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THE CENTRAL SERIES FOR PEIFFER COMMUTATORS

IN GROUPS WITH OPERATORS

Hans Joachim Baues and Daniel Conduche

The central series of groups and Lie algebras play a

fundamental röle in the algebraic topology of simply connected

spaces, see for example [8], [18]. These concepts, however, do

not lend themselves to deal with non simply connected spacesi

and topologists have feIt for a long time that there is a lack

of methods for studying spaces with non trivial fundamental

group.

The first two groups

of a simplicical group are equivalent to a pre-crossed module

where kernel (da) is a group with operators in Go. Therefore a

pre-crossed module corresponds exactly to that low dimensional

part of a space"which gives a presentation of the fundamental

group.
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In this paper we study the central series in a pre-crossed

module defined by Peiffer commutators. Our principal objective

i5 an extension of the following classical result of witt [23J.

Theorem A: The quottents of the central sertes of a group form

aLte algebra whtch ts a free Lte algebra provtded the group is

free.

Theorem A 1s abasie tool in group theory and topology. For

exarnple, it is used by' curtis [8J as a starting point for his

results on reduced simplicial groups and sirnply connected

spaces. The following generalization of theorem A allows an

extension of such results to spaces which are not simply

connected.

Theorem B: The quotients of the Petffer central sertes form a

partiaL LLe algebra which ts a free partiaL Lte aLgebra

provided the pre-crossed module ts free with a free group of

operators.

Most of the paper 1s devoted to the proof of Theorem B. In case

the group of operators 1s trivial the Peiffer.central series is

the same as the central series of a group and then Theorem B

coincides with witt's theorem above.

First applications of Theorem Bare contained in [2J, [3J, and

[7]. The restrietion of theorem B to the second quotient of the



- 3 -

Peiffer central series was obtained in [2] by a geometrie

argument and is'used there for the construction" of minimal

algebraic models of 4-dimensional CW-complexes. Moreover, we

derive from Theorem B small algebraic models cf 3-types by the

methods in [6], see [3]. These examples show that Theorem B can

be used for the construction cf small algebraic models of

spaces which avoid the redundant complexity in a simplicial

group.

The authors want to acknowledge the support of the University

of Rennes and the Max-Planck-Institut für Mathematik, Bonn.

A.M.S. classifi~ation: 20F; secondary: 1713; SSP; 57M

Key Words: Pre crossed modul~s; Peiffer commutators; comrnutators
Peiffer (lower) central series; (lower) central series; Partial
Lie algebra; Lie algebra.
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§1 The Peiffer central series

We fix some notation on cornmutators and Peiffer

comrnutators and we introduce the Peiffer central series of a

pre crossed module. Such (pre) crossed modules arise na~urally

from presentation of groups and from relative homotopy groups.

In this paper the group structure +, -, 0 of a group M

i5 written aqditively though addition + in M needs not to

be abelian. The element 0 denotes the neutral element in M.

An N-group M is given by an action of the group N on M

denoted by a
X for x € M, a € N. We have

a a
(-x) =-x

ox = x

for x,y € M, a,ß € N. Apre crossed moduLe 8: M ~ N 15 a

group homomorphism together with an action cf N on M

satisfying

(1.1) 8(x
a

) = -a + 8(x) + a.

This is a crossed module if in addition

(1.2) -y + x + Y
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A map f: a ~ a' between pre crossed modules is a pair of

homomorphisms f"= (m : M ~ M', n : N ~ N) with a'm = n8 and

a nam(x ) = (mx) .

For a set Z let <Z> be the free group generated by Z. The

free N-group generated by Z i5 the free group <Z x N>

generated by the product set Z x N; the action is given on

generators by

(1.3) (x,a)ß = (x,a + ß)

for x € Z, a,ß € N. Moreover, M ~ N i5 a free pre crossed

moduLe if and only if M i5 a free N-group. In this case the

associated cro~~ed module (see (1.15) below) 15 a free crossed

moduLe.

(1.4) Example: Let G = <al,···an I R1,···,Rm> be a

presentatton of the group G with generators a. and
1.

relations R .. Then we have
]

G = cokernel (a M ~ N)

where a is the following pre crossed module. The group

N = <Zl> 1s the free group generated by the set

Zl c {al, •.. ,an } and the group M is the free N-group

generated by the set Z2 = {Rl, ... ,Rm}. The hornomorphism a

carries the generator (x,a) in M = <Z2 x N> to

-a + R + a € N where R is the relation given by x € Z2.

Whence a is a free pre crossed module on a free group N.
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(1.5) Example: Let (X,A) be a pair of topological spaces

with basepoint * €,A. Then the relative homotopy group

v
2

(X,A) with the boundary homomorphisms

is a crossed module by the usual action of v 1 (A) on v 2 (X,A),

(such a result even holds in any cofibration category, see

(11.7.16) in [1]). This example was considered by J.H.C.

Whitehead in [22] where he introduced the netion of a crossed

module, see also [19]. Whitehead proved that aX,A is actually

a "free" crossed module provided X is obtained from A by

attaching 2-cel15. See also (1.19) below.

We denote the action via conjugation in a group M by

(1.6) xy
= -y + x + y (x,y € M).

Hence we define, the commutator by

(1.7) (x,y) c -x -y + x + Y = -x + xy .

The group M is abelian if (x,y) = 0 for all x,y € M. In a

pre crossed module a : M ~ N we have the Peiffer commutator

(1.8) ax<x,y> = -x -y + x + y
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Thus a : M ~ N iso a crossed module if and only if <x,y> = 0

tor all x,y € M. Peiffer cornmutators are studied, for example

in [12], [15], [16], [17], [19] and [20]. They are highly

connected with deep problems like the whitehead question and

the Andrews-Curtis conjecture, see tor example [5], [16].

We have the following identities for cornmutators and Peiffer

comrnutators respectively.

(1.9) witt Hall identities for commutators

Let x,y,z € M, a € N

(W1)

(W2)

(WJ)

a a a(x,y) = (x ,y )

(x,y + z) = (x,z) - z + (x,y) + z

= (x,z) + (x,y) + «x,y) ,z)

(x + y,z) = -y + (x,z) + y + (y,z)

= (x,z) + «x,z),y) + (y,z)

(W4) (x,y) + (y,x) = 0, (x,x) = 0

(WS)

(W6)

. x z y
«x,y),z) + «z,x),y) + «y,z),x) = 0

«x,y),z) + «y,z),x) + «z,x),y) =

(y,x) + (z,x) + (z,y)x + (x,y) + (x,z)Y

+ (y,z)x + (x,z) + (z,x)Y
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Here (WS), (W6) are actually consequences of (W2), (W3) and

(W4), see [14].

(1.10) Identities for Peiffer commutators

Let x,y,z € M, a € N

(P1)

(P2)

(P3)

(a)

(h)

(a)

(b)

<x,y + z>

<x + y,z>

a a a<x,y> = <x ,y >

Bx Bx= <x,z> -z + <x,y> + z

Bx= <x,z> + <x,y> + «x,y>,z >

Bx= -y + <x,z> + y + <y,z >

Bx= <x,z> + «x,z>,y> + <y,z >

(P4) Let k € M with ak = 0 then

(a)

(b)

<k,x> = (k,x)

<k,x> + <x,k> = -k + kBx

(PS) (a) -<x,y> Bx + <x,-y> + Bx= -y Y

(b)
Bx= <x,-y> + «x,-y>,y >

( c) -x +
ax

+= <-x,y > x

( d) Bx Bx= <-x,y > + «-x,y >,x>

Here (PS) follows from (P2) and (P3).

A N-subgroup K C M is a subgroup satisfying k a
€ K for

k € K and a € N. For subgroups KO' K1 of M let
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(1.11)

be the subgroup generated by elements k o + k 1 with k o € KO'

k 1 € K1 . Simil~rly let (KO,Kl ) C M and <KO,Kl > C M be the

subgroups generated by commutators (ko,kl ) and by Peiffer

commutators <kO,kl > respectively. In case KO and Kl are

N-subgroups then KO + Kl , (Ko,Kl ) and <KO,Kl > are

N-subgroups. If KO and K1 are normal subgroups then also

KO + K1 and (KO,Kl ) are normal.

(1.12) Definition: The (lower) centraL serLes r = r (M),n n

of the group M is defined inductively by

f n = l (ri,r j )

i+j=n

where the surn i8 defined as in (1.11). By (1.9) we have

similarly we introduce the following

(1.13) Definition: The (lower) PeLFFer centraL series

p = P (M ~ N),
n n



of the pre crossed module a

- 10 -

M ~ N is defined inductively by

Clearly a(p ) = 0
n for

<P. ,P. >
~ J

i+j=n

n ~ 2. It follows from (PS) that P
n

is anormal subgroup of M. We will prove in (2.11) that

= <P I,M> + <M,P 1>·n- n-

The group f 2 (M) = (M,M) i5 the commutator subgroup of M and

the quotient

(1.14) M
ab

= Mjf 2 (M)

is the abeltantzatton of M. The group P2 (8) = <M,M> i5 the

Peiffer subgroup of.the pre crossed module a M ~ N and the

homorphism

(1.15)

induced by a, is the crossed module assoctated to the pre

crossed module 8, (we also write acr = a). Let {x} € Mcr be

the coset represented by x € M. Clearly the action of N on

is given by a a
{x} = {x }.

(1.16) Remark: Suppose that a = 0 is the trivial homorphism.

Then the central series and the Peiffer central series of M

coincide, that is Pn(M ~ N) = fn(M).
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Next we consider the connection'of free pre crossed modules

with 2-dimensional CW-complexes. Let 8 M ~ N be a free pre

crossed module on a free group N = <Z1> so that M = <Z2 x N>

is the free N-group generated by a set Z2. Let

(1.17)

be a one point union of l-spheres X € Zl. It is weIl

known that the fundamental group 1
1T

1
(X) is the free group

(1.18) f

be a map which induces the composition

vl(f) : <Z2> C M~ N = <Zl> on fundamental groups. The

mapping cone

(1.19) x = C = Xl U
f f

of f 1s a 2-dimensionaL CW-compLex associated to 8. Here

CS! is the cone of s1 or equivalently a 2-disk. By a result

of J.H.C. Whitehead [22] we have isomorphie crossed modules

N

(1.20) 11 11
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see (1.5) and (1.15). The isomorphism carries an element

1x € Z2 to the element in ~2(X,X) represented by

(CS 1 ,Sl) ~ (X,X1 ). Clearly (1.20) yields an isomorphism ofx x

cokernels

(1.21) 1T = c ok(acr) = k(8) (X)co = 1T 1 ·

We shall use the following commutative diagram which is

completely determined by 8.

Here Co = 7l[1T] i9 the group ring of 1T and C i9 the freen

~-module generated by Zn' (n = 1,2) . The maps p and q are

the quotient maps. The map h 2 is the q-equivariant

homomorphism with h 2 (x) = x for x € Z2· The function h l is

uniquely determined by

(1.23)
{

h 1 (Y) = y for y € Zl

h
1

(a+b) = h
1

(a)q(b) + h
1

(b) for a,b € N

The second equation says that Xl is a q-crossed homomorphtsm.

The bottom row of (1.22) is an exact sequence of v-modules and
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of ~-equivariant homomorphisms. In fact, d 2 is the unique map

which extends the diagram commutatively and d
1

is given by

d 1 (y) = 1 - [q(y)]. Here [a] € Z[~] is the generator for

a € ~. The map ~ is the augmentation with ~[a] = 1. The map

h
2

induces an isornorphism of ~-rnodules

(1.24)

Moreover, the kernel of h 2 is the comrnutatar subgroup of M
cr

so that

(1.25)

Cornpare [22] or VI, §1 in [1]. Diagram (1.22) has the following
A

geometrical interpretation. Let p: X ~ X be the universaL

covering of X. The~ the batto~ row of (1.22) coincides with
A

the ceLLuLar chain compLex oF X with

(1.26)

Now h
n

is given by the Hurewicz map h. In particular,

the isomorphism (1.24) coincides with the weIl known Hurewicz

isomorphism

(1.27)

We derive fram (1.22) the
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(1.28) Lemma: The group K ts a dtrect summand oF the Free

abeltan group C.

The ~-rnodule K, however, needs not to be a direct summand of

the ~-module c.
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§ 2 Iterated brackets

In this section we describe some results on "iterated

brackets" obtained by forrning commutators and Peiffer

commutators respectively. In particular, a kind of Jacobi

identity for Peiffer comrnutators is proved.

Comrnutators (,) and Peiffer comrnutators <, > in Mare

two different binary operations M x M ~ M. This leads to the

following definitions.

(2.1) Definition: A magma is a pair (M,[,]) where M 1s a

set and where [, ] : M x M ~ M is a function which carries a

pair of elements (x,y) € M x M to [x,y] € M. For a set X

let B(X) be the free magma generated. by X. The elements of

B(X) are the iterated brackets

of length n ~ 1'~ Xl € X. Here c is the "type" of the

bracket. See [4].

(2.2) Definition: A doubLe magma is a triple (M,<,>, (,))

where M 1s a set and where <, > and (, are functions

M x M ~ M. For a set X let B2 (X) be the free double magma

generated by X. The elements of B2 (X) are iterated double
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brackets of l~~gth n ~ 1 which we denote by

X. € X •
1

These are obtained inductively by forming brackets either by

( ,) or by <, >. For n = 1 we set <x1 >c = xl. The

brackets

resp. <x1 ' ... ,x > ,n c

denote brackets of length n inductively formed only by

( , ), resp. by < , > . This corresponds to the two inclusions

of B(X) in B
2 (X).

For apre crossed module a

between double magmas

(2.3)

M ~ N we have the canonical rnap

which extends the identity of M and which clearly carries

( ,) to a commutator and carries <, > to a Peiffer

commutator. We denote the image of a bracket

<x1 ' •.. ,x> E B2
(M) by the same symbol.n c

A double bracket in B2 (M) is speciaL if the outside bracket

is of the form <, >. For example
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1s a special double bracket. By definition in (1.13) the group

Pn = Pn(M ~ N) is generated by all iterated Peiffer brackets

X. € M. This follows inducitively
1

fram (P2) (h) and (P3) (b). Moreover we get

(2.5) Proposition: Att speciaL brackets oF tength n are

eLements oF P .
n

We prove this in (2.14) below. Let

(2.6) Q C M
n

be the subgroup of M generated by all double brackets of

length n. We derive from (2.5) the

(2.7) Corollary: Qn = Pn + fn(M)

Proof: The lemma holds for n ~ 2. Assurne that it holds for

n < m. Then we get

p +
m (Q"Q.)

1 J
i+j=m

by definition of ~m and by (2.5). Here we have
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(Q.,Q.) = (P. + f.,P. + f.)
1. ] 1. 1. ] ]

= (P.,Q.) + (f.,P.) + (f.,f.)
1. ] 1. ] 1. ]

= <P., Q . > + <P., f . > + (f., f . )
1. ] ] 1. 1. ]

c P + f
rn rn

o

The comrnutator in M· induces the functions

r x r ( rn rn n+rn

(2 .8) n n

Q x Qm
(

Qm+n·n

Moreover, the Peiffer commutator yields by (2.5) the functions

(2.9)

p x p
n m

n

<

<

>

>

11

Pn+m

Pm+n -

For the proof of (2.5) we need a lemma which is a kind of a

Jacobi identity. To this end we introduce the following

notation. For x,y,Z € M let

(2.10) k ~ 3,
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be the subgroup generated by all Peiffer brackets <x1 , ... ,xn >c

with the following properties (a), (b), and (c).

(a) n ~ k,

, aß .....
xi E (±x ,±y ,±z : a,ß, ..... E BM} for i = 1, ... , n,(b)

(c) there exist

.....= ±z .

with a
X. = ±x ,

1
1

(2.11) Lemma: For x,y,z € M· we have the equattons

(1) <x, (y,z» = «x,y>,z> - «x,z>,y> + X

(2) «x,y),z> - «x,y>,z> + <x,<y,z» =

- «y,x>,z> + <y,<x,z» + X'

wtth "'A,A' € A
4

(x,y,z).

(3 ) For n ~ 2 we have <M,P 1> + <P 1,M>.n- n-

(2.12) Remark: If ßy = 0 we have (y,z) c <y,z> so that

(2.11) (1) is a ]acobt tdenttty for Peiffer brackets in this

case. On the other hand if Bx = 0 we have (x,y) = <x,y> so

that the first two. terms of (2.11) (2) cancel yielding the

equation

<x,<y,z» = -«y,x>,z> + <y,<x,z» + A'

This equation with Bx = 0 is equivalent to equation (2.11) (1)

with By = 0 since we can exchange x and y.

o
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Proof of (2.11): In the following the elements Al

(i = 1, ... ,10) 'lie in A4 (x, y, z) ..We use the linear!ty rules

in (1.10) which yield an expansion (2 c -z, y = -y)

(4) <x, - Y - z + y + z> = -<x,z> - <x,y>

+ <x,z> + <x,y> + A + Al

where A = «x,y>,z> - «x,z>,y>- ,

In (4) the commutator of <x,z> and <x,y> is an element

in A
4

since

(5) «x,z>,<x,y» = «x,z»,<x,y».

Whence (2.11) (1) is proved if we check (4). For this we

get by (P2) (a)

(6) <x, (y,z» = <x, (y + z) + (y + z»

ax - ax= <x,y + z> - (y + z) + <x,y + z> + (y + z) •

Here we use (P2) (b) twice and we get

(7)
ax

<x,Y + z> ~: <x,z> + <x,y> + «x,y>,z >,

(8 ) <x,y + z> - -ax= <x,z> + <x,y> + «x,y>,z >.

In (7) we can replace <x,z> and <x,y> by the forrnulas

(see (PS) (a»)

(9) <x, z> ax ax= -z - <x,z> + Z
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8x 8x(10) <x,y> = -y - <x,y> + y

We first use (9). Whence we get by (h) ... (a) the equations

8x 8x(11) <x,(y,z» = -z - <x,z> + z + <x,y> +
8x 8x 8x«x,y>,z > - Z Y +

<x, z> + <x'; y> + «x, y>, zOX> + y8X + z8x

By (P4) (a) we get

(12) <x, (y,z» 8x - -ßx
= A + «x,y>,z > + «x,y>,z > + A

2

with

A 8x 8x + 8x 8x + B
{ = -z - <x,z> + z ax <x,Y> - z - Y

B = <x,z> + <x,y> + y + z8x

Here we have by (P4) (a)

(13) 8x 8x 8x<x,y> - z = -z + <x,y> + «x,y>,-z >

so that

(14) A 8x 8x 8x
= -z - <x,z> + <x,y> + «x,y>,-z > - Y + B

(15) {
8x 8x

= -z - <x,z> - y - <x,y> + B

8x+ «x,y>,-z > + A
3

•

In (15) we use (10) and (P4) (a).

As in (13) we get

y8X + <x,z> = <x,z> + y8X

so that by (15) and (P4) (a)

- 8x«x,z>,y >

(16) r 8x ax
= -z - y - <x,z> - <x,y> + B

8x - ax+«x,y>,-z > + «x,z>,y > + A4

Now (5) and the definiiton of B yield by (12)
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" 8x - -ßx
(17) {<X,(y,Z»"= «x,y>,z > + «x,y>,z >

8x - 8x+ «x,y>,-z > + «x,z>,y > + A
S

•

By (P5) (b) we have

- -ax - 8x(lS) <x,(y,z» = «x,y>,z > + «x,z>,y > + A6

Here one gets

(19) - -ßx 8x«x,y>,z > = «x,y>,z > + A
7

- 8x 8x(20) «X,Z>,y > = -«X,Z>,y > + A
S

These equation follow from (P5) and (P3) (b) .

Next we have

( 21) 8x«x,y>,z > = «x,y>,z> + A
9

8xFor this consider Z = Z + (z,x) + <x,z>

(P2) (b) we get

so that by

8x
(22) «x,y>,z ,~= «x,y>,z> + «x,y>,(z,x» + A10

Here we have «x,y>, (z,x» € A4 by (18). By (18), (19),

(20) and (21) equation (1) and (2.11) is proved. Equation

(2) in (2.11) can be proved in the same way. Next we prove

equation (3). Equivalent to (18) we have

8x -8x 8x(23) «x,z>,y> = <x,(y ,-z» - «x,-y >,z > + A6
We use this formula for the proof of
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(24) <Pi+k,Pj > C <Pi+j,Pk > + <Pi,Pj +k >

where j ~ 2 and j ~ k.

isin (18). The calculus from (6) to (18) shows that

Let x € P., Y € P., z € Pk , then
~ J

-8x 8x
«x,-y >,z > € <Pi+j,Pk >

-8x -8xand for j ~ 2 we have (y ,-z) = <y ,-z> so that

-8x
<x,(y ,z» € <Pi,Pj +k >.

It remains to consider AG in (23) or equivalently

created by commuting terms in Pi + j +k with other terms,

which gives elements in <Pi +j +k ,P2 > with 2 ~ j or

2 ~ k, and by terms of the form

«x,y>,<x,z» € <Pi+j,Pi +k>.

So if j ~'2 and j ~ k we get the inclusion (24).

We now can use (24) for the proof of (3). If n ~ rn ~ 2

since 8P = 8P = O. Now taken m

j = n, i + k = m in (24). An easy induction on m shows

(25) <pn,Pm> C <P1 ,Pn+m-1> + <Pn+rn - 1 ,P1 >

Now (1.13) yields (3).

o

(2.13) Corollary: Constder eLements x,y € M sattsFytng one

of the condtttons (I), (2) or (3) respecttveLy.

(1) X € P. , Y € r.
1 J

(2 ) X € r . , y € P.
J. J

(3 ) X € r . , y € r ..
1 J
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Proof: We prove (1) inductively. For this consider y = (a,b)

with a € r , b € r' (r + s = j). Then (2.11) (1) showsr s

(4) <x,(a,b» = «x,a>,b> - «x,b>,a> + A

Here A € P'+' by the induction hypothesis. Also «x,a>,b>1. ]

and «x,b>,a> are elements in Pi + j by the induction

hypothesis. This proves (2.13) for x,y in (1). Similarly we

get (2.13) for x,y in (2). Now consider x,y in (3). Then

again y = (a,b) as above and we get (4). By induction on

i + j we know that a ß ß a ß ~ ~ ß<x ,a >, <a ,x >, <a ,b >, <b ,a >,

a ~ ~ a<x ,b >, and - <b ,x > are elements in P. , P1.+r r+s and

re5pectively. Whence (1) and (2) show that the terms on the

right hand side of (4) are elements in Pi + j .

o

(2.14) Proof cf (2.5) : The result is clear tor n :::I 2. Now

assume (2.5) holds tor n < m. Then we have to show that

<x,y> € P provided x € Q. , Y € Q. , i + j = m. Now (2.7)
In 1. ]

shows (since i < .m, j < In) that Q. = P. + r. and1. 1. 1.

Q. = P. + r .. Thus it i5 enough to prove <x,y> € P tor the
] ] ] In

three cases (1), (2) and (3) in (2.13). Whence (2.13) yields

the result.

o
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§3 Partial Lie algebras and the guotients of the Peiffer

central series

The properties of the Peiffer central series lead to the notion

of allpartial Lie algebra" which generalizes the classical

notion of a Lie algebra.

The group A 0 B denotes the tensor product of abelian groups

A,B.

(3.1) Definition: ALLe algebra (L,[,])

abelian group Land by a homorphism [,]

that for x,y,z € L the equations

(1) [x,x] = 0 and

(2) [[x,y],z] = [x,[y,z]] - [y,[x,z]]

1s given by an

: L 0 L ~ L such

hold. Let ~

are homorphisms

be the category of Lie algebrasi maps in

f with f[x,y] = [fx,fy].

We introduce the following generalization of Lie algebras.

(3.2) Definition: A partiaL Lie aLgebra (R,L,<,» is an

abelian group R, a subgroup Land a homomorphism

<,> : R ~ R ~ L such that the following properties are

satisfied (x,y,z € R).
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for x € L.

(2) «x,Y>,z> = <x,<Y,z» - <Y,<x,z» for y € L.

Let par ~ be the category of partial Lie algebras; maps are

hornorphisrns f: R ~ R' with feLl C L' and

f<X,Y> = <fx,fy>.

Clearly, a partial Lie algebra (R,L,<,» is the same as a Lie

algebra provided R = L. Moreover, the subgroup (L,<,» of a

partial Lie algebra is always a Lie algebra. The following

example of a Lie algebra is classical.

(3.3) Example: Let M be a group and let

(1) ~=

with r n = fn(M) be given by the quotients in the lower

central series of M. The cornmutator (2.8) induces an

homornorphism

( f I"r ) ~ (r Ir ) ~ r Irn n+1 rn rn+1 n+rn n+m+1

and whence an hornorphism

(2) [ , ]
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It is weIl known that (~,[,]) is a Lie algebra. This follows

readily from the witt Hall identities (1.9). Clearly

~b = f 1/f 2 ' so that we have the canonical injection

(3)

of abelian groups.

i

similarly as in this example we obtain below a partial Lie

algebra by the quotients of the Peiffer central series. Let

8 : M ~ N be apre crossed module and let

defined as in (1.13). Let

p = P (8)n n be

(3.4) lr = cokernel (a M ~ N).

Then the kernel of the associated crossed module

is a v-module. Also the abelianization

(3.5) C = (P /P ) ab =
1 2

is a v-module by {X}{a} = {Xa } for x € M, a € N. Moreover,

we show

(3.6) Lemma: For n ~ 2 the quotient groups Q /Q andn n+1
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Proof: Let x,Y € Pn • We have to show (x,Y) € Pn +1 . In fact,

since 8x = 0 we have

(x,Y) = <x,y> € P2n C Pn+1.

Moreover, let a € N with a = ax, x € M. Then we get for

y € P
n

the element

<X,Y> a
= -x - y + x + Y € Pn+1

Whence in Pn/Pn + 1 we have

ay = y

since Pn/Pn +1 15 abelian. This shows that the action of N

on Pn induces' an action of v on Pn/Pn+l. A similar proof

is avaiable for Qn/Qn+l.

o

There is the following basic example of a partial Lie algebra.

(3.7) Example: For the pre crossed module a : M ~ N let

K C C be the v-submodule given by the image of ker(a cr
) in

C, see (3.5). Let

(1)

C lD
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be given by the quotients of the Peiffer central series. The

Peiffer bracket (2.9) induces abilinear map (n,m ~ 1)

<,> ( P /P ) x (P /P ) ~ P /Pn n+1 m m+1 n+m n+m+1

and whence a homornorphisrn

(2 ) <,>

Here we set <{X},{y}> = {<x,y>} for X € P , Y € P withn m

{x} € C for n = 1 and {x} € Pn/Pn+1 for n > 1. Moreover,

we have the injection of pairs of abelian groups

(3 ) i

(3.8) Proposition: (Ra,La ,<,» ln (3.7) is a partiaL Lie

aLgebra.

Proof: In fact, (3.2) (1) is satisfied since for ax = 0 we

have <x,x> = (x,x) = 0 for x € M. Moreover, (3.2) (2) is

satisfied since we can apply (2.11) and (P4) (a).

o

We point out that the second equation in (2.11) yields no

further lIuniversal ll equation for <,> in (2), see (2.12).

Clearly, by (3.6) the abelian group Ra and La are as weIl

v-modules and the bracket (2) satisfies



(3.9)
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a a a<a,b> = <a ,b >

for a,b € Ra' a € ~, see (P!).
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§4 Free partial Lie algebras

A weIl known theorem of witt [23] shows that the quotients of

the central series of a free group form a free Lie algebra. In

this section we describe our main result on the Peiffer central

series which generalizes the theorem of witt.

We have the forgetful functor ~ from the category ~ of

Lie algebras to the category a2 of abelian groups. Let

L : ae ~ ~ be the left adjoint of ~. Hence we have the

natural inclusion of abelian groups

(4.1 ) c >-+ L(C).

where L(C) is called the free Lie aLgebra generated by C.

For the construction of L(C) we use the

(4.2) Definition: The free non associatiue aLgebra A(C) is

inductively defined by

(1)

A1 (C) = C

Ar(C) = m Ai(C) @ Aj(C)
i+j=r

A(C) = m Ai(C)
iL1

For each bracket c = ( ••• ) of length n we have thec

inclusion



(2 ) i
c
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C0n
= C@ ...0C>---+)An (C)

such that An(C) = $ c@n is the direct sum over all
c

c.

Let I L be the homogeneous two sided ideal in A(C) generated

by the elements

{ x Cl! x

(x ~ y) @ z - x 0 (y 'l; z) + Y 'l; (x 'l; z)

for x,y,z € A(C). Then L(C) is the quotient

(4 • 3) L(C) = A(C)/IL .

The Lie bracket in 'L(C) is induced by the mUltiplication 'l;

on A(C) and the inclusion (4.1) is induced by

A1 (C) > ) A(C). Let

(4.4) Ln(C) C L(C)

be the image of An(C) in L (C) . Clearly L(C) is the direct

surn cf all Ln(C), n ~ 1, with L1 (C) = C. In a similar way we

obtain free partial Lie algebras. For this we use the forgetful

functor rp frdm the category par ~ of partial Lie algebras

to the category lM22
of pairs of abelian groups. Objects in

~2 are pairs (C, K) where K is a subgroup of the abelian

group C and morphisms f . (C,K) -+ (C' ,K') are homorphisms.
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f : C ~ C' with f(K) C K'. The forgetful functor , carries

(R,L,<,» to the.pair (R,L). Let R: a22 ~ par ~ be the

left adjoint of ,. Hence we have the natural inclusion of

pairs of abelian groups

(4 .5) (C,~) >~ (R(C,K),L(C,K),<,» = R(C,K)

where R(C,K) is also called the free partiaL Lie aLgebra

generated by (C,K). We construct R(C,K) by the quotient

(4 • 6) R(C,K) = A(C)/IR .

Here ~R is the homogeneous two sided ideal in A(e)

generated by the elements

{
y @ Y

(x @ y) @ z - x @ (y 0 z) + y ~ (x ~ z)

for x,y,z € A(C) with

Y € K m $ An(C) = A(C,K).
n22

Let L(C,K) be the image of A(C,K) in R(C,K). The bracket

<,> R(C,K) ~ R(C,K) ~ L(C,K)

is induced by the multiplication @ on A(C). Let



(4.7)
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Rn(C,K) C R(C,K)

be the image of An(C) in R(C,K). This yields ~or n = 1 the

inclusion (4.5) of pairs of abelian groups. Clearly

R(C,C) = L(C,C) = L(C) in case K = C. Moreover, R(C,K) is

the direct sum of all Rn(C,K), n ~ 1, with R1 (C,K) = C and

L(C,K) is the direct sum of K and of all nR (C,K), n ~ 2.

For a group M the inclusion (3.3) (3) induces a surjective

homomorphism

(4 .8)
-r
1.

between Lie algebras. A classical theorem of witt [23J may be

stated as

(4.9) Theorem: If M ts a free group then

is an isomorphism.

for r = r (M). Compare also
n n

[4J. We now extend this result to the case of the Peiffer

central series. In fact, for apre crossed module a : M ~ N

the inclusion (3.7) (3) induces a surjective homomorphism

( 4 • 10)
"T"
1.

between partial Lie algebras. This homomorphisrn is equivariant
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with respect to the action of v . Here the action of v on C

induces an action on R(C,K) since (C,K) is a pair of

v-modules and since R is a functor. Clearly, in R(C,K)

equation (3.9) is satisfied.

We now are ready to formulate the main result of this paper.

(4.11) Theorem: If N ts a free group and tf a: M ~ N ts a

free pre crossed modute then R(C,K) ~ Ra ts an

tsomorphtsm. In parttcutar, the map

deftned by (4.10), ts an isomorphtsm.

Clearly, for a = 0 the theorem holds by the result of Witt,

see (1.16). We prove theorem (4.11) in (7.14) below.

Now we consider the case n = 2 in (4.11). Let A be an

abelian group and let ~ A ~ f(A) be the universal quadratic

map in the sense of J.H.C. Whitehead [21J. We obtain a natural

homomorphism

(4.12) T f(A) ~ A @ A

by the condition T~(a) = a 0 a, a € A. If A is free abelian

T is an injection onto the symmetrie part of A 0 A. The

inclusion K C C in (4.11) yields the injection
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T f(K) ~ K ~ K C C ~ C.

One readily verifies that there is a natural isomorphism

(4.13) R2 (C,K) = (C ~ C)/TfK.

For K = C this corresponds to the classical isomorphism

(4.14)

where C ~ C is the exterior p~oduct. The restrietion of

theorem (4.9) in degree 2 yields the weIl known isomorphism

(4.15)

where M is a free group and where C = ~b. This 1s a special

case of the isomorphism

(4.16)

given by (4.13) and in (4.11). The isomorphism (4.16) was

originally proved by a geometrie argument in [2] where it is

used to construct minimal algebraic models of 4-dirnensional

CW-complexes. An algebraic appl1eation of the isornorphism

(4.16) is given in [7].
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§5 Basic Peiffer commutators

We describe an additive basis in a free partial Lie algebra and

we use this basis for a collecting process with respect to

Peiffer commutators.

It is weIl known that the free Lie algebra L(C) is a free

abelian group provided C is free abelian. A basis of the

group L(C) can be obtained as follows. Let Z be a basis cf

C and let

I B(Z) --+ (L(C),[,])

be the map between magmas induced by the inclusion

i : Z C ce L(C).

(5.1) Definition: A subset b(Z) of B(Z) is called a set of

basic commutators on Z if the restriction I: b(Z) ~ L(C)

cf "'T"
1. above is a basis of the free abelian group L(e).

The basis theorem of M. Hall [10] shows that such sets of basic

commutators exist. In particular, the following inductive

procedure yields such a set.
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(5.2) (a) Example:

folIows. For n =

of z. Now assurne

We construct a subset b n (Z) inductively as

1 let b 1 (Z) = z. We choose weIl ordering <

b r = br(Z) is defined for r < n and

assume the union.

n-l
U

is weIl ordered, n ~ 2. Then bn(Z) is the set of all brackets

[x,y] with the following properties

(a) x € bi(Z), Y € bj(Z) and i + j

(b) x > Y

(a) , (b), and (c).

= n.

(c) If x = [x' ,x"] then x" ~ y.

Now we choese a weIl erdering of un = un- 1 U bn(Z) which

extends the one of n-l
U and which satisfies

The union b(Z) ef all bn(Z), n ~ 1, is a set of basic

commutators in the sense ef (5.1), see [11].

(5.2) (b) Example:

The construction of a set of basic cornmutators in (5.2) (a) can

be slightly generalized by using a grading on the set of

generators Z. Let Z = {Zi : i ~ I} be a graded set. Then we

define bn(Z) = b n inductively as fellows. We choose a weIl

ordering < of Zl and let b 1 (Z) = Zl. Assurne br(Z) is

defined for r < n and that

n-l
U
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1s weIl ordered, n ~ 2. Then

Here b n is the set of all brackets [x,y] with the
0

properties (a) , (b) , (e) in (5.2) (a). Now we choose a weIl

ordering of un = un - l U bn(Z) which extends the one of n-l
U

and such that un- i < bn(Z). The union b (Z) of all bn (Z) ,

n ~ 1, is a set of basic comrnutators in the sense of (5.1). We

prove this as folIows.

Proof of (5.2) (h): Let Z' be the disjoint union of all sets

Z., i ~ 1, and of an element t. Let L' be the free Lie
l.

algebra generated by Z' and let L be the free Lie algebra

generated by the disjoint union of all Zi' 1 ~ 1. We have a

Lie algebra injection

L >>---+J L'

which carries z € Z; to the bracket
1.

~(z) = [ ••• [z,t], ... ],t]

of length i, see chap II §2 and in [4]. Now b(Z'), defined as

in (5.2) (a), is a basis of L' which via ~ contains b(Z)

defined in (5.2) (h).

o
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Next we consider an ,additive basis in a free partial Lie
, ,

algebra. In fact, we will show that the free partial Lie

algebra R(C,K) is a free abelian group if C i9 free abelian

and if K 1s a direct summand of C. Let Z be a basis of C

which contains a basis ZK of K. Then we have the map

.,.
1 B(Z) ~ (R(C,K),<,»

between magmas induced by Z C C C R(C,K).

(5.3) Definition: A subset b(Z,ZK) of B(Z) is dalled a set

of basic PeiFFer commutators on (Z,Zk) if the restriction

I : b(Z,ZK) ~ R(C,K) of
.,.
1 above is a basis of the free

abelian group R(C,K). Let be the subset of b(Z,ZK)

of all brackets of length n. The following inductive procedure

yields such a set of basic Peiffer commutators.

(5.4) Example: Let ZR = Z - ZK· We construct a subset

n of B(Z) inductively as folIows. For 1 letb (Z,ZK) n =
1 Z. We choose a weIl ordering of Z with ZR < ZK·b (Z,ZK) =

Now assume b r = br(Z,ZK) is defined for r < n and assurne

the union

n-l
U

is weIl ordered, n '~ 2. Then is the set of all

brackets [x,y] with the following properties (a) ... (d).
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(a) x € b i , Y € b
j with i + j = n.

(b) x > y if x f. ZR and y f. ZR·

(c) If x = [X'"x"] with x' f. ZR and XII f. ZR then XII ~ y.

(d) If x € ZR : and if y = [y' ,y"] then y' € .ZR ·

Now choose a weIl ordering of Un = n-1 U b n which extendswe U

the cf n-1 and which satisfies n-1 < b n . The setane U U

b(Z,ZK) is the union cf all n In particular, getb (Z,ZK). we

( e)

(f)

2
b (Z,ZK) = [ZR'Z] U [ZK,ZR] U ([x,y] : x,y € ZK'X > y)

3
b (Z,ZK) = [ZR,[ZR,ZJJ U [[Z,ZRJ,ZJ U [[ZR,ZKJ,ZJ

u ([[Z,W),V) z,v,w € ZK'/Z > W ~ v}

We point out that for Z = ZK this definition of b(Z,ZK)

coincides with the one in (5.2) since Z =, is the empty set
R

in this case.

(5.5) Theorem: The set b(Z,ZK) eonstrueted tn (5.4) ts a

set oF baste PetFFer eommutators, see (5.3). In partteutar,

n
b (Z,ZK)

(4.7) •

ts a basLs oF the free abetLan group nR (C,K), see

In case C = K this result coincides with the basis theorem

for free Lie rings of M. Hall [10]. We prove (5.5) in (6.12)

below; in addition the next lemma gives an explicit procedure

to express any element of R(C,K) as a linear combination of

basic Peiffer brackets.
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generates nR (C, K), n ~ 1.

Proof: We say that an element of Rn(C,K) is in "standard

form" if it i5 a linear combination of elements in

Clearly (5.6) is true for n = 1. Now suppose (5.6) i5 true for

all degrees 1, ... ,n-1. We shall reduce

(1)

to standard form by a canonical process which will seen to

leave A unchanged if A is in standard form.

First step: Let

(2) Yk = ~ aikuik , Zk = ~ bjkVjk
i j

be standard ferms where the u's and v's are in b(Z,ZK).

Put

(3) A = ~ tkaikbjk<uik,Vjk>.
i, j , k

Second step: If u ~ ZR and v ~ ZR put

(4)

(5)

(6)

<u,V> = 0

<u,v> = -<v,u>

<u,v> = <u,v>

if

if

if

u = v

u < v

u > v
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Third step: If u ~ <z,w> with z (ZR and w E ZR' and if

u > v for V ( ZR' put

<u,v> = -«w,v>,z> + «z,v>,w>

(7)

(8)

<u,v> = «z,w>,v> if w ~ v

if w > v.

Fourth step: If u € ZR and v = <x,y> put

<u,v> = «u,x>,y> - «u,y>,x>

(9)

(10)

<u,v> = <u,<x,y» if

if

Fifth step: Return to the first step and repeat the process

until nothing hut linear combinations of elements in

rernain.

One can check that the above process terminates. From the

definition in (5.4) it is ciear that expressions A in

standard form are left unaltered by the canonical process

above, and that expressions left unaltered are in standard

form.

o

We derive from (5.5) and (4.11) a "basis theorem ll which

generalizes P. Hall's basis theorem for collecting processes in

free groups, see for example page 343 in [13].
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Let M ~ N be a free pre crossed module on a free group

N = <Zl> and assurne M = <Z2 x N> is the free N-group

generated by the set Z2· By (1.28) we can choose a basis Z

of the free abelian group C which extends a basis ZK of K.

Moreover, we choose an injection

(5.7) i

for which h 2pi i5 the inclusion Z C C, see (1.22) and

(1.25). The map' i induces the map

I B(Z) ~ (M,<,»

between magmas. with the notation in (5.3) we get the following

"basis theorem for Peiffer commutators".

(5.8) Theorem: The map

(given by I above) is a basis of the free abelian group

pn (a)/pn+1 (a), n ~ 2.

The following corollary i5 an easy consequence since

P2 C ker(ß) ~ K is a short exact sequence.
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(5.9) Corollary: Any element W € ker(B) has a untque

representation (n ~ 1)

n <

W = [I I nb· b] + Vn+l
i=l beben)

where Vn+l E Pn+l(B). The sum ts deFtned vta an ordertng <

oF the set b (n) with bel) = ZK and
nben) = b (Z,ZK) For

n ~ 2, see (5.3). Only a Finite number oF integers are non

trtvial and the'''tntegers n
b

are untqueLy determtned by W

and by the ordertng <.
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§6 The enyeloping Lie algebra of a partial Lie algebra

In this section we introduce 8-Lie algebras and we use thern to

define enveloping Lie algebras. We show that in the free case

the canonical map to enveloping Lie algebra is injective. This

as weIl leads to a proof of the basis theorem (5.5) above for

free partial Lie algebras.

(6.1) Definition: A 8-LLe aLgebra is a Lie algebra (L,[,])

endowed with a group homomorphism 8 L ~ L satisfying

8[x,y] = 0 for x,y € L. Let 8-Lie be the category of 8-Lie

algebras. Morphisms are maps f in ~ with f8 = 8f, see

(3.1) .

We obtain free 8-Lie algebras as fellows. Let ~~ be

the categery of pairs in a2. Objects are homomorphism

d : C2 ~ Cl between abelian groups and morphisrns f: d ~ d'

are pairs f = (f2 ,f l ) of homomorphisrns with d'f2 = f 1 d. We

have the forgetful functor , : 8-Lie ~ ~~ which

carries (L,[,],8) to 8. Let L: ~~ ~ 8-Lie be the

left adjoint of ,. Hence one has the natural map in ~~

(6.2) d ~ L(d), d
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where L(d) 1s also called the free a-Lie algebra generated by

d. Using the free Lie algebra in (4.1) we have

(6.3)

with a given by the commutative diagram

C2

12 L(C1 m C2 )
P2

) C
2

d

1 1a 1d
i l i l

Cl L(C
1

fD C2 ) f Cl

Let i = (i
2
,i1 ) : d ~ L(d) be given by the inclusions i

2
,i

1

and let P2 be the unique Lie algebra map which extends the

projection Cl fD C2 ~ c2 . Here the Lie bracket on C2 18

trivial. One readily checks that 1 = (i2 ,11 ) has the

universal prope~ty of a free B-Lie algebra as in (6.2).

For a 8-Lie algebra (L,[,],B) we define a homorphism

(6.4) L m L --+ ker (8) by

[x,y] - [Bx,y] = [x - Bx,y]

(6.5) Lemma: The triple (L,ker(B),<,» is a partiaL Lie

aLgebra, see (3.2).

Proof: For 8x = 0 we get
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<x,x> = [x,x] - [O,x] = O.

Moreover, for ay = 0 we get

(2) «x,y>,z> = <x,<y,z» - <y,<x,z».

In fact we have

«x,y>,z> = [<x,y>,z]

= [[x,y],z] - [[ax,y],z]

<x,<y,z» = [x,<y,z>] - [ax,<y,z>]

= [x,[y,z]] - [ax,[y,z]]

-<y,<x,z» = -[y,<x,z>]

c: -[y,[x,z]] + [y,[ax,z]]

Now the Jacobi identity for [[x,y],z] and [[ax,y],z]

respectively shows that (2) is satisfied.

o

Now let ~ : a-Lie ~ par ~ be the functor from a-Lie

algebras to partial Lie algebras given by (6.5) and let

(6.6) par ~ ~ a-Lie

be the left adjoint of ~. Hence we have for a partial Lie

algebra R = (R,L,<,» a a-Lie algebra (~(R) ,[,],a) endowed
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with the natural (adjunction) map

(6.7) i (R,L,<,» --+ (~(R) ,ker(8) ,<,»

between partial Lie algebras. We call the map i the

enueloptng Lte algebra of the partial Lie algebra R.

(6.8) Lemma: The enueLoptng Lte algebra extsts.

Proof: ~(R) 1s a quotient of L(d) where d: R --+ R/L is

the quotient map. This i9 clear since the following diagram

commutes

L ker(B)

n n

R
i L(R) ~(d)/I=

d

1 1
a

i
1R/L ----------> L(R)

The map i 1 is induced by i since i(L) C ker(B). Moreover,

I is the two sided ideal in L(d) generated by

i<x,y> - [ix,iYJ + [8ix,iYJ, x,y € R.

o

As an exarnple we consider the free partial Lie algebra R(C,K)

in (4.5). In this case we get the quotient rnap d: C ~ C/K

and the free B-Lie algebra L(d) = (L(C/K mC),a). Moreover,

the inclusion of pairs
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i (C,K) ~ (L(d),ker 8)

induces a unique map

(6.9) I R(C,K) ~ (L(CjK mC),ker 8,<,»

between partial Lie algebras sinee R(C,K) is free. It is

clear that this map 1s the enveloping Lie algebra of R(C,K)

with

(6.10) L(CjK e C) = ~R(C,K)

sinee ~R is the composition of two adjoint functors.

(6.11) Theorem: Let C be Free abeLian and Let K be a

dtrect summand oF C. Then th~ map I in (6.9) ts injectiue.

Proof: By definition in (4.7) and (4.4) we have the

restrietion (see (6.4))

(1) I

which is clearly the inclusion C C CjK W C for n = 1. It i5

enough to show that (1) is injective for n ~ 2 or

equivalently that

(2) L(C,K) ~ L(CjK e C)
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is injective. Let ZK be a basis of K and let Z = Z U ZRK

be a basis of c. ALte generator oF the ftrst kind in L(C, K)

i9 either an element of ZK or an element

(3)

with xk € ZR' 1 ~ k ~ n and y € Z. Moreover, aLte generator

oF the second kind in L(C,K) is an element of the form

(4)

where Yi € ZR' 1 ~ i ~ n, and where z is a Lie generator cf

the first kind. Fcr n = 0 the elements in (4) coincide with

the elements in (3).

(5) Lemma: The set Z oF Lte generators oF the second kind

generates L(C,K) as aLte aLgebra.

Proof of (5): We consider

L[Z] C L(C,K) = K m n
R (C,K).

Here L[Z] denotes the Lie subalgebra in L(C, K) generated by

z. Clearly K C L[Z] . Moreover R2 (C,K) C L[ Z] • In fact,

R2 (C,K) is additively generated by <z' ,zu> where z' , zn € Z.

Now we have three cases

(a) z' € Z
K

and Zll € Z, (b) z' € Z and zn € Z,
R
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(c) Z' € ZK and ZU € ZR· Here (a) yields a Lie bracket in

L[ Z] , (b) yields a first kind generator and (c) yields a

second kind generator in Z. We now assume that Rk(C,K) C L[Z]

holds for 2 ~ k'< n and we consider the additive generators

<u,v> (1) (n) n= <z , •.• ,z > € R (C,K)
c

where Z (i)
E Z, 1 ~ i ~ n. If and v ~ ZR then

<u,v> is a Lie bracket of elements u,v E L[Z] and whence an

element in L[Z]. Now suppose v E ZR and

u € Rn- 1 (C,K) C L[Z]. Then either u E Z and <u,v> € Z by

(4) or

(6)

p

U = l
k=1

<u' u">
k' k

with uk' uk € L[Z] so that <u,v> 1s a linear combination of

the elements

(7)

Here <uk,v>, <uk,v> are elements in L[Z] by induction,

whence also <u,v> € L[Z] by (7). Finally suppose u € ZR and

v € Rn-1(C,K) C L[Z]. then we get v € Z or

(8)

p

v = l
k=l

<v' v">
k' k
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with vk,vk € L[Z]. In the latter" case we have

(9 )

with <u,vk>, <U',Vk> € L[Z) by induction so that <u,v>. € L[Z)

by (9). Moreover, for v € Z, v of the first kind, we get

<u,v> € Z by (3) and for v € Z, v of the second kind, we

have v = <v' ,v"> with v" € ZR and v' € Z by (4). We now

use'the Jacobi identity for <u,<v' ,v"» as in (9) • Then

clearly <v' , <u, v"» € L[Z). Moreover «u,v'>,v"> € L[Z]

since we can apply the same argument as in (6) above where we

replace u by <u,v'> and v by v". This completes the

proof of (5) •

o

For the proof of (6.11) we use the next lemma, see Chap." 11 §2

no 9 in (4).

(10) Lemma: Let X be a set, S a subset oF X and Let L(X)

be the Free L1e aLgebra generated by X. Then the subset

T = T(X,S) oF alt elements

w1th s. € S, 1 ~ j ~ n, and X € X - S generate aLLe
J

subatgebra L[T) oF L(X) wh1ch 1s actuaLLy a free Lte

aLgebra generated by T, that ts L[T) = L(T) .
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(11) Addendum: By the antisymmetry of the Lie bracket we can

repl.ace T in (10) by the set T' = T' (X,S) of all elements

[."•• ,[[X,S ],5 1], •.. ,5
1
],n n- n ~ 0,

with 5. € S, 1 ~ j ~ n, and
J

X € X - s.

Now we continue the proof of (6.11). The free abelian group

C/K m C ha5 the basis

-Here ZR is the set of all elements x = x - ax € C/K m c,

x € ZR. Recall that a is the projection a : C -4 C/K. The

map

"T"
1 L(C,K) -4 L(C/K m C) = L(W)

carries a Lie generator of the first kind to the element

(13)

see (6.4). This element is an element in T = T(W,ZR)' see

(10). Moreover since ZR C T we get the inclusion

(14) I'( L(C, K» C L(T) C L (W) •
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Here we use (9) and (10). Let T' = T' (T,ZR) be given by T

and (11). Then we get the inclusions

(15) I(L(C,K» C L(T') C L(T) C L(W)

where I(z), see (5), 15 a subset of T'. In fact,

is a bijection. Whence

"T"
1. Z -+ T'

(16) "T"
1. L(C,K) -+ L(T')

i5 an isornorphisrn. This cornpletes the proof of (6.11), see (2).

o

Theorem (5.5) is a corollary cf (6.11)

(6. 12) Proof of' (5. 5): We introduce the graded set

v = (V . n ~ 1) as folIows. Let V = ZK . and let V be the.n 1 n

set of all Lie generators of the second kind in nR (C,K),

n ~ 2 • We claim that

n ~ 2.

Here the left hand side is defined by (5.2) (b) and the right

hand side 1s the set defined in (5.4). We see that the equation

holds sirnply by cornparing the definitions of both sides. Now

(5.2) (b) irnplies the proposition cf (5.5).

o
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§7 8-Lie algebras associated to pre crossed modules

and the proof of theorem (4.11)

Apre crossed module a : M ~ N yields the semidirect product

N x M of groups. The Lie algebra ~xM' given by the lower

central series of M x N, is actually a 8-Lie algebra and the

canonical map M ~ N x M induces a rnap between partial Lie

algebras Ra ~ (~xM,8). This map i5 the crucial ingredient in

our proof of theorem (4.11).

Let a : M ~ N be apre crossed module. Frorn the N-group M

we derive the sem! dtrect product N x M. this is the product

set N x M with the group structure + given by

( (a , x) , (ß , y) € N x M)

(7 • 1) (a,x) + (ß,y) = (a + ß,xß + y).

We have the split short exact sequence of groups

(7.2)
. P

M>~ N x M ~f----~ N
S

with i(x) = (O,x), p(a,x) = a and s(a) = (a,O). Since 8 is

apre crossed module we also have the induced homornorphism

(7.3) N x M ~ N
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with a(a,x) = a + a(x). One readily checks by (1.1) that a
actually is a homornorphisrn. We now observe that i carries a

Peiffer commutator <x,y> to a surn of cornrnutators, in fact

(7.4) i<x,y> = (ix,iy) + (iy,sßx).

We check this by the equations

i<x,y> = i(-x - y + x + yax)

- (O,-x) + (O,-y) + (O,x) + (0, yax)

= (O,-x) + (Ö,-y) + (0, x) + (0, y)

-(O,y) - (ax,O) + (O,y) + (ax,O)

in N x M. Equation (7.4) implies that the map i carries the

Peiffer central series P (a)n to the central series

rn(N x M). Whence i induces the map

(7.5)

on the quotients of these central series, see (3.3) and (3.7).

in (7.3) for the definiton of the

so thatfactors over C = (P /P ,ab
1 2

defined. We use.the map ä

since f 1/f 2 . i5 abelian the map i : P1/P
2
~ r 1/r 2 actually

i* in (7.5) is weIl

following cornposition a

~xM
Pl

(N x M)ub

(7 • 6) a 1 1 (Sä)ab

LNxM
i

1
(N x M)ub
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Here i
l

and P l are the inclusion and projection for

T
l
/f

2
c (N ~ M)ab, see (3.3). Clearly 8[x,y] = 0 for

x,y € ~~M since P1[X,y] c O. Whence (~xM,[,],a) is a

natural 8-Lle aLgebra assoclated to 8 : M ~ N, see (6.1).

Moreover, equatio~ (7.4) implies

(7.7) Lemma: The map i* ln (7.5) ls a map between parttal

Lle aLgebras, see (3.8) and (6.5).

Proof: It is clear that i*La C ker(8) by the definition of

K in (3.7). Moreover, we have by (7.4) and by definition of

the Lie bracket in h_ the following equations. Let-NxM

(1)

= {(ix,iy) + (iy,sßx)}

Here we have ßx = 0 for n ~ 2 since aP2 = O. Whence we get

for n ~ 2

(2)

and we get for n = 1

(3)
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with "

(4)

Here the last" equation holds by (7.6) since n = 1. Now (2) and

(3) show by definition of a in (7.6)

(5)

since ai*f = 0 for n ~ 2. This shows by (6.4) that

o

We now consider,the free case. Let a : M ~ N be a free pre

crossed module on a free group N = <Zl> with M = <Z2 x N>,

see (1.3) and (1.18). In this case the semi direct product

N x M i5 the free group

(7.8)

generated by the disjoint union Zl U Z2. Let

be the free abelian group generated by Zn (n = 1,2), see

(1.22), and let

(7.9) c' -+ C'2 1
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be induced by d 2 in (1.22). One readily che~ks by the theorem

of witt, see (4.9), that (7.6) is the free a-Lie algebra

generated by di, see (6.3), that is

(7 . 10) 1.L- "" L(C' ED C')
~~M 1 2

Moreover, the following diagram of maps between partial Lie

algebras commutes.

R(C,K) I L(C' ED C')1 2

(7.11)
"T" ! 1~1

i*
Ra ~"M

Here is the map in (7.5) and "T"
1. is the map in (4.10).

Moreover, ] 1s the unique map between partial Lie algebras

which extends

(7.12) j

where K' = kernel (di) and where q is the quotient mapi

recall that C2 = C by (1.25).

We are now ready for the proof of theorem (4.11) which states

that I in (7.11) is an isomorphism. This result is an easy

consequence of the following two lemmas.
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(7.13) Lemma:.Suppose that a: M ~ N is a free pre crossed

moduLe on a free group N and suppose a 1s surjectiue. Then

"~ in (7.11) is injectiue.

Proof: The surjectivity of a irnplies that q in (7.12) is

the identity and that d = d'2 2

Ci = Cl = C2/K. This shows that

in

~

J

(7.9) 1s surjective. Whence

in (7.11) coincides with

the injective rnap in (6.9) and (6.11). Whence the commutativity

of (7.11) shows that I in (7.11) i8 injective.

o

(7.14) Lemma: '1s is enough,to proue theorem (4.11) in case

a : M ~ N 1s surject1ue.

Clearly by (7.13) this completes the proof of (4.11).

For the proof of lemma (7.14) we need the classical notion of a

Schreier system.

(7.15) Definition: Let F = <X> be the free group generated

by the set X and let H be anormal subgroup of F. A

Schreier system for the cosets of H in F is a set S of

elements in· F with the following three properties:

(1) Each coset of F/H contains exactly one element of

s.

(2) The neutral element is in S, that is 0 € s.
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If the reduced word e 1X. + ... + ekX. (e. € {+1,-1},
1 1 1k 1

x. € X) 1s an element in 5 then so is every
J

shorter word

• •• + for 1 ~ h ~ j ~ k.

The following lemma can be fcund for example in chapter 7, §2

[11] .

(7.16) Lemma of Schreier: For each normaL subgroup H of

F = <X> there extsts a Schreter system S. Moreover, a

Schreter system S for the cosets oF H i.n F yLeLds a basts

Xs oF the Free group H = <XS>· The set Xs conststs oF aLL

reduced words y + x - S(y + x) Ln F wtth y € S , x € X

and y + X - s(y + x) #- o. Here S i.s the Functton From F to

5 whtch takes the eLement f € F to the representattue

S(f) = (f + H) n 5 € 5 in the eoset f + H.

(7.17) Proof cf (7.14): Let a be given as in (4.11), let

Zl be a basis cf the free group N = <Z1>' and let Z2 C M be

a basis of the free pre crossed module a : M 4 N. We consider

the homomorphisrn

(1)

where Zl U Z2 is the disjoint union cf sets. Here P2 1s the

identity on Zl and P2 is trivial on Z2' P2 Z2 = o. Let t

be the section cf P2 defined by the inclusion Zl C Zl U Z2·

Morecver, let H' be anormal subgroup of N and let
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(2 )

be the inverse ",image in F. A Schreier system S' for the

cosets of H" 'ln N i8 carried by t to a Schreier system

s = t(S') for the cosets of H in F. Such a Schreier system

s yields a basis
.....

(Zl U Z2)S of H by use of S in (7.16)_

We have for s € S, x € Z2

(3) Ses + x) = «s + x) + H) n s
= (s + H) n S

= s

by (2)

Whence we get the:set Z'
2

of all elements

(4) s + x - ses + x) = s + x - S

of the basis (Zl U Z2)S. Nowassume s € Sand x € Zl- Then

we have s = t(s') and

(5) s + x - Ses + x) = t(s' + x - S' (5' + x»

where p'.+ x - S' (5' + x) is a reduced word in N and an

element in the basis Z' =
1

of H' _ Clearly

(6)

by (4) and (5) and t i5 the identity on Zi- Whence we have

the epimorphism
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H = <Z' U Z'> ~ <Z'> = H'121

defined in the same way as P2 in (1)

the restriction of P2 in (1).

and, in fact, p' is
2

Now let H' = aM be given by a : M~ N. We construct a free

pre crossed module ö : G ~ H' where ö is surjective and we

construct a map (m,n) : ö ~ a between pre crossed modules,

such that m is an isomorphism and such that n is the

inclusion aM C N. As the definition of Peiffer brackets in M

involves only the action of the group aM we see that (m,n)

induces an isomorphism

(9 ) (m, n) *

of the groups in the Peiffer central series. Whence (m,n)

induces an isomorhism of the quotient groups Pn/Pn+ 1 as weIl;

this implies the proposition in (7.14) since

since (m,n) induces an isomorphism of pairs

.,..
1 is natural and

(10) (C,K)Ö
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Here (C,K)a = (C,K) 1s def1ned by 8 as in (4.11). Whence

the proof of (7.14) is complete by the following construction

of diagram (8).

Let G = <Z' x H'> and consider the commutative d1agram.2

a
<Z' U Z'> = H > F = <Zl U Z2>1 2

I 1 I i

(11) <Z' x H'> ::::l G~ M = <Z2 x N>2

6" ! ö 18 a
<Z'> = H' = aM > N = <Zl>1 n

where j and n are'the inclusions. Moreover, the

homomorphism a is defined by 8 as in (7.3) , see (7.8) , that

is ax = x for x € Z1 and ax c 8x for x € Z2· The map 8

carries H to 8M since

(12) aCH) - -1
= a(P2 8M) = 8M

by (4), (5) and (6). Therefore the restrietion Ö of 8 in

(11) is defined. We consider the inclusion i given on

generators by i(x,a) = -a + X + a, (x,a) € Z2 x N or

(x,a) € Z2 x H'. This corresponds by (7.8) to the inclusion i

in (7.2). We claim that j induces an isomorhism m such that

(11) commutes where ö = Öl. Here we use the result in (7) that

p'
2

is the restrietion of in (2). Therefore we know

(13) iG ::::l kernel p' =
2 kernel P2 = iM.
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Clearly ö in '(11) is surjective and Ö = Öi 1s apre crossed

module by definition of i. The isomorphism m is

n-equivariant since we have chosen the Schreier system S by

S = ts'. This completes the construction of diagram (8).

o
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