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Hyperpolar Actions and k-flat Homogeneous Spaces

E. Heintze', R. Palais?, C.-L. Terng®, G. Thorbergsson®

ABSTRACT. A closed, connected, k-dimensional submanifold of a Rieman-
nian manifold M is called a &-flat of A7 if it is flat in the induced metric and
totally geodesic. We call A7 “t-flat homogeneous” if every geodesic lies in
some k-flat of A, and if the group of isometries of A/ acts transitively on
pairs (o.p) consisting of a k-flat ¢ and a point p€c. An isometric action on
M is called hyperpolar if there exists a connected, closed, flat submanifold
A of M that meets all orbits orthogonally. We prove that the following three
properties for a compact Riemannian manifold A7 are equivalent: (a) M is a
Riemannian homogeneous manifold and admits a cohomogeneity & hyperpo-
lar action with a fixed point, (b) Af is k-flat homogeneous, (c) M is a rank &
symmetric space. Since 1-flat homogeneous is trivially equivalent to two-point
homogeneous, the equivalence of (b) and (c) generalizes the well-known fact
that two-point homogeneous spaces are the same as rank 1 symmetric spaces.

1. Introduction

An isometric action of a compact Lie group on a Riemannian manifold is called
polar if there exists a connected, closed submanifold £ (called a section) that meets
all orbits orthogonally. A section is automatically totally geodesic, and if it is flat in
the induced metric then the action is called hyperpolar. (Note that a flat section is the
same thing as a “K-transversal domain” in the sense of Conlon [C]).

One of the goals of this paper is to give a structure and classification theory for
hyperpolar actions with a fixed-point on compact, homogeneous Riemannian mani-
folds.

Recall that a connected, compact Riemannian manifold M is called two-point
homogeneous if, given x;,y; in M such that the distance d(z, zy) is equal to the dis-
tance d(y,ys), there is an isometry ¢ of M such that pz; = y;. Another goal of this
paper is to give a generalization of the well-known fact that a two-point homogeneous
space is a symmetric space of rank 1 (for a proof and history of this, see Wolf [W2]).
To give a precise statement of our generalization, we need some further definitions.

1.1 Definition. A k-dimensional closed and connected submanifold of a Riemannian
manifold M is called a k-flat of M if it is totally geodesic and is flat in the induced
metric. M is called k-flat homogeneous if every geodesic is contained in some k-flat,
and if the group of isometries of M acts transitively on the set of pairs (z,7), where
7 is a k-flat and = € 7 (i.e., given two such pairs, (&, 7;) and (zy, 79), there exists
an isometry ¢ of M such that px; = xy and 7 = 7).

It is obvious that 1-flat homogeneous is equivalent to two-point homogeneous,
and it also follows easily from the standard theory of symmetric spaces that a rank
k-symmetric space is k-flat homogeneous. We show that the converse is also true. In
fact, our main result is:
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Theorem. If M is a compact, connected Riemannian manifold, then the following
three properties are equivalent:

(a) M is a homogeneous Riemannian G-manifold, and there exists a closed subgroup
H of G such that the action of H on M is hyperpolar of cohomogeneity k and
has a fixed point,

(b) M is k-flat homogeneous,

(¢) M is a rank k symmetric space.

Next we give some idea of the proof of this theorem. It is not difficult to see
that (a) and (b) are equivalent and, as we have said, it has long been known that (c)
implies (a); so it suffices to prove that (a) implies (c). To do this, we first prove that if
the action of H on a homogeneous manifold A = G/H is hyperpolar with respect to
some G-invariant metric on M, then it is also hyperpolar with respect to any normal
G-invariant metric. Thus we may assume that the pair (G, H) satisfies the following
conditions:
(i) G is a compact, connected Lie group equipped with a bi-invariant metric induced
from an Ad-invariant inner product (, ) on its Lie algebra g,
(i) H is a closed subgroup of G, and the Adq(H )-action on p = bt is polar with
an abelian subalgebra in p as a section.
Next we prove a decomposition theorem for the pairs (G, H) that satisfy conditions
(i) and (ii). Namely, if the representation of H on p is decomposed into irreducible
H -spaces, then some finite cover of G/ H can be decomposed accordingly as a direct
product of isotropy irreducible homogeneous spaces. Finally, we use Dadok’s classi-
fication theorem for polar representations to prove that if (G, H) is a pair satisfying
properties (i) and (ii), and if G/ H is isotropy irreducible, then G/ H is an irreducible
symmetric space.

2. Preliminary Results

In this section we will set up our notations and review some definitions and results
from the theory of transformation groups and symmetric spaces.

Let G be a Lie group, g = T'G, its Lie algebra, and X a smooth G-manifold.
Each element £ of g will also be viewed as a vector field on X, namely the vector field
generating the one-parameter group exp(t€) of diffeomorphisms of X. If ¢ € X then
G, denotes the isotropy group at © and G'z the orbit of . Clearly the tangent space to
Gz atz is T(Gz), = {&(z)| € € g}, and the Lie algebra of G is {¢ € g|é(z) = 0}.

We call X a Riemannian G-manifold if the action of G on X is isometric. In
this case, for each ¢ in g the corresponding vector field on X is a Killing field. The
normal space to the orbit Gz at = will be denoted by v(Gz),, or simply by v,. A
connected, closed submanifold £ of X is called a section for (the action of G on) X,
if £ “meets every orbit”, i.e.,, GL = X, and if £ “meets orbits orthogonally”, i.e., for
eachz in &, TE, C v,. If X admits a section then the action of G on X is called
polar. If X admits a section that is flat in the induced metric, then the action of G on
X is called hyperpolar.

2.1 Homogeneous compact Riemannian G-manifolds.
Let G be a compact Lie group, (, ), an Ad-invariant inner product on g, z a
point in a homogeneous G-manifold M, H = G, and p the orthogonal complement
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of b in g with respect to (, )o. Then the map ¢H +— gz is a G-equivariant diffeomor-
phism of G/H with M that we will usually regard as an identification. The following
are well-known facts: (cf. Chapter 7 of Besse’s “Einstein Manifolds” [Be])

(1) We can identify p with TAd, via £ — £(x), and then the isotropy representation
of M at x is H acting on p via the Ad;(H )-action.

(2) M is called isotropy irreducible if the isotropy representation at z is irreducible,
i.e., if p is irreducible under Adq;(H ).

(3) There exists a bijective correspondence between Ad;(H )-invariant inner prod-
ucts on p and G-invariant metrics on M.

(4) The G-invariant metric on M corresponding to the restriction of an Ad;-
invariant inner product (, ), to p is called the normal metric associated to (, ),
and the corresponding Riemmanian G-manifold M is called a normal homogeneous
Riemannian G-manifold.

An action of G on M is called effective (respectively, almost effective) if the
kernel, N, of the group homomorphism p : ¢ — Diff (M) defined by p(g)(z) =g =
is {e} (respectively, of dimension zero). Since NV is a subgroup of H that is normal in
G, by replacing G by G/N and H by H/N, we may assume that our homogeneous
space G/ H is effective whenever necessary. It is easy to see that the action of G on
G/ H is effective (almost effective) if and only if H does not contain any (respectively,
any non-discrete) normal subgroup of G.

We will use I(M) to denote the group of isometries of M, and I,(M) for its

identity component. Likewise G, will denote the identity component of the Lie group
G.

2.2 Compact symmetric spaces.

A Riemannian manifold M is called a globally symmetric if for each point z € M
there exists an isometry s, such that s (z) = @ and D(s,), = —id. (Since, in gen-
eral, an isometry is determined by its differential at any point, s, is unique.) The
globally symmetric condition implies that the curvature tensor is covariant constant,
and Riemannian manifolds that satisfy this weaker condition are called locally sym-
metric. Henceforth we will refer to globally symmetric Riemannian manifolds simply
as symmetric spaces.

Let M be a connected, compact symmetric space, and G the group of transvec-
tions, i.e., the group generated by the s,s, for all v,y € M. Then the following are
well-known facts (cf. [He], [L]):

(1) G acts transitively on M. We fix a point p € M and let K = G, denote its
isotropy subgroup, so M = G/I . A pair (G, I{) arising in this way will be called a
symmetric pair.

(2) The map ¢ : G — G defined by o(g) = s,¢s, is an involution (i.e., an
automorphism of order two), and (G, ), C K C G,, where G, is the fixed-point set
of o.

(3) Let Z(M) denote the fixed-point set of the ,-action on M, i.e.,

Z(M)={zeM|k-z=2,Vke K,

We will call Z(AM) the center of M, as in Chapters IV and VI of Loos [L]. Loos
shows that Z( M) has a natural abelian group structure and acts freely on M.

(4) If F is a discrete subgroup of Z{A) then M’ = M/F is also a symmetric
space.



(5) Let p denote the —1 eigenspace of Do, on g. Then the isotropy representation
of M at p is the Ad;(H) action on p. Any representation equivalent to the isotropy
representation of a symmetric space is called an s-representation, and in particular the
representation of H on p is called the s-representation of the symmetric pair (G, H).

(6) M is k-flat homogeneous.

(7) The decomposition g = R @ p satisfies the following conditions:

[R,R] C R, [R,p]Cp, [pp]C A (%)

(8) A decomposition g = R p of a Lie algebra g satisfying the condition (*) is
called a Cartan decomposition. Such a decomposition defines a Lie algebra involution
o on g by requiring that & and p are respectively the +1 and —1 eigenspaces of o.
_ (9) Let g be a semi-simple Lie algebra, g = R @ p a Cartan decomposition, and
G the simply connected Lie group associated to g. Let ' = exp(R). Then G/K is
a simply connected, symmetric space.

2.3 Polar actions.

Suppose M is a Riemannain (G-manifold, the G-action on M is polar, and ¥ is
a section. Then the following are known ([PT1]):
(i) ¥ is a totally geodesic submanifold of A{. (Since totally geodesic submanifolds
of R" are automatically flat, it follows that polar representations are hyperpolar).
(i) g€ is also a section for each ¢ in G so, since GL = M, there is a section
through each point of A{. Moreover, every section is of the form g% for some ¢ € G.
(iii) Define the normalizer and centralizer of ¥ in G by

N(E,G)={g€CGlg(Z)=Z}, Z(5,G)={g€eCGlg(s)=s VseL}.

(Clearly N(Z, @) is the largest subgroup of G that acts on I, and Z(Z, G) is the
kernel of this action.) The quotient W(Z,G) = N(Z,G)/Z(Z,G) is called the
generalized Weyl group of the section . It is a finite group acting effectively on Z.

(iv) Recall that v, is an invariant subspace of the isotropy representation of G, on
T M,, and the corresponding subrepresentation of G, is called the slice representation
at z. Every slice representation of A is polar; in fact if ¥ is a section containing
then TS, is a section for the slice representation at .

(v) The set M° of points of M where the slice representation is trivial is called the
set of regular points of M. It is a union of orbits, and these are called the principal
orbits of M. M? is an open, dense, connected subset of M, and is fibered by the
principal orbits. The principal orbits all have the same (maximal) dimension, and their
codimension, called the cohomogeneity of M, is the same as the dimension of any
section. It follows that at a regular point p, exp(#,) is the unique section through p.

2.4 Proposition. Let M be a Riemannian G-manifold. A submanifold & of M is
a section for the action of G if and only if it is a section for the action of G,. In
particular, the action of G on M is polar if and only if the action of G, on M is
polar.

ProoF. Since G, -orbits are components of G-orbits, £ meets G-orbits orthog-
onally, if and only if it meets (7, -orbits orthogonally. Clearly G,£ = M implies
GL = M, so it remains only to prove that if £ is a slice for the action of G then
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it meets every (,-orbit. To see this, let p € £ be on a regular G-orbit. Since G,p
is a connected component of Gp, v(Gp), = v(G,p)y, so since ¥ is totally geodesic
and TZ, = v(Gp)p, T = exp(v(Gyp),). But whenever a Lie group H acts isomet-
rically on a connected, complete Riemannian manifold X, it is well-known that for
any ¢ € X, exp(v(Hz);) meets every H-orbit (cf. [PT1]). =

Polar representations were classified up to “orbital equivalence” (see below) by
Dadok [D]. We need several of his results, which we now state.

2.5 Theorem. (Theorem 4 of [Da]) Suppose H is a connected, compact Lie group,
p: H — SO(V) a polar representation, and V.= V| @ V, is a direct sum decom-
position of V into H-invariant subspaces. Let a be a section for V, a; = an'V,,
and let Hy = Z,(ay, H) and H) = Z,(a,, H) denote the identity components of the
centralizers in H of ay and a; respectively. Then

(I) a=a; 57 ay,

(ii) the H;-action on V; is polar with a; as a section,

(iii) ifa=ay+ay €ay®ay, then H-a=(H;-a)) x (Hy - ay).

2.6 Remark. Note that H and H, x Hy are not equal in general. Nevertheless, from
the point of view of the geometry of orbits, 2.5 can be viewed as a decomposition
theorem.

2.7 Definition. Let &} and G, be two Lie groups and let X; be a Riemannian
manifold on which G; acts isometrically. We shall call these two actions orbitally
equivalent, or w-equivalent if there is an isometry of X| with Xy mapping G orbits
to GGy orbits.

Note that w-equivalence is in general a relation between actions of possibly dif-
ferent groups. For example, the natural actions of SO(2n) on R** and of SU(n) on
C" are w-equivalent.

2.8. Remark. Clearly any action that is w-equivalent to a polar (hyperpolar) ac-
tion is itself polar (hyperpolar). It was proved by Bott and Samelson [BS] that s-
representations are polar, and Dadok’s main result is that up to w-equivalence there
are no others,

2.9 Theorem. (Dadok [D]) A polar representation of a compact, connected Lie
group is w-equivalent to an s-representation.

2.10 Remark. Incasep: H — SO(V') is an irreducible polar representation and the
action of H on V is almost effective, Dadok’s result is more precise. In fact he proves
that, except for six special cases, p is actually equivalent to the isotropy representation
of some symmetric space G'/H. In other words, the vector space g = h @ V' admits a
Lie algebra structure for which h @ V' is a Cartan decomposition. The six exceptional
cases (H,V) and the corresponding s-representations they are w-equivalent to are:
(1) (G,,R"): p = the unique 7-dimensional irreducible representation of G,

(w-equivalent to the s-representation of (SO(7),S0(6))).
(2) (Spin(7),R®): p = the spin representation

(w-equivalent to the s-representation of (SO(8),S0(7)).
(3) (U(1) x G,,C®R")

(w-equivalent to the s-representation of (SO(9),S0(2) x SO(7)).

5



@) (U(1) x Sp(n),C®c C*")
(w-equivalent to the s-representation of (SO(4n),SO(4n — 1)).
(5) (U(1) x Spin(7),C ® R*)
(w-equivalent to the s-representation of (SO(10), SO(2) x SO(8)).
(6) (Spin(7) x SU(2),R® @ R*), where Spin(7) on R® is the spin representation and
SU(3) on R* is the Adjoint representation
(w-equivalent to the s-representation of (SO(11),S0(8) x SO(3)).

The following results are easy consequences of 2.5.

2.11 Proposition. Suppose p : H — SO(V') is a polar representation, and V. =
VoWV & -- &V, is a decomposition of V as a direct sum of H -invariant subspaces
such that V, is a trivial H-space and the V; are non-trivial irreducible H -spaces for
1 <: <. ThenV; and V; are inequivalent H-spaces for 1 <i: < j <r.

ProoOF. We denote the infinitesimal action of an element h of b on an element
v of V by h-v. Suppose Vi is equivalent to V5, and let ¢ : V} — V, be an H-
equivariant linear isomorphism. Then we have ¢(h - z) = h - ¢(z) for all h € b and
z € V}. Let a; € V] be a regular element for the H-action on V}. Then a3 = ¢(a;) is
a regular element for the H-action on V,. Let a be a section of V' containing a; + ay,
a; = anV;, and let H, = Z(ay, H) be as in Dadok’s Theorem 2.5. Then, since
hl dy = 0 for all hl I~ f)] and ay € ay, L,D(h[ : (11) = hl . (,D(CL]) = (. Since Y is an
isomorphism, ~; - a; = 0, so V] is a trivial representation, a contradiction. »

Next we prove that whether or not a representation is polar is independent of the
choice of H-invariant scalar product on the representation space.

2.12 Theorem. Let p : H — GL(V) be a representation, and (, ), k = 1,2,
H -invariant inner products on V. If the H-action on (V,(, )) is polar and a is a
section, then

(1) the H-action on (V,(, )y) is also polar with a as a section,

(2) the orthogonal complements of a in 'V are the same with respect to both inner
products; namely, if a is a point where a meets a principal orbit, then both are equal

to T(Ha),.

Proor. By Lemma2.11, we may write V as adirectsum V = V,eV®---dV;
of H-invariant subspaces such that V, is a trivial H-space and Vi,...,V, are non-
trivial, inequivalent irreducible H-spaces. It follows that V,,...,V, are mutually
orthogonal with respect to any H -invariant inner product on V. Since V; is irreducible
for1 <7 <, there exists ¢; > 0O such that (, )y = ¢i(, hon V;. Leta; =an,
a=a,+...+a, € a aregular point, and P; the tangent plane of the orbit Ha; at a;.
Since the H-action on (V,(, )1) is polar, by 2.5 H; on V; is polar with a; as section.
Hence a; L P; with respect to (, );. Note that a, = V,, while if ¢ > 0 then, since the
two inner products on V; are proportional, a; is also orthogonal to P; with respect to
(, )2, 50 (1) and (2) follow. =

Now we review some elementary properties of Killing vector fields and totally
geodesic, flat submanifolds.



2.13 Proposition. ([Be] Proposition 7.87) Let M be a homogeneous G-manifold,
x € M, and H = (. Let p denote the orthogonal complement of b in g with respect
to an Ad(G)-invariant inner product, (, ), on g, and let (M, ds?) be the normal
homogeneous Riemannian G-manifold associated to (, ),. If we identify TM, with p
as in 2.1, then the Riemann tensor R of (M, ds?) at z satisfies:

(R(€:7?)(£)1 7?)0 = ([6!77]% [5,7710)0 + %([6: n]P! [61 T]]P)o:

where [, 1]y and [€,m], are respectively the by and p components of [, 7).

2.14 Corollary. With the same assumptions as above, if ¥ is a totally geodesic sub-
manifold of M containing x, then T is flat if and only if TS, is an abelian subalgebra
of p.

As a consequence of 2.14 and 2.3, we have

2.15 Proposition. If G/H is a compact, normal homogeneous G-manifold such that
the action of H on G/ H is hyperpolar, then the action of H on p = b1 is polar with
abelian subalgebras of p as sections.

We end this section by giving a sufficient condition for a totally geodesic, flat
submanifold of a Riemannian G'-manifold M to be a section. (This is actually a
special case of a theorem of R. Hermann [H2].)

2.16 Theorem. If L is a flat, totally geodesic submanifold of a compact, Riemannian
H-manifold M and T is orthogonal to some H-orbit at one point, then £ meets
H -orbits orthogonally. Hence if in addition ¥ is closed in M and HL = M, then &
is a section for M and the H-action on M is hyperpolar.

We recall that a necessary and sufficient condition for a vector field £ on M to
be a Killing field on M is that (V,€,v) = —(u, V,§) for all u,v € TM,. We will
need two easy facts concerning Killing fields.

2.17 Lemma. A Killing vector field ¢ on a compact, flat Riemannian manifold T has
constant length. In particular, if £ vanishes at one point then it is identically zero.

PROOF. The universal cover of 7 is the Euclidean space R". The lifting £ of ¢
to R" is a Killing vector field on R", so there is a skew-adjoint operator A on R" and
b € R" such that £(z) = Az + b. Since 7 is compact, { is bounded, and hence so is
f This implies that A = 0, so E is a constant vector field on R”, and so the length of
¢ is constant. »

2.18 Lemma. Let T be a totally geodesic submanifold of M, ¢ a Killing vector field
on M, and €7 the vector field on T defined by €"(x) = the projection of £(z) onto
Tr.. Then &7 is a Killing vector field on 7.

ProOF. Let V denote the Levi-Civita connection of M, V the induced con-
nection on T'r, ¢+ the projection of ¢ to the normal bundle 1/(1'), and u,v € T'1,.
Since 7 is totally geodesic, V&1 € v(7), and V€™ = V,£7. Tt follows that
(Vu€,v) = (V€7 ,0) = —{u, V&) = —{u, V,£7), so £7 is a Killing vector field of

T. a1



2.19 Proof of Theorem 2.16. Since each £ € b is a Killing field on M, it follows
from 2.17 and 2.18 that if £ is orthogonal to & at one point of ¥ then ¢ is orthogonal
to T at every point of £. Recalling that T(Hs), = {¢(s)| € € b} it now follows that
if TE,; C v(Hs), holds for one point, s, of £ it also holds at every other point of L.
]

3. Classification of polar pairs

In this section, we will prove that if G/H is a normal homogeneous manifold
such that the action of H on G/H is hyperpolar, then G/H is a symmetric space. To
prove this, we define the following related notion of polar pairs and classify them.

3.1 Definition. A pair (G, H) is called a polar pair if it satisfies the following

conditions:

(a) G is a compact, connected Lie group equipped with a bi-invariant metric induced
from an Ad(G)-invariant inner product (, ) on the Lie algebra g,

(b) H is a closed subgroup of G,

(c) the action of G on G/H is almost effective,

(d) the Adg;(H)-action of H on p = b is polar with abelian subalgebras as sections.
(We refer to these as abelian sections).

3.2 Definition. A polar pair (G, H) is called irreducible if G/H is isotropy irre-
ducible, or equivalently the H -representation on p is irreducible.

3.3 Remark. By 2.4, H on p is polar if and only if H, on p is polar, and hence
(G, H) is a polar pair if and only if (G, H,) is a polar pair. If G is semi-simple, G
the simply connected Lie group corresponding to g, and H = the subgroup exp(h) of
G, then (G, H) is a polar pair if and only if (@, H) is a polar pair.

3.4 Example. By 2.15,if G/H is a compact, normal homogenous G-manifold such
that the action of H on G is hyperpolar then (G, H) is a polar pair.

3.5 Example. Since s-representations are polar, if A is a compact symmetric space,
then the symmetric pair (G, K') associated to M is a polar pair.

3.6 Example. Spin(7) acts on R" by the spin representation, and it is transitive on
the unit sphere §7 with isotropy group G,. Moreover, the isotropy representation of
§" = Spin(7)/G, is the irreducible G,-representation on R7, which is transtive on S%,
Hence the G,-action on §7 is hyperpolar (the normal geodesic to a principle orbit is a
section), and (Spin(7), G,) is a polar pair, but not a symmetric pair.

3.7 Theorem. Suppose (G, H) is a polar pair, and p = p\ @ - - ® p, is a direct sum
decomposition of p = Y into irreducible H,-spaces. Let

gi =p; + [pi,pi), bBi=bHnNp.

Then

(1) g=01D---Dgrandbh =4, DB, are direct sum decompositions of ¢ and
b respectively into ideals,



(2) if I = {i|p;is a trivial H—space }, then ); = 0, g; = p; for all : € I and
Po = @©{pi|i € I} is the center 3 of g,

(3) Z =exp(3) =T™ is a torus, and H; = exp(h;) and G; = exp(g;) are closed,
connected subgroups of G for j ¢ I,

(4) for j € I, (G}, H;) is an irreducible polar pair with G; semi-simple,

(5) Gi and G; commute if i # j.

To prove this theorem, we need the following Lemma:

3.8 Lemma. Let (G, H) be a polar pair, p = b, and X € p. Then the normal
space vy of the H-orbit through X is the set 3(X)Np = {Y € p|[X,Y] = 0},
where 3(X) denotes the centralizer of X in g.

PROOF. Let a be an abelian section containing X for the H-action on p, and
let Hy be the isotropy group of X. Since the H-action on p is polar, it follows from
the Slice Theorem for isoparametric submanifolds (cf. [PT2], [HOT]) that

vy = | J ka7l
hefly

Because a is abelian and X € a, we have

U hah™! C3(X)N p.

heHy

This implies that vy C 3(X) N p. Conversely, let ¥ € 3(X) N p. Since {, } is
Ad(G)-invariant,
(Y, [0, X)) = {{X,Y], ) = 0.

This proves Y € vy, and the lemma follows. =

3.9 Proof of Theorem 3.7.
First we claim that

[pi,p;) =0, ifis#j

To see this, we note that the invariance of p; under Adq(H )-action implies that
[h,p;] € p;. Now let X € p;. Since the tangent space to the orbit through X is
[X, b], it is contained in p;, so the normal space vy includes all the p; for j # :. By
3.8, [X,p;] = 0if j # 7, and since this is true for all X € p;, the claim is proved.

We will prove each statement of the theorem seperately below.

(1) We want to show that g decomposes into a direct sum of ideals g;. (Notice that
this is not the case for every polar isotropy representation of a homogeneous space
G/H. An easy counter-example is G = SU(n + 1) and H = SU(n). Here p has a
trivial factor, although G being simple cannot split.)

We first prove that

g=p+I[p,p.

(This sum is in general not direct.) Let us assume that this does not hold. Then there
is a non-zero X orthogonal to p + [p,p). Clearly X € b and (X, [p,p]) = 0 so,
since [X,p] C p and {(X,p],p) =0, [X,p] = 0. But this implies that exp tX acts
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as the identity on G/H contradicting the assumption that H does not contain any
non-discrete normal subgroup of G.
We next want to prove that g; is an ideal and that [g;, g;] = 0 for ¢ # j. Notice

that since [p;,p;] = 0 for i # j, we have g = @, + --- + g@,. To prove that g; is an
ideal one verifies:

() [p;, [P, Pi]] = 0 for i # j by the Jacobi identity.
(i) {p:, [pi, pi]] € @i, since by the Ad-invariance of the metric, for ¢ # j we have

(s, pis [Pis i) = 0, {[pss psl [, [psy 03]]) = 0.
(iii) {[p;, p;], [Ps, bi]] = 0 for i # j by the Jacobi identity.
@v) [[ps, pil, [Pi, b3])] € g since, by Ad-invariance, for ¢ # j we have
(pjs [lpis pils [Pis Rsll) = 0, ([pjs 0], [Ipsy 03l Ipis il]) = 0.

It now follows that g; is an ideal for all 1 <7 <, and that [g;, g;] = 0 if ¢ # j.
Since for ¢ # j we have

(pi, [Py pi]) = ([Pisbi]sp5) =0,
g; is orthogonal to ¢;, so we have an orthogonal direct sum decomposition
g=0® Do

Now set fj; = g; NH. We would like to show that h = b, & --- @ b,. This will follow
when we have proved that in a decomposition of X € §into X = X) +--- + X,
X; € g;, the component X; € b.

First notice that (X, p) = 0. So for all ¢ we have

(Xp 4+ X pi) =0.

Since the g; are orthogonal ideals we have that {X;,p;) = 0 for ¢ # j, and hence
(Xi, p;) = 0 for every 7. It follows that

(.X’i,P) = (-X-i) pl) +-+ (-X-f’pf) =0

which proves that X; € . This finishes the proof of (1).

(2) If p; is an irreducible trivial H,-space, then p; is of dimension 1. Hence g; =
p; + [pi,p:} = p; and b; = 0. To prove the second part of the statement, we note
that the almost-effectiveness of the action of G on G/H implies that 3N h = 0. Let
po = @®{p;}: € I}. Since p; = g; is one-dimensional for all : € I and [g;,g;] = 0
for all 7 # j, py € 3. Conversely, let z € 3. Write 2 = 2 + -+ - + 2, with z; € g.
Suppose k € I, i.e., py. is a non-trivial H,-space. Then we have

0= [z’ gk] = [zl + ot 2y, Gk] = [zb, gk}-
But [z, g;] = 0 for all j # k. Hence z; € 3, which implies that [z;, §] = 0. Write
zr = by + x4 € by @ p. Then [z, §] = [z, b]p = 0, which implies that z;, = 0
(because py is a non-trivial H,-space). So we have z; = hy € hNz. ButgNh =0,
soz; =0if k¢ I, and z € ®{g;|i € I} = py. This proves (2).
Since G is compact, g is the direct sum of the center 3 and a semi-simple ideal,

so (3) and (4) follow from (2). Finally, (5) follows from the fact that [g;, g;] = 0 for
i#j.
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3.10 Corollary. Let (G, H) be a polar pair, and p = p, & - - - @ p, a decomposition,
where p, is a trivial H-space and p; is a_non-trivial, irreducible H-space for 1 <
t < m. Then there exist a polar pair (G, H), and a surjective group homomorphism

p: G — G such that

(1) the kernel of p is a finite group, p(H) = H, C H, and p is a local isometry,

(2) the map = : é/ﬁ — G/ H defined by =(§H) = p(§)H is p-equivariant, a finite

cover, and a local isometry with respect to the normal invariant metrics on G / H
and G/ H induced from the bi-invariant metric of @ and G respectively,

(3) é/I:I can be written as the direct product T x G'l/f:I] X oer X G’,/I?I,, where
T is a flat torus of dimension equal to dim(p,), and each (é,-, ﬁ;) is an irreducible
polar pair such that G is simiply-connected, semi-simple, H; is connected, and the
isotropy representation of G;/H; is w-equivalent to the H -action on p;.

PROOF. We may assume that p; is a non-trivial H -space if : < m, and that p; is
trivial if m < ¢ < rin3.7. Then 3, the center of g, is equal to p, = &{p; |m < i < r}.
If we take T = exp(3), let p; : Gi — G; be the simply-connected cover of G;, and
H; = exp(h;) in G; for i < m, then p(z,91,...19m) = p1(g1) " Pm(gm) is 2
well-defined map of G =T x G| X -+ X Gy, to G with the required properties. =

3.11 Classification Theorem. Suppose (G, H) is an irreducible polar pair with G
semi-simple and simply-connected, and H connected. Then (G, H) is either a sym-
metric pair associated to some irreducible symmetric space of compact type or else it
is isomorphic to (Spin(T7),G,).

3.12 Remark. Suppose (G, H) is an irreducible polar pair. Since the dimension
of H-orbits in p is at most equal to dim(H ), dim(p) = dim(G) — dim(H) and the
dimension of an abelian section in p cannot exceed the rank of G, (G, H) has to
satisfy the following condition:

2dim H +rank ¢ > dim G. (*%)

So one way to prove 3.11 is to go through the classification list of isotropy irreducible
spaces G/H (G is simply connected and H is connected) in [Wo] or {Kr] (see also
[WZ] for the case G classical) to check whether (**) is satisfied. It turns out that
there are only two non-symmetric pairs (G, H) with G/H isotropy irreducible and
satisfying the above inequality. These are (Spin(7), G, ) and (G,, SU(2)) with quotients
diffeomorphic to §7 and §° respectively. The first case is the polar pair example given
in 3.6. One can calculate in the second case that the cohomogeneity is greater than
the rank of G, which shows that it cannot give rise to a polar pair.

Since the list of isotropy irreducible spaces is rather long and checking the above
inequality is tedious, we give below a different proof using Dadok’s Theorem 2.9
classifying polar representations.

We first need three lemmas:

3.13 Lemma. If (G, H) is a polar pair and a C p is an abelian section, then a is a
maximal abelian subalgebra in .
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Proo¥. Let b be an abelian subalgebra of p with a C b. By the Ad-invariance
of {, ),
{Ib, 8], b) = (b,[b,b]) = 0.

Sob L Hbforallbe b. Butif a € a C b is a regular point, then v(Ha), = q,
which implies that b = a. »

3.14 Lemma. If (G,H) is a polar pair, and a C p is an abelian section, then
rank(G) < rank(H) + dim(a).

Proor. Let T, be a maximal abelian subalgebra of §j, and ¥, C ¥ a maximal
abelian subalgebra of g. The lemma will follow if we can show that T = T, (TNp).
To prove the latter, givent € T, write t =z +y € h & p. Since

Oz[t,TO]=[$+y1‘$o]=[mago]+[yag0]€ h®p’

[z,%y] = 0 and [y, T,] = 0. Since T, is a maximal abelian subalgebra of b, it follows
that z € T,, hencey € T, Np.

3.15 Lemma. (Wolf [W1]) Suppose G is a compact, semi-simple Lie group that is not
simple. If H is a closed, connected subgroup of G and G| H is isotropy irreducible,
then (G, H) is isomorphic to the symmetric pair (K x I, A(K)) for some compact,
simple Lie group I, (here, AN(K') denotes the diagonal subgroup in K x K).

3.16 Proof of 3.11.

We note that since p is Ady irreducible, and H ‘is connected, it follows that p
is also irreducible under ad(h), a fact we will use often below. By 3.15, we may
assume that g is simple, so the given Ad;-invariant inner product {, ) on g can be
taken equal to the negative of the Killing form of g.

Using 2.10, we will divide the proof into two cases, according to whether or not
the representation of A on p is an s-representation.

Case (i): The representation of H on p is an s-representation.

Then there is a Lie algebra @ that coincides with g as a vector space and has
bracket [X,Y]; that coincides with [X,Y]if X,Y € horif X € h,Y € p, and
further has the property that § = b @ p is a Cartan decomposition.

Let {, ); denote the negative of the Killing form of 3. Because the map ad(X)
for X € b is the same for the two Lie algebras g and @, {, } and {, ); coincide on b.
Since the action of H on p is irreducible, by Schur’s lemma there is, up to a constant
multiple, only one H -invariant scalar product on p. Hence there is a positive number
¢ such that

(X,Y) =¢(X,Y),
forall X,Y € p.
For Z € g, we let Z) and Z|, denote the § and p components of Z. We claim
that
[Xs }"] ZC[X':Y.]I +[Xa Y.]Pa VX’Y'E p,
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where ¢ is the same constant as above. To see this, notice that for all Z € b,

(Zs [X,Y]) = ([Z,‘X],Y) = C([Z?X]lay)l
= c(Z,[X,Y))1 = (Z,[X,Y]).

It now follows that [X,Y’], defines a Lie bracket on p, and we will use p to
denote this Lie algebra. Let 3 denote the center of p. It follows from the Jacobi
identity that 3 is an ad(h)-invariant subspace of p. Since p is ad(h)-irreducible, this
implies that either 3 = p or 3 = 0.

First assume that 3 = 0, and hence that p is not solvable., Notice that for Z € b,
ad(Z) is a derivation of the Lie algebra p, since it is a derivation of the two Lie
algebras g and @. But any derivation of a Lie algebra preserves its radical, so the
radical of p is an ad(h)-invariant subspace of p. Since p is irreducible under ad(h)
and p is not solvable, it follows that the radical is zero, i.e., p is semi-simple.

A derivation of a semi-simple Lie algebra is inner, so for every Z € f there is a
©(Z) € p such that :

2d(Z)(X) = (2, X] = [¢(2), X,

for all X in p. Since p has no center this ¢(Z) is unique, and we thus have a map
@ : b — p. Again using 3 = 0, if follows that ¢ is injective. Let W, Z € b and
X € p. Using the Jacobi identity, we find
[[I’Va (p(Z)], ‘X—]P = _[{P(Z)a [I’Vs ‘Y]]P + “’V’ [‘P(Z)) X]P]

= '_[Z} [IV! X+ [W,[2,X]]

= [[I'V! Z]1 X] = [SO([I’V! Z])’X]P
This proves that [W,p(Z)] = ¢([W, Z]). A first consequence is that the image of
¢ is invariant under ad(h) so, by irreducibility again, ¢ is surjective, and hence a
linear isomorphism. Another consequence is that ¢ is equivariant with respect to the
representations of H on by and p. It follows that § is simple. One calculates easily

that the scalar product (X,Y") := {p(X),¢(Y")) on b is ad(h) invariant. Hence there
is a constant x> 0 such that

(p(X),p(Y)) = p{X, ).

Our next aim is to show that ¢ is the direct sum of two ideals, each isomorphic
to f. For this we need to show that

[p(X), (Y] = X, Y]+ [0(X), 0(Y)],
for all X, Y € ) where g is the same constant as above. To see this notice that

(lp(X), (Y], Z)1 = e{[p(X), p(Y)]1, Z) = e{p(X), [p(Y), Z]ih
= {p(X),¢(lY, 2])) = w(X,[Y, Z])
= ,LL([.X', }"]’ Z]) = ,Li([}i', Y])Z>1

for every Z in . Using the definition of ¢ twice we see that [p(X ), p(Y)]p, =
¢([X,Y]), and it follows that

13



[P(X), (V)] = p[X, Y] + ([X,Y])

forall X,Y € b.

Let A, and Ay be the roots of the equation uz* —z — 1 = 0. Note that since g
is positive, A; and Ay are real and distinct. For i = 1,2 define

= {X + Mp(X)| X €b).

A simple calculation shows that both {; and |, are ideals of g isomorphic to b, and
that g = [} @ [y, contradicting the assumption that g is simple.

Since 3 = 0 leads to a contradiction it follows that 3 = p, and hence g = h P p
is a Cartan decomposition, so (G, H ) is a symmetric pair, proving the theorem in this
case.

Case (ii): The representation of H on p is not an s-representation.

By 3.15, G is simple, and using 2.10 we see that (H, p) must be isomorphic to
(H, V), for one of the examples (1)—(6) listed there.

Note that we can compute ¢ = dim(G) from the formula g = dim(H )+dim(V').

(1): (G,,R7). In this case the above formula gives ¢ = 21, and the only simply-
connected, simple Lie groups having dimension 21 are Spin{(7) and Sp(3). If G =
Spin(7), then (G, H) is the example of a polar pair in 3.6. On the other hand,
(Sp(3), G,) cannot be a polar pair, since Sp(3)/G, is not on the classification list
([W1], [Kr], [WZ)) of isotropy irreducible spaces.

(2) and (3): In these two examples ¢ = 29, and since there is no simple Lie group of
this dimension, these examples cannot give rise to polar pairs.

(4): (U(1) x Sp(n),C®¢ C*™). Then ¢ = 2n* + 5n + 1. Because the action of H on
p is transitive on the sphere S4n=1 the abelian section a in p must be of dimension
1. By 3.14, we have n + 1 < rank(&) < n + 2. It then can be checked directly that
g = 2n? 4 5n + 1 is not the dimension of any simple group of rank n + 1 or n + 2,

(5): (U(1) x Spin(7),C ® R*). Then g = 38, and since there is no simple Lie group
of this dimension, this example cannot give rise to a polar pair.

(6): For this example ¢ = 48. The only simple Lie group of this dimension is SU(7).
But (SU(T7),Spin(7) x SU(2)) is not a polar pair, since SU(7)/Spin(7) x SU(2) is
not on the list of isotropy irreducible spaces.

The above considerations shows that (Spin(7),G,) is the only irreducible polar pair
satisfying the assumptions of 3.11 that is not a symmetric pair. This concludes the
proof of case (ii) and of the Classification Theorem, 3.11. =

Because Spin(7)/G, = §7, it follows from 3.10 and 3.11 that:

3.17 Corollary. If (G, H) is a polar pair with G simply-connected and semi-simple
and H connected, then G| H is a simply-connected symmetric space of compact type.

3.18 Theorem. If (G, H) is a polar pair and the H-action on p is of cohomogeneity
k, then G/H is a compact symmetric space of rank k.
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Proo¥. Using the notation in 3.10, we see from 3.11 that M = é/fi is a
symmetric space, so M = G/H is a locally symmetric space. Using 2.2 (4), to
prove that M is globally symmetric it suffices to prove that 7=!(p) € Z(M), where
p=eH € M.

If (G, H;) is a symmetric_pair with H; connected, then by 2.2 (3) the center
Z(M,—) of M; = @,-/ff,- is ﬂfJfH‘, the fixed point set of H; on M;. Note that the
fixed point set of G, on §7 is {p, —p}, which is also the center Z(S7) of~S7. So
even if Spin(7)/G, is one of the factors in M; we still have Z(M;) = M. 1t is
known that Z(M) =T x Z(M) x --- x Z(M,), so Z(M) is equal to MH, Using
7(§-z) = p(§)x(2), we see that if 7(y) = p then :fI-y C 7~ !(p). Since 7 is a finite
cover and H is connected, H -y = y, i, y € M = Z(!‘:J) "

As consequence of the proof of 3.18, we also obtain

3.19 Corollary. If (G, H) is an irreducible polar pair, then (G, H) must be either
the symmetric pair for an irreducible symmetric space, or one of the following pairs:
(Spin(7),G,), (SO(7),G,), or (8, Z,).

It follows from 3.4 and 3.18 that

3.20 Corollary. If G/H is a compact, normal Riemannian homogeneous space such
that the action of H on G| H is hyperpolar, then G [H is a symmetric space (although
(G, H) is not necessarily a symmetric pair).

In the next section we will prove the same conclusion without assuming that the
Riemannian homogeneous space G/ H is necessarily normal.

4. k-flat homogeneous spaces

The main result of this section is the following characterization of compact, k-flat
homogeneous manifolds.

4.1 Theorem. A compact k-flat homogeneous space is a symmetric space of rank k.

4.2 Remark. Notice that it follows from Theorem 4.1 that 2 compact manifold can
only be k-flat homogeneous for one k, in contrast to the n-dimensional Euclidean
space, which is k-flat homogeneous for all 1 < k < n.

The following Proposition follows directly from the definition of k-flat homo-
geneity.

4.3 Proposition. Let M be a compact, Riemannian manifold. Then M is k-flat
homogeneous if and only if the following three conditions are satisfied:
(i) every geodesic is contained in some k-flat,
(i) G = I(M) acts transtively on the set of k-flats of M,
(iii) there exists a k-flat T such that the normalizer N(r,G) acts transtively on .

4.4 Proposition. Let M be a compact Riemannian manifold such that I{M) acts
transtively on the set of geodesics of M. Then M is 1-flat homogeneous, or equiva-
lently two-point homogeneous.
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Proo¥. If M is one-dimensional the result is trivial. 1f dim(M) > 1, then the
fact that G = I(M) is transitive on geodesics implies that dim(G) > 0. Since G is
compact it then follows that there is a circle subgroup I' C G. Let v be an I'-orbit in
M of maximal length. It is well-known (cf. [H1]) that v is a closed geodesic, hence
v is a 1-flat, and obviously N (v, &) includes I, and so acts transtively on . It then
follows from 4.3 that M is 1-flat homogeneous. =

4.5 Remark. Although condition (iii) is a consequence of (i) and (ii) if £ = 1, this
is no longer so if & > 1. The Klein bottle S is a counter-example for £ = 2, and
more generally, if M is m-flat homogeneous, then M x § satisfies conditions (i) and
(i) for k£ = m + 2, but is not k-flat homogeneous.

4.6 Theorem. If (M,ds*) is a compact Riemannian manifold then the following two
statements are equivalent:

(i) M is k-flat homogeneous.

(i) M is a homogeneous Riemannian G-manifold and the action of some subgroup
H of G is hyperpolar with k-dimensional sections and has a fixed point.

Proor. We first prove that (i) implies (ii). Let G = I(M), H = G,,and 7 a
k-flat through . We claim that H7 = M. For if p € M then there exist a geodesic
v joining z to p, and a k-flat ¢ containing -y, so by definition of k-flat homogeneity,
there exists ¢ € G such that g(2) = x and ¢(7) = o, proving Hr = M. Since M is
compact and T is totally geodesic, flat and orthogonal to the orbit Hz = {z} at z, it
follows from 2.16 that 7 is a flat section for the H-action on M and so this action is
hyperpolar.

We next prove that (ii) implies (i). Let vy be a geodesic. We have to show that
is contained in a k-flat. Let @ be a fixed-point of H and let ¢ € G be such that gy
passes through z. Let 7 be a k-flat that is a section of H. Then H(T,7) = T; M, so
that there is a h € H for which ¢+ is contained in hr. It follows that v lies in the
k-flat g~'hr. Now let (z),7 ) and (zy, 74) be such that z; € 7; and 7; is a k-flat. By
the homogeneity of M there are ¢; and g, € G such that ¢g;(z;) = « where z is a
fixed point of H. As in the first part of the proof it follows that ¢;7; is a flat section.
By 2.3 (ii), H is transitive on the set of sections. Hence there is an h € H such that
hngl = g7y, i.e., gz_lhg](Tl) =Ty and gz_lhgl(ﬁll) = Ty. It follows that M is k-flat
homogeneous. =

4.7 Proposition. Let M be a homogeneous Riemannian G-manifold, and H a closed
subgroup of G,. If the action of H on M is hyperpolar, then the H,-action and the
(Gp)o-action on M are w-equivalent.

PRrOOF. Since H-orbits are submanifolds of &), orbits, it will suffice to prove
that the two actions have the same cohomogeneity. If 7 is a flat section for the H-
action, then 7 is a flat, totally geodesic submanifold and H7 = M. Because H C G,
we have G,7 = M. Since 7 is perpendicular to the orbit Gp,p = {p}, by 2.16 T is a
section for the action of Gp. Thus both H and G, acting on M have cohomogeneity
dim(7). =

4.8 Remark. If M = G/H equipped with a normal metric is k-flat homogeneous,
then by 4.6 and 3.20, M is a symmetric space. However, the metric on a k-flat
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homogeneous space in general need not be normal, and to prove 4.1, we need a
non-linear analogue of 2.12. First a lemma.

4.9 Lemma. If (7, ds?) is a flat, compact, homogeneous Riemannian N -manifold,
and ds? is another N-invariant metric on r, then dsi is also flat.

ProOF. Since 7 is compact, flat and homogeneous, it follows that it is a torus
and the universal cover 7 of 7 is R". We may assume that IV acts on 7 effectively
(we can always quotient out the kernel of the action). Then the Lie algebra n of N is
the abelian Lie algebra R™. So there exists local coordinate system (up,...,uz) on r
such that the coordinate vector fields are Killing fields. It follows that any NV -invariant
metric on 7 is of the form ) ¢;;du; ® du; for some constant positive matrix (¢;;),
and hence is flat. =

4.10 Theorem. Let (M, ds*) be a k-flat homogeneous space, G = I(M,ds*) and
= G;. Let ds be the normal homogeneous metric on M associated to some

Ad(G) invariant inner product {, ), on g. Then

(1) (M ds?) zs also k-flat homogeneous,

(2) ds? and ds have the same set of k-flats,

(3) the H-action on (M,ds?) is hyperpolar,

(4) (M,ds?) is a symmetric space of rank k.

PROOF. Let 7 be a k-flat through = for (M, ds*),and N = {g € G| g(7) = 7}.
By 4.3, N = N(r, @) acts transtively on 7.

We first claim that the action of H on (M,ds?) is polar. To prove this, we
let & = Tr,. Then 2.12 implies that [§,a] L a with respect to both metrics. Note
that ¢ € G is an isometry with respect to both ds? and ds?. For ¢ € N, we have
(9:)z(a) = T1pz. So (g.)2([h, a]) L Try, with respect to both metrics. By 4.6, the
H -action on (M, ds?) is hyperpolar with 7 as a section. So T'r,, is the normal space
to the orbit H gz at gz with respect to ds®. Hence we have (g,)«([h, @]) = T(Hgz),.
This proves that a principal orbit H gz is pcrpcndlcular to 7 at gz with respect to ds?,
i.c., the H-action on (M, ds?) is polar and 7 is a section. Since N acts transtively on
7, 4.9 implies that 7 is flat in the metric induced from ds?.

Clearly (2) and (3) are consequence of the proof of (1) and (4) follows from (3)
and 3.20. =

4.11 Proof of 4.1.

Let G = I(M,ds*), H = G,, {, ), an Ad(G)-invariant inner product on g,
and ds? the associated normal G-invariant metric on M. By 4.10, (M, ds?) is k-flat
homogeneous and it follows from 4.8 that (M, ds?) is a symmetric space. It remains
to prove that (M, ds?) is also a symmetric space To do this, we use the same notation
as in 3.10. Let % and ho be the lifting of ds® and ds to M respectively. Then:

(1) both h and h are G- invariant, N
() M =T x M; x - x My, where (T, gy) is a flat torus, (M, g;) is a simply-
connected, irreducible symmetric space of compact type, and the metric k, on

M is the product metric h, = =g+ g+ -+ gm.

Let p, = eH. By 2.12, there cxist positive constants ¢; such that ds? | p; = ¢;(, )o | pi.
Let g¢ be the homogeneous flat metric on T induced from . -Then the @ invariant
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metrics h and k' = 9o +Cr91+" -+ Cmgm agree at po, which implies that h = h*. But
(M, }*) is a symmetric space, so (M h) is a symmetric space. Moreover, (M, h,)

and (M, 1) have the same center M#, which contains 7~!(p) as a discrete subgroup.
Hence by 2.2 (4), (M, ds®) is also a symmctnc space. m
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