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HIGHER I{-THEORY OF MODULES OVER EI...CATEGORIES

ADEREMI O. !(UKU

Introduction

Let C be an EI- category (i.e. a small category in which every endomorphism
is an isomorphism), R a commutative ring with dentity. An RC- module is a
contravariant functor from C to the category of R-modules. For all n 2:: 0, let
I(n(RC) be the (Quillen) I(n of the category P(RC) of finitely generated projective
RC- modules (see §1 for definitions).

The significance of the study of 1(- theory of RC- modules lies mainly in the
fact that several geometrie invariants take values in the 1(- groups associated with
RC where C is an apropriately defined EI- category and R could be Z, Q, IR, etc.
For exampIe, if rr is a fini te group, C = orb( rr) the orbi t category of rr, (a fini te
EI-category), ./Y a rr- CW complex with round structure, then the equivariant Rei­
demester torsion takes values in vVh(Q orb( rr)) where vVh(Q orb( rr)) is the quotient
of K1(Q orb(rr)) by its subgroup of "trivial units"-see [16].

Now, let C be a fini te EI- category, R the ring of integers in a number field F. We
show in §2 that for all n ~ 0, I(n(RC) is a finitely generated Abelian group and that
SI(n(RC) is a finite group, while in §3 we show that for all n ~ 1, Gn(RC) = I(n
of the category of finitely generated RC- modules is a finitely generated Abelian
group and that SGn(RC) = O.

In §3 we consider Cartan maps and show that if k is a field of characteristic p,

and C a finite EI- category, then for all n .2:: 0, the Cartan map I(n(kC) ~ Gn(kC)
induces an isomorphism

Vle then discuss some consequences of this result for integers in number fields.
In a final section, we discuss module structures on l\.Pn(RC), Gn(RC) 'as nlodules

over Go(R, C) := /(0 of the the category P R(RC) of finitely generated RC -Inodules
NI such that J.\;1( ..Y) is a projective R -module for all.Y E orb C) as weH as modules
over the Burnside ring of C (see §5).

Notes on Notation. For a finite group rr, we write con(rr) for the set of conjugacy
classes of rr and '7 for the conjugacy dass of '/ if '/ ::; rr. If C is a category, ..\., Y C­
objects, we write C(){, Y) for the set of C- morphisms from 4Y to yP, and I s(C) for
the set of isomorphism dasses of C- objects.

If R is a commutative ring with identity, then for any set S, we write RS for the
free R- module on S. In particular, we write RC(4Y, Y) for the free R- module on
the set C( ..Y, :V),

Typeset by AJV1S-'1'&'<.



For anyexact category E, we write ](n(E) for 7rn+l(BQE) (see [17]). If A is a
ring \vith identity, we write P(A) for the category offinitely generated projective A­
modules. If A is Noetherian, we write M(A) for the category of finitely generated
A- modules. We denote ](n(P(A) by ](n(A), ](n(M(A)) by Gn(A). Also ](n(A) =
Jrn(BCL+(A)) in the notation of the plus construction of Quillen (see [4]).
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§1

Mod ules over EI-categories

In this section~ we briefly discuss modules over EI- categories and the associated
!(- theories~ thus developing some necessary notations.

Definition 1.1. An EI-category C is a small category in which every endomor­
phism is an isomorphism. C is said to be finite if the set I s(C) of isomorphism
classes of C-objects is finite and for any two C- objects ){, }~ ~ the set C(..Y.l'~) of C­
morphism from ~Y to y~ is finite

Examples.
(i) Let Jr be a finite group. Let 0 bC = {1t-j, I, ::; rr} and morphisrns be rr- maps.

Then C is a fini te EI-category called the orbit category of Jr and denoted orb (Jr ) .

Here C( rrI r 1 JrIr) ~ Aut( rrI,) :::::: lVrr(-,)I, where IVrr(-"") is the normaliser of , in
rr. (see [12]). VVe shall denote the group lVrr( '"'j) I '"'f by iVrr ('"'().

(ii) Suppose that Jr be a Lie group. obC = {rr/'"'fl, campact subgroup of rr} is also
called the orbit category of Jr and denoted orb (Jr).

(iii) Let rr be a Lie group. Let obe = {rrIrl, campact subgroup of Jr} and for
rr1'"'/1 Jr I"'t' E 0 bC ~ let C(rrI '"'f , JrI ,.,t') be the set of homotopy classes of rr- maps.
Then C is an EI- category called the discrete orbit category af rr and denoted
by orb I(rr).

Note. For further examples~ see [16].

1.2.
Let R be a commutative ring \vith identity, C an EI-category. An RC- module

as a contravariant functor C --t R - 1l10d

An obC- set is a functor lV from C to the category of sets. Alternatively~ an obC­
set cauld be visualized as 'a pair (lV, ß) where lV is a set and ß : lV ~ ob C is a set
map. Then .!V = {ß-l(~Y)I ..\ E ob Cl.

An ob C- set (lV, ß) is said to be finite if lV is a finite set. If S is an (lV~ ß)­
subset of an RC- rnodule 1\1. define spanS as the smallest RC- submodule af .1.\1
containing s. Say that 1\1 is finitely generated if 1\1 = span S for some finite ob C­
subset S of 1\1.

If R is a Noetherian ring anel C a finite EI-categorYl let M(RC) be the category
of finitely generated RC- rTIodules. Then M(RC) is an exact category in the sense
of Quillen [171: see [16].

An RC- lTIodllle P is said to be projective if any exact sequence of RC- rTIodules
o~ l\f t

----;.. 1.vJ --7 P ~ 0 splits Cl' equivalently if Horn Re(F: -) is exact.
Let P(RC) he the category of finitely generated projective RC- rTIodules. Then

P( RC) is also exact. \Ve write !\." n (Re) far !\."n (P( RC)).
Finally: let R be a comnllltative ring with identity, C a finite EI- catcgory:

P R(RC) thc category of finitely generated RC- Inodules such that for each _\ E
ob C~ 1\1LY) is projective as R.- module. Then P n(RC) is an exact category and
we write Gn(R.C) for !\."" (PrdRC)). Note that if R is regulaL then C;n(R.C) ~

Gn(RC).



1.3.
Let Cl, C2 be EI- categories, R a commutative ring with identity, B a functor

CI --+ C2 • Let RC2 (??:B(?)) be the RC I -RC2 - bimodule: CI xCz -+ R-mod given
by (.Y1 , .Y2) --t RC2 ( .Y2 , B.Y I ). Define RC2 - RC1 bimodule analogously. NOW define
induction functor inda : CI -mod --+ RC2 -mod given by Al -+ 1\1 (9 RC2 (??, B(?))

Re l

Also define a restrietion functor resB : RC2 - fiod -t RCI - mod by LV --+ LV 0 B.

1.4.
A homomorphism R I -t R2 of commutative rings with identity induces a functor

B : R I - mod --+ R2 - fiod : LV -t R2 0 LV. So: if C is an EI-category, we have
Rl

an induced functor R1C - fiod -t R2C - mod : J\l -t B 0 J\1 \vhere (B . hI)(.Y) =
B(Al(.Y) ).

\-\Te also have an induced exact functor P(RIC) -t P 2 (RzC) : ~'1 --+ B 0 1\1 and
hence a homomorphism 1\-n ( R I C) --+ 1\n ( R2C).

Now, suppose that R is a Dedekind domain with quotient fields F, and R y

F the inclusion map: it follows from above that we have group homomorphisms
I\n(RC) --+ 1\n(FC) and C;n(RC) -t Gn(FC).

Now define SI\-n(RC) := Kernel of I\n(RC) --+ I\n(FC) and SGn(RC) := Kernel of Gn(RC) --+
Gn(FC).



§2

The aim of this seetion is to prove the following:

Theorem 2.1.
Let R be the ring of integers in a number neid F, C any finite EI- category.

Then for all n 2: 1,
(i) I(n(RC) is a finitely generated A.belian group.

(ii) SKn(RC) is a finite group.
Tbe prüof of 2.1 will depend on the following splitting result

Theorem 2.2.
Let R be a commutati\"e ring v,,"ith identity, C a finite EI- category. Then

]{n(RC) =:: EB ](n(R(Aut(..-\'")))
XEJs(C)

Proof.
\Ve give a sketch of the proof of 2.2. Details can be fouod in [16].
Step I: For )[ E obC~ define the "splitting functor l1 Sx : RC - mod ~

R(Aut(..-Y)) - mod by 5x(i\1) = A1( ..Y)jlv1'();) where 1\11' (..-\'") is the R- submodule
of J'1( ..Y) generated by the images of the R- homomorphisms Jvl(j) : lvl(Y) --+
lVI(_~) induced by all non-isomorphisms f : ..Y ~ Y.

Step 11: Define the :extension functor' Ex : R(Aut(..-Y)) - mod --+ RC - mod
by

(Ex(A1) = 1\1 0 RC(?, _\'")
RAut(X)

Step 111. For U E ] s(C), the objects ..Y E U constitute a fuH subcategory of C
which we denote by C( U)" Now define

splitA-n(RC):= EB ]{n(RC(U))

UE!s(C)

Step IV. For eaeh U E obC, define the functor Eu : RC(U) - mod --+ RC-mod
by

EU (1\1) = ]\1 (9 RC(?, ??)
RC(U)

This induces a fune tor P(RC (U )) --+ P (RC ) and a homomorphism ]{n ( Eu)
]\.-n (RC (U)) --+ 1\.-n ( RC) and henee a homomorphism

Ell (RC) = el\.-n(Eu) : EB_I( n(RC(U)) --+ ](n(RC)
UEJsC

that is, a homomorphislTI



Step V: For any U E ob (C), define a functor Sv :Re - mod -+ RC(U) - luod
by Su(lvI) = 111Q?)B for the RC - RC(U) bimodule B given by B( ..Y, Y) = RC( ..Y, Y)

RC
if Y E U and B(..Y, Y) = {O} if y~ f/. U, where )( runs through ob C(U), and y~ E

ob(C). Then each Sv induces a homomorphism !(n(SU) : !(n(RC) -+ j(n(RC(U))
and hence a homomorphism

Sn(RC) : !(n(RC) -+ E9 j(n(RC(U))
UEI,,(C)

l.e.

Step VI:
En(RC) : !(n(RC) -+ E9 j(nRC(U)

UE!,<j(C)

and
Sn(RC): E9 !(n(RC(U)) -+ j(n(RC)

UEJ,<j(C)

are isomorphisms, one the inverse of the other.
Step VII:

!(n (RC( U)) ::: !(n (R( Aut( ..Y)))

(for any ..Y E U), via the equivalence of categories Aut( ..Y)' -+ C(U) where for
any group 7f, 7f' is the groupoid with one object 7T" and morphisms left translations
19 : 7f Y ?T : h '-t 9h. 0

\\Te also reed the following

Theorem 2.3. Let C he a finite E! - category, R the ring of integers in a number
field F. Then for any C- abject ..X", j(n(R(AuLY)) is finitely generated A.belian
group for all 71. ~ l.

Proof. vVrite A for R(Aut(x)) and put !(n,m(A) := 7fn(BC;L~(A)). Then j(n(A) =
lim !(n,m(A). Now, BE;i(A) is the universal covering space of BGL~(A) (since

m-foCO

BE(A) is the coverig space of BGL(A) with respect to the subgroup E(A) of GL(A)
generated by elementary lnatrices):

So
7fn(BE~(A)) ::: ?Tn(BGL~(A))

Now, by the stability result of Suslin (see [19]), !(n,m(A) ::: !(n,m+l(A) if 'm ~

(271. + 2, n + 3) since A as an R- order satisfies the stable range condition SR3 (see
[1]). So j(n(A) ::: 7fn(BE~(A)) for m, ~ (271.+2, n+3). Now, for ln 2: 3, Em(A) is an
Ari thmetic group since S L n ( A )/ E n ( A) is a fini te graup. Hence by Borel-Serre, [6],
H n (Em(A)) is finitely generateel. Now, for all m ~ 2 H n(Em(A) = Hn(BEm(A)) =
H n (BE;;; (A)) by Quillcn 's plus construction since B E m(A) -+ BE;!; (A) is acyclic.
rvloreover: BE~ (..4) is a sinlply connectcd H - space for nl 2: 3. Also by [18] 9.6.16,
7T" n (BE;;; (..4)) is finitely generatcd if anel only if H 11 (BE~ (A)) is fini tely generated.
Hence j{n(A) ::: 7rn(BE~(A.)) 1S finitely generated. 0



Proof of 2.1.
(i) follows from 2.2 and 2.3 since I{n(RC) is a finite direct sum of finitely generated

groups !\n(RAut(..Y)) ..\ E Is(C).
(ii) First note that we have the following commutative diagram with exact rows:

0---4

0---4

SKn(RC) Kn(RC) h"n (FC)

1Q 1~ 1~

EB S K n (RA u t (X) ) EB K n (R(Aut(X))) EB h"n(FAut(X))
XEI~C XE/~C XEI~(C)

Now by [13], 3.2, SI\n(R(Aut( ..Y))) is a finite group. Hence EB SI{n(RAut(){))
XEIsC

being a direct sum of fini te groups is finite. That S!(n (RC) is finite now follows
from the fact that a is injective.

Remarks 2.4. Let 1f be a fini te group and C = orb(1T) the orbit category of 1T (see
E.g 1.1[1]).

It is weil known that there is one-one correspondence between I s(C) and the
conjugacy classes con(7f) of 1f , i.e. 1f/, :::: 1f /,', if f is conjugate to ,'. It is also
well-known that C( 7r / f' 1f / " ~ Aut( Tr / f) = lVrr(,) /, := lVrr'"'l where N rr, is the
normaliser cf , in 7r.

So, for any commutative ring R with identi ty, !{n(R orb(7f)) = EB !{n RNrr (,).
,Econ( rr)
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§3

Gn(RC), SGn(RC)

The aim of this section is to prove the following

Theorem 3.1. Let R be tl1e ring of integers in a number fieid F, C a finite EI­
category. Tllen for all n 2: 1

(i) Gn(RC) is a finitely generated A.belian grollp
(ii) SGn(RC) = O.

The proof of 2.1 depends on the following splitting result for G n of RC.

Theorenl 3.2. Let R be a commutative lVoetherian ring lvitll identity, C any finite
EI- category. Tllen for all n 2: 1

Gn(RC) ~ EB Gn(R(Aut(.7<))).
XE/s(C)

Proof. Vve sketch the proof of 2.2 and refer the reader to [16] for luissing details.
Step I: For each )( E ob C, deHne Resx : RC-mod -r (RAut( ..:\")) -lllOd

Resx (1'vI) = 2\11(..Y). Then an RC- liodule J11 is fini tely generated iff ResX (1\1) is
finitely generated for all .7<in ob C (see [16]).

Nloreover, Resx induces an exact functor M(RC) -r M{R(Aut(X))) which also
induces for all n 2: 0 homomorphislns Gn{RC) -r Gn(R(Aut(.X))) aud heuce ho­
momorphism Res: Gn(RC) -r EB Gn(R{Aut( ...Y))). \\Te write splitGn(RC) for

XE/s(C)

EB Gn (R(.4ut( ...Y))).
XE/sC

Step 11: For){ E ob C, define a fllnctor Ix : R(Aut( ...Y)) -r RC by

Then we have an induced hOIllomorphislll

I: splitGn(RC) = EB Gn{R{Aut(.Y))) -r C;n{RC).
XElsC

Step 111: Res and I are isomorphisIlls inverse to each other. D

Theorem 3.3. Let R be t}le ring of integers in a number fieid F, C a finite EI­
category. Tllen for any }{ E ob C Clnd all n ;:: 1 Gn{R(Aut(.Y))) is a finiteiy
generated Abelian group.

Proof. \Ve proviele a sketch of proof here. Details can be fonnd in Kuku [10].
Pnt 1\ = R(.4.ut{.Y)) anel note that 1\ is an R- order in the selui-simple F- algebra

F(Aut{.Y)). Let f be a InaxiInal order containing 1\1 anel let On : C;n(f) -r Gn (/\)

be thc hOluomorphislu indnccd by the functor M(r) -r M(I\) given by restriction



of scalors. As proved in [10] 1.3 (i) and (iii) for all n 2:: 1 (a) Q2n-1 : G2n - 1(r) -+
G2n - 1(A) has finite kernel and cokernel (b) Q2n : G2n (f) -+ G2n (A) is injective
with finite cokernel. The conclusion that Gn(l\) is finitely generated follows as in
the proof of [10]1.3 (iii). 0

Proo/ 0/ 3.1.
(i) Follows from 3.2 and 3.3 since split Gn(RC) as a finite direct surn of finitely

generated Abelian groups is finitely generated.
(ii) First note that the following diagram is commutative with exact rows:

0--4

0--...,.

SGn (Re) Gn(RC) Gn(FC)

1° 1~ß 1~i
EB SGn (Aut(X)) EB G n (RAut(X)) EB Gn(F(AutX))

XEl3C XEl3C XEl4C

Since ß is an isomorphism, a is injective. Now each SGn(RAut(X)) = 0 by [15]
theorem 1. Hence SGn(RC) = O.



§4

CARTAN MAPS

Let R be a commutative Noetherian ring, C an EI- category. Then, for all
n 2: 0, the indusion functor P(RC) ~ M(RC) induces ahomomorphism1{n(RC) ~
Gn(RC) called Cartan maps.

The aim of this section is to prove the following

Theorem 4.1. Let k be a field of characteristic p, C a finite EI - category. Then
for all n ~ 0, the Cartan bomomorphism 1(n(kC) ~ Gn(kC) induce isomorpbism

Proof. By 2.2

1(n (kC) s:: EB I{n (kAut(.Y))
XEI~(C)

and by 3.2 Gn(kC) ~ E9 Gn(kAut( ..Y)). Now it was proved by Dress/Kuku (see
XEI8C

[7J) via the theory of :Nlackey functors that for any finite group Jr the Cartan map
](n ( kJr) ~ Gn ( k'rr) induces an isolllorphism

z G) Q9Kn(k1r) ~Z G) Q9Gn(k1r)

Hence Z (*) ® Kn(kAut( ..\'")) ~ Z (*) ® Gn(k(Aut(..Y"))) for all .Y E ob(C).

Hence

z G) Q9 Kn(kC) ~ Z G) Q9(_EB Kn(kAut(X)))
XE/sC

~ _EB (ZG)Q9I,n(kAut(X»)) ~ _EB (zG)Q9G,,(kAutX))
XE/s(C) XEhC

~ Z G) Q9(_EB Gn(kAut(X)))
XE[~C

~ Z G) Q9 G,,(kC).

Corollary 4.2. Let R be tl1e ring of integers in a number field F, In a prime ideal
of R lying over a rational prime p. Then for all n 2:: 1

(a) the Cartan lnap ](n((R/nl)C) ~ Gn((Rll11)C) is surjective
(b) I\."2n(R/ln)C) is a finite p- grau]).

Proof. Since In lies above a rational prime p, R/l11 is a finite field of character­
istic p. Hencc by 4.1, !(n((R/ln)C) ~ C:n ((R/ln)C) is an isolllorphisll1 luod p­

torsion for all n. 2: 0. Now GH ((R/lll)C) ~ E9 C;n((R/lll)Aui..Y) by 3.2. Also
XEI~C
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Gn((Rjnl)(Aut(){)) is a finite group since ((Rjnl)Aut(){)) is a finite ring. ( G n of
a finite ring is finite see[8]). So Gn((Rjm)C) is a finite group.

Also G2n ((Rjm)C) = E9 G2n ((Rjm)Aut( ..Y)) = 0 since each G2n ((Rjm)Aut(.Y)) =
XEIsC

osee [8]). So, Coker a2n = 0 i.e. 0'2n is surjective.
Now each G2n - 1 ((Rjln)Aut(.Y)) has order relatively prime to p by (10]1.1.

Hence GZn - 1((Rjm)C) is finite of order relatively prime to p. Now ICoker O'zn-11 is
apower of p and devides IGZn- 1((Rjln)tr) which is == Imocl(p) anel this is possible
if and only if Coker a2n-l = O. Hence Coker an = 0 Vn 2:: 1. i.e. an is surjective
\:In 2:: 1.

(ii) SinceGzn((Rjm)C) = 0, wehave!(eraz n = ]\Zn((Rjnl)C). Now, ](zn((Rjm)C) ~
EB ]\2n((Rjln)Aut(.Y)) is a finite group, since each ((Rjln)Aut(.Y)) is a finite

XEIsC
ring anel ]{n of a finite ring is finite by [13] .1.1. So Ker QZn = ](2n (Rj m )C) is a
finite p- group.
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§5

PAIRINGS and module STRUCTURES

5.1. Let C, [1, [2 be three exact categories and EI X [2 the product category. An
exact pairing EI X [2 -t & : (]vI1 , 1\12 ) -t 1\1} 0 1\12 is a eovariant functor from
[1 X &2 to & such that &1 x &2 ((1111, .NI2 ), (lvIf, 1\1~)) = E} (lVII, 1\1{) x [2 (AtI2 , AtI~) -t
&(Al'} 01\12 , lVf{ 0 j\;f~) is bi-additive and bi-exact, that is for a fixed NI2 , the functor
Cl -t [, given by 1\11 I-t 1\11 01112 is additive and exact and for fixed lvII, the functor
&2 -t [. : 1112 -t 1\;11 0 11;[2 is additive and exact. It follows from [21], that such a
pairing gives rise to a ](-theoretic cup product ]ti([j) x !tj(C2) -t [(i+j([.), and in
particular to natural pairing ]\'·0 (EI ) 0 1(n ( [2) -t !(n ( [.) whieh eould be defined as
follows:

Any object 1111 E & induces an exact functor All : C2 -t & : 1\12 --+ ]1,111 0 1\112
and hence a map ](n(Jvld : !(n(E2 ) --+ [\n(&). If Al{ --+ 1111 -t Ai;' is an exact
sequence in EI, then we have an exact sequence of exact functors NI; -t !vI; -t
lvI;'* from &2 to E such that for each object A12 E [2, the sequence Atl{(lvJ2 ) -t
1'11*(A12 ) --+ 1'1{'* (A12 ) is exact in [ and heuee by a result of Quillen (1 7], induces
the relation ](n(!vI{*) + 1tn(l\II{'*) = ](n(A1[). So, the lllap 1111 --+ ](n(A1.) E
Hom(](n(E2 ), ]tn(E)) induces a hOlllomorphism ](o(Ed -t Hom(](n(E), !(n(C)) and
hence a pairing ](0 (Ed x ](n (E) --+ ](n (E). \Ve could obtain a similar pairing
]\n(Ed x 1(0([2) -t ]\n(E).

If EI = [2 = [. and the pairing E xE is naturally associative (and eommutative)
then the associated pairing ](o(E) x 1\.~o(&) -t ](o(E) turns l\:o(E) into an associative
(and commutative ring which may not contain the identity). 5uppose that there
is a pairing E 0 EI --+ EI which is naturally associative with respect to the pairing
& 0 E -t [, then the pairing ](o(E) x ](n(Ed --+ ](n(Ed turns 1(n(E.) into a ](o(E)
-module which may or may not be unitary. However, if E contains a natural unit
i.e. an object E s.t. E 0 Ai = 111 0 E are naturally isomorphie to 1'1 for each [
-object lvI, then the pairing 1\.-o(E) x ](n(Cd --+ 1(n(E1 ) turns 1\.·n([,d into a unitary
](o(E) -module.

5.2. vVe no\v apply the above to the following situation. Let R be a commutative
ring with identity, C a finite EI-category.

(i) Let E = P R(RC) be the category of finitely generated RC -ITIodules such
that for all ..Y E ob(C). IvI(.Y) is projective as an R-nloclule. So, P R(RC) is
an exact category 011 which \ve have a pairing

(1)

(2)

If \ve take EI = P(RC), then the pairing

o :P n(RC) x P(RC) --+ P(RC)

is naturally associative with respect to the pai ring (I) and so ]\.-n ( RC) isa
unitary (!(o(P R(RC)) = Go(R, C) -module. Also, C;n(R, C) is a C;o(R, C)
-ITIodule.
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5.3. Let C be a finite EI -category and Z(Is(C)) the free Abelian group on I s(C).
Note that Z(Is(C)) = EB Z. If Z(I,,(C)) is the ring of Z-valued functions on IsC, we

18(C)

ean identify each element of Z (I s (C)) as a function I s(C) -+ Z via an injective map
ß : Z(Is(C)) -t Z(I8(C)) given by ß(X)(}~) = IC(Y, ..Y)I for X, Y E obC. Moreover
ß identifies Z(Is(C)) as a subring of Z(I,,(Z)). Call Z(Is(C)) the Burnside ring of
C and denote this ring by fl(C). Note that if C = orb(7r), 7r a finite group, then
Z(Is(C)) is the well-known Burnside ring of 7r which is denoted by fl(7l'").

4.4. If R is a commutative ring with identity and C a finite EI -category, let F(RC)
be the category of finitely generated free RC -modules. Then for aH n 2:: 1, the
inclusion functor F(RC) -+ P(RC) induces an isomorphism I\n(F(RC)) ~ ]\n(RC)
and I(o(F(RC)) ~ Z(]sC) see [16] 10.42. Now by the discussion in 4.1, the pairing
I\o(F(RC)) x ]\n(P(RC)) -+ ]\n(P(RC)) makes l\~n(RC) a unitary module over the
Burnside ring Z(Is(C)) ~ ](o(F(RC)).
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