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Abstract. In this paper we study the generating function f(t) for the se-
quence of the moments

R

γ
P i(z)q(z)dz, i ≥ 0, where P (z), q(z) are rational

functions of one complex variable and γ is a curve in C. We calculate an ana-
lytical expression for f(t) and provide conditions implying the rationality and
the vanishing of f(t). In particular, for P (z) in generic position we give an ex-
plicit criterion for a function q(z) to be orthogonal to all powers of P (z) on γ.

Besides, we prove a stronger form of the Wermer theorem, describing analytic
functions satisfying

R

S1 hi(z)gj(z)g′(z)dz = 0, i ≥ 0, j ≥ 0, in the case where
the functions h(z), g(z) are rational. We also generalize the theorem of Duis-
termaat and van der Kallen about Laurent polynomials L(z) whose integral
positive powers have no constant term, and prove other results about Laurent
polynomials L(z), m(z) satisfying

R

S1 Li(z)m(z)dz = 0, i ≥ i0.

1. Introduction

In this paper we study the generating function f(t) =
∑∞

i=0 mit
i for the sequence

of the moments

(1) mi =

∫

γ

P i(z)q(z)dz, i ≥ 0,

where P (z), q(z) are rational functions of one complex variable and γ is a curve
in C. In particular, we study conditions under which f(t) is a rational function, a
polynomial, or an identical zero.

The main motivation for such a study is the relation of the function f(t) with
the classical Center-Focus problem of Poincaré. Let F (x, y), G(x, y) be real-valued
functions of x, y analytical in a neighborhood of the origin in R2 and vanishing at
the origin together with their first derivatives. The Poincaré problem is to find
conditions under which all solutions of the system

(2)

{
ẋ = −y + F (x, y),
ẏ = x+G(x, y),

around zero are closed (see e.g. the recent survey [12] and the bibliography therein).
Despite the efforts of many researchers this problem remains open even in the case
where F (x, y) and G(x, y) are polynomials of degree 3, and any advances in its
understanding are of a great interest.

It was shown in [10] that if F (x, y), G(x, y) are homogeneous polynomials of the
same degree, then one can construct another polynomials f(x, y), g(x, y) such that
(2) has a center if and only if all solutions of the trigonometric Abel equation

(3)
dr

dϕ
= f(cosϕ, sinϕ) r2 + g(cosϕ, sinϕ) r3

1
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with r(0) small enough are periodic on [0, 2π]. In its turn, the trigonometric Abel
equation can be transformed by an exponential substitution into the equation

(4)
dy

dz
= l(z)y2 +m(z)y3,

where l(z) and m(z) are Laurent polynomials. Furthermore, all solutions of (3)
with r(0) small enough are periodic on [0, 2π] if and only if all solutions of (4) with
y(1) small enough are non-ramified along S1. By the analogy with system (2), if all
solutions of (3) with r(0) small enough are periodic on [0, 2π] (resp. if all solutions
of (4) with y(1) small enough are non-ramified along S1) we will say that Abel
equation (3) (resp. Abel equation (4)) has a center.

In the series of papers [3]-[6] the following modification of the center problem
for equation (4) was proposed: find conditions under which for any solution y(z) of
the Abel differential equation

(5)
dy

dz
= p(z)y2 + q(z)y3

with polynomial coefficients p(z), q(z) the equality y(1) = y(0) holds whenever y(0)
is small enough (as above, in case if this condition is satisfied we will say that Abel
equation (5) has a center). This modification seems to be easier than the initial
problem at the same time keeping its main features, and in this context can be
considered as a simplified form of the classical Center-Focus problem of Poincaré.

The center problem for Abel equation (5) naturally leads to the following “poly-
nomial moment problem”: find conditions under which polynomials P (z), q(z)
satisfy the system

(6)

∫ 1

0

P i(z)q(z)dz = 0, i ≥ 0,

or, in other words, find conditions implying the vanishing of the corresponding
function f(t). The center problem for Abel equation (5) is related to the polynomial
moment problem in several ways. For example, it was shown in [5] that for the
parametric version

dy

dz
= p(z)y2 + εq(z)y3

of (5) the “infinitesimal” center condition with respect to ε reduces to (6) with
P (z) =

∫
p(z)dz. On the other hand, it was shown in [8] that “at infinity” (under

an appropriate projectivization of the parameter space) the center condition for (5)
also reduces to (6). For other results relating the center problem for equation (5)
and the polynomial moment problem see [8] and the bibliography therein.

Posed initially as an intermediate step on the way to the solution of the Poincaré
problem, the polynomial moment problem turned out to be quite subtle question
unexpectedly related with such branches of mathematics as the Galois theory and
representations of groups. This problem has been studied in the papers [3]-[7], [11],
[21]-[27], [30], [33] with the final solution achieved in [27], [30]. Before formulating
the results of [27], [30] explicitly let us introduce the following “composition con-
dition” which being imposed on P (z) and Q(z) =

∫
q(z)dz implies both equalities

(6) and a center for (4). Namely, suppose that there exist polynomials P̃ (z), Q̃(z),
W (z) such that the equalities

(7) P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)), W (0) = W (1)
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hold. Then changing the variable z to W (z) and taking into account that for any
path γ connecting 0 and 1 the path W (γ) is closed, it is easy to see that equalities
(6) hold and Abel equation (4) has a center. Furthermore, the main conjecture
concerning the center problem for the Abel equation (“the composition conjecture
for the Abel equation”) states that (4) has a center if and only (7) holds.

For many classes of P (z) the composition condition (7) turns out to be necessary
for equalities (6) to be satisfied. For instance, this is true if 0, 1 are not critical
points of P (z) ([11]) or if P (z) is indecomposable that is can not be represented as
a composition of two non-linear polynomials ([22]). Nevertheless, this is not true in
general [21], and a right description of solutions of (6) is as follows [27]: non-zero
polynomials P (z), q(z) satisfy (6) if and only if Q(z) =

∫
q(z)dz can be represented

as a sum of polynomials Qj(z) such that

(8) P (z) = P̃j(Wj(z)), Qj(z) = Q̃j(Wj(z)), and Wj(0) = Wj(1)

for some polynomials P̃j(z), Q̃j(z),Wj(z). Moreover, it was shown in [30] that
actually any solution of the polynomial moment problem may be obtained as a sum
of at most two reducible solutions and that the corresponding reducible solutions
may be described in a very explicit form.

In the same way as the center problem for Abel equation (5) leads to the poly-
nomial moment problem, the center problem for equation (4) leads to the following
“Laurent polynomial moment problem”, which is the main motivation for investi-
gations of this paper: describe Laurent polynomials L(z),m(z) such that

(9)

∫

S1

Li(z)m(z)dz = 0, i ≥ 0.

An analogue of condition (7) in this setting is that there exist a Laurent polynomial

W (z) and polynomials L̃(z), m̃(z) such that the equalities

(10) L(z) = L̃(W (z)), m(z) = m̃(W (z))W ′(z)

hold. Clearly, (10) implies (9). Furthermore, if for given L(z) there exist several
such m(z), then (9) is satisfied for their sum. However, in distinction with the
polynomial moment problem other mechanisms for (9) to be satisfied also exist.

For example, if L(z) = L̃(zd) for some d > 1, then the residue calculation shows
that condition (9) is satisfied for any Laurent polynomial containing no terms czn

with n ≡ −1 mod d.
In addition to topics related to the Poincaré problem, the questions concerning

the function f(t) appear also in other circumstances. Let us mention for example
the following particular case of the Mathieu conjecture concerning compact Lie
groups [15] proved by Duistermaat and van der Kallen [13]: if all integral positive
powers of a Laurent polynomial L(z) have no constant term, then L(z) is either a
polynomial in z, or a polynomial in 1/z. Clearly, the assumption of this theorem is
equivalent to the condition that the function f(t) for P (z) = L(z), m(z) = 1/z, and
γ = S1 is a constant. Observe a delicate difference with the Laurent polynomial
moment problem: in the assumption of the theorem of Duistermaat and van der
Kallen it is not required that integral in (9) equals zero for i = 0. Furthermore,
the addition of such a condition would make the problem meaningless since for
i = 0 and m(z) = 1/z integral in (9) is distinct from zero for any non-zero L(z).
Notice also that the question about description of polynomials P (z), q(z) for which
the function f(t) is equal to a constant, and not just to zero as in the polynomial
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moment problem, was recently raised by Zhao [38] in relation with his conjecture
about images of commuting differential operators (such a description is not an
immediate corollary of the solution of the polynomial moment problem given in
[27]).

Finally, observe that the classical Wermer theorem [34], [35], describing analytic
functions on S1 satisfying

(11)

∫

S1

hi(z)gj(z)g′(z)dz = 0, i, j ≥ 0,

in the case where the functions h(z), g(z) are rational, obviously also is related to
the subject of this paper. Here, however, the assumption requires that an infinite

number of functions fj(t), j ≥ 0, corresponding to Pj(z) = h(z), qj(z) = gj(z)g′(z),
and γ = S1, vanish simultaneously. Notice that for rational h(z) and g(z) the Wer-
mer theorem is equivalent to the following statement [2]: a necessary and sufficient
condition for h(z), g(z) to satisfy equalities (11) is that there exist rational functions

h̃(z), g̃(z), w(z) such that

(12) h(z) = h̃(w(z)), g(z) = g̃(w(z)),

and the curve w(S1) is homologous to zero in CP1 with poles of f̃(z) and g̃(z)
removed.

This paper is organized as follows. In the second section we calculate an analyt-
ical expression for f(t). Our approach here is similar to the one of [25]; however,
in contrast to [25], we obtain an explicit analytical expression for f(t). Notice that
formulas obtained imply in particular that if γ is closed, then f(t) is an algebraic
function from the field KP generated over C(z) by the branches P−1

i (z), 1 ≤ i ≤ n,
of the algebraic function P−1(z) inverse to P (z), while if γ is non-closed, then f(t)
is a linear combination of branches of the logarithm with coefficients from KP .
Another corollary is that if γ is closed and homologous to zero in CP1 with poles
of P (z) removed, then the function f(t) is rational for any q(z). Following [25], if
P (z) and γ satisfy the last condition we will say that poles of P (z) lie on one side

of γ.
Although the analytical expression for f(t) obtained in the second section is

explicit, in general this expression by itself does not allow us to conclude whether
f(z) is rational or vanishes identically, and the third section of the paper is devoted
to these questions. We show that if poles of P (z) do not lie on one side of γ, then
f(t) is rational if and only if the superpositions of the rational function (q/P ′)(z)
with branches of P−1(z) satisfy a certain system of equations

(13)

n∑

i=1

fs,i

( q
P ′

)
(P−1

i (z)) = 0, fs,i ∈ Z, 1 ≤ s ≤ k,

where fs,i and k depend on P (z) and γ only. This result generalizes the corre-
sponding criterion for polynomials given in [26] and relies on the same ideas. In
particular, we use combinatorial objects called “constellations” (similar to what
is called “Dessins d’enfants”) which represent the monodromy group GP of the
algebraic function P−1(z) in a combinatorial way.

In the third section we also show that if P (z) and q(z) satisfy the conditions

(14) q−1{∞} ⊆ P−1{∞}, P (∞) = ∞,
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then the rationality of f(t) yields that f(t) ≡ 0. Notice that this result implies
immediately the theorem of Duistermaat and van der Kallen cited above. Indeed, if
L(z) is not a polynomial in z or in 1/z, then for P (z) = L(z), q(z) = 1/z conditions
(14) are satisfied and therefore the equality f(t) = c would imply that c = 0 in
contradiction with the fact that for i = 0 the integral in (9) is not zero. Besides,
the mentioned result implies the following statement which gives the answer to the
question of Zhao: if integrals in (6) vanish for all i ≥ i0, then they vanish for all
i ≥ 0 and therefore the polynomial Q(z) is a sum of polynomials Qj(z) such that
(8) holds.

In the fourth section, using system (13) and the characteristic property of per-
mutational matrix representations of doubly transitive groups, we show that if P (z)
is in generic position and poles of P (z) do not lie on one side of γ, then the function
f(t) is rational if and only if the function q(z) has the form

(15) q(z) = q̃(P (z))P ′(z)

for some rational function q̃(z). Besides, we show that for P (z) as above a rational
function q(z) satisfies

∫

γ

P i(z)q(z)dz = 0, i ≥ 0,

if and only if (15) holds for some rational function q̃(z) whose poles lie outside the
curve P (γ).

In the fifth section we study conditions for vanishing of double moments (11)
for rational h(z), g(z) in a more general setting where the integration path is an
arbitrary curve and the conditions i ≥ 0, j ≥ 0 may be weaker. We prove two
results which precise and generalize the Wermer theorem in the special case where
h(z), g(z) are rational.

In the sixth section we obtain some preliminary results concerning the Laurent
polynomial moment problem. In particular, we deduce from the results of the fourth
section its solution in the case where L(z) is in generic position. Besides, we prove
two generalizations of the theorem of Duistermaat and van der Kallen.

In the seventh section we study the following problem: how many first integrals
in (9) should vanish in order to conclude that all of them vanish. Using the fact
that the corresponding function f(t) is contained in the field KL, we give a bound
which depends on degrees of Laurent polynomial L(z) and m(z) only.

Finally, the eighth section is devoted to relations between the condition that f(t)

is rational and the condition that there exist rational functions q̃(z), P̃ (z), W (z)
such that degW (z) > 1 and

(16) P (z) = P̃ (W (z)), q(z) = q̃(W (z))W ′(z)

(notice that (15) is a particular case of (16) whereW (z) = P (z) and P̃ (z) = z, while
(7), without the requirement W (0) = W (1), is equivalent to (16) for q(z) = Q′(z)).
More precisely, we are interested in conditions which imply that for given P (z)
and γ such that poles of P (z) do not lie on one side of γ, the rationality of f(t)

implies that (16) holds for some q̃(z), P̃ (z), and W (z) with degW (z) > 1. Using
a general algebraic result of Girstmair [14] we give such a criterion and discuss an
explanatory example.
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2. Analytic expression for I∞(t)

2.1. Definition of the function I∞(t). Let P (z), q(z) be rational functions and
γ ⊂ C be a curve. We always will assume that degP (z) > 0 and q(z) 6≡ 0. We also
will assume that γ is an oriented piecewise-smooth curve having only transversal
self-intersections and containing no poles of P (z) or q(z). In this paper we study
the function

f(t) =

∞∑

i=0

mit
i,

where

(17) mi =

∫

γ

P i(z)q(z)dz.

More precisely, instead of studying the function f(t) directly, we study the function
defined near infinity by the integral

(18) I(t) = I(q, P, γ, t) =
1

2π
√
−1

∫

γ

q(z)dz

P (z) − t
.

Clearly, integral (18) defines a holomorphic function in each domain of the comple-
ment of P (γ) in CP1 and, if I∞(t) is a function defined in the domain U∞ containing
infinity, then the calculation of its Taylor series at infinity shows that

(19) I∞(t) = − 1

2π
√
−1

1

t
f

(
1

t

)
.

Therefore, the study of f(t) near zero is equivalent to the study of I∞(t) near
infinity and vice versa.

Notice that under certain conditions the function I∞(t) = I∞(q, P, γ, t) coincides

with a similar function I∞(q̃, P̃ , γ̃, t), where P̃ (z), q̃(z) are rational functions of

smaller degrees. Namely, suppose that there exist rational functions q̃(z), P̃ (z),
W (z) such that degW (z) > 1 and

(20) P (z) = P̃ (W (z)), q(z) = q̃(W (z))W ′(z).

Then changing the variable z to W (z) we see that

(21) I∞(q, P, γ, t) = I∞(q̃, P̃ ,W (γ), t),

or equivalently

(22)

∫

γ

P i(z)q(z)dz =

∫

W (γ)

P̃ i(z)q̃(z)dz, i ≥ 0.

If rational functions q̃(z), P̃ (z), and W (z) as above exist, we will say that the

function I∞(q, P, γ, t) is reducible and reduces to the function I∞(q̃, P̃ ,W (γ), t).
A version of the definition above is given by the integral

1

2π
√
−1

∫

γ

dQ(z)

P (z) − t
,

where P (z), Q(z) are rational functions. Of coarse, near infinity this integral co-
incides with the function I∞(q, P, γ, t), where q(z) = Q′(z). Nevertheless, the def-
inition (18) is more general since the indefinite integral

∫
q(z)dz is not always a
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rational function. Notice that in the case where a rational function Q(z) such that
q(z) = Q′(z) exists, the condition (20) is equivalent to the condition that

(23) P (z) = P̃ (W (z)), Q(z) = Q̃(W (z))

for some rational functions Q̃(z), P̃ (z), W (z), degW (z) > 1. If the last condition
is satisfied for some rational functions P (z), Q(z) we will say that P (z), Q(z) have
a non-trivial common compositional right factor.

Let CP ⊂ CP1 be the set of branch points of the algebraic function P−1(z) inverse
to P (z). Throughout the paper, U will always denote a fixed simply connected
subdomain of C such that U ∩ CP = ∅ and ∞ ∈ ∂U . Notice that the condition
∞ ∈ ∂U implies that U ∩ U∞ is not empty. Since U is simply connected, the
condition U ∩ CP = ∅ implies that in U there exist n = degP (z) single value
analytical branches of P−1(z). We will denote these branches by P−1

i (z), 1 ≤ i ≤ n.

Under the analytic continuation along a closed curve the set P−1
i (z), 1 ≤ i ≤ n,

transforms to itself and this induces a homomorphism

(24) π1(CP1 \ CP , c) → Sn, c ∈ U.

The image GP of homomorphism (24) is called the monodromy group of P (z).
Recall that the group GP is permutation equivalent to the Galois group of the
algebraic equation P (x) − z = 0 over the ground field C(z).

2.2. Calculation of I∞(t) for closed γ. In this subsection we will assume that
γ is a closed curve. In this case for any point z ∈ CP1 \ γ the winding number of
γ about z is well defined. We will denote this number by µ(γ, z). Let zq

1 , . . . , z
q
l

be finite poles of q(z). For s, 1 ≤ s ≤ l, denote by qs(z) the principal part of the
Laurent series of q(z) at zs, and set

ψs(t) =

n∑

i=1

( qs
P ′

)
(P−1

i (t)), t ∈ U.

Since ψs(t) is invariant with respect to the action of the group GP , this is a rational
function.

Furthermore, denote by zP
1 , . . . , z

P
r poles of P (z) in CP1 and define Je, 1 ≤ e ≤ r,

as a subset of {1, 2, . . . , n}, n = degP (z), consisting of all i ∈ {1, 2, . . . , n} such
that for t close to infinity, P−1

i (t) is close to zP
e .

Theorem 2.1. Let γ be a closed curve. Then for all t ∈ U ∩ U∞ close enough to

infinity the equality

(25) I∞(t) =

r∑

e=1

µ(γ, zP
e )
∑

i∈Je

( q
P ′

) (
P−1

i (t)
)
−

l∑

s=1

µ(γ, zq
s)ψs(t)+

+
1

2π
√
−1

1

(P (∞) − t)

∫

γ

q(z)dz

holds.

Proof. Indeed, for t ∈ U ∩ U∞ poles of the function

q(z)

P (z) − t
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split into two groups. The first one contains poles of q(z) while the second one
contains the points P−1

i (t), 1 ≤ i ≤ n. Moreover, for all t close enough to infinity

these groups are disjointed and P−1
i (t), 1 ≤ i ≤ n, are finite.

Clearly, for any i, 1 ≤ i ≤ n, we have:

ResP−1

i
(t)

q(z)

P (z) − t
=
( q

P ′

)
(P−1

i (t)).

On the other hand, for any s, 1 ≤ s ≤ l, we have:

Reszq
s

q(z)

P (z) − t
= Reszq

s

qs(z)

P (z) − t
= −

n∑

i=1

ResP−1

i
(t)

qs(z)

P (z) − t
− Res∞

qs(z)

P (z) − t
=

= −
n∑

i=1

( qs
P ′

)
(P−1

i (t)) − Res∞
qs(z)

P (z) − t
= −ψs(t) − Res∞

qs(z)

P (z) − t
.

Furthermore,

Res∞
qs(z)

P (z) − t
=

1

P (∞) − t
Res∞qs(z) = − 1

P (∞) − t
Reszq

s
qs(z),

and
n∑

i=1

µ(γ, zq
s)Res∞

qs(z)

P (z) − t
= − 1

P (∞) − t

n∑

i=1

µ(γ, zq
s)Reszq

s
qs(z) =

= − 1

P (∞) − t

n∑

i=1

µ(γ, zq
s)Reszq

s
q(z) = − 1

2π
√
−1

1

(P (∞) − t)

∫

γ

q(z)dz.

Therefore,

(26) I∞(t) =

n∑

i=1

µ(γ, P−1
i (t))Res P−1

i
(t)

q(z)

P (z) − t
+

l∑

s=1

µ(γ, zq
s)Reszs

q(z)

P (z) − t
=

=

r∑

e=1

∑

i∈Je

µ(γ, P−1
i (t))

( q

P ′

) (
P−1

i (t)
)
−

l∑

s=1

µ(γ, zq
s)ψs(t)+

+
1

2π
√
−1

1

(P (∞) − t)

∫

γ

q(z)dz.

Finally, since for t close enough to infinity and i ∈ Je the equality µ(γ, P−1
i (t)) =

µ(γ, zP
e ) holds we obtain (25). �

Following [25], we will say that points x1, x2, . . . , xk ∈ CP1 lie on one side of
a curve γ, if γ is closed and homologous to zero in CP1 \ {x1, x2, . . . , xk}. An
equivalent condition is that γ is closed and

(27) µ(γ, x1) = µ(γ, x2) = · · · = µ(γ, xk).

Further, if x1, x2, . . . , xk ∈ CP1 lie on one side of γ and all numbers in (27) equal
zero, then we will say that x1, x2, . . . , xk lie outside γ.

Corollary 2.2. If poles of P (z) lie on one side of γ, then for any rational function

q(z) the function I∞(t) is rational. If poles of P (z) and q(z) lie outside γ, then

I∞(t) ≡ 0.
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Proof. Indeed, if poles of P (z) lie on one side of γ, then (27) implies that the
expression

r∑

e=1

µ(γ, zP
e )
∑

i∈Je

( q
P ′

) (
P−1

i (t)
)

in formula (25) is invariant with respect to the action of the group GP and therefore
is a rational function. Since other terms of (25) also are rational, this implies the
rationality of I∞(t).

The second part of the corollary follows from formula (25) or directly from the
Cauchy theorem applied to coefficients (17) of I∞(t). �

2.3. Calculation of I∞(t) for non-closed γ. In this subsection we will assume
that γ is a non-closed curve with the starting point a and the ending point b.

Lemma 2.3. The function

q̂(t) =

∫

γ

q(z) − q(t)

z − t
dz

is a rational function the set of poles of which is a subset of the set of poles of q(z).

Proof. Indeed, q(z) can be represented as a sum of terms α(z−β)l, l ∈ Z, α, β ∈ C.
If l ≥ 0, then (z − β)l − (t− β)l is divisible by z − t and

(28)

∫

γ

(z − β)l − (t− β)l

z − t
dz

is a polynomial. On the other hand,

(z − β)−l − (t− β)−l =
(t− β)l − (z − β)l

(t− β)l(z − β)l

implying that for l < 0 integral (28) is a rational function with a unique possible
pole β. �

For t ∈ U denote by Log 1,i(z − P−1
i (t)), 1 ≤ i ≤ n, a branch of the logarithm

defined in a neighborhood of the point z = a and by Log 2,i(z−P−1
i (t)), 1 ≤ i ≤ n,

its analytical continuation along γ to a neighborhood of b.

Theorem 2.4. Let γ be a non-closed curve, with the starting point a and the ending

point b, and t ∈ U ∩U∞ be a point close enough to infinity. Then in a neighborhood

of t the equality

(29) I∞(t) =
1

2π
√
−1

1

(P (∞) − t)

∫

γ

q(z)dz +
1

2π
√
−1

n∑

i=1

(
q̂

P ′

)(
P−1

i (t)
)
+

+
1

2π
√
−1

n∑

i=1

( q
P ′

) (
P−1

i (t)
) [

Log 2,i

(
(b− P−1

i (t)
)
− Log 1,i

(
(a− P−1

i (t)
)]

holds.

Proof. For t as above poles P−1
i (t), 1 ≤ i ≤ n, of the function

1

P (z) − t
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are finite and

ResP−1

i
(t)

1

P (z) − t
=

1

P ′(P−1
i (t))

, 1 ≤ i ≤ n.

This implies that

1

P (z) − t
=

1

P (∞) − t
+

n∑

i=1

1

P ′(P−1
i (t))

1(
z − P−1

i (t)
) ,

and hence

I∞(t) =
1

2π
√
−1

1

(P (∞) − t)

∫

γ

q(z)dz +
1

2π
√
−1

n∑

i=1

1

P ′(P−1
i (t))

∫

γ

q(z)dz

z − P−1
i (t)

.

Writing now q(z) as

q(z) = q(z) − q(P−1
i (t)) + q(P−1

i (t)), 1 ≤ i ≤ n,

we obtain (29). �

3. Conditions for I∞(t) to be rational and to vanish

Let P (z) be a rational function and γ be a curve. In this section we construct a
finite system of equations

(30)

n∑

i=1

fs,i

( q
P ′

)
(P−1

i (z)) = 0, fs,i ∈ Z, 1 ≤ s ≤ k,

involving superpositions of the rational function (q/P ′)(z) with branches P−1
i (z),

1 ≤ i ≤ n, and depending on P (z) and γ only, such that I∞(t) = I∞(q, P, γ, t)
is rational for a rational function q(z) if and only if (30) holds. Another impor-
tant result of this section states that if functions P (z), q(z) satisfy the conditions
q−1{∞} ⊆ P−1{∞} and P (∞) = ∞, then the rationality of I∞(t) implies that
I∞(t) ≡ 0.

The criterion for rationality of I∞(t) given below generalizes the criterion for
orthogonality of a polynomial q(z) to all powers of a polynomial P (z) given in
[26], and as in [26] the idea is to change the integration path γ to a very special
one. Let P (z) be a rational function of degree n. Define an embedded into the
Riemann sphere graph λP , associated with P (z), as follows: take a “star” S joining
a non-branch point c of P−1(z) with all its finite branch points c1, c2, ..., ck by
non intersecting oriented arcs γ1, γ2, ..., γk, and set λP = P−1{S}. More precisely,
define vertices of λP as preimages of the points c and cs, 1 ≤ s ≤ k, and edges of
λP as preimages of the arcs γs, 1 ≤ s ≤ k, under the mapping P (z) : CP1 → CP1.
Furthermore, for each s, 1 ≤ s ≤ k, mark vertices of λP which are preimages of the
point cs by the number s (see Fig. 1).

By construction, the restriction of P (z) on CP1 \ λP is a covering of the topo-
logical punctured disk CP1 \ {S ∪∞} and therefore CP1 \ λP is a disjointed union
of punctured disks (see e.g. [16]). This implies that the graph λP is connected and
the faces of λP are in a one-to-one correspondence with poles of P (z).

Define a star of λP as a subset of edges of λP consisting of edges adjacent to
some non-marked vertex. Since without loss of generality we may assume that the
domain U defined above satisfies the condition S \ {c1, c2, ..., ck} ⊂ U , the set of
stars of λP may be naturally identified with the set of single-valued branches of
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Figure 1

P−1(z) in U as follows: to the branch P−1
i (z), 1 ≤ i ≤ n, corresponds the star Si

such that P−1
i (z) maps bijectively the interior of S to the interior of Si.

The graph constructed above is known under the name of “constellation” and is
closely related to the notion of a ”Dessins d’enfant” (see [19] for further details and
other versions of this construction). Notice that the Riemann existence theorem
implies that a rational function P (z) is defined by c1, c2, ..., ck and λP up to a
composition P (z) → P (µ(z)), where µ(z) is a Möbius transformation.

It follows from the definition that a point x is a vertex of λP if and only if P (x)
is a branch point of P−1(z). For our purposes however it is more convenient to
define the graph λP so that in the case where the integration path γ is non-closed,
its end points a, b always would be vertices of λP . So, in the case where γ is non-
closed and P (a) or P (b) (or both of them) is not a branch point of P−1(z), we
modify the construction as follows. Define c1, c2, ..., ck as the set of all finite branch
points of P (z) supplemented by P (a) or P (b) (or by both of them) and set as above
λP = P−1{S}, where S is a star connecting c with c1, c2, ..., ck. Clearly, λP is still
connected and the points a, b now are vertices of λP .

Deform now the integration path γ to a path γ̃ such that γ̃ is contained in λP

and is homologous to γ in CP1 \ P−1{∞} (see Fig. 2), and define a function Ĩ∞(t)

Figure 2
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by the formula

(31) Ĩ∞(t) =

∫

eγ

q(z)dz

P (z) − t
.

Since we can write Ĩ∞(t) in the form

Ĩ∞(t) =

∫

eγ

q(z)dP (z)

P ′(z)(P (z) − t)
,

making the change of variable z → P (z) we obtain that

(32) Ĩ∞(t) =

k∑

s=1

∫

γs

ϕs(z)

z − t
dz,

where ϕs(z), 1 ≤ s ≤ k, are linear combinations of the functions (q/P ′)(P−1
i (z)),

1 ≤ i ≤ n, in U. Namely, for i, 1 ≤ i ≤ n, and s, 1 ≤ s ≤ k, let cs,i be a unique
vertex of the star Si marked by the number s. Then for s, 1 ≤ s ≤ k, we have:

(33) ϕs(z) =

n∑

i=1

fs,i

( q

P ′

)
(P−1

i (z)),

where fs,i is a sum of “signed” appearances of the vertex cs,i on the path γ̃. By
definition, this means that an appearance is taken with the sign plus if the center of
Si is followed by cs,i, and minus if cs,i is followed by the center of Si. For example,
for the graph λP shown on Fig. 1 and the path γ̃ ⊂ λP pictured by the fat line we
have:

ϕ1(z) = −
( q
P ′

)
(P−1

2 (z)) +
( q

P ′

)
(P−1

3 (z)),

ϕ2(z) =
( q

P ′

)
(P−1

2 (z)) −
( q
P ′

)
(P−1

1 (z)) +
( q
P ′

)
(P−1

6 (z)) −
( q
P ′

)
(P−1

4 (z)),

ϕ3(z) =
( q

P ′

)
(P−1

1 (z)) −
( q
P ′

)
(P−1

6 (z)) +
( q
P ′

)
(P−1

4 (z)) −
( q
P ′

)
(P−1

3 (z)).

Lemma 3.1. The set of equations ϕs(z) = 0, 1 ≤ s ≤ k, contains an equation

whose coefficients are not all equal to zero if and only if poles P (z) do not lie on

one side of γ.

Proof. If γ is non-closed and x is the starting point or the ending point of γ, then
it follows from the construction that for s, 1 ≤ s ≤ k, such that P (x) = cs and i,
1 ≤ i ≤ n, such that x ∈ Si, the coefficient fs,i of the equation ϕs(z) is distinct
from zero.

Assume now that γ is a closed curve such that all equations ϕs(z) = 0, 1 ≤ s ≤ k,
have zero coefficients and show that this implies that poles of P (z) lie on one side
of γ. Since oriented bounds γj , 1 ≤ j ≤ d, of faces fj of the graph λP generate
H1(CP1 \ P−1{∞},Z), we can write γ̃ as a sum

(34) γ̃ =

d∑

i

ejγj , ej ∈ Z,

and for any s, 1 ≤ s ≤ k, the equation ϕs(z) is obtained as a sum

ϕs(z) =

d∑

i

ejϕs,j(z),
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where ϕs,j(z) is an equation similar to ϕs(z) but written for γj , 1 ≤ j ≤ d. If in
representation (34) an index ej0 is distinct from zero, then for any s, 1 ≤ s ≤ k, the
term ej0γj0 in (34) gives a non-zero contribution into the equation ϕs(z) = 0. Since
however all coefficients of this equation are zeros, it follows from the construction
that for any face fi0 of λP adjacent to fj0 the equality ei0 = ej0 holds. Taking
into account that we can join any two faces of λP by a connected chain of faces,

this implies that all ej , 1 ≤ j ≤ d, are equal. Therefore, since
∑d

i γj ∼ 0 in
H1(CP1 \ P−1{∞},Z), poles of P (z) lie on one side of γ. �

Theorem 3.2. Let P (z), q(z) be rational functions and γ be a curve. Then the

function I∞(t) is rational if and only if ϕs(z) ≡ 0 for all s, 1 ≤ s ≤ k.

Proof. Set γ̂ = γ − γ̃. Since γ̂ is homologous to zero in CP1 \ P−1{∞}, it follows

from Corollary 2.2 that Ĩ∞(t) − I∞(t) is a rational function, and hence in order to

prove the theorem it is enough to prove that the function Ĩ∞(t) is rational if and
only if

(35) ϕs(z) ≡ 0, 1 ≤ s ≤ k.

It follows from Theorem 2.1, Lemma 2.3, and Theorem 2.4 that a multivalued

analytical function Î(t) obtained by the complete analytical continuation of Ĩ∞(t)
may ramify only at the points c1, c2, ... , ck or ∞ and that any other singularity of

Î(t) is a pole at worst. This implies that in order to prove the rationality of Ĩ∞(t)

it is enough to show that at any of points c1, c2, ... , ck the function Î(t) does not
ramify and its Laurent series contains only finite number of terms with negative

exponents. Indeed, if this condition is satisfied, then Î(t) also does not ramify at ∞
and hence coincides in a neighborhood of ∞ with I∞(t). Thus, Î(t) does not ramify
in all CP1 and its Laurent series at any point of CP1 contains only finite number
of terms with negative exponents. Therefore, I∞(t) is rational by the well-known
characterization of rational functions.

Making if necessary a small deformation of S \ {c1, c2, ... , ck} we may assume
that λP \ P−1{c1, c2, ... , ck} contains no poles of q(z). Assume first that the set
P−1{c1, c2, ... , ck} also contains no poles of q(z). Then representations (31),(32)

are well defined and give an analytical extension of Ĩ∞(t) to CP1 \ S. Keeping for
this extension the same notation and using the well-known boundary property of
Cauchy type integrals (see e.g. [20]), we see that for any s, 1 ≤ s ≤ k, and any
interior point z0 of γs the equality

(36) lim
t→z0

+Ĩ∞(t) − lim
t→z0

−Ĩ∞(t) = ϕs(z0)

holds, where the limits are taken when t approaches z0 from the “right” (resp.

“left”) side of γs. Clearly, if Ĩ∞(t) is a rational function, then the limits above
coincide for any z0 and hence (35) holds. On the other hand, if (35) holds, then it

follows directly from formula (32) that Ĩ∞(t) ≡ 0.
If P−1{c1, c2, ... , ck} contains poles of q(z), then change the path γ̃ in the defi-

nition of the function Ĩ∞(t) as follows. For each s, 1 ≤ s ≤ k, take a small loop δs

around cs and for each x ∈ P−1{cs} denote by ωx the connectivity component of
P−1{δs} which bounds a domain containing x. Replace now a small part of γ̃ near
each point x such that x ∈ P−1{cs} ∩ q−1{∞} by a part of ωx as it shown on Fig.
3 so that the path obtained would be homologous to γ in CP1 \ P−1{∞}.
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Figure 3

Clearly, the function Ĩ∞(t) − I∞(t) is still rational and

Ĩ∞(t) =

k∑

s=1

∫

l+s

ϕs(z)

z − t
dz +

k∑

s=1

∫

l−s

gs(z)

z − t
dz +

k∑

s

∫

δs

hs(z)

z − t
dz,

where l+s (resp. l−s ) is the part of γs which is outside (resp. inside) the domain
bounded by δs, gs are some linear combinations of the functions (q/P ′)(P−1

i (z)),
1 ≤ i ≤ n, and hs(z) are analytic continuations of some similar combinations along
δs. Since δs, 1 ≤ s ≤ k, can be taken as close to cs as we want, formula (36)

still implies that Î(t) does not ramify at cs, 1 ≤ s ≤ k, if and only if condition

(35) holds. In particular, condition (35) is necessary for the rationality of Ĩ∞(t).

Therefore, we only must show that if Î(t) does not ramify in CP1, then the Laurent

series of Î(t) at cs, 1 ≤ s ≤ k, cannot contain an infinite number of terms with
negative exponents.

If γ is closed, then the last statement follows directly from Theorem 2.1. On the
other hand, if γ is non-closed, then it follows from Theorem 2.4 that the only points

where the Laurent series of Î(t) may have an infinite number of terms with negative
exponents are points P (a), P (b). Define Ja (resp. Jb) as a subset of {1, 2, . . . , n}
consisting of all i, 1 ≤ i ≤ n, such that when z is close to P (a) (resp. to P (b)),
P−1

i (z) is close to a (resp. b).
Suppose first that P (a) 6= P (b). Then Theorem 2.4 implies that near t ∈ U ∩U∞

any branch of Î(t) has the form

I1(t) = − 1

2π
√
−1

∑

i∈Ja

( q
P ′

) (
P−1

i (t)
)
Log

(
a− P−1

i (t)
)

+ χ(t),

where Log (z) is a branch of the logarithm and χ(t) is a branch of a function which
has only a finite ramification at P (a) and whose Puiseux series at P (a) has only a
finite number of terms with negative exponents. Furthermore, if i0 ∈ Ja is a fixed
index, then it is easy to see using Puiseux series that for any i ∈ Ja we have:

lim
t→P (a)

a− P−1
i (t)

a− P−1
i0

(t)
6= 0



ON FUNCTIONS ORTHOGONAL TO ALL POWERS OF A GIVEN FUNCTION 15

and hence
Log

(
a− P−1

i (t)
)

= Log
(
a− P−1

i0
(t)
)

+ ψi(t),

where

ψi(t) = Log

(
a− P−1

i (t)

a− P−1
i0

(t)

)

is a function analytical at P (a). This implies that

(37) I1(t) = − 1

2π
√
−1

Log
(
a− P−1

i0
(t)
) ∑

i∈Ja

( q
P ′

) (
P−1

i (t)
)

+ χ1(t),

where χ1(t) is a branch of a function which has only a finite ramification at P (a)
and whose Puiseux series at P (a) has only a finite number of terms with negative
exponents.

Since Log (z) has an infinite ramification at 0 it follows from (37) that if Î(t)
does not ramify at P (a) (or just has a finite ramification there), then necessary

(38)
∑

i∈Ja

( q
P ′

) (
P−1

i (t)
)

= 0

implying that the Laurent series of Ĩ∞(t) at P (a) has a finite number of terms with
negative exponents.

Similarly, near t ∈ U ∩ U∞ any branch of Î(t) has the form

(39) I2(t) =
1

2π
√
−1

Log
(
b− P−1

j0
(t)
) ∑

j∈Jb

( q

P ′

)(
P−1

i (t)
)

+ χ2(t),

where j0 ∈ Jb and χ2(t) is a branch of a function which has only a finite ramification
at P (b) and whose Puiseux series at P (b) has only a finite number of terms with

negative exponents. Therefore, if Î(t) does not ramify at P (b), then

(40)
∑

i∈Jb

( q
P ′

) (
P−1

i (t)
)

= 0

and the Laurent series of Î(t) at P (b) has a finite number of terms with negative
exponents.

Finally, if P (a) = P (b), then setting x = P (a) = P (b), we obtain similarly that

near t ∈ U ∩ U∞ any branch of Î(t) has the form

I3(t) =
1

2π
√
−1

Log
(
b− P−1

j0
(t)
) ∑

j∈Jb

( q
P ′

)(
P−1

i (t)
)
−

− 1

2π
√
−1

Log
(
a− P−1

i0
(t)
) ∑

i∈Ja

( q

P ′

)(
P−1

i (t)
)

+ χ3(t),

where χ3(t) is a branch of a function which has only a finite ramification at x and
whose Puiseux series at x has only a finite number of terms with negative exponents.
Furthermore, if da (resp. db) is the multiplicity of a (resp. of b) with respect to
P (z), then for the functions

f(t) =
(
a− P−1

i0
(t)
)da

, g(t) =
(
b− P−1

j0
(t)
)db

the inequality

lim
t→x

f(t)

g(t)
6= 0
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holds.
Therefore, near x

Log
(
b− P−1

j0
(t)
)

=
1

db
Log (g(t)) =

1

db
Log

(
f(t)

g(t)

f(t)

)
=

=
da

db
Log (a− P−1

i0
(t)) + ψ(t),

where ψ(t) = Log (f(t)/g(t)) is a function analytical at x and hence
(41)

I3(t) =
1

2π
√
−1

Log
(
a− P−1

i0
(t)
)

∑

j∈Jb

( q
P ′

)(
P−1

i (t)
)
−
∑

i∈Ja

( q

P ′

)(
P−1

i (t)
)

+

+χ4(t),

where χ4(t) is a branch of a function which has only a finite ramification at the point
x and whose Puiseux series at x has only a finite number of terms with negative

exponents. This implies that if Î(t) does not ramify at x, then

(42)
1

db

∑

i∈Jb

( q
P ′

) (
P−1

i (t)
)

=
1

da

∑

i∈Ja

( q

P ′

)(
P−1

i (t)
)

and the Laurent series of Î(t) at x has a finite number of terms with negative
exponents. �

Corollary 3.3. Suppose that poles of P (z) do not lie on one side of γ. Then there

exist integral numbers fi, 1 ≤ i ≤ s, not all equal between themselves such that for

any q(z) such that I∞(t) is rational the equality

(43)

n∑

i=1

fi

( q
P ′

)
(P−1

i (z)) ≡ 0

holds.

Proof. Indeed, by construction, for any s, 1 ≤ s ≤ k, either
∑n

i=1 fs,i = 0 or∑n
i=1 fs,i = ±1, where the last case has the place if and only if γ is non-closed and

exactly one of the end points a, b of γ is an s-vertex of λP . This implies that for
any s coefficients of ϕs(z) are not all equal, unless they all equal to zero. Now the
lemma follows from Lemma 3.1. �

Notice that if

(44) q−1{∞} ⊆ P−1{∞},
then the condition that the curve γ̃ − γ is homologous to zero in CP1 \ {P−1{∞}}
implies that poles of P (z) and q(z) lie on one side of γ̃ − γ. Furthermore, if
additionally the equality

(45) P (∞) = ∞
holds, then poles of P (z) and q(z) lie outside γ̃ − γ and therefore by Corollary

2.2 the function Ĩ∞(t), defined by formulas (31), (32), coincides with I∞(t). On

the other hand, condition (35) implies that Ĩ∞(t) ≡ 0. Therefore, we obtain the
following statement.



ON FUNCTIONS ORTHOGONAL TO ALL POWERS OF A GIVEN FUNCTION 17

Theorem 3.4. Let P (z), q(z) be rational functions and γ be a curve. Furthermore,

suppose that q−1{∞} ⊆ P−1{∞} and P (∞) = ∞. Then the function I∞(t) is

rational if and only if I∞(t) ≡ 0. �

Notice that Theorem 3.4 also can be deduced directly from Theorem 2.1, Lemma
2.3, and Theorem 2.4. Indeed, taking into account the equality I∞(∞) = 0, they
imply that if I∞(t) is rational and equalities (44), (45) hold, then I∞(t) may have
poles only at points cs, 1 ≤ s ≤ k.

Furthermore, it follows from equalities (44) and
(

1

P ′

)
(P−1

i (z)) = (P−1
i )′(z), 1 ≤ i ≤ n,

that near cs, 1 ≤ s ≤ k, we have:
( q
P ′

)
(P−1

i (t)) = O(t − cs)
1
d
−1,

where d ≥ 1 is the multiplicity of limt→cs
P−1

i (z) with respect to P (z). If γ is closed,
then by Theorem 2.1 this implies that

I∞(t) = o(t− cs)
−1

near cs, 1 ≤ s ≤ k, and hence if I∞(t) does not ramify at cs, 1 ≤ s ≤ k, then it
is analytical there. Therefore, if I∞(t) is rational, then it is a constant equal to
I∞(∞) = 0. For non-closed γ the proof is similar with the additional use of formulas
(37)-(42).

Corollary 3.5. Let P (z), q(z) be rational functions and γ be a curve such that

q−1{∞} ⊆ P−1{∞}, P (∞) = ∞, and

(46)

∫

γ

P i(z)q(z)dz = 0

for all i ≥ i0, where i0 ≥ 0. Then (46) holds for all i ≥ 0.

Proof. Since (46) implies that I∞(t) is a polynomial in 1/t, the statement follows
from Theorem 3.4. �

Notice that conditions (44), (45) are satisfied in particular if P (z), q(z) are poly-
nomials or if P (z), q(z) are Laurent polynomials such that P (z) is not a polynomial
in z or in 1/z.

Notice also that in the course of the proof of Theorem 3.2 was established the
following statement which is a version of previous results proved in [22], [25], [26].

Proposition 3.6. If γ is non-closed and P (a) 6= P (b), then the rationality of I∞(t)
implies equalities (38), (40). On the other hand, if γ is non-closed and P (a) = P (b),
then the rationality of I∞(t) implies equality (42). �

Corollary 3.7. If γ is non-closed, then the rationality of I∞(t) implies that either

P (a) = P (b) or both points a, b are ramification points of P.

Proof. Indeed, if P (a) 6= P (b) and say a is not a ramification point of P , then the
sum in (38) contains a single element implying q ≡ 0. �

In conclusion of this section observe that if there exists a rational function Q(z)
such that Q′(z) = q(z), then conditions (35) implying the rationality of I∞(t) can
be written in a bit different form which is often used in previous publications.
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Proposition 3.8. Suppose that γ is closed and q(z) = Q′(z) for some rational

function Q(z). Then I∞(t) is rational if and only if the equalities

(47)

n∑

i=1

fs,iQ(P−1
i (z)) = 0, 1 ≤ s ≤ k,

where fs,i, 1 ≤ s ≤ k, 1 ≤ i ≤ n, are coefficients from (33), hold for any choice of

Q(z) =
∫
q(z)dz.

Proof. Since equations (35) are obtained from (47) by derivation, condition (47) is
clearly sufficient. Furthermore, Theorem 3.2 implies that if I∞(t) is rational, then
for any s, 1 ≤ s ≤ k, we have:

(48)

n∑

i=1

fs,iQ(P−1
i (z)) = ds, ds ∈ C.

On the other hand, since γ is closed, it follows from the construction of system (35)
that the limit of the left side of (48) as z tends to cs is zero. Therefore, ds = 0. �

Proposition 3.9. The conclusion of Proposition 3.8 holds also for non-closed γ
if q−1{∞} ⊆ P−1{∞}, P (∞) = ∞, and Q(z) =

∫
q(z)dz is chosen in such a way

that Q(a) = 0.

Proof. Indeed, if γ is non-closed, then calculating the limit of the left side of (48)
as z tends to cs, we obtain one of the following equalities: ds = 0 if cs 6= P (a), P (b),
ds = −Q(a) if cs = P (a) and cs 6= P (b), ds = Q(b) if cs = P (b) and cs 6= P (a),
or ds = Q(a) − Q(b) if cs = P (b) = P (a). Furthermore, if I∞(t) is rational, then
Theorem 3.4 implies that Q(a) = Q(b) by (46) taken for i = 0. Therefore, ds = 0
by the choice of Q(z) =

∫
q(z)dz. �

4. Case of generic position

In this section we give a criterion for I∞(t) to be rational or to vanish identi-
cally under condition that P (z) is in generic position. We start from recalling the
following simple fact (see e.g. [27], Lemma 2.3) explaining the theoretic-functional
meaning of the equality

(49) Q(P−1
i1

(z)) = Q(P−1
i2

(z)), 1 ≤ i1, i2 ≤ n,

where P (z), Q(z) are rational functions, degP (z) = n.

Lemma 4.1. Let P (z), Q(z) be non-constant rational functions. Then P (z) and

Q(z) have a non-trivial compositional right factor if and only if equality (49) holds

for some i1 6= i2. In particular, Q(z) = Q̃(P (z)) for some rational function Q̃(z) if

and only if all the functions Q(P−1
i (z)), 1 ≤ i ≤ n, are equal. �

Let G ⊂ Sn be a transitive permutation group. Recall that the permutation
matrix representation ofG over a fieldK of characteristic zero is the homomorphism
ρG : G → GL(Kn), where ρG(g), g ∈ G, is defined as a linear map which sends a
vector ~a = (a1, a2, ..., an) to the vector ~ag = (ag(1), ag(2), ..., ag(n)). Notice that for
any K the linear space Kn has at least two ρG-invariant subspaces: the subspace
EK ⊂ Kn generated by the vector (1, 1, ..., 1), and its orthogonal complement E⊥

K

with respect to the inner product

(~u,~v) = u1v1 + u2v2 + · · · + unvn, ~v = (v1, v2, . . . , vn), ~u = (u1, u2, . . . , un).
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Theorem 4.2. Let P (z), q(z) be rational functions and γ ⊂ C be a curve. Assume

that EQ and E⊥
Q are the only invariant subspaces with respect to the permutation

matrix representation of the monodromy group GP of P (z) over Q. Then the func-

tion I∞(t) is rational if and only if either γ is closed and poles of P (z) lie on one

side of γ, or P (γ) is closed and q(z) = q̃(P (z))P ′(z) for some rational function

q̃(z).

Proof. The sufficiency follows from Corollary 2.2 taking into account that if q(z) =
q̃(P (z))P ′(z), then

(50) I∞(q, P, γ, t) = I∞(q̃, z, P (γ), t).

Assume now that I∞(t) is rational and poles of P (z) do not lie on one side of γ.
In this case by Corollary 3.3 there exist integers fi, 1 ≤ i ≤ s, not all equal between
themselves such that equality (43) holds. Furthermore, continuing analytically
equality (43) and exchanging σ and σ−1, we see that for any σ ∈ GP the equality

n∑

i=1

fσ(i)

( q
P ′

)
(P−1

i (z)) = 0

holds.
Let V be a subspace of Qn generated by the vectors ~vσ , σ ∈ GP , where

~vσ = (fσ(1), fσ(2), ..., fσ(n)).

Clearly, V is ρGP
-invariant and for any ~v = (v1, v2, . . . , vn) from V the equality

(51)

n∑

i=1

vi

( q

P ′

)
(P−1

i (z)) = 0

holds. Since fi, 1 ≤ i ≤ s, are not all equal between themselves, V 6= EQ. Fur-
thermore, V 6= Qn. Indeed, otherwise the elements ~ei, 1 ≤ i ≤ n, of the Euclidean
basis are contained in V , and (51) implies that

( q

P ′

)
(P−1

1 (z)) ≡
( q

P ′

)
(P−1

2 (z)) ≡ · · · ≡
( q
P ′

)
(P−1

n (z) ≡ 0

in contradiction with the assumption q(z) 6≡ 0. Hence, V = E⊥
Q . Since this implies

that V contains the vectors ~ei − ~ej , 1 ≤ i, j ≤ n, it follows from (51) that

(52)
( q

P ′

)
(P−1

1 (z)) ≡
( q

P ′

)
(P−1

2 (z)) ≡ · · · ≡
( q

P ′

)
(P−1

n (z)).

Therefore,
(

q
P ′

)
(z) = q̃(P (z)) for some rational function q̃(z) by Lemma 4.1. Fi-

nally, it follows from equality (50) and Corollary 3.7 that P (γ) is closed. �

Recall that a permutation group G acting on a set C is called doubly transitive
if it acts transitively on the set of pairs of elements of C. Notice that the full
symmetric group is obviously doubly transitive.

Corollary 4.3. Let P (z), q(z) be rational functions and γ ⊂ C be a curve. Assume

that the monodromy group GP of P (z) is doubly transitive. Then the function I∞(t)
is rational if and only if either γ is closed and poles of P (z) lie on one side of γ,
or P (γ) is closed and q(z) = q̃(P (z))P ′(z) for some rational function q̃(z).
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Proof. Indeed, it is well known (see e.g. [36], Th. 29.9) that a permutation group
G is doubly transitive if and only if the subspaces EC and E⊥

C are the only ρG-
invariant subspaces with respect to the permutation matrix representation of GP

over C. Therefore, if GP is doubly transitive, then EQ and E⊥
Q are the only invariant

subspaces with respect to the permutation matrix representation of GP over Q and
the corollary follows from Theorem 4.2. �

Corollary 4.4. There exists a proper algebraic subset Σ ⊂ CP2n+1 such that for

any rational function

(53) P (z) =
anz

n + an−1z
n−1 + ...+ a0

bnzn + bn−1zn−1 + ...+ b0

with (an, ..., a0, bn, ..., b0) /∈ Σ, any non-zero rational function q(z), and any curve

γ ⊂ C, the function I∞(t) is rational if and only if either γ is closed and poles

of P (z) lie on one side of γ, or P (γ) is closed and q(z) = q̃(P (z))P ′(z) for some

rational function q̃(z).

Proof. It is easy to see that there exists a proper algebraic subset Σ ⊂ CP2n+1 such
that corresponding rational functions are of degree n, indecomposable, and have
only simple branch points (a branch point x of a rational function f(z) of degree n is
called simple if f−1{x} contains n−1 points). This means that monodromy groups
of these functions are primitive and contain a transposition. Since a primitive
permutation group containing a transposition is the full symmetric group (see e.g.
Theorem 13.3 of [36]) the corollary follows now from Corollary 4.3. �

Theorem 4.5. Let P (z), q(z) be rational functions and γ ⊂ C be a curve such that

(54)

∫

γ

P i(z)q(z)dz = 0, i ≥ 0.

Suppose additionally that poles of P (z) do not lie on one side of γ and that EQ

and E⊥
Q are the only invariant subspaces with respect to the permutation matrix

representation of the monodromy group GP of P (z) over Q. Then P (γ) is closed

and q(z) = q̃(P (z))P ′(z) for some rational function q̃(z) whose poles lie outside the

curve P (γ).

Proof. Indeed, by Theorem 4.2 the curve P (γ) is closed and q(z) = q̃(P (z))P ′(z)
for some rational function q̃(z). Furthermore, it follows from (50) and Theorem 2.1
that

I∞(t) = −
el∑

s=1

µ(P (γ), zeq
s)q̃s,

where zeq
1 , z

eq
2, . . . , z

eq
el

are finite poles of q̃(z) and q̃s(z) is the principal part of q̃(z) at

z̃s. Therefore, the equality I∞(t) = 0 implies that µ(P (γ), zeq
s) = 0, 1 ≤ s ≤ l̃. �

The Corollaries 4.6 and 4.7 below are obtained from Theorem 4.5 in the same
way as Corollaries 4.3 and 4.4 are obtained from Theorem 4.2.

Corollary 4.6. Let P (z), q(z) be rational functions and γ ⊂ C be a curve such that

equalities (54) hold. Suppose additionally that poles of P (z) do not lie on one side

of γ and that the monodromy group GP of P (z) is doubly transitive. Then P (γ)
is closed and q(z) = q̃(P (z))P ′(z) for some rational function q̃(z) whose poles lie

outside the curve P (γ). �
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Corollary 4.7. There exists a proper algebraic subset Σ ⊂ CP2n+1 such that for

any non-zero rational function q(z), any curve γ ⊂ C, and any rational function

P (z) the poles of which do not lie on one side of γ and (an, ..., a0, bn, ..., b0) /∈ Σ, the

equalities (54) imply that P (γ) is closed and q(z) = q̃(P (z))P ′(z) for some rational

function q̃(z) whose poles lie outside the curve P (γ). �

Remark. Notice that if P (z) is a polynomial, then the requirement of Theorem 4.2
imposed on ρGP

-invariant subspaces of Qn may be weakened to the requirement of
indecomposability of P (z) via the Schur theorem (see [22]). However, there exist
indecomposable rational functions P (z) for which Theorem 4.2 fails to be true (see
Section 8).

5. Double moments of rational functions

In this section we prove two results which can be considered as versions of the
Wermer theorem [34], [35], describing analytic functions on S1 satisfying

∫

S1

hi(z)gj(z)g′(z)dz = 0, i, j ≥ 0,

in the case where the functions h(z), g(z) are rational while the integration path is
allowed to be an arbitrary curve in C. These results also generalize Theorem 6.1
and Corollary 6.2 of [25].

For given P (z), Q(z) and j ≥ 1 denote by Ij(t) the generating functions for the
sequence of the moments

(55) mi =

∫

γ

P i(z)Qj(z)Q′(z) dz, i ≥ 0.

Theorem 5.1. Let P (z), Q(z) be rational functions and γ be a curve such that

the functions Ij(t) are rational for any j, j0 ≤ j ≤ j0 + n − 1, where j0 ≥ 0 and

n = degP (z). Then there exist rational functions P̃ (z), Q̃(z), W (z) such that:

(56) P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)),

the curve W (γ) is closed, and poles of P̃ (z) lie on one side of W (γ).

Proof. The proof uses the same idea as the proof of Theorem 2 in [22], where double
moments of polynomials were investigated. Let W (z) be a rational function such

that C(P (z), Q(z)) = C(W (z)). Then the corresponding functions P̃ (z), Q̃(z) in
(56) have no common compositional right factor. Since for any i ≥ 0, j ≥ 0 we
have: ∫

γ

P i(z)Qj(z)Q′(z) dz =

∫

W (γ)

P̃ i(z)Q̃j(z)Q̃′(z) dz,

it is enough to show that γ̃ = W (γ) is closed and poles of P̃ (z) lie on one side

of γ̃. Assume the inverse. Then it follows from Corollary 3.3 applied to P̃ (z) and

Q̃j(z)Q̃′(z), j0 ≤ j ≤ j0 + ñ− 1, where ñ = deg P̃ (z) ≤ n, that the system

(57)

en∑

s=1

f̃iQ̃
j(P̃−1

i (z))

(
Q̃′

P ′

)
(P̃−1

i (z)) = 0, j0 ≤ j ≤ j0 + ñ− 1,
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has a non-trivial solution f̃1, f̃2, . . . f̃en. Since the determinant of (57) is a product

of the Vandermonde determinant D =‖ Q̃j(P̃−1
i (z)) ‖ and a non-zero function

en∏

i=1

Q̃j0(P̃−1
i (z))

(
Q̃′

P ′

)
(P̃−1

i (z)),

this implies that

(58) Q̃(P̃−1
i1

(z)) ≡ Q̃(P̃−1
i2

(z))

for some i1 6= i2, 1 ≤ i1, i2 ≤ ñ, and hence P̃ (z), Q̃(z) have a common compositional
right factor by Lemma 4.1. The obtained contradiction proves the theorem. �

Theorem 5.2. Let P (z), Q(z) be rational functions and γ be a curve. Then equal-

ities

(59)

∫

γ

P i(z)Qj(z)Q′(z)dz = 0

hold for all i ≥ i0, j ≥ j0, where i0 ≥ 0, j0 ≥ 0, if and only if there exist rational

functions P̃ (z), Q̃(z), W (z) such that:

(60) P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)),

the curve W (γ) is closed, and poles of P̃ (z) and Q̃(z) lie on one side of the curve

W (γ). In particular, if equalities (59) hold for all i ≥ i0, j ≥ j0, then they hold for

all i ≥ 0, j ≥ 0.

Proof. Using the same reduction as in the proof of Theorem 5.1, it is enough to
show that if P (z) and Q(z) have no common compositional right factor, then (59)
holds if and only if poles of P (z) and Q(z) lie on one side of γ.

Assume first that poles of P (z) and Q(z) lie on one side of γ and show that this
implies that Ij(t) = 0 for any j ≥ 0. Set

q(z) = Qj(z)Q′(z), q∞(z) = q(z) −
l∑

s

qs(z),

where qs(z), 1 ≤ s ≤ l, are principal parts of q(z) at its finite poles zs, 1 ≤ s ≤ l.
Applying Theorem 2.1 to q(z) and taking into account that the equality

(61) q(z) =

(
Qj+1(z)

j + 1

)′

implies the equality
∫

γ
q(z)dz = 0, we see that

(62) Ij(t) = µ
n∑

i=1

(q∞
P ′

)
(P−1

i (t)),

where µ equals to the common winding number of poles of P (z) and Q(z). If ∞ is
a pole of Q(z), then µ = 0 implying Ij(t) = 0. On the other hand, if ∞ is not a
pole of Q(z), then (61) implies that q∞(z) = 0.

In other direction, assume that (59) holds and show that then points from the
set P−1{∞} ∪Q−1{∞} lie on one side of γ. Clearly, for any s ≥ i0 the function

R(z) = P s(z) +Q(z)
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satisfies the equalities
∫

γ

R(z)iQj(z)Q′(z)dz = 0, i ≥ 0, j ≥ j0.

Furthermore,

R−1{∞} ⊆ P−1{∞} ∪Q−1{∞}
and, if s is big enough, then

R−1{∞} = P−1{∞} ∪Q−1{∞}.
Therefore, since we may apply Theorem 5.1 to the functions R(z), Q(z), it is
enough to prove that for any k ≥ 1 there exists s ≥ k such that R(z) and Q(z), or
equivalently P s(z) and Q(z), have no common compositional right factor.

Since the monodromy group of a rational function has only finite number of im-
primitivity systems, there exist a finite number of right factorsQj(z), degQj(z) > 1,
of Q(z) such that any other right factor of Q(z) of degree greater than one has the
form µ ◦Qj(z) for some Qj(z) and a Möbius transformation µ. Further, it is easy
to see that if sj is a minimal number such that P sj (z) and Q(z) have a common
compositional right factor µ ◦ Qj(z), then any other s with such a property is a
multiple of sj . Since P (z) and Q(z) have no common compositional right factor,
all sj are greater than one. Therefore, for s which is not a multiple of any sj the
polynomials R(z) and P (z) have no common compositional right factor. �

6. Laurent polynomial moment problem

In this subsection we study the following problem: for a given Laurent polynomial

L(z) describe Laurent polynomials m(z) such that

(63)

∫

S1

Li(z)m(z)dz = 0,

for all i ≥ i0, where i0 ≥ 0. It is easy to see that if L(z) is a polynomial in z or in
1/z, then for any m(z) there exists i0 ≥ 0 such that (63) holds. So, the interesting
case is the one where L(z) is not a polynomial in z or in 1/z. We will call such
Laurent polynomials proper.

We start from a generalizations of the following result proved by Duistermaat
and van der Kallen [13]: if all integral positive powers of a Laurent polynomial L(z)
have no constant term, then L(z) is either a polynomial in z, or a polynomial in 1/z.
Clearly, the condition that all powers of L(z) have no constant term is equivalent
to the condition that integrals in (63) vanish for m(z) = 1/z and i ≥ 1.

Theorem 6.1. Let L(z) and m(z) be Laurent polynomials such that the coefficient

of the term 1/z in m(z) is distinct from zero and (63) holds for all i ≥ i0, where

i0 ≥ 0. Then L(z) is either a polynomial in z, or a polynomial in 1/z.

Proof. Assume the inverse. Then by Corollary 3.5 equalities (63) hold for all i ≥ 0.
On the other hand, for i = 0 the integral in (63) does not vanish since it coincides
with the coefficient of the term 1/z in m(z) multiplied by 2π

√
−1. �

Corollary 6.2. Let L(z) be a proper Laurent polynomial and m(z) a Laurent poly-

nomial such that (63) holds for all i ≥ i0, where i0 ≥ 0. Then there exists a Laurent

polynomial M(z) such that m(z) = M ′(z). �
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Let

L(z) = an1
zn1 + an1+1z

n1+1 + · · · + an2
zn2 , an1

6= 0, an2
6= 0,

be a Laurent polynomial. Define the bi-degree of L(z) as the ordered pair (n1, n2) of
integers n1, n2. Notice that if M(z) is another Laurent polynomial whose bi-degree
is (m1,m2), then the bi-degree of the product L(z)M(z) is (n1 +m1, n2 +m2).

The next result provides yet another generalization of the theorem of Duister-
maat and van der Kallen.

Theorem 6.3. Let L(z) be a Laurent polynomial of bi-degree (n1, n2) and m(z)
be either a polynomial in z of bi-degree (m1,m2), where m1 ≡ −1 mod n1, or a

polynomial in 1/z of bi-degree (m1,m2), where m2 ≡ −1 mod n2, such that (63)
holds for all i ≥ i0, where i0 ≥ 0. Then L(z) is either a polynomial in z, or a

polynomial in 1/z.

Proof. Assume the inverse. Observe that then in particular n1 < 0 and n2 > 0.
Furthermore, Corollary 3.5 implies that (63) hold for all i ≥ 0. Therefore, in order
to prove the theorem it is enough to show that if m(z) has the form as above, then
there exists k ≥ 0 such that for i = k integral in (63) is distinct from zero.

If m(z) is a polynomial in z and l1 ≥ 0 is a number such m1 + n1l1 = −1,
then the integral in (63) is distinct from zero for i = l1 since the bi-degree of
Ll1(z)m(z) is (−1,m2 + n2l1) implying that the residue of Ll1(z)m(z) at zero does
not vanish. Similarly, if m(z) is a polynomial in 1/z and l2 ≥ 0 is a number such
m2 + n2l2 = −1, then the integral in (63) is distinct from zero for i = l2, since the
bi-degree of Ll2(z)m(z) is (m1 + n1l2,−1). �

Corollary 6.4. Let L(z) be a Laurent polynomial of bi-degree (n1, n2) and d be

either a non-negative integer such that d ≡ 0 mod n2, or a non-positive integer

such that d ≡ 0 mod n1. Suppose that for all i ≥ i0, where i0 ≥ 0, the coefficient

of zd in Li(z) vanishes. Then L(z) is either a polynomial in z, or a polynomial in

1/z. �

For a Laurent polynomial M(z) denote by M0(z) the principal part of M(z) at
zero and by M∞(z) the difference M(z)−M0(z). Taking into account Corollary 6.2
in the following we usually will write system (63) in the form

(64)

∫

S1

Li(z)dM(z) = 0,

i ≥ i0, where it is always assumed that M∞(0) = 0.
Define J0 (resp. J∞) as a subset of {1, 2, . . . , r}, r = degL(z), consisting of

all i ∈ {1, 2, . . . , r} such that for t close to infinity, L−1
i (t) is close to 0 (resp. to

∞). Notice that {1, 2, . . . , r} = J0 ∪ J∞. The theorem below summarizes general
results about I∞(t) obtained above in the particular case where I∞(t) corresponds
to moments in (64).

Theorem 6.5. Let L(z) be a proper Laurent polynomial and M(z) is a Laurent

polynomial such that (64) holds for all i ≥ i0, where i0 ≥ 0. Then (64) holds for all

i ≥ 0. Furthermore, condition (64) is equivalent to the condition

(65)
∑

i∈J0

M∞(L−1
i (t)) ≡

∑

i∈J∞

M0(L
−1
i (t)).
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Finally, if the monodromy group of L(z) is doubly transitive, or more generally, if

EQ and E⊥
Q are the only invariant subspaces with respect to the permutation matrix

representation of the monodromy group GL of L(z) over Q, then (64) holds if and

only if M(z) = M̃(L(z)), where M̃(z) is a polynomial.

Proof. The first statement follows from Corollary 3.5. Furthermore, it follows from
Theorem 2.1, taking into account the equality

∫
S1
dM(z) = 0, that

(66) I∞(t) =
∑

i∈J0

(
M ′

L′

)
(L−1

i (t)) −
deg L∑

i=1

(
M ′

0

L′

)
(L−1

i (t)) =

=
∑

i∈J0

(
M ′

∞
L′

)
(L−1

i (t)) −
∑

i∈J∞

(
M ′

0

L′

)
(L−1

i (t)).

Integrating the last equality we see that condition (64) is equivalent to the condition

(67)
∑

i∈J0

M∞(L−1
i (t)) −

∑

i∈J∞

M0(L
−1
i (t)) = c,

where c ∈ C. Furthermore, since the limit of the left part of (67) as t tends to
infinity is M∞(0)|J0| = 0, we conclude that (64) is equivalent to (66).

Finally, Theorem 4.5 implies that if EQ and E⊥
Q are the only invariant subspaces

with respect to the permutation matrix representation of GL of L(z) over Q, then
there exists a rational function N(z) such that

(68) M ′(z) = N(L(z))L′(z).

Since M ′(z) is a Laurent polynomial it follows from (68) that N(L(z)) also is
a Laurent polynomial. Therefore, N(z) is a polynomial for otherwise N(L(z))

would have a pole distinct from 0,∞, and hence M(z) = M̃(L(z)), where M̃(z) =∫
N(z)dz. �

Notice that if L(z) is decomposable, then Laurent polynomials M(z) satisfying
(64) but distinct from the ones described in Theorem 6.5 always exist. Indeed,
observe first that if L(z) = A(B(z)) is a decomposition of a Laurent polynomial
L(z) into a composition of rational functions A(z) and B(z), with degA(z) > 1,
degB(z) > 1, then the condition B−1{A−1{∞}} = {0,∞}, implies that there
exists a Möbius transformation µ(z) such that either A(µ(z)) is a polynomial
and µ−1(B(z)) is a Laurent polynomial, or A(µ(z)) is a proper Laurent polyno-
mial and µ−1(B(z)) = zd, for some d > 1 1. Therefore, if L(z) is decompos-

able, then either there exist a polynomial L̃(z) and a Laurent polynomial L1(z)

such that L(z) = L̃(L1(z)), or there exists a Laurent polynomial L1(z) such that
L(z) = L1(z

d) for some d > 1. In the first case it is easy to see that any Laurent

polynomial M(z) = M̃(L1(z)), where M̃(z) is a polynomial, satisfies (64) for all
i ≥ 0. On the other hand, in the second case the residue calculation shows that any
Laurent polynomial M(z), containing no terms of degrees which are multiples of d,
satisfies (64). Furthermore, if L(z) admits several decompositions, then the sum of
corresponding M(z) also satisfies (64).

It seems natural to start the investigation of solutions of the Laurent polynomial
moment problem from describing polynomial solutions, and two theorems below are

1For a comprehensive decomposition theory of Laurent polynomials generalizing the decompo-
sitions theory of polynomials developed by Ritt [32] we refer the reader to [29]
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initial results in this direction. Another interesting subproblem is to describe solu-
tions of the polynomial moment problem in the case where L(z) is indecomposable.

In the last case “expectable” solutions should have the form M(z) = M̃(L(z)),

where M̃(z) is a polynomial. However, one can show (see Section 8 and the paper
[31]) that other solutions also may exist.

Theorem 6.6. Let L(z) be a proper Laurent polynomial of bi-degree (n1, n2), such

that either n1 = −1 or n2 = 1. Then a Laurent polynomial M(z) which is a

polynomial in z may not satisfy (64) for i ≥ i0, where i0 ≥ 0, unless M(z) ≡ 0.

Proof. Indeed, if M(z) is a polynomial, then (65) is equivalent to

(69)
∑

i∈J0

M(L−1
i (t)) ≡ 0.

If n2 = 1, then (69) immediately implies that M(z) ≡ 0 since in this case J0

contains a single element. Suppose now that n1 = −1 and denote by L−1
∞ (z)

a unique branch of L−1(z) for which limz→∞ L−1
∞ (z) = ∞. It follows from the

transitivity of the monodromy group GL of L(z) that there exists σ ∈ GL such that
acting on equality (69) by σ we obtain the equality

(70) M(L−1
∞ (t)) +

∑

i∈J0\j

M(L−1
i (t)) = 0,

where j ∈ J0. Since for any M(z) 6≡ 0 we have:

lim
t→∞

M(L−1
∞ (t)) = ∞

while
lim

t→∞
M(L−1

i (t)) = 0, i ∈ J0,

equality (70) implies that M(z) ≡ 0. �

Theorem 6.7. Let L(z) be a proper Laurent polynomial of bi-degree (n, p), where

p is a prime, and M(z) 6≡ 0 be a polynomial in z such that (64) holds for i ≥ i0,
where i0 ≥ 0. Then L(z) = L1(z

p) for some Laurent polynomial L1(z) while M(z)
is a linear combination of the monomials zj , where j 6≡ 0 mod p.

Proof. Show first that J∞ is a block of an imprimitivity system for the monodromy
group GL of L(z). Indeed, if J∞ is not a block, then there exists σ ∈ GL such that
σ{J∞}∩J∞ 6= ∅ and σ{J∞}∩J0 6= ∅. This implies that acting on equality (69) by
σ we obtain the equality

(71)
∑

i∈A

M(L−1
i (t)) +

∑

i∈B

M(L−1
i (t)) = 0,

where A is a subset of J0 and B is a proper subset of J∞.
Without loss of generality we may assume that L−1

i (t), 1 ≤ i ≤ p + n, are
numerated in such a way that J∞ = {1, 2, . . . , p} and that to the loop around
infinity corresponds the element

(72) (12 . . . p)(p+ 1p+ 2 . . . p+ n)

of GL. Then Puiseux series of L−1
i (t), 1 ≤ i ≤ p, at infinity are

L−1
i (z) =

∞∑

k=−1

ukε
(i−1)k
p

(
1

z

) k
p

,
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where εp = exp( 2π
√
−1

p ) and u−1 6= 0. Therefore,

M(L−1
i (z)) = βε(i−1)m

p z
m
p + o(z

m
p ), 1 ≤ i ≤ p,

where m = degM(z), β = um
−1 6= 0. On the other hand, for any i, p+1 ≤ i ≤ n+p,

near infinity we have:

M(L−1
i (z)) = o(1).

Therefore, for the coefficient γ of z
m
p in the Puiseux series of the function in the

left side of (71) the equality

(73) γ = β
∑

j∈B

ε(j−1)m
p .

Thus, if we will show that γ 6= 0, then the contradiction obtained will imply that
J∞ is a block.

Set

r(z) =
∑

j∈B

zj−1.

Clearly, γ = βr(εm
p ). Since p is a prime, the number εm

p is either 1 or a primitive
p-th root of unity. In the first case obviously γ 6= 0. On the other hand, in the
second case the equality r(εm

p ) = 0 implies that the p-th cyclotomic polynomial
Φp(z) divides r(z) in the ring Z[z]. However, this is impossible since

Φp(z) = 1 + z + z2 + · · · + zp−1,

while B is a proper subset of J∞. Therefore, γ 6= 0, and hence J∞ is a block.
Since the group GL contains a block, the Laurent polynomial L(z) may be de-

composed into a composition L(z) = A(B(z)) of rational functions A(z) and B(z)
of degree greater than one. Furthermore, since J∞ is a block and element (72)
transforms J∞ to itself, the function A(z) has two poles. Taking into account that
the bi-degree of L(z) is (n, p), this implies that there exists a Laurent polynomial
L1(z) such that L(z) = L1(z

p), where the bi-degree of L1(z) is (n/p, 1). Clearly,
M(z) can be written as

M(z) = M1(z
p) +M2(z),

where M1(z) is a polynomial in z and M2(z) is a combination of the monomials zj ,
where j 6≡ 0 mod p. Furthermore, clearly M2(z) satisfies (64). Therefore, M1(z

p)
also should satisfy (64). Since after the change of variable this implies that M1(z)
satisfies (64) for L(z) = L1(z) it follows from Theorem 6.6 that M1(z) ≡ 0. �

7. Bautin index for the Laurent polynomial moment problem

In this section we study the following problem: for Laurent polynomials L(z),
M(z) to find a number i0 such that the vanishing of the integrals

(74)

∫

S1

Li(z)dM(z) = 0,

for i satisfying 0 ≤ i ≤ i0 implies that they vanish for all i ≥ 0. A similar problem for
polynomials was studied in the recent paper by V. Kisunko [18], where a solution
was given in the case of generic position. The approach of [18] is based on the
fact that the function I∞(t) = I∞(q, P, γ, t) satisfies a Fuchsian linear differential
equation (see, e.g., [25], p. 250). In [18] this equation was calculated explicitly
in the case where P (z), q(z) are polynomials, and this permitted to estimate a
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maximal order of a zero of I∞(t) at infinity, in case where I∞(t) 6≡ 0, via degrees
of P (z), q(z) implying a bound needed.

Since Theorems 2.1, 2.4 give an explicit expression for the function I∞(t), they
provide an approach to the problem in the general case. We demonstrated this
approach below in the case where L(z), M(z) are Laurent polynomials.

For a Laurent polynomial L(z) of degree n define numbers fi, 1 ≤ i ≤ n, as
follows: fi, 1 ≤ i ≤ n, equals 1 if i ∈ J0 and 0 otherwise. Further, define a number
N(L) as the number of different vectors in the collection

(75) (fσ(1), fσ(2), . . . fσ(n)), σ ∈ GL.

Notice that obviously N(L) ≤ |GL| ≤ n!. Finally, for a function ψ(t) whose Puiseux
series at infinity is

(76) ψ(t) =

∞∑

k=j

wk

(
1

t

) k
l

,

where l ≥ 1 and wj 6= 0, set ord∞ψ(t) = j/l.

Theorem 7.1. Let L(z), M(z), degL(z) = n, degM(z) = m, be Laurent polyno-

mials such that the equality

(77)

∫

S1

Li(z)dM(z) = 0,

holds for all i satisfying 0 ≤ i ≤ m(N(L)− 1) + 1. Then (77) holds for all i ≥ 0. In

particular, equalities (77) hold for all i ≥ 0 whenever they hold for all i satisfying

0 ≤ i ≤ m(n! − 1) + 1.

Proof. Set

ψ(t) =

∫
I∞(t)dt =

1

2πi

∞∑

k=1

mk

k

(
1

t

)k

.

Clearly, we only must show that if

(78) ord∞ψ(t) > m(N(L) − 1),

then ψ(t) ≡ 0.
Equality (66) implies that

(79) ψ(t) =
∑

i∈J0

M(L−1
i (t)) −

n∑

i=1

M0(L
−1
i (t)).

Since ψ(t) is a sum of algebraic functions, ψ(t) itself is an algebraic function and
therefore satisfies an irreducible algebraic equation

(80) yN (t) + a1(t)y
N−1(t) + ... + aN (t) = 0, aj(t) ∈ C(t),

whose roots ψj(t), 1 ≤ j ≤ N, are all possible analytic continuations of ψ(t) and
whose coefficients are elementary symmetric functions of ψj(t), 1 ≤ j ≤ N . Fur-
thermore, since M(t), L(t) are Laurent polynomials, it follows from (79) that the
functions ψj(t), 1 ≤ j ≤ N, have no poles in C and therefore the functions aj(t),
1 ≤ j ≤ N, are polynomials. Finally, since

ϕ(t) =

deg L∑

i=1

M0(L
−1
i (t))
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is a rational function, the inequality

(81) N ≤ N(L)

holds.
Let (n1, n2) be the bi-degree of L(t). The Puiseux series at infinity of branches

L−1
i (t), i ∈ J0, have the form

(82)
∞∑

k=1

vk,i

(
1

t

) k
n1

,

where v1,i is distinct from zero, while Puiseux series at infinity of branches L−1
i (t),

i ∈ J∞, have the form

(83)

∞∑

k=−1

ṽk,i

(
1

t

) k
n2

,

where ṽ−1,i is distinct from zero. Since Puiseux series at infinity of the functions

M(L−1
i (t)), 1 ≤ j ≤ N, and M0(L

−1
i (t)), 1 ≤ j ≤ N, may be obtained by the

substitution of series (82), (83) into M(t) and M0(t), this implies that for any j,
1 ≤ j ≤ N, the inequality

(84) ord∞ψj(t) ≥ −m

holds. Therefore, since aj(t), 1 ≤ j ≤ N, are elementary symmetric functions of
ψj(t), 1 ≤ j ≤ N, the inequalities

ord∞aj(t) ≥ −mj, 1 ≤ j ≤ N,

hold and hence

(85) deg aj(t) = −ord∞aj(t) ≤ mj, 1 ≤ j ≤ N.

Now we are ready to show that if (78) holds, then ψ(t) ≡ 0. Indeed, assume the
inverse. Then for the coefficient aN(t) in (80) the inequality ord∞aN (t) ≤ 0 holds.
On the other hand, (78) and (81) imply that ord∞ψ(t) > m(N − 1) and hence for
any i, 1 ≤ i ≤ N, taking into account inequalities (85), we have:

ord∞{aN−i(t)ψ
i(t)} ≥ ord∞{aN−i(t)ψ(t)} =

= ord∞ψ(t) − deg aN−i(t) ≥ ord∞ψ(t) −m(N − 1) > 0

(here we set a0(t) ≡ 1). Therefore,

ord∞{ψN (t) + a1(t)ψ
N−1(t) + ... + aN−1(t)ψ(t)} > 0

in contradiction with

ψN (t) + a1(t)ψ
N−1(t) + ... + aN (t) = 0 �

Remark. The proof of Theorem 7.1 uses the same ideas as Section 2.4 of [26]. No-
tice that corresponding formulas in [26] on the page 758 contain misprints. Namely,
all printed powers of the expression m/n are actually its factors.
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8. Relations between the rationality and the reducibility of

I∞(q, P, γ, t)

8.1. Definition of the subspace MP,γ. Let γ be a curve and P (z) be a rational
function such that poles of P (z) do not lie on one side of γ. By Corollary 4.4, if P (z)
is in generic position, then the rationality of I∞(q, P, γ, t) for a rational function
q(z) implies that q(z) = q̃(P (z)) for some rational function q̃(z). For arbitrary
P (z) such a statement fails to be true. However, in many cases the rationality of
I∞(q, P, γ, t) still implies that I∞(q, P, γ, t) is reducible.

For example, if γ is a non-closed curve such that its end points a, b are not rami-
fication points of P (z), then the rationality of I∞(q, P, γ, t) implies its reducibility.
Indeed, by Corollary 3.7 in this case P (a) = P (b), and equality (42) from Proposi-
tion 3.6 reduces to the equality

(86)
( q

P ′

)
(P−1

i1
(z)) =

( q

P ′

)
(P−1

i2
(z))

for some i1 6= i2, 1 ≤ i1, i2 ≤ n. Therefore, by Lemma 4.1 there exist rational

functions R(z), P̃ (z), and W (z) with degW (z) > 1 such that

(87)
( q

P ′

)
(z) = R(W (z)), P (z) = P̃ (W (z))

and hence (20) holds for q̃(z) = R(z)P̃ ′(z) since (87) yields that

q(z) = R(W (z))P ′(z) = R(W (z))P̃ ′(W (z))W ′(z) = q̃(W (z))W ′(z).

In this section we in a sense describe the class of pairs P (z), γ for which the
rationality of I∞(q, P, γ, t) implies its reducibility. For given P (z) and γ, such that
poles of P (z) do not lie on one side of γ, a natural necessary condition for the
existence of q(z) such that I∞(q, P, γ, t) is rational but is not reducible may be
formulated as follows. Let

n∑

i=1

fs,i

( q
P ′

)
(P−1

i (z)) = 0, 1 ≤ s ≤ k,

be the system of equations from Theorem 3.2 and let MP,γ be a linear subspace of
Qn generated by the vectors

(fs,σ(1), fs,σ(2), ... , fs,σ(n)), σ ∈ GP , 1 ≤ s ≤ k,

where GP is the monodromy group of P (z) and n = degP (z). By Corollary 3.3
the subspace MP,γ is not zero-dimensional. Furthermore, by construction, MP,γ is
invariant with respect to the permutation representation of GP over Q and it follows
from Theorem 3.2 by the analytic continuation, that for any vector ~v ∈ MP,γ ,
~v = (v1, v2, . . . , vn), the equality

(88)

n∑

i=1

vi

( q

P ′

)
(P−1

i (z)) = 0

holds.
Observe now that if MP,γ contains a vector of the form ~ei − ~ej , i 6= j, where

~ei, 1 ≤ i ≤ n, denote vectors of the Euclidean basis of Qn, then the rationality
of I∞(q, P, γ, t) implies its reducibility since for such a vector equality (88) implies
(86) and (87). Therefore, a necessary condition for the existence of q(z) such that
I∞(q, P, γ, t) is rational but is not reducible is that MP,γ contains no vectors of
the form ~ei − ~ej , i 6= j, and in this section, using a general result of [14], we prove
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(Theorem 8.3 below) that this condition is also sufficient. As an application we
show that the requirement of Theorem 4.2 can not be weakened to the requirement
of indecomposability of P (z) already for Laurent polynomials.

8.2. Girstmair’s theorem. Let f(t) ∈ K[t] be an irreducible polynomial over a
field of characteristic zero K. Denote by x1, x2, . . . , xn roots of f(t), by L the field
K(x1, x2, . . . , xn), and by G the Galois group Gal (L/K). Usually we will identify
G with a permutation group acting on the set {1, 2, . . . , n} setting σ(i) = j if
xj = σ(xi), 1 ≤ i, j ≤ n. In this subsection, following [14], we sketch a solution
of the following problem: under what conditions on a collection W of vectors from

Kn there exists a rational function R(t) ∈ K(t) such that for all ~w ∈ W, ~w =
(w1, w2, . . . , wn), the equality

(89) w1R(x1) + w2R(x2) + · · · + wnR(xn) = 0

holds, and R(xi) 6= R(xj) for any i 6= j, 1 ≤ i, j ≤ n. If such a function R(t) exists
we will say that W is admissible.

Notice that if (89) holds for vectors ~w1, ~w2, then it holds for the vector a~w1+b~w2,
a, b ∈ K. Furthermore, for any element σ ∈ G, acting on equality (89) by σ and
replacing σ by σ−1, we obtain the equality

wσ(1)R(x1) + wσ(2)R(x2) + · · · + wσ(n)R(xn) = 0.

Therefore, equality (89) holds for all ~w ∈ W if and only if it holds for all vectors
from the linear subspace of Kn generated by the vectors

~wσ = (wσ(1), wσ(2), . . . wσ(n)), w ∈W, σ ∈ G.

Thus, without loss of generality we may assume that the collection W is a linear
subspace of Kn invariant with respect to the permutation representation of G on
Kn.

We start from reformulating the problem above in the form it was considered
in [14]. Fix a root x of f(t). Denote by H the stabilizer Gx of x in G and by
G/H = {s̄ : s ∈ G} the set of left cosets s̄ = sH of the subgroup H in G. Further,
denote by K[G] the group ring of G over K and by K[G/H ] a K-module with the
basis (s̄ : s̄ ∈ G/H). Thus, elements of K[G] have the form

(90) λ =
∑

s∈G

lss, ls ∈ K,

while elements of K[G/H ] have the form

(91) α =
∑

s̄∈G/H

as̄s̄, as̄ ∈ K.

Notice that K[G/H ] is a K[G]-module with respect to the scalar multiplication
defined by the formula

gs̄ = gs, g ∈ G, s̄ ∈ G/H.

If y ∈ L satisfies Gy = H , then for and any α ∈ K[G/H ] defined by (91) the
expression

αy =
∑

s̄∈G/H

as̄sx

is a well defined element of L. We say that a subset M of K[G/H ] is admissible if
there exists y ∈ L such that Gy = H and for any α ∈M the equality αy = 0 holds.
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Clearly, M is admissible if and only if the K[G]-submodule of K[G/H ] generated
by M is admissible so without loss of generality we may assume that M is such a
submodule.

Recall that linear subspaces of Kn, invariant with respect to the permutation
representation ofG onKn, are in one-to-one correspondence withK[G]-submodules

of K[G/H ]. Namely, to a subspace W corresponds a submodule Ŵ consisting of
elements

α =

n∑

i=1

ais̄i,

where si, 1 ≤ i ≤ n, is an element of G which transforms 1 to i and ~a =
(a1, a2, . . . , an) runs elements of W .

Proposition 8.1. A linear subspace W of Kn, invariant with respect to the per-

mutation representation of G on Kn, is admissible if and only if the corresponding

K[G]-submodule Ŵ of K[G/H ] is admissible.

Proof. Show first that if W is admissible, then we can set y = R(x1). Indeed, since
y ∈ K(x1) we have H ⊆ Gy. Furthermore, H may not be a proper subgroup of
Gy since otherwise the length of the orbit of y under the action of G would be
strictly less than n in contradiction with the conditions that all R(xi), 1 ≤ i ≤ n,

are different between themselves. Finally, αy = 0 for any α ∈ Ŵ .

In other direction, if Ŵ is admissible and y is an element of L such that αy = 0

for all α ∈ Ŵ , then Gy = H implies that y ∈ K(x1). Therefore, there exists
R(t) ∈ K(t) such that y = R(x1) and for such R(z) equality (89) holds for all
~w ∈ W. Furthermore, since the length of the orbit of y under the action of G equals
n, all R(xi), 1 ≤ i ≤ n, are different between themselves. �

Theorem 8.2 ([14]). A K[G]-submodule Ŵ of K[G/H ] is admissible if and only

if Ŵ contains no elements s̄1− s̄2, s1, s2 ∈ G, unless s̄1 = s̄2. Equivalently, a linear

subspace W of Kn, invariant with respect to the permutation representation of G
on Kn, is admissible if and only W contains no vectors ~ei −~ej , 1 ≤ i, j ≤ n, unless

i = j.

Proof. Indeed, if W contains a vector ~w = ~ei −~ej , i 6= j, 1 ≤ i, j ≤ n, then equality
(89) implies that R(xi) = R(xj).

In other direction, assume that Ŵ contains no elements s̄1 − s̄2, s1, s2 ∈ G, such
that s̄1 6= s̄2. Consider the canonical K[G]-linear map

ρ : K[G] → K[G/H ]

which maps s to s̄, and let γ = ρ−1(Ŵ ) be the inverse image of Ŵ . Since K[G] is
semisimple, the ideal γ is generated by an idempotent element ε. Notice that for
any λ ∈ γ the equalities λ = aε, a ∈ K[G], and ε2 = ε imply that λε = λ. Set

µ = 1 − ε. Then for any α ∈ Ŵ the equality αµ = 0 holds. Indeed, if λ is an
element of γ such that ρ(λ) = α then we have

αµ = λµ = λ− λε = 0.

Furthermore, for any s ∈ H the element s− 1 is in the kernel of ρ and therefore
in γ. Hence s−1 = (s−1)ε and (s−1)µ = 0 implying H ⊆ Gµ. On the other hand,
for any s ∈ Gµ we have (s − 1)µ = 0. Therefore, s − 1 = (s − 1)ε and s − 1 ∈ γ.
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This implies that s̄− 1̄ is in Ŵ and therefore s ∈ H by the assumption. This proves
that H = Gµ.

Finally, let us show that from the existence µ ∈ K[G], such that H = Gµ and

for any α ∈ Ŵ the equality αµ = 0 holds, follows that Ŵ is admissible. For this
purpose observe that by the normal basis theorem there exists an element x ∈ L
such that gx, g ∈ G, is a basis of L over K. Set now y = µx. Then obviously for

any α ∈ Ŵ the equality αy = 0 holds and H ⊆ Gy. Furthermore, H = Gy. Indeed,
if there exists g0 ∈ G such that g0y = y but g0µ 6= µ, then it follows from equalities
g0µx = y, µx = y that gx, g ∈ G, are linearly dependent over K. �

8.3. Existence of q(z) with rational but not reducible I∞(q, P, γ, t). Theorem
8.2 permits to solve the problem posed in Subsection 8.1 as follows.

Theorem 8.3. Let γ be a curve and P (z) be a rational function of degree n such

that poles of P (z) do not lie on one side of γ. Then a rational function q(z), such

that I∞(q, P, γ, t) is rational but is not reducible, exists if and only if the subspace

MP,γ contains no vectors ~ei − ~ej, 1 ≤ i, j ≤ n, unless i = j.

Proof. As it was already observed in Subsection 8.1 the requirement of the theorem
is necessary. On the other hand, since vectors with rational coefficients which are
linear independent over Q remain linearly independent over C(z), if this requirement

is satisfied, then the subspace M̂P,γ of (C(z))n, generated over C(z) by the same
vectors

(fs,σ(1), fs,σ(2), ... , fs,σ(n)), σ ∈ GP , 1 ≤ s ≤ k,

which generate MP,γ over Q, still contains no vectors ~ei − ~ej , 1 ≤ i, j ≤ n, unless
i = j.

Therefore, applying Theorem 8.2 to the roots

x1 = P−1
1 (z), x2 = P−1

2 (z), . . . , xn = P−1
n (z)

of the polynomial P (x) − z = 0 over the field C(z), we conclude that there exists

a rational function R̂(t) ∈ C(z)(t) (whose coefficients are rational functions !) such

that for any vector ~v ∈ M̂P,γ , ~v = (v1, v2, . . . , vn), the equality

(92)
n∑

i=1

viR̂(P−1
i (z)) = 0

holds and all R̂(P−1
i (z)), 1 ≤ i ≤ n, are different between themselves. Furthermore,

since we can write z as z = P (P−1
i (z)), 1 ≤ i ≤ n, there exists a polynomial

R(t) ∈ C(t) (whose coefficients now are just complex numbers) such that

R(P−1
i (z)) = R̂(P−1

i (z)), 1 ≤ i ≤ n.

Setting now q(z) = R(z)P ′(z) we see that for any vector ~v ∈MP,γ the equality (88)
holds. Furthermore, equality (20) is impossible since otherwise Lemma 4.1 would
imply that

R(P−1
i (z)) = R(P−1

j (z))

for some i 6= j, 1 ≤ i, j ≤ n. �

Using Theorem 8.3 one can prove the existence of an indecomposable Lau-
rent polynomial L(z) for which there exists a rational function q(z), such that
I∞(q, P, γ, t) is rational but is not reducible, without an actual calculation L(z)
and q(z). Indeed, let L(z) be a Laurent polynomial whose constellation is shown
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on Fig. 4 and whose monodromy group G is generated by the permutations
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2

9
10

6

7 4

3

Figure 4

α = (2, 5, 7, 6, 10, 9)(3, 8, 4) and β = (1, 5)(2, 8)(4, 7) (since L(z) has only two finite
critical values, in correspondence with the notation of “dessins d’enfants” theory,
we picture here 1-vertices as “black”, 2-vertices as “white”, and do not mark non-
numerated vertices at all). This choice of L(z) is motivated by the fact that the
action of G on branches of L−1(z) is permutation equivalent to the action of the
group S5 on two element subsets of {1, 2, 3, 4, 5}. Since it is well known that the
last action is primitive while the corresponding matrix representation of dimension
10 over Q is not a sum of VQ and V ⊥

Q , one can expect that L(z) provides a desired
example.

By Theorem 3.2 the function I∞(q, P, γ, t) is rational if and only if the equality

(93) Q(L−1
2 (z)) − Q(L−1

7 (z)) + Q(L−1
4 (z)) − Q(L−1

8 (z)) ≡ 0 ,

holds. Therefore, the subspace ML,S1 is generated by the single vector

~v = (0, 1, 0, 1, 0, 0,−1,−1, 0, 0).

Show now that ML,S1 may not contain a vector w of the form

(94) w = ~ei − ~ej , i 6= j, 1 ≤ i, j ≤ n.

Consider the vector subspace V of Q10 generated by the vectors

~v1 = (1, 0, 0, 0, 1, 1, 0, 0, 1, 0) ,

~v2 = (1, 1, 0, 0, 0, 0, 1, 0, 0, 1) ,

~v3 = (0, 1, 1, 0, 0, 1, 0, 1, 0, 0) ,

~v4 = (0, 0, 1, 1, 0, 0, 1, 0, 1, 0) ,

~v5 = (0, 0, 0, 1, 1, 0, 0, 1, 0, 1).

Since α and β permute the vectors ~vi, 1 ≤ i ≤ 5, between themselves, V is ρG-
invariant. Furthermore, since ~v is orthogonal to ~vi, 1 ≤ i ≤ 5, the inclusion

ML,S1 ⊆ V ⊥

holds. On the other hand, it is easy to see that for any vector (94) there exists
~vi, 1 ≤ i ≤ 5, such that (w, vi) 6= 0. Indeed, since G is transitive and permute ~vi,
1 ≤ i ≤ 5, it is enough to verify this property only for w whose first coordinate
equals 1 and for such w we may take one of the vectors v1, v2. Therefore, ML,S1

may not contain w and hence by Theorem 8.3 there exists a rational function q(z)
such that I∞(q, P, γ, t) is rational but is not reducible.

For a comprehensive study of the above example in the context of the Laurent
polynomial moment problem we refer the reader to the paper [31].
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