Higher K-Theory of Modules Over EI-Categories

Aderemi O. Kuku

.

University of Ibadan Mathematics Department Ibadan

Nigeria

•

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 53225 Bonn

Germany

.

HIGHER K-THEORY OF MODULES OVER EI-CATEGORIES

Aderemi O. Kuku

Introduction

Let C be an EI- category (i.e. a small category in which every endomorphism is an isomorphism), R a commutative ring with dentity. An RC- module is a contravariant functor from C to the category of R-modules. For all $n \ge 0$, let $K_n(RC)$ be the (Quillen) K_n of the category $\mathbf{P}(RC)$ of finitely generated projective RC- modules (see §1 for definitions).

The significance of the study of K- theory of RC- modules lies mainly in the fact that several geometric invariants take values in the K- groups associated with RC where C is an appropriately defined EI- category and R could be $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, etc. For example, if π is a finite group, $C = \operatorname{orb}(\pi)$ the orbit category of π , (a finite EI-category), $X \ a \pi - CW$ complex with round structure, then the equivariant Reidemester torsion takes values in $Wh(\mathbb{Q}\operatorname{orb}(\pi))$ where $Wh(\mathbb{Q}\operatorname{orb}(\pi))$ is the quotient of $K_1(\mathbb{Q}\operatorname{orb}(\pi))$ by its subgroup of "trivial units"-see [16].

Now, let \mathcal{C} be a finite EI- category, R the ring of integers in a number field F. We show in §2 that for all $n \geq 0$, $K_n(R\mathcal{C})$ is a finitely generated Abelian group and that $SK_n(R\mathcal{C})$ is a finite group, while in §3 we show that for all $n \geq 1$, $G_n(R\mathcal{C}) = K_n$ of the category of finitely generated $R\mathcal{C}$ - modules is a finitely generated Abelian group and that $SG_n(R\mathcal{C}) = 0$.

In §3 we consider Cartan maps and show that if k is a field of characteristic p, and C a finite EI- category, then for all $n \ge 0$, the Cartan map $K_n(k\mathcal{C}) \to G_n(k\mathcal{C})$ induces an isomorphism

$$\mathbb{Z}\left(\frac{1}{p}\right)\otimes K_n(k\,\mathcal{C})\simeq \mathbb{Z}\left(\frac{1}{p}\right)\otimes G_n(k\,\mathcal{C}).$$

We then discuss some consequences of this result for integers in number fields.

In a final section, we discuss module structures on $K_n(R\mathcal{C})$, $G_n(R\mathcal{C})$ as modules over $G_o(R, \mathcal{C}) := K_o$ of the the category $\mathbf{P}_R(R\mathcal{C})$ of finitely generated $R\mathcal{C}$ -modules M such that M(X) is a projective R-module for all $X \in \operatorname{orb} \mathcal{C}$) as well as modules over the Burnside ring of \mathcal{C} (see §5).

Notes on Notation. For a finite group π , we write $con(\pi)$ for the set of conjugacy classes of π and $\overline{\gamma}$ for the conjugacy class of γ if $\gamma \leq \pi$. If \mathcal{C} is a category, $X, Y \mathcal{C}$ -objects, we write $\mathcal{C}(X, Y)$ for the set of \mathcal{C} - morphisms from X to Y, and $Is(\mathcal{C})$ for the set of isomorphism classes of \mathcal{C} - objects.

If R is a commutative ring with identity, then for any set S, we write RS for the free R- module on S. In particular, we write RC(X,Y) for the free R- module on the set C(X,Y),

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}\text{-}T_{E}X$

For any exact category \mathcal{E} , we write $K_n(\mathcal{E})$ for $\pi_{n+1}(BQ\mathcal{E})$ (see [17]). If A is a ring with identity, we write $\mathbf{P}(A)$ for the category of finitely generated projective A-modules. If A is Noetherian, we write $\mathbf{M}(A)$ for the category of finitely generated A-modules. We denote $K_n(\mathbf{P}(A)$ by $K_n(A)$, $K_n(\mathbf{M}(A))$ by $G_n(A)$. Also $K_n(A) = \pi_n(BCL^+(A))$ in the notation of the plus construction of Quillen (see [4]).

Modules over *EI*-categories

In this section, we briefly discuss modules over EI- categories and the associated K- theories, thus developing some necessary notations.

Definition 1.1. An *EI*-category C is a small category in which every endomorphism is an isomorphism. C is said to be finite if the set Is(C) of isomorphism classes of C-objects is finite and for any two C- objects X, Y, the set C(X, Y) of C-morphism from X to Y is finite

Examples.

- (i) Let π be a finite group. Let obC = {π/γ|γ ≤ π} and morphisms be π- maps. Then C is a finite EI-category called the orbit category of π and denoted orb (π). Here C(π/γ, π/γ) ≃ Aut(π/γ) ≈ N_π(γ)/γ where N_π(γ) is the normaliser of γ in π. (see [12]). We shall denote the group N_π(γ)/γ by N_π(γ).
- (ii) Suppose that π be a Lie group. $obC = \{\pi/\gamma | \gamma \text{ compact subgroup of } \pi\}$ is also called the orbit category of π and denoted orb (π) .
- (iii) Let π be a Lie group. Let $ob\mathcal{C} = \{\pi/\gamma | \gamma \text{ compact subgroup of } \pi\}$ and for $\pi/\gamma, \pi/\gamma' \in ob\mathcal{C}$, let $\mathcal{C}(\pi/\gamma, \pi/\gamma')$ be the set of homotopy classes of π maps. Then \mathcal{C} is an *EI* category called the discrete orbit category of π and denoted by orb $/(\pi)$.

Note. For further examples, see [16].

1.2.

Let R be a commutative ring with identity, C an EI-category. An RC- module as a contravariant functor $\mathcal{C} \to R - \text{mod}$

An obC- set is a functor N from C to the category of sets. Alternatively, an obCset could be visualized as a pair (N,β) where N is a set and $\beta: N \to \text{ob } C$ is a set map. Then $N = \{\beta^{-1}(X) | X \in \text{ob } C\}$.

An ob C- set (N,β) is said to be finite if N is a finite set. If S is an (N,β) subset of an RC- module M, define spanS as the smallest RC- submodule of Mcontaining S. Say that M is finitely generated if M = span S for some finite ob Csubset S of M.

If R is a Noetherian ring and C a finite EI-category, let M(RC) be the category of finitely generated RC- modules. Then M(RC) is an exact category in the sense of Quillen [17], see [16].

An RC- module P is said to be projective if any exact sequence of RC- modules $0 \to M' \to M \to P \to 0$ splits or equivalently if Hom $_{RC}(P, -)$ is exact.

Let $\mathbf{P}(R\mathcal{C})$ be the category of finitely generated projective $R\mathcal{C}$ - modules. Then $\mathbf{P}(R\mathcal{C})$ is also exact. We write $K_n(R\mathcal{C})$ for $K_n(\mathbf{P}(R\mathcal{C}))$.

Finally, let R be a commutative ring with identity, C a finite EI- category, $\mathbf{P}_R(RC)$ the category of finitely generated RC- modules such that for each $X \in$ ob C, M(X) is projective as R- module. Then $\mathbf{P}_R(RC)$ is an exact category and we write $G_n(R, C)$ for $K_n(\mathbf{P}_R(RC))$. Note that if R is regular, then $G_n(R, C) \cong G_n(RC)$.

1.3.

Let C_1, C_2 be EI- categories, R a commutative ring with identity, B a functor $C_1 \rightarrow C_2$. Let $RC_2(??, B(?))$ be the $RC_1 - RC_2$ - bimodule: $C_1 \times C_2 \rightarrow R$ - mod given by $(X_1, X_2) \rightarrow RC_2(X_2, BX_1)$. Define $RC_2 - RC_1$ bimodule analogously. Now define induction functor $\operatorname{ind}_B : C_1 - \operatorname{mod} \rightarrow RC_2 - \operatorname{mod}$ given by $M \rightarrow M \bigotimes_{\substack{RC_1 \\ RC_1}} RC_2(??, B(?))$

Also define a restriction functor $\operatorname{res}_B : R\mathcal{C}_2 - \operatorname{mod} \to R\mathcal{C}_1 - \operatorname{mod}$ by $N \to N \circ B$.

1.4.

A homomorphism $R_1 \to R_2$ of commutative rings with identity induces a functor $B: R_1 - \text{mod} \to R_2 - \text{mod}: N \to R_2 \bigotimes_{R_1} N$. So, if \mathcal{C} is an *EI*-category, we have an induced functor $R_1\mathcal{C} - \text{mod} \to R_2\mathcal{C} - \text{mod}: M \to B \circ M$ where $(B \cdot M)(X) = B(M(X))$.

We also have an induced exact functor $\mathbf{P}(R_1\mathcal{C}) \to \mathbf{P}_2(R_2\mathcal{C}) : M \to B \circ M$ and hence a homomorphism $K_n(R_1\mathcal{C}) \to K_n(R_2\mathcal{C})$.

Now, suppose that R is a Dedekind domain with quotient fields F, and $R \hookrightarrow F$ the inclusion map, it follows from above that we have group homomorphisms $K_n(R\mathcal{C}) \to K_n(F\mathcal{C})$ and $G_n(R\mathcal{C}) \to G_n(F\mathcal{C})$.

Now define $SK_n(R\mathcal{C}) :=$ Kernel of $K_n(R\mathcal{C}) \to K_n(F\mathcal{C})$ and $SG_n(R\mathcal{C}) :=$ Kernel of $G_n(R\mathcal{C}) \to G_n(F\mathcal{C})$.

$$K_n(R\mathcal{C}), SK_n(R\mathcal{C})$$

The aim of this section is to prove the following:

Theorem 2.1.

Let R be the ring of integers in a number field F, C any finite EI- category. Then for all $n \ge 1$,

(i) $K_n(RC)$ is a finitely generated Abelian group.

(ii) $SK_n(RC)$ is a finite group.

The proof of 2.1 will depend on the following splitting result

Theorem 2.2.

Let R be a commutative ring with identity, C a finite EI- category. Then

$$K_n(R\mathcal{C}) \cong \bigoplus_{\overline{X} \in Is(\mathcal{C})} K_n(R(Aut(X)))$$

Proof.

We give a sketch of the proof of 2.2. Details can be found in [16].

Step I: For $X \in ob\mathcal{C}$, define the "splitting functor" $S_X : R\mathcal{C} - \mathbf{mod} \to R(Aut(X)) - \mathbf{mod}$ by $S_X(M) = M(X)/M'(X)$ where M'(X) is the *R*- submodule of M(X) generated by the images of the *R*- homomorphisms $M(f) : M(Y) \to M(X)$ induced by all non-isomorphisms $f : X \to Y$.

Step II: Define the 'extension functor' $E_X : R(Aut(X)) - \mathbf{mod} \to R\mathcal{C} - \mathbf{mod}$ by

$$(E_X(M) = M \bigotimes_{RAut(X)} RC(?, X)$$

Step III. For $\overline{U} \in Is(\mathcal{C})$, the objects $X \in \overline{U}$ constitute a full subcategory of \mathcal{C} which we denote by $\mathcal{C}(U)$. Now define

$$\operatorname{split} K_n(R\mathcal{C}) := \bigoplus_{\overline{U} \in I_S(\mathcal{C})} K_n(R\mathcal{C}(U))$$

Step IV. For each $U \in ob\mathcal{C}$, define the functor $\hat{E}_U : R\mathcal{C}(U) - \mathbf{mod} \to R\mathcal{C}\text{-mod}$ by

$$\hat{E}_U(M) = M \bigotimes_{R\mathcal{C}(U)} R\mathcal{C}(?,??)$$

This induces a functor $\mathbf{P}(R\mathcal{C}(U)) \to \mathbf{P}(R\mathcal{C})$ and a homomorphism $K_n(\hat{E}_U)$: $K_n(R\mathcal{C}(U)) \to K_n(R\mathcal{C})$ and hence a homomorphism

$$E_n(R\mathcal{C}) = \bigoplus K_n(\hat{E}_U) : \bigoplus_{\overline{U} \in Is\mathcal{C}} K_n(R\mathcal{C}(U)) \to K_n(R\mathcal{C})$$

that is, a homomorphism

$$E_n(R\mathcal{C})$$
 : split $K_n(R\mathcal{C}) \to K_n(R\mathcal{C})$

Step V: For any $U \in ob(\mathcal{C})$, define a functor $\hat{S}_U : R\mathcal{C} - \mathbf{mod} \to R\mathcal{C}(U) - \mathbf{mod}$ by $\hat{S}_U(M) = M \bigotimes_{R\mathcal{C}} B$ for the $R\mathcal{C} - R\mathcal{C}(U)$ bimodule B given by $B(X, Y) = R\mathcal{C}(X, Y)$ if $Y \in \overline{U}$ and $B(X, Y) = \{0\}$ if $Y \notin \overline{U}$, where X runs through $ob(\mathcal{C})$, and $Y \in ob(\mathcal{C})$. Then each \hat{S}_U induces a homomorphism $K_n(\hat{S}_U) : K_n(R\mathcal{C}) \to K_n(R\mathcal{C}(U))$ and hence a homomorphism

$$S_n(R\mathcal{C}): K_n(R\mathcal{C}) \to \bigoplus_{\overline{U} \in I_{\mathcal{S}}(\mathcal{C})} K_n(R\mathcal{C}(U))$$

i.e.

$$S_n(R\mathcal{C}): K_n(R\mathcal{C}) \to \operatorname{split} K_n(R\mathcal{C}).$$

Step VI:

$$E_n(R\mathcal{C}): K_n(R\mathcal{C}) \to \bigoplus_{\overline{U} \in Is(\mathcal{C})} K_nR\mathcal{C}(U)$$

and

$$S_n(R\mathcal{C}): \bigoplus_{\overline{U} \in I_s(\mathcal{C})} K_n(R\mathcal{C}(U)) \to K_n(R\mathcal{C})$$

are isomorphisms, one the inverse of the other.

Step VII:

 $K_n(R\mathcal{C}(U)) \simeq K_n(R(Aut(X)))$

(for any $X \in \overline{U}$), via the equivalence of categories $Aut(X)' \to C(U)$ where for any group π, π' is the groupoid with one object π and morphisms left translations $\lg: \pi \hookrightarrow \pi: h \hookrightarrow gh$. \Box

We also reed the following

Theorem 2.3. Let C be a finite EI- category, R the ring of integers in a number field F. Then for any C- object $X, K_n(R(AutX))$ is finitely generated Abelian group for all $n \ge 1$.

Proof. Write A for R(Aut(x)) and put $K_{n,m}(A) := \pi_n(BGL_m^+(A))$. Then $K_n(A) = \lim_{m \to \infty} K_{n,m}(A)$. Now, $BE_n^+(A)$ is the universal covering space of $BGL_m^+(A)$ (since BE(A) is the covering space of BGL(A) with respect to the subgroup E(A) of GL(A) generated by elementary matrices):

So

$$\pi_n(BE_m^+(A)) \simeq \pi_n(BGL_m^+(A))$$

Now, by the stability result of Suslin (see [19]), $K_{n,m}(A) \simeq K_{n,m+1}(A)$ if $m \ge (2n+2, n+3)$ since A as an R- order satisfies the stable range condition SR_3 (see [1]). So $K_n(A) \simeq \pi_n(BE_m^+(A))$ for $m \ge (2n+2, n+3)$. Now, for $m \ge 3$, $E_m(A)$ is an Arithmetic group since $SL_n(A)/E_n(A)$ is a finite group. Hence by Borel-Serre, [6], $H_n(E_m(A))$ is finitely generated. Now, for all $m \ge 2 H_n(E_m(A) = H_n(BE_m(A)) = H_n(BE_m^+(A))$ by Quillen's plus construction since $BE_m(A) \to BE_m^+(A)$ is acyclic. Moreover, $BE_m^+(A)$ is a simply connected H- space for $m \ge 3$. Also by [18] 9.6.16, $\pi_n(BE_m^+(A))$ is finitely generated if and only if $H_n(BE_m^+(A))$ is finitely generated. \Box

Proof of 2.1.

- (i) follows from 2.2 and 2.3 since $K_n(R\mathcal{C})$ is a finite direct sum of finitely generated groups $K_n(RAut(X)) \overline{X} \in Is(\mathcal{C})$.
- (ii) First note that we have the following commutative diagram with exact rows:

Now by [13], 3.2, $SK_n(R(Aut(X)))$ is a finite group. Hence $\bigoplus_{\overline{X} \in IsC} SK_n(RAut(X))$ being a direct sum of finite groups is finite. That $SK_n(RC)$ is finite now follows

from the fact that α is injective.

Remarks 2.4. Let π be a finite group and $\mathcal{C} = \operatorname{orb}(\pi)$ the orbit category of π (see E.g 1.1[1]).

It is well known that there is one-one correspondence between $Is(\mathcal{C})$ and the conjugacy classes $con(\pi)$ of π , i.e. $\pi/\gamma \simeq \pi/\gamma'$, if γ is conjugate to γ' . It is also well-known that $\mathcal{C}(\pi/\gamma, \pi/\gamma' = Aut(\pi/\gamma) = N_{\pi}(\gamma)/\gamma := \overline{N_{\pi}\gamma}$ where $N_{\pi}\gamma$ is the normaliser of γ in π .

So, for any commutative ring R with identity, $K_n(R \operatorname{orb}(\pi)) = \bigoplus_{\gamma \in con(\pi)} K_n R \overline{N_{\pi}(\gamma)}.$

 $G_n(R\mathcal{C}), SG_n(R\mathcal{C})$

The aim of this section is to prove the following

Theorem 3.1. Let R be the ring of integers in a number field F, C a finite EIcategory. Then for all $n \ge 1$

(i) $G_n(RC)$ is a finitely generated Abelian group

(ii) $SG_n(R\mathcal{C}) = 0.$

The proof of 2.1 depends on the following splitting result for G_n of RC.

Theorem 3.2. Let R be a commutative Noetherian ring with identity, C any finite EI- category. Then for all $n \ge 1$

$$G_n(R\mathcal{C}) \cong \bigoplus_{\overline{X} \in I_s(\mathcal{C})} G_n(R(Aut(X))).$$

Proof. We sketch the proof of 2.2 and refer the reader to [16] for missing details.

Step I: For each $X \in ob \mathcal{C}$, define $Res_X : R\mathcal{C}\text{-mod} \to (RAut(X)) \text{-mod} Res_X(M) = M(X)$. Then an $R\mathcal{C}$ - module M is finitely generated iff $Res_X(M)$ is finitely generated for all X in ob \mathcal{C} (see [16]).

Moreover, Res_X induces an exact functor $\mathbf{M}(R\mathcal{C}) \to \mathbf{M}(R(Aut(X)))$ which also induces for all $n \geq 0$ homomorphisms $G_n(R\mathcal{C}) \to G_n(R(Aut(X)))$ and hence homomorphism $Res: G_n(R\mathcal{C}) \to \bigoplus_{\overline{X} \in Is(\mathcal{C})} G_n(R(Aut(X)))$. We write split $G_n(R\mathcal{C})$ for

 $\bigoplus_{\overline{X} \in IsC} G_n(R(Aut(X))).$

Step II: For $X \in ob \mathcal{C}$, define a functor $I_X : R(Aut(X)) \to R\mathcal{C}$ by

$$I_X(M) = \begin{cases} M \bigotimes_{RAut(X)} R\mathcal{C}(Y,X) & \text{if } \overline{Y} = \overline{X} \\ 0 & \text{if } \overline{Y} \neq \overline{X} \end{cases}$$

Then we have an induced homomorphism

$$I: \operatorname{split} G_n(R\mathcal{C}) = \bigoplus_{\overline{X} \in Is\mathcal{C}} G_n(R(Aut(X))) \to G_n(R\mathcal{C}).$$

Step III: Res and I are isomorphisms inverse to each other. \Box

Theorem 3.3. Let R be the ring of integers in a number field F, C a finite EIcategory. Then for any $X \in ob C$ and all $n \geq 1$ $G_n(R(Aut(X)))$ is a finitely generated Abelian group.

Proof. We provide a sketch of proof here. Details can be found in Kuku [10].

Put $\wedge = R(Aut(X))$ and note that \wedge is an R- order in the semi-simple F- algebra F(Aut(X)). Let Γ be a maximal order containing \wedge , and let $\alpha_n : G_n(\Gamma) \to G_n(\wedge)$ be the homomorphism induced by the functor $\mathbf{M}(\Gamma) \to \mathbf{M}(\wedge)$ given by restriction

of scalors. As proved in [10] 1.3 (i) and (iii) for all $n \ge 1$ (a) $\alpha_{2n-1} : G_{2n-1}(\Gamma) \rightarrow G_{2n-1}(\Lambda)$ has finite kernel and cokernel (b) $\alpha_{2n} : G_{2n}(\Gamma) \rightarrow G_{2n}(\Lambda)$ is injective with finite cokernel. The conclusion that $G_n(\Lambda)$ is finitely generated follows as in the proof of [10]1.3 (iii). \Box

Proof of 3.1.

- (i) Follows from 3.2 and 3.3 since split $G_n(RC)$ as a finite direct sum of finitely generated Abelian groups is finitely generated.
- (ii) First note that the following diagram is commutative with exact rows:

Since β is an isomorphism, α is injective. Now each $SG_n(RAut(X)) = 0$ by [15] theorem 1. Hence $SG_n(RC) = 0$.

CARTAN MAPS

Let R be a commutative Noetherian ring, C an EI- category. Then, for all $n \geq 0$, the inclusion functor $\mathbf{P}(RC) \rightarrow \mathbf{M}(RC)$ induces a homomorphism $K_n(RC) \rightarrow G_n(RC)$ called Cartan maps.

The aim of this section is to prove the following

Theorem 4.1. Let k be a field of characteristic p, C a finite EI- category. Then for all $n \ge 0$, the Cartan homomorphism $K_n(k\mathcal{C}) \to G_n(k\mathcal{C})$ induce isomorphism

$$\mathbb{Z}\left(\frac{1}{p}\right)\otimes K_n(k\mathcal{C})\cong \mathbb{Z}\left(\frac{1}{p}\right)\otimes G_n(k\mathcal{C})$$

Proof. By 2.2

$$K_n(k\mathcal{C}) \cong \bigoplus_{\overline{X} \in Is(\mathcal{C})} K_n(kAut(X))$$

and by 3.2 $G_n(k\mathcal{C}) \cong \bigoplus_{\overline{X} \in IsC} G_n(kAut(X))$. Now it was proved by Dress/Kuku (see

[7]) via the theory of Mackey functors that for any finite group π the Cartan map $K_n(k\pi) \to G_n(k\pi)$ induces an isomorphism

$$\mathbb{Z}\left(\frac{1}{p}\right)\bigotimes K_n(k\pi)\simeq \mathbb{Z}\left(\frac{1}{p}\right)\bigotimes G_n(k\pi).$$

Hence $\mathbb{Z}\left(\frac{1}{p}\right) \bigotimes K_n(kAut(X)) \simeq \mathbb{Z}\left(\frac{1}{p}\right) \bigotimes G_n(k(Aut(X)))$ for all $X \in ob(\mathcal{C})$. Hence

$$\mathbb{Z}\left(\frac{1}{p}\right) \bigotimes K_{n}(k\mathcal{C}) \simeq \mathbb{Z}\left(\frac{1}{p}\right) \bigotimes \left(\bigoplus_{\overline{X} \in Is\mathcal{C}} K_{n}(kAut(X))\right)$$
$$\simeq \bigoplus_{\overline{X} \in Is\mathcal{C}} \left(\mathbb{Z}\left(\frac{1}{p}\right) \bigotimes K_{n}(kAut(X))\right) \simeq \bigoplus_{\overline{X} \in Is\mathcal{C}} \left(\mathbb{Z}\left(\frac{1}{p}\right) \bigotimes G_{n}(kAutX)\right)$$
$$\simeq \mathbb{Z}\left(\frac{1}{p}\right) \bigotimes \left(\bigoplus_{\overline{X} \in Is\mathcal{C}} G_{n}(kAut(X))\right)$$
$$\simeq \mathbb{Z}\left(\frac{1}{p}\right) \bigotimes G_{n}(k\mathcal{C}).$$

Corollary 4.2. Let R be the ring of integers in a number field F, **m** a prime ideal of R lying over a rational prime p. Then for all $n \ge 1$ (a) the Cartan map $K_n((R/m)C) \to G_n((R/m)C)$ is surjective (b) $K_{2n}(R/m)C$) is a finite p- group.

Proof. Since **m** lies above a rational prime $p, R/\mathbf{m}$ is a finite field of characteristic p. Hence by 4.1, $K_n((R/\mathbf{m})\mathcal{C}) \xrightarrow{\alpha_n} G_n((R/\mathbf{m})\mathcal{C})$ is an isomorphism mod ptorsion for all $n \geq 0$. Now $G_n((R/\mathbf{m})\mathcal{C}) \simeq \bigoplus_{\overline{X} \in Is\mathcal{C}} G_n((R/\mathbf{m})AutX)$ by 3.2. Also $G_n((R/m)(Aut(X)))$ is a finite group since ((R/m)Aut(X)) is a finite ring. (G_n of a finite ring is finite see[8]). So $G_n((R/m)C)$ is a finite group.

Also $G_{2n}((R/\mathbf{m})\mathcal{C}) = \bigoplus_{\overline{X}\in I_{s\mathcal{C}}} G_{2n}((R/\mathbf{m})Aut(X)) = 0$ since each $G_{2n}((R/\mathbf{m})Aut(X)) =$

0 see [8]). So, Coker $\alpha_{2n} = 0$ i.e. α_{2n} is surjective.

Now each $G_{2n-1}((R/m)Aut(X))$ has order relatively prime to p by [10]1.1. Hence $G_{2n-1}((R/m)\mathcal{C})$ is finite of order relatively prime to p. Now |Coker α_{2n-1} | is a power of p and devides $|G_{2n-1}((R/m)\pi)|$ which is $\equiv 1 \mod(p)$ and this is possible if and only if Coker $\alpha_{2n-1} = 0$. Hence Coker $\alpha_n = 0 \forall n \ge 1$. i.e. α_n is surjective $\forall n \ge 1$.

(ii) Since $G_{2n}((R/\mathbf{m})\mathcal{C}) = 0$, we have Ker $\alpha_{2n} = K_{2n}((R/\mathbf{m})\mathcal{C})$. Now, $K_{2n}((R/\mathbf{m})\mathcal{C}) \simeq \bigoplus_{\overline{X} \in Is\mathcal{C}} K_{2n}((R/\mathbf{m})Aut(X))$ is a finite group, since each $((R/\mathbf{m})Aut(X))$ is a finite

ring and K_n of a finite ring is finite by [13].1.1. So $\operatorname{Ker} \alpha_{2n} = K_{2n}(R/m)C$ is a finite *p*- group.

PAIRINGS and module STRUCTURES

5.1. Let $\mathcal{E}, \mathcal{E}_1, \mathcal{E}_2$ be three exact categories and $\mathcal{E}_1 \times \mathcal{E}_2$ the product category. An exact pairing $\mathcal{E}_1 \times \mathcal{E}_2 \to \mathcal{E} : (M_1, M_2) \to M_1 \circ M_2$ is a covariant functor from $\mathcal{E}_1 \times \mathcal{E}_2$ to \mathcal{E} such that $\mathcal{E}_1 \times \mathcal{E}_2((M_1, M_2), (M'_1, M'_2)) = \mathcal{E}_1(M_1, M'_1) \times \mathcal{E}_2(M_2, M'_2) \to \mathcal{E}(M_1 \circ M_2, M'_1 \circ M'_2)$ is bi-additive and bi-exact, that is for a fixed M_2 , the functor $\mathcal{E}_1 \to \mathcal{E}$ given by $M_1 \mapsto M_1 \circ M_2$ is additive and exact. It follows from [21], that such a pairing gives rise to a K-theoretic cup product $K_i(\mathcal{E}_j) \times K_j(\mathcal{E}_2) \to K_{i+j}(\mathcal{E})$, and in particular to natural pairing $K_0(\mathcal{E}_1) \circ K_n(\mathcal{E}_2) \to K_n(\mathcal{E})$ which could be defined as follows:

Any object $M_1 \in \mathcal{E}$ induces an exact functor $M_1 : \mathcal{E}_2 \to \mathcal{E} : M_2 \to M_1 \circ M_2$ and hence a map $K_n(M_1) : K_n(\mathcal{E}_2) \to K_n(\mathcal{E})$. If $M'_1 \to M_1 \to M''_1$ is an exact sequence in \mathcal{E}_1 , then we have an exact sequence of exact functors $M'_1 \to M''_1 \to M''_1$ from \mathcal{E}_2 to \mathcal{E} such that for each object $M_2 \in \mathcal{E}_2$, the sequence $M'_1(M_2) \to M''_1(M_2) \to M''_1(M_2)$ is exact in \mathcal{E} and hence by a result of Quillen [17], induces the relation $K_n(M'_1) + K_n(M''_1) = K_n(M_1)$. So, the map $M_1 \to K_n(M_1) \in$ $\operatorname{Hom}(K_n(\mathcal{E}_2), K_n(\mathcal{E}))$ induces a homomorphism $K_0(\mathcal{E}_1) \to \operatorname{Hom}(K_n(\mathcal{E}), K_n(\mathcal{E}))$ and hence a pairing $K_0(\mathcal{E}_1) \times K_n(\mathcal{E}) \to K_n(\mathcal{E})$. We could obtain a similar pairing $K_n(\mathcal{E}_1) \times K_0(\mathcal{E}_2) \to K_n(\mathcal{E})$.

If $\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E}$ and the pairing $\mathcal{E} \times \mathcal{E}$ is naturally associative (and commutative) then the associated pairing $K_0(\mathcal{E}) \times K_0(\mathcal{E}) \to K_0(\mathcal{E})$ turns $K_0(\mathcal{E})$ into an associative (and commutative ring which may not contain the identity). Suppose that there is a pairing $\mathcal{E} \circ \mathcal{E}_1 \to \mathcal{E}_1$ which is naturally associative with respect to the pairing $\mathcal{E} \circ \mathcal{E} \to \mathcal{E}$, then the pairing $K_0(\mathcal{E}) \times K_n(\mathcal{E}_1) \to K_n(\mathcal{E}_1)$ turns $K_n(\mathcal{E}_1)$ into a $K_0(\mathcal{E})$ -module which may or may not be unitary. However, if \mathcal{E} contains a natural unit i.e. an object E s.t. $E \circ M = M \circ E$ are naturally isomorphic to M for each \mathcal{E} -object M, then the pairing $K_0(\mathcal{E}) \times K_n(\mathcal{C}_1) \to K_n(\mathcal{E}_1)$ turns $K_n(\mathcal{E}_1)$ into a unitary $K_0(\mathcal{E})$ -module.

5.2. We now apply the above to the following situation. Let R be a commutative ring with identity, C a finite EI-category.

(i) Let $\mathcal{E} = \mathbf{P}_R(R\mathcal{C})$ be the category of finitely generated $R\mathcal{C}$ -modules such that for all $X \in ob(\mathcal{C})$. M(X) is projective as an *R*-module. So, $\mathbf{P}_R(R\mathcal{C})$ is an exact category on which we have a pairing

(1)
$$\otimes: \mathbf{P}_R(R\mathcal{C}) \times \mathbf{P}_R(R\mathcal{C}) \to \mathbf{P}_R(R\mathcal{C})$$

If we take $\mathcal{E}_1 = \mathbf{P}(R\mathcal{C})$, then the pairing

(2)
$$\otimes: \mathbf{P}_R(R\mathcal{C}) \times \mathbf{P}(R\mathcal{C}) \to \mathbf{P}(R\mathcal{C})$$

is naturally associative with respect to the pairing (I) and so $K_n(R\mathcal{C})$ is a unitary $(K_0(\mathbf{P}_R(R\mathcal{C})) = G_0(R,\mathcal{C})$ -module. Also, $G_n(R,\mathcal{C})$ is a $G_0(R,\mathcal{C})$ -module.

5.3. Let \mathcal{C} be a finite EI -category and $\mathbb{Z}(Is(\mathcal{C}))$ the free Abelian group on $Is(\mathcal{C})$. Note that $\mathbb{Z}(Is(\mathcal{C})) = \bigoplus_{Is(\mathcal{C})} \mathbb{Z}$. If $\mathbb{Z}^{(Is(\mathcal{C}))}$ is the ring of \mathbb{Z} -valued functions on $Is\mathcal{C}$, we

can identify each element of $\mathbb{Z}(Is(\mathcal{C}))$ as a function $Is(\mathcal{C}) \to \mathbb{Z}$ via an injective map $\beta : \mathbb{Z}(Is(\mathcal{C})) \to \mathbb{Z}^{(Is(\mathcal{C}))}$ given by $\beta(X)(Y) = |\mathcal{C}(Y,X)|$ for $X, Y \in ob\mathcal{C}$. Moreover β identifies $\mathbb{Z}(Is(\mathcal{C}))$ as a subring of $\mathbb{Z}^{(Is(\mathbb{Z}))}$. Call $\mathbb{Z}(Is(\mathcal{C}))$ the Burnside ring of \mathcal{C} and denote this ring by $\Omega(\mathcal{C})$. Note that if $\mathcal{C} = \operatorname{orb}(\pi)$, π a finite group, then $\mathbb{Z}(Is(\mathcal{C}))$ is the well-known Burnside ring of π which is denoted by $\Omega(\pi)$.

4.4. If R is a commutative ring with identity and C a finite EI -category, let $\mathbf{F}(RC)$ be the category of finitely generated free RC -modules. Then for all $n \geq 1$, the inclusion functor $\mathbf{F}(RC) \rightarrow \mathbf{P}(RC)$ induces an isomorphism $K_n(\mathbf{F}(RC)) \simeq K_n(RC)$ and $K_0(\mathbf{F}(RC)) \simeq \mathbb{Z}(IsC)$ see [16] 10.42. Now by the discussion in 4.1, the pairing $K_0(\mathbf{F}(RC)) \times K_n(\mathbf{P}(RC)) \rightarrow K_n(\mathbf{P}(RC))$ makes $K_n(RC)$ a unitary module over the Burnside ring $\mathbb{Z}(Is(C)) \simeq K_0(\mathbf{F}(RC))$.

Acknowledgement. Part of this work was done while I was visiting Queen's University, Kingston, Canada; Chalmer's University of Technology, Goteborg and the Mittag-Leffler Institute, Stockholm; Sweden. The work was concluded and written up while visiting the Max-Planck-Institute in Bonn. I should like to thank these Institutions for their financial support and hospitality.

References

- [1] H. Bass, K-theory and Stable Algebra, Pub. Math., IHES (1964) vol22, 5-60.
- H. Bass, Dirichlet unit theorem, induced characters and Whitehead groups on finite groups, Topology vol4 (1966), 391-410.
- [3] H. Bass, Algebraic K-theory, W.A. Benjamini (1968).
- [4] A.J. Berrick, An approach to Algebraic K-theory, Research Notes in mathematics vol56 (1982), Pitman, London.
- [5] A. Borel and J.P. Serre, Cohomologie d'immeubles et de groupes S-arithmetique, Topology vol15 (1976), 211-232.
- [6] A. Borel and J.P. Serre, Corners and Arithmetric groups, Commet. Math. Heh. vol48 (1974), 244-297.
- [7] A.W.M. Dress and A.O. Kuku, The Cartan map for equivariant higher algebraic K-groups., Communications in Algebra vol9 (7) (1981), 727-746.
- [8] A.O. Kuku, SK_n of orders and G_n of finite rings, Lecture notes in mathematics vol551 (1976), Springer-Verlag, New York/Berlin, 60-68.
- [9] A.O. Kuku, SG_n of orders and group-rings, Math. Z. vol165 (1979), 291-295.
- [10] A.O. Kuku, Higher Algebraic K-theory of group-ring and orders in algebras over number fields, Communications in Algebra vol10 (1982), 805-816.
- [11] A.O. Kuku, K-theory of group-rings of finite groups over maximal orders in divisor algebras, Journal of Algebra vol91 (1984), 18-31.
- [12] A.O. Kuku, Axiomatic theory of induced representations of finite group, In A.O. Kuku (Ed.) Group representatione and its applications (1985), Les Cours du CIMPA, Nice, 6-114.
- [13] A.O. Kuku, K_n , SK_n of integral group-rings and orders, Contemprary Mathematics vol55 (1986), 333-338.
- [14] A.O. Kuku, Some finiteness results in the higher K-theory of orders and group-rings, Topology and its applications vol25 (1987), 185-191.
- [15] R.C. Laubenbacher and D.L. Webb, On SG_n of orders, Journal of Algebra vol133 (1) (1990), 125-131.
- [16] W. Lück, Transformation groups and Algebraic K-theory, Lecture Notes in mathematics vol1408 (1989).
- [17] D. Quillen, Higher Algebraic K-theory I, Lecture Notes in mathematics vol341 (1973), Springer-Verlag, New York/Berlin.
- [18] E.A. Spanier, Algebraic Topology, Mc Graw Hill (1966).
- [19] A.A. Suslin, Stability in Algebraic K-theory, Lecture Notes in mathematics vol966 (982), Springer-Verlag, New York/Berlin, 344-356.
- [20] R.G. Swan, K-theory of finite groups and orders, Lecture Notes in mathematics vol149 (1970), Springer-Verlag, New York/Berlin.
- [21] F. Waldhausen, Algebraic K-theory of Spaces, Lecture Notes in mathematics vol1126, 318-419.

MAX-PLANCK-INSTITUTE FÜR MATHEMATIK, BONN, GERMANY AND UNIVERSITY OF IBADAN, MATHEMATICS DEPARTMENT, IBADAN, NIGERIA