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Hyperpolar Actions and k-flat Homogeneaus Spaces

E. Heintze 1, R. Palais1, C.-L. Terng:\ G. Thorbergsson4

ABSTRACf. A c1osed, eonneeted, k-dimensional submanifold of a Rieman
nian manifold M is callcd a k~fiat of Al if it is fiat in the induced metric and
totally geodesic. We call Al hk-fiat homogeneous" if every geodesie lies in
some k-fiat of Al, and if the group of isometries of Al aets transitivelyon
pairs (u,p) consisting of a k-fiat (J and a point pE(J. An isometrie action on
AI is ealled hyperpolar if there exists a connected, closed, fiat submanifold
A of M that meets all orbits orthogonally. We prove that the following three
properties for a compact Riemannian manifold M are equivalent: (a) M is a
Riemannian homogeneous manifold and admits a cohomogeneity k hyperpo
lar action with a fIXed point, (b) M is k-fiat homogeneous. (e) .'vi is a rank l;

symmetric space. Since 1-flat hom0 geneous is triv iallYequivalent to two-point
homogeneous, the equivalence of (b) and (c) generalizes the well-known fact
that two-point homogeneous spaces are the same as rank 1 symmetrie spaces.

1. Introduction

An isometrie action of a compact Lie group on a Riemannian manifold is ca11ed
polar if there exists a connected, closed submanifold E (called a section) that meets
a11 orbits orthogonally. A section is automatically totally geodesie, and if it is flat in
the induced metric then the action is called hyperpolar. (Note that a flat section is the
same thing as a "K-transversal domain" in the sense of Conlon [Cl).

One of the goals of this paper is to give a structure and classification theory for
hyperpolar actions with a fixed-point on compact, homogeneous Riemannian mani
folds.

Recall that a connected, compact Riemannian manifold M is ca11ed !Wo-point
homogeneous if, given Xi, Yi in A1 such that the distance d( x h x~) is equal to the dis
tanee d(Yl' Y1), there is an isometry <p of lvI such that !..pXi = Yi. Another goal of this
paper is to give a generalization of the we11·known fact that a two-point homogeneous
space is asymmetrie space of rank 1 (for a proof and history of this, see Wolf [W2]).
To give a precise statement of our generalization, we need same further definitions.

1.1 Definition. A k-dimensional closed and connected submanifold of a Riemannian
manifold lvI is called a k-ftat of 1\1 if it is totally geodesie and is flat in the induced
metrie. 1\1 is called k-ftat homogeneous if every geodesic is contained in some k-flat,
and if the group of isometries of lvI acts transitivelyon the set of pairs (x, T), where
T is a k-flat and X E T (Le., given two such pairs, (X}, Tl) and (x~ 1 T~), there exists
an isometry <p of lvI such that !..pX 1 = x~ and !..pT} = T2).

It is obvious that I-flat homogeneous is equivalent to two-point homogeneous,
and it also follows easily from the standard theory of symmetric spaces that a rank
k-symmetric space is k-flat homogeneous. We show that the converse is also true. In
fact, our main result is:
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Theorem. If lvI is a eompaet, eonneeted Riemannian manifold, then the following
three properties are equivalent:
(a) M is a homogeneous Riemannian G-manifold, and there exists a elosed subgroup

H o[ G sueh that the aetion o[ H on M is hyperpolar o[ eohomogeneity k and
has a fixed point,

(h) M is k-fiat homogeneous,
(e) M is a rank k symmetrie spaee.

Next we give some idea of the proof of this theorem. It is not difficult to see
that (a) and (b) are equivalent and, as we have said, it has long been known that (c)
implies (a); so it suffices to prove that (a) implies (c). To do this, we first prove that if
the action of H on a homogeneous manifold Al = G/ H is hyperpolar with respeet to
some G-invariant metrie on Al, then it is also hyperpolar with respeet to any normal
G-invariant metrie. Thus we may assume that the pair (G , H) satisfies the following
eonditions:

(i) G is a compact, connected Lie group equipped with abi-invariant metric induced
from an Ad(~·-invariant inner product ( 1 ) on its Lie algebra g}

(ii) H is a closed subgroup of G, and the Adc;(H)-action on p = ~.L is polar with
an abelian subalgebra in p as a section.

Next we prove a decomposition theorem for the pairs (G, H) that satisfy conditions
(i) and (ii). Namely, if the representation of H on p is decomposed into irreducible
H -spaces, then some finite cover of G/ H can be decomposed aecordingly as a direct
product of isotropy irreducible homogeneous spaees. Finally, we use Dadok's classi
fication theorem for polar representations to prove that if (G , H) is a pair satisfying
properties (i) and (ii), and if G/ H is isotropy irreducible, then G/ H is an irreducible
symmetrie spaee.

2. Preliminary Results

In this section we will set up our notations and review some definitions and results
from the theory of transformation groups and symmetrie spaees.

Let G be a Lie group, g = TGe its Lie algebra, and J[ a smooth G-manifold.
Each element eof 9 will also be viewed as a vector field on J{, namely the vector field
generating the one-parameter group exp( te) of diffeomorphisms of X. If x E X then
G;r denotes the isotropy group at x and Gx the orbit of x. Clearly the tangent space to
Gx at x is T( Gx)x = {e(x) leE g}, and the Lie algebra of G;r is {e E gl e(x) = O}.

We call .J[ a Riemannian G-manifold if the action of G on X is isometrie. In
this ease} for each Cin 9 the corresponding vector field on X is a Killing field. The
normal space to the orbit Gx at x will be denoted by v(Gx )z, or simply by Vz. A
connected, closed submanifold L: of ){ is called a seetion for (the action of G on) X,
if L: "rneets every orbit", Le., GE = .J[, and if L: "rneets orbits orthogonally"} i.e.} for
each x in L:, TL: x S; Vz . If){ admits a section then the action of G on X is called
polar. If X admits a section that is flat in the induced metric, then the action oi G on
X is called hyperpolar.

2.1 Homogeneous compact Riemannian G-tnanifolds.

Let G be a compact Lie group, ( , )0 an AdD-invariant inner product on g, x a
point in a hornogeneous C-manifold M, H = Cl,;' and p the orthogonal complement
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of ~ in 9 with respect to ( , )0' Then the map gH ....,. gx is a G·equivariant diffeomor·
phism of GIH with A1 that we will usually regard as an identification. The following
are well-known facts: (cf. Chapter 7 of Besse's "Einstein Manifolds" [Be])

(1) We can identify p with T ll1J; via e~ e( x), and then the isotropy representation
of M at x is H acting on p via the AdG(H)-action.

(2) M is called isotropy irreducible if the isotropy representation at x is irreducible,
Le., if p is irreducible under Adc·( H).

(3) There exists a bijective correspondence between AdG(H)·invariant inner prod·
ucts on p and G-invariant metrics on M.

(4) The G-invariant metric on !vi corresponding to the restriction of an Ade;·
invariant inner product (, )0 to P is called the normal metrie associated to (, )0'
and the corresponding Riemmanian G-manifold lvI is called anormal homogeneous
Riemannian G-manifold.

An action of G on M is called effeetive (respectively, almost effeetive) if the
kerneI, N, ofthegroup homomorphism p: G --+ Diff(M) defined by p(g)(x) = g'X
is {e} (respectively, of dimension zero). Since lV is a subgroup of H that is normal in
G, by replacing G by GIN and H by H11'!, we may assume that our homogeneous
space GIH is effective whenever necessary. It is easy to see that the action of G on
GIH is effective (almost effective) if and only if H does not contain any (respectively,
any non-discrete) nonnal subgroup of G.

We will use I(Al) to denote the group of isometries of M, and Io(M) for its
identity component. Likewise Go will denote the identity component of the Lie group
G.

2.2 Compact symmetrie spaees.

A Riemannian manifold _~1 is called a globally symmetrie if for each point x E M
there exists an isometry sx such that sx (x) = x and D( oS z)x = - id. (Sinee, in gen
eral, an isometry is determined by its differential at any point, Sz is unique.) The
globally symmetrie eondition implies that the eurvature tensor is eovariant eonstant,
and Riemannian manifolds that satisfy this weaker eondition are ealled locally sym
metrie. Heneeforth we will refer to globally symmetrie Riemannian manifolds simply
as symmetrie spaces.

Let Al be a eonnected, compact symmetrie spaee, and G the group of transvec
tions, Le., the group generated by the 8 z Sy for all x, y E M. Then the following are
well-known facts (cf. [He], [L]):

(1) G acts transitivelyon 1\1. We fix a point p E 1\1 and let ]{ = Gp denote its
isotropy subgroup, so Al = GI](. A pair (G l ]() arising in this way will be ealled a
symmetrie pair.

(2) The map u : G --+ G defined by a(g) = spgsp is an involution (Le., an
automorphism of order two), and (GO")o ~ ]( eGO", where GO" is the fixed-point set
of u.

(3) Let Z (]vI) denote the fixed-point set of the ]{o-aetion on M, i.e.,

Z (M) = {x E 1111 k . x = x, V k E ]{o} .

We will eall Z(Al) the center of AI, as in Chapters IV and VI of Loos [L]. Loos
shows that Z (111) has a natural abelian group strueture and acts freely on M.

(4) If F is a diserete subgroup of Z (.~1) then 1vP = 111/F is also asymmetrie
spaee.
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(5) Let p denote the -1 eigenspace of D (j t on g. Then the isotropy representation
of M at p is the Ad(~(H) action on p. Any representation equivalent to the isotropy
representation of asymmetrie spaee is ealled an s·representation, and in partieular tbe
representation of H on p is ealled the s·representation of the symmetrie pair (G, H).

(6) AI is k·flat homogeneous.
(7) The deeomposition 9 = .ff EB P satisfies the following eonditions:

[il, il] ~ il, [off, p] ~ p, [p, p] ~ il.

(8) A decomposition g = il ffi P of a Lie algebra 9 satisfying the condition (*) is
called a Cartan decomposition. Such a decomposition defines a Lie algebra involution
(j on 9 by requiring that il and p are respeetively the +1 and -1 eigenspaces of (7.

(9) Let g be a semi·simple Lie algebra, 9 = il ffi P a Cartan deeomposition, and
G the simply connected Lie group associated to g. Let !( = exp( ~). Then Gj K is
a simply conneeted, symmetrie space.

2.3 Polar actions.

Suppose M is a Riemannain G·manifold, the G-action on M is polar, and ~ is
a seetion. Then the following are known ([PTI D:

(i) ~ is a totally geodesie submanifold cf 1'1'1. (Since totally geodesie submanifolds
of Rn are automatieally flat, it follows that polar representations are hyperpolar).

(ii) 9~ is also a section for each 9 in G so, since GE = A1, there is a section
through each point of A1. Moreover, every section is of the form 9~ for some 9 E G.

(iii) Define the nonnalizer and centralizer of E in G by

N(E,G) = {g E Glg(E) = E}, Z(E,G) = {g E GI9(s) = s Vs E E}.

(Clearly N(E, G) is the largest subgroup of G that aets on E, and Z(E, G) is the
kernel of this action.) The quotient 1'V(E, G) = N(E, G)jZ(E, G) is ealled the
generalized Weyl group cf the seetion E. It is a finite group aeting effectively on ~.

(iv) RecaLl that Vor: is an invariant subspace of the isotropy representation of Gz on
T Mx, and the eorresponding subrepresentation of Gx is called the slice representation
at x. Every slice representation cf 111 is polar; in fact if E is a seetion containing x
then TEx is a section for the slice representation at x.

(v) The set A1° of points of 111 where the slice representation is trivial is called the
set of regular points of M. It is a union of orbits, and these are called the principal
orbits of AJ. 1v[0 is an open, dense, connected subset of 1\1, and is fibered by the
principal orbits. The principal orbits all have the same (maximal) dimension, and their
codimension, called the cohomogeneity of 111, is the same as the dimension of any
section. It follows that at a regular point p, exp( lJp ) is the unique section through p.

2.4 Proposition. Let M be a Riemannian G·mani[old. A sublnani/old E 0/ M is
a section Jor the action 0/ G i/ and only i/ it is a section tor the action 0/ Go. In
particular, the action 0/ G on 111 is polar if and only if the action 0/ Go on M is
polar.

PROOF. Since Go·orbits are components of G·orbits, E meets G·orbits orthog
onally, if and only if it meets Cio·orbits orthogonaLly. Clearly GoE = M implies
GE = M, so it remains only to prove that if E is a slice for the action of G then
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it meets every Go-orbit. Ta see this, let p E E be on a regular G-orbit. Since Gop
is a connected eomponent of Gp, v(Gp)p = v(Gop )p, so sinee E is totaUy geodesic
and TEp = v(Gp)p, E = exp(lJ(Gop)p). But whenever a Lie group H acts isomet
rkaUy on a eonnected, complete Riemannian manifold X, it is weLl-known that for
any x E .J{, exp( v( H x )x) meets every H -orbit (et. [PT1]). •

Polar representations were classified up to "orbital equivalence" (see below) by
Dadok [D]. We need several of his results, which we now state.

2.5 Theorem. (Theorem 4 0/ [Da]) Suppose H is a connected, compact Lie group,
p : H -+ SO(V) apolar representation, and V = Vi e7 V~ is a direct swn decom
position 0/ V into H -invariant subspaces. Let ° be a section tor V, ai = °n Vi,
and let H1 = Zo( 0:l, H) and H'2 = Zo( aI, H) denote the identity components 0/ the
centralizers in H 0/ a~ and 01 respectively. Then

(i) °= al ffi 01,

(U) the Hi-action on Vi is polar with 0i as a section,
(iii) i/ a = al + a'2 E 01 ffi 01, then H . a = (H I . at} X (H'2 . a'2)'

2.6 Remark. Note that Hand H1 X H'2 are not equal in general. Nevertheless, frorn
the point of view of the geometry of orbits, 2.5 ean be viewed as a deeornposition
theorem.

2.7 Definition. Let GI and G'2 be two Lie groups and let Xi be a Riemannian
manifold on which Gi aets isometrically. We shall eall these two actions orbitally
equivalent, or w-equivalent if there is an isometry of ..l"'l with X'2 mapping GI orbits
to G:l orbits.

Note that w-equivalenee is in general a relation between actions of possibly dif
ferent groups. For example, the natural actions of 80(2n) on R~n and of 8U(n) on
cn are w-equivalent.

2.8. Remark. Clearly any action that is w-equivalent to apolar (hyperpolar) ac
tion is itself polar (hyperpolar). It was proved by Bott and Samelson [BS] that s
representations are polar, and Dadok's main result is that up to w-equivalence there
are no others.

2.9 Theorem. (Dadok [DJ) Apolar representation 0/ a compact, connected Lie
group is w-equivalent to an s-representation.

2.10 Remark. In case p : H -+ SO(V) is an irreducible polar representation and the
action of H on V is almost effeetive, Dadok's result is more precise. In fact he proves
that, exeept for six special eases, p is aetually equivalent to the isotropy representation
of same symmetrie spaee G/ H. In other words, the vector space 9 = ~ EB V admits a
Lie algebra structure for which ~ EB V is a Cartan decomposition. The six exceptional
eases (H, V) and the corresponding s-representations they are w-equivalent to are:
(1) (G1 , R7 ): p = the unique 7-dimensional irreducible representation of G2

(w-equivalent to the s-representation of (80(7), SO(6))).
(2) (Spin(7), ~): p = the spin representation

(w-equivalent to the s-representation of (SO(8),80(7)).
(3) (U(l) x Gp C&R7

)

(w-equivalent to the s-representation of (SO(9), 80(2) x SO(7)).
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(4) (U(l) x Sp(n),C®cc'2ß)
(w-equivalent to the s-representation of (SO( 4n), SO(4n - 1)).

(5) (U(1) x Spin(7),C0Jtt)
(w-equivalent to the s-representation of (SO(10), SO(2) x SO(8).

(6) (Spin(7) x SU(2), Ir' 0k{), where Spin(7) on Ir' is the spin representation and
SU(3) on R:{ is the Adjoint representation
(w-equivalent to the s-representation of (SO(11),80(8) x 80(3)).

The following results are easy consequences of 2.5.

2.11 Proposition. Suppose p : H ---+ SO(V) is apolar representation, and V =
Vo ED VI ED ... ED Vr is a decomposition 0/ V as a direct sum 0/ H -invariant subspaces
such that Vo is a trivial H -space and the Vi are non-trivial irreducible H -spaces for
1 :::; i :::; r. Then Vi and Vj are inequivalent H -spaces tor 1 ~ i < j ::; r.

PROOF. We denote the infinitesimal action of an element h of ~ on an element
v of V by h . v. Suppose VI is equivalent to V:2, and let <p : VI ---+ V2 be an H
equivariant linear isomorphism. Then we have <p( h . x) = h . <p( x) for all h E Qand
x E VI. Let alE VI be a regular element for the H -action on VI. Then a2 = <p(al) is
a regular element for the H -action on 1(:2. Let a be a section of V containing al +a2,
ai = a n Vi, and let H I = Z( a2, H) be as in Dadok's Theorem 2.5. Then, since
hl . a2 = °for all h l E QI and a:t E 02, <p(h l . ad = hl . <p(ad = 0. Since <p is an
isomorphism, h l . al = 0, SO VI is a trivial representation, a contradiction. •

Next we prove that whether or not a representation is polar is independent of the
choice of H -invariant scalar product on the representation space.

2.12 Theorem. Let p ; H ---+ GL(V) be a representation, and ( , ).b k = 1,2,
H -invariant inner products on V. I/ the H -action on (V, ( , )d is polar and a is a
section, then
(1) the H -action on (V, ( , h) is also polar widl ° as a section,
(2) the orthogonal complements 0/ ° in V are the same with respect to both inner

products; namely, if a is a point where a meets a principal orbit, then both are equal
to T(H a)a.

PROOF. By Lemma 2.11, we may write V as a direct surn V = ~ffiVi ffi· . ·ffi v;.
of H -invariant subspaces such that Vo is a trivial H -space and Vi, ... ,Vr are 000

trivial, inequivalent irreducible H -spaces. It follows that Vo ,"" Vr are rnutually
orthogonal with respect to any H -invariant inner product on V. Since Vi is irreducible
for 1 ::; i ~ 1', there exists Ci > 0 such that ( , h = q( , )1 on Vi, Let 0i = °n Vi,
a = ao + ... + a,> E a a regular point, and Pi the tangent plane of the orbit Hai at ai.
Since the H -action on (V, ( l )t} is polar, by 2.5 H i on Vi is polar with 0i as section.
Hence 0i 1. Pi with respect to ( , )1. Note that 00 = Vo, while if i > 0 then, since the
two inner products on Vi are proportional, 0i is also orthogonal to Pi with respect to
( , )~, so (1) and (2) follow. •

Now we review some elementary properties of Killing vector fields and totally
geodesie, flat submanifolds.
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2.13 Proposition. ([Be] Proposition 7.87) Let 1\'1 be a homogeneous G.manifold,
x E M, and H = Gx,. Let p denote the orthogonal complement o[ 1) in 9 with respect
to an Ad( G)-invariant inner product, (, )0' on g, and let (M, ds~) be the normal
homogeneous Riemannian G-manlfold associated to (, )0' 1f we identify T Mz with p
as in 2.1, then the Riemann tensor R of (A1, ds~) at x satisfies:

where [e,1]]~ and [e,11]p are respectively the ~ and p components of [e,17].

2.14 Corollary. With the same assumptions as above; if E is a totally geodesic sub
manifold of M containing x, then E is flat if and only ifTEx, is an abelian subalgebra
o/p.

As a consequence of 2.14 and 2.3, we have

2.15 Proposition. 1[ G / H is a compact, normal homogeneous G-manifold such that
the action 0/ H on G/ H is hyperpolar, then the action of H on p = ~..L is polar with
abelian subalgebras of p as sections.

We end this section by giving a sufficient condition for a totally geodesie, flat
submanifold of a Riemannian G~manifold lvI to be a seetion. (This is actually a
special case of a theorem of R. Hermann [H2].)

2.16 Theorem. 1f ~ is a flat, totally geodesic submanifold 0/ a compact, Riemannian
H -manifold At.! and E is orthogonal to some H ·orbit at one point, then E meets
H -orbits orthogonally. Hence if in addition E is closed in M and HE = M, then E
is a section tor 11.1 and the H -action on lvI is hyperpolar.,

We recall that a necessary and sufficient condition for a vector field eon M to
be a Ki11ing field on M is that (\7 uC,v) = -(tl, \7l'C) for a11 tl,V E TMz ' We will
need two easy facts concerning Ki11ing fields.

2.17 Lemma. A Killing vector field eon a compact, flat Riemannian manifold T has
constant length. In particular, if evQnishes at one point then it is identically zero.

PROOF. The universal cover cf T is the Euclidean space Rn. The lifting eof e
to Rn is a Killing vector field on Rn, so there is a skew-adjoint operator A on Rn and
b E Rn such that e(x) = Ax + b. Since T is compact, eis bounded, and hence SO is
e. This implies that A = 0, so ~ is a constant vector field on Rn, and so the length of
eis constant. •

2.18 Lemma. Let T be a totalI)' geodesic submanifold of lvi, ea Killing vector field
on M, and CT the vector field on T defined by eT

( x) = the projection of e( x) onto
TTx' Then eT is a Killing vector field on T.

P ROOF. Let '9' denote the Levi-Civita connection of M, \7 the induced con
nection on TT, e..L the projection of ~ to the normal bundle v(T), and u, v E TTz '

Since T is totally geodesic, '9'ue..L E v( T)x and '9'uc T = \7ue T
• It follows that

('9'ue, v) = (\7ue T
, v) = - (tt, '9't,e) = - (u, \7ve T

), so eT is a Killing vector field of
T. •
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2.19 Proof of Theorem 2.16. Since each ~ E ~ is a Killing field on M, it follows
fram 2.17 and 2.18 that if eis orthogonal to E at one point of Ethen eis orthogonal
to E at every point of E. Recalling that T(H S)6 = {e( s) leE ~} it now follows that
if TE s ~ v(HS)1i holds for one point, S, of E it also holds at every ather point of E.

•

3. Classification of polar pairs

In this section, we will prove that if G/ H is anormal homogeneous manifald
such that the action of H on G/ H is hyperpolar, then G/ H is asymmetrie space. To
prove this, we define the following related notion of polar pairs and classify them.

3.1 Definition. A pair (C, H) is called a polar pair if it satisfies the following
eonditions:
(a) G is a compact, connected Lie group equipped with abi-invariant metric induced

from an Ad( C)-invariant inner product ( , ) on the Lie algebra 9,
(b) H is a c10sed subgroup of G,
(c) the action of G on G/ H is almost effective,
(d) the AdG(H)-action of H on p = ~..L is polar with abelian subalgebras as sections.

(We refer to these as abelian sections).

3.2 Definition. A polar pair (G, H) is ealled irreducible if G/ H is isotropy irre
ducible, or equivalently the H -representation on p is irreducible.

3.3 Remark. By 2.4, H on p is polar if and only if Ho on p is polar, and hense
(G, H) is a polar pair if and only if (C, Ho) is a polar pair. If G is semi-simple, G
the simply eonneeted Lie group eorresponding to 9, and iI = the subgroup exp( ~) of
C, then (G, H) is a polar pair if and only if (C, iI) is a polar pair.

3.4 Exanlple. By 2.15, if G/ H is a compact, normal homogenaus G-manifold such
that the action of H on G is hyperpolar then (G, H) is a polar pair.

3.5 Example. Since s-representations are polar, if 1\1 is a compact symmetrie space,
then the symmetrie pair (G , J{) associated to NI is a polar pair.

3.6 Example. Spin(7) aets on RH by the spin representation, and it is transitive on
the unit sphere S7 with isotropy group G,. Moreover, the isotropy representation of
S7 = Spin( 7) / G, is the irreducible G, -representation on R7 } whieh is transtive on S«.
Henee the G, -action on S7 is hyperpolar (the normal geodesic to a principle orbit is a
seetion), and (Spin(7), G~J is a polar pair, but not a symmetrie pair.

3.7 Theorem. Suppose (G, H) is apolar pail; and P = PI EB· .. EB Pr is a direct sum
decomposition 0/ p = ~..L into irreducible Ho-spaces. Let

Then
(1) 9 = 91 EB··· ffi 9r and ~ = ~1 ffi··· EI? 'Jr are direct sum decompositions 0/ g and

~ respectively info ideals,
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(2) if I = {i 1 Pi is a trivial H-space}J then ~i = 0, gi = Pi for all i E I and
Po = EB{ Pi li E I} is the center 3 0/ gJ

(3) Z = exp(3) = Tm is a torus, and H j = exp(~j) and Gj = exp(gj) are closed,
connected subgroups 01 G for j tt I,

(4) tor j tJ. I J (Gj, H j ) is an irreducible polar pair with Gj semi-simple,
(5) Gi and Gj commute il i =1= j.

To prove this theorem, we need the following Lemma:

3.8 Lemma. Let (G, H) be a polar pair, P = l).LJ and X E p. Then the normal
space Vx of the H -orbit through 6'C is the set 3(~Y) n P = {Y E P I[X, Y] = O},
where 3(X) denotes the centralizer 0/ X in g.

PROOF. Let a be an abelian section containing X for the H -action on p, and
let H x be the isotropy group of ..Y. Since the H -action on p is polar, it follows from
the Slice Theorem for isoparametric submanifolds (cf. [PU], [HOT]) that

lJx = U hah- 1
•

hElix

Because a is abelian and X E a, we have

U hah -1 ~ 3(6'C) n p.
hEi-i x

This implies that Vx ~ 3(){) n p. Conversely, let Y' E 3(X) n p. Since (, ) is
Ad( G)-invariant,

(Y, [~, ..Y]) = ([ ..'C, Y], ~) = 0.

This proves Y E 11.x., and the lemma folIows. •

3.9 Proof of Theorem 3.7.
First we claim that

[Pi,Pj] = 0, if i :j=j.

Ta see this, we note that the invariance of Pi under Adc;(H)-action implies that
[~,Pi] ~ Pi· Now let X E Pi. Since the tangent space to the orbit through X is
[X, ~], it is contained in Pi, so the normal space Vx includes all the Pi for j =1= i. By
3.8, [X, Pj] = 0 if j =1= i, and since this is true for all X E Pi, the claim is proved.

We will prove each statement of the theorem seperately below.

(1) We want to show that 9 decomposes into a direct sum of ideals gi. (Notice that
this is not the case for every polar isotropy representation of a homogeneaus space
G/H. An easy counter-example is G = 5U(n + 1) and H = SU(n). Here P has a
trivial factar, although G being simple cannat splil.)

We first prove that
g=p+[p,p].

(This surn is in general not direcL) Let us assurne that this does not hold. Then there
is a non-zero )( orthogonal ta p + [p, p]. Clearly X E ~ and (X, [p, p]) = 0 so,
since [X,p] C P and ([X,p],p) ='0, [..'C,p] = O. But this irnplies that exptX acts
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as the identity on G/ H contradicting the assurnption that H does not contain any
non-discrete normal subgroup of G.

We next want to prove that Oi is an ideal and that [gb gj] = 0 for i 'I j. Notice
that since [Pi, Pj] = 0 for i 'I j, we have 9 = gl + ... + gr' To prove that gi is an
ideal one verifies :

(i) [Ph [Pi, Pi]] = 0 for i 'I j by the Jacobi identity.
(ii) [Pi, [Pi, pd] ~ Bi, since by the Ad-invariance of the rnetric, for i i= j we have

(p j, [Pi, [Pi, pd]) = 0, ([p j, Pj], [Pi, [Pi, Pi]]) = O.

(iii) [[Pj, Pj], [Pi, pd] = 0 for i 'I j by the Jacobi identity.
(iv) [[Pi, pd, [Pi, Pi]] ~ Bi since, by Ad-invariance, for i 'I j we have

(Pj,[[Pi,Pi],[Pi,pd]) =0, ([Pj,Pj], [[Pi,Pi], [Pi,pdD =0.

It now follows that gi is an ideal for all 1 :s; i :s; 1', and that [gi 1 gj] = 0 if i =f j.
Since for i 'I j we have

gi is orthogonal to gj, so we have an orthogonal direct surn decomposition

o = B1 EB ... EB 9r'

Now set fJ i = gin rJ. We would Iike to show that rJ = fJ 1 ffi ... ffi fJ r. This will follow
when we have proved that in a decornposition of ..:'C E fJ into }{ = Xl + ... + X r ,

Xi E gi, the cornponent Xi E fJ.
First natice that (..:'C, p) = O. So for all i we have

(..)[1 + ... + ..)[r, Pi) = O.

Since the gi are orthogonal ideals we have that (..:'C i , Pj) = 0 for i =f j, and hence
{Xi, Pi} = 0 for every i. It follows that

(..)[i1 p) = {)(i, PI} +...+ ():;:i, Pr) = 0

which proves that "}{i E fJ. This finishes the proof of (1).
(2) If Pi is an irreducible trivial Ho-space, then Pi is of dimension 1. Hence Bi =
Pi + [Pi, pd = Pi and fJi = O. Ta prove the second part of the statement, we note
that the almost-effectiveness cf the action of G on G/ H irnplies that 3 n fJ = O. Let
Po = ffi{Pi li EI}. Since Pi = Oi is one-dimensional for all i E I and [gi, Bj] = 0
for all i =f. j, Po ~ 3. Conversely, let z E 3. Write Z = Zl + ... + Zr with Zk E Bk.
Suppose k (j. I, i.e., Pli: is a non-trivial Ho-space. Then we have

o= [z, 9k] = [Zl + ., .+Zn 9k] = [Zk' 9k].

But [Zk, gj] = 0 for all j =f. k. Hence Zk E 3, which implies that [Zkl fJ] = O. Write
ZJ; = hi; + Xli: E fJk EB Pk. Then [:v};:, fJ] = [Zk, fJ]p = 0, which implies that Xk = 0
(because Pli: is a non-trivial Ho-space). So we have Zi; = hk E ~ n 3. But 3 n fJ = 0,
so Zk = 0 if k rt I, and Z E EB{gj 1 i E I} = Po. This proves (2).

Since G is compact, 9 is the direct sum of the center 3 and a semi-simple ideal,
so (3) and (4) follow from (2). Finally, (5) follows from the fact that [Bi, Bj] = 0 for
i i= j. •
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3.10 Corollary. Let (G, H) be a polar pair, and P = Po ffi ... EI? Pm a decomposition,
where Po is a trivial H -space and Pi ~s a", non-trivialJ irreducible H -space for 1 ~

i < ln. Then there exist a polar pair (G, H)J and a surjective group homomorphism
p : ä -+ G sueh that
(1) the kernel 0/ p is a finite groupJ p(H) = Ho ~ HJ and p is a local isometryJ
(2) the map 7r : G/H -+ G/ H dejined by 7r(g H) = p(g)H is p-equivariantJa finite

cover, anti a local isometry with respect to the normal invariant metries on G/H
and G/ H induced /rom the bi-invariant metrie 0/ Gand G respeetivelYJ

(3) 0/H ean be written as the direet produet T x 01/ HI x ... x Gr/ HrJ where
T is a flat torus 0/ dimension equal to dinl( PO)J and eaeh (Gi, iIi ) is an irreducible
polar pair sueh that Gi is",simijJly-conneetedJ semi-simpleJ Bi is eonneete~ and the
isotropy representation 0/ Gi/ H j is w-equivalent to the H -aetion on Pi.

PROOF. We mayassurne that Pi is a non-trivial H -space if i ::; m, and that Pi is
trivial if m < i ::; r in 3.7. Then 3, the center of iJ, is equal to Po = ffi{ Pi Im< i ::; r}.
If we take T = exp(3), let Pi : Gi -+ Gi be the simply-connected cover of Gi, and
Ni = exp( ~d in Gi for i ::; rn. , then p(Z, 91, ... ,gm) = PI (gi) ... Pm(gm) is a
well-defined map of G= T X GI X ... x Gm to G with the required properties. •

3.11 Classification Theorem. Suppose (C, H) is an irredueible polar pair with G
semi-simple and simply-eonneeted) and H eonneeted. Then (C, H) is either a sym
metrie pair associated to some irreducible symmetrie spaee 0/ eompaet type or else it
is isomorphie to (Spin(7), G2 ).

3.12 Remark. Suppose (G, H) is an irreducible polar pair. Since the dimension
of H -orbits in p is at most equal to dim( H), diln(p) = diIn(G) - dim(H) and the
dimension of an abelian seetion in p eannot exceed the rank of G, (G, H) has to
satisfy the following condition:

2 din1 H + rank C 2: diln G.

So one way to prove 3.11 is to go through the classification list of isotropy irreducible
spaees G / H (G is sirnply eonneeted and H is conneeted) in [Wo] or [Kr] (see also
[WZ] for the case C classical) to eheck whether (''' "') is satisfied. It turns out that
there are only two non-symmetrie pairs (G, H) with G/ H isotropy irreducible and
satisfying the above inequality. These are (Spin(7), G2 ) and (G2 , 8U(2)) with quotients
diffeomorphie to 87 and St) respeetively. The first case is the polar pair example given
in 3.6. One ean calculate in the seeond ease that the eohomogeneity is greater than
the rank of G2 whieh shows that it cannot give rise to a polar pair.

Sinee the list of isotropy irreducible spaees is rather lang and ehecking the above
inequality is tedious, \ve give below a different proof using Dadok's Theorem 2.9
classifying polar representations.

We first need three lemmas:

3.13 Lemma. I/ (G, H) is a polar pair and a ~ P is an abelian section, then a is a
maximal abelian subalgebra in p.
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PROOF. Let b be an abelian subalgebra of p with a ~ b. By the Ad-invariance
of ( , ),

([I), b], b) = (~, [b, b]) = Q.

So b 1.. Hb for a11 bEb. But if a E a C b is a regular point, then v(Ha)a = a,
which implies that b = a. •

3.14 Lemma. If (G, H) is a polar pair, and a ~ p is an abelian section, then
rank(G) ~ rank( H) +dirn( a).

PROOF. Let <ro be a maximal abelian subalgebra of ~, and 'to ~ '! a maximal
abelian subalgebra of g. The lemma will follow if we can show that 'I = <ro ffi ernp).
To prove the latter, given t E 'I, write t = x + y E ~ EB p. Since

[x, '!()] = 0 and [y, <ro] = O. Since <ro is a maximal abelian subalgebra of ~, it follows
that x E 'to , hence y E '!O n p. •

3.15 Lemma. (Wolf [Wl]) Suppose G is a compact, semi-simple Lie group that is not
simple. If H is a closed, connected subgroup of G and G/ H is isotropy irreducible,
then (G, H) is isomorphie to the symmetrie pair (I{ x 1(, 6(I()) for some compact,
simple Lie group 1(, (here, 6( I() denotes the diagonal subgroup in [( x [().

3.16 Proof of 3.11.
,

We note that since p is AclH irreducible, and H \ls connected, it follows that p
is also irreducible under acl(~), a fact we will use often below. By 3.15, we may
assume that 9 is simple, so the given AclG-invariant inner product ( , ) on 9 can be
taken equal to the negative of the Killing form of g.

Using 2.10, we will divide the proof into two cases, according to whether or not
the representation of H on p is an s~representation.

Case (i): The representation of H on p is an s-representation.
Then there is a Lie algebra 9 that coincides with 9 as a vector space and has

bracket [..Y, yP]l that coincides with [..Y, Y] if ..Je,:v E ~ or if ..Y E ~,Y E p, and
further has the property that 9= ~ EB p is a Cartan decomposition.

Let ( , ) 1 denote the negative of the Killing form of g. Because the map ad(X)
for X E ~ is the same for the two Lie algebras g and ~, ( , ) and ( , )1 coincide on ~.

Since the action of H on p is irreducible, by Schur's lemma there is, up to a constant
multiple, only one H -invariant scalar product on p. Hence there is a positive number
c such that

for a11 X, Y E p.
For Z E 0, we let Z~ and Zp denote the ~ and p components of Z. We claim

that
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where c is the same constant as above. To see this, notice that for all Z E ~,

(Z, [X, V]) == ([Z, .\'"], Y) == c ([Z, X lt ,Y) 1

== c (Z, [.\'", Y] 1) 1 == (Z, c [X, Y] 1) .

It now follows that [..Y, l''']p defines a Lie bracket on p, and we will use p to
denote this Lie algebra. Let 3 denote the center of p. It follows from the Jacobi
identity that 3 is an ad(lJ ).invariant subspace of p. Since p is ad( ~ )-irreducible, this
implies that either 3 == P or 3 = 0.

First assume that 3 == 0, and hence that p is not solvable., Notice that for Z E ~,

ad( Z) is a derivation of the Lie algebra p, since it is a derivation of the two Lie
algebras g and g. But any derivation of a Lie algebra preserves its radical, so the
radical of p is an ad( f) )-invariant subspace of p. Since p is irreducible under ad( ~)
and pis not solvable, it follows that the radical is zero, i.e., pis semi-simple.

A derivation of a semi-simple Lie algebra is inner, so for every Z E ~ there is a
<p( Z) E P such that

ad( Z)(.\'") == [Z, ~Y] == [cp( Z), X]p

for all X in p. Since p has no center this cp( Z) is uniqueJ and we thus have a map
'P : ~ -+ p. Again using 3 == 0, if follows that <p is injective. Let W, Z E ~ and
X E p. Using the Jacobi identitYJ we find

[[I'V, )O( Z)], ~\'"] p= - [cp( Z), [lV, .\'"]]P + [I'V, [<p( Z), X]p]

= -[Z, [lV, ~\'"]] + [lV, [Z, .\'"]]

= [[l'V, Z], XJ = [<p( [lV, Z]), X]p.

This proves that [W, <p(Z)] == <p([T-V, Z]). A first consequence is that the image of
)0 is invariant under ad( lJ) so, by irreducibility again, )0 is surjective, and hence a
linear isomorphism. Another consequence is that <.p is equivariant with respect to the
representations of H on ~ and p. It follows that f) is simple. One calculates easily
that the sealar product (..\'", Y) :== (<p( ..Y), <p(Y)) on f) is ad(f)) invariant. Henee there
is a constant j.L > °such that

Our next aim is to show that 9 is the direct surn of two ideals, each isomorphie
to l). For this we need to show that

[<p(X), <.p()/)] = j.L[X, Y] + [<,o( ..Y), <p(Y)]p

for all X, Y E lJ where f.l is the same constant as above. To see this notiee that

([<.p( ~Y), cp(y")], Z) 1 == c( [cp( ..Y), cp(Y)]I, Z) == c(<,0 ( X), [<,o(Y), Zld 1

== (<pC\'"), <p([Y, Z])) == Jl(X, [Y, Z])

== Jl ([.Je, )/~], Z]) = J.t( [.\'", Y], Z) 1

for every Z in f). Using the definition of r.p twiee we see that [ep(X), ep(Y)]p ==
<p([X, y"]), and it follo\vs that
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[ep(X), ep(Y)] = j.L[X, Y] + ep([X, Y])

for a11 X, Y E ~.

Let Al and A:1 be the roots of the equation J-Lx:1 - x - 1 = O. Note that sinee J.L

is positive, Al and A~ are real and distinct. For 'i = 1,2 define

A simple calculation shows that both {I and (:1 are ideals of 9 isomorphie to ~, and
that 9 = [1 Ef7 {~, eontradieting the assumption that 9 is simple.

Sinee 3 = 0 leads to a contradiction it follows that 3 = P, and henee 9 = ~ EI;) P
is a Cartan deeomposition, so (C, H) is a symmetrie pair, proving the theorem in this
ease.

Case (H): The representation of H on p is not an s-representation.
By 3.15, G is simple, and using 2.10 we see that (H, p) must be isomorphie to

(H, V), for one of the examples (1)-(6) listed there.
Note that we can compute 9 = clitn(G) from the formula 9 = dirn(H)+dim(V).

(1): (G" R7 ). In tbis case the above formula gives 9 = 21, and the only simply
connected, simple Lie groups having dimension 21 are Spin(7) and Sp(3). If G =
Spin(7), then (G, H) is the example of a polar pair in 3.6. On the other hand,
(Sp(3), G,) cannot be a polar pair, since Sp(3)jG, is not on the classification list
([Wl], [Kr], [WZ]) of isotropy irreducible spaces.

(2) and (3): In these two examples 9 = 29, and since there is no simple Lie group of
this dimension, these examples cannot give rise to polar pairs.

(4): (U( 1) x Sp( n), C @c C2n
). Tben 9 = 2n1 + 5n + 1. Because the action of H on

p is transitive on the sphere S4n-l, the abelian section a in p must be of dimension
1. By 3.14, we have n + 1 ~ rankeG) ~ n + 2. It then ean be checked directly that
9 = 2n~ +5n + 1 is not the dimension of any simple group of rank n + 1 or n + 2.

(5): (U(I) x Spin(7), C 0 Ir). Then 9 = 38, and since there is no simple Lie group
of this dimension, this example cannot give rise to a polar pair.

(6): For this example 9 = 48. Tbe only simple Lie group of this dimension is 8U(7).
But (SU(7),Spin(7) x 8U(2)) is not a polar pair, since SU(7)j8pin(7) x 8V(2) is
not on the list of isotropy irreducible spaces.

The above considerations shows that (Spin(7), G,J is the only irreducible polar pair
satisfying the assumptions of 3.11 that is not a symmetrie pair. This concludes the
proof of case (ii) and of the Classification Theorem, 3.11. •

Because Spin(7)jG2 = S7, it follows from 3.10 and 3.11 that:

3.17 Corollary. /{ (G, H) is a polar pair with G simply-eonneeted and semi-simple
and H eonneeted, then G/ H is a simply-conneeted symmetrie spaee 0/ eompaet type.

3.18 Theorem. /{ (G, H) is a polar pair and the H -action on p is o{ eohomogeneity
kJ then G/ H is a compaet symmetrie spaee o{ rank k.
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PnOOF. Using the notation in 3.10, we see from 3.11 that At = Ö/ fI is a
symmetrie space, so A1 = C / H is a loeally symmetrie spaee. Using 2.2 (4), to
prove that lvI is globally symmetrie it suffices to prove that 7r -1 (p) S; Z (M), where
p = eH E 1\1.

U (Gh Hi ) is a symmetrie pair with iIi eonneeted, then by 2.2 (3) the center

Z(Mi) of Mi = GdiIi is Af/ii , the fixed point set of Bi on 1\fi. Note that the
fixed point set of G2 on S7 is {p, - p}, which is also the center Z(S7) of S7. So

even if Spin(7)/G'J is one of the factors in Ali we still have Z(Mi ) = M/ii. It is

known that Z(NI) = T x Z(A~Id x ... x Z(N/rn ), so Z(M) is equal to MH. Using
7r(g . x) = p(g )7r(x), we see that if 7r(Y) = P then iI .y S; 7r- 1(p). Sinee 7l" is a finite

cover and iI is connected, iI . y = y, i.e., y E JVI H = Z(M).· •

As consequence of the proof of 3.18, we also obtain

3.19 Corollary. If (C, H) is an irreducible polar pair, then (C, H) must be either
the symmetrie pair for an irredueible symmetrie spaee} or one of the following pairs:
(Spin(7),G2 ), (SO(7),G2 ), 01' (Sl,Zn).

It follows from 3.4 and 3.18 that

3.20 Corollary. If C / H is a compact, normal Riemannian homogeneous spaee such
that the action o[ H on G/ H is hyperpolQl; then G/ H is asymmetrie spaee (although
(G, H) is not necessarily a symmetrie pair).

In the next section we will prove the same conc1usion without assuming that the
Riemannian homogeneous space G/ H is necessarily normal.

4. k-flat homogeneous spaces

The main result of this section is the following characterization of compaet, k-flat
homogeneous manifolds.

4.1 Theorem. A compact k-ftat homogeneolls spaee is asymmetrie space of rank k.

4.2 Remark. Notiee that it follows from Theorem 4.1 that a eompact manifold can
only be k-flat homogeneous for one k, in contrast to the n-dimensional Euclidean
space, which is k-flat homogeneous for all 1 :::; 'k: :::; n.

The following Proposition follows direetly from the definition of k-flat homo
geneity.

4.3 Proposition. Let 111 be a compaet, Riemannian manifold. Then 1\1 is k-ftat
homogeneous i[ and only if the following three conditions are satisfied:

(i) every geodesic is eontained in some k-flat,
(il) G = I( !vI) acts transtively on the set of k-flats o[ !vI,

(iii) there exists a k-ftat T such that the normalizer N( T, G) aets transtively on T.

4.4 Proposition. Let A1 be a compact Riemannian manifold such that I( M) aets
transtively on the set o[ geodesics o[ lvI. Then Al is l-ftat homogeneous, or equiva
lently two-point homogeneous.
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PROOF, lf lvI is one-dimensional the result is trivial. If dim(M) > 1, then the
fact that G = I( M) is transitive on geodesics implies that diIn(G) > O. Since G is
compact it then follows that there is a circle subgroup r ~ G. Let 1 be an r -orbit in
M of maximal length. It is well-known (cf. [H1]) that 1 is a closed geodesic, hence
, is a l-flat, and obviously N ("G) includes r, and so acts transtively on ,. It then
follows from 4.3 that Al is l-flat homogeneous. •

4.5 Remark. Although condition (iii) is a consequence of (i) and (ii) if k = 1, this
is no longer so if k > 1. The Klein bottle S is a counter-example for k = 2, and
more generally, if !vI is rn-flat homogeneous, then Al x S satisfies conditions (i) and
(ii) for k = 111, + 2, but is not k-flat homogeneous.

4.6 Theorem. 1[ (Al, ds~) is a compact Riemanniqn mani[old then the [ollowing two
statements are equivalent:

(i) M is k-ftat IIomogeneous.
(ii) M is a homogeneous Riemannian G-manifold and the action o[ some subgroup

H o[ G is hyperpolar with k-dimensional sections and has a fixed point.

PROOF. We first prove that (i) implies (ii). Let G = I(M), H = G~, and T a
k-flat through x. We claim that H T = Al. For if p E M then there exist a geodesie
1 joining x to p, and a k-flat CF containing I' so by definition of k-flat homogeneity,
there exists 9 E G such that g( x) = 1~ and g( T) = (7, proving H T = M. Since M is
compact and T is totally geodesic, flat and orthogonal to the orbit H x = {x} at x, it
follows from 2.16 that T is a flat section for the H -action on lI/I and so this action is
hyperpolar.

We next prove that (ii) implies (i). Let / be a geodesic. We have to show that ,
is contained in a k-flat. Let x be a fixed-point of Hand let 9 E G be such that g,
passes through x. Let T be a k -fla t that is a section of H. Then H (T~T) = T~M, so
that there is a h E H for which gl is contained in hT. lt follows that 1 lies in the
k-ftat g-l hT. Now let (x I, Td and (X1, T~) be such that Xi E Ti and Ti is a k-flat. Hy
the homogeneity of .~1 there are 91 and g'j, E G such that 9i(Xi) = x where x is a
fixed point of H. As in the first part of the proof it follows that giTi is a flat section.
By 2.3 (ii), H is transitive on the set of sections. Hence there is an h E H such that
hg l Tl = 9'),T')" Le., g:; 1hg l (Tl) = T'), and 9:;1hg l (x 1) = x'j,. lt follows that M is k-flat
homogeneous. •

4.7 Proposition. Let Al be a homogeneous Riemannian G-manifold, and H a closed
subgroup 0/ Gp• 1/ the action 0/ H on ]vI is hyperpolar, then the Ho-action and the
(Gp)o-action on Al are w-equivalent.

PROOF. Since H -orbits are submanifolds of Gp orbits, it will suffice to prove
that the two actions have the same cohomogeneity. If T is a flat section for the H
action, then T is a flat, totally geodesie submanifold and H T = M. Because H ~ Gp,

we have GpT = 111. Since T is perpendicular to the orbit Gpp = {p}, by 2.16 T is a
section for the action of Gp • Thus both Hand Gp acting on A1 have cohomogeneity
diln(T). •

4.8 Remark. If J\1 = G/ H equipped with anormal metric is k-flat homogeneous,
then by 4.6 and 3.20, A1 is asymmetrie space. However, the metric on a k-flat
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homogeneous space in general need not be normal, and to prove 4.1, we need a
non-linear analogue of 2.12. First a lemma.

4.9 Lemma. I/ (T, dsf) is a /lat, compact, homogeneous Riemannian N -mani/old,
and ds~ is another N -invariant metrie on T J then ds~ is also flat.

PROOF. Sinee T is eompaet, flat and homogeneous, it follows that it is a torus
and the universal eover T of T is R tl

• We may assurne that N acts on T effectively
(we can always quotient out the kernel of the action). Then the Lie algebra n of N is
the abelian Lie algebra Rn. So there exists loeal coordinate system ('U 1, ... , 'Uk) on T

such that the coordinate vector fields are Killing fields. lt follows that any N -invariant
metrie on T is of the form L cijelUj ® du) for some constant positive matrix (cij),
and hence is flat. •

4.10 Theorem. Let (M, ds~) be a k:-flat homogeneous spaeeJ G = [(M, ds2) and
H = Gz . Let ds~ be the normal IJomogeneous metrie on !v! associated to some
Ad( G)-invariant inner product ( , )0 on g. Then
(1) (M, ds~) is also k-flat homogeneous,
(2) ds1 and ds~ have the same set 0/ k-flats,
(3) the H -action on (M, ds~) is hyperpolar,
(4) (1\-1, ds~) is asymmetrie spaee 0/ rank k.

PROOf. Let T be a k-flat through x for (lVI, ds:.!), and N = {g E G Ig(T) = T}.
By 4.3, N = N( T, G) aets transtivcly on T.

We first claim that thc action of H on (.Al, ds~) is polar. To prove this, we
let a = TTz . Then 2.12 implies that [~, a] 1. a with respect to both metrics. Note
that 9 E G is an isometry with respect to both ds:.! and ds~. For gEN, we have
(g.)z(a) = TTnz' So (9.).e([IJ, a]) 1.. Tr.qx with respeet to both metries. By 4.6, tbe
H -action on (1\1, ds1

) is hyperpolar with T as a section. So TTgz is the normal space
to the orbit Hgx at gx with respeet to ds~. Hence we have (g.)Z([~' Cl]) = T(Hgx)gz.
This proves that a principal orbit H gx is perpendieular to T at gx with respect to ds~,

Le., the H -action on (AI, cls~) is polar and T is a section. Since N aets transtively on
T, 4.9 implies that T is flat in the metric induced from ds~.

Clearly (2) and (3) are eonsequcnce of thc proof of (1), and (4) follows from (3)
and 3.20. •

4.11 Proof of 4.1.

Let G = 1(111, ds:.!), H = Gp , (, )0 an Ad( G)-invariant inner product on g,
and ds~ the associated nonnal G·invariant metrie on M. By 4.10, (M, ds~) is k-flat
homogeneous, and it follows from 4.8 that (1\11, ds~) is asymmetrie space. It remains
to prove that (1\1, cis:.!) is also asymmetrie space. To da this, we use the same notation
as in 3.10. Let hand ho bc thc lifting of cls~ and ds~ to i1 respectively. Then:
(1) bSlth h and ~o are G-inv~riant, ..
(2) M = T X 1Il} x ... x 1\111u where (T, 90) is a flat torus, (Mj,9j) is a simply-

conneeted, irreducible symmetric space of compact type, and tbe metric ;"0 on
1\1 is the product metrie ho = 90 + g} +... + gm'

Let Po = eH. By 2.12, there cxist positive constants Cj such that ds2 IPi = Ci(, )0 IPi.
Let g~ be the homogeneous flat metrie on T induccd from h. -Then the G-invariant

17



metries hand l-tt = g~ +C191 + ... +Cm9m agrec at Po, wbicb implies that h= h+. But
(M, h+) is asymmetrie spaee, so (NI, h) is asymmetrie spaee. Moreover, (M, ho )

and (M l h) have the same center 111H, which eontains 7r-
1(p) as a discrete subgroup.

Hence by 2.2 (4), (A1, ds~) is also asymmetrie space. •
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