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Introduction. Let (X,Y) be a smooth projective
compactification of ¢3 such that Y has at most isolated
singularities. Then X 1is a Fano 3-fold of index «r (1srs4)
with the second Betti number b2(X) =1 and Y 1is a hyper-

plane section of X . In particular, ¥ is normal. In case

[\

of «r 2 , such a (X,Y) is determined [1]. In case of

r =1, I proved in (3] that if such a (X,¥) exists, then
(X,Y) = (V22,H22) , where V22 is a Fano 3-fold of degree
22 in :P13 and sz is a singular K-3 surface which is
rational (see also I11]). However, unfortunately, in case
of r =1, such a (X,Y) does not exist. The purpose of

this paper is to prove it (see § 3).
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§ 1. Determination of boundary

Let (X,Y) = (V22,H22) be as in Introduction. Let

us denote the singular locus by Sing Y . We put

S := {y € Sing ¥Y; Y is not a rational double point} .

Since Y 1is a singular K~-3 surface with h1(0Y) = 0,
S consists of exactly one point {x} with Pg(x) = 1 by
Umezu [13]. We put
Sing Y - {x} := {y1,...,yk} (k 2 0) .
Let m : ¥ —> Y be the minimal resolution of the
singularities of Y , and put T Tx) =T, ﬂ_1({y1'...,yk}) =B,

and s := bz(F) (the numbers of the irreducible components of

I' ). Let K§ be the canonical divisor on ¥ . Then we have

where 2Z 1is the fundamental cycle of the singular point
x associated with the resolution (¥,7) (see (71, [2]).
Since X 1is a smooth 3-fold, Sing Y consists of hyper-

surface singularities. By Laufer {7], we have
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where Z2 = (Z'Z)§ .

By Noether formula, we have

2 ~
Lemma 1. (Z“,bz(Y)) = (=1,11, (-2.12) or (-3.12) ,

R
where b, {Y) = dim H" (Y:R)

Let U, (resp. Uy 1<ick ) be a contractible neighbourhood
of Xx (resp. v. }) in Y . We may assume that U,,U., (1sisk) are
i X k 0’71

disjoint. We put U = U U, and 93U = U 3U, , where 23U, |is
i=0 * i=o & i

the boundary of U - Then we have the excat sequence of

Poincare homomorphism P2 :

2 Py
0 —> H (Y;E) —> HZ(Y;Z) —_— H1(8U:Z) —> 0 .

By Lemma 2.5 in Peternell-Schneider [11], we have
H1(BU:Z) = %

22 °

In particular, we have

Lemma 2 ([11]). H1(BUO:Z) = %,, and H, (3U;:Z) =0
for 1<isk , namely, yi‘s are all'Ea-singularities.

By Lemma 2, we have b,(B) = 8k . Since ‘
bZ(Y) = bz(Y) + bz(P) + bz(B) =1+ s + 8k , by Lemma 1, we

have k s 1 , in particular,



(-1,2), (-2,3) or (-3,4) if k =1

(-1,10), (-2,11) or (-3,12) if k =0 .

Using the classification table of minimally elliptic
singularities due to Laufer {7], we can determine the possible
type of singularitiés of Y as Table 1 below.

In each case of Table 1, calculating the homology group

H1(3U0:Z) according to Mumford [10], we have

Lemma 3. Sing Y consists of exactly one point x of

the type

where we denote by (::) (resp. (::) ) a smobth rational

curve with self—intersection number -2 {(resp. -3).

Let (X,Y) = (V22,H22), Sing Y be as above. Then the
minimal resolution Y 4is obtained from ZPz by 12 times
blowing_ups. Y can be represented as a ruled surface

v:¥—P over P' (see Figure 1),



(Figure 1)

where v-1(0) =CUF¥f

iy 10
v (») = Uf
i=5

Moreover, we have

1 U f2 U.f3 U f4 U l1 p

i U C' are singular fibers, and 1, is a section.

[
i
(8]
-~

(1) (1,°19)g = (1,010 = =3, (£,°f,)y =

(C-Cly = (C'-C')g = -1 (1si570)

(ii) (B-C)? = 2, (5'0')? = 3 , where D = 7(D) is a

canonical hyperplane section such that
Pic X = Z°0Y(D) , in particular,

deg D = (D-D)Y = 22 .



(iii) 2z = f * 1,021, ¢+

g ¥ 2E3 v 28, + 25, 1 2
3Eg + Af, + 26 + 3fg + 26 + £
(iv) 2° = -3 , hence the multiplicity m(0, ) of

the local ring 0Y x 3t x is equal to 3 by
r

Laufer [7].

Lemma 4.

(1) there is no line in X through the point x .

(2) C4 := m(C) &> Y 1is unique conic on X through the
point x .
Proof. Since m(OY x) = 3 and Y 1is a hyperplane
, ,

section of X , a line or a conic through the point =x must
be contained in Y . Since (C-ﬁ)? = {C,°D)y, = 2 and D is
a hyperplane section, Co is a conic on X . Let F be a
line or a conic on X through the point x , hence F cY '
in particular, the proper transform F of F in ¥ must be
the exceptional curve of the first kind. We can write D as

follows:

D = 2C + 4f4 + 6f3 + 2]..| + 6f2 + 6f1 + 612

+ 12f. + 18f, + 9f7 + 15f, + 12f

5 6 8 9

+ 9f10 + 6C' ,



By assumption, (D-F)ey = 1 or 2 . This implies the assertions

(i) and (ii).

§ 2. Triple projection from a point

Let (X,¥) = (V,,,H,,), Sing Y = {x} be as in § 1. Let

H be a sufficiently general hyperplane section of X . Let

us consider the linear system |H-3x| on X . Since

m(OY’x) =3, Y € |H-3x| . Let o, + X, —> X = V,, be the
blowing up at the point x , and put 011(x) := B, E:PZ .

* *
Since -K, = H and Y € |H-3x], -Kx1 = 0 H-2E,, Y, = 0,H-3E; ,

where Y, is the proper transform of Y in X, - By the

adjunction formula, we have

Ky, = Kx1ly1 * Y1|Y1

-(Y1+E1)lY1 + Y1|Y1

= -E1|Y1 . (2.1)
i %*
Lemma 5. H (x1,0X (01H-3E1)) =0 for i >0 and
1 .
. 0 * -
dim H (X1'0X (01H-3E1)) = 4 .

1

Proof. Let us consider the exact sequence

0 —> 0x —> 0

] (¥,) —> 0, (¥,) —> 0.

X4 1



* .
Since Y1.= 01H-3E1 and Hl(X.I,OX ) =0 for i >0 , we
1
have only to prove Hi(Y1,OY (Y1)) =0 for i>0 . By (2.1),
1
we have
O *
1 1
= 0Y1(D1+3KY )
1
*

where D, = o H v is the proper transform of D in Y,

1
By Kawamata vanishing theorem [6], we have only to prove that

0, (D+2K, } is nef and big on Y, . Indeed, there exists the

Y Y
1 1
birational morphism wu, : ¥ —> Y, such that 7w = (o], )eu,
' 1
* ~ ~
Then u,(D,+2K, ) = D-2Z . We can easily see that D-22 is nef

1

and big on Y . Thus 0Y (D1+2KY ) 1is nef and big.
1 1

*
By Riemann-Roch theorem, dim H'(X,,0, (0 H-3E,)) = 4 .

1
This completes the proof.

Corollary. dim HO(Y1,0Y (Y1)) =3,
1

By Lemma 5, the linear system |H-3x| defines a rational

map

Now, by Corollary, we have



s 0
3 = dim H (Y1,0Y1(Y1))

. 0
dim H (Y1’0Y1(D1+3KY1))

dim u° (¥,0¢(5-32)) .

Let {g1,g2,g3} be a basis of HO(?,O?(ﬁ-BZ)) such

that

(g1) = 11C + 10f4 + 9f£, + 21, + 6f, + 3f

3 1 2 1

5C + 4f, + 3f

(gz) 4 + 2f2 + £. + 2f

3 1 5

+ 4F_. + 4F. + 4Ff_,

4f 8 9 10

+ 2f

6 7

+ 4C'
(g3) = 8C + 7f4 + 6f3 + l1 + 4f2 +

2f, + f5 + 2f, + £_ + 2f

1 6 7 8

+ 2£, + 2f

9 + 2C!

10

Since 2(g,) ='(g1) + (gz), g := (g = gy ¢ g3) defines a

rational map ¥ —> Q@ of Y onto a conic

Q := {wg = wowl} C-—>:IL>2(w0 P, w2) . This implies that
(YY) = Q =IP1 and W = ¢(X) 1is a quadric hypersurface in
P3 ; Thus,

Lemma 6., Let ¢ : X --->:P3 be the triple projection

from the point x . Then the image W = ¢(X) 1is an irreducible

3

quadric hypersurface in P and Q = ¢(Y) 4is a smooth

hyperplane section.
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§ 3. Non-existence of the case r = 1

Let X, x, X o] E Y, ... be as in § 2.

(A A
Let A &> X Dbe a small neighbourhood of x with a

coordinate system (Z1,ZZ,Z3) . By Laufer [7], we may assume

— - — 3
ANY = {z2 27 = 272 + 2.27 + z1zz} ,

x = (0,0,0) € & .

By an easy calculation, we find that Y, has two rational
double points, namely, A4-singularity a4 and Ds-singularity
90 . pet Mg od ¥ — Y1 be the projection aqﬂfn § 2. Then
u;1(q1) = f1 u £, U f3 U f4 and u;1(q0) = jgsfj . We put
1{" <u, @) @=1,2,and ¢, = (0 . Then C, is the
proper transform of Co in Xy and E1°Y1 = 1{1) + 151) '
in particﬁlar, C1 is a smooth rational curve in Y1 c x1
with g, € C,, q, ¢ ¢, » and li1) (£ = 1,2) are two distinct
lines in E, =IPZ .

We will resclve the indeterminancy of the linear systems
L1 t= [c:H—3E1] on X1 . We remark that L1 has no fixed component,

and the base locus B_L, = C, U {q1} .

Lemma M([9]). Let E be a smooth rational curve in a

smaooth projective 3-fold X , and S be a surface with only



one singularity x of A - type such that E < S < X .

n+1
et A : S —> S be the minimal resolution, and put

-1 n+1
A (x) = U C. , where (C.-
j=17 +

if |i-j| 2 2 . Let E be the proper transform of E in

Cipqly =1 (1515n),.(ci-cj).§ = 0

S . Assume that

(1) Nglg = OE(-1) , where Nﬁlg is the normal bundle of

E in S , and

(ii) deg NEIX = =2 , where NE[X is the normal bundle of
E in X .
Then we have
{1) NEIX 3 OE ] OE(—Z) if x € E and (Cj'E)§ = 1
(j =1 or n+ 1)
(2) NE|X 3 OE(-1) ] OE(-1) if x ¢ E .

Proof. 1In the proof of Theorem 3.2 in Morrison [9], we

have only to replace the conormal bundle N

R *

Ig s OE(Z) with

* -
Nﬁlg s 0@(1) . The assertion (2) is easy.

Since deg N = =2, q; € C1 ; by Lemma M , we have

C1|x1
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{Step 1). Let o, : X, — X

2 2 1
[ -1 ~
along C, and put C; = 0, (C1) =F, . Let Y,, E, be the

be the blowing up

proper transforms of Yo B1 in X, respectively. By easy
calculation, we find that Y3 has only the A3-singularity

q, and the DG—singularity dp - Then there exists the

. . R ~ _1 _
birational map My Y —> Y2 such that Mo (qz) = f2 U f3 U f
“and -1( ) = 1? £ We put 1(2) = (1.) (i =1,2)
Mo ! T D Ri TR i Ha 'ty = el
f}z) 1= uz(f1) , and C, = uz(C) . Then we have

. _ (2 . 2 .
S Y, = f1 ) 4 Cyr q, € Cyr gy ¢ C, - In particular, f{ ) is

a fiber and c, is a negative section of C{ iF, . and

(2) (2), . (2 . @, _ (2) . £(2)
17 1, = (g 1,7, = 0. (5 £,

We also have deg N = -2 , hence by Lemma M ,
C, 1%,

)
E,

(Step k, k22). Let : X, —> X be the blowing up

Ik k k-1
-1

along C,_, , and put Cp_, =0 (C _,) 5F, for 25ks5 . Let
Yy Ep be the proper transforms of Yooqr Ek-1 in Xy
respectively. Then Yy has only the As_k-singularity q and
the Ds-singularity dg where Ao-singularity dg Means a
smooth point.

There exists the birational morphism My ¢ ¥ —> Yk such

that u£1(qk) = £ u u f4 (for k = 5, ug is isomorphic),
and ul'(g.) = 1U0f we put 1) =y (1) (1= 1,2)

P Mo’ T DR TEP S S S A
féfi 2= w (£, _,) and C = uy (€} © Then we have
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. = £ (k) (k)
Cr 1 Y = .07 Y Cp v 9 € C . In particular, f,_; 1is
a fiber and Cp is a negative section of Cr-1 5F, ,» and
(k) | (k=1)
Ckr fr_q are the proper transforms of C, _,. fk_2
(0<jsk=-2) in Xy « By Lemma M , we have
N =4 ® 0, (-2) for 2sks4
Cpl¥e T T T TG
o
N s 0, (-1) @ 0, (-1) .
Csl%s ~ "Cq Cs

(Step 6). Let g : Xg —> Xg be the blowing up along

-1 1

]
|- =
C; and put Cg = o (Cs) P xP . Let Y., E. be the "
proper transforms of YS' E5 respectively. Then ?O := ¥/ U fj
. o . j=5
is isomorphic to Y6 , 1dentifying ¥y with Yo , we will use
the same notations 11, 12, f1, f2’ ... as in YO . Let

63 {(15354) be the proper transform of Ci in Xe (see

Figure 2)

3t

-— -
(@]
Fh\bto=

(Figure 2)
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Let f5 be a fiber of Cé =P XIP1 arising from the blowing
up. Then we have
(12'12)E = 0, (fi-fi)E = -2 (1sis4)
6 6
(1,-1.) = =2, (f.-£f.) = -1
1 71 E6 5 75 Eg

In particular, C = Cf - Y

5 6 gives another ruling on Cé
Since
_****** * % Kk % %
YG = 060504036201H - 30605040302E1
- [ X R O B P X S |
5C5 4C& 3C3 2Cé C1 ’
we have
OYG(YG) = OYG(D + 31(Ys - 5C - 4f4 - 3f3 - 2f2 - f1)

114

OY(D - 32 - 5C - 4f4 - 3f3 - 2f, - £

2 1)

n

where f is a general fiber of v : ¥ —--->]P1 (see § 1,
Figure 1}). In fact, v : ?{'o——>IP1 is the morphism defined by

the linear system |0§(2f)| . thus, ?O can be considered as

1

a ruled surface over a smooth conic Q = TP in ZPZ . Therefore

1OY6(Y6)[ is free from base points and fixed components, hence,

- ' 3
so is |Y.| = |0X6(Y6)[ . Let V¥ := : Xg —> W S>TP" be

| Ye |
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morphism defined by the linear system |Y6| . Then we have
the following diagram, which gives the resolution of the

indeterminancy of the rational map ¢ : X ———>:P3’

.
’

~

) = oY) =v(¥) =Qs1,

—
i

¥(£5) (a line in Pl .

Since Ncslxs = OCS(-1) ® OCS(-1) » by Reid [12], Cg can

be blowed down along C , and then the blowing downs can be
done step-by-step. Finally, we have a smooth projective

3-fold V of b2(V) = 2 , the morphisms Y, 2 Xg — ¥V,

@é : V—> W and the birational map o : x1 --=-> V such that

—
<
I
'-h
w
£
o 3
®
H
o
+h
n
-

3 ¢ 1(f
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Since =K =Y, + E, , by (ii) above we have -K, = A + I ,
X4 1 1 v

where we put A = ¥ (YG) and L := @(EG) . For a general

1

fiber F of ‘i‘z 2 V—> W,

deg(Kp) = (Ky*F) = -(L°F) s -1,

hence F sP' and (I+F) = 2 . Therefore I is a meromorphic

double section of @2 : V—> W . Let G be a scheme theoric

fiber. Then (G-1) 3

2 . Taking an account of V - (A U Z) = C

L4

@2 : V—> W 1is a conic bundle over W, and @2 is the

contraction of an extremal ray on a smooth projective

3-fold V . Therefore W must be smooth by Mori [8]. Since

2, W 32P1 XZP1 . But this is a contradiction, since

deg W

b, (V) 2 . This completes the proof.
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