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HIGHER I{-THEORY OF MODULES OVER EI...CATEGORIES

ADEREMI O. !(UKU

Introduction

Let C be an EI- category (i.e. a small category in which every endomorphism
is an isomorphism), R a commutative ring with dentity. An RC- module is a
contravariant functor from C to the category of R-modules. For all n 2:: 0, let
I(n(RC) be the (Quillen) I(n of the category P(RC) of finitely generated projective
RC- modules (see §1 for definitions).

The significance of the study of 1(- theory of RC- modules lies mainly in the
fact that several geometrie invariants take values in the 1(- groups associated with
RC where C is an apropriately defined EI- category and R could be Z, Q, IR, etc.
For exampIe, if rr is a fini te group, C = orb( rr) the orbi t category of rr, (a fini te
EI-category), ./Y a rr- CW complex with round structure, then the equivariant Rei
demester torsion takes values in vVh(Q orb( rr)) where vVh(Q orb( rr)) is the quotient
of K1(Q orb(rr)) by its subgroup of "trivial units"-see [16].

Now, let C be a fini te EI- category, R the ring of integers in a number field F. We
show in §2 that for all n ~ 0, I(n(RC) is a finitely generated Abelian group and that
SI(n(RC) is a finite group, while in §3 we show that for all n ~ 1, Gn(RC) = I(n
of the category of finitely generated RC- modules is a finitely generated Abelian
group and that SGn(RC) = O.

In §3 we consider Cartan maps and show that if k is a field of characteristic p,

and C a finite EI- category, then for all n .2:: 0, the Cartan map I(n(kC) ~ Gn(kC)
induces an isomorphism

Vle then discuss some consequences of this result for integers in number fields.
In a final section, we discuss module structures on l\.Pn(RC), Gn(RC) 'as nlodules

over Go(R, C) := /(0 of the the category P R(RC) of finitely generated RC -Inodules
NI such that J.\;1( ..Y) is a projective R -module for all.Y E orb C) as weH as modules
over the Burnside ring of C (see §5).

Notes on Notation. For a finite group rr, we write con(rr) for the set of conjugacy
classes of rr and '7 for the conjugacy dass of '/ if '/ ::; rr. If C is a category, ..\., Y C
objects, we write C(){, Y) for the set of C- morphisms from 4Y to yP, and I s(C) for
the set of isomorphism dasses of C- objects.

If R is a commutative ring with identity, then for any set S, we write RS for the
free R- module on S. In particular, we write RC(4Y, Y) for the free R- module on
the set C( ..Y, :V),

Typeset by AJV1S-'1'&'<.



For anyexact category E, we write ](n(E) for 7rn+l(BQE) (see [17]). If A is a
ring \vith identity, we write P(A) for the category offinitely generated projective A
modules. If A is Noetherian, we write M(A) for the category of finitely generated
A- modules. We denote ](n(P(A) by ](n(A), ](n(M(A)) by Gn(A). Also ](n(A) =
Jrn(BCL+(A)) in the notation of the plus construction of Quillen (see [4]).
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§1

Mod ules over EI-categories

In this section~ we briefly discuss modules over EI- categories and the associated
!(- theories~ thus developing some necessary notations.

Definition 1.1. An EI-category C is a small category in which every endomor
phism is an isomorphism. C is said to be finite if the set I s(C) of isomorphism
classes of C-objects is finite and for any two C- objects ){, }~ ~ the set C(..Y.l'~) of C
morphism from ~Y to y~ is finite

Examples.
(i) Let Jr be a finite group. Let 0 bC = {1t-j, I, ::; rr} and morphisrns be rr- maps.

Then C is a fini te EI-category called the orbit category of Jr and denoted orb (Jr ) .

Here C( rrI r 1 JrIr) ~ Aut( rrI,) :::::: lVrr(-,)I, where IVrr(-"") is the normaliser of , in
rr. (see [12]). VVe shall denote the group lVrr( '"'j) I '"'f by iVrr ('"'().

(ii) Suppose that Jr be a Lie group. obC = {rr/'"'fl, campact subgroup of rr} is also
called the orbit category of Jr and denoted orb (Jr).

(iii) Let rr be a Lie group. Let obe = {rrIrl, campact subgroup of Jr} and for
rr1'"'/1 Jr I"'t' E 0 bC ~ let C(rrI '"'f , JrI ,.,t') be the set of homotopy classes of rr- maps.
Then C is an EI- category called the discrete orbit category af rr and denoted
by orb I(rr).

Note. For further examples~ see [16].

1.2.
Let R be a commutative ring \vith identity, C an EI-category. An RC- module

as a contravariant functor C --t R - 1l10d

An obC- set is a functor lV from C to the category of sets. Alternatively~ an obC
set cauld be visualized as 'a pair (lV, ß) where lV is a set and ß : lV ~ ob C is a set
map. Then .!V = {ß-l(~Y)I ..\ E ob Cl.

An ob C- set (lV, ß) is said to be finite if lV is a finite set. If S is an (lV~ ß)
subset of an RC- rnodule 1\1. define spanS as the smallest RC- submodule af .1.\1
containing s. Say that 1\1 is finitely generated if 1\1 = span S for some finite ob C
subset S of 1\1.

If R is a Noetherian ring anel C a finite EI-categorYl let M(RC) be the category
of finitely generated RC- rTIodules. Then M(RC) is an exact category in the sense
of Quillen [171: see [16].

An RC- lTIodllle P is said to be projective if any exact sequence of RC- rTIodules
o~ l\f t

----;.. 1.vJ --7 P ~ 0 splits Cl' equivalently if Horn Re(F: -) is exact.
Let P(RC) he the category of finitely generated projective RC- rTIodules. Then

P( RC) is also exact. \Ve write !\." n (Re) far !\."n (P( RC)).
Finally: let R be a comnllltative ring with identity, C a finite EI- catcgory:

P R(RC) thc category of finitely generated RC- Inodules such that for each _\ E
ob C~ 1\1LY) is projective as R.- module. Then P n(RC) is an exact category and
we write Gn(R.C) for !\."" (PrdRC)). Note that if R is regulaL then C;n(R.C) ~

Gn(RC).



1.3.
Let Cl, C2 be EI- categories, R a commutative ring with identity, B a functor

CI --+ C2 • Let RC2 (??:B(?)) be the RC I -RC2 - bimodule: CI xCz -+ R-mod given
by (.Y1 , .Y2) --t RC2 ( .Y2 , B.Y I ). Define RC2 - RC1 bimodule analogously. NOW define
induction functor inda : CI -mod --+ RC2 -mod given by Al -+ 1\1 (9 RC2 (??, B(?))

Re l

Also define a restrietion functor resB : RC2 - fiod -t RCI - mod by LV --+ LV 0 B.

1.4.
A homomorphism R I -t R2 of commutative rings with identity induces a functor

B : R I - mod --+ R2 - fiod : LV -t R2 0 LV. So: if C is an EI-category, we have
Rl

an induced functor R1C - fiod -t R2C - mod : J\l -t B 0 J\1 \vhere (B . hI)(.Y) =
B(Al(.Y) ).

\-\Te also have an induced exact functor P(RIC) -t P 2 (RzC) : ~'1 --+ B 0 1\1 and
hence a homomorphism 1\-n ( R I C) --+ 1\n ( R2C).

Now, suppose that R is a Dedekind domain with quotient fields F, and R y

F the inclusion map: it follows from above that we have group homomorphisms
I\n(RC) --+ 1\n(FC) and C;n(RC) -t Gn(FC).

Now define SI\-n(RC) := Kernel of I\n(RC) --+ I\n(FC) and SGn(RC) := Kernel of Gn(RC) --+
Gn(FC).



§2

The aim of this seetion is to prove the following:

Theorem 2.1.
Let R be the ring of integers in a number neid F, C any finite EI- category.

Then for all n 2: 1,
(i) I(n(RC) is a finitely generated A.belian group.

(ii) SKn(RC) is a finite group.
Tbe prüof of 2.1 will depend on the following splitting result

Theorem 2.2.
Let R be a commutati\"e ring v,,"ith identity, C a finite EI- category. Then

]{n(RC) =:: EB ](n(R(Aut(..-\'")))
XEJs(C)

Proof.
\Ve give a sketch of the proof of 2.2. Details can be fouod in [16].
Step I: For )[ E obC~ define the "splitting functor l1 Sx : RC - mod ~

R(Aut(..-Y)) - mod by 5x(i\1) = A1( ..Y)jlv1'();) where 1\11' (..-\'") is the R- submodule
of J'1( ..Y) generated by the images of the R- homomorphisms Jvl(j) : lvl(Y) --+
lVI(_~) induced by all non-isomorphisms f : ..Y ~ Y.

Step 11: Define the :extension functor' Ex : R(Aut(..-Y)) - mod --+ RC - mod
by

(Ex(A1) = 1\1 0 RC(?, _\'")
RAut(X)

Step 111. For U E ] s(C), the objects ..Y E U constitute a fuH subcategory of C
which we denote by C( U)" Now define

splitA-n(RC):= EB ]{n(RC(U))

UE!s(C)

Step IV. For eaeh U E obC, define the functor Eu : RC(U) - mod --+ RC-mod
by

EU (1\1) = ]\1 (9 RC(?, ??)
RC(U)

This induces a fune tor P(RC (U )) --+ P (RC ) and a homomorphism ]{n ( Eu)
]\.-n (RC (U)) --+ 1\.-n ( RC) and henee a homomorphism

Ell (RC) = el\.-n(Eu) : EB_I( n(RC(U)) --+ ](n(RC)
UEJsC

that is, a homomorphislTI



Step V: For any U E ob (C), define a functor Sv :Re - mod -+ RC(U) - luod
by Su(lvI) = 111Q?)B for the RC - RC(U) bimodule B given by B( ..Y, Y) = RC( ..Y, Y)

RC
if Y E U and B(..Y, Y) = {O} if y~ f/. U, where )( runs through ob C(U), and y~ E

ob(C). Then each Sv induces a homomorphism !(n(SU) : !(n(RC) -+ j(n(RC(U))
and hence a homomorphism

Sn(RC) : !(n(RC) -+ E9 j(n(RC(U))
UEI,,(C)

l.e.

Step VI:
En(RC) : !(n(RC) -+ E9 j(nRC(U)

UE!,<j(C)

and
Sn(RC): E9 !(n(RC(U)) -+ j(n(RC)

UEJ,<j(C)

are isomorphisms, one the inverse of the other.
Step VII:

!(n (RC( U)) ::: !(n (R( Aut( ..Y)))

(for any ..Y E U), via the equivalence of categories Aut( ..Y)' -+ C(U) where for
any group 7f, 7f' is the groupoid with one object 7T" and morphisms left translations
19 : 7f Y ?T : h '-t 9h. 0

\\Te also reed the following

Theorem 2.3. Let C he a finite E! - category, R the ring of integers in a number
field F. Then for any C- abject ..X", j(n(R(AuLY)) is finitely generated A.belian
group for all 71. ~ l.

Proof. vVrite A for R(Aut(x)) and put !(n,m(A) := 7fn(BC;L~(A)). Then j(n(A) =
lim !(n,m(A). Now, BE;i(A) is the universal covering space of BGL~(A) (since

m-foCO

BE(A) is the coverig space of BGL(A) with respect to the subgroup E(A) of GL(A)
generated by elementary lnatrices):

So
7fn(BE~(A)) ::: ?Tn(BGL~(A))

Now, by the stability result of Suslin (see [19]), !(n,m(A) ::: !(n,m+l(A) if 'm ~

(271. + 2, n + 3) since A as an R- order satisfies the stable range condition SR3 (see
[1]). So j(n(A) ::: 7fn(BE~(A)) for m, ~ (271.+2, n+3). Now, for ln 2: 3, Em(A) is an
Ari thmetic group since S L n ( A )/ E n ( A) is a fini te graup. Hence by Borel-Serre, [6],
H n (Em(A)) is finitely generateel. Now, for all m ~ 2 H n(Em(A) = Hn(BEm(A)) =
H n (BE;;; (A)) by Quillcn 's plus construction since B E m(A) -+ BE;!; (A) is acyclic.
rvloreover: BE~ (..4) is a sinlply connectcd H - space for nl 2: 3. Also by [18] 9.6.16,
7T" n (BE;;; (..4)) is finitely generatcd if anel only if H 11 (BE~ (A)) is fini tely generated.
Hence j{n(A) ::: 7rn(BE~(A.)) 1S finitely generated. 0



Proof of 2.1.
(i) follows from 2.2 and 2.3 since I{n(RC) is a finite direct sum of finitely generated

groups !\n(RAut(..Y)) ..\ E Is(C).
(ii) First note that we have the following commutative diagram with exact rows:

0---4

0---4

SKn(RC) Kn(RC) h"n (FC)

1Q 1~ 1~

EB S K n (RA u t (X) ) EB K n (R(Aut(X))) EB h"n(FAut(X))
XEI~C XE/~C XEI~(C)

Now by [13], 3.2, SI\n(R(Aut( ..Y))) is a finite group. Hence EB SI{n(RAut(){))
XEIsC

being a direct sum of fini te groups is finite. That S!(n (RC) is finite now follows
from the fact that a is injective.

Remarks 2.4. Let 1f be a fini te group and C = orb(1T) the orbit category of 1T (see
E.g 1.1[1]).

It is weil known that there is one-one correspondence between I s(C) and the
conjugacy classes con(7f) of 1f , i.e. 1f/, :::: 1f /,', if f is conjugate to ,'. It is also
well-known that C( 7r / f' 1f / " ~ Aut( Tr / f) = lVrr(,) /, := lVrr'"'l where N rr, is the
normaliser cf , in 7r.

So, for any commutative ring R with identi ty, !{n(R orb(7f)) = EB !{n RNrr (,).
,Econ( rr)
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§3

Gn(RC), SGn(RC)

The aim of this section is to prove the following

Theorem 3.1. Let R be tl1e ring of integers in a number fieid F, C a finite EI
category. Tllen for all n 2: 1

(i) Gn(RC) is a finitely generated A.belian grollp
(ii) SGn(RC) = O.

The proof of 2.1 depends on the following splitting result for G n of RC.

Theorenl 3.2. Let R be a commutative lVoetherian ring lvitll identity, C any finite
EI- category. Tllen for all n 2: 1

Gn(RC) ~ EB Gn(R(Aut(.7<))).
XE/s(C)

Proof. Vve sketch the proof of 2.2 and refer the reader to [16] for luissing details.
Step I: For each )( E ob C, deHne Resx : RC-mod -r (RAut( ..:\")) -lllOd

Resx (1'vI) = 2\11(..Y). Then an RC- liodule J11 is fini tely generated iff ResX (1\1) is
finitely generated for all .7<in ob C (see [16]).

Nloreover, Resx induces an exact functor M(RC) -r M{R(Aut(X))) which also
induces for all n 2: 0 homomorphislns Gn{RC) -r Gn(R(Aut(.X))) aud heuce ho
momorphism Res: Gn(RC) -r EB Gn(R{Aut( ...Y))). \\Te write splitGn(RC) for

XE/s(C)

EB Gn (R(.4ut( ...Y))).
XE/sC

Step 11: For){ E ob C, define a fllnctor Ix : R(Aut( ...Y)) -r RC by

Then we have an induced hOIllomorphislll

I: splitGn(RC) = EB Gn{R{Aut(.Y))) -r C;n{RC).
XElsC

Step 111: Res and I are isomorphisIlls inverse to each other. D

Theorem 3.3. Let R be t}le ring of integers in a number fieid F, C a finite EI
category. Tllen for any }{ E ob C Clnd all n ;:: 1 Gn{R(Aut(.Y))) is a finiteiy
generated Abelian group.

Proof. \Ve proviele a sketch of proof here. Details can be fonnd in Kuku [10].
Pnt 1\ = R(.4.ut{.Y)) anel note that 1\ is an R- order in the selui-simple F- algebra

F(Aut{.Y)). Let f be a InaxiInal order containing 1\1 anel let On : C;n(f) -r Gn (/\)

be thc hOluomorphislu indnccd by the functor M(r) -r M(I\) given by restriction



of scalors. As proved in [10] 1.3 (i) and (iii) for all n 2:: 1 (a) Q2n-1 : G2n - 1(r) -+
G2n - 1(A) has finite kernel and cokernel (b) Q2n : G2n (f) -+ G2n (A) is injective
with finite cokernel. The conclusion that Gn(l\) is finitely generated follows as in
the proof of [10]1.3 (iii). 0

Proo/ 0/ 3.1.
(i) Follows from 3.2 and 3.3 since split Gn(RC) as a finite direct surn of finitely

generated Abelian groups is finitely generated.
(ii) First note that the following diagram is commutative with exact rows:

0--4

0--...,.

SGn (Re) Gn(RC) Gn(FC)

1° 1~ß 1~i
EB SGn (Aut(X)) EB G n (RAut(X)) EB Gn(F(AutX))

XEl3C XEl3C XEl4C

Since ß is an isomorphism, a is injective. Now each SGn(RAut(X)) = 0 by [15]
theorem 1. Hence SGn(RC) = O.



§4

CARTAN MAPS

Let R be a commutative Noetherian ring, C an EI- category. Then, for all
n 2: 0, the indusion functor P(RC) ~ M(RC) induces ahomomorphism1{n(RC) ~
Gn(RC) called Cartan maps.

The aim of this section is to prove the following

Theorem 4.1. Let k be a field of characteristic p, C a finite EI - category. Then
for all n ~ 0, the Cartan bomomorphism 1(n(kC) ~ Gn(kC) induce isomorpbism

Proof. By 2.2

1(n (kC) s:: EB I{n (kAut(.Y))
XEI~(C)

and by 3.2 Gn(kC) ~ E9 Gn(kAut( ..Y)). Now it was proved by Dress/Kuku (see
XEI8C

[7J) via the theory of :Nlackey functors that for any finite group Jr the Cartan map
](n ( kJr) ~ Gn ( k'rr) induces an isolllorphism

z G) Q9Kn(k1r) ~Z G) Q9Gn(k1r)

Hence Z (*) ® Kn(kAut( ..\'")) ~ Z (*) ® Gn(k(Aut(..Y"))) for all .Y E ob(C).

Hence

z G) Q9 Kn(kC) ~ Z G) Q9(_EB Kn(kAut(X)))
XE/sC

~ _EB (ZG)Q9I,n(kAut(X»)) ~ _EB (zG)Q9G,,(kAutX))
XE/s(C) XEhC

~ Z G) Q9(_EB Gn(kAut(X)))
XE[~C

~ Z G) Q9 G,,(kC).

Corollary 4.2. Let R be tl1e ring of integers in a number field F, In a prime ideal
of R lying over a rational prime p. Then for all n 2:: 1

(a) the Cartan lnap ](n((R/nl)C) ~ Gn((Rll11)C) is surjective
(b) I\."2n(R/ln)C) is a finite p- grau]).

Proof. Since In lies above a rational prime p, R/l11 is a finite field of character
istic p. Hencc by 4.1, !(n((R/ln)C) ~ C:n ((R/ln)C) is an isolllorphisll1 luod p

torsion for all n. 2: 0. Now GH ((R/lll)C) ~ E9 C;n((R/lll)Aui..Y) by 3.2. Also
XEI~C
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Gn((Rjnl)(Aut(){)) is a finite group since ((Rjnl)Aut(){)) is a finite ring. ( G n of
a finite ring is finite see[8]). So Gn((Rjm)C) is a finite group.

Also G2n ((Rjm)C) = E9 G2n ((Rjm)Aut( ..Y)) = 0 since each G2n ((Rjm)Aut(.Y)) =
XEIsC

osee [8]). So, Coker a2n = 0 i.e. 0'2n is surjective.
Now each G2n - 1 ((Rjln)Aut(.Y)) has order relatively prime to p by (10]1.1.

Hence GZn - 1((Rjm)C) is finite of order relatively prime to p. Now ICoker O'zn-11 is
apower of p and devides IGZn- 1((Rjln)tr) which is == Imocl(p) anel this is possible
if and only if Coker a2n-l = O. Hence Coker an = 0 Vn 2:: 1. i.e. an is surjective
\:In 2:: 1.

(ii) SinceGzn((Rjm)C) = 0, wehave!(eraz n = ]\Zn((Rjnl)C). Now, ](zn((Rjm)C) ~
EB ]\2n((Rjln)Aut(.Y)) is a finite group, since each ((Rjln)Aut(.Y)) is a finite

XEIsC
ring anel ]{n of a finite ring is finite by [13] .1.1. So Ker QZn = ](2n (Rj m )C) is a
finite p- group.
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§5

PAIRINGS and module STRUCTURES

5.1. Let C, [1, [2 be three exact categories and EI X [2 the product category. An
exact pairing EI X [2 -t & : (]vI1 , 1\12 ) -t 1\1} 0 1\12 is a eovariant functor from
[1 X &2 to & such that &1 x &2 ((1111, .NI2 ), (lvIf, 1\1~)) = E} (lVII, 1\1{) x [2 (AtI2 , AtI~) -t
&(Al'} 01\12 , lVf{ 0 j\;f~) is bi-additive and bi-exact, that is for a fixed NI2 , the functor
Cl -t [, given by 1\11 I-t 1\11 01112 is additive and exact and for fixed lvII, the functor
&2 -t [. : 1112 -t 1\;11 0 11;[2 is additive and exact. It follows from [21], that such a
pairing gives rise to a ](-theoretic cup product ]ti([j) x !tj(C2) -t [(i+j([.), and in
particular to natural pairing ]\'·0 (EI ) 0 1(n ( [2) -t !(n ( [.) whieh eould be defined as
follows:

Any object 1111 E & induces an exact functor All : C2 -t & : 1\12 --+ ]1,111 0 1\112
and hence a map ](n(Jvld : !(n(E2 ) --+ [\n(&). If Al{ --+ 1111 -t Ai;' is an exact
sequence in EI, then we have an exact sequence of exact functors NI; -t !vI; -t
lvI;'* from &2 to E such that for each object A12 E [2, the sequence Atl{(lvJ2 ) -t
1'11*(A12 ) --+ 1'1{'* (A12 ) is exact in [ and heuee by a result of Quillen (1 7], induces
the relation ](n(!vI{*) + 1tn(l\II{'*) = ](n(A1[). So, the lllap 1111 --+ ](n(A1.) E
Hom(](n(E2 ), ]tn(E)) induces a hOlllomorphism ](o(Ed -t Hom(](n(E), !(n(C)) and
hence a pairing ](0 (Ed x ](n (E) --+ ](n (E). \Ve could obtain a similar pairing
]\n(Ed x 1(0([2) -t ]\n(E).

If EI = [2 = [. and the pairing E xE is naturally associative (and eommutative)
then the associated pairing ](o(E) x 1\.~o(&) -t ](o(E) turns l\:o(E) into an associative
(and commutative ring which may not contain the identity). 5uppose that there
is a pairing E 0 EI --+ EI which is naturally associative with respect to the pairing
& 0 E -t [, then the pairing ](o(E) x ](n(Ed --+ ](n(Ed turns 1(n(E.) into a ](o(E)
-module which may or may not be unitary. However, if E contains a natural unit
i.e. an object E s.t. E 0 Ai = 111 0 E are naturally isomorphie to 1'1 for each [
-object lvI, then the pairing 1\.-o(E) x ](n(Cd --+ 1(n(E1 ) turns 1\.·n([,d into a unitary
](o(E) -module.

5.2. vVe no\v apply the above to the following situation. Let R be a commutative
ring with identity, C a finite EI-category.

(i) Let E = P R(RC) be the category of finitely generated RC -ITIodules such
that for all ..Y E ob(C). IvI(.Y) is projective as an R-nloclule. So, P R(RC) is
an exact category 011 which \ve have a pairing

(1)

(2)

If \ve take EI = P(RC), then the pairing

o :P n(RC) x P(RC) --+ P(RC)

is naturally associative with respect to the pai ring (I) and so ]\.-n ( RC) isa
unitary (!(o(P R(RC)) = Go(R, C) -module. Also, C;n(R, C) is a C;o(R, C)
-ITIodule.
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5.3. Let C be a finite EI -category and Z(Is(C)) the free Abelian group on I s(C).
Note that Z(Is(C)) = EB Z. If Z(I,,(C)) is the ring of Z-valued functions on IsC, we

18(C)

ean identify each element of Z (I s (C)) as a function I s(C) -+ Z via an injective map
ß : Z(Is(C)) -t Z(I8(C)) given by ß(X)(}~) = IC(Y, ..Y)I for X, Y E obC. Moreover
ß identifies Z(Is(C)) as a subring of Z(I,,(Z)). Call Z(Is(C)) the Burnside ring of
C and denote this ring by fl(C). Note that if C = orb(7r), 7r a finite group, then
Z(Is(C)) is the well-known Burnside ring of 7r which is denoted by fl(7l'").

4.4. If R is a commutative ring with identity and C a finite EI -category, let F(RC)
be the category of finitely generated free RC -modules. Then for aH n 2:: 1, the
inclusion functor F(RC) -+ P(RC) induces an isomorphism I\n(F(RC)) ~ ]\n(RC)
and I(o(F(RC)) ~ Z(]sC) see [16] 10.42. Now by the discussion in 4.1, the pairing
I\o(F(RC)) x ]\n(P(RC)) -+ ]\n(P(RC)) makes l\~n(RC) a unitary module over the
Burnside ring Z(Is(C)) ~ ](o(F(RC)).
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