On complex analytic compactifications

on \mathbb{C}^3 (II)

by

Mikio Furushima

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

West Germany

.

MPI/87- 45

. · · . . -

.

•

•

Introduction. Let (X,Y) be a smooth projective compactification of \mathbb{C}^3 such that Y has at most isolated singularities. Then X is a Fano 3-fold of index r $(1 \le r \le 4)$ with the second Betti number $b_2(X) = 1$ and Y is a hyperplane section of X. In particular, Y is normal. In case of $r \ge 2$, such a (X,Y) is determined [1]. In case of r = 1, I proved in [3] that if such a (X,Y) exists, then $(X,Y) \cong (V_{22},H_{22})$, where V_{22} is a Fano 3-fold of degree 22 in \mathbb{P}^{13} and H_{22} is a singular K-3 surface which is rational (see also [11]). However, unfortunately, in case of r = 1, such a (X,Y) does not exist. The purpose of this paper is to prove it (see § 3).

Acknowledgement. I would like to thank Max-Planck-Institut (Bonn) especially Prof.Dr. Hirzebruch for the hospitality and also thank Dr. Nakayama for stimulating conversations and valuable comments. Let $(X,Y) = (V_{22},H_{22})$ be as in Introduction. Let us denote the singular locus by Sing Y. We put

S := { $y \in Sing Y$; Y is not a rational double point} .

Since Y is a singular K-3 surface with $h^1(0_Y) = 0$, S consists of exactly one point $\{x\}$ with $P_g(x) = 1$ by Umezu [13]. We put

Sing Y - {x} := {
$$y_1, \ldots, y_k$$
} (k ≥ 0).

Let $\pi : \widetilde{Y} \longrightarrow Y$ be the minimal resolution of the singularities of Y, and put $\pi^{-1}(x) = \Gamma$, $\pi^{-1}(\{y_1, \ldots, y_k\}) = B$, and $s := b_2(\Gamma)$ (the numbers of the irreducible components of Γ). Let $K_{\widetilde{Y}}$ be the canonical divisor on \widetilde{Y} . Then we have

where Z is the fundamental cycle of the singular point x associated with the resolution (\tilde{Y},π) (see [7], [2]). Since X is a smooth 3-fold, Sing Y consists of hypersurface singularities. By Laufer [7], we have

$$-3 \leq z^2 \leq -1$$

where $z^2 = (z \cdot z)_{\widetilde{Y}}$. By Noether formula, we have

Lemma 1. $(Z^2, b_2(\widetilde{Y})) = (-1, 11, (-2.12) \text{ or } (-3.12)$, where $b_2(Y) = \dim_{\mathbb{R}} H^2(Y;\mathbb{R})$.

Let U_0 (resp. U_i $1 \le i \le k$) be a contractible neighbourhood of x (resp. y_i) in Y. We may assume that U_0, U_i ($1 \le i \le k$) are disjoint. We put $U = \bigcup_{i=0}^{k} \bigcup_{i=0}^{k} u_i$ and $\partial U = \bigcup_{i=0}^{k} \bigcup_{i=0}^{k} u_i$, where ∂U_i is the boundary of U_i . Then we have the excat sequence of Poincare homomorphism P_2 :

$$0 \longrightarrow H^{2}(Y;\mathbf{Z}) \xrightarrow{P_{2}} H_{2}(Y;\mathbf{Z}) \longrightarrow H_{1}(\partial U:\mathbf{Z}) \longrightarrow 0$$

By Lemma 2.5 in Peternell-Schneider [11], we have

$$H_1(\partial U:\mathbf{Z}) \cong \mathbf{Z}_{22}$$
 .

In particular, we have

Lemma 2 ([11]). $H_1(\partial U_0:\mathbf{Z}) \cong \mathbf{Z}_{22}$ and $H_1(\partial U_1:\mathbf{Z}) \cong 0$ for $1 \le i \le k$, namely, y_i 's are all E_8 -singularities.

By Lemma 2, we have $b_2(B) = 8k$. Since $b_2(Y) = b_2(Y) + b_2(\Gamma) + b_2(B) = 1 + s + 8k$, by Lemma 1, we have $k \le 1$, in particular,

$$(2^{2},s) = \begin{cases} (-1,2), (-2,3) \text{ or } (-3,4) \text{ if } k = 1 \\ (-1,10), (-2,11) \text{ or } (-3,12) \text{ if } k = 0 \end{cases}$$

Using the classification table of minimally elliptic singularities due to Laufer [7], we can determine the possible type of singularities of Y as Table 1 below.

In each case of Table 1, calculating the homology group $H_1(\partial U_0; \mathbf{Z})$ according to Mumford [10], we have

Lemma 3. Sing Y consists of exactly one point x of the type

where we denote by (resp.^{-3}) a smooth rational curve with self-intersection number -2 (resp. -3).

Let $(X,Y) = (V_{22},H_{22})$, Sing Y be as above. Then the minimal resolution \tilde{Y} is obtained from \mathbb{P}^2 by 12 times blowing ups. \tilde{Y} can be represented as a ruled surface $v : \tilde{Y} \longrightarrow \mathbb{P}^1$ over \mathbb{P}^1 (see Figure 1),

- 4 --

(Figure 1)

where $v^{-1}(0) = C \cup f_1 \cup f_2 \cup f_3 \cup f_4 \cup l_1$, $v^{-1}(\infty) = \bigcup_{i=5}^{10} \bigcup_$

- (i) $(1_1 \cdot 1_1)_{\widetilde{Y}} = (1_2 \cdot 1_2)_{\widetilde{Y}} = -3$, $(f_1 \cdot f_1)_{\widetilde{Y}} = -2$, $(C \cdot C)_{\widetilde{Y}} = (C' \cdot C')_{\widetilde{Y}} = -1$ $(1 \le i \le 10)$
- (ii) $(\widetilde{D} \cdot C)_{\widetilde{Y}} = 2$, $(\widetilde{D} \cdot C')_{\widetilde{Y}} = 3$, where $D = \pi(\widetilde{D})$ is a canonical hyperplane section such that Pic X = $\mathbf{Z} \cdot \boldsymbol{\theta}_{\mathbf{Y}}(D)$, in particular, deg D = $(D \cdot D)_{\mathbf{Y}} = 22$.

- 5 -

.

(iii)
$$Z = f_4 + 2f_3 + 2f_2 + 2f_1 + 1_1 + 21_2 + 3f_5 + 4f_6 + 2f_7 + 3f_8 + 2f_9 + f_{10}$$

(iv)
$$Z^2 = -3$$
, hence the multiplicity $m(\partial_{Y,X})$ of
the local ring $\partial_{Y,X}$ at x is equal to 3 by
Laufer [7].

- Lemma 4.
 - (1) there is no line in X through the point x .
 - (2) $C_0 := \pi(C) \longrightarrow Y$ is unique conic on X through the point x.

Proof. Since $m(\partial_{Y,X}) = 3$ and Y is a hyperplane section of X, a line or a conic through the point x must be contained in Y. Since $(C \cdot \widetilde{D})_{\widetilde{Y}} = (C_0 \cdot D)_Y = 2$ and D is a hyperplane section, C_0 is a conic on X. Let F be a line or a conic on X through the point x, hence $F \subset Y$, in particular, the proper transform \widetilde{F} of F in \widetilde{Y} must be the exceptional curve of the first kind. We can write \widetilde{D} as follows:

 $\widetilde{D} = 2C + 4f_4 + 6f_3 + 2l_1 + 6f_2 + 6f_1 + 6l_2$ $+ 12f_5 + 18f_6 + 9f_7 + 15f_8 + 12f_9$ $+ 9f_{10} + 6C' .$

- 6 -

By assumption, $(\widetilde{D} \cdot \widetilde{F})_{\widetilde{Y}} = 1$ or 2. This implies the assertions (i) and (ii).

Q.E.D.

§ 2. Triple projection from a point

Let $(X,Y) = (V_{22},H_{22})$, Sing $Y = \{x\}$ be as in § 1. Let H be a sufficiently general hyperplane section of X. Let us consider the linear system |H-3x| on X. Since $m(O_{Y,X}) = 3, Y \in |H-3x|$. Let $\sigma_1 : X_1 \longrightarrow X = V_{22}$ be the blowing up at the point x, and put $\sigma_1^{-1}(x) := E_1 \cong \mathbb{P}^2$. Since $-K_X = H$ and $Y \in |H-3x|$, $-K_{X_1} = \sigma_1^*H-2E_1$, $Y_1 = \sigma_1^*H-3E_1$, where Y_1 is the proper transform of Y in X_1 . By the adjunction formula, we have

$$K_{Y_{1}} = K_{X_{1}} |_{Y_{1}} + Y_{1} |_{Y_{1}}$$
$$= -(Y_{1} + E_{1}) |_{Y_{1}} + Y_{1} |_{Y_{1}}$$
$$= -E_{1} |_{Y_{1}} . \qquad (2.1)$$

Lemma 5. $H^{i}(X_{1}, O_{X_{1}}(\sigma_{1}^{*}H-3E_{1})) = 0$ for i > 0 and dim $H^{0}(X_{1}, O_{X_{1}}(\sigma_{1}^{*}H-3E_{1})) = 4$.

Proof. Let us consider the exact sequence

$$0 \longrightarrow \mathcal{O}_{X_1} \longrightarrow \mathcal{O}_{X_1}(Y_1) \longrightarrow \mathcal{O}_{Y_1}(Y_1) \longrightarrow 0 .$$

Since $Y_1 = \sigma_1^* H - 3E_1$ and $H^i(X_1, \sigma_{X_1}) = 0$ for i > 0, we have only to prove $H^i(Y_1, \sigma_{Y_1}(Y_1)) = 0$ for i > 0. By (2.1), we have

$$O_{Y_{1}}(Y_{1}) = O_{Y_{1}}(\sigma_{1}^{*}H - 3E_{1})$$
$$= O_{Y_{1}}(D_{1} + 3K_{Y_{1}}),$$

where $D_1 = \sigma^* H |_{Y_1}$ is the proper transform of D in Y_1 . By Kawamata vanishing theorem [6], we have only to prove that $\partial_{Y_1}(D+2K_{Y_1})$ is nef and big on Y_1 . Indeed, there exists the birational morphism $\mu_1 : \widetilde{Y} \longrightarrow Y_1$ such that $\pi = (\sigma_1 |_{Y_1}) \circ \mu_1$. Then $\mu_1^*(D_1+2K_{Y_1}) = \widetilde{D}-2Z$. We can easily see that $\widetilde{D}-2Z$ is nef and big on \widetilde{Y} . Thus $\partial_{Y_1}(D_1+2K_{Y_1})$ is nef and big.

By Riemann-Roch theorem, dim $H^0(X_1, \partial_{X_1}(\sigma_1^*H-3E_1)) = 4$. This completes the proof.

Q.E.D.

Corollary. dim
$$H^{0}(Y_{1}, O_{Y_{1}}(Y_{1})) = 3$$
.

By Lemma 5, the linear system |H-3x| defines a rational map

$$\Phi := \Phi_{|H-3x|} : X \longrightarrow \mathbb{P}^3$$

Now, by Corollary, we have

- 8 -

$$3 = \dim H^{0}(Y_{1}, O_{Y_{1}}(Y_{1}))$$

= dim H⁰(Y_{1}, O_{Y_{1}}(D_{1}+3K_{Y_{1}}))
= dim H⁰(\widetilde{Y}, O_{\widetilde{Y}}(\widetilde{D}-3Z)) .

Let $\{g_1, g_2, g_3\}$ be a basis of $H^0(\widetilde{Y}, \partial_{\widetilde{Y}}(\widetilde{D}-3Z))$ such that

$$(g_{1}) = 11C + 10f_{4} + 9f_{3} + 2l_{1} + 6f_{2} + 3f_{1}$$

$$(g_{2}) = 5C + 4f_{4} + 3f_{3} + 2f_{2} + f_{1} + 2f_{5}$$

$$4f_{6} + 2f_{7} + 4f_{8} + 4f_{9} + 4f_{10}$$

$$+ 4C'$$

$$(g_{3}) = 8C + 7f_{4} + 6f_{3} + l_{1} + 4f_{2} +$$

$$2f_{1} + f_{5} + 2f_{6} + f_{7} + 2f_{8}$$

$$+ 2f_{9} + 2f_{10} + 2C' .$$

Since $2(g_3) = (g_1) + (g_2)$, $g := (g_1 : g_2 : g_3)$ defines a rational map $\tilde{Y} \longrightarrow Q$ of \tilde{Y} onto a conic $Q := \{w_2^2 = w_0 w_1\} \longrightarrow \mathbb{P}^2(w_0 : w_1 : w_2)$. This implies that $\Phi(Y) = Q \cong \mathbb{P}^1$ and $W = \Phi(X)$ is a quadric hypersurface in \mathbb{P}^3 . Thus,

Lemma 6. Let $\Phi : X \longrightarrow \mathbb{P}^3$ be the triple projection from the point x. Then the image $W = \Phi(X)$ is an irreducible quadric hypersurface in \mathbb{P}^3 and $Q = \Phi(Y)$ is a smooth hyperplane section.

- 9 -

§ 3. Non-existence of the case r = 1

Let X, x,
$$X_1$$
, σ_1 , E_1 , Y_1 ... be as in § 2.

Let $\Delta \longrightarrow X$ be a small neighbourhood of x with a coordinate system (Z_1, Z_2, Z_3) . By Laufer [7], we may assume

$$\Delta \cap Y = \{z_2 \cdot z_1^2 = z_1^3 z_2 + z_1 z_3^3 + z_1 z_2^4\},$$

 $x = (0, 0, 0) \in \Delta$.

By an easy calculation, we find that Y_1 has two rational double points, namely, A_4 -singularity q_1 and D_6 -singularity q_0 . Let $\mu_1 : \widetilde{Y} \longrightarrow Y_1$ be the projection as in § 2. Then $\mu_1^{-1}(q_1) = f_1 \cup f_2 \cup f_3 \cup f_4$ and $\mu_1^{-1}(q_0) = \bigcup_{j=5}^{10} f_j$. We put $j_{j=5}^{(1)} = \mu_1(l_1)$ (i = 1,2), and $C_1 = \mu_1(C)$. Then C_1 is the proper transform of C_0 in X_1 , and $E_1 \cdot Y_1 = l_1^{(1)} + l_2^{(1)}$, in particular, C_1 is a smooth rational curve in $Y_1 \subset X_1$ with $q_1 \in C_1$, $q_0 \notin C_1$, and $l_1^{(1)}$ (i = 1,2) are two distinct lines in $E_1 \cong \mathbb{P}^2$.

We will resolve the indeterminancy of the linear systems $L_1 := |\sigma_1^*H - 3E_1|$ on X_1 . We remark that L_1 has no fixed component, and the base locus $B_sL_1 = C_1 \cup \{q_1\}$.

Lemma M([9]). Let E be a smooth rational curve in a smooth projective 3-fold X , and S be a surface with only

- 10 -

one singularity x of A_{n+1} - type such that $E \subset S \subset X$. Let $\lambda : \widetilde{S} \longrightarrow S$ be the minimal resolution, and put $\lambda^{-1}(x) = {\begin{array}{c} n+1 \\ U \\ j=1 \end{array}}, \text{ where } (C_i \cdot C_{i+1})_{\widetilde{S}} = 1 \ (1 \le i \le n), \ (C_i \cdot C_j)_{\widetilde{S}} = 0$ if $|i-j| \ge 2$. Let \widetilde{E} be the proper transform of E in \widetilde{S} . Assume that

- (i) $N_{\widetilde{E}|\widetilde{S}} = \mathcal{O}_{\widetilde{E}}(-1)$, where $N_{\widetilde{E}|\widetilde{S}}$ is the normal bundle of \widetilde{E} in \widetilde{S} , and
- (ii) deg $N_{E|X} = -2$, where $N_{E|X}$ is the normal bundle of E in X.

Then we have

- (1) $N_E | X \cong \partial_E \oplus \partial_E (-2)$ if $x \in E$ and $(C_j \cdot \widetilde{E})_{\widetilde{S}} = 1$ (j = 1 or n + 1)
- (2) $N_E|_X \cong \mathcal{O}_E(-1) \oplus \mathcal{O}_E(-1)$ if $x \notin E$.

Proof. In the proof of Theorem 3.2 in Morrison [9], we have only to replace the conormal bundle $N_{\widetilde{E}|\widetilde{S}}^{\star} \cong \mathcal{O}_{\widetilde{E}}(2)$ with $N_{\widetilde{E}|\widetilde{S}}^{\star} \cong \mathcal{O}_{\widetilde{E}}(1)$. The assertion (2) is easy.

Since deg $N_{C_1|X_1} = -2$, $q_i \in C_1$, by Lemma M, we have

$${}^{N}C_{1}|X_{1} \cong {}^{O}C_{1} \oplus {}^{O}C_{1} (-2) .$$

(Step 1). Let $\sigma_2 : X_2 \longrightarrow X_1$ be the blowing up along C_1 and put $C_1' = \sigma_2^{-1}(C_1) \cong \mathbf{F}_2$. Let Y_2, \mathbf{F}_2 be the proper transforms of Y_1, \mathbf{F}_1 in X_2 respectively. By easy calculation, we find that Y_3 has only the A_3 -singularity q_2 and the D_6 -singularity q_0 . Then there exists the birational map $\mu_2 : \widetilde{Y} \longrightarrow Y_2$ such that $\mu_2^{-1}(q_2) = f_2 \cup f_3 \cup f_4$ and $\mu_2^{-1}(q_0) = {}^{10}_{\cup} f_1$. We put $1_1^{(2)} = \mu_2(1_1)$ (i = 1,2), $f_1^{(2)} := \mu_2(f_1)$, and $C_2 = \mu_2(C)$. Then we have $C_1' \circ Y_2 = f_1^{(2)} + C_2, q_2 \in C_2, q_0 \notin C_2$. In particular, $f_1^{(2)}$ is a fiber and C_2 is a negative section of $C_1' \cong \mathbf{F}_2$, and $(1_1^{(2)} \cdot 1_1^{(2)})_{\mathbf{F}_2} = (1_2^{(2)} \cdot 1_2^{(2)})_{\mathbf{F}_2} = 0$, $(f_1^{(2)} \cdot f_1^{(2)})_{\mathbf{F}_2} = -1$. We also have deg $N_{\mathbf{C}_2}|_{\mathbf{X}_2} = -2$, hence by Lemma M,

$${}^{N}C_{2}|X_{2} \stackrel{\simeq}{\longrightarrow} {}^{\mathcal{O}}C_{2} \stackrel{\oplus}{\longrightarrow} {}^{\mathcal{O}}C_{2} (-2)$$

(Step k, k≥2). Let $\sigma_k : X_k \longrightarrow X_{k-1}$ be the blowing up along C_{k-1} , and put $C'_{k-1} = \sigma_k^{-1}(C_{k-1}) \cong \mathbb{F}_2$ for 2≤k≤5. Let Y_k , E_k be the proper transforms of Y_{k-1} , E_{k-1} in X_k respectively. Then Y_k has only the A_{5-k} -singularity q_k and the D_6 -singularity q_0 , where A_0 -singularity q_5 means a smooth point.

There exists the birational morphism $\mu_k : \widetilde{Y} \longrightarrow Y_k$ such that $\mu_k^{-1}(q_k) = f_k \cup \cup f_4$ (for k = 5, μ_5 is isomorphic), and $\mu_k^{-1}(q_0) = \bigcup_{\substack{i=5 \\ i=5}}^{10} f_i$. We put $l_i^{(k)} = \mu_k(l_i)$ (i = 1,2), $f_{k-1}^{(k)} := \mu_k(f_{k-1})$ and $C_k = \mu_k(C)$. Then we have $C'_{k-1} \cdot Y_k = f_{k-1}^{(k)} + C_k , q_k \notin C_k$. In particular, $f_{k-1}^{(k)}$ is a fiber and C_k is a negative section of $C'_{k-1} \cong \mathbb{F}_2$, and $C_k, f_{k-1}^{(k)}$ are the proper transforms of $C_{k-1}, f_{k-2}^{(k-1)}$ $(0 < j \le k-2)$ in X_k . By Lemma M, we have

$$\begin{vmatrix} N_{C_{k}} | x_{k} &= \mathcal{O}_{C_{k}} \oplus \mathcal{O}_{C_{k}} (-2) \text{ for } 2 \leq k \leq 4 \\ N_{C_{5}} | x_{5} &\cong \mathcal{O}_{C_{5}} (-1) \oplus \mathcal{O}_{C_{5}} (-1) \\ \end{vmatrix}$$

(Step 6). Let $\sigma_6 : X_6 \longrightarrow X_5$ be the blowing up along C_5 and put $C_5' = \sigma_6^{-1}(C_5) \cong \mathbb{P}^1 \times \mathbb{P}^1$. Let Y_6, E_6 be the proper transforms of Y_5, E_5 respectively. Then $\widetilde{Y}_0 := \widetilde{Y}/\bigcup_{\substack{j=5 \ j=5}}^{10} j$ is isomorphic to Y_6 , identifying \widetilde{Y}_0 with Y_6 , we will use the same notations $l_1, l_2, f_1, f_2, \dots$ as in \widetilde{Y}_0 . Let \widetilde{C}_j' ($1 \le j \le 4$) be the proper transform of C_j' in X_6 (see Figure 2).

(Figure 2)

Let f_5 be a fiber of $C_5'\cong {\rm I\!P}^1\times {\rm I\!P}^1$ arising from the blowing up. Then we have

$$(1_2 \cdot 1_2)_{E_6} = 0, (f_i \cdot f_i)_{E_6} = -2 (1 \le i \le 4)$$

 $(1_1 \cdot 1_1)_{E_6} = -2, (f_5 \cdot f_5)_{E_6} = -1.$

In particular, $C = C_5' \cdot Y_6$ gives another ruling on C_5' . Since

$$Y_{6} = \sigma_{6}^{*} \sigma_{5}^{*} \sigma_{4}^{*} \sigma_{3}^{*} \sigma_{2}^{*} \sigma_{1}^{*} H - 3\sigma_{6}^{*} \sigma_{5}^{*} \sigma_{4}^{*} \sigma_{3}^{*} \sigma_{2}^{*} E_{1}$$

- 5c'_5 - 4c'_4 - 3c'_3 - 2c'_2 - c'_1 ,

we have

$$\begin{array}{rcl} \mathcal{O}_{Y_6}(Y_6) &= \mathcal{O}_{Y_6}(D + 3K_{Y_6} - 5C - 4f_4 - 3f_3 - 2f_2 - f_1) \\ \\ &\cong \mathcal{O}_{\widetilde{Y}}(\widetilde{D} - 3Z - 5C - 4f_4 - 3f_3 - 2f_2 - f_1) \\ \\ &\equiv \mathcal{O}_{\widetilde{Y}}(2f) \ , \end{array}$$

where f is a general fiber of $v : \widetilde{Y} \longrightarrow \mathbb{P}^1$ (see § 1, Figure 1). In fact, $v : \widetilde{Y}_0 \longrightarrow \mathbb{P}^1$ is the morphism defined by the linear system $|\partial_{\widetilde{Y}}(2f)|$, thus, \widetilde{Y}_0 can be considered as a ruled surface over a smooth conic $Q \cong \mathbb{P}^1$ in \mathbb{P}^2 . Therefore $|\partial_{Y_6}(Y_6)|$ is free from base points and fixed components, hence, so is $|Y_6| = |\partial_{X_6}(Y_6)|$. Let $\overline{\Psi} := \overline{\Psi}_{|Y_6|} : X_6 \longrightarrow W \longrightarrow \mathbb{P}^3$ be morphism defined by the linear system $|Y_6|$. Then we have the following diagram, which gives the resolution of the indeterminancy of the rational map $\Phi : X \longrightarrow \mathbb{P}^{3}$;

It is easy to see that

 $\overline{\Psi}(Y_6) = \Phi(Y) = \nu(Y_6) = Q \cong 1_2$ $\overline{\Psi}(\bigcup_{j=1}^{4} \bigcup_{j=1}^{5} \bigcup_{j=1}^{5} \bigcup_{j=1}^{5} \bigoplus_{j=1}^{7} \bigcup_{j=1}^{6} \bigcup_{j=1$

Since $N_{C_5}|_{X_5} \cong O_{C_5}(-1) \oplus O_{C_5}(-1)$, by Reid [12], C'_5 can be blowed down along C, and then the blowing downs can be done step-by-step. Finally, we have a smooth projective 3-fold V of $b_2(V) = 2$, the morphisms $\overline{\Psi}_1 : X_6 \longrightarrow V$, $\overline{\Psi}_2' : V \longrightarrow W$ and the birational map $\rho : X_1 \longrightarrow V$ such that

(i) $\overline{\Psi} = \overline{\Psi}_1 \circ \overline{\Psi}_2$ (ii) $X_1 - C_1 \stackrel{\rho}{=} V - \overline{f}_3$, where $\overline{f}_3 := \overline{\Psi}_1(f_3)$.

Since $-K_{X_1} = Y_1 + E_1$, by (ii) above we have $-K_V = A + \Sigma$, where we put $A = \overline{\Psi}_1(Y_6)$ and $\Sigma := \overline{\Psi}(E_6)$. For a general fiber F of $\overline{\Psi}_2 : V \longrightarrow W$,

$$\deg(K_{\tau}) = (K_{\tau} \cdot F) = -(\Sigma \cdot F) \leq -1 ,$$

hence $F \cong \mathbb{P}^1$ and $(\Sigma \cdot F) = 2$. Therefore Σ is a meromorphic double section of $\overline{\Psi}_2 : V \longrightarrow W$. Let G be a scheme theoric fiber. Then $(G \cdot \Sigma) = 2$. Taking an account of $V - (A \cup \Sigma) \cong \mathbb{C}^3$, $\overline{\Psi}_2 : V \longrightarrow W$ is a conic bundle over W, and $\overline{\Psi}_2$ is the contraction of an extremal ray on a smooth projective 3-fold V. Therefore W must be smooth by Mori [8]. Since deg W = 2, W \cong \mathbb{P}^1 \times \mathbb{P}^1. But this is a contradiction, since $b_2(V) = 2$. This completes the proof.

References

- [1] M. Furushima: Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space C³, Nagoya Math. J. 104 (1986), 1-28.
- [2] M. Furushima: On the singular K-3 surfaces with hypersurface singularities, Pacific J. Math. 125 (1986), 67-77.
- [3] M. Furushima: On complex analytic campactifications of C³, preprint M.P.I. 87-19 (1987).
- [4] M. Furushima N. Nakayama: A new construction of a compactification of C³ with the second Betti number one, in preparation.
- [5] V.A. Iskovskih: Anticanonical models of three dimensional algebraic varieties, J. Soviet Math. 13-14 (1980), 745-814.
- [6] Y. Kawamata K. Matsuda K. Matsuki: Introduction to the minimal model problem, Advanced Studies in pure Math.
 10 (1987), Algebraic Geometry, Sendai (1985), 283-360.
- [7] H. Laufer: On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295.
- [8] S. Mori: Threefolds whose canonical bundles are not numerical effective, Ann. Math. 116 (1982), 133-176.
- [9] D. Morrison: The birational geometry of surfaces with rational double points, Math. Ann. 271 (1985), 415-438.

- 17 -

- [10] D. Mumford: Topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. I.H.E.S. 9 (1961), 5-22.
- [11] T. Peternell M. Schneider: Compactifications of C³, I, preprint (1987).
- [12] M. Reid: Canonical 3-folds, Advanced Studies in pure Math. 1, Algebraic Varieties and Analytic Varieties (1983), 131-180.
- [13] Y. Umezu: On normal projective surfaces with trivial dualizing sheaf, Tokyo J. Math. 4 (1981), 343-354.

- 18 -

A+t=5 (A=1, t=1)

ムッた=6、(Δ31,大≥1)

- 22 -

•

.

•

•

.