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MAPS BETWEEN SPACES WHOSE COHOMOLOGY
ARE FINITELY GENERATED
POLYNOMIAL ALGEBRAS

Zdzistaw Wojtkowiak

Abstract. We classified homotopy classes of maps between p—completed spaces whose
cohomology are finitely generated polynomial algebras with Weyl groups of orders
prime to p. :

0. INTRODUCTION

The aim of this paper is to apply the program from [1} to study maps between spaces
whose cohomology with Fp—coefﬁcients are finitely generated polynomial algebras

concentrated in even degrees. The starting point was an attempt to generalize one
result of Hubbuck (see [7] Theorem 1.1.). The plan of work will follow closely that of
[3] and [12].

Let X be a space whose cohomology with Fp—coefﬁcients is a finitely generated
polynomial algebra concentrated in even degrees. Let T be a torus. For a torus T,

n
the solutions in T of tP =1 make up a subgroup T(n); let T(w) = U T(n). Let
n

W C Aut(T(w)) be a finite subgroup. Then W acts on a classifying space BT(o)

and therefore also on H*(BT,Fp).

We say that X has a maximal torus T and a Weyl group W if there is a map
i: BT — X which satisfies

w
H*(X,Fp) = H*(BT(x),F A

Wesshall call i : BT — X a structure map for X.
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We assume throughout that X,X’ are p—completed spaces, whose cohomology with
Fp—coefﬁcients are finitely generated polynomial algebras concentrated in even de-

grees. We assume that X and X’ have maximal tori and Weyl groups; T, T’ are
their maximal tori, i: BT — X and i’ : BT’ — X’ are structure maps and W

and W’ are their Weyl groups. We shall denote by Yp

Let us observe that i: BT — X induces a ﬁm’que map, which we denote also by
i: (B’I‘)p — X because X is p—complete.

the p—completion of Y.

Now we shall state our main results.

THEORENK 1. Assume that p does not divide the orders of W and W’'.
Then for any map {: X — X’ there is amap 1: (BT)p—-»(BT’)p such
that the diagram

(BT), _r (BT'),

commutes up to homotopy. Noreover we have:

a) if T’:(BT)p—a(BT’)p is such that iof is homotopic to 1’ oi’

then there is w € W’ such that wo ¥’ 4s homotopic to T,

b) for any w €W there is w' €W’ such that Tow ishomotopic to
14

w' ol

The group W acts on T(o), hence W acts also on 1r2((BT(m))p) =7(T)® Zp,

and consequently on #,(T) @R for any Zp—module R.

DEFINITION 1. Let R bea Zp—algebra. Ve say that a homomorphism of

R—modules
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Q. rl(T)@R—" Tl(T/) ®R

is admissible if for any w€W there is w' €W’ such that
pow=wogp
Ve say that two admissible maps ¢ and ¢ from = (T)@R to

xl(T’)@R are equivalent if there is wE€ W’ such that wo p=¢.

It is clear that the relation déﬁned above is an equivalence relation on the set of ad-
missible maps from #,(T)®R to 7;(T’)®R. We shall denote by Ahomp(T,T")

the set of equivalence classes of admissible maps from ~,(T)®R to rl(Tf )@ R.

Let us notice that the map FI(T) induced by ¥ from Theorem 1 on fundamental
groups is admissible for R = Zp. This map is unique up to the action of W’, so any
map f: X — X’ determines uniquely an equivalence class of rl('f) in

Ahom, (T,T’) which we shall denote by x(f).
p

THEOREK 2. Let us assume that D does not divide the orders of W
and W’. Then the natural map

s bijective.
For any space X we set

B¥(x,q,) = E(X,2,) ®Q,
where Qp is a field of p—adic numbers.

THEOREN 3. Let us assume that p does not divide the orders of W
and W’. Then the natural map
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¢:[XX'] — Hom(H*(X’ Q). H*(X,Qp))

18 injective.

We denote by KO( ,R) the Oth—term of complex K—theory with R—coefficients. Let

25 be the set of operations in KO( ,R). The functor KO( ,R) is equipped with the
natural augmentation KO( R) — R. Let Hom , (KO(X’ ,R),KO(X,R)) be the set
R \

of R—algebra homomorphismé which commute with the action of Oy and augmen-

tations.

THEOREK 4. If p does not divides the orders of W and W', then
the natural map

. ’ O/ 7 0
P
is bijective.

The result from [15] about the homotopy uniqueness of classifying spaces and
Theorem 2 suggest that the homotopy category of spaces whose cohomology are fini-
tely generated polynomial algebras over Fp should be equivalent to some algebraic

category. Below we make this hope more precise in the special case considered in this
paper. But first we give a definition.

Let V be a vector space or a free Z p—module. One says that an endomorphism s of

V is a generalized reflection if id —5 has rank 1. A group W C GL(V) is a genera-
lized reflection group if it is generated by generalized reflections.

Let M be a finitely generated, free Zp—module and let W C GL, (M) be a finite
p
generalized reflection group. We shall view the inclusion W C GL, (M) as a repre-
p
sentation p: W — GL, (M).
p
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We shall define a category P Refp in the following way. The objects of the category

P Refp are representations p: W — GL, (M) described above such that p does
P

not divide the order of W. It rests to define morphisms in this category. If

§:W— GL(M) and ¢’ : W/ — GL(M’) are two objects of PRefp, we say that
a homomorphism of Zp—modules f:M-— M’ is admissible if for each weEW
thereis w” € W’ such that fo w=w’ o f. We say that two admissible homomor-

phisms f and g from M .to M’ are equivalent if there is w € W’ such that
f=w’ og. We shall denote by Hom(4,6’) the set of equivalence classes of ad-
missible homomorphisms from M to M’. The set Hom(4,8’) is the set of mor-
phisms from @ to @’ in the category. PRefp. The category PRefp is equipped

with the product defined in the following way:
(0: W—GLM))®(8";W —GLM’))=6068" : WxW — GL(MeM’).
The product of morphisms is defined in the obvious way.

We denote by I:'{Polp the category whose objects are p—completed spaces X such
that their cohomology with Fp—coe:Eﬁcients_ are finitely generated polynomial alge-
bras. We assume further that any X in HPolp has a maximal torus and a Weyl

group and that p does not divide the order of the Weyl group of X. Morphisms in
H Polp are homotopy classes of maps. The category H Pol D also has products define

in an obvious way.
THEORENS5. There is an equivalence of categories

R : PRef HPol
Rsp—-v op

with products.

If we drop out the assumption that p does not divide the orders of W and W’ we
get weaker results.
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THEOREK 6. In Theorems 12,3 and 4 we can drop out the assumption "p
does not divide the order of W/ " i1f X' = (BG)p, where G 1is a

connected, compact Lie group.

THEQREKT. For any f: X — X’ there isamap 1: (BT)p—-v (BT’)p such

that the diagrams

O/~ 7 £ 0
K(X'2) —— K(XZ)
li,* {i*

*
K'((BT),Z,) T, &y oZp)
and
X/ Q) L —  ExQ)
li/* li*
*

BY(BT'), Q) ——  H¥(BT),Q)

are commutative.

a) If 1/ :(B'I‘)p-—t(IBT’)p is such that i’*of* =1"%0i* then there

is wE€W’ such that wo?l’ 4is homotopic to 1.
b) For any w €W there is w’ €W’ such that Y ow is homotopic to
w' of.

COROLLARY 8. Let us assume that the natural representation of W

on xl(T)QQp is irreducible. Then there is a finite number of
self-maps L,..ly of X such that for any f:X—X there ts k for
which foIk is an Adams ¢%—map i.e. the map induced by foIk on

Hm(X,Qp) 1s a multiplication by o'. The number n is smaller or
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equal to a number of elements of Aut(W)/Inn(W) which preserve the
natural representation of W on xl(T)OQp.

Ezamp le. (see also [3])
Let X:BSU(n)p. The Weyl group of SU(n) is E . If n$¥6 then

Aut ¥ =Inn En and for n=6 the outer automorphism does not pre-
serve the natural representation of Ly on xl(T)GQp. This implies

that the self-maps of BSU(n)p are ddams ¥®—maps.

We point out that Corollary 8 can be view as a generalization of a result of Hubbuck
(see [7) Theorem 1.1.) The example is a special case of the result of Hubbuck. How-
ever, it concerns maps between p—completed spaces BSU(n) p while Hubbuck is deal-

ing with classical spaces BG. v

Let us notice that a homomorphism T*:rl(T)GZp——» :rl(T’ )OZp from
Theorem 7 induced by T is admissible. An equivalence class of T, in

*
Ahom, (T,T’) we shall denote by x(f).
p

THEOREKS. Let f and g be two maps from X to X’. Then the follow
tng conditions are equivalent:
a) x(f) = x(g) in Abom, (T,T');
p
0 _ w0 .
) K'67,) = K67,
¢) B (£,Q)) = H'(g.Qp).
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1. THE LANNES T FUNCTOR FOR SPACES WHOSE COHOMOLOGY ARE
FINITELY GENERATED POLYNOMIAL ALGEBRAS

In this section we shall compute the.cohomology of the mapping space map(BV,X)
and its connected component mapf(BV,X) where V is an elementary abelian

p—group and X is a p—complete space whose cohomology is a finitely generated poly-
nomial algebra over Fp. We assume that X has a maximal torus T and a Weyl

group W.
Let us suppose that

B¥X,F) = H*(BT,FP)W .

p)
The map f: BV — X induces a map " : H*(X,Fp) — BE¥*(BV,F )- It follows from
[2] Proposition 1.10 and the fact that H*(X,Fp) is concentrated in even degrees that
there is g* : H*(BT,Fp) — H*(BV,Fp) such that f* = g* oi* where

i* H*(X,Fp) — H*(BT,Fp) is the inclusion induced by a structure map

i:BT —X.

We recall that for a torus T, the solutions in T of tP =1 make up a subgroup
T(1). The map g* is induced by a homomorphism ¢ : V — T(1). This follows from
[8] Theorem 0.4. Let A;: V@ T(1)* — F, be an adjoint map of . The group W

acts on Hom(V @ T(l)*,Fp) through its action on T(l)*. Let W/ be the isotropy

subgroup of A £

PROPOSITION1.1. Let X be ap—complete space whose cohomology with
Fp—coefficient.s is a finitely generated polynomial algebra over

Fp concentrated in even degrees. Fe assume that X has a mazimal

torus T and a Veyl group W. Let V be an elementary abelian
p—group and let £: BV — X be any map. Then we have an tsomorphism
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* Wf
H (mapf(BV,X);Fp) =P

where P = H*(BT,Fp).

PROOF: For a vector space U over F p let us denote by P(U) the polynomial

algebra on U, by A(U) the exterior algebra on U and by A(U) the symmetric
algebra on U divided by the ideal generated by all polynomials xP —x for x€U.
The polynomial xP —x splits completely over Fp. Hence we have an isomorphism of

Fp—a.lgebra.s AlU)= @ *Fp. We point out that A(U) is concentrated in degree
E10)

Z€ro.
Let us notice that we have the following natural identifications

P= H*(BT,FP) = P(T(1)™)
and

HY(BV/F ) =P(V*)® AV,

It follows from Corollary 2 in [4] that for any unstable Ap—a.lgebra M and any
Ap—algebra homomorphism f: P((Z/p)*) —M® H*(BZ/p,F p) we have

* *
f(t )=m,®l+m @®v.

This implies that we have a natural isomorphism

&y Hom , (P(T(1)*); M®E¥*(BV)) »
p

Hom__, (A(V®T(1)*)®P(T(1)*)M).
p

where Hom__, (,) isin the category of unstable Ap—a.lgebras. If f(t*) =
P
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* *
m,®1+ ) m ®v then & ()([v®t"]®1)= ) m
vkEV* vkEVk

vk

and &,(f)(1®*)=m,,.

Hence it follows that

(%) T,(P)=A(Ve T(1)*) ® P.

IM=F p then we have an isomorphism

¢p : Hom(P(T(1)¥), H¥(BV)) zHom(A(veTu)*),Fp). The group W acts on
p

P(T(l)*) through its action on T(l)* hence W acts also on A(V@T(l)*)
through the action on T(l)*. The isomorphism (*) implies that

(+%) T (PV) = (A(V @ T(1)*) @ P)V

(see [4] Proposition 3).

Let fF: H*(X,Fp) — H*(BV,Fp) be the map induced by f on cohomology. Let
A: Ty (H¥(X,F))— F_ be the adjoint map of f* andlet X: Ty, (P)—F_ be
v p P . v P
)

the adjoint map of g*. The restriction of X to V@ T(1)" is equal to A,

It follows from [5] 2.3 Theorem and the equality (¥%) that

* ~ * ~ W
H (ma.pf(BV,X),Fp) ~ Ty(H (X,Fp)) ® Fp %~ (A®P) Ag F

1B (X,F,) i

where A = A(V @ T(1)*).

If V¥@T(1)= | W/W’, as a W—set then A= @F [W/W’] as a W-module.
For any W’ CW, FP[W/W’]W %F . The maps ¥ and A induce X:A—F
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and X: AW =8 Fp — Fp. The algebra homomorphism ¥ is the identity on one’s

of Fp’s and it is zero on all others. The fact that X restricts to Af on V@ T(1)*

implies that X is the identity on Fp[W/Wﬂw. Hence we have the following isomor-
phisms
aer)V er = wwjep)V eF ap o
A¥W P Y F P )
: P

2. MAPS FROM BP TO X

Let M bea ﬁm'tely generatéd, free Z_—module. Let W C GL, (M) be a finite gene-

p
ralized reflection group. The action of W on M extends to the action of W on

M @ Q. The lattice M in M ®Q is invariant therefore W acts alsoon M @ Q/M .

P

Observe that M ® Q/, = T(w) for some torus T . From the action of W on T(w)

we can recover the original action of W on M if we take the induced action of W

on (H2(BT(m);Zp))* . Hence if W CGL, (M) is a finite generalized reflection
P
group then W can be realized as a subgroup of Aut(T(x)) .

PROPOSITION 2.1. Let WCGL, (M) be a finite generalized reflec-
p

tion group which we consider as a subgroup of Aut(T(w)). Let us as-
sume that p does not divide the order of W. If P 1is a finite
p—group then any map f:BP — (B(T(m)?t'W))p 18 induced by a homomor-

phism p: P — T(o)XW .

We were informed that a similar result was also known to W. Dwyer.

This proposition i8 an analog of the theorem of Dwyer and Zabrodsky (see [6] 1.1.
Theorem). The proof will follow closely the proof of the Dwyer and Zabrodsky theo-
rem contained in {13], which depends very much on [9].

Letusset G = T(x) X W .
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LENNA22. Let V=17[p, let ¢p:V—G be a homomorphism, let G, be
the centralizer of imp tn G and let an:V—-»GO be the map in-
duced by ¢ . Then the map

mapp pO(BV’(BGO)p) — mapg p(BV,(BG)p)

18 a homotopy equivalence.

PROOQF: 1t follows from Proposition 1.1 that
w
* 0 * _ :
H (mapo(BV,(BG)p),Fp) P ° where Px H (BT,Fp) and W, = G,/T(o) is
the isotropy subgroup of ¢ : V — T(w) . In the same way we get
w

H*(mapB %(BV,(BGO)p),F =P O Hence the map considered by us is a homo-

N

topy equivalence. 0

LENHA 23. Let P be a p—group, let Z/p=V be a subgroup of the
center of P. Let ¢:V—G be a homomorphism, let G0 be the

centralizer of imgp n G and let :,aO:V——bGO be the induced

homomorphism. Let
[BP,(BG),1(By) = {f € [BP,(BG),] : f| gy ~ By}

and let [BP,(BGO)p] (By,y) be defined in an analogous way. Then the

inclusionmap i: GO—-»G induces a bijection

(*) [BP.(BGy),](By) — [BP,(BG) 1(By) -

PROOF: We have a fibration BV — BP — B(P/V) . Let

BV — BV — E(P/V) be a fibration induced by pr: E(P/V)— B(P/V). Then
P/V acts on BV through maps homotopics to the identity and BV is a model for
BV. It follows from Lemma 2.2 that the map



-13-—

mapp /V(E(P/V),mapB,pO(BV,(BGO)p) — mapp /(E(P/V),mapp (BV,(BG) )

is a homotopy equivalence. The induced mapon =« 0 is the map (*). This finishes the

proof. ]

LENKA 2.4. (see [14] 1.5. Lemma) Let ¢:L— K be a simplicial map. Let
V"S(L,X) be the subspace of the space map.(L,X) of pointed maps from

L to X consisting of maps f:L—X such that f ~% for

-1
l¢ (k)
every k€K . Let ma.p*(ga—l(k),X) be the path component of the cons-

tant map in the space of pointed maps ma.p.(qp_l(k),X) . Let us assume that
for every k€ K, the space map*(w_l(k),X) i1s weakly homotopy equiva-

lent to *. Then ¢ induces a weak homotopy equivalence

oF map.(K,X) 22— V‘g(L,X) .

PROOF OF PROPOSITION 2.1: Let us assume that P = Z/p . It follows from [2]
Proposition 1.10 that £ H*(BG,Fp) — H_*(BP,Fp) factors through

H*(BT(m),Fp). But any morphism H*(BT(m),Fp) —»H*(BT,FP) is of the form

By (see [8] Theorem 0.4). Hence f is induced by a homomorphism.

Let us suppose that any map f: BP — (BG)p is induced by a homomorphism if the

order of P is less or equal to pn—l .

Let the order of P be equal to p® and let f: BP — (BG), bea map. Let
V = Z/p be contained in the center of P andlet i: V— P be the inclusion.

Assume that the composition

f

BV —BlL_,Bp X
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is null homotopic. We want to show that f is homotopic to fl o Bpr where

pr: P — P/, is the natural homomorphism and f; : B(P/V) — X i8 a map. First
we show that the space map,(BV,X) is weakly contractible. This space is p—local
because BV and X are p—local. Let map const(BV,X) be the connected component

containing a constant map of map (BV,X). It follows from Proposition 1.1 that

* * w
H (ma.pcomt(BV,X),Fp) =H (BT(w),Fp) .

The last group is of course H*(X,Fp) . Hence the evaluation map
map const(BV’x)-—’ X is a weak homotopy equivalence and consequently the space
nap_(BV,X) is weakly contractible. Lemma 2.4 implies that f is homotopic to

fl o Bpr . By the inductive assumption fl is induced by a homomorphism.

Let us suppose that foi is induced by a homomorphism ¢:V — G and (V) #0.
Let G be the centralizer of @(V) in G. It follows from Lemma 2.3 that up to

homotopy there is a unique map f, : BP — (BGO) » such that

f :
BP 0, (BGO)p — (B(E':)p is homotopic to f and f; restricted to BV is in-
duced by ¢. Let p: Gy — G /&(V) be the natural projection. The composition

BV — BP —f°—+ (BGy), EP)J;4 (BGy/e(V)),

is null-homotopic hence (Bp) p° fo factors uniquely as
Bpr f1
BP —EL , B(P/V) ——— B(Gy/#(V)),, -

This follows from the previous discussion.

One has the homotopy pullback



—15 —

BP o » (B(Gy),
prr l(Bp)p
f..
B(P/ V) ———— (B(Gy/«(V))),

because ¢(V) is contained in the center of G . By the inductive assumption £, is

induced by a homomorphism ¢, : P JV— Golqo(V) . We have a pullback of groups

5 -
P 'GO

-

P/V—L Gy/e(V) .

After applying the functor (B )p we get a homotopy pullback

e (B9

[ Bpr A l (Bo),
(B

)
B(P/V) —LB 1 B(Gy/p(V)),

The map f; is homotopic to (B;a‘:)p hence f i8 homotopic to (Bp)po(B;&)

COROLLARY2.5. Let T’ by any torus. Then any map BT’ (o) — (BG)p 1S

induced by a homomorphism.

This follows directly from Proposition 2.1.
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3. PROOFS
We shall need a result from [15].

PROPOSITION3.1. (see [15] pages 1 and 8) Let W C Aut(T(o)) be a finite
generalized reflection group. Assume that p does not divide the
order of W.Let X be ap—complete space such that there 1s an iso-
morphism

‘ * ¥ w
(%) H (X,Fp) =H (BT(m),Fp)

of Ap—algebras. Then there is a map i:BT(w) — X which realizes

the isomorphism (x). Noreover for any wE W,iow is homotopic to i.

PROOF OF THEOREM 1:
It follows from Proposition 3.1 that we can assume that X % (B(T(x) X W)) p and

X’ ~ (B(T' () % W’))p. It follows from Corollary 2.5 that foi is induced by a
homomorphisms ¢ : T(w) — T’ (o). Weset T = (Bga)p.

The proof of the point a) is the same as the proof of Theorem 1.7 in {1). The point b)
follows from a). o

PROOF OF THEOREM 3:
Let f,g: X — X’ be two maps such that H*(f,qp) = H*(g,Qp). Let i: BTp — X

be the map induced by an inclusion of a maximal torus. Proposition 3.1 and Corollary

2.5 imply that foi and goi areinduced by two homomorphisms

0,9 : T(m) — T’ (w) X W’. The Chern character

ch : K_O(BT’(m),Zp) — B¥(BT'(w),Q,) is injective for any torus T'. It is also in-

jective for the space B(T’(o) X W’). For a finite group » let R{r) be its complex

representation ring. The group R(T(w)) :=1im R(T(n)) is mapped injectively into
n

KO(BT(m),Z p). Hence we have

R(y) = R(¥) : R(T'(w) ¥ W'} — R(T(a)).



-17 -

where R(T’,0) X W) := 1im R(T’(n) xW’).
n

We must show that ¢ and ¢ are conjugate homomorphisms. For each subgroup
S=7Z/p® of T(w) the restrictions of ¢ and ¢ to S are conjugate by some ele-
ment of W. The fact that W is finite implies that ¢ and ¢ are conjugate. Hence
foi and goi are homotopic. It follows from [11] Theorem 1 that f and g are
homotopic. a}

PROOF OF THEOREM 2: _
We set x(f) = rl('f) where T is the map from Theorem 1. The injectivity of

follows from Theorem 3. The surjectivity is obvious. m]

PROOF OF THEOREM 4:
The fact that ¢ is injective follows from Theorem 3 and the injectivity of Chern
character. The proof of surjectivity is the same as in Theorem 4 in [12]. o

PROOF OF THEOREM 5:
It follows from [15] (see Proposition 3.1 in this paper) that R is an essential surjec-
tion. Theorem 2 implies that the functor R is faithful and full. o

PROOF OF THEOREM 6:
This follows from the fact that any map from BT(w) to (BG)p is induced by a

homomorphism, what is an immediate consequence of [6] 1.1 Theorem.

PROOF OF THEOREM T7:
We would like to construct T.(@BT) p (BT’ )p such that the following diagram

x — & x
(*) {i [i,
. .

(BT), ———  (BT'),
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is homotopy commutative where i and i’ are structure maps. However, we do not
know how to do it. So we shall proceed in the following way. It follows from [10]
theorem 4.1. that thereis & : KO(BT’ ) p,Z IJ) — KO(BT)p,Zp) such that

#0i’* =i* o f* Let us notice that ‘& commutes with operations in KO( ,Z ) and

)
P
augmentations (see [10] pages 326 and 327). It follows from [12] lemma 2.1 that there
is 1: (BT)p — (BT’ )p such that 1% = ¢&. Using Chern character and passing to

cohomology with Qp—coefﬁcients we get that the diagram (*) commutes after
applying H*( ,Qp). Point a) follows in the same way as Theorem 1.7 in [1). Point b)

follows from a). o

PROOF OF COROLLARY 8: If the natural representation of W on x,(T)® Q, is
irreducible then xl('f) : 75((BT) p) — 1-2((BT)p) is an isomorphism or a trivial

map. The correspondence w — w’ from Theorem 7 point b) is then an isomor-
phism. The rest is obvious. m]

PROOF OF THEOREM 9:
The proof is the same as the proof of Theorem 1.7 in [12]. a

Whilst writing this paper we were partially supported by Centre de Recerca
Mathematica, Bellaterra (Barcelona).
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