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THE CENTRAL SERIES FOR PEIFFER COMMUTATORS

IN GROUPS WITH OPERATORS
Hans Joachim Baues and Daniel Conduché

The central series of groups and Lie algebras play a
fundamental rdéle in the algebraic topology of simply connected
spaces, see for example [8], [18]. These concepts, however, do
not lend themselves to deal with non simply connected spaces;
and topologists have felt for a long time that there is a lack
of methods for studying spaces with non trivial fundamental

group.

The first two groups

2T S

of a simplicical group are equivalent to a pre-crossed module

dl : kernel (do) - G0
where kernel (do) is a group with operators in G,- Therefore a
pre-crossed module corresponds exactiy to that low dimensional
part of a space which gives a presentation of the fundamental

group.



In this paper we study the central series in a pre-crossed
module defined by Peiffer commutators. Our principal objective

is an extension of the following classical result of Witt [23).

Theorem A: The quotients of the central series of a group form
a Lie algebra which is a free Lie algebra provided the group is

free.

Theorem A is a basic tool in group theory and topology. For
example, it is used by Curtis [8] as a starting point for his
results on reduced simplicial groups and simply connected
spaces. The following generalization of theorem A allows an
extension of such results to spaces which are not simply

connected.

Theorem B: The quotients of the Peiffer central series form a
partial Lie algeﬁra which is a free partial Lie algebra
provided the pre-crossed module is free with a free group of

operators.

Most of the paper is devoted to the proof of Theorem B. In case
the group of operators is trivial the Peiffer.central series is
the same as the central series of a group and then Theorem B

coincides with Witt's theorem above.

First applications of Theorem B are contained in [2], [3], and

[7)]. The restriction of theorem B to the second quotient of the



Peiffer central series was obtained in [2] by a geometric
argument and is used there for the construction of minimal
algebraic models‘of 4-dimensional CW-complexes. Moreover, we
derive from Theorem B small algebraic models of 3-types by the
methods in [6], see [3]. These examples show that Theorem B can
be used for the construction of small algebraic models of
spaces which avoid the redundant complexity in a simplicial

group.

The authors want to acknowledge the support of the University

of Rennes and the Max-Planck~Institut fir Mathematik, Bonn.
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§1 The Peiffer central series

We fix some notation on commutators and Peiffer
commutators and we introduce the Peiffer central series of a
pre crossed module. Such (pre) crossed modules arise naturally

from presentation of groups and from relative homotopy groups.

'In this paper the group structure +, -, 0 of a group M
is written additively though addition + in M needs not to
be abelian. The element 0 denotes the neutral element in M.

An N-group M 1is given by an action of the group N on M

denoted by x* for x € M, a € N. We have

a a

04 44
=X

X +y, (-x)

(x + )°

0

a+f (xa) ' | X = x

X

for x,y € M, a,B € N. A pre crossed module 8 : M > N is a
group homomorphism together with an action of N on M

satisfying
(1.1) 8(x%) = -a + 3(x) + a.
This is a crossed module if in addition

(1.2) _ XY = -y + X +y .



Amap f : 8 » 3' between pre crossed modules is a pair of
homomorphisms £ = (m : M= M', n : N> N) with 8'm = nd and

m(x%) = (mx)™* .

For a set Z 1let <Z> be the free group generated by Z. The
free N-group generafed by 2 1is the free group <Z x N>
generated by the product set 2 x N; the action is given on

generators by
(1.3) (x,0)? = (x,a + p)

for x € 2, a,B € N. Moreover, M = N is a free pre crossed
module if and only if M 1is a free N-group. In this case the
associated crossed module (see (1.15) below) is a free crossed
module.

(1.4) Example: Let G = <a,,...a | r R > be a

preee
presentation of the group G with generators a; and

relations Rj' Then we have
G = cokernel (d : M > N)

where @8 1is the following pre crossed module. The group

N = <Zl> is the free group generated by the set

Zl = {al,...,an} and the group M 1is the free N-group

generated by the set 22 = {Rl,...,Rm}. The homomorphism @

carries the generator (x,a) in M = <Z2 x N> to

-a + R+ a € N where R 1is the relation given by x € Z,-.

Whence 8 1is a free pre crossed module on a free group N.



(1.5) Example: Let (X,A) be a pair of topological spaces
with basepoint * € A. Then the relative homotopy group

WZ(X,A) with the boundary homomorphisms

aX,A : vz(X,A) - wl(A)
is a crossed module by the usual action of wl(A) on wz(X,A),
(such a result even holds in any cofibration category, see
(II.7.16) in [1]). This example was considered by J.H.C.
Whitehead in [22] where he introduced the notion of a crossed

module, see also [19]. Whitehead proved that & is actually

X,A
a "free" crossed module provided X 1is obtained from A by

attaching 2-cells. See also (1.19) below.

We denote the acttion via conjugation in a group M by
(1.6) X = -y + x +y (x,y € M).
Hence we define the commutator by

(1.7) (X,¥) = ~X -y + x +y = -x + x7.

The group M 1is abelian if (x,y) = 0 for all x,y € M. In a

pre crossed module 88 : M » N we have the Peiffer commutator

(1.8) <X, ¥> = X -y + X + yax



Thus 8 : M+ N 1is a crossed module if and only if <x,y> =0
for all x,y € M. Peiffer commutators are studied, for example
in [12], [15], (16}, [17]), [19] and [20]. They are highly
connected with deep problems like the Whitehead question and

the Andrews-Curtis conjecture, see for example (5], [16].

We have the following identities for commutators and Peiffer

commutators respectively.
(1.9) Witt Hall identities for commutators

Let x,v,2 € M, a € N

(Wl) (XIY)a = (xatya)

(W2) (x,y + 2) (%x,2) -2 + (x,y) + 2

il

(x,2) + (x.y) + ((x,Y),2)

(W3) (x + y,2) = -y + (x,2) + Y+ (v,2)

= (x,2) + ((x,2),y) + (y,2)
(W4) (x,y) + (v,%) =0, (x,%) =0
(WS) ((x,¥),25) + ((z,%),¥%) + ((v,2) %) = 0
(W6) ((x,¥),2) + ((¥,2),%) + ((z,%),y) =

(Y, %) + (z,%) + (2,7)° + (x,y) + (x,2)¥

+ (v,2)% + (x,2) + (z,%)7Y



Here (W5), (W6) are actually consequences of (W2), (W3) and

(W4), see [14].

(1.10) Identities for Peiffer commutators

Let x,y,2 € M, a € N

(P1) <x,y>% = <%, y%>
(P2) (a) <X,y + 2> = <¥X,z> --zax + <x,y> + zax
(b) = <X,2> + <X,y> + <<x,y>,zax>
’ ax
(P3) (a) <X + y,z2> = =y + <x,z2> + y + <y,z2 ">
(b) ‘ = <X,2> + <<x,z2>,y> + <y,zax>
(P4) Let k€M with 8k = 0 then
(a) . <k,x> = (k,x)
(b) <k,x> + <x,k> = -k + k°%
(P5) (a) —<x,y> = -y2% + <x,-y> + y2%
(b) = <X,~y> + <<x,-y>,yax>
(e) = =X + <—x,yax> + X
(d) - = <-x,yax> + <<—x,yax>,x>

Here (PS) follows from (P2) and (P3).

A N-subgroup K C M 1is a subgroup satisfying k* € K for

k € K and a € N. For subgroups K,, K., of M let

0’ 1



(1.11) K. + K. C M

1 0 0’

kl € Kl' Slmllﬁrly let (KO,Kl) C M and <KO,K1> C M be the

subgroups generated by commutators (ko,kl) and by Peiffer

be the subgroup generated by elements ko + k with k., € K

commutators <k k1> respectively. In case K and K are

0’ 0 1
N-subgroups then K0 + Kl' (KO,Kl) and <K0'K1> are
N-subgroups. If KO and Kl are normal subgroups then also
KO + Kl and (KO,Kl) are normal.

(1.12) Definition: The (lower) central series Fn = Fn(M),

of the group M 1is defined inductively by

ro= ) (T3.T5)
i+j=n

where the sum is defined as in (1.11). By (1.9) we have

r_ = (T

N M) .

n-1'

Similarly we introduce the following

(1.13) Definition: The (lower) Pelffer central series

P, =P (M~ N),

p C Pn c ... CcpP_CP M

n+1l
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of the pre crossed module 4 : M > N 1is defined inductively by

Clearly 6(Pn) =0 for n 2 2. It follows from (P5) that Pn
is a normal subgroup of M. We will prove in (2.11) that

P = <P

n neyrM> * <M,P__.>.

1

The group FZ(M)‘= (M,M) 1is the commutator subgroup of M and

the quotient

(1.14) : M*P - M/T, (M)

is the abelianization of M. The group P2(6) = <M,M> 1is the

Peiffer subgroup of the pre crossed module 4

M- N and the

homorphism

cr
(1.15) ' MeT = M/P, () 8, n,

induced by 48, is the crossed module assoclated to the pre
crossed module Jd, (we also write ¢t = d). Let (x)} € M°"  be
the coset represented by x € M. Clearly the action of N on

M°"  is given by {x}a = {xa}.

(1.16) Remark: Suppose that &8 = 0 is the trivial homorphism.
Then the central series and the Peiffer central series of M

coincide, that is Pn(M » N) = Fn(M).
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Next we consider the connection of free pre crossed modules
with 2-dimensional CW-complexes. Let 8 : M > N be a free pre
crossed module on a free group N = <Zl> so that M = <Z2 x N>

is the free N-group generated by a set Z,. Let

(1.17) X" =V 8
VA

be a one point union of l-spheres S1 = Si, X € Zl' It is well

known that the fundamental group wl(Xl) is the free group

<Zl>. Let

(1.18) f:V § — X

be a map which induces the composition
d

vl(f) : <Zz> CM—N-= <Zl> on fundamental groups. The
mapping cone
(1.19) Xx=c_.=xtu, v cst
£ f
. Z2

of £ 1is a 2-dimensional CW-complex assoclated to 8. Here

1 1

cs is the cone of S or equivalently a 2-disk. By a result

of J.H.C. Whitehead [22] we have isomorphic crossed modules

(1.20) | u u

T (X, XN L 7 (x1),



see (1.5) and (1.15). The isomorphism carries an element
X € z, to the element in vz(x,xl) represented by
(csi,si) - (X,Xl). Clearly (1.20) yields an isomorphism of

cokernels
(1.21) 7 = cok(8°") = cok(d) = T, (X) .

We shall use the following commutative diagram which is

completely determined by 4.

(1.22) M a
p |
r r 3"
ker(ac ) C M© —< N 9% =
| n, [ n,
d2 dl €
—)
K CC2 Cl—>co—»2

Here C0 = Z[w] 1is the group ring of = and Crl is the free
m-module generated by Zn' (n=1,2). The maps p and g are
the quotient maps. The map h2 is the g-equivariant

homomorphism with hz(x) = x for x € Z,. The function h is

2 1
uniquely determined by

hl(y) =Y for Yy € Zl
(1.23) q(b)
hl(a+b) = hl(a) + hl(b) for a,b € N

The second equation says that X, is a g-crossed homomorphism.

The bottom row of (1.22) is an exact sequence of w-modules and



- 13 -

of m-equivariant homomorphisms. In fact, d2 is the unique map
which extends the diagram commutatively and d1 is given by
d;(y) =1 - [gq(y)]. Here [a] € Z[w] is the generator for

« € v. The map e is the augmentation with e(a] = 1. The map

h2 induces an isomorphism of w-modules

112

(1.24) h, ker(3") — K = ker (d,)

Moreover, the kernel of h2 is the commutator subgroup of M

so that
(1.25) cC= (M) = C

Compare (22} or VI, §1 in [1]. Diagram (1.22) has the following
geometrical interpretation. Let p : X » X be the universal
covering of X. Then the bottom row of (1.22) coincides with
the cellular chain complex of % with

_ 4n 4n-1
(1.26) c, = H (X ,X 7).
Now hn = hp;1 is given by the Hurewicz map h. In particular,
the isomorphism (1.24) coincides with the well known Hurewicz
isomorphism

l A ~ ra)

(1.27) h, = hp,~ : T, (X) & 7w, (X)

We derive from (1.22) the
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(1.28) Lemma: The group K s a direct summand of the free

abelian group C.

The w-module K, however, needs not to be a direct summand of

the m-module C.
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§ 2 Iterated brackets

In this section we describe some results on "iterated
brackets" obtained by forming commutators and Peiffer
commutators respectively. In particular, a kind of Jacobi

identity for Peiffer commutators is proved.

Commutators ( , ) and Peiffer commutators < , > in M are
two different binary operations M x M -» M. This leads to the

following definitions.

(2.1) Definition: A magme is a pair (M,[,]) where M is a
set and where [ , ] : M x M M 1is a function which carries a
pair of elements (x,y) € M x M to [x,y] € M. For a set X
let B(X) be the free magma generated by X. The elements of

B(X) are the iterated brackets
[xl,...,xn]c

of length n 2 1, x, € X. Here c is the "type" of the

1
bracket. See [4].

(2.2) Definition: A double magma is a triple (M,<,>,(,))
where M 1is a set and where < , > and ( , ) are functions
MxM> M., For a set X let BZ(X) be the free double magma

generated by X. The elements of BZ(X) are iterated double
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brackets of length n 2 1 which we denote by

<xl,...,xn)c, X, € X .
These are obtained inductively by forming brackets either by

( ,) orby <, > For n=1 we set <x.> = x The

17 ¢ 1°
brackets

(xl,...,xn)c, resp. <x1,...,xn>c,
denote brackets of length n inductively formed only by
( , ), resp. by < , > . This corresponds to the two inclusions

of B(X) in B?(X).

For a pre crossed module J : M » N we have the canonical map

between double magmas
2
(2.3) B“(M) » M

which extends the identity of M and which clearly carries

( ,) to a commutator and carries < , > to a Peiffer
commutator. We denote the image of a bracket

SXproeerX > € BZ(M) by the same symbol.

A double bracket in BZ(M) is spectial if the outside bracket

is of the form < , >, For example

(2.4) <(x1,<x2,x3>),x4>
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is a special double bracket. By definition in (1.13) the group
Pn = Pn(M -+ N) 1is generated by all iterated Peiffer brackets

<Ko yeee, X > of length n, X, € M. This follows inducitively

1 n"c
from (P2)(b) and (P3) (b). Moreover we get

(2.5) Proposition: All special brackets of length n are

elements of P_.

n
We prove this in (2.14) below. Let
(2.6) Q CM

be the subgroup of M generated by all double brackets of

length n. We derive from (2.5) the
(2.7) Corollary: Qn = Pn + Fn(M)

Proof: The lemma holds for n ¢ 2. Assume that it holds for

n < m. Then we get

Q= Pyt ) (2,0

i+j=m

by definition of Q, and by (2.5). Here we have
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(Qi'Qj) = (Pi + rilpj + rj)
= (Pi'Qj) + (ri'Pj) + (ri'rj)

= <Py,Q4> + <Py, Ty> + (T4,T5)

The commutator in M. induces the functions

r x T _1_4_1_4 r
m n
(2.8) n n

Q, x 9, ——1- Qntn*

n m

+m

Moreover, the Peiffer commutator yields by (2.5) the functions

P x P —t— P
n m n-+m
(2.9) n I
< >
——
Qn X Qm Pm+n

For the proof of (2.5) we need a lemma which is a kind of a
Jacobi identity. To this end we introduce the following

notation. For x,y,z € M let

(2.10) Ak(x,y,z) t M, k2 3,
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be the subgroup generated by all Peiffer brackets <x1,...,xn

with the following properties (a), (b), and (c).

(a) n 2 k,
(b) Xy € {ixa,iyp,izT : a,B,y € M} for i =1,...,n,
(c) there exist il’iz’i3 € {(1,...,n} with X, = +x%,
1
X; = +yP, x; = +z .
2 3

(2.11) Lemma: For x,y,2 € M- we have the equations
(1) <x,(y,2)> = <<X,y>,2> = <<X,z>,y> + A

(2) <(x,Y),2> - <<x,y>,2> + <¥X,<y,2>> =
- <<Y,%X>,2> + <y,<x%,zZ>> + A’
with A,A' € A4(x,y,z).
(3) For n 2 2 we have Pn = <M'Pn-l> + <Pn~1’M>'
(2.12) Remark: If 8y = 0 we have (y,2) = <y,z> so that
(2.11) (1) is a Jacobi identity for Peiffer brackets in this
case. On the other hand if 9x = 0 we have (X,y) = <X,y>

that the first two terms of (2.11)(2) cancel yielding the

equation

<X,<Y,2>> = =<<Y,X>,2> + <y,<x,z>> + AN' .

This equation with dx = 0 1is equivalent to equation (2.11)

with 8y = 0 since we can exchange x and vy.

S0

(1)
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Proof of (2.11): 1In the following the elements

(i =

in (1.10) which yield an expansion (z = -z, y =

(4)

(5)

(6)

(7)

(8)

(9)

i.

1,...,10) 1lie in A4(x,y,z)..We use the linearity rules

<X, =y -z + Y+ 2> = -<xX,2> - <X,y>
+ <x,2> + <X,y> + A + Ay

where A = <<x,y>,2> - <<x,2>,y> ,

In (4) the commutator of <x,z> and <x,y>

in A4 since

(<XIE>I<XI§>) = <<XIE>>I<XI§>>'

Whence (2.11) (1) is proved if we check (4).

get by (P2) (a)

<x,(y.,2)> = <X, (g + E) + (y + z)>

= <x,y + z> - (y + z)%%

Here we use (P2)(b) twice and we get

ax

<X,y + 2> = <X,2Z> + <X,y> + <<X,y>,z >,

<x,¥ + 2> = <x,2> + <x,y> + <<x,¥>,7°%.

-y)

is an element

For this we

+ <X,y + 2> + (y + Z)ax_

In (7) we can replace <«<x,z> and <XxX,y> by the formulas

(see (P5) (a))

ox

- d
<x,z> = -2°% - <x,2> + 2°%
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(10) <x,y> = _yax - <x,y> + yax

We first use (9). Whence we get by (b)...(a) the equations

(11) <x,(y,z)> = -z29%

<<x,y>,zax> - 9% yax +

- - - 3 3
<X,Z> + <x;¥> + <<x,y>,20% + yI¥ & %%

- <x,z> + 29% + <X,y> +

By (P4) (a) we get

(12) <x,(y,z)> = A + <<x,y>,zax> + <<x,§>,Eax> + A,
with » '
{A = =29% 0,z + 2% 4 <x,y> - 29X - y9¥ 4 B
B = <x,z> + <x,y> + yax + 29%
Here we have by (P4) (a)
(13) <x,y> - zax = -zax + <x,y> + <<x,y>,-zax>
so that
(14) A = -zax - <x,2> + <xX,y> + <<x,y>,-zax> - yax + B
(18) , = -z9% _ <X, 2> - yax - <x,y> + B
{ ox

+ <<x,y>,~z2 "> + AB.
In (15) we use (10) and (P4) (a).

As in (13) we get

ax

- - d ax
y + <x,2> = <x,2> + Yy

x —
- <<X,2>,y >

so that by (15) and (P4) (a)

(16) {A = -29% . yax - <x,Z> - <X,y> + B

+<<x,y>,-29%> + <<x,2>,y79 %> + N,

Now (5) and the definiiton of B yield by (12)
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(18)

(19)

(20)

(21)

(22)

(23)
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9%

o —
X o+ <<x,y>,2°%

<X, (y.,2z)> = <<x,y>,2
{ dx

d -
+ <<X,y>,-2 s+ <<X,2>,y > + A

5°
By (P5) (b) we have
<x,(y,z)> = <<x,§>,Eax> + <<x,E>,an> + N
Here one gets
<<x,§>,Eax> = <<x,y>,zax> + N,
<<x,2>,y9%> = -<<x,2>,y°%> + g
These equation follow from (P5) and (P3) (b).
Next we have
ax
<<X,y>,2 "> = <<¥X,y>,2> + Ag
For this consider zax =z + (z,xX) + <x,2> so that by

(P2) (b) we get
dx

<<X,¥>,2 "> = <<X,¥>,2> + <<X,y>,(2,%x)> + Alo
Here we have <<x,y>,(2,X)> € A, by (18). By (18), (19),
(20) and (21) eguation (1) and (2.11) is proved. Eguation
(2) in (2.11) can be proved in the same way. Next we prove
equation (3). Equivalent to (18) we have

ax Ix

<<X,2>,y> = <x,(yax,-z)> - <<x,-y "°>,2°%> + AL

We use this formula for the proof of
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(24) <Pi+k’Pj> C <Pi+j'Pk> + <Pi’Pj+k>

where Jj 2 2 and Jj 2 k.

Let x € Pi’ y € Pj’ z € Pk’ then
-dx ax
<<X, =y >,z 7> € <Pi+j'Pk>
and for 3j 2 2 we have (y-ax,—z) = <y-ax,—z> so that
~3ax '
<x, (y ,2)> € <Pi'Pj+k>'
It remains to consider Aé in (23) or equivalently xe

in (18). The calculus from (6) to (18) shows that A6 is

created by commuting terms in P with other terms,

i+j+k

which gives elements in <P > with ¢ 2 j or

i+j+k'Pe
¢ 2 k, and by terms of the form
<<X,y>,<X,2>> € <Pyt Piak>

So if j 2 2 and Jj 2 kK we get the inclusion (24).

We now can use (24) for the proof of (3). If n 2 m 2 2
we have <Pn,Pm> = <Pm’Pn> since aPn = apm = 0. Now take
3 =n, 1+ k=m in (24). An easy induction on m shows

(25) <Pn,Pm> Cc <p,,P > + <P >

1’ " n+m-1 n+m—1'Pl
Now (1.13) yields (3).

(2.13) Corollary: Consider elements x,y € M satilsfylng one

of the conditions (1), (2) or (3) respectively.

(1) x € Pi' y € Fj

(2) x€T;, yePry

(3) xe€r;, yery.
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Then <x,y> € Py 4.

Proof: We prove (1) inductively. For this consider y = (a,b)

with a € Fr, b € FS‘ (r + s = j). Then (2.11) (1) shows
(4) <x,(a,b)> ='<<x,a>,b> - <<x,b>,a> + A

Here A € P,

43 by the induction hypothesis. Also <<x,a>,b>

and <<x,b>,a> are elements in Pi+j by the induction
hypothesis. This proves (2.13) for X,y in (1); Similarly we
get (2.13) for x,y in (2). Now consider x,y in (3). Then
again y = (a,b) as above and we get (4). By induction on

B B

. + a a Y
i+ 3 we know that <x%,aP>, <af,x%, <af,b">, <b”,aPs, "

s P and P,

are elements in P,
i1+r’ T r+s i+s

<xa,b7>, and ~<b1,x
respectively. Whence (1) and (2) show that the terms on the

right hand side of (4) are elements in Pi+j'

(2.14) Proof of (2.5): The result is clear for n = 2. Now
assume (2.5) holds for n < m. Then we have to show that
<xX,y> € Pm provided x € Qi' y € Qj' i+ 3 =m. Now (2.7)
shows (since i < m,j < m) that Q = Py + ri and

Qj = Pj + Fj. Thus it is enough to prove <x,y> € P for the
three cases (1), (2) and (3) in (2.13). Whence (2.13) yields

the result.
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§3 Partial Lie algebras and the gqueoctients of the Peiffer

central series

The properties of the Peiffer central series lead to the notion
of a "partial Lie algebra" which generalizes the classical

notion of a Lie algebra.

The group A ® B denotes the tensor product of abelian groups

A,B.

(3.1) Definition: A Lie algebra (L,[,]) is given by an
abelian group L and by a homorphism [,] : L ® L » L such

that for x,y,z € L the equations

(1) [x,x] = 0 and

(2) [(x.¥1l,2) = (x,[y,2]] -~ [y,[x,2]]

hold. Let Lie be the category of Lie algebras; maps in Lie

are homorphisms f with f(x,y] = [fx,fy].
We introduce the following generalization of Lie algebras.

(3.2) Definition: A parttal Lie algebra (R,L,<,>) 1is an
abelian group R, a subgroup L and a homomorphism
<,>: R® R-> L such that the following properties are

satisfied (x,y,z € R).
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(1) <X,X> =0 for x € L.

(2) <<X,y>,2> = <X,<y,2z>> - <y,<x,z>> for y € L.

Let par Lie be the category of partial Lie algebras; maps are
homorphisms £ : R - R' with f(L) C L’ and

f<x,y> = <fx,fy>.

Clearly, a partial Lie algebra (R,L,<,>) 1is the same as a Lie
algebra provided R = L. Moreover, the subgroup (L,<,>) of a
partial Lie algebra is always a Lie algebra. The following

example of a Lie algebra is classical.

(3.3) Example: Let M be a group and let

(1) Ly = ngl n/Ther)

with T =T (M) be given by the quotients in the lower
central series of M. The commutator (2.8) induces an

homomorphism
Tn/The1) © Tp/Thvr) = Togn/Tntmer

and whence an homorphism

(2) [, : Ly ® Ly — Ly
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It is well known that (LM,[,]) is a Lie algebra. This follows
readily from the Witt Hall identities (1.9). Clearly

P = ry/r, so that we have the canonical injection
L] b

(3) i M oo Ly,
of abelian groups.
Similarly as in this example we obtain below a partial Lie
algebra by the quotients of the Peiffer central series. Let
8 : M> N be a pre crossed module and let P = P_(3) be
defined as in (1.13). Let
(3.4) 7 = cokernel (d : M = N).
Then the kernel of the associated crossed module

cr cr

a :t M = Pl/Pz - N

is a w-module. Also the abelianization

- (v ab _
is a w-module by {x}{a} = {xa} for x € M, a € N. Moreover,
we show

(3.6) Lemma: For n 2 2 the guotlient groups Qn/Qn+l and

Pn/Pn+1 are w-modules.
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Proof: Let x,y € Pn. We have to show (x,y) € Pn+1' In fact,

since dx = 0 we have

(x,y) = <x,y> € P, CP_.,.

Moreover, let a« € N with a = 3dx, x € M. Then we get for

Yy € Pn the element

- - o
<X,y> = -x -y +x+y €P_ .
Whence in Pn/Pn+1 we have
a
Y =Y
since Pn/Pn+1 is abelian. This shows that the action of N

on Pn induces an action of 7 on Pn/P A similar proof

_ n+l1l°
is avaiable for Qn/Qn+1.

There is the following basic example of a partial Lie algebra.

(3.7) Example: For the pre crossed module 8 : M » N let
K C C be the w-submodule given by the image of ker(acr) in

C, see (3.5). Let

R, =Co& & Pn/Pn+l
n2z2

(1)
Ly =K@ & P /P

ny2 n+l
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be given by the quotients of the Peiffer central series. The

Peiffer bracket (2.9) induces a bilinear map (n,m 2 1)
<> 3 (P/Pryg) > (Pp/Pryi) — P/ Phamel

and whence a homomorphism

(2) <,> + R, ® R, » L, .

Here we set <(x},{(y}> = {<x,y>} for x € Pn' y € Pm with
{x} € C for n=1 and ({x) € Pn/Pn+1 for n > 1. Moreover,

we have the injection of pairs of abelian groups
(3) B i (CIK) b (RarLa)

(3.8) Proposition: (Ry,Lg,<,>) in (3.7) is a partial Lie

algebra.

Proof: 1In fact, (3.2) (1) is satisfied since for dx = 0 we
have <x,x> = (x,x) = 0 for x € M. Moreover, (3.2)(2) is

satisfied since we can apply (2.11) and (P4) (a).

We point out that the second equation in (2.11) yields no
further "universal" equation for <,> in (2), see (2.12).
Clearly, by (3.6) the abelian group Ra and L6 are as well

m-modules and the bracket (2) satisfies
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(3.9) <a,b>® = <a%,p%>

for a,b € R a € w, see (Pl).

al
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§4 Free partial ILie algebras

A well known theorem of Witt [23] shows that the quotients of
the central series of a free group form a free Lie algebra. In
this section we describe our main result on the Peiffer central

series which generalizes the theorem of Witt.

We have the forgetful functor ¢ from the category Lie of
Lie algebras to the category Ab of abelian groups. Let
L : Ab » Lie be the left adjoint of ¢. Hence we have the

natural inclusion of abelian groups
(4.1) C >—— L(C).

where L(C) 1is called the free Lie algebra generated by C.

For the construction of L(C) we use the

(4.2) Definition: The free non associative algebra A(C) is

inductively defined by

(al) = ¢
(1) { af@c) = o al(c) e ad(c)
i+j=r
| ac) = o al(o)
i1

For each bracket c¢ = (...) of length n we have the

c
inclusion
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®n _ ce...8 ¢ >—— A" (Q)

(2) ] ic : C

such that Aa"(c) = o c®P
C

is the direct sum over all c.

Let I, be the homogeneous two sided ideal in A(C) generated

by the elementé

{ X ® x
(x® y) ® z - x0® (y® 2) +y® (x9® z)
for x,y,z € A(C). Then L(C) is the quotient
(4.3) L(c) = A(C)/IL.

The Lie bracket in 'L(C) 1is induced by the multiplication @®
on A(C) and the inclusion (4.1) is induced by

al(c) >— A(C). Let
(4.4) L"(c) ¢ L(o)

be the image of An(C) in L(C). Clearly L(C) 1is the direct
sum of all Ln(C), n 2 1, with Ll(C) = C., In a similar way we
obtain free partial Lie algebras. For this we use the forgetful
functor ¢ from the category par Lie of partial Lie algebras

to the category Ab of pairs of abelian groups. Objects in

2

égz are pairs (C,K) where K 1is a subgroup of the abelian

group C and morphisms f : (C,K) » (C',K') are homorphisms
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f : C- C' with f(K) C K'. The forgetful functor ¢ carries
(R,L,<,>) to the pair (R,L). Let R : 522 » par Lie be the
left adjoint of ¢. Hence we have the natural inclusion of
pairs of abelian groups

(4.5) (CIK) >— (R(C,X),L(C,K),<,>) = R(C,K)

where R(C,K) is also called the free partial Lie algebra

generated by (C,K). We construct R(C,K) by the quotient
(4.6) R(C,K) = A(C)/Ip.

Here IR is the homogeneous two sided ideal in A(C)

generated by the elements

: { Yy ®y
(x®vy) ®z-x0 (y® 2z) +y@ (x90 z)

for x,y,z € A(C) with

ye€K® @ A"(c) = A(C,K).
n22

Let L(C,K) be the image of A(C,K) in R(C,K). The bracket
<,> : R(C,K) ® R(C,K) =» L(C,K)

is induced by the multiplication ® on A(C). Let
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(4.7) " R™(C,K) € R(C,K)

be the image of A™(C) in R(C,K). This yields for n = 1 the
inclusién (4.5) of pairs of abelian groups. Clearly

R(C,C) = L{(C,C) = L(C) in case K = C. Moreover, R(C,K) is
the direct sum of all R™(C,K), n 2 1, with RY(C,K) = C and

L(C,K) is the direct sum of K and of all R"(C,K), n > 2.

For a group M the inclusion (3.3)(3) induces a surjective

" homomorphism

(4.8) T: L®l) — Ly

between Lie algebras. A classical theorem of Witt [23] may be

stated as

(4.9) Theorem: If M 1is a free group then 1 : L(M ")
is an tsomorphism,.

. n, ab, _ =
In particular L (M ) & I‘n/l"n+l for Fn = Fn(M). Compare also
[4]. We now extend this result to the case of the Peiffer
central series. In fact, for a pre crossed module d : M - N

the inclusion (3.7)(3) induces a surjective homomorphism
(4.10) 1: (R(C,K),L(C,K)) — (RalLa)

between partial Lie algebras. This homomorphism is equivariant
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with respect to the action of w . Here the action of = on ¢C
induces an action on R(C,K) since (C,K) 1is a pair of
m-modules and since R 1is a functor. Clearly, in R(C,K)

equation (3.9) is satisfied.
We now are feady to formulate the main result of this paper.

(4.11) Thecrem: If N LIs a free group and if d : M> N 1s a
free pre crossed module then 1 : R(C,K) —= Ra is an

tsomorphism. In particular, the map

T : rR"™(C,K) —- P_/P (n > 2),

n n+l

defined by (4.10), is an isomorphisnm.

Clearly, for 98 = 0 the theorem holds by the result of Witt,

see (1.16). We prove theorem (4.11) in (7.14) below.

Now we consider the case n = 2 in (4.11). Let A be an
abelian group and let ~ : A » I'(A) be the universal quadratic
map in the sense of J.H.C. Whitehead [21]. We obtain a natural

homomorphism
(4.12) T : I'(A) — A® A

by the condition 7v(a) = a ® a, a € A, If A is free abelian
T 1is an injection onto the symmetric part of A ® A. The

inclusion K C € in (4.11) yields the injection
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T : T(K) —- K® KC C® C.
One readily verifies that there is a natural isomorphism
(4.13) R%(C,K) = (C ® C)/TTK.
For K = C this corresponds to the classical isomorphism
(4.14) 1?(c) =c ~c=c 8 ¢c/rrc

where C ~ C 1is the exterior product. The restriction of
theorem (4.9) in degree 2 yields the well known isomorphism

(4.15) c~c=1%@C) = I, (M) /T (M)

where M 1is a free group and where C = Mab. This is a special

case of the isomorphism

(4.16) (C ® C)/TTK = R%(C,K) & P, (8) /P, ()

i

given by (4.13) and 1 in (4.11). The isomorphism (4.16) was

2
originally proved by a geometric argument in [2] where it is
used to construct minimal algebraic models of 4-dimensional

CW-complexes. An algebraic application of the isomorphism

(4.16) is given in [7].
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§5 Basic Peiffer commutators

We describe an additive basis in a free partial Lie.algebra and
we use this basis for a collecting process with respect to

Peiffer commutators.

It is well known that the free Lie algebra L(C) is a free
abelian group provided C 1is free abelian. A basis of the
group L(C) can be obtained as follows. Let Z be a basis of

C and let

T+

1 : B(2) — (L(C),[,])

be the map between magmas induced by the inclusion

i:zcccrL.

(5.1) Definition: A subset b(2Z) of B(Z) 1is called a set of
basic commutators on 2Z if the restriction 1 : b(2) » L(C)

of 1 above is a basis of the free abelian group L(C).

The basis theorem of M. Hall [10] shows that such sets of basic
commutators exist. In particular, the following inductive

procedure yields such a set.
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(5.2) (a) Example: We construct a subset bn(Z) inductively as
follows. For n = 1 let bl(Z) = Z. We choose well ordering <
of Z. Now assume b’ = br(Z) is defined for r < n and
assume the union.

vt o plyp?u ... upt?

is well ordered, n 2 2. Then bn(Z) is the set of all brackets
[x,y] with the following properties (a),(b), and (c).

(a) x € bi(Z), y € bj(Z) and i + j = n.

(b) x>y

(c) If x = [x',x"] then x" ¢ vy.

Now we choose a well ordering of u = Un-l U bn(Z) which

n-1

n-1 and which satisfies U < bn(Z).

extends the one of U
The union b(Z) of all b™(2Z), n » 1, is a set of basic

commutators in the sense of (5.1), see [11].

(5.2) (b) Examble:

The construction of a set of basic commutators in (5.2) (a) can
be slightly generalized by using a grading on the set of
generators Z. Let Z = {Zi : 12 1} be a graded set. Then we

n

define bn(Z) = b inductively as follows. We choose a well

ordering < of Z1 and let bl(Z) = Zl' Assume br(Z) is

defined for r < n and that

U =b U ... Ub
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is well ordered, n ?» 2. Then

bt (z) = z U bg.

Here bg is the set of all brackets ({x,y] with the

properties (a), (b), (c¢) in (5.2)(a). Now we choose a well

ordering of U" = Un_l U b™(z) which extends the one of u"™!

n=1 . p™(z). The union b(Z) of all b™(2),

and such that U
n 2 1, is a set of basic commutators in the sense of (5.1). We

prove this as follows.

Proof of (5.2)(b): Let 2Z' be the disjoint union of all sets

Z,

1 i 2 1, and of an element t. Let L' be the free Lie

algebra generated by 2' and let L be the free Lie algebra
generated by the disjoint union of all Z;, i 2 1. We have a

Lie algebra injection
¢ ¢+ L >— I/
which carries z € Z; to the bracket
o(2) = [...[2,t),...],%]
of length i, see chap II §2 and in [4). Now b(Z'’), defined as

in (5.2)(a), is a basis of L' which via ¢ contains b(2)

defined in (5.2) (b).
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Next we consider an additive basis in a free partial Lie
algebra. In fact; we will show that the free partial Lie
algebra R(C,K) 1is a free abelian group if C 1is free abelian
and 1f KX 1is a direct summand of C. Let Z be a basis of C

which contains a basis Zy of K. Then we have the map

ol

1 ¢ B(Z2) — (R(C,K),<,>)
between magmas induced by 2 C C C R(C,K).

(5.3) Definition: A subset b(Z,2 of B(Z) 1is called a set

k)

of basic Peiffer commutators on (Z,2 if the restriction

x)
1: b(Z,2,) » R(C,K) of 1 above is a basis of the free

abelian group R(C,K). Let bn(Z,Z be the subset of »h(Z,2

K) K)
of all brackets of length n. The following inductive procedure

yields such a set of basic Peiffer commutators.

(5.4) Example: Let ZR =2 - ZK. We construct a subset
b“(z,zK) of B(2Z) inductively as follows. For n = 1 let
bl(Z,ZK) = Z. We choose a well ordering of 2 with Zp < Zg-

Now assume bY = br(Z,ZK) is defined for r < n and assume

the union

n-1 n-1

U =b*UbB?U ... UD

is well ordered, n 2 2. Then bn(Z,Z is the set of all

g)
brackets [x,y] with the following properties (a)...(d).
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(a) x € bl, y € b3 with i+ 3 =n.

(b) x>y if x € 2 and y ¢ 2

R R’
(c) If x = [x',x"] with x' ¢ Zp and x" ¢ Zn then x" ¢ y.
(d) If x € Zp and if Yy = (y',¥y") then Yy’ € Zp.

n-1 U b" which extends

n-1

Now we choose a well ordering of " = U

1

the one of U™ " and which satisfies U < b". The set

b(Z,2Zy) 1is the union of all b“(z,zK). In particular, we get

2 -
3 =
(£) ©7(2,2p) = [25,[2;,2]) U [(2,25],2) U [[Zg,24),2)

u {[(fz,w],v] ¢+ z,v,we 2,,72 >w £ V}

K’

We point out that for 2 = ZK this definition of b(Z,ZK)

coincides with the one in (5.2) since ZR = ¢ 1is the empty set

in this case.

{(5.5) Theorem: The set b(Z,2 constructed in (5.4) is a

K
set of baslic Peiffer commutators, see (5.3). In particular,
bn(Z,ZK) is a basis of the free abelian group Rn(C,K), see

(4.7) .

In case C = K this result coincides with the basis theorem
for free Lie rings of M. Hall [10]. We prove (5.5) in (6.12)
below; in addition the next lemma gives an explicit procedure
to express any element of R(C,K) as a linear combination of

basic Peiffer brackets.
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(5.6) Lemma: b"(Z,2 generates RT(C,K), n > 1.

K

Proof: We say Ehat an element of Rn(C,K) is in "standard

form" if it is a linear combination of elements in bn(Z,ZK).

Clearly (5.6) is true for n = 1. Now suppose (5.6) is true for

all degrees 1,...,n-1, We shall reduce

(1) A= 2 te <VyrZy> € R (C,K)
k

to standard form by a canonical process which will seen to

leave A unchanged if A is in standard form.

First step: Let

(2) Vi =) apdie 2 <) PixVik
i J

be standard forms where the u's and v's are in b(Z,ZK).

Put

(3) A

z tkaikbjk<uik’vjk>'
i,3,k

Second step: If u € 2Z and v € 2 put

if u=v

I
o

(4) <u,v>
(5) <u,v> = ~<v,u> if u<v

<u,v> if u>v

(6) <u,v>
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Third step: If u = <z,w> with 2z ¢ Z and w € ZR' and if

R

u>v for v ¢ ZR' put
(7) <u,v> = <<z,w>,v> 1if w{ v
(8) <U,V> = =<<W,V>,2> + <<Z,V>,w> if W > V.
Fourth step: If u € ZR and Vv = <x,y> put
(9) <u,v> = <u,<x,y>> if X € Zn
(10) <u,v> = <<,X>,y> - <<u,y>,x> if X € ZR
Fifth step: Return to the first step and repeat the process
until nothing but linear combinations of elements in bn(Z,ZK)
remain.
Oone can check that the above process terminates. From the
definition in (5.4) it is clear that expressions A in
standard form are left unaltered by the canonical process
above, and that expressions left unaltered are in standard
form.

a

We derive from (5.5) and (4.11) a "basis theorem" which
generalizes P. Hall's basis theorem for collecting processes in

free groups, see for example page 343 in ([13}.
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Let M > N be a free pre crossed module on a free group
N = <Zl> and assume M = <z2 x N> 1is the free N-group
generated by the set Zz‘ By (1.28) we can choose a basis 2
of the free abelian group C which extends a basis 2y of K.

Moreover, we choose an injection

(5.7) R (Z,2,) — (M, ker 8)

for which thi is the inclusion 2 C C, see (1.22) and

(1.25). The map' i induces the map
1 : B(Z) — (M,<,>)

between magmas. With the notation in (5.3) we get the following

"basis theorem for Peiffer commutators".

(5.8) Theorem: The map

ai : b™(z,2,) — P"(@) — P7(3)/P" 1 (a)
(gtven by 1 above) Lls a basis of the free abelian group

P @3)/P" gy, n > 2.

The following corollary is an easy conseguence since

P2 C ker(d) —— K 1is a short exact sequence.
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(5.9) Corollary: Any element W € Ker(d) has a unigue

representation (n 2 1)

n <

W=[§§ nlo'b]'*Vnﬂ

i=1 be€b(n)

where Vn+1 € Pn+1(6). The sum is defined via an ordering <

of the set b(n) with b(l) = Zy and b(n) = bn(Z,ZK) for

n 2 2, see (5.3). Only a finite number of integers nb are non

trivial and the-integers n, are uniquely determined by W

and by the ordering <.
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§6 The envelo e e a ti ie algeb

In this section we introduce d-Lie algebras and we use them to
define envelopiﬁg Lie aigebras. We show that in the free case
the canonical maé to enveloping Lie algebra isoinjective. This
as well leads to a proof of the basis theorem (5.5) above for

free partial Lie algebras.

(6.1) Definition: A J-Lie algebra is a Lie algebra (L,[,])
endowed with a group homomorphism 8 : L + L satisfying
d[x,y] = 0 for x,y € L. Let Jd-Lie be the category of d-Lie
algebras. Morphisms are maps f in Lie with f£f38 = df, see

(3.1).

We obtain free d-Lie algebras as follows. Let Pair (Ab) be
the category of pairs in Ab. Objects are homomorphism

d : 02 - C1 between abelian groups and morphisms f : d » 4’
are pairs f = (fz,fl) of homomorphisms with d'f2 = fl d. We
have the forgetful functor ¢ : Jg-Lie — Pair (Ab) which
carries (L,[,],d) to 8. Let L : Pair (Ab) -» d-Lie be the

left adjoint of ¢. Hence one has the natural map in Pair (Ab)

(6.2) a 15 @), a4

l
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where L(d) 1is also called the free d—Lie algebra generated by

d. Using the free Lie algebra in (4.1) we have

(6.3) L(d) = (L(c,

with 8 given by the commutative diagram

i P

2 2
c, —— 1L(c, ® ¢,) —=—— C,
d 3 d
i i

c, —2— 1L(C $c2)4-;c

1 1 1

Let 1i = (iz'il) : d » L(d) be given by the inclusions 12,11

and let p, be the unique Lie algebra map which extends the
projection ¢, ® C, » C,. Here the Lie bracket on c, is
trivial. One readily checks that i = (iz'il) has the

universal property of a free d-Lie algebra as in (6.2).
For a d-Lie algebra (L,[,],8) we define a homorphism

L& L - ker(d) by

(6.4) { <, >
(x,¥Y) = [9x,y]) = [x = 0x%,Y]

A
"
v
v
il

(6.5) Lemma: The triple (L,ker(d),<,>) 1s a partial Lie

algebra, see (3.2).

Proof: For dx = 0 we get
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(1) <X,X> = [X,x] - [0,x] = O.

Moreover, for dy = 0 we get

(2) <<X,y>,2> = <X,<Y,2>> - <Y,<X,2>>.

In fact we have

<<X,Y>,2> = [<X,y>,2]

= [[x,¥),2] = [[8x%x,Y],2]

<X,<y,2>> = [X,<y,2>] - [Ox,<Y,2>]

= [x,[y,2]] - [9x,[Y,2]]

I

-<y,<xX,2>> -y, <x,2>]

= ~[y,[x,2]] + [y,[8x,2]])
Now the Jacobi identity for ([[x,y),2z)] and [[9X,Y],z]
respectively shows that (2) is satisfied.
Now let ¢ : g-Lie -» par Lie be the functor from d-Lie
algebras to partial Lie algebras given by (6.5) and let

(6.6) ¢ : par Lie — d-Lie

be the left adjoint of ¢. Hence we have for a partial Lie

algebra R = (R,L,<,>) a d-Lie algebra (¥(R),[,],8) endowed
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with the natural (adjunction) map
(6.7) i: (R,L,<,>) — (£(R),ker(d),<,>)

between partial Lie algebras. We call the map 1 the

enveloping Lie algebra of the partial Lie algebra R.
(6.8) Lemma: The enveloping Lie algebra exists.

Proof: ¢(R) is a quotient of L(d) where d : R - R/L is

the quotient map. This is clear since the following diagram

commutes
L —————— ker(d)
n n
R 1 » L(R) = £(d)/I
d d
i1
R/L —-——=—=rm==- > L(R)

The map i1 is induced by i since i(L) C ker(d). Moreover,
I is the two sided ideal in L(d) generated by

i<x,y> - [ix,iy] + [8ix,iy], X,y € R.

As an example we consider the free partial Lie algebra R(C,K)
in (4.5). In this case we get the quotient map d : C = C/K
and the free 3-Lie algebra L(d) = (L(C/K & C),d). Moreover,

the inclusion of pairs
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i: (C,K) — (L(4),ker 48)
induces a unique map
(6.9) 1 : R(C,K) — (L(C/K ® C),ker 8,<,>)

between partial Lie algebras since R(C,K) is free. It is
clear that this map is the enveloping Lie algebra of R(C,K)
with .

(6.10) L(C/K ® C) = $R(C,K)

since YR 1is the composition of two adjoint functors.

(6.11) Theorem: Let C be free abelian and let K be a

direct summand of C. Then the map 1 1in (6.9) 1is injective,

Proof: By definition in (4.7) and (4.4) we have the

restriction (see (6.4))
(1) T: rR"(c,K) — L™(c/K @ ©)

which is clearly the inclusion CC C/K® ¢ for n = 1., It is
enough to show that (1) is injective for n 2> 2 or

equivalently that

(2) T : L(Cc,K) — L(C/K 6 C)
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is injective. Let Zy be a basis of K and let 2 = ZK U Zp

be a basis of C. A Lie generator of the first Rind in L(C,K)
is either an element of ZK or an element

(3) <x1,<x2,...<xn,y>...> € L(C,K)

with Xp € ZR'

of the second kind in L(C,K) 1is an element of the form

1{k{n and y € Z. Moreover, a Lie generator

(4) <o e e<<Z,Y > Y5> e e Y € L(C,K)

where Yy € Zp, 1 ¢ i { n, and where 2z 1is a Lie generator of
the first kind. For n = 0 the elements in (4) coincide with

the elements in (3).

(5) Lemma: The set 2 of Lie generators of the second kind

generates L(C,K) as a Lie algebra.
Proof of (5): We consider

L[Z] C L(C,K) = K® ®& R"(C,K).
n22

1

Here L[Z] denotes the Lie subalgebra in L(C,K) generated by
Z. Clearly K C L[Z] . Moreover RZ(C,K) C L[Z]. In fact,
R2(C,K) is additively generated by <z',z"> where z',z2" € Z.
Now we have three cases

(a) z' € ZK and z" € Z, (b) z' € ZR and z" € Z,
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() 2' € Z, and ‘z" € Zp. Here (a) yields a Lie bracket in
L[{Z], (b) yields a first kind generator and (c) yields a
second kind generator in Z. We now assume that Rk(C,K) C L[Z]
holds for 2 ¢ k'< n and we consider the additive generators

n)

<u,v> = <z(1), ..., 2! >, € R™(c,K)

where z(l) € Z, 1<¢<1i¢n. If ut ZR and v € ZR then

<u,v> is a Lie bracket of elements u,v € L[Z] and whence an
element in L[Z]). Now suppose Vv € Zp and
u € Rn—l(C,K) C L[Z]. Then either u € 2 and <u,v> € Z by

(4) or

<u/!

k,u">

(6) "

c
]
i 11D

k=1

with ui, uﬂ € L[Z]) so that <u,v> is a linear combination of

the elements

n>,v> = <ul ,<ul', v>> - <ul! <uk,v>>

(7) <<u’ kf k’ k'

k' Yk
Here <uﬂ,v>, <d£,v> are elements in L[Z] by induction.
whence also <u,v> € L[E] by (7). Finally suppose u € ZR and

v € R Y(C,K) C L[Z]. then we get v € Z or

P
(8) v = E <Vy V>
=1



- 53 =

with vk,vﬂ € L{Z]. In the latter case we have

(9) <u,<v',vﬂ>> = <<u,vi>,vﬂ> + <vi,<u,vﬂ>>

(>0 <u,vi> € L[Z] by induction so that <u,v> € L[Z]

by (9). Moreover, for v € Z, v of the first kind, we get

with <u,v

<u,v> € Z by (3) and for v € Z, v of the second kind, we
have v = <v',v"> with v" € 2, and V' € Z by (4). We now
use’ the Jacobi identity for <u,<v’,v">> as in (9). Then
clearly <v',<u,v">> € L[Z]. Moreover <<u,v'>,v"> € L[Z]
since we can apply the same argument as in (6) above where we
replace u by <u,v'> and v by v", This completes the

proof of (5).

For the proof of (6.11) we use the next lemma, see Chap. II §2

no 9 in [4].

(10) Lemma: Let X be a set, S a subset of X and let L(X)
be the free Lie algebra generated by X. Then the subset

T = T(X,S) of all elements

[sy/085,--[[8,,%X]...1], n 20,

with Sj €8, 1¢3J<{n, and X € X - S generate a Lie
subalgebra L[T] of L(X) which is actually a free Lie

algebra generated by T, that is L[T] = L(T).
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(11) Addendum: By the antisymmetry of the Lie bracket we can

replace T 1in (10) by the set T' = T'(X,S) of all elements
(.., 0Ix,8.),8,_3),..y8;), n 20,
with sj €S, 1<¢<3j<n, and X € X - 8.

Now we continue the proof of (6.11). The free abelian group

C/K 8 C has the basis

(12) W= 2,U2,U 2,

Here 2Z; 1is the set of all elements X =x-dx € C/K ® C,
x € Z2,. Recall that 8 1is the projection 8 : C — C/K. The

R

map

T

1 : L(C,K) — L(C/K® C) = L(W)
carries a Lie generator of the first kind to the element
(13) I<x1,...,<xn,y>...> = [§1,...,[§n,y]...] ,

see (6.4). This element is an element in T = T(W,2 see

P

(10). Moreover since ZR C T we get the inclusion

(14) T(L(C,K)) C L(T) C L(W).
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Here we use (9) and (10). Let T' = T'(T,2 be given by T

R)
and (11). Then we get the inclusions

(15) T(L(C,K)) € L(T') C L(T) C L(W)

where 1(Z), see (5), is a subset of T'. In fact, 1 : 2 -+ T'
is a bijection. Whence

=

(16) T : L(C,K) — L(T')

is an isomorphism. This completes the proof of (6.11), see (2).

]
Theorem (5.5) is a corollary of (6.11)

(6.12) Proof of (5.5): We introduce the graded set

V=(V, :n21l) as follows. Let V) = 2, and let V_ be the

K
set of all Lie generators of the second kind in Rn(C,K),
n 2 2. We claim that

b (v) = b"(2,2 n 2.

K)l
Here the left hand side is defined by (5.2) (b) and the right
hand side is the set defined in (5.4). We see that the equation
holds simply by comparing the definitions of both sides. Now

(5.2) (b) implies the proposition of (5.5).
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§7 @-Lie algebras associated to pre crossed modules

nd the proof of theorem (4.11

A pre crossed module 8 : M 2> N yields the semidirect product
N x M of groups. The Lie algebra LM’ given by the lower
central series of M x N, is actually a d-Lie algebra and the
canonical map M = N x M induces a map between partial Lie
algebras Ry — (LNxM'a)' This map is the crucial ingredient in

our proof of theorem (4.11).

let 8 : M+ N be a pre crossed module. From the N-group M
we derive the semil direct product N x M. this is the product
set N x M with the group structure + given by
((a,x),(B,y) € N x M)

B

(7.1) C (a,x) + (B,y) = (a + B,x" +y).

We have the split short exact sequence of groups

(7.2) M > N x M s N

i

with 1i(x) (0,X), p(a,x) = a and s(a) = (a,0). Since 8 is

a pre crossed module we also have the induced homomorphism

@f

(7.3) N xM— N
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with 3d(a,x) = a + 8(x). One readily checks by (1.1) that &
actually is a homomorphism. We now observe that 1 carries a
Peiffer commutator <x,y> to a sum of commutators, in fact
(7.4) i<x,y> = (ix,iy) + (iy,sdx).

We check this by the equations

i(=x =y + x + yax)

i<x,y>
= (0,-%) + (0,-y) + (0,%) + (0,¥°%)
= (0,-x) + (0,-y) + (0,x) + (0,y)

-(0,y) - (9x,0) + (0,y) + (9x%,0)

in N x M. Equation (7.4) implies that the map i carries the
Peiffer central series Pn(a) to the central series

I (N x M). Whence i induces the map
(7.5) i, ¢ RB — LNxM

on the quotients of these central series, see (3.3) and (3.7).

Since Fl/I‘2 -1s abelian the map 1 : P,/P, — I',/T actually

2
factors over C = (Pl/Pa)mb so that i, in (7.5) is well
defined. We use.the map 8 in (7.3) for the definiton of the

following composition 8

p
Lygy ——— (¥ > M) *P
(7.6) ) l l (s3)%P
i
L —1 , nxmP
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Here i1 and pl' are the inclusion and projection for
Fl/F2 = (N « M)ab, see (3.3). Clearly d([x,y] = 0 for

X,y € LN«M since pl[x,y] = 0. Whence (LNxM,[,],a) is a
natural d-Lie algebra assoclated to 8 : M » N, see (6.1).
Moreover, equation (7.4) implies

(5.7) Lemma: The map i, 1in (7.5) is a map between partilal

Lie algebras, see (3.8) and (6.5).

Proof: It is clear that i*La C ker(38) by the definition of

K in (3.7). Moreover, we have by (7.4) and by definition of
the Lie bracket in LM the following equations. Let

E=(x) €P /P .,n={(y) €P/P .

(1) i,<€,m>

I

i, (<x,y>} (i<x,y>)

((ix,iy) + (iy,sdx))}

Here we have 8x = 0 for n 2 2 since 6P2 = 0. Whence we get

for n ) 2

(2) 1,<E,m> = [1,§,1,0]

and we get for n =1

(3) 1,<E,m> = [1,§,in] + [i,m,(s0x)}]
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with
(4) {s8x) = (s8ix) = (s8), i,& = 8i,F

Here the last equation holds by (7.6) since n = 1. Now (2) and

(3) show by definition of 8 in (7.6)
(5) P <E,m> = [1,E,i,m] - [91,8,i,n]
since di,f = 0 for n 2 2. This shows by (6.4) that

i,<E,m> = <i E,i,n>.

We now consider the free case. Let 8 : M3 N be a free pre

crossed module on a free group N = <Z,> with M = <22 x N>,

see (1.3) and (1.18). In this case the semi direct product

N x M is the free group

(7.8) No M =<z, U3z,>

*

. » . 1] —
generated by the disjoint union Z1 U Zz‘ Let Cn = Cn @z[v]e /A

be the free abelian group generated by Zn (n =1,2), see

(1.22), and let

(7.9) dj =d, 8 1:CH—C
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be induced by d2 in (1.22). One readily checks by the theorem
of Witt, see (4.9), that (7.6) is the free d-Lie algebra

generated by d!, see (6.3), that is

(7.10) Lyuy = L(C) ® C3) .

Moreover, the following diagram of maps between partial Lie

algebras commutes.

R(C,K) S N L(c) @ Cj)

lg

*
d LN«M

(7.11) 1 1

Here i, is the map in (7.5) and 1 is the map in (4.10).
Moreover, 3j is the unique map between partial Lie algebras

which extends
(7.12) J : (Cy,K) -4 (c1,K') C (L(C; ® C)), ker 3)

where K' = Kernel (dé) and where g is the quotient map:;
recall that C2 = C by (1.25).

We are now ready for the proof of theorem (4.11) which states
that I in (7.11) is an isomorphism. This result is an easy

consequence of the following two lemmas.
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(7.13) Lemma: Suppose that 8 : M+ N 1is a free pre crossed
module on a free group N and suppose 3 {is surjective. Then

1 tn (7.11) is injective.

Proof: The surjectivity of &8 implies that g in (7.12) is
the identity and that d2 = dé in (7.9) is surjective. Whence
c{ = ¢, = C,/K. This shows that J in (7.11) coincides with
the injective map in (6.9) and (6.11). Whence the commutativity

of (7.11) shows that 1 in (7.11) is injective;

(7.14) Lemma: Is 1§ enough to prove theorem (4.11) in case

d : M3 N 1is surjective.

Clearly by (7.13) this completes the proof of (4.11).

-

For the proof of lemma (7.14) we need the classical notion of a

Schreier system.

(7.15) Definition: Let F = <X> be the free group generated
by the set X and let H be a normal subgroup of F. A
Schreier system for the cosets of H in F is a set S of
elements in. F with the following three properties:
(1) Each coset of F/H contains exactly one element of
S.

(2) The neutral element is in 8, that is 0 € S.
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(3) If the reduced word elxil + ve. o+ ekxik(ei € (+1,-1},

xj € X) 1is an element in S then so is every

shorter word

Xy t*oee. t ejxi for 1<h¢<3j<k.

h 3

The following lemma can be found for example in chapter 7, §2

[11].

(7.16) Lemma of Schreier: For each normal subgroup H of

F = <X> there exlsts a Schreler system S. Moreover, a
Schreter system S for the cosets of H {in F ylelds a basis
XS of the free group H = <ks>. The set Xs consists of all
reduced words y + X - g(y + x) itn F with y € § , x € X
and y + x - §(y + x) # 0. Here S is the function from F to

S which takes the element f € F to the representative

S(f) = (f+H) N S €S 1in the coset £ + H.

(7.17) Proof of (7.14): Let 8 be given as in (4.11), let

>, and let Z_ C M be

2 be a basis of the free group N = <2 5

1 1
a basis of the free pre crossed module 8 : M » N. We consider
the homomorphism

(1) p, : F = <Zl Uuz.> — <Zl> = N

2

where 2Z2. U 2 is the disjoint union of sets. Here p, is the

1 2
identity on z, and P, is trivial on 22, pzz2 = 0. Let t
be the section of P, defined by the inclusion z, €2z, Uz,.

Moreover, let H' be a normal subgroup of N and let
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(2) H = p, (H')

be the inverse image in F. A Schreler system S' for the
cosets of H' 'in N 1is carried by t to a Schreier system

S = t(8') for the cosets of H in F. Such a Schreier system
8 vyields a basis (zl U Zz)s of H by use of S in (7.16).
We have for s € §, x € 32

(3) S(s + x)

((s + x} + Hy N 8

(s + H) N 8§ by (2)

= s
Whence we get the set Zé of all elements
(4) S+ X-S(S+X) =8+X-~-s8

of the basis (2'._l U Zz)s. Now assume &5 € S and Xx € Zl' Then

we have s = t(s') and
(5) § + X - S(s + x) = t(s' + x - 8'(s' + x))

where s' -+ x - S'(s' + x) is a reduced word in N and an

element in the basis Z! = (Z

1 of H'. Clearly

l)S'

= ' '
(6) (2, U 2,)g = 2} U 2}

by (4) and (5) and t 1is the identity on Z;. Whence we have

the epimorphism
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(7) pé : H= <Zi U Zé> _— <Zi> = H'

defined in the same way as P, in (1) and, in fact, P, is

the restriction of P, in (1).

Now let H' = dM be given by 8 : M — N. We construct a free

pre crossed module & : G — H' where & 1is surjective and we

construct a map (m,n) : 6§ — & between pre crossed modules,
G —m—— M

(8) 15 | la

M = H' >— N '

such that m is an isomorphism and such that n is the
inclusion &M C N. As the definition of Peiffer brackets in M
involves only the action of the group &8M we see that (m,n)

induces an isomorphism
(9) (m,n), : P_(8) —— P ()

of the groups in the Peiffer central series. Whence (m,n)

induces an isomorhism of the quotient groups Pn/P as well;

n+l
this implies the proposition in (7.14) since 1 is natural and
since (m,n) induces an isomorphism of pairs

~t

(10) (C,K)g —— (C,K)g4
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Here (C,K)a = (C,K) 1is defined by 8 as in (4.11). Whence
the proof of (7.14) is complete by the following construction

of diagram (8).

Let G = <Zé x H'> and consider the commutative diagram

a
t [ I — -~ N -
<2’.1 U Zz> =H > » F <Z1 U Zz>
|1 Ii
(11) . <ZL x H'> =G —— M = <Z, x N>
5 1 5 l a3 ]
- = H' = > =
<z}> = H aM — N <z,>

where J and n are the inclusions. Moreover, the
homomorphism & is defined by & as in (7.3), see (7.8), that

is dx = x for x € Z, and 3x = dx for x € Z,. The map 3

carries H to 68M since

(12) F(H) = E(pglaM) = oM

by (4), (5) and (6). Therefore the restriction & of &8 1in
(11) is defined. We consider the inclusion i given on
generators by i(x,a) = -a + x + a , (X,a) € 22 x N or

(x,a) € 2, x H'. This corresponds by (7.8) to the inclusion i
in (7.2). We claim that 3j induces an isomorhism m such that

(11) commutes where & = 6i. Here we use the result in (7) that

pé is the restriction of P, in (2). Therefore we know

(13) iG = kernel pé = kernel p, = iM.
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Clearly & in (11) is surjective and 6 = 6i is a pre crossed
module by definition of i. The isomorphism m is
n-equivariant since we have chosen the Schreier system S by

S = tS'. This completes the construction of diagram (8).
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