On complex analytic compactifications
on \mathbb{C}^{3} (II)
by

Mikio Furushima

```
Max-Planck-Institut
für Mathematik
Gottfried-Claren-StraBe 26
D-5300 Bonn 3
```

West Germany

Introduction. Let (X,Y) be a smooth projective compactification of \mathbb{C}^{3} such that Y has at most isolated singularities. Then X is a Fano 3-fold of index $r(1 \leq r \leq 4)$ with the second Betti number $b_{2}(X)=1$ and Y is a hyperplane section of X. In particular, Y is normal. In case of $r \geq 2$, such a (X,Y) is determined [1]. In case of $r=1$, I proved in [3] that if such a (X,Y) exists, then $(X, Y) \approx\left(V_{22}, H_{22}\right)$, where V_{22} is a Fano 3-fold of degree 22 in \mathbb{P}^{13} and H_{22} is a singular $K-3$ surface which is rational (see also [11]). However, unfortunately, in case of $r=1$, such $a(X, Y)$ does not exist. The purpose of this paper is to prove it (see § 3).

Acknowledgement. I would like to thank Max-PlanckInstitut (Bonn) especially Prof.Dr. Hirzebruch for the hospitality and also thank Dr. Nakayama for stimulating conversations and valuable comments.

§ 1. Determination of boundary

Let $(X, Y)=\left(V_{22}, H_{22}\right)$ be as in Introduction. Let us denote the singular locus by Sing Y. We put

```
S := {y E Sing Y; Y is not a rational double point} .
```

Since Y is a singular $K-3$ surface with $h^{1}\left(O_{Y}\right)=0$, S consists of exactly one point $\{x\}$ with $P_{g}(x)=1$ by Umezu [13]. We put

$$
\text { Sing } y-\{x\}:=\left\{y_{1}, \ldots, y_{k}\right\} \quad(k \geq 0)
$$

Let $\pi: \widetilde{\mathrm{Y}} \longrightarrow \mathrm{Y}$ be the minimal resolution of the singularities of Y, and put $\pi^{-1}(x)=\Gamma, \pi^{-1}\left(\left\{y_{1}, \ldots, y_{k}\right\}\right)=B$, and $s:=b_{2}(\Gamma)$ (the numbers of the irreducible components of Γ). Let $K_{\tilde{Y}}$ be the canonical divisor on \widetilde{Y}. Then we have

$$
-K_{\widetilde{Y}}=Z,
$$

where Z is the fundamental cycle of the singular point x associated with the resolution (\tilde{Y}, π) (see [7], [2]). Since X is a smooth 3-fold, Sing Y consists of hypersurface singularities. By Laufer [7], we have

$$
-3 \leq z^{2} \leq-1,
$$

where $z^{2}=(z \cdot z) \tilde{Y}$.
By Noether formula, we have

Lemma 1. $\left(\mathrm{Z}^{2}, \mathrm{~b}_{2}(\tilde{\mathrm{Y}})\right)=(-1,11,(-2.12)$ or (-3.12), where $b_{2}(Y)=d i \mathbb{R}_{\mathbb{R}} H^{2}(Y ; \mathbb{R})$.

Let $U_{0}\left(r e s p . U_{i} 1 \leq i \leq k\right)$ be a contractible neighbourhood of x (resp. Y_{i}) in Y_{k}. We may assume that $U_{0}, U_{i}(1 \leq i \leq k)$ are disjoint. We put $U=\underset{i=0}{U} U_{i}$ and $\partial U=\underset{i=0}{U} \partial U_{i}$, where ∂U_{i} is the boundary of U_{i}. Then we have the excat sequence of Poincare homomorphism P_{2} :

$$
0 \longrightarrow \mathrm{H}^{2}(Y ; z) \xrightarrow{\mathrm{P}_{2}} \mathrm{H}_{2}(Y ; Z) \longrightarrow \mathrm{H}_{1}(\partial U: Z) \longrightarrow 0 .
$$

By Lemma 2.5 in Peternell-Schneider [11], we have

$$
H_{1}(\partial U: Z) \cong \mathbf{Z}_{22}
$$

In particular, we have

Lemma 2 ([11]). $H_{1}\left(\partial U_{0}: Z\right) \cong \mathbf{Z}_{22}$ and $H_{1}\left(\partial U_{i}: Z\right) \cong 0$ for $1 \leq i \leq k$, namely, $y_{i} ' s$ are all E_{8}-singularities.

By Lemma 2, we have $b_{2}(B)=8 k$. Since $b_{2}(Y)=b_{2}(Y)+b_{2}(\Gamma)+b_{2}(B)=1+s+8 k$, by Lemma 1 , we have $k \leq 1$, in particular,

$$
\left(z^{2}, s\right)=\left\{\begin{array}{l}
(-1,2),(-2,3) \text { or }(-3,4) \text { if } k=1 \\
(-1,10),(-2,11) \text { or }(-3,12) \text { if } k=0
\end{array}\right.
$$

Using the classification table of minimally elliptic singularities due to Laufer [7], we can determine the possible type of singularities of Y as Table 1 below.

In each case of Table 1, calculating the homology group $H_{1}\left(\partial U_{0}: \mathbb{Z}\right)$ according to Mumford [10], we have

Lemma 3. Sing Y consists of exactly one point x of the type

where we denote by curve with self-intersection number -2 (resp. -3).

Let $(X, Y)=\left(V_{22}, H_{22}\right)$, Sing Y be as above. Then the minimal resolution \tilde{Y} is obtained from \mathbb{P}^{2} by 12 times blowing ups. \tilde{Y} can be represented as a ruled surface $v: \tilde{Y} \longrightarrow \mathbb{P}^{1}$ over \mathbb{P}^{1} (see Figure 1),

(Figure 1)
where $U^{-1}(0)=C U f_{1} \cup f_{2} \cup f_{3} \cup f_{4} \cup 1_{1}$,
$U^{-1}(\infty)=\bigcup_{i=5}^{10} f_{i} \cup C^{\prime}$ are singular fibers, and I_{2} is a section. Moreover, we have
(i) $\left(1_{1} \cdot 1_{1}\right)_{\tilde{Y}}=\left(1_{2} \cdot 1_{2}\right) \tilde{Y}=-3,\left(f_{i} \cdot f_{i}\right) \tilde{Y}=-2$,
$(C \cdot C)_{\tilde{Y}}=\left(C^{\prime} \cdot C^{\prime}\right)_{\tilde{Y}}=-1 \quad(1 \leq i \leq 10)$
(ii) $(\widetilde{D} \cdot C)_{\tilde{Y}}=2$, $\left(\tilde{D} \cdot C^{\prime}\right)_{\tilde{Y}}=3$, where $D=\pi(\widetilde{D})$ is a
canonical hyperplane section such that
Pic $X \cong \mathbf{z} \cdot 0_{Y}(D)$, in particular,
$\operatorname{deg} D=(D \cdot D)_{Y}=22$.
(iii)

$$
\begin{aligned}
Z= & f_{4}+2 f_{3}+2 f_{2}+2 f_{1}+l_{1}+2 l_{2}+ \\
& 3 f_{5}+4 f_{6}+2 f_{7}+3 f_{8}+2 f_{9}+f_{10}
\end{aligned}
$$

(iv) $z^{2}=-3$, hence the multiplicity $m\left(O_{Y, x}\right)$ of the local ring $O_{Y, X}$ at X is equal to 3 by Laufer [7].

Lemma 4.

(1) there is no line in x through the point x .
(2) $C_{0}:=\pi(C) C Y$ is unique conic on X through the point x.

Proof. Since $m\left(O_{Y, X}\right)=3$ and Y is a hyperplane section of X, a line or a conic through the point x must be contained in Y. Since $(C \cdot \widetilde{D})_{\tilde{Y}}=\left(C_{0} \cdot D\right)_{Y}=2$ and \dot{D} is a hyperplane section, C_{0} is a conic on X. Let F be a line or a conic on X through the point X, hence $F \subset Y$, in particular, the proper transform \tilde{F} of F in \tilde{Y} must be the exceptional curve of the first kind. We can write \widetilde{D} as follows:

$$
\begin{aligned}
\tilde{D}= & 2 C+4 f_{4}+6 f_{3}+21_{1}+6 f_{2}+6 f_{1}+61_{2} \\
& +12 f_{5}+18 f_{6}+9 f_{7}+15 f_{8}+12 f_{9} \\
& +9 f_{10}+6 C^{\prime} .
\end{aligned}
$$

By assumption, $(\widetilde{D} \cdot \widetilde{F})_{\tilde{Y}}=1$ or 2 . This implies the assertions (i) and (ii).
Q.E.D.

§ 2. Triple projection from a point

Let $(X, Y)=\left(V_{22}, H_{22}\right)$, Sing $Y=\{x\}$ be as in § 1. Let H be a sufficiently general hyperplane section of X. Let us consider the linear system $|\mathrm{H}-3 \mathrm{x}|$ on X . Since $m\left(O_{Y, X}\right)=3, Y \in|H-3 X|$. Let $\sigma_{1}: X_{1} \rightarrow X=V_{22}$ be the blowing up at the point x, and put $\sigma_{1}^{-1}(x):=E_{1} \approx \mathbb{P}^{2}$. Since $-K_{X}=H$ and $Y \in|H-3 x|,-K_{X_{1}}=\sigma_{1}^{*} H-2 E_{1}, Y_{1}=\sigma_{1}^{*} H-3 E_{1}$, where Y_{1} is the proper transform of Y in X_{1}. By the adjunction formula, we have

$$
\begin{align*}
\mathrm{K}_{\mathrm{Y}_{1}} & =\mathrm{K}_{X_{1}}\left|Y_{1}+Y_{1}\right| Y_{1} \\
& =-\left.\left(Y_{1}+E_{1}\right)\right|_{Y_{1}}+Y_{1} \mid Y_{1} \\
& =-\left.E_{1}\right|_{Y_{1}} . \tag{2.1}
\end{align*}
$$

Lemma 5. $\mathrm{H}^{i}\left(\mathrm{X}_{1}, \mathrm{O}_{\mathrm{X}_{1}}\left(\sigma_{1}^{*} \mathrm{H}-3 \mathrm{E}_{1}\right)\right)=0$ for $i>0$ and $\operatorname{dim} H^{0}\left(X_{1}, 0_{X_{1}}\left(\sigma_{1}^{*} H-3 E_{1}\right)\right)=4$.

Proof. Let us consider the exact sequence

$$
0 \rightarrow 0_{x_{1}} \rightarrow \nu_{x_{1}}\left(Y_{1}\right) \rightarrow \nu_{Y_{1}}\left(Y_{1}\right) \rightarrow 0
$$

Since $Y_{1}=\sigma_{1}^{*} H-3 E_{1}$ and $H^{i}\left(X_{1}, O_{X_{1}}\right)=0$ for $i>0$, we have only to prove $H^{i}\left(Y_{1}, O_{Y_{1}}\left(Y_{1}\right)\right)=0$ for $i>0$. By (2.1), we have

$$
\begin{aligned}
o_{Y_{1}}\left(Y_{1}\right) & =o_{Y_{1}}\left(\sigma_{1}^{*} H-3 E_{1}\right) \\
& =o_{Y_{1}}\left(D_{1}+3 K_{Y_{1}}\right)
\end{aligned}
$$

where $D_{1}=\left.\sigma^{*} H\right|_{Y_{1}}$ is the proper transform of D in Y_{1}. By Kawamata vanishing theorem [6], we have only to prove that ${ }^{O_{Y_{1}}}\left(\mathrm{D}+2 \mathrm{~K}_{\mathrm{Y}_{1}}\right)$ is nef and big on Y_{1}. Indeed, there exists the birational morphism $\mu_{1}: \widetilde{Y} \longrightarrow Y_{1}$ such that $\pi=\left(\sigma_{1} \mid Y_{1}\right) \circ \mu_{1}$. Then $\mu_{1}^{*}\left(D_{1}+2 K_{Y_{1}}\right)=\widetilde{D}-2 Z$. We can easily see that $\widetilde{D}-2 Z$ is nef and big on \tilde{Y}. Thus $0_{Y_{1}}\left(\mathrm{D}_{1}+2 \mathrm{~K}_{\mathrm{Y}_{1}}\right)$ is nef and big.

By Riemann-Roch theorem, $\operatorname{dim~} H^{0}\left(X_{1}, O_{X_{1}}\left(\sigma_{1}^{*} H-3 E_{1}\right)\right)=4$. This completes the proof.

Corollary. $\operatorname{dim~} H^{0}\left(Y_{1}, O_{Y_{1}}\left(Y_{1}\right)\right)=3$.

By Lemma 5, the linear system $|\mathrm{H}-3 \mathrm{x}|$ defines a rational map

$$
\Phi:=\Phi|H-3 x|: x---->\mathbb{P}^{3}
$$

Now, by Corollary, we have

$$
\begin{aligned}
3 & =\operatorname{dim} H^{0}\left(Y_{1}, O_{Y_{1}}\left(Y_{1}\right)\right) \\
& =\operatorname{dim} H^{0}\left(Y_{1}, 0_{Y_{1}}\left(D_{1}+3 K_{Y_{1}}\right)\right) \\
& =\operatorname{dim} H^{0}\left(\widetilde{Y}, O_{Y}(\widetilde{D}-3 Z)\right) .
\end{aligned}
$$

Let $\left\{g_{1}, g_{2}, g_{3}\right\}$ be a basis of $H^{0}\left(\widetilde{Y}, O_{\widetilde{Y}}(\widetilde{D}-3 Z)\right)$ such that

$$
\begin{aligned}
\left(g_{1}\right)= & 11 C+10 f_{4}+9 f_{3}+2 l_{1}+6 f_{2}+3 f_{1} \\
\left(g_{2}\right)= & 5 C+4 f_{4}+3 f_{3}+2 f_{2}+f_{1}+2 f_{5} \\
& 4 f_{6}+2 f_{7}+4 f_{8}+4 f_{9}+4 f_{10} \\
& +4 C^{\prime} \\
\left(g_{3}\right)= & 8 C+7 f_{4}+6 f_{3}+l_{1}+4 f_{2}+ \\
& 2 f_{1}+f_{5}+2 f_{6}+f_{7}+2 f_{8} \\
& +2 f_{9}+2 f_{10}+2 C^{\prime} .
\end{aligned}
$$

Since $2\left(g_{3}\right)=\left(g_{1}\right)+\left(g_{2}\right), g:=\left(g_{1}: g_{2}: g_{3}\right)$ defines a rational map $\tilde{Y} \longrightarrow Q$ of \tilde{Y} onto a conic $Q:=\left\{w_{2}^{2}=w_{0} w_{1}\right\} \leftrightarrows \mathbb{P}^{2}\left(w_{0}: w_{1}: w_{2}\right)$. This implies that $\Phi(Y)=Q \cong \mathbb{P}^{1}$ and $W=\Phi(X)$ is a quadric hypersurface in \mathbb{P}^{3}. Thus,

Lemma 6. Let $\Phi: \mathrm{X} \boldsymbol{- - >} \mathbb{P}^{3}$ be the triple projection from the point x. Then the image $W=\Phi(X)$ is an irreducible quadric hypersurface in \mathbb{P}^{3} and $Q=\Phi(Y)$ is a smooth hyperplane section.
§ 3. Non-existence of the case $r=1$

Let $X, x, X_{1}, \sigma_{1}, E_{1}, Y_{1} \ldots$ be as in $\S 2$.

Let $\Delta C X$ be a small neighbourhood of x with a coordinate system $\left(Z_{1}, z_{2}, z_{3}\right)$. By Laufer [7], we may assume

$$
\begin{aligned}
\Delta \cap Y & =\left\{z_{2} \cdot z_{1}^{2}=z_{1}^{3} z_{2}+z_{1} z_{3}^{3}+z_{1} z_{2}^{4}\right\}, \\
x & =(0,0,0) \in \Delta .
\end{aligned}
$$

By an easy calculation, we find that Y_{1} has two rational double points, namely, A_{4}-singularity q_{1} and D_{6}-singularity q_{0}. Let $\mu_{1}: \widetilde{Y} \longrightarrow Y_{1}$ be the projection as in $\S 2$. Then $\mu_{1}^{-1}\left(q_{1}\right)=f_{1} \cup f_{2} \cup f_{3} \cup f_{4}$ and $\mu_{1}^{-1}\left(q_{0}\right)=\bigcup_{j=5}^{10} f_{j}$. We put $l_{i}^{(1)}=\mu_{1}\left(l_{i}\right)(i=1,2)$, and $C_{1}=\mu_{1}(C)$. Then C_{1} is the proper transform of C_{0} in X_{1}, and $E_{1} \cdot Y_{1}=1_{1}^{(1)}+I_{2}^{(1)}$, in particular, C_{1} is a smooth rational curve in $Y_{1} \subset X_{1}$ with $q_{1} \in C_{1}, q_{0} \notin C_{1}$, and $I_{i}^{(1)}(i=1,2)$ are two distinct lines in $E_{1} \approx \mathbb{P}^{2}$.

We will resolve the indeterminancy of the linear systems $L_{1}:=\left|\sigma_{1}^{*} H-3 E_{1}\right|$ on X_{1}. We remark that L_{1} has no fixed component, and the base locus $B_{s} L_{1}=C_{1} \cup\left\{q_{1}\right\}$.

Lemma $M([9])$. Let E be a smooth rational curve in a smooth projective 3-fold X, and S be a surface with only
one singularity x of A_{n+1} - type such that $E \subset S \subset X$. Let $\lambda: \widetilde{S} \longrightarrow S$ be the minimal resolution, and put
 if $|i-j| \geq 2$. Let \widetilde{E} be the proper transform of E in S . Assume that
(i) $N_{\widetilde{E}} \mid \widetilde{S}=O_{\widetilde{E}}(-1)$, where $N_{\widetilde{E}} \mid \widetilde{S}$ is the normal bundle of \widetilde{E} in \widetilde{S}, and
(ii) $\operatorname{deg} N_{E \mid X}=-2$, where $N_{E \mid X}$ is the normal bundle of E in X.

Then we have
(1) $N_{E \mid X} \cong O_{E} \oplus O_{E}(-2)$ if $x \in E$ and $\left(C_{j} \cdot \widetilde{E}\right) \tilde{S}^{=}=1$ $(j=1$ or $n+1)$
(2) $N_{E \mid X} \tilde{\approx} O_{E}(-1) \oplus O_{E}(-1)$ if $x \notin E$.

Proof. In the proof of Theorem 3.2 in Morrison [9], we have only to replace the conormal bundle $N_{\widetilde{E} \mid \widetilde{S}}^{*} \approx O_{\widetilde{E}}(2)$ with $N_{\widetilde{\mathbb{E}} \mid \widetilde{S}}^{*} \cong O_{\tilde{\mathrm{E}}}(1)$. The assertion (2) is easy.

Since $\operatorname{deg} N_{C_{1}} \mid X_{1}=-2 ; q_{i} \in C_{1}$, by Lemma M, we have

$$
{ }^{N_{C_{1}} \mid X_{1}} \cong{ }^{O_{1}}{ }^{\oplus}{ }_{C_{1}}(-2)
$$

(Step 1). Let $\sigma_{2}: X_{2} \rightarrow X_{1}$ be the blowing up along C_{1} and put $C_{1}^{\prime}=\sigma_{2}^{-1}\left(C_{1}\right) \cong \mathbb{F}_{2}$. Let Y_{2}, E_{2} be the proper transforms of Y_{1}, E_{1} in X_{2} respectively. By easy calculation, we find that Y_{3} has only the A_{3}-singularity q_{2} and the D_{6}-singularity q_{0}. Then there exists the birational map $\mu_{2}: \tilde{Y} \longrightarrow Y_{2}$ such that $\mu_{2}^{-1}\left(q_{2}\right)=f_{2} \cup f_{3} \cup f_{4}$ and $\mu_{2}^{-1}\left(q_{0}\right)={\underset{i=5}{10} f_{i}}^{1}$. We put $l_{i}^{(2)}=\mu_{2}\left(1_{i}\right)(i=1,2)$, $f_{1}^{(2)}:=\mu_{2}\left(f_{1}\right)$, and $C_{2}=\mu_{2}(C)$. Then we have $C_{1}^{\prime} \circ Y_{2}=f_{1}^{(2)}+C_{2}, q_{2} \in C_{2}, q_{0} \notin C_{2}$. In particular, $f_{1}^{(2)}$ is a fiber and C_{2} is a negative section of $C_{1}^{\prime} \tilde{\Xi}_{2}$, and $\left(I_{1}^{(2)} \cdot I_{1}^{(2)}\right)_{E_{2}}=\left(I_{2}^{(2)} \cdot I_{2}^{(2)}\right)_{E_{2}}=0,\left(f_{1}^{(2)} \cdot f_{1}^{(2)}\right)_{E_{2}}=-1$. We also have $\operatorname{deg} \mathrm{N}_{\mathrm{C}_{2}} \mid \mathrm{X}_{2}=-2$, hence by Lemma M ,

$$
\mathrm{N}_{\mathrm{C}_{2}} \mid \mathrm{x}_{2} \approx \mathrm{o}_{\mathrm{C}_{2}} \oplus \mathrm{o}_{\mathrm{C}_{2}}(-2)
$$

(Step $k, k \geq 2)$. Let $\sigma_{k}: x_{k} \longrightarrow x_{k-1}$ be the blowing up along C_{k-1}, and put $C_{k-1}^{\prime}=\sigma_{k}^{-1}\left(C_{k-1}\right) \approx \mathbb{F}_{2}$ for $2 \leq k \leq 5$. Let Y_{k}, E_{k} be the proper transforms of Y_{k-1}, E_{k-1} in X_{k} respectively. Then Y_{k} has only the A_{5-k}-singularity q_{k} and the D_{6}-singularity q_{0}, where A_{0}-singularity q_{5} means a smooth point.

There exists the birational morphism $\mu_{k}: \tilde{Y} \longrightarrow Y_{k}$ such that $\mu_{k}^{-1}\left(q_{k}\right)=f_{k} \cup \cup f_{4}$ (for $k=5, \mu_{5}$ is isomorphic), and $\mu_{k}^{-1}\left(q_{0}\right)=\bigcup_{i=5}^{10} f_{i}$. We put $I_{i}^{(k)}=\mu_{k}\left(I_{i}\right)(i=1,2)$, $f_{k-1}^{(k)}:=\mu_{k}\left(f_{k-1}\right)$ and $C_{k}=\mu_{k}(C) \quad \because$ Then we have
$C_{k-1}^{\prime} \cdot Y_{k}=f_{k-1}^{(k)}+C_{k}, q_{k} \notin C_{k}$. In particular, $f_{k-1}^{(k)}$ is a fiber and C_{k} is a negative section of $C_{k-1}^{\prime} \simeq \mathbb{F}_{2}$, and $C_{k}, f_{k-1}^{(k)}$ are the proper transforms of $C_{k-1}, f_{k-2}^{(k-1)}$
$(0<j \leq k-2)$ in X_{k}. By Lemma M, we have

$$
\left\{\begin{array}{l}
N_{C_{k}} \mid x_{k}=0_{C_{k}} \oplus 0_{C_{k}}(-2) \text { for } 2 \leq k \leq 4 \\
{ }_{N_{C_{5}}} \mid x_{5} \cong 0_{C_{5}}(-1) \oplus O_{C_{5}}(-1)
\end{array}\right.
$$

(Step 6). Let $\sigma_{6}: X_{6} \rightarrow X_{5}$ be the blowing up along C_{5} and put $C_{5}^{\prime}=\sigma_{6}^{-1}\left(C_{5}\right) \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Let. Y_{6}, E_{6} be the proper transforms of Y_{5}, E_{5} respectively. Then $\tilde{Y}_{0}:=\tilde{Y} / \bigcup_{j=5}^{10} f_{j}$ is isomorphic to Y_{6}, identifying \widetilde{Y}_{0} with Y_{6}, we will use the same notations $I_{1}, I_{2}, \mathrm{f}_{1}, \mathrm{f}_{2}, \ldots$ as in $\tilde{\mathrm{Y}}_{0}$. Let $\bar{C}_{j}^{\prime}(1 \leq j \leq 4)$ be the proper transform of C_{j}^{\prime} in X_{6} (see Figure 2) .

(Figure 2)

Let f_{5} be a fiber of $C_{5}^{\prime} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ arising from the blowing up. Then we have

$$
\begin{aligned}
& \left(1_{2} \cdot 1_{2}\right)_{E_{6}}=0,\left(f_{i} \cdot f_{i}\right) E_{6}=-2(1 \leq i \leq 4) \\
& \left(1_{1} \cdot 1_{1}\right)_{E_{6}}=-2,\left(f_{5} \cdot f_{5}\right)_{E_{6}}=-1 .
\end{aligned}
$$

In particular, $C=C_{5}^{\prime} \cdot Y_{6}$ gives another ruling on $C_{5}^{\prime} \cdot$ Since

$$
\begin{aligned}
Y_{6}= & \sigma_{6}^{*} \sigma_{5}^{*} \sigma_{4}^{*} \sigma_{3}^{*} \sigma_{2}^{*} \sigma_{1}^{*} \mathrm{H}-3 \sigma_{6}^{*} \sigma_{5}^{*} \sigma_{4}^{*} \sigma_{3}^{*} \sigma_{2}^{*} \mathrm{E}_{1} \\
& -5 \mathrm{C}_{5}^{\prime}-4 \overline{\mathrm{C}}_{4}^{1}-3 \overline{\mathrm{C}}_{3}^{1}-2 \overline{\mathrm{C}}_{2}^{1}-\overline{\mathrm{C}}_{1},
\end{aligned}
$$

we have

$$
\begin{aligned}
0_{Y_{6}}\left(Y_{6}\right) & =0_{Y_{6}}\left(D+3 K_{Y_{6}}-5 C-4 f_{4}-3 f_{3}-2 f_{2}-f_{1}\right) \\
& \approx O_{\widetilde{Y}}\left(\widetilde{D}-3 Z-5 C-4 f_{4}-3 f_{3}-2 f_{2}-f_{1}\right) \\
& \cong O_{\widetilde{Y}}(2 f),
\end{aligned}
$$

where f is a general fiber of $v: \widetilde{Y} \longrightarrow \mathbb{P}^{1}$ (see $\S 1$, Figure 1). In fact, $v: \widetilde{Y}_{0} \longrightarrow \mathbb{P}^{1}$ is the morphism defined by the linear system $\left|0_{\tilde{Y}}(2 f)\right|$, thus, \tilde{Y}_{0} can be considered as a ruled surface over a smooth conic $Q \cong \mathbb{P}^{1}$ in \mathbb{P}^{2}. Therefore $\left|0_{Y_{6}}\left(Y_{6}\right)\right|$ is free from base points and fixed components, hence, so is $\left|Y_{6}\right|=\left|0_{X_{6}}\left(Y_{6}\right)\right|$. Let $\bar{\Psi}:=\bar{\Psi}_{\left|Y_{6}\right|}: X_{6} \rightarrow W \subset \mathbb{P}^{3}$ be
morphism defined by the linear system $\left|Y_{6}\right|$. Then we have the following diagram, which gives the resolution of the indeterminancy of the rational map $\Phi: \dot{X}-->\mathbb{P}^{3}$;

It is easy to see that

$$
\begin{aligned}
& \bar{\Psi}\left(Y_{6}\right)=\Phi(Y)=V\left(Y_{6}\right)=Q \cong 1_{2} \\
& \left.\bar{\Psi}\left(\bigcup_{j=1}^{4} \bar{C}_{j}^{\prime} \cup C_{5}^{\prime}\right)=\bar{\Psi}\left(f_{5}\right) \quad \text { (a line in } \mathbb{P}^{3}\right) .
\end{aligned}
$$

Since $N_{C_{5}} \mid X_{5} \approx{ }^{\circ} C_{5}(-1) \oplus{ }^{(1)} C_{5}(-1)$, by Reid [12], C_{5}^{\prime} can be blowed down along C, and then the blowing downs can be done step-by-step. Finally, we have a smooth projective 3-fold V of $b_{2}(V)=2$, the morphisms $\bar{\psi}_{1}: X_{6} \longrightarrow V$, $\bar{\Psi}_{2}^{\prime}: V \rightarrow W$ and the birational map $\rho: X_{1} \rightarrow-\operatorname{V}$ such that
(i) $\bar{\Psi}=\bar{\Psi}_{1} \circ \bar{\Psi}_{2}$
(ii) $X_{1}-C_{1} \stackrel{\rho}{\approx} v-\bar{f}_{3}$, where $\bar{f}_{3}:=\bar{\Psi}_{1}\left(f_{3}\right)$.

Since $-K_{X_{1}}=Y_{1}+E_{1}$, by (ii) above we have $-K_{V}=A+\Sigma$, where we put $A=\bar{\Psi}_{1}\left(Y_{6}\right)$ and $\Sigma:=\bar{\Psi}\left(E_{6}\right)$. For a general fiber F of $\bar{\Psi}_{2}: V \longrightarrow W$,

$$
\operatorname{deg}\left(K_{F}\right)=\left(K_{V} \cdot F\right)=-(\Sigma \cdot F) \leq-1,
$$

hence $F \approx \mathbb{P}^{1}$ and $(\Sigma \cdot F)=2$. Therefiore Σ is a meromorphic double section of $\bar{\Psi}_{2}: V \longrightarrow W$. Let G be a scheme theoric fiber. Then $(G \cdot \Sigma)=2$. Taking an account of $V-(A \cup \Sigma) \cong \mathbb{a}^{3}$, $\bar{\Psi}_{2}: V \longrightarrow W$ is a conic bundle over W, and $\bar{\Psi}_{2}$ is the contraction of an extremal ray on a smooth projective 3-fold V. Therefore W must be smooth by Mori [8]. Since $\operatorname{deg} W=2, W \approx \mathbb{P}^{1} \times \mathbb{P}^{1}$. But this is a contradiction, since $b_{2}(V)=2$. This completes the proof.

References

[1] M. Furushima: Singular del Pezzo surfaces and analytic compactifications of 3 -dimensional complex affine space \mathbb{C}^{3}, Nagoya Math. J. 104 (1986), 1-28.
[2] M. Furushima: On the singular $K-3$ surfaces with hypersurface singularities, Pacific J. Math. 125 (1986), 67-77.
[3] M. Furushima: On complex analytic campactifications of \mathbb{C}^{3}, preprint M.P.I. 87-19 (1987).
[4] M. Furushima - N. Nakayama: A new construction of a compactification of \mathbb{C}^{3} with the second Betti number one, in preparation.
[5] V.A. Iskovskih: Anticanonical models of three dimensional algebraic varieties, J. Soviet Math. 13-14 (1980), 745814.
[6] Y. Kawamata - K. Matsuda - K. Matsuki: Introduction to the minimal model problem, Advanced Studies in pure Math. 10 (1987), Algebraic Geometry, Sendai (1985), 283-360.
[7] H. Laufer: On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295.
[8] S. Mori: Threefolds whose canonical bundles are not numerical effective, Ann. Math. 116 (1982), 133-176.
[9] D. Morrison: The birational geometry of surfaces with rational double points, Math. Ann. 271 (1985), 415-438.
[10] D. Mumford: Topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. I.H.E.S. 9 (1961), 5-22.
[11] T. Peternell - M. Schneider: Compactifications of \mathbb{C}^{3}, I, preprint (1987).
[12] M. Reid: Canonical 3-folds, Advanced Studies in pure Math. 1, Algebraic Varieties and Analytic Varieties (1983), 131-180.
[13] Y. Umezu: On normal projective surfaces with trivial dualizing sheaf, Tokyo J. Math. 4 (1981), 343-354.

Table 1
(1)

(2)
(3) $\overbrace{0}^{4}+E_{8}$
(4)

(5) (4)-0-0
(6) (3) (3)
(7) (3)
(8)

(9)

$\Delta+t=5 \quad(\Delta \geq 1, t \geq 1)$
(10)

(II)

(12)

(13)

(14)
(15) (3)
(16)

(17)

(18)

$\Delta+t=6,\left(\Delta_{3} 1, t \leq 1\right)$
(21)

(22)

(23)

(24)

(44) $8_{8}^{20-0-0-0-a-a-b-000}$
(47) 0-a-0-0-0-a-0-a-0-0-0
(8) $0-0-0-\mathrm{C}-0-0-0-0-0-0$

