation on the set of ad­

missible mapa from ~l(T) ~ R to r 1(T') GD R. ·We shall denote by AhomR(T,T')

the set of equivalence classes of adnlissib1e maps from r 1(T) ~ R to r 1(T ~) ~ R.

Let us notice that the map if
1
(l) induced by l' from Theorem 1 on fundamental

groups is admissible for R = Z . This map ia unique up to the action of W', so any
p

map f: X~ X' determinea uniqudy an equivalence dass of if1(1) in

AhomZ (T,T') which we shall deuote by X(f)·
P

T8EOlE62. Let us assume that P does not divide the orders 0/ W

and W'. Then the natural map

X : [XIX']~ AhomZ (T,T')
p

is biiective.

For any space X we set

where Glp ia a field of P-8,dic numht~r8.

T8E01EJ/3. Let us assume th"t P does not divide the orders 0/ W

and W'. Then the natural map
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is iniective.

We denote by KO( ,R) the oth-term of complex K-theory with R--eoefficients. Let

tJ
R

be the set of operations in KO( ,R). The functor KO( ,R) ia equipped with the

natural augmentation KO( ,R) --+ R. Let HomO (KO(X' ,R),KO(X,R)) be the set
R '

of R-algebra homomorphisms which commute with the action of tJR and augmen-

tations.

THE01EJl4. I/ P does not divides the orders 0/ Wand W', then
the na tura l map

,: [X,X'] -+ Homt) (KO(X' ,Z ),KO(X,Z ))
Z P P

P
is biiective.

The reault from [15] about the homotopy uniqueness of classifying spaces and

Theorem 2 suggest that the homotopy category of spaces whose cohomology are fini­

tely generated polynomial algebras over Fp should be eqnivalent to some algebraic

category. Below we make this hope more precise in the special case considered in this

paper. Hut first we give adefinition.

Let V be a vector space or a free Zp-module. One says that an endomorphism s of

V is a generalized reflection if id -5 has rank 1. A group W (GL(V) is a genera­

lized reflection group if it ia generated by generalized reflections.

Let M be a finitely generated, free Zp-module and let W (GLZ (M) be a· finite
p

generalized reflection group. We shall view the indusion W (GLZ (M) as a repre­
p

sentation p: W --+ GLZ (M).
P
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We shall define a category P Refp in the following way. The objects of the category

p Re{ are representations p: W -+ GLZ (M) described above such that p does
p p

not divide the order of W. It rests to define morphisms in tbis category. If

8 : W -+ GL(M) and 0': W' -+ GL(M') are two objects of PRefp' we say that

a homomorphism of Zp-modules f: M -+ M' is admissible if for each w EW

ihere is w' EW' such that f 0 w = w' 0 f. We 8ay thai two admissible homomor­

phisms f and g from M .to M' are equivalent if there is w EW' such that

f = w' .0 g. We shall denote by Hom( 0,0') the set of equivalence classes of a.d­

missible homomorphisms from M to M'. The set Hom( 0, 0') is the set of mor­

phisms from (J to 0' in the category, PRef . The category PRe! is equippedp p

with the product defined in the following way:

(0: W -+ GL(M)) EB (0' jW' -+ GL(M')) = om 0' : W )( W' -+ GL(M EB M').

The product of morphisms ia defined in the obvioua way.

We denote by HPolp the category whose objects are p-<ompleted spaces X such

that their cohomology with Fp--<:oefficients. are finitely generated polynomial alge­

bras. We assume further that any X in HPolp has a maximal torus and a Weyl

group and that p does not divide the order of the Weyl group of X. Morphisms in

H Potp are homotopy classes of maps. The category H Potp also has products define

in an obvious way.

T8EOlEl/5. There is an equivalence 0/ categories

R : PRef -+ HPolp p

wi th products.

H we drop out the assumption that p does not divide the orders of W and W' we

get weaker results.
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TBE01E66. In Theorems 1,2,3 and 4 we can drop out the assumption "p

does not divide the order 0/ W' n i/ X' = (BG)p' where G is a

connected, compact Lie gro'Up.

TBEOlE6 7. For anll f: X --+ X' there is a map '1': (BT)p --t (BT')p such

that the diagrams

'1'*

and

are commutative.

H*(X' '~p) _r_......,
1i I *
H*«BT' )p'~p)

a) I/ l' : (BT)p --+ (BT')p is such tha t i' * 0 r* = '1" * 0 i* then there

is w EW' such that w 0 '1" is homotopic to 1.
b) For any w EW there is w' EW' such that 1 0 w is homotopic to
w' 01.

C010LLA1Y 8. Let us assume that the natural representation of W

on 1"1(T)S~p is irreducible. Then there is a finite number 0/

sel/-maps 11'... ,In 0/ X such that for anll f: X --+ X there is k for

whi eh folk is an Adams ,a-map i. e. the map induced by folk on

H2i(X,~) is a multiplication bll ai . The number n is smaller orp
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equal to a number 0/ elements of Aut(W)/Inn(W) which preserve the

natural representation of W on r}(T). ~p'

Examp l e. (see also [3])

Let X = BSU(n)p' The Veyl group of SU(n) is En. If n f 6 then

Aut E = Inn En and for n = 6 the outer automorphism does not pre­

serve the natural repr~sentationof E6 on rl(T).~p' This implies

that the self-maps 0/ BSU(n) are Adams jla-maps.
. p,

We point out that Corollary 8 can be view as a generalization of a result of Hubbuck

(see [7] Theorem 1.1.) The example is a special case of the result of Hubbuck. How­

ever, it concerns maps between p-completed spaces BSU(n)p while Hubbuck is deal-

ing with classical spaces HG.

Let us notice that a homomorphism 1* : ~1(T) 8 Zp -+ r 1(T ') 8 Zp !rom

Theorem 7 induced by 1 is admissible. An equivalence dass of l'* in

AhomZ (T,T / ) we shall denote by X(f).
p

T8EOlEJ/9. Let fand g be two maps /rom X to X'. Then the follow­
ing conditions are equivalent:

a) X(f) = X(g) in AhomZ (T,T / );
p

b) KO(f,Zp) = KO(g,Zp) ;

* *c) H (f,~ ) = H (g,Q ).p p
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1. THE LANNES T FUNCTOR FOR SPACES WHOSE COHOMOLOGY ARE

F1NITELY GENERATED POLYNOM1AL ALGEBRAS

In tbis section we shall compute the· cohomology of the mapping space map(BV,X)

and its connected component map~BV,X) where V is an elementary abelian

p-group and X is a JH:omplete space whose cohomology is a finitely generated poly­

nomial algebra over Fp' We assume that X has a maximal torus T and a Weyl

group W.

Let U8 suppose that

* * WH (X,Fp) = H (BT,Fp) .

The map f: BV -+ X induces a map t: H*(X,Fp) -+ H*(BV,Fp)' 1t follows from

[2] Proposition 1.10 and the fact that H*(X,Fp) is concentrated in even degrees that

there is g* : H*(BT,Fp) -+ H*(BV,Fp) such that r* = g* 0 i* where

i* : H*(X,F ) -+ H*(BT,F ) ia the inclusion induced by a structure mapp p

i: BT -+ X.

We recall that for a torus T, the solutions in T of t P = 1 make up a subgroup

T(I). The map g* ia induced by a homomorphism 'P: V -+ T(l). This fellows from

[8] Theorem 0.4. Let Af : V e T(l)* -+ Fp be an adjoint map of "p. The group W

a.cts on Hom(V e T(1)*,Fp) through its action on T(1)*. Let W f be the isotropy

subgroup of Af

PROPOSITION 1.1. Let X be a p-complete space whose cohomology with

Fp-coe//icients is a /initely generated polynomial algebra ouer

Fp concen tra ted in even degrees. Ye assume tha t X has a maxima l

torus T and a Yeyl group W. Let V be an e lementary abe l ian
p-group and let f: BV -+ X be any map. Then we have an isomorphism
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* Wf
H (map~BV,X);Fp) = P

*where P = H (BT,F ).
P

PROOF: For a vector space U over Fp let us denote by P(U) the polynomial

algebra on U, by A(U) the exterior algebra on U and by A(U) the symmetrie

algebra on U divided by the ideal generated by all polynomials xP - x for x E U.

The polynomial xP - x 8plit~ completely over F . Hence we have an isomorphism of
, p

Fp-algebras A(U) = EI *Fp. We point out that A(U) ia concentrated in degree
aEU

zero.

Let us notice that we have the following natural identifications

P = H*(BT,F ) = P(T(I)*)p

and

It follows from Corollary 2 in [4] that for· any unstable Ap-algebra M and any

Ap-algebra homomorphism f: P((Z/p)*) --+ M ~ H*(BZ/p,Fp) we have

This implies that we have a natural i80morphism

* *9M : Hom A (P(T(l) )j M ~ H (BV)) ~
un p

Hom A (A(V ~ T(l)*) 9 P(T(l)*)jM).
unp

*where HomunA ( ,) is in the category of unstable Ap-algebras. If f(t ) =
p
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Hence it follows that

~V(P) = A(V e T(l)*) e P.

H M = FP then we have an isomorphism

* * *;F : Hom(P(T(l) ), H (BV)) ~ Hom(A(V 8 T(l) ),F ). The group W acts on
p p

P(T(l)*) t~ough its action on T(l)* hence W acts also on A(V ~ T(l)*)

through the action on T(l)*. The isomorphism (*) implies that

(see [4] Proposition 3).

Let r*: H*(X,Fp) --t H*(BV,Fp) be the -map induced by f on cohomology. Let

.l : TV(H*(X,Fp)) --+ Fp be the adjoint map of r* and let l: TV (P) --t FP be

the adjoint map of g*. The restrietion of I to V e T(l)* ia equal to Af

It follows from [5] 2.3 Theorem and the equallty (**) that

*where A = A(V e T(l) ).

If V* e T(l) = ilW/W/ , as a W-fiet then A ~ GD Fp[W/W/] as a W-madule.

Far any W/ CW, Fp[WlW/lW =Fp' The mapa l and ,\ induce 'X: A ---i Fp
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and ~: AW = S Fp~ Fp. The algebra homomorphism ~ is the identity on one's

of Fp'a and it ia zero on all others. The fact that 'X restricta to Af on V e T(l)*

implies that ~ is the identity on FplW/WpW. Hence we have the following isomor­

phisms

D

2. MAPS FROM BP TO X

Let M be a finitely generated, free Zp-module. Let W C GLZ (M) be a finite gene-
p

ralized reflection group. The action of .W on M extends to the action of W on

M ~ ~ . The lattice M in M ~ ~ is invariant therefore W acts also on M ~ ~/M .

Observe that M ~ fJ./ M = T(CD) for some torus T. From the action of W on T(CD)

we can recover the original action of W on M if we take the induced action of W

on (H2(BT(m)jZ))*. Hence if W ( GLZ (M) ia a finite generalized reflection
p p

group then W can be realized as a subgroup of Aut(T{m)) .

PROPOSITION 2.1. Let W C GLZ (M) be a finite general ized refl ec-
p

tion group which we consider as a subgroup of Aut{T{m)) . Let us as­

sume that p does not divide the order of W. If P is a finite

p-group then anu map f: BP --+ (B{T(CD)~W))p is induced by a homomor-

phism r.p: P --+ T{m)~W .

We were informed that a similar result was also known to W. Dwyer.

This proposition is an analog of the theorem of Dwyer and Zabrodsky (see [6] LI.

Theorem). The proof will follow closely the proof of the Dwyer and Zahrodsky theo­

rem contained in [13], which depends very much on [9].

Let us set G = T(m) ~ W .
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LEJl6.4 2.2 .. Let V = Z/p , let f{J: V~ G be a homomorphism, let GO be

the central izer 0/ imr,o in G and let f{JO: V~ GO be the map in­

duced bJl f{J. Then the map

is a homotoP1l equivalence.

PROOF: It follows !rom Proposition 1.1 that

* Wo *H (maPB~(BV,(BG)p),Fp) ~ P where P ~ H (BT,Fp) and Wo = GO/T(m) is

the isotropy subgroup of cp: V~ T(m) . In the same way we get
W

H*(maPB (BV,(BGo) ),F ) = pO. Rence the map considered by us is a homo-
~O P P

topy equivalence. 0

LEJlJl1 2.3. Le t P be a p-group, let Z/p = V be a subgroup 0/ the

center 0/ P. Let cp: V~ G be a homomorphism, let Go be the

central izer 0/ im cp in G and let CPO: V --+ GO be the induced

homomorphism .. Let

[BP,(BG)p] (Bcp) = {f E [BP,(BG)p] : f lBV f'tJ B~}

and let [BP,(BGo)p] (BCPO) be de/ined in an analogous wa1l .. Then the

inclusion map i: GO~ Ginduces a bijection

PROOF: We have a fibration BV -+ BP -+ B(PIV) . Let

BV --+ BV --+ E(P IV) be a fibration induced by pr: E(PIV) -+ B(PIV) . Then

PIV acts on BV through maps homotopics to the identity and BV ia a model for

BV. It follows !rom Lemma 2.2 that the map
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is a homotopy equivalence. The induced map on r 0 ia the map (*). This finishes the

pIOO!. [:J

LE661 2.4. (see [14] 1.5. Lemma) Le t cp: L -+ K be a s imp Zi ci al map. Le t

"b(L,X) be the subspace, 0/ the space map.(L,X) 0/ pointed maps /rom

L to X consisting 0/ maps f: L -+ X such that f 1 N * for, Icp- (k)

every k E K . Let map*(cp-1(k),X) be the path component 0/ the cons-

tant map in the space 0/ po'inted maps map.(cp-l(k),X). Let us assume that
for every k EK, the space map*(cp-1(k),X) is weakly homotoP1I equiva-

Zent to *. Then cp ind-uces a weak homotoP1I eq-uivaZence

cp* : map.(K,X)~ "b(L,X) .

PROOF OF PROPOSITION 2.1: Let us aBSUIDe that P = Z/p . It follows !rom [2]

Proposition 1.10 that r*: H*(BG,Fp) ----t H.*(BP ,Fp) factoIs thIOUgh

H*(BT(m),F ). But any morphism H*(BT(m),F) -+ H*(BT,F) ia of the formp p p

B~ (see [8] Theorem 0.4). Hence f is induced by a homomorphism.

Let us suppose that any map f: HP -+ (BG)p is induced by a homomorphism if the

order of P is less er equal to pn-l.

Let the oIder of P be equal to pn and let f: BP -+ (BG)p be a map. Let

V = Z/p be contained in the center of P and let i: V -+ P be the inclusion.

Assume that the compcsition

Bi fBV ----+1 HP ---+1 X
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is null homotopic. We want to show that f is homotopic to f1 0 Bpr where

pr : P --+ PIv is the natural homomorphism and f1 : B(PIv) --+ X is a map. First

we show that the space map*(BV,X) is weakly contractible. This space is p-local

because BV and X are p-local. Let maPconst(BV,X) be the connected component

containing a constant map of map (BV,X). U follows from Proposition 1.1 that

* * WH (maPconst(BV,X),Fp) = H (BT(m),Fp) .

The last gronp is ef course H*(X,Fp) . Hence the evaluation map

maPconst(BV,X}----+ X is a weak homotopy equivalence and consequently the space

nap*(BV,X) ia weakly contractible. Lemma 2.4 implies that f ia homotopic to

f1 0 Bpr . By the inductive assumption f1 is induced by a homomorphism.

Let ua 8uppose that {ai ia induced by a homomorphism f{J: V --+ G and cp(V) f O.

Let GO be t~e centrallzer ef <P(V) in G. It fellows from Lemma 2.3 that up to

hemotopy there is a unique map fO: HP --+ (B90)p such that

f
BP 0 ) (BGo)p --+ (BG)p is homotopic to f and fO restricted to BV ia in-

duced by cp. Let p: GO --+ Go/cp(V) be the natural projection. The composition

fO (Bp)
BV --+ BP ---tl (BGo)p P

ia null-homotopic hence (Bp)p 0 fO factors uniquely as

BP B fl
pI I B(P/V) ---tl B(Golcp(V))p .

This follows from the previous discussion.

One haB the homotopy pullback
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because tp(V) is contained in the center oC GO . By the inductive assumption f1 is

induced by a homomorphism .!Pl : P IV ---t Go/CP(V) . We have a pullback of groups

Mter applying the functor (B)p we get a homotopy pullback

The map Co is homotopic to (B16)p hence f is homotopic to (Bp)po(B,)p' 0

ColOLL'" Y 2.5. Let T' by any torus. Then any map BT I ((])) -+ (BG)p i s

induced by a homomorphism.

This follows directly from Proposition 2.1.
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3. PROOFS

We shall need a result from [15].

PIOPOSITION3.1. (see [15] pages 1 and 8) Let W CAut(T(CD)) be a finite

generalized reflection group. Assume that p does not divide the

order of W. Let X be a p-complete space such that there is an iso­
morphism

* *' WH (X,Fp) = H (BT(CD),Fp)

of Ap-algebras. Then there is a map i: BT(CD) --t X which real izes

the isomorphism (*). Jloreover fOT any w E W, i 0 w is homotopic to i.

PROOF OF THEOREM 1:

It follows from Proposition 3.1 that we can assume that X:= (B(T(oo) '>t W))p and

X I ~ (B(T I (00) xW I ))p' It follows from Corollary 2.5 that f 0 i is induced by a

homomorphis~s rp: T(oo) --t TI (CD). We set 1 = (Brp)p'

The prcof of the point a) ia the same as the prcof of Theorem 1.7 in [1]. The point b)

follows from a). 0

PROOF OF THEOREM 3:

Let f,g: X --t X' be two maps such that H*(f,~ ) = H*(g,~ ). Let i: BT --t X
p p P

be the map indueed by an indusion of a maximal torus. Proposition 3.1 and Corollary
2.5 imply that f 0 i "and goi are indueed by two homomorphisms

rp, fJ : T(CD) --t T' (00) ~ W I • The ehern eharaeter

eh : I<;°(BT ' (m),Zp) --t H*(BT ' (m),flp) is injeetive for any torus T'. It ia also in-

jective for the space B(T ' (CD) XW / ). For a finite group 1f let R(~) be its complex

representation ring. The group R(T(CD)) := l~m R(T(n)) is mapped injeetively into
n

KO(BT(m),Zp). Rence we have

R( rp) = R(~) : R(T ' (00) XW / ) --+ R(T(CD)).
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where R(T' ,(0) ~ W) := li-m R(T' (n) ~ W').
n

We must show that 'IJ and f/J are .conjugate homomorphisms. For each subgroup

S = Z/poo of T(m) the restrietions of rp and ,; to S are conjugate by some ele­

ment of W. The fact that W is finite implies that rp and ,; are conjugate. Hence

f 0 i· and goi are homotopic. 1t follows from [11] Theorem 1 that f and g are

homotopic. 0

PROOF OF THEOREM 2:

We set x(f) = I"1(l) where '7 is the map !rom Theorem 1. The injectivity of X

follows from Theorem 3. The surje~tivityis obvious.

PROOF OF THEOREM 4:

The fact that , ia injective follows !rom Theorem 3 and the injectivity of ehern

character. The proof of surjectivity is the same as in Theorem 4 in [12]. 0

PROOF OF THEOREM 5:

It follows !rom [15] (see Proposition 3.1 in tbis paper) that R is an essential surjec­

tion. Theorem 2 implies that the functor R ia faithful and full. Cl

PROOF OF THEOREM 6:

This follows !rom the fact that any map !rom BT(m) to (BG)p ia induced by a

homomorphism, what is an immediate consequence of [6] 1.1 Theorem.

PROOF OF THEOREM 7:

We would like to construct 1: (BT)p --+ (BT')p such that the following diagram
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is homotopy commutative where i and i I are structure maps. Howevert we do not

know how to do it. So we shall proceed in the following way. It follows !rom [10]

theorem 4.1. that there is t: KO(BT/)p'Zp) --+ KO(BT)p'Zp) such that

t 0 i ,* = i* 0 r*. Let us notice that .t commutes with operations in KO( ,Zp) and

augmentatioDB (see [10] pages 326 and 327). It follows !rom [12] lemma 2.1 that there

is 1: (BT)p --+ (BT/)p such that 1* = t. Using Chern character and passing to

cohomology with ~p-<:oeffi~ents we get that the diagram (*) commutes after

applying H*( ,Q ). Point a) follows in the same way as Theorem 1.7 in [1]. Point b)
. p .

follows !rom a). 0

PROOF OF COROLLARY 8: H the natural representation of W on 'K1(T) S ~p ia

irreducible then ""1(1'): 'K2«BT)p)~ 'K2«BT)p) is an iaomorphiaID or a trivial

map. The correspondence w --+ w I !rom Theorem 7 point b) is then an isomor-

phism. The rest ia obvious. 0

PROOF OF THEOREM 9:

The prcof is the same as the proof of Theorem 1.7 in [12]. o

Whilst writing this paper we were partially supported by Centre de Recerca

Mathematica, Bellaterra (Barcelona).
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