Higher K -Theory of Modules Over
ET-Categories

University of Ibadan
Mathematics Department
Ibadan

Nigeria

Aderemi O. Kuku

MPI / 94-89

Max-PIanck-Instituf fiir Mathematik
Gottfried-Claren-StraBle 26
53225 Bonn

Germany






HIGHER K-THEORY OF MODULES OVER EI-CATEGORIES

ADEREMI Q. KUKU

Introduction

Let C be an EI- category (i.e. a small category in which every endomorphism
1s an isomorphism), R a commutative ring with dentity. An RC- module is a
contravariant functor from C to the category of R-modules. For all n > 0, let
Ko(RC) be the (Quillen) K, of the category P(RC) of finitely generated projective
RC- modules (see §1 for definitions).

The significance of the study of K- theory of RC- modules lies mainly in the
fact that several geometric invariants take values in the K- groups associated with
RC where C is an apropriately defined EJ- category and R could be Z,Q, R, etc.
For example, if = is a finite group, C = orb(w) the orbit category of 7, (a finite
EI-category), X a m—CW complex with round structure, then the equivariant Rei-
demester torsion takes values in Wh(Qorb(r)) where Wh({Qorb(r)) is the quotient
of K1(Q orb(7)) by its subgroup of "trivial units”-see [16].

Now, let C be a finite EI- category, R the ring of integers in a number field F'. We
show in §2 that for all n > 0, I,,( RC) is a finitely generated Abelian group and that
SK,(RC) is a finite group, while in §3 we show that for all n > 1, G,(RC) = K,
of the category of finitely generated RC- modules is a finitely generated Abelian
group and that SG,(RC) = 0.

In §3 we consider Cartan maps and show that if & is a field of characteristic p,
and C a finite EI- category, then for all n > 0, the Cartan map I{,,(kC) = G,(kC)
induces an isomorphism

Z G}) ®Kn(kC) ~Z Gv) ® Gn(kC).

We then discuss some consequences of this result for integers in number fields.

In a final section, we discuss module structures on K,{RC), G,(RC) ‘as modules
over G,(R,C) := K, of the the category P r(RC) of finitely generated RC -modules
M such that M(X) is a projective R -module for all X € orb() as well as modules
over the Burnside ring of C (see §5).

Notes on Notation. For a finite group n, we write con(w) for the set of conjugacy
classes of m and 7 for the conjugacy class of v if vy < w. If C is a category, X,Y C-
objects, we write C(X,Y) for the set of C- morphisms from X to Y, and Is(C) for
the set of isomorphism classes of C- objects.

If R is a commutative ring with identity, then for any set S, we write RS for the
free R- module on S. In particular, we write RC(X,Y") for the free R- module on
the set C(X,Y),

Typeset by AagS-TEX



For any exact category £, we write \,(€) for mp41 (BQE) (see [17]). f Ais a
ring with identity, we write P(A) for the category of finitely generated projective A-
modules. If A is Noetherian, we write M(A) for the category of finitely generated
A- modules. We denote I,(P{A4) by N,(A), K,,(M(A4)) by Gn(A4). Also ',(A) =
mn(BCL*T(A)) in the notation of the plus construction of Quillen (see [4]).



§1

Modules over El-categories

In this section, we briefly discuss modules over EI- categories and the associated
K- theories, thus developing some necessary notations.

Definition 1.1. An EJ-category C is a small category in which every endomor-
phism is an isomorphism. C is said to be finite if the set /3(C) of isomorphism
classes of C-objects is finite and for any two C- objects X, Y, the set C(X.Y) of C-
morphism from X to ¥ is finite

Examples.

(i) Let m be a finite group. Let obC = {r/¥|y < 7} and morphisms be 7 maps.
Then C is a finite E-category called the orbit category of 7 and denoted orb (7).
Here C(rn /v, 7/v) ~ Aut(7/+) &~ Nx(v)/v where N(7) is the normaliser of v in
w. (see [12]). We shall denote the group N.(v)/v by Nz{(7).

(i) Suppose that = be a Lie group. obC = {x/~|y compact subgroup of 7} is also
called the orbit category of m and denoted orb (7).

(iii) Let = be a Lie group. Let obC = {n/v|y compact subgroup of 7} and for
n/4,m/~" € obl, let C{x/~,7/~") be the set of homotopy classes of 7- maps.
Then C is an EI- category called the discrete orbit category of = and denoted

by orb /(7).
Note. For further examples, see [16].

1.2,

Let R be a commutative ring with identity, C an EI-category. An RC- module
as a contravariant functor C — R — mod

An obC- set is a functor N from C to the category of sets. Alternatively, an obC-
set could be visualized as a pair (N, 3) where NV is a set and §: N — ob C is a set
map. Then N = {#71(X)|X € ob C}.

An ob C- set (N, () is said to be finite if N is a finite set. If S is an (N, 3)-
subset of an RC- module M. define spanS as the smallest RC- submodule of M
containing S. Say that M is finitely generated if M = span S for some finite ob C-
subset S of M.

If R is a Noetherian ring and C a finite E[-category, let M(RC) be the category
of finitely generated RC- modules. Then M(RC) is an exact category in the sense
of Quillen [17], see [16].

An RC- module P is said to be projective if any exact sequence of RC- modules
0= M — M — P — 0 splits or equivalently if Hom ge{P, —) is exact.

Let P(RC) be the category of finitely generated projective RC- modules. Then
P(RC) is also exact. We write \,(RC) for KNn(P(RC)).

Finally, let R be a commutative ring with identity, C o finite EI- category,
Pr(RC) the category of finitely generated RC- modules such that for each X' &
ob C, M(X) is projective as fI- module. Then Pz(RC) is an exact category and
we write Gp(R.C) for K, (Pr(RC)). Note that if R is regular, then G,{R.C) =

Ga(RC).



1.3.

Let Cy,C, be EI- categories, R a commutative ring with identity, B a functor
C, — Cy. Let RC2(77, B(7)) be the RCy — RC,- bimodule: C; x C; — R~ mod given
by (X, X)) = RC2(X», BX,). Define RC, — RC, bimodule analogously. Now define
induction functor indg : C; ~mod — RCy; —mod given by M — M R% RC,(7?7,B(7))

1

Also define a restriction functor resg : RCy —mod — RC; —mod by N — N o B.

1.4.
A homomorphism R; — R; of commutative rings with identity induces a functor
B:Ry—mod - Ry —mod: N = Ry R® N. So, if C is an E[-category, we have
1

an induced functor R;C — mod — R»C — mod : M = B o M where (B - M){(X) =
B(M(X)).
We also have an induced exact functor P(R,C) — P2(R2C) : M — Bo M and
hence a homomorphism L, (R;C) = I o (RC).
Now, suppose that K is a Dedekind domain with quotient fields F, and R —
F' the inclusion map, it follows from above that we have group homomorphisms
No(RC) = KL (FC) and Go(RC) — GL(FC).
Now define SI,(RC) := Kernel of KNp(RC) = K, (FC) and SG,(RC) := Kernel of G,(RC) —
Ga(FC).



§2

K, (RC),SK,(RC)
The aim of this section is to prove the following:

Theorem 2.1.
Let R be the ring of integers in a number field F, C any finite EI- category.
Then for all n 2 1,
(i) Kn(RC) is a finitely generated Abelian group.
(ii) SK,(RC) is a finite group.
The proof of 2.1 will depend on the following splitting result

Theorem 2.2.
Let R be a commutative ring with identity, C a finite EI- category. Then

Kn(RC)= P Ka(R(Aut(X)))
Xels(0)

Proof.

We give a sketch of the proof of 2.2. Details can be found in {16].

Step I: For X € obC, define the "splitting functor” Sy : RC — mod —
R(Aut(X)) —mod by Sx(M) = M(X)/M'(X) where M'(X) is the R- submodule
of M(X) generated by the images of the R- homomorphisms M(f) : M(Y) —
M(X) induced by all non-isomorphisms f: X — Y.

Step II: Define the ‘extension functor’ Ex : R(Aut(X)) — mod — RC — mod
by

(Ex(M)=M (X) RC(?,X)
RAut(X)

Step III. For U € Is(C), the objects X &€ U constitute a full subcategory of C
which we denote by C(U). Now define

splith'n (RC) := P K.(RC(V))
Tels(c)

Step IV. For each U € obC, define the functor Ey; : RC(U) — mod — RC-mod
by

Eu(M)=M @ RC(7,77)
RC(U)

This induces a functor P(RC(U)) = P(RC) and a homomorphism An(Ey) :
L (RC(U)) = I,(RC) and hence a homomorphism

E.(RC) = 2K, (Ey): @& K .(RC(U)) = Kn(RC)
Uelsc

that is, a homomorphism

E,(RC) : splith n(RC) = K,(RC)
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Step V: For any U € ob (C), define a functor Sy : RC — mod — RC(U) -~ mod
by Sy(M) = M B for the RC— RC(U) bimodule B given by B(X,Y) = RC(X,Y)
RC

if Y € U and B(X,Y) = {0} if Y ¢ U, where X runs through obC(U), and Y €
ob(C). Then each Sy induces a homomorphism I, (Sy) : K,(RC) = Kn(RC(U))
and hence a homomorphism

Su(RC): Kn(RC) » € Ka(RC(U))

Uels(c)
ie.
Sa(RC) : Kn(RC) — split K, (RC).
Step VI:
E.(RC): I - @ K.ReU
TUels(C)
and

Sa(RC): P Kn(RC(U)) - Kq(RC)
Ters(c)

are isomorphisms, one the inverse of the other.
Step VII:
K, (RC(U)) ~ Ka(R(Aut(X)))

(for any X € U), via the equivalence of categories Aut(X) — C(U) where for
any group 7,7’ is the groupoid with one object m and morphisms left translations
lg:r—=r:hogh O

We also reed the following

Theorem 2.3. Let C be a finite EI- category, R the ring of integers in a number
field F. Then for any C- object X, K,(R(AutX)) is finitely generated Abelian
group for all n > 1.

Proof. Write A for R(Aut(z)) and put Ky, n(A) := 7,(BGL},(A)). Then K,(A) =
lim Kpm(A). Now, BE}(A) is the universal covering space of BGL7,(4) (since

BE(A) is the coverig space of BGL{A) with respect to the subgroup E(A) of GL(A)
generated by elementary matrices):
So
Ta(BER(A)) = ma(BGLT,(4))

Now, by the stability result of Suslin (see [19]), Np m(A) = Ky myi(A) if m >
(2n+2,n + 3) since A as an R- order satisfies the stable range condition SRj3 (see
(1]). So Kn(A) ~ m (BE}(4)) form 2 (2n+2,n+3). Now,form > 3, En(4) isan
Arithmetic group since SL,(A4)/E,(4) is a finite group. Hence by Borel-Serre, [6],
H,(E,,(A)) is finitely generated. Now, forallm > 2 H, (E,,(A) = H,(BE,(A)) =
H,.(BE}(A)) by Quillen’s plus construction since BE,,(A) — BE(A) is acyclic.
Moreover, BE},(A) is a simply connected H- space for m > 3. Also by [18] 9.6.16,
mo(BEL(A)) is finitely generated if and only if H,(BE] (A)) is finitely generated.
Hence I,(A) ~ m,(BE}(A)) is finitely generated. O
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Proof of 2.1.
(i) follows from 2.2 and 2.3 since N, (RC) is a finite direct sum of finitely generated
groups K (R Aut(X)) X € Is(C).

(i1) First note that we have the following commutative diagram with exact rows:

0 —— SKn(RC) _— Kna(RC) _ K. (FC)

! t I

0 —— P SKi(RAu(X)) —— P Ka(R(Aut(X))) ——— P Kna(FAut(X))
Xeirsc Xelsc Xers(c)

Now by [13], 3.2, SK,(R(Aut(X))) is a finite group. Hence @ SK,(RAut(X))
Xelsc
being a direct sum of finite groups is finite. That SK,(RC) is finite now follows

from the fact that « is injective.

Remarks 2.4. Let 7 be a finite group and C = orb(r) the orbit category of = (see
E.g 1.1[1]).

It is well known that there is one-one correspondence between Is5(C) and the
conjugacy classes con(r) of m , i.e. w/y ~ m/+', if 4 is conjugate to v'. It is also
well-known that C(r/y,7/vy" = Aut(r/v) = Na(v)/v := Ny where Npv is the
normaliser of v in .

So, for any commutative ring R with identity, K, (Rorb(r)) = € HK,RNR(~v).
~Econ(m)




§3

G (RC), SGn(RC)

The aim of this section is to prove the following

Theorem 3.1. Let R be the ring of integers in a number field F, C a finite EI-
category. Then for alln > 1

(i) Gn(RC) is a finitely generated Abelian group
(ii) SGn(RC) =0.

The proof of 2.1 depends on the following splitting result for G, of RC.

Theorem 3.2. Let R be a commutative Noetherian ring with identity, C any finite
EI- category. Then for alln > 1

Gn(RC) = P Ga(R(Aut(X))).
Xels(c)

Proof. We sketch the proof of 2.2 and refer the reader to [16] for missing details.
Step I: For each X € ob (, define Resy : RC-mod — (R Aut(X)) -mod
Resx (M) = M(X). Then an RC- module M is finitely generated iff Resy (M) is
finitely generated for all Xin ob C (see [16]).
Moreover, Resy induces an exact functor M(RC) — M(R(Aut(X))) which also
induces for all n > 0 homomorphisms Gn(RC) = Gn(R(Aut(X))) and hence ho-
momorphism Res : Go(RC) = @ G.(R(Aut(X))). We write splitG,(RC) for

Xels(C)
D Gn(R(Aut(X))).
XefsC
Step II: For X € ob C, define a functor Iy : R(Aut(X)) — RC by

M & RCY,X) ifY=X
I (M) RAut(X)

0 fY £X
Then we have an induced homomorphism

I:split Go(RC) = @) Ga(R(Aut(X))) = Gn(RC).

Nelse

Step III: Res and I are isomorphisms inverse to each other. O

Theorem 3.3. Let R be the ring of integers in a number field F, C a finite EI-
category. Then for any X € obC and all n > 1 Ga(R(Aut(X))) is a finitely
generated Abelian group.

Proof. We provide a sketch of proof here. Details can be found in Kuku [10].

Put A = R(Aut(X)) and note that A is an R- order in the semi-simple F'- algebra
F(Aut(X)). Let T be a maximal order containing A, and let ap : Go(T') = Ga(A)
be the homomorphism induced by the functor M(I') — M(A) given by restriction
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of scalors. As proved in [10] 1.3 (i) and (iii) for all n > 1 (a) azn—1 : G2n—1(T) —
G2n-1(A) has finite kernel and cokernel (b) ag, : G24(I") = G2a(A) is injective
with finite cokernel. The conclusion that G,(A) is finitely generated follows as in
the proof of [10]1.3 (iii). O

Proof of 8.1.
(i) Follows from 3.2 and 3.3 since split G,(RC) as a finite direct sum of finitely
generated Abelian groups is finitely generated.
(ii) First note that the following diagram is commutative with exact rows:

0 — SGa(RC) _— Gn(RC) _ Gn(FC)

I - l=
0 —— P SGa(dut(X)) —— P Ga(RAu(X)) —— P Ga(F(AutX))

Xelsc Xeisc XelsC

Since § is an isomorphism, « is injective. Now each SG,(RAut(X)) =0 by {15]
theorem 1. Hence SG,(RC) = 0.



§4

CARTAN MAPS

Let R be a commutative Noetherian ring, C an EI- category. Then, for all
n 2> 0, the inclusion functor P(RC) — M(RC) induces a homomorphism K, (RC) —
Gn(RC) called Cartan maps.

The aim of this section is to prove the following

Theorem 4.1. Let k be a field of characteristic p, C a finite EI- category. Then
for all n > 0, the Cartan homomorphism K,(kC) = G,(kC) induce isomorphism

z (%) ® Kn(kC) 2 7, (i) © Gn(kC)

Proof. By 2.2
Ko(kC) 2 @ Ka(kAut(X))
Nels(c)
and by 3.2 Gn(kC) = @ G.(kAut(X)). Now it was proved by Dress/Kuku (see

Nelsc
[7]) via the theory of Mackey functors that for any finite group = the Cartan map
K,(kr) = Ga(km) induces an isomorphism

z G)) R Knlkm) ~ Z G)) Q) Gu(kr).

Hence Z (%) ® Kn(kAut(X)) ( ) ® Ga(k(Aut(X))) for all X & ob(C).

Hence

( Q) Kn(kC) = Z (%) QR P KnlkAut(X)))

Xerlsc

1
)

P

| Sa (z (%) 02 I{n(kAut(X))> ~ (Z (I%) 02 Gn(kAutX))
G

(€) Xelsc

) QD Guliu(x))

Xelsc
1
~7Z | - Gn(kC).
() ®cuae

Corollary 4.2. Let R be the ring of integers in a number field F, m a prime ideal
of R lving over a rational prime p. Then for alln > 1

(a) the Cartan map K,((R/m)C) = G.((R/m)C} is surjective

(b) Ipn(R/m)C) is a finite p- group.

Z

X
Z

Proof. Since m lies above a rational prime p, R/m is a finite field of character-
istic p. Hence by 4.1, K,((R/m)C) 3 G.((R/m)C) is an isomorphism mod p-

torsion for all n > 0. Now G, ((R/m)C) ~ @ G.((R/m)AutX) by 3.2. Also
NelsC
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Gn((R/m)(Aut(X)) is a finite group since ((R/m)Aut(X)) is a finite ring. ( G, of
a finite ring is finite see(8]). So G,,((R/m)C) is a finite group.
Also G2, ((R/m)C) = @ Gz2.((R/m)Aut(X)) = 0since each G2,((R/m)Aut(X)) =
Xelsc
0 see [8]). So, Coker ag, =0 i.e. azy is surjective.
Now each Ga,—1({R/m)Aut(X)) has order relatively prime to p by {10]1.1.
Hence Gyn—1{(R/m)C) is finite of order relatively prime to p. Now |Coker a2p—1] is
a power of p and devides |G2,—i((R/m)r) which is = lmod(p) and this is possible
if and only if Coker ay,—; = 0. Hence Cokera, =0 ¥n > 1. i.e. ay is surjective
VYn > 1.
(ii) Since G2,((R/m)C) = 0, we have Ker a3, = Non((R/m)C). Now, Ky, ((R/m)C) ~
P K2.((R/m)Aut(X)) is a finite group, since each ((R/m)Aut(X)) is a finite
XNelsc
ring and K, of a finite ring is finite by [13].1.1. So Ker cg, = I3n(R/m)C) is a
finite p- group.

Il



§9

PAIRINGS and module STRUCTURES

5.1. Let &,&;,& be three exact categories and & x & the product category. An
exact pairing & x & — £ : (M, M) — M, o M; is a covariant functor from
& x &y to &€ such that £ x gz((ﬂﬂrl,ﬁ/fz), (ﬂ/.[{,l‘l’fé)) = 81 (J\’I],ﬂ‘f{) X gz(ﬂ/fg,ﬁ/fé) —
E(My o My, M{ o M) is bi-additive and bi-exact, that is for a fixed M3, the functor
& — & given by M, — M o M, is additive and exact and for fixed M, the functor
& = £ My — My o M, is additive and exact. It follows from [21], that such a
pairing gives rise to a [\-theoretic cup product IV;(&;) x I{;(&;) = Kit;(€), and in
particular to natural pairing Lo(&1) 0 n(&2) — K,(€) which could be defined as
follows:

Any object M, € & induces an exact functor M, : & — & : My = M; o Ms
and hence a map KN,(M;) : Kp(&) = Ku(€). If M{ — M, — M| is an exact
sequence in &, then we have an exact sequence of exact functors M| — M; —
M{"™ from & to £ such that for each object My € &, the sequence M| (M) —
M} (M) — M{"*(M>) is exact in £ and hence by a result of Quillen [17], induces
the relation K,(M{*) + Kp(M{™) = K,(M{). So, the map My — K,(M,) €
Hom(I, (&), N (€)) induces a homomorphism {o(€;) = Hom{L,(€), K, (£)) and
hence a pairing Ko(&;) x Kp(€) = K,(£). We could obtain a similar pairing
f\rn(gl) X Ii-o(gz) — I\’,,(E).

If £ = & = & and the pairing £ x £ is naturally associative (and commutative)
then the associated pairing Io(€) X Ko (E) — Ko(€) turns Kp(E) into an associative
(and commutative ring which may not contain the identity). Suppose that there
is a pairing £ o £; — &, which is naturally associative with respect to the pairing
o0& — &, then the pairing Io(€) x Kp(&1) = K,(&) turns (&) into a Kp(E)
-module which may or may not be unitary. However, if £ contains a natural unit
i.e. an object E s.t. Eo M = M o E are naturally isomorphic to A for each &
-object M, then the pairing Lo(&) X K (Cy) = K,(&) turns A, (&;) into a unitary
Io(&) -module.

5.2. We now apply the above to the following situation. Let R be a commutative
ring with identity, C a finite EI-category.

(i) Let £ = Pg(RC) be the category of finitely generated RC -modules such
that for all X € 0b(C). M(X) is projective as an R-module. So, Pr(RC) is
an exact category on which we have a pairing

(1) ® : Pr(RC) x PR(RC) — Pr(RC)

If we take & = P(RC), then the pairing

(2) ® : Pr(RC) x P(RC) — P(RC)

is naturally associative with respect to the pairing (I) and so N, (RC) is a
unitary (Ko(Pr(RC)) = Go(R,C) -module. Also, Gn(R,C) is a Go(R,C)

-module.
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5.3. Let C be a finite ET -category and Z(Is(C)) the free Abelian group on Is(C).
Note that Z(Is(C)) = €@ Z. If Z{/*(D is the ring of Z-valued functions on IsC, we
Is(C)

can identify each element of Z(Is(C)) as a function Is(C) — Z via an injective map
B : Z(Is(C)) = ZUO) given by B(X)(Y) = |C(Y,X)| for X,Y € obC. Moreover
f identifies Z(Is(C)) as a subring of Z{/*®)_ Call Z(Is(C)) the Burnside ring of
C and denote this ring by Q(C). Note that if C = orb(x), 7 a finite group, then
Z(1s(C)) is the well-known Burnside ring of = which is denoted by Q(=).

4.4. If R is a commutative ring with identity and C a finite ET -category, let F(RC)
be the category of finitely generated free RC -modules. Then for all n > 1, the
inclusion functor F(RC) — P(RC) induces an isomorphism K, (F(RC)) ~ K,(RC)
and Ko(F(RC)) =~ Z(IsC) see {16] 10.42. Now by the discussion in 4.1, the pairing
Ko(F(RC)) x Kp(P(RC)) = Kn(P(RC)) makes 1',(RC) a unitary module over the
Burnside ring Z(Is(C)) ~ Ko(F(RC)).
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