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Abstract

We express non-commutative quantum mechanics as a Weyl pseudo-
differential calculus on double phase space R?"™ @ R?"?, which is in-
tertwined with the standard Weyl calculus using a family of partial
isometries of L?(R") — L?(R?*") indexed by S(R™). This allows us
to reduce the study of non-commutative quantum mechanics to that
of conventional Weyl calculus. In particular we easily obtain spectral
results for the operators arising in non-commutative quantum mechan-
ics.

1 Introduction

Traditional quantum mechanics is based on the canonical commutation re-
lations L L A
[Xa, Xp] = [Fa, P3] =0, [Xa, Pp] = ihdap (1)

for 1 < a,8 < n. Setting 2a = )/(\'a if 1 < a < nand 2@1 = ﬁa,n if
n+ 1 < a < 2n, these relations can be rewritten

(Za, Z5) = ihjag for 1<, <2n (2)

-1 0
and I are the zero and unity n x n matrices). We now make the following
observation. In traditional quantum mechanics one traditionally chooses to
represent explicitly the canonical commutation rules (1)-(2) by imposing
that X and P are the operators defined by Xa = multiplication by x, and
Pa = —ih0,,; both operators are viewed as acting on functions defined on
R™. Of course, this choice (which is suggested by historical reasons) is not
the only possible; for instance we could as well define the “Bopp shifts” [6]

where J — (jaﬁ)lsa,ﬁﬁ% is the standard symplectic matrix ( 0 I> (0

Xo = Ta + 3100y, , Po = pa — 3ihdy, (3)



where X, and P, now act on functions defined on phase space. Indeed, in
two recent papers de Gosson [11] and de Gosson and Luef [15] have shown
that this approach is useful for the reformulation of deformation quantiza-
tion in terms of the Moyal product, and for the study of generalized “Landau
operators”. Now, the study of noncommutative field theories and their con-
nections with quantum gravity [8, 20, 23] has led physicists to consider more
general commutation relations of the type

(X X5] = 0o » [Po B3] = Nap » [ Xa, Ps] = ihdag (4)

where © = (03)1<a,8<n a0d N = (108)1<a,8<n are antisymmetric matrices
measuring the non-commutativity in the position and momentum variables.
Writing Za = ~a if 1 <a<nand Za = ~a,n ifn+1<a<2n these
relations are equivalent to

Zo, Z5) = ihwag (5)

where Qg N = (WaB)1<a,8<2n is the 2n x 2n antisymmetric matrix defined

by
e 1
Q@,N = ( _J h_1N> : (6)

Since det Qg y = det(I + h~2ON) the matrix Qg y is invertible as soon as
h~2ON is sufficiently small (we will give a precise statement in Subsection
4.1); this requirement is physically meaningful: see the discussions in [5,
7]. Two of us have have investigated in detail the features of the “non-
commutative quantum mechanics” determined by the commutation relations
(5) in recent papers [1, 2].

It turns out that when g n is invertible we can use it to define a sym-
plectic (non-Kiihlerian) structure on phase space R?"; the discussion above
then suggests that we represent the operators )Z'a and ]3a by the following
generalization of (3).

Xo = Ta + 5ih0y, + i ZB 00502, (7)
P, = Do — %ih@xa + %z Zﬁ NosOps; (8)

which we find convenient to write in compact form as
Z=z+ 31hQe N O:; (9)

notice that these operators reduce to (3) when © = N = 0. These “quantiza-
tion rules” lead us to consider pseudo-differential operators formally defined
by

A, =a(Z) = a(z + LinQ0,) (10)



where (2 is an arbitrary antisymmetric invertible matrix; such a matrix de-
fines a symplectic form w on R?":

w(z,2) =z Q71

which coincides with the standard symplectic form ¢ when Q = <_OI é>

In this article we will show that:

e The formal definition (10) can be made rigorous, and that the Weyl

symbol of the operators A,;

e The operators Zw are intertwined with the usual Weyl operators A
using a family of partial isometries ) — U 49 of L?(R"™) in L?(R?")
parametrized by ¢ € S(R");

e The spectral properties of the operators Zw can be recovered from
those of A using these intertwining relations; in particular the consid-
eration of Shubin’s classes of globally hypoelliptic symbols will allow
us to state a very precise result when Ais formally self-adjoint.

e The matrix (g y is invertible (and hence defines a symplectic form
w = we,y) under a certain condition of “smallness” of the entries of
the matrices © and N (this was proven in former work by two of us
and our collaborators in [5, 7].

In a sense our results show that the study of noncommutative quantum
mechanics is reduced to that of standard quantum mechanics provided that
one works in a double phase space.

Remark 1 In a recent paper two of us pointed out the relevance of Sjostrand
classes for deformation quantization, which relies on the fact that Sjéstrand
classes are members of the family of modulation spaces. The results in this
investigation extend to the present setting. Our approach to this problem will
closely tie the previous setting with the symplectic structure of the double
phase space R*™ @ R?™. The main consequences are that the Sjostrand’s
classes are Banach algebras with respect to twisted convolution and that its
1s spectral invariant; these facts will be exploited in a forthcoming work.

Notation 2 The generic point of T*R™ = R?" is denoted by z = (x,p) and
that of T*R?™ = R*" by (2,(). The standard symplectic form o on R?*" is
defined by o(z,2') =p-a' —p' -z and the corresponding symplectic group is
denoted Sp(2n,c). Given an arbitrary symplectic form w on R?" we denote
by Sp(2n,w) the corresponding symplectic group.

We denote by S(R™) the Schwartz space of rapidly decreasing functions
on R™; its dual S'(R™) is the space of tempered distributions. The scalar



product of two functions ¥, ¢ € L*(R") is denoted by (1|¢) and that of
U, ® c L2(R?") by ((U|®)). The corresponding norms are written ||¢|| and
]

2 Phase Space Weyl Operators

In this section we show how to define a Weyl-type pseudodifferential calculus
on a symplectic space (R?", w) where w is an arbitrary symplectic form (with
constant coefficients) on R,

Let us begin by giving a short review of the main definitions and prop-
erties from standard Weyl calculus as exposed (with fluctuating notation)
in for instance [9, 10, 17, 21, 22, 24].

2.1 Standard Weyl calculus

Given a function a € S(R?") the Weyl operator A with symbol a is defined
by:

Ave) = ()" [[, el M@ oty ()

for ¢» € S(R™); here f is a positive constant which is identified with Planck’s
constant h divided by 27 in quantum mechanics. This definition makes sense
for more general symbols a provided that the integral interpreted in some
“reasonable way” (oscillatory integral, for instance) when a is in a suitable
symbol class, for instance the Hormander classes SIZ‘ , or the global Shubin
spaces HT')"""™ (which will be defined later in this article). We refer to
the existing literature for these well-known facts. A better definition is, no
doubt, the following;:

A = (1) /R  Fa(a)T(0)gdg (12)

because it immediately makes sense for arbitrary symbols a € S'(R™); in the
formula above F, is the symplectic Fourier transform:

Fya(z) = (2,1,5)"/1&% e_%"(zo’z)a(z)dz (13)

which extends into an automorphism S&'(R") — S'(R™) and T/(z) is the
Heisenberg—Weyl operator S'(R") — S’'(R") formally defined by

k3

T(z0) = e 17320 with %= (z, —ihd,); (14)
the action of T'(z9) on ¥ € S(R™) is given by the explicit formula

T(z0) () = et Po#=3P020) g (1 — ) (15)



. Wey Weyl
if zo = (z0,po). The Weyl correspondence, written a Fey] Aor A& a,

between an element a € S'(R?") and the Weyl operator it defines is bijective;
in fact the Weyl transformation is one-to-one from S’(R?") onto the space
L(S(R™), S'(R?™)) of continuous maps S(R") — S'(R™) (see e.g. Maillard
[19], Wong [24]). This can be proven using Schwartz’s kernel theorem and the
fact that the Weyl symbol a of the operator A is related to the distributional
kernel of that operator by the formula

alwp) = [ IR+ g )y (16)
where the integral is interpreted as the distributional bracket
(70, K (e + 5(),2 — 5())

(which is essentially a Fourier transform) when K € S’'(R"xR™). Conversely
(cf. (11)) the kernel K is expressed in terms of the symbol a by the formula

K(z,y) = (gih)n/ et a(L(z +y), p)dp.

Assume that the product AB exists (this is the case for instance if B:
S(R™) — S(R™)); then the Weyl symbol ¢ of C' = AB and its symplectic
Fourier transform ¢, are given by

() // earo(u) a(z + 3u)b(z — $v)dudv (17)
& R2n xR2n

Fye(2) = (357)" / ex 7 ) Foa(z — 2/ ) Fob(2)d'. (18)
R2n
The first of the formulas above is often written
c=axpb (19)

especially in the context of deformation quantization [3, 4] where the oper-
ation %y is called the Moyal star-product.
Two important properties of Weyl operators are the following;:

-~ Weyl . . . .
e The operator A & ais formally self-adjoint if and only the symbol a
is real; more generally the symbol of the formal adjoint of an operator
with Weyl symbol a is its complex conjugate a;

e The property of symplectic covariance: let Mp(2n,o) be the meta-
plectic group, that is the unitary representation of the double cover
of Sp(2n,0). To every s € Sp(2n,o) thus corresponds, via the nat-

ural projection m : Mp(2n,0) — Sp(2n,0), two operators £S5 €

~ 1
Mp(2n,0), and we have S~1AS T 4o s. This property is charac-

teristic of the Weyl pseudo-differential calculus (see Stein [22], Wong
[24]).



A related object is the cross-Wigner transform W (v, ¢) of ¢, ¢ € S(R™)
(see e.g. [9, 10]); it is defined by

W 0)(e) = ()" [ e e+ )il Tdy (20)

(it is thus, up to a constant, the Weyl symbol of the operator with kernel
1 @ ¢). We note, for further use, that W (1, ¢) can alternatively be defined
by the formula

W (¥, 6)(2) = (7)" (Tar (2)¢]0) (21)

where T\GR(z) is the Grossmann—Royer operator:

Tar(z0)9(x) = e 7P @202 — ). (22)

Formula (21) allows us to define W (¢, ¢) when ¢,¢ € S'(R"). Following
property is important, and is sometimes taken as the definition of A:

(A1) = [ | axW (. 0)(:)i= (23

Also note that the cross-Wigner transform satisfies the Moyal identity
(W (W, )W @', ¢))) = (525)" (W1 (6]¢). (24)

2.2 Definition of the operators A,

In what follows €2 denotes an arbitrary (real) invertible antisymmetric 2n x
2n matrix. The formula

wz,2)=2-Q7% =-Q712. 2 (25)

defines a symplectic form on R?"; notice that w coincides with the standard
symplectic form o when 2 = J.

Let us introduce the following variant of the symplectic Fourier trans-
form: if a € S(R?") we set

Foa(z) = (52)" | det Q712 / e 1= () d2s (26)
]RZn

the presence of the inverse square root | det Q| ~1/2 ensures us that F}, extends
into a unitary automorphism of L2(R?"): |||F,al|| = [||a|||. This unitarity
most easily follows from the second formula (38) in Proposition 6 below,
or from the observation that F,, is related to the usual unitary Fourier
transform F on R?” by the formula

Fa(z) = |det QY2 F a(—Qz). (27)



The symplectic Fourier transform F,, extends into a continuous automor-
phism of &’(R?") in the usual way by defining F,a for a € S'(R?") by the
formula (F,a,b) = (a, F,b) for all b € S(R?") (or, alternatively, by using
the relation (27) above). Note that when Q = J we have F,, = F, since
detJ = 1. Using (27) together with the usual Fourier inversion formula
shows that F|, is involutive, that is

F,F,a=a. (28)
We will also need the operators
T.(20) : S'(R*") — S'(R*™)

defined by the formula

To(20)W(2) = e 7= (z — L), (29)

These operators satisfy the same commutation relations as the usual Heisenberg—
Weyl operators T'(zg) when w = o. In fact, a straightforward computation
shows that

Tolz0 + 21) = e 2G0T, (20)T(21) (30)

~ o~ ~ ~

T (20)T(21) = e%w(zo’zl)Tw(zl)Tw(z()). (31)
Let us now define the operators gw.

Proposition 3 Let a € S'(R?") and ¥ € S(R?™). The operator A, :
S(R?*") — &' (R?") defined by

A0 = (£)" (det )12 <Fwa(-),fw(.)qj> (32)

that is formally by

AU = ()" (det )71/ /]R N Foa(2)T,(2)Vdz (33)

is continuous S(R?") — S(R?*™) and its Weyl symbol is given by
Gu(50) = a (=~ 390) (34)

and we have 4, € S'(RZ*GR2"). When a = 1 the operator A, is the identity
on S(R?).



Proof. Since T, (2)¥ € S(R?) for every z and F,a € S'(R?") the operator
A, is well-defined. We have, setting u = z — %zo,

A,0(2) = (54)" [ det 0 ~V/2 /R  Fua(zo)Tu(z0)()dz0

= (;rh)”dem\lﬂ/

o Fwa(z())e*%“(z’zo)\ll(z — 320)dzo

e [ e alet o
R2n
hence the kernel of A, is given by the formula

K(zu) = (2)" |det Q"2 F,a2(z — u)]et “).,

It follows from formula (16) that the symbol @, is given by

aule.0) = [ TR+ ¢z = 4O

(2)" | det 012 / e~ B (2 e B ¢!
RQn

that is, using the obvious relation
C : CI + 2(4)(2, C/) = W(Q'Z - QC? C,)
together with the change of variables 2z’ = 2(’,

aw(zv C) = (%)Qn ’ det 9‘71/2 / ei%W(QZ*QQC/)FL’JCL(QC/)CZCI
R2n

_ (ﬁ)?ﬂ ‘ detQ\_1/2/2 6_%w(z_%gg’zl)FwCL(Z/)dC/.
R2n
Formula (34) immediately follows using the Fourier inversion formula (28).
That ﬁw = I when a = 1 immediately follows from the fact that F,a =
(27h)?"§ where § is the Dirac measure on R?". The continuity statement
follows from the fact that le is a Weyl operator. m

Two immediate consequences of this result are:

Corollary 4 (i) The operator A, defined by (33) is formally self-adjoint if
and only if a is real. The formal adjoint A}, of A, is obtained by replacing
a with its complex conjugate a. (ii) The symbol ¢ of Co = AuB,, is given by
cw(z,() =c (z — %QC) where ¢ = a xp b is the Weyl symbol of the operator
C = AB.

Proof. (i) The property is obvious since A, is formally self-adjoint if and

only if its Weyl symbol a,, is real, that is if and only if a itself is real.
Similarly, the Weyl symbol of A} is the function

(2,0) — ¢ (2 — 190).



(ii) The property is an immediate consequence of the definition of C,, since

Weyl ~=
axpb+—% AB. m

2.3 Symplectic transformation properties

Let w be the symplectic form (25) on R?”. The symplectic spaces (R?",w)
and (2n, o) are symplectomorphic (as are all symplectic spaces with same
dimension); w and o having constant coefficients they are even linearly sym-
plectomorphic. That is, there exists a linear automorphism s of R?" such
that s*w = o that is

w(sz,sz') = o(z,2) (35)

for all (z,2") € R?" x R?™. [s is sometimes called the “Seiberg-Witten map”
in the physical literature; its existence is of course mathematically a trivial-
ity, because all symplectic structures with constant coefficients are linearly
isomorphic (see e.g. de Gosson [10], §1.1.2)]. Identifying the automorphism
s with its matrix in the canonical basis, the relation (35) is equivalent to
the matrix equality

Q=sJst. (36)

Such a symplectomorphism s : (R?",w) — (R?", ¢) is by no means unique;
we can in fact replace it by any automorphism s’ = ss, where s, € Sp(2n,0);
note however that the determinant is an invariant because det s’ = det sdet s, =
det s since det s, = 1.

We are going to see that the study of the operators ﬁw is easily reduced
to the case where w = o, the standard symplectic form on R?”. This re-
sult is closely related to the symplectic covariance of Weyl operators under
metaplectic conjugation as we will see below.

For s a linear automorphism of R?"” we define the operator

M, : S'(R*") — S'(R*")

by the formula
MU (z) = +/|det s|¥(sz). (37)

Clearly M; is unitary: we have |||Ms¥||| = |||¥]|| for all ¥ € L?(R?").
Notation 5 When Q = J we write T(z0) = Ty (20) and A = A,.

Proposition 6 Let s : (R*",w) — (R?",0) be a linear symplectomor-
phism. (i) We have the conjugation formulas

MT,(z0) = T(s ‘20) M, , MyF,, = F,M, (38)
M,A, = A'M, with a'(z) = a(sz). (39)



(11)) When s is replaced by an automorphism s’ = ss, with s, € Sp(2n, o)
then A’ is replaced by the operator

A" = M, ATM ;! (40)
where M V(z) = U(s,2).
Proof. (i) Since w(sz, z9) = 0(2,5 '2y) we have for all ¥ € S(R?"),

M, [i,(zg)lll} (z) = /| dets e*%w(sz’zo)\l’(sz — 220)

il

= /| det sle” 7= 20y (5(z — 1s712))
=e” ”(z’sfle)MS\IJ(z - %8_120)

= T(s  20) M;¥(2)

SIS

which is equivalent to the first equality (38). We have likewise

M F,a(z) = /| det s|F,,a(sz)
= (k)" [det @A dets] [ emtta()a

= (o) et 2 sl [ b i
2n

= (ﬁ)n | det Q|_1/2| det S| e_ﬁi,U(Z’Z//)MSa(Z//)dZ/
R2n

hence the second equality (38) because
|det Q| ~Y2|det 5] = 1 (41)

in view of the equality (36). To prove the equality M, SAy = A’ M, it suffices
to use the relations (38) together with definition (33) of A,:

M,A, = (Flh)%|det Q\_1/2/ Foa(2)MT,(z)dz
R2n

= (5%)™" | det | 71/2 / Foa(2)T(s12)M,dz;
R2n

performing the change of variables z —— sz we get, using again (41), and

10



noting that | det s|"/2M,a(z) = a(sz),

M,A, = (55)%" | det Q) 1/2|dets|/ Fa(s2)T(2)M,dz

2mh

_ (m)%/R%F a(s2)T(2) Mydz

= (525)"" [dets| 2 | M,Foa(2)T(z)M.dz
]RZn

= (27Th) |d t'5’,| 1/2/ FUMSCL(Z)T(Z)MSCZZ
R2n

— (L) /R  Fy(ao8)(:)T () Midz

(ii) To prove formula (40) it suffices to note that

My A, = (MyM; " )YM,A,

= M, (A'M,)

= (M, ATM Y M,, M,

= (M, A'M; )My
That we have M, VU (z) = ¥(s,2) is clear since dets, = 1. m

We note that formula (40) can be interpreted in terms of the symplectic

covariance property of Weyl calculus. To see this, let us equip the double
phase space R?" @ R?" with the symplectic structure ¢® = o o & o. In view

of formula (34) with Q = J the Weyl symbols of operators A” and A’ are,
respectively

(;’(z, ()=ua [s(z — %JC)] , ;IT(Z, ()=ua [s'(z — %JC)]

and hence, using the identities s~'s’ = s, € Sp(2n, o) and s,J = J(sL)~!

0" (2,0) = d' [s5(z = §T(s2) Q)] = d/(502, (s5) ).
Let now m,, be the automorphism of R?" @ R?" defined by
ms, (2,¢) = (s;12,550);
formula (40) can thus be restated as

AT — MSUIM; with @ =ad' o m; ! (42)

Recall now (see for instance [10], Chapter 7) that each automorphism s of
R?" induces an element mg of Sp(4n, c®) defined by ms(z,¢) = (s71z,s7()

11



and that my is the projection of the metaplectic operator M, € Mp(R?*" &
R2" o®) (with 0® = o @ o) defined by (37). Formulas (42) and (42) thus
reflect the symplectic covariance property of Weyl calculus mentioned at the
end of Subsection 2.1.

We finally note that if we equip R?" @ R?” with the symplectic form
w® = w @ w, the symplectomorphism s : (R?" w) — (R?",0) induces a
natural symplectomorphism

SPs: (RQn ® R2"7w®) _ (RQTL D RQH,UEB).

3 The Intertwining Property

In this section we show t}/l\at the operators Ew can be intertwined with the
standard Weyl operator A using an infinite family of partial isometries Uy
of L?(R") (depending ) on closed subspaces Hg of L?(R*").

3.1 The partial isometries U, ,

Let ¢ € S(R™) be such that ||#|| = 1 (L? norm). In [15] two of us have
studied the linear mapping Uy : S(R") — S(R?") defined by the formula

Ugp = (2mh)"™2W (¢, ) (43)

where W (1), ¢) is the cross-Wigner distribution (20). We can thus take the
formula

~

Upth(2) = ()" (Tar(2)¢l0) (44)

as an equivalent definition of Uy; recall that fGR(z) is the Grossmann—Royer
transform (22).

Proposition 7 (i) For every if ¢ € S(R") the mapping Uy : S(R") —
S(R?") extends into a mapping

Us : S'(R") — S'(R*™)

whose restriction to L*(R™) is an isometry onto a closed subspace Hy of
L2(R?™). (ii) The inverse of Uy is given by the formula 1) = Udjl\lf with

0@ = (2" [ W Ton(a)o(witz (45)
R n
and the adjoint U:; of Uy 1s given by the formula
Usw = (2)"? /R (a0 Tan(z0)gdzo. (46)

(iti) The operator Py = UyUj is the orthogonal projection of L?(R?™) onto
the Hilbert space Hy.

12



Proof. In view of Moyal’s identity (24) the operator U, extends into an
isometry of L?(R™) onto a subspace Hy of L*(R?"):

(U Usy")) = (¥ 11").

The subspace H,, is closed, being homeomorphic to L?(R™). The inversion
formula (45) is verified by a direct calculation: let us set

©(@) = (Z)" [ w0 Tun ool

and choose an arbitrary function a € S(R?"). We have
n/2 =S
() = (Z)"2 [ | #le0) Ton(o)dlo)dzg

— (2rh)"?2 /R ()W (e 9) (z0)dz0

= /R% U¢¢(Zo)U¢a(ZO)dZQ
= (Y]a)

hence x = 1 which proves (45); formula (46) for the adjoint follows since
UjUy is the identity on L2(R™). (iii) We have Py = P} and PyPj = Py
hence P is an orthogonal projection. Since UjUy is the identity on L?(R™)
the range of U is L%(R™) and that of P, is therefore precisely Hy. m

Remark 8 The union of the ranges of the partial isometries Uy viewed as
mappings defined on S'(R™) is in a sense a rather small subset of S'(R?")
even when ¢ runs over all of S'(R™); this is a consequence of Hardy’s theo-
rem on the concentration of a function and its Fourier transform (de Gosson
and Luef [13, 14]), and is related to a topological formulation of the uncer-
tainty principle (de Gosson [12]). We will come back to these notions in the
framework of noncommutative quantum mechanics in a forthcoming publi-
cation.

In [15]) it was shown that the partial isometries Uy can be used to
intertwine the operators A = A, with the usual Weyl operators with same
symbol; we reproduce the proof for convenience:

Proposition 9 Let T(z9) = T, (z0) and T(z0) be the Heisenberg—Weyl op-
erator (14)—-(15). We have the following intertwining properties:

~ ~

UsT (20) = T(20)Uy and UjT(z0) = T(20)U} (47)

AUy =UsA and UZA = AU}, (48)

13



Proof. Making the change of variable y = 3’ + z in the integral in the
right-hand side of (20) we get

Uy [f(zo)w} (z) = 6_’%0(2’20)U¢’¢(Z’ _ %Zo)

which is precisely (47). On the other hand we have
UpAy = (5" /R  Fpa(0)Us [T (z0)Y1dz0.

and hence, in view of (47),

Vo = (517)" [ | Fraeo) T (o) Uil
which is the first equality (48). To prove the second equality (48) it suffices
to apply the first to UJA = (A*Up)*. =

Let us generalize this result to the case of an arbitrary operator Ew.

Proposition 10 Let w be a symplectic form (25) on R*" and s a linear
automorphism such that s*w = o. The mappings Us 4 : S(R") — S(R?")
defined by the formula:

Usp = M, Uy (49)

are partial isometries L?(R™) — L?(R?"), in fact isometries on a closed
subspace Hs » of L*(R*"), and we have

AUss = Usy A1 and Ul A, = A'U; (50)

— Weyl
where A’ +—= a o s.

Proof. We have, using the first formula (48),
AU, = My YA M, (M, U,)
= M (AU,)
— M'U,A
= Uy o'
the equality U ¢Aw =AU o s provenina similar way. That U, 4 is a partial

isometry is obvious since Uy is a a partial isometry and M, is unitary. =
Let us make explicit the change of the mapping s:

Proposition 11 Let s and s’ be linear automorphisms of R*® such that
s*w = s"*w = o. We have

Us ot = US,Sotb(Saw) (51)
where S, € Mp(2n, o) is such that ©(S,) = s~ 1s'.

14



Proof. The relation s*w = s”*w = o implies that s, = s~ !s’ € Sp(2n,0).
We have My = Mg, = M, M, and hence

Ugy=M;'Uy= MM 1U,.

Now, taking into account definition (43) of Uy in terms of the cross-Wigner
transform and the fact that det s, = 1 we have

MUyt (2) = (2mh)" W (3,6) (s, '2)
= (2nh)"2W (S, S,¢)(2)
= (27Th)n/2U,5’a¢(Sa¢)(z)

hence formula (51). m

3.2 Action on orthonormal bases

Let us prove the following important result that shows that orthonormal
bases of L2(R") can be used to generate orthonormal bases of L?(R?") using
the mappings Uy 4:

We begin by showing that thew result holds for U,. The general case
will readily follow.

Proposition 12 Let (¢;); be an arbitrary orthonormal basis of L*(R"); the
vectors ®; . = Uy, ¢ form an orthonormal basis of L2(R?").

Since the Uy, are isometries the vectors ;) form an orthonormal sys-
tem. It is thus sufficient to show that if ¥ € L?(IR?") is orthogonal to the
family (®; 1), (and hence to all the spaces Hy,) then ¥ = 0. Assume that
(V|®;x) 2(r2ny = 0 for all indices j, k. Since we have

(W|®jk) = (W|Ug, 01) = (Ug, Vo)

it follows that U ;j\IJ = 0 for all j since (¢;); is a basis; using the anti-linearity
of Uy in ¢ we have in fact U¥ = 0 for all ¢ € L?(R™). Let us show that
this property implies that we must have ¥ = 0. Recall (formula (46)) that
the adjoint of the wavepacket transform U; is given by

Upe = (Z)"”? /RQ” W (20)Tar (20)ddz0

where fGR(zo) is the Grossmann—Royer operator. Let now 1 be an arbitrary
element of S(R™); we have, using definition 21 of the cross-Wigner transform,

(Uswly) = ()" / U(z)(Tan (2)6v)dz
R2n

— (2rh)"? / W)W (), 6) ().
R2n
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Let us now view ¥ € L?(R?") as the Weyl symbol of an operator Ag. In
view of formula (23) we have

ey [ WEW w0z = (Ao

and the condition U5 ¥ = 0 for all ¢ € S(R") is thus equivalent to (Apth|d) 2 =

for all ¢,v € S(R™). It follows that Ayt = 0 for all ) and hence Ay = 0.
Since the Weyl correspondence is one-to-one we must have ¥ = 0 as claimed.

Corollary 13 Let (¢;); be an arbitrary orthonormal basis of L*(R™); the
vectors ®; . = Us y. @k form an orthonormal basis of L3(R?7).

Proof. We have, by definition, Uy 4 = M 1U¢. The result follows since
My is unitary. (Alternatively one could have used formula (51) to prove the
statement). m

4 Spectral Properties of the Operators ﬁw

We begin by studying the standard case {2 = J; as before we then use the
notation A, = A. The extension to the general case is rather straightforward
using again the reduction result in Proposition 6.

4.1 The case Q=J

Proposition 12 and its Corollary are the keys to the following general spectral
result, which shows how to obtain the eigenvalues and eigenvectors of A from
those of A:

Proposition 14 The following properties hold true: (i) The eigenvalues
of the operators A and A are the same; (ii) Let ¢ be an eigenvector of A:
//l\¢ = Mp. Then ¥ = Uyt satisfies AV = AV in particular, if U # 0 it is an
etgenvector ofg corresponding to the same eigenvalue. (i1i) Conversely, if
U is an eigenvector of A then ¢ = U;\I/ 18 an eigenvector Of;{ corresponding
to the same eigenvalue.

Proof. (i) That every eigenvalue of A also is an eigenvalue of A is clear: if
Ay = \p for some ¢ # 0 then

A(Ugth) = UgAp = AUyt

and ¥ = Uyt # 0 ; this proves at the same time that Uy is an eigenvector

of A because Uy has kernel {0}. (ii) Assume conversely that AV = AW for
U € L2(R?), ¥ # 0, and A € R. For every ¢ we have

AULY = UZAY = \UZ¥
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hence A is an eigenvalue of A and 1) an eigenvector if ¢ = U;\If #% 0. We
have Uy = U¢U$\Il = Py¥ where P, is the orthogonal projection on the
range Hy of Up. Assume that ¢ = 0; then P,¥ = 0 for every ¢ € S(R"),
and hence ¥ = 0 in view of Proposition 12. =

Let us now consider the case of general operators Aw. It follows from
Proposition 14 that:

Corollary 15 (i) The eigenvalues of Avw are the eigenvalues of the Weyl

operator A’ £ ao s are the same; (1) Let i be an eigenvector of A:

Ay = \p. Then ¥ = U, oV satisfies A,V = AV, (iii) C’onversely, if U ois
an eigenvector ofA then ¢ = UZW is an eigenvector ofA corresponding to
the same eigenvalue.

Let us now specialize our discussion to the case where the Weyl symbol of
A belongs to a very convenient space of symbols. Shubin has introduced in
[21] very convenient “global” symbol classes HT','""" (R?") where mq, m1 €
R and 0 < p < 1. Introducing the multi-index notation a = (aq, ..., ag,) €
N, |a] = a1 + - 4 ag,, and 92 = 99} - - 09r 9y - - - 992", we have by
definition a € HT;""™°(R?") if:

e We have a € C*®(R?*");

e There exist constants R,Cy,Cy > 0 and, for every a € N |a| #0, a
constant Cy > 0 such that for |z| > R we have the estimates

Col=™ < la(2)] < Colz|™ , |0%a(2)] < Cala(2)]l2] 7l (52)

A simple but typical example is the following: the function a defined by
a(z) = %[z* is in HF%’Z(RQ"), the same applies, more generally to a(z) =
%M z -z when M is a real positive definite matrix.

The interest of these symbol classes comes from the following result:

Proposition 16 Let a € Hle’mO(RQ") be real, and mo > 0. Then the

formally self-adjoint operator A with Weyl symbol a has the following prop-

erties: (i) A is essentially self-adjoint and has discrete spectrum in L*(R™);

(it) There exists an orthonormal basis of eigenfunctions ¢; € S(R™) (j =
2,...) with eigenvalues \j € R such that lim;_o |\j| = 0o

For a proof we refer to Shubin [21], Chapter 4; the essential property
that there is a basis of eigenfunctions belonging to S(R™) is due to the
global hypoellipticity of operators with Weyl symbol in HL',"*"™(R?"):

Y € S'(R") and Ay € S(R™) implies 1 € S(R")

(global hypoellipticity is thus a stronger property than that of the usual
hypoellipticity, familiar from the (micro)local analysis of pseudodifferential
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operators). Let us apply this result to the operators A,. We will need the
following elementary result that says that the symbol classes HT','"" (R?")
are invariant under linear changes of variables:

Lemma 17 Let a € HUp'V"™ (R*) with mg > 0. For every linear auto-
morphism s of R?™ we have aos € HI')""™°(R*).

Proof. Set a/(z) = a(s2); clearly a’ € C*®°(R?"). We now note that there
exist A\, > 0 such that Az| < |sz| < ulz| for all z € R™. Since mg > 0 it
follows that

Colz|™ < la'(2)] < Cil2]
with Cj = CoA™° and C’; = Ch1p™. Next, we observe that for every a € N”,

|a| # 0, there exists B, > 0 such that |0%a’(2)| < Ba|0%a(sz)| (this is easily
seen by induction on |a| and using the chain rule); we thus have

|02/ ()] < CaBald'(2)|[s2] 71 < O/ (2)]|2] 7
with C!, = B,Cu\|7Plol. Hence o/ € HT'V"™(R?"). =

Proposition 18 Let a € HT,""™°(R*") be real, and mo > 0. Then: (i)
The operator A has discrete spectrum (A\j)jen with lim;_o |\j| = co. (ii)
The eigenfunctions of A are given by ®j;, = Us ;0 where the ¢; are the

etgenfunctions of the operator A with Weyl symbol a. (iii) We have ®j;, €
S(R*") and the @), form an orthonormal basis of S(R™).

Proof. It is an immediate consequence of Proposition 16 using Lemma 17.
]

Appendix: The Case () = (g x

We now specialize our discussion to the physically interesting case where

Q= Q@J\] with
e I
= < ~1 h_1N> (53)

discussed in the Introduction. In order to apply the theory exposed in the
previous sections to systems associated with such a matrix, we have to find
conditions that ensure the invertibility of this matrix. We will follow closely
the exposition in [5, 7]. Before we proceed, let us recall a few notions about
the Pfaffian of an antisymmetric matrix. It turns out that the determinant
of such a matrix {2 can always be written as the square of a polynomial in
the entries of Q. This polynomial is called the Pfaffian Pf(€2) of the matrix
Q. Thus, by definition:

[P£(€2)] = det Q. (54)
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It follows that the Pfaffian is nonvanishing only for 2n x 2n antisymmetric
matrices, in which case it is a polynomial of degree exactly n. It immediately
follows from (54) that the Pfaffian has the following properties:

Pf(sQs?) = det(s) Pf(Q) (55)
and
Pf(QT) = (=1)"P£(Q) , Pf(AQ) = A" Pf(Q).

Moreover, for an arbitrary n x n matrix M we have:

0 M\ _, .\nm-1)/2
Pf( a7 o )_( 1) det M. (56)

Let (wapg) (o, =1,---,2n) denote the elements of Q. The Pfaffian of
) can be obtained from the following recursive formula:

2n
PEQ) =) (—1)%wia PE(Q4 4) (57)

a=2

where (25 , denotes the matrix 2 with both the first and a-th rows and
columns removed.

Proposition 19 let us assume that
C:max{ﬁijnkl/ff,1§i<j§n,1§k<l§n}<1. (58)
Then: (i) we have det 2 # 0 and the sign of P{(Q) is given by
sign [Pf(Q)] = (—1)"=D/2, (59)
(1) A matriz s such that sJs” = Q has positive determinant: det s > 0.
Proof. (i) From (53) and (57) we get:
PH(Q) = fj(—w‘)h” PEQy,) + (D)™ PRy p,). (60)
i=2

A term which is independent of the elements of ©® and N can only be found in
(—1)ntt P£(€},,1,). Suppose that n > 3. If we apply the recursive formula
(57) again we obtain a term of the form (—1)"*1(—1)" Pf(A3) where As is
obtained from by removing the 1st, 2nd, (n+1)-th and (n+2)-th rows and
columns. After i steps we obtain a term (—1)""(=1)"... (=1)" 271 Pf(4;)
where A; is obtained from {2 by removing the 1st, 2nd,..., i-th, and (n+1)th,
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(n + 2)th,..., (n 4+ i)th rows and columns. We terminate this process when
1 =n — 2. We thus obtain:

0 ngtm g 0
On,n—1
n n = 0 0 1
0 -1 nn,g—l 0 (61)

_ <9n71,7;l727n71,n _ 1) (_1)2?:—41i'
And thus the term independent of the elements of © and N is (—1)™"~1)/2,
We leave to the reader the simple task of verifying that this result also holds
when n = 2. Let us now turn to the # and n dependent terms. We resort to
the definition of the Pfaffian:

1

PHO) = 2nn!

Z sgn (o) We(2i-1),0(2i)» (62)

oESan

where Sa,, is the symmetric group and sgn(o) is the signature of the permu-
tation o. Moreover, we use the following notation. If n = 2, for instance,
then we consider the permutations of the set {1,2,3,4}. Suppose that in the
string 11} ;wy(2i—1),0(2i) We pick k elements of the matrix h='O, p elements
of the matrix #~'N and [ elements of the matrix I or —I. Then, of course:

E+l+p=n. (63)

If we pick [ elements from I or —I, then the remaining k£ 4+ p terms can
only be taken from () when 2[ lines and rows have been eliminated. In
particular, we remove [ lines and rows from A~'@. That leaves us with
(n — I —1)(n — 1)/2 non-vanishing independent parameters in h~'0. Each
time we choose one of the latter for our string I}’ ;ws(2i—1),(2i), We have
to eliminate another 2 lines and 2 columns. So if we pick k elements out
of the (n — 1 —1)(n — 1)/2 non-vanishing independent elements of h~10, we
remove 2k lines and columns. We are left with (n —1—2k—1)(n—1—2k)/2
non-vanishing independent elements. But this is only possible if we have

2k <n—1. (64)
A similar argument leads to the inequality

2p <n-—I. (65)
Now, (64) and (65) are only compatible with (63) if:

n—1
k—p—T. (66)
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This means that in each string we have exactly the same number of elements
of h~1© and A~'N. This proves that:

PE(Q) = (=1)" V2 4 P oy, (67)

where Py, /o) is a homogeneous polynomial of degree [n/2] (the integral part
of n/2) in the dimensionless variables 6;;ny;/ h? with 1 < i < j < n and
1 <k <1l <mn. Let ¢/ be the permutation which yields the contribution
(=1)""=1D/2 t0 the Pfaffian and let Sh, := Sa,\ {0'}. We thus have:

1 n
|Pinjg| = S Z sgn (o) We(2i-1),0(2i) (68)
) o€esh,,
1 n
< ] Z I |Wo(2i-1),0(20) - (69)
' oeS),

If a string I} Wy (2i—1),0(2) contains k elements of h~'© and k elements of
LN, then
I, ‘wa(Zifl),a(%)} <<, (70)

where we used ¢ < 1. Since there are n! —1 < n! elements in S}, we
conclude that:

¢
|Proj] < 57 < 1. (71)
This proves our claim. (ii) We have
det(s) Pf(J) = Pf(Q); (72)
from (56) we get Pf(J) = (—=1)"»~1/2 and hence, by (72), dets > 0 as

claimed. m

Remark 20 Writing s in block-matriz form (é g) the condition sJs! =

Q is equivalent to the relations
ABT —BAT =n'e , ¢DT' —DCT =n'N , ADT —BCT =1.
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