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ABSTRACT. We apply theory of p-adic periods, the functor field of norms and Witt
explicit reciprocity law in characteristic p > 0, to obtain Briickner-Vostokov type
explicit formulae for the Hilbert symbol of a formal group over Witt vectors.

0. Introduction.

0.1. Let W(ko) be Witt vectors ring with coefficients in a perfect field k¢ of
characteristic p > 2. Let G be a commutative formal smooth group functor over
W (ko) of finite dimension n = n(G). This means existence of a commutative formal
group law on B = W(ko)[[X1,...,Xx]] with an isomorphism of group functors
G ~ SpfB.

Assume that G has finite height h = h(G), 1.e. the isogeny pidg induces
injective morphism p* : B — B of degree p*. Therefore, for any M € N,
G[M] = Ker(pMidg) is a finite flat commutative group scheme over W(k¢) of
order pM*%,

Fix an algebraic closure K of the fraction field Ky of the ring W(ke). If C
is completion of K and m¢ is the maximal ideal of its valuation ring, then the
group homomorphism pMidg : G(mc) — G{mc) is surjective, and its kernel
G(M(mc) = (Z/pMZ)" ]

Let K be a finite extension of Ky in K. Denote its residue field by % and its
maximal ideal by my. Assume that all points of order pM of the group G(mc)
are defined over K, i.e. G[M|(m¢) = G[M](mg). Under this assumption for
f € G(mk), 7 € Gal(K/K) one can define the formal group symbol (f,7]|g with
values in the group G[M](mg) by the relation

(f:'r]G = T.fl —G fl,

where f; € G(mc) is such that (pMidg)(f;) = f. If the residue field k of K is
finite and g : K* — T3 is the reciprocity map of class field theory, then we
obtain the Hilbert symbol (f,gl¢ = (f,7]c, where ¢ € K* and +x(g) is the image
of 7 in I'2P.

Let oly,...,0% be a Z/pM-basis of G[M](mk), then

(f:g]G = Alo}w + +Ah0§4,
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where A(f,¢) = Y(A1,...,4r) € (Z/pMZ)" is vector column with coordinates in
Z/pMZ (for any module B we reserve notation B™ for the module of vector columns
of order n with coordinates in B). The problem of explicit description of the symbol
( , ] is the problem of obtaining of some analytic expression for A(f,g). This
expression should involve information about the structure of the formal group G
and of elements f € G(my) and g € K*.

0.2. In our setting this expression contains elements of some Wg, (k)-algebra £, ;
of Laurent series in variable ¢ with coefficients in Wg, (k). To define £ 7, let a €
Q,a > p—1and let £ ;(a) be W(k)-algebra of formal Laurent series 3, 5 wyt®,
where wy, € Wy, (k) and v(wy) 2 —u/f(ae) for u > 0, v{wy) > —u/((p — 1)e) for
u < 0 (here v is a p-adic valuation, such that v(p) = 1, and e is the absolute
ramification index of the field K). Let 'Cg,z be the p-adic closure of [J Cz,f(a).

a>p—1
Then £ ; = E?f,f ®z, Q-

Hf= 3 w,d* €Ly weset o(f) = ¥ o(wy,)i*?, if this expression has sense in
ueZ ued
Ly ie ifo(f) € L4 7 (here ofwg (k) 1s usual Frobenius morphism of Witt vectors).

Remark, that ¢ is certainly defined on the Wy, (k)-subalgebra C:i of Ly 7, which
consists of #-integral series 3 w,t".
u 20

0.3. We can fix a structure of the formal group G by taking into consideration its
filtered module of p-adic periods M(G) = (M?(G), M (G)). X T(G) is Tate mod-
ule of G and Ty = Gal(K/Kjp), then M°(G) = Hom"°(T(G), Acris) with induced
filtration and action of Frobenius o. The structure of M(G) can be given in terms of
fixed W(ko)-basis h,...,ln of M}(G) and its complement m,, ..., my—, € M*(G)
to a W(ko)-basis of M(G). If | = *(I1,...,1,), m = '(my,...,mu_n) are vector
columns, the structure of M(G) is given by matrix relation

()-+(L)

where £ € GLx(W(ko)). We use this matrix £ to define for all « € N auxillary
matrices F, and F, (of orders n x n and n x (h — n), resp.), such that

a} If G4 is n-dimensional formal group over W{(kg) given by the functional
equation
- = — 1 - — . u
Ia(X) =X + =) Fu(o.la)(X),
p u>l
for its logarithm vector power series I4(X) = {(I41(X),...,l4 (X)), then G ~
Ga.
b) If 64,,...,6% ¢ Mg = tWk[[t]) c L, ; are such that 8%, — o}, under
substitution £ — 7, where 7 is fixed uniformizer of the field K, then we set

ma(Bh) = = 3 Fio"(Ta(@h)),

u>1
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for 1 < ¢ < h, to create modulo pM approximation

. ( M) o pMTa(h) )
t pMma(el,) ... pMma(ly)

of the matrix of values of the p-adic periods pairing T(G.4) x M°(G4) — Acis.
0.4. The first ezplicit formula for (f,¢lc,-

Let f € Ga(mk) and 8 = B(f) € m} ; be such that B(x) = f. Consider g € K*,
such that there exists § = §(f) € W(k)[[ ¢ ]][f~?], such that o6/67 € 1+ T
(1/p)log(c6/6P) = 3. «a.t° with all a. € W(k), and §(7) = g. Equivalently,

(e,p)=1

§=laoli* J] Eloc,t),

(e,p)=1

where ag € k*, a9 € Z, all o, € W(k) and
E(a,X) = exp(aX +--- + (c®a)X? [p* +...) € Z,|[X]].

Such elements g € K* create subgroup of K* of index p'°, where l; is the maximal
integer, such that K contains a primitive root of unity of degree p’.
Under above assumptions we prove the following explicit formula

(41)  A(f,g) = (Resj_g o Tr) {qu (TA(ﬁ) - (ﬁ'/P)&(ﬁ)) diog 5} mod p™ |

where Tr: W(k)} — Z, is trace map, Res;_, is residue and A* = ) F,o".
u>1
This formula is obtained as a result of interpretation of the formal group sym-
bol via Witt symbol in characteristic p. These symbols are related by auxillary
construction of some “cristalline” symbol. In fact, this method is straight general-
ization of our aproach in [Ab3], where we study the case G = Gy,.

0.5. The second ezplicit formula for (f,glc,.

The above formula (*;) is not good enough, because g is not arbitrary element
of K* and one should relate to ¢ the special power series § = §(¢). In the case
G = Gy, Brickner-Vostokov explicit formulae, c¢.f. [Br], [Vol], are free from these
restrictions. By purely formal arguments we transform the above formula (*;) to
the formula of Briickner-Vostokov type. This result can be stated as follows.

Let f € Ga(mk), B = B(f) € m};, A* = 3 F,o* and the matrix V; be as
’ u>1

above. For ¢ € K* let § = 6(f) € W(k)[[  ]][{™'] be such that §(x) = ¢ and
6 = [ao)i®(1 + 61), where g € k*,a0 € 2,6, € my ;. Let

7.4(B) = ;5 S Fi(o*TA(B))

u>1

and assume that K contains a primitive root of unity (s of degree pM. Then
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(*2) A(fag) =

(Res o Tr) {v;l [(Iﬁ(ﬂ) - O%IA(ﬁ)) diog 6 — ;—)mg g—f d (ii%) )] } mod pM

This formula is obtained from the formula (*;) by taking into consideration p™-
primary elements of the group K* to avoid restriction on ¢ € K*, by proving that
values of (*;) do not depend on a choice of 6(5) and that (%)) and (*2) have the
same value under special choice of §(f) from n.0.4.

The formula (*2) does not contain information about (3 € K. Now we don’t
have an answer to the following question: is the formula (*;) valid without assump-
tion (ar € K7

The formula (*3) can be considered as a generalization of the result from [B-V],

where the case of 1-dimensional formal group symbol modulo p (i.e. M = 1) was
studied.

0.6. As it was mentioned earlier, our arguments are based on Fontaine’s theory
of p-adic periods for p-divisible groups (also, Fontaine-Wintenberger functor field
of norms and Fontaine’s interpretation of Witt reciprocity law play very important
role). It seems, one can apply Fontaine’s theory for formal groups over arbitrary
local fields K| to obtain explicit formulae at least modulo some finite defect sub-
group in G[M](mg) (which is trivial, if absolute ramification index of K is less
than p — 1), c.f. [Fol]. All our arguments can be directly applied in the case of
A-modules over Ayr, one should use parallel theory of m4-adic periods (in par-
ticular, this gives explicit formula in the Lubin-Tate case from [Vo2]), c.f. [De],
[F-L]. Our method is ajusted also to study the case of “p-adic motives” appearing
in Fontaine-Laffaille theory, but one should clarify the concept of p-adic points for
these motives. It would be also interesting to develop this theory by methods of
[Ka], where the most natural and general interpretation of explicit formulae for the
group Gy, is given.

Finally, we remark, that there is another way to obtain explicit formulae for the
Hilbert symbol, which is presented by Coates-Wiles formulae in the cases of multi-
plicative and Lubin-Tate groups, and by Kolyvagin’s ideas [Ko] for 1-dimensional
groups. Recently, D. Benois (private communication) obtained in this way explicit
description of Kolyvagin’s normalized relations and formulae of Artin-Hasse type
for the Hilbert symbol in the case of formal groups over arbitrary local field. These
formulae also involve information about matrix of values of p-adic periods pairing,.

This paper was written during my stay in the “Arbeitsgruppe Algebraische Geo-
metrie und Zahlentheorie” (Max-Planck-Gesellschaft, Berlin). I express my grati-
tude to this organization for hospitality.

1. p-adic periods of a formal group over Witt vectors.

Let Ky be the fraction field of Witt vectors ring H_f(ko), where kg is a perfect
field of characteristic p > 2. Fix an algebraic closure K of Ky, and denote by C a

p-adic completion of K. Let mc be the maximal ideal of the valuation ring O¢ of
the field C and 'y = Gal(K/Ky).



1.1. Fontaine’s ting Acs, [Fo3].
Let R = { (:.c(")),,zo | ™ € O¢,z("tr = g } be a ring with opera-
tions (z(™) + () = (z), (M )(y™) = (w™), where z(") = lim (z("*+™ +

y(ntmP™ () = (Mg () The ring R is complete with respect to the valuation
vr given by vr((z(™)) = v(z(®), where v is a p-adic valuation on C, such that
v(p) = 1. Residue fields of O¢ and of R are canonically identified, in particular,
there is a canonical inclusion of Witt vectors rings W (ko) C W(R). We use notation
mpg for the maximal ideal of R.

Ifw= Y p*lr.] € W(R), then w — } p"r) gives epimorphism of W (ko)-

n20 n>0

algebras v : W(R) — Oc¢, and W!(R) := Kerv is a principal ideal in W(R).
One can take as its generator any ¢ € W!(R), such that vg(rg) = 1, where rq =
£ mod pW(R) € R. Remark, that Ker(y : W(mpg) — m¢) := W!(mpg) equals to
EW(mp). Acis is the p-adic completion of the divided powers envelope of W(R)
with respect to the ideal Ker+y. A¢ps has induced continuos T'g-action and AEr"is =
W(ko). Absolute Frobenius ¢ of W(ky) has a natural prolongation ¢ to Acs.
There is a decreasing filtration Fil' Acsis, 7 > 0, of divided powers of the ideal Ker .
If Yeris : Acris — Oc¢ is a natural prolongation of «, then Fil' Acpis = Ker veris-
One has ¢o Fil' Acris C pAcris, 50 ¢1 = ¢o/p is well-defined o-linear morphism
from Fil' Acris t0 Acris. Sometimes we denote ¢g and ¢; simply by ¢ and o/p,
respectfully.

If M € N, denote by Acris,pm the quotient Acris/pM Acris with induced [y-action,
filtration and mappings $o : Acris,M — Acris,M: $1 : Fil' Acris,M — Acris,M-

1.2. p-adic periods pairing, [Fol], [F-L].

Denote by MFyy(4,) the abelian category of admissible filtered modules with
filtration of length 1. Its objects are quadruples M = (M%, M, ¢y, ¢1), where A°
is a W(ko)-module, M! is its submodule, ¢g : M® — M® and ¢y : M! — M°
are o-linear morphisms, such that for any m € M® one has ¢o(m) = p¢(m), and
M = ¢o(M®) + ¢(M?). Morphisms of this category are morphisms of filtered
modules, which commute with ¢o and ;.

Let G be a p-divisible group over W (ko) of finite height A(G). If T(G) is Tate
module of G, let M°(G) = Hompu(T(C:‘), Acris) and MY (G) = Homp, (T(G), Fil' Aesis).
Then ¢o|a..;, and é1lpin 4, induce ¢g : M°(G) — M°(G) and 4, : MY(G) —
M(G)and M(G) = (M°(G), M*(G), $o, ¢1) is the object of the category MFyy k).
The correspondence G — M(G) gives fully faithfull functor from the category of
p-divisible groups over W (k) (of finite height) to the category MFyy(4,). The essen-
tial image of this functor consists of M(G), such that M°(G) is free W (ko )-module
of finite rank. We have rkyy(i,) M°(G) = h(G), and dimension n(G) of G is equal
to rkw(ko) M! (é)

If G is a formal smooth group over W{(ky) of finite height and G[m] = Kerp™ idg,
then G = {G[m]}m>0 is a p-divisible group over W(k¢). The correspondence G — G
gives fully faithfull functor from the category of formal smooth groups of finite
height to the category of p-divisible groups over W(kq). Corresponding objects
M(G) = M(G) can be completely characterized by one additional property: ¢q is
topologically nilpotent on M°(G).



The above description of p-divisible groups G can be interpreted as the p-adic
periods pairing ) :
T(G) x M°(G) — Acsis.
This pairing is Zp-bilinear, nondegenerate and compatible with additional struc-
tures, 1.e. with structures of I'o-modules on T(G) and on Agis, and with filtrations

and Frobenius actions on MO(G') and on Ags. We remark, that if G is a formal
group, then this pairing has values in AY¢ := {a € Aqys | ¢5(a) = 0, if n — oo }.

cris
The above description of p-divisible groups exists also on the level of finite group
schemes. We use it to obtain for any M € N non-degenerate pairing

GIM)(Oc) x (M°(G)mod pM) — Acris,

where G[M] = Ker(p™ idy). As earlier, this pairing is also compatible with all
additional structures. In particular, I'p-module é[M J(O¢) can be identified with

{n € Homyy(r)(M°(G), Acxis,v1) | n(M'(G)) C Fil' Acrin,m
and n¢o = ¢on,n¢1 = 17 }.

1.3. Structure of M(G).
Let G be a p-divisible group over W{(ky) of finite height h and of dimension n.
If M(G) = (M°, M, ¢, 1), then W(ky)-module M! is a direct summand of M°.

So, we can choose W (kg )-basis of M! and elements my,...,mp-n € M?, such that
{l, . layma, .. ymp_n} is W(ko)-basis of MO,
Consider vector-columns { = ‘(I;,...,1,),m = {(my,...,mu—p). Then to give

on M(G) the structure of an object of the category MF (k) is equivalent to giving
the relation

3 (&im)=2(s)

for some invertible matrix £ € GLy (W (k)).
_ (A B
Let £ = ( C, D

rewritten in a form

) be a block form of £, such that the relation (*,) can be

¢31(l_) = Ali-i— Blﬁ‘l
$o(m) = C1l + Dy
Now we restrict ourselves to the case of p-divisible groups arising from formal
groups G. This means, that ¢ acts nilpotently on M® = M®(G). One can easily
verify, that this additional property is equivalent in terms of the matrix £ to the
property
lim Uu(Dl) P D1 = 0.

Let £~ = (é g) be a block form, such that
~ ol
= A? + Bom
*® —
(*2) ) o
m = C— + Dom



e

(now we use notation o and o/p instead of ¢ and ¢;). One can use topological
nilpotency of a0 to replace the above relations (*2) to equivalent relations

- ol _ adl
I=ZFu7v mzzFu_I;—a
u>1 u>l

where Fy = A, F; = B(0C),...,Fy, = B(oD)...(¢*"'D)(¢*C) for u > 3, and
Fl=C,F!=D...(c""2D)(c*1C)foru > 2 (we use, that m = (id = Do)~ C(al)/p
and (id —=Do)"! =id+Do +---+ D(¢D)...(¢* ! D)o* +...).

1.4. Formal group G4.

Let B = W{kg)[[X]] be a power series ring with coeflicients in W (ko) and vari-
ables X1,...,Xn, Bg, = B®Q,. Let A be a o-linear operator on Bg,, such that
AlwXh . X)) = a(w)Xi""‘ ... XPin where w € W(ko), i1,...,in > 0. Denote
by Bg, the space of vector-columnes of order n with coordinates in Bg,. Clearly,
A acts on B&,.

Introduce Zp-linear operator A = Zu21 F,A* on B&, where F,,u > 1, are
n X n- matrices from n.1.3.

Consider {(X) = *(laa(X1,--, Xn)s -, lan(X1, ..., X)) € By, such that

(X)) = (id—é)_] (X)=X+3 A™(X)

p m2>1 pm

(here X = {(Xy,...,X,) € Bg, ). Clearly, I(X) is the unique solution in By, of the
functional equation

Ti(X) = X += 3 Fu(oTa)(X™), Ta(0) =0
u>1
(here o, : By — Bg, is action of o on coefficients of power series).

By [Ha], power series [4(X) can be taken as the logarithm map of some n-
dimensional commutative formal group law G 4 over W (k). Namely, G4 = Spf B
with coaddition given by the relation A4(X) = I3} (14(X)®1 + 1&14(X)).

In fact, formal groups G and G 4 are isomorphic. This follows from comparison
of Fontaine’s and of Honda’s theories, c.f. [Fol, Ch.5]. In n.1.5 below we use more
precise version of this statement.

1.5. Construction of p-adic periods pairing.
1.5.1. Lemma. 4 induces injective continuos homomorphism of I'g-modules
I_A : GA(W(mR)) — Agris & QP'

Proof.

Let w € GA(WY(mg) + pW(mg)), then l4(w) € A™. . Divided powers of the
ideal W!(mpg) + pW (mp) give basis of topology on As. Therefore, 4 is injective
on Go(W!(mpg) + pW(mg)). If w € Ga(W(mpg)), then w; = (p"idg,)(w) €
W (mg) + pW(mpg) for some n > 0, because pidg, is topologically nilpotent on
Ga(mr). - -

Now l4(w) = (1/p")a(w1) and injectivity of lalg,(w(mg)) 15 @ formal conse-
quence of the above injectivity of lalg (Wi (mp)+pW(ma))-



Corrolary. Forany M € N
[4:Ga(Wy(mg)) — A, ® Q, mod pMW(mp)

is injective continuos homomorphism of I'y-modules.

Proof.

Any w € GA(W(mpg)) can be written as w = w; +g, (pMw), where wy,w; €
W(mg)" and w; mod p W(mpg) is uniquelly determined. The statement follows,
because for any m € N one has I4(Ga(p™W(mg))) C p™W(mpg)", 4 is identical
on p™W(mpg) mod p™*t' W (mg) and, therefore, [4 induces bijection

La: Ga(p™W(mpg)) — p"W(mg)".

1.5.2. Let 0 = (05)sp0 € T(G4). Here all o, € Ga(me), (pidg,)(0s4+1) = 0,
and op = 0. For every s choose 6, € W(mpg), such that v(6;) = 0, mod pmc.
In this notation one has

p‘”+ll-,4(6s+1) = paiA(és)modps Fil' Acys + p3+1W(mR).

Indeed, v((pidg, )(6s+1)) = (pidg, )(0s41) = 05 = ¥(8,) mod pm ¢, therefore,
(pidg ) (6s+1) = 6, mod W' (mpg) 4 pW(mp), and

pl_A(GSH) = I_A((pidGA V(6s41)) = iA(éa)mod Fil! Acne + pW(mp).

Let &, € GA(W(mg)), where ¥(8)) = 0, mod pmc, s 2 1, be another system of
liftings. Then

p°l4(6)) = p*la(6,) mod p° Fil' Acsis + p* W (mp).

This equivalence follows because 6, = &, mod W'(mg) + pW(mg).

If we choose 6, € W(mpg), such that ¥(6,) = 05, then p*l4(6,) € (Fil' Agris)?,
because y((p® idg, )(65)) = (p*idg, )(0s) = 0p = 0.

The above reasons give the following lemma, c.f. also [Co],

Lemma. The correspondence o = (0,5)s>0 = Lim p*l4(6,) gives well-defined ele-
ment | € Hom ™ (T(G.4), (Fil' Acris)").

We remark, that if [ = ‘(;,...,1,), then all }; € Hom"(T(G.A), Fil' Acris) =
MG a).

Let m = Y 5, Fio"l/p, where F. are the matrices from n.1.3. Then m =
Y1, ..., Mh—n), where all r; € Homr°(T(GA), Acris) and (o) = lim p*mA(6,),
where m 4(6s) = (1/p) 3. Flo*(I4(5,)). The functional equation for I4 from n.1.4

u>1

gives the relation

—

A
P
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where A* = 3 o, Fuo® is Zp-linear operator on M°(G4). This equality can be
rewritten as, c.f. n.1.3,

(40)-+()
$o(n) m
Therefore, the correspondence | i_, T — 1 gives morphism in the category

MFw (ko)
74 M(G) — M(Ga).

Claim. 74 isisomorphism in MF .y and therefore, gives rise to the isomorphism
nA . G ~ GA.

This is more precise version of the mentioned in n.1.4 existence of an isomorphism
between G and G 4. This fact follows from Fontaine’s description of points of
a formal group in terms of its Deudonne module, c.f. [Fol], and from relation
between covectors and Agyis, c.f. [F-L].

1.5.3. From now on we use the isomorphism 14 to identify G and G 4, in particu-
lar, points of the formal group G can be given by coordinates. We can use lemma of
n.1.5.2 to express values ( , ) of the p-adic periods pairing T(G4) ®z, M°(G.4) —
Acrist

if o = (05)ep0 € T(Ga) and Ly,...,ln,my,...,my_n is the W(ko)-basis of
M%(G 4) from n.1.3, then

a) (0,1} = *({o, 1), ..., {0, 1n)) = ’lingop’l_A(és), where 6, € G(W(mpg)) are such
that v(6,) = 0, mod pmg;

b) {o,m) = ‘({o,mu),....(0,mp—n)) = limp"ma(és) = 3 Fyo*({o,]))/p,
s— 00 us1
where F are matrices from n.1.3.

Values of the modulo pM p-adic periods pairing
Ga[M](mc) ®z, M°(G.4)mod p" — Acris,m

can be given as follows
if 0 € G4[M](mc), then
a) (o0, /mod pM) = pMI4(8), where 6 € G(W(mr)) is such that v(8) = omod pm;
b) (o, mmodpM) =3 o, Fl.¢1({o,{ mod pM)).
1.5.4. Consider Zp-linear operator A* = EuZI F,o"% on As. Claim of n.1.5.2
gives injectivity of I : T(G A) — (Fil1 Acris)" and the equality

Iml = {f € (Fil' Agyis)" | 2 = %i}.

Remark. In the modulo pM situation we have induced identification of G 4[M](m¢)
with {Z € (Fil' Acgie p)™ | 7 = (A*/p)Z}.

Let 0 = (0,)s>0 € T(G4) and 6, € G4(W(mR)) are such that v(8,) = 0,. Then
Sl'ggg (p®idg,)(6,) exists, doesn’t depend on the above choice of liftings 6, and is
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an element of the group G 4(W'(mpg)). The correspondence o — lim (p*id¢ , )(6,)

gives rise to injective homomorphism of I'p-modules
7 T(Ga) — G(W'(mg)),

such that jol4 = I
So, we have the following characterization of the image of j:

Imjy = {w € GA(Wl(mR)) | I_A(w) = —A;):TA(EU)}

1.6. Some lemmas.
1.6.1. Lemma. A* =3 ., F,o" is invertible on W(mp)".
Proof.
-1 A B x -1
e = cC D , then A* = Ao + Bo(E — Do) ' Co.

Let w € W(mg)™. It is easy to see, that if (z,w;) € W(mg)" is a solution of
the system

o) (2)=(2 2) ().

where z € W(mp)",w, € W(mpg)?~", then A*(z) = w. To prove solvability of the

4y B ) to obtain an

system (#;) multiply both sides of it by the matrix £ = (C D
1 1

equivalent system

oz = Ayw + Biw,
(*2)

Let

auwy = Clw + Dlwl

wl = o™ Crw)+(e7 D)o A (Crw)+ - +(e7' Dy)... (67 D))o~ TV (Craw)+. .. .
This expression has sense, because

ulé_l.%o(o—lDl) oo (67¥Dy) = lim o*((c* ' Dy)...Dy) =0,

c.f. n.1.3. Clearly, ow? = Cyw+Dywi. Therefore, (z° w)), where 2° = o7 (4, w)+
o~ (B1w?) gives a solution of the system (#;).

Prove that Ker A* = 0. Let « € W(mpg)" be such that A*(z) = 0. Again, this is
equivalent to existence of w; € W(mpg)"*~", such that (z,w) is a solution of (x,)
with w = 0. Then relations (*;) give

agw, = Dlw]

and, therefore, wy = (67D )(¢™2D,)... (67" Dy )w; for any n € N. But the right
hand side of this equality tends to 0, if v — co. So, w; = 0 and, therefore, z = 0.

10



1.6.2. Lemma. G4(mp) is uniquelly p-divisible.

Proof.

Let r = Y(r1,...7n) € Ga(mg) be such that (pidg,)r = 0. Then for [r] =
“[r1],-.-,[ra]) € Ga(W(mRr)), one has pla([r]) = la(pidg.([r])) € pW(mRr)",
and functional equation for [ 4 gives

A*14([r]) = pla([r]) — plr] € pW (mr)".

Now lemma of n.1.6.1 gives l4([r]) € pW(mgr)*. But l4 : Ga(mg) — A%, ®
Q, mod pW(mp) is injective, c.f. n.1.5.1. Therefore, r = 0, and pide, |G 4(mgr) 18
injective.

Let 19 € Ga(mpg). Take r € m}, such that A*(r) = ro. Then A*([r]) =
[ro] +p[r1] + -~ p*[ra] + ... and

pla([r]) = plr] + (A" 4+ AT p" 4 )([r]) =

= plr] + La([ro]) + pla((r]) + .. p"La([rn]) + - .

Therefore, [4([ro]) = pla([H]) mod pTW (), where h = r—c , (1 +6, (pide. )(ra)+
< +aa (PPidG )(ra+1) + ... ). By n.1.5.1 we conclude ro = (pidg, )h. Lemma is
proved.

1.6.3. Lemma. Foranyg € Ga(W(mg)) there exists the unique h € GA(W(mr)),
such that A*[4(h) = 1a(g).

Proof.

Ezistence. We can assume, that ¢ = ¢1 +¢, w, where g; = [r],r € m}, and
w € GA(pW(mRg)). Let b} € W(mpg)" be such that A*(h}]) = g1, c.f. lemma 1.6.1.
If By =3 ,50P°[ra], take by =3 ¢ (P idg)lrs] € GA(W(mR)).

Then A*L4(h1) = 350 P* A la([rs]) =

=Y P (d+AT/p4 -+ AP 4 YA ) = (A=A /p) AT (Y ) =
820 220

= (id —A"/p) " A% (hy) = (id A" /p) T} ([r]) = La(g1).
Because A* and [4 are invertible on pW(mg)", there exists w1 € Ga(pW(mg)),
such that A*I4(w;) = [4(w). Therefore, A*I4(h) +¢, w1) = g.

Uniquiness. It is sufficient to prove, that for h € G4(W(mpg)) the equality
A*14(R) = 0 implies h = 0. Let h = [r] +¢, (pw), where r € m%,w € W(mpg)".
Then A*[4([r]) € pW (mp) and functional equation for 14 gives pla([r]) € pW (mp).
Therefore, (pidg, )(r) = 0 in Ga(mg) (cf. n.1.5.1) and r = 0 (c.f. n.1.6.2). So,
A*l4(pw) = 0, but A* and [ 4 are inversible on pW{(mpg), c.f. n.1.6.1.

1.7. Some properiies of Acris.
1.7.1. Let G; be one dimensional formal group over W(ko) with logarithm

Xxr*

']

Xxp
lo,(X) =X o 4ot
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G, is isomorphic to the multiplicative formal group Gp,. Therefore, Tate module
T(G;) has Zy-rank 1 and Ty acts on T(G,) via cyclotomic character x : Ty —
Z. Filtered module M(G,) = (M°(G,), M'(Gy)), where M*(Gy) = M'(G1) =

Hom! °(T(G, ), Fil' Acyis) has W(ko)-rank 1, and there exists W (ko )-generator y of
MOY%(G,), such that ¢1(y) = v.

Fix Z,-generator o = (0,),>0 of the Tate module T(G; ). Here all 0, € G; (m¢),
(pidg, )(0s+1) = 05, 0p = 0,01 # 0. Then we can fix W(ko)-generator y of M°(G,)
by relation

(O: y) = y(o) = 31L11§0p31(;1 (63)3

where 6, € W(R) are such that v(6,) = o, mod pm¢. This element y(o) has the
following properties: y(o) € Fil! Acris \ pFil' Acis, $1y(o) = y(o), and for any
T € 'y one has 7y(0o) = x(7)y(o), where x is cyclotomic character of T'g. So, y(o)
generates additive Tate submodule Z,(1) = {a € Fil' Acyis | ¢1(a) = a} of Acps,
and we can use standard notation ¢+ = y(0) from [Fo3].

1.7.2. Let ¢ = lim (p* idg, )(6,), where o = (0,) € T(Gy ) and 6, were defined in
J— 00
n.1.7.1. Then ¢y € W'(mpg) and t* = Ig, (¥). Let ¢y = 071 € W(mpg). Then

(pide, )($1) = lim (5" ide, J(o™0,) = lim (p° ide, )(pide, Jo™8,) = ¥,

because (pidg, )(c718,) = (¢716,)? = 6, mod W'(mpg) + pW(mpg).
Remark. We use, that if r € mp, then (pidg, )(r) = r? in Gy (mg). Indeed,

lg, (pidg, ([r]) = pls, ([1]) = plr] + ls, ([r")),

so, pidg, ([r]) = [r]? mod pW(mpg) by n.1.5.1.
Therefore,

(%) b= ppr 90+ S it

i>0

where all ¢; € pW(F,). This gives t = ¢/¢; € W!(mpg) = Kery. One can easily
see, that ¢ generates the ideal W1(R) of W(R). In particular, W'(mpg) = tW(mp).

1.7.3. Remark, that Acs is a p-adic completion of the ring W(R)[t1,...,ts,...],
where t, =17 /p,...,t,41 =t8/p,.... Therefore, the power series ring W(R)[[t?/p]]
can be identified with p-adic closure of W(R)[t1,...,p""  + +14,,...] in Acris.

Lemma. W(R)[[t?/pl]] = W(R)[[%"~" /p]]

Proof.
The equation () of n.1.7.2 gives ¢ = pipy + e, where e = 1+ 3.5 cithl €
W(mpg)*. Therefore, t*/p = e?’z,bf(p_l)/p + w, where w € W{(mpg) + pW(R). This

gives 7 (=1 /p is topologically nilpotent element of A,y and

W(R)[" /)] = W(R)[[] ™" /p)).

12



On the other hand, $?~!/p = ep‘li,bf(p_l)/p—l— wy, where w; € W(mpg). There-
fore, 1?~1 /p is topologically nilpotent element of A s and

W (R ?™V /p]] = W(R)[[*~*/p]]

1.7.4. From topological nilpotency of ¢?~1/p it follows, that n = ¢t /¢p = 1 +
PP~V /p 4 -+ P "1 /p* 4+ ... is invertible element of the ring W(R)[[¢*~!/p]).
Therefore, t* and ¢ are associated elements of W(R){[v*~1 /p]].
Lemma. o/p acts nilpotently on the ideal 7= /pW(R)[[¢?~!/p]] of the ring
W(R)[[%?~/p]].
Proof.

The above property t+ = ¢, n € W(R)[[¥"~! /p]]*, gives

Y pW(R) ([P /pll = (£ pW(R)([(¢) /-

But (o/p)((t*)P~1/p) = p*~2((tT)P~!/p), q.e.d.

1.7.5. Let G be a p-divisible group over W(ky) and let M(G) € MFw(k,) be
given in notation of n.1.3. Then we have identification of I'g-modules

16 ={(§) e atal et aw (§5) =€ (5)}.

Let Ti(G) be Ty-module cosisting of all (zl ) € (W(R)[[¥?~!/p]})?, such that
1

o € VR + (0= W Rl and (50 ) = (1),

Clearly, a natural inclusion W(R)[[¥?/p]] — Acnis gives [g-morphism &; :
T\(G) — T(G).
The relation (%) of n.1.7.2 can be rewritten as of = p + ?~'e;, where &; =
1+ S et If w e WH(R), let 1(w) = (ow/ot) € W(R).
i>1
Then

ow p—l PPl

(%) $1(w) = 7 = ¢1(w)(1 + ¥ €1) = $1(w)mod >

W(R)[[$"~" /pl].

Let T2(G) be I'g-module, which consists of all (Zz> € W(R)"*, such that a, €
2
WI(R)"* and

(5o )=2 ()

Let T3(G) be Tp-module of all (Z’:) € (W(R)mod ¥»~'W(R))", such that a3 €

(W'(R)mod ¢?~!W(R))", and



(here ¢y = ¢ mod P~ : W (R)mod ¢?~'W(R) — W(R)mod %~ 'W(R)).
Clearly, projections W(R)[[¥?~/p]] — W(R)mod ¥?~'W(R) «— W(R) in-
duce I'g-morphisms ) )
T {(G) =% T3(G) & T(G).

In [Abl] lemma of n.1.7.4 and the above relation (%) between ¢, and ¢, were
used to prove the following

Proposition. The above maps t1, t and ¢3 are isomorphisms of I'y-modules.

Remark. In particular, values of the p-adic periods pairing belong to the subring
W(R)[[%?~*/p]].
1.7.6. Lemmas of nn. 1.7.3 and 1.7.4 give the following

Lemma. Let [4 be logarithm vector power series from n.1.3. If w € W'(mpg),

then
p—1

La(w) € (W‘(mR) LY W(R)[[¢P“‘/p]])

Remark. 1t follows from this lemma, that values of the p—adic periods pairing of
the formal group G4 belong to W(mg) + (= /p)W(R)[[¥"~* /pl].

1.8. Duahty.
1.8.1. Let G = limG 4[s] be the p-divisible group associated to the formal group
521
G 4. Consider the dual p-divisible group GP = lir_’nGﬂ [s], where GZ[s] are Cartier

s>1
duals for the group schemes G 4[s]. If T(GP) is Tate module of GP, then Cartier
duality gives nondegenerate pairing of I'g-modules

( R )T : T(GA) Sz, T(GD) _— T(Gl )

Fix Z y-basis o_l, ..., 0" of T(G 4) and denote by o*!,...,0"* Z,-basis of T(GP),
such that (0}, 0" )7 = 6;;0, where o is the generator of T(G;) chosen in n.1.7.

1.8.2. Let M(GP) = (M°(GP), M*(GP)) € MFy1,) be filtered module of the

p-divisible group GP. One can use functorial properties of tensor product in the
category of admissible filtered modules of length of filtration 2, c.f. [F-L], [Fo2], to
express Cartier duality as a morphism in this category

Apm s M(Gy) — M(GA) @ M(GP).

I h,...,ln,my,...,mu_p is a special basis of M°(G4), chosen in n.1.3, and
y € M'(G,) is the element from n.1.7.1, then

) Am(y) =hLdmi+ - +lL@my+mi @+ +mp_n@Li_, € M (G4)®
MO(GP), where ¥, ... I5__ is W(ko)-basis of M (GP)and m?,...,m",I,.
is W (ko)-basis of M°(GPD);

b) Am(d1y) = 1(l) ® do(mi)+- -+ ¢1(ln) ® do(my) + do(m1) @ e1 (1) +-- -+
bo(mh—n) ® $1(1}_,)-

*
Y
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These properties of the copairing A give the following structure of the filtered
module M(GP). If mP =*(m3,...,m%), 1P ="*(I},...,15_,), then

¢omPN _ oy (WP
(%) ( $,10 | = £ D
where £ € GLj(W (ko)) gives structure of the filtered module M(G 4), c.f. n.1.3.
Indeed, we have 451(?) = Al + Bym, ¢ = C1l + Dy, where £ = (él gl )
1 D

(c.f. n.1.3). In evident notation we have

Am(ry) = D ail)@o(mi)+ Y do(m;) @ ha(l]) =

1<ign 1<j<h—n
= ¢1 (D@0 (ML) +do(m)Q¢1(I°) = (A11+B1m)Q¢o(P)+(C1 T+ D)9, (1P) =
=1® (‘A160(m°) 4+ 'C16:1(I°)) + M ® (*B1do () + ‘D162 (I7)).
Now the equality Apm(d1y) = Aum(y) = 1@ mP + 7 @ IP gives the relation (¥):

()= (4 5) (5) =< (4%)

1.8.3. Let Iy,...,ln,m1,...,mp—n and m},...,m},I},...,li_, be above special

basises of M®(G4) and M°(GP), and let o!,... 04 and o*!,...,0* be special
basises of T(G 4) and T(GP) from n.1.8.1.
Consider matrices of values of the p-adic periods pairing in these basises

Vo 0],_) Oh, ) vD.... (O*],'ﬁ_'l,D) (O*h,TZLD)
~ \(ot,m) ... (") T\ {o*,IPY . (oM, IP)
Then compatibility of the p-adic periods pairing with tensor product gives

Proposition.
tyPy = i+Eh,

where E), is the unity matrix of order h.

Remark. In evident notation matrices V and VP satisfy the following properties

é1 _ b0 \\,D _ te—1yD
(¢0)v_£v, (qsl)v = tg=1yD,

1.8.4. In notation of n.1.7.5 denote by ¢ the isomorphism of T'g-modules ¢z =
"o oyt T(G) — T(G). For 1 < i < h we have

au ()= (5) e womn



n 2 ai %
where a; € W!(mpg)" and (¢o:rlb,' ) =t ( bi)'

Similarly, for 1 <: < h, we have

o (o)) = (1) e woma,

) )

D 1 h—n Eb.'D . te—1 be
where a” € W' (mg)* ™" and (¢51G,D) ='£ (aD :

For the formal group G, from n.1.7.1 we have 1, (t7) = 9.
Introduce matrices of order h

S s O
mAW=V=($ . ﬁ),tﬁw%=v0=(b %).

ay ... aj

By construction we have the following properties

B )y (B o B _ e
(2)o=(% o by —ev

o D O'le O'b’?) to—1vsD
s V¥ = - - =&Y
(¢’1) (¢10{) o praf
and proposition of n.1.8.3 gives
tYP oy = YE}.
2. Crystalline symbol and its relation to the formal group symbol.
2.1. Recall, c.f. n. 1.5.4, that
J:T(Ga) — GA(Wl(mR))

is injective morphism of I'g-modules, and

Imj = { w € GA(W'(mg)) | La(w) = —%’:TA('w) } :

Let
P Ga(W(mg)) — Alis ® Qp

be [g-morphism defined by the correspondence g + pla(g) — A*I4(g) for any
q € GA(W(mR))

Proposition. If ! = ¥|¢, (wi(mg)), then Im9p! = pW(mpg)" and, therefore, we
have exact sequence of I'g-modules

0 — T(Ga) J, GA(W'(mpg)) ——‘-b-l—» pW{(mgp)" — 0.

Proof.
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2.2.1. Lemma. Let r € G4(mp), and for s € N let 7, € Ga(mpr) be such that
(p*idg )(rs) = r. Then

a) there exists 31an}o(pa idg )([rs]) :=6(r) € GaA(W(mr));

b) r = 8(r)mod pW(mr);

c) $(&(r)) = 0.
Proof.

a) and b) can be proved by arguments of n.1.5.2.
c) follows, because for any s € N one has

pla((p* idg  )([ra])) — A*La((p" idG.4 )([ra])) =

= P (pla([rs]) = A*La([re])) = p*'[r] € Weqa(mp).

2.2.2. Y(GA(W(mpg))) = P(Ga(pW(mg))).
This follows from the above lemma, because if w € Ga(W(mg)) and r =
wmod pW(mpg) € Ga(mp), then w = §(r) +6, w1, where wy € G4(pW(mr)).

2.2.3. H(G(pW(mr))) = pW(mg)". - :
Tndecd, let g € G.o(pW (mi)) for some i > 1. Then [a(g) = g mod p* W (mp)
and
P(g) = —pi.A*(r) modpi+1W(mR),

where r € m%, is such that g = p'[r] mod p'H W(mpg).
By n.1.6.1 the operator A*|;,» is invertible, therefore, for every z > 1 the map
1 induces bijection of p'W(mg)mod p**1 W (mpg).

2.2.4. Lemma. For any a € Ga(mcg) there exists € Ga(mg), such that
1(8(r)) = a.
Proof.

Choose a sequence {a,},>0 of a, € G 4(m¢), suchthat ag = aand (pidg, )(as+1) =
a, for all s > 0. Let vl € Ga(mpg) be such that y(r}) = a,. Then one can use
arguments of n.1.5.2 to verify the following properties

a) there exists lim (p®idg )([r}]) = w € GA(W(mpg)).

83— 00
b) if wmod pW(mg) = r € G4(mpg), then w = §(r).
Now lemma is proved, because y(w) = lim (p®idg, )(a,) = a.
800

2.2.5. p1(GA(W'(mg))) = pW(mgr)".

Indeed, if w € pW(mpg)" and ¢ € G4(W(mpg)) is such that ¢(g) = w, take r €
G.a(mpg), such that v(6(r)) = v(g) € Ga(mc). Then ¢' —¢, 6(r) € GA(W'(mRg))
and ¥'(¢") = ¥(g) = w.

Proposition 1s proved.

2.3. Crystalline symbol.

2.3.1. Fix a natural number M. Let K be a finite extension of Ky in K, such
that all geometric points of the group scheme G 4[M] = Ker(p" idg, ) are defined
over K. This means, that

Ga[M](mc) = Ga[M](mk),
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where mg is the maximal ideal of the valuation ring of the field K.
We use explicite description of the structure of the filtered module M(G 4) from
n.1.3 and nondegenerancy of the p-adic periods pairing modulo p¥ to identify

G a[M](m¢) with the group Up(M(G.a)) of vector-columns g) mod pM Acyis €

: n h—n d)l(y) _ Y
Al i a> such that y € (Fil' Acss)”, 2 € AL and (960(2)) =¢ (z> '

In these terms the equality G4[M](m¢) = Ga[M](mg) means, that for any
(y) mod pM Acris € Up(M(G)) and any 7 € T = Gal(K/K) one has

z
) y M 4h
T(z)_(z>ep Acris'

2.3.2. Let tT be a generator of the additive Tate module in Acs from n.1.7.1, and

At be the maximal subring in A.s, where action of ¢ is topologically nilpotent.
Take

cris crig |

a € (AP, modtT Al \'x = {a € A", | Vr € Tk Ta = amodtt A°8

take 7 € 'y and define the value of crystalline symbol (a, T]eris € GA[M](mK) as

follows:
Y h

if ( ) € Acris

7 is such that ¥ € (Fil' Acyis)" and

) (z)=c(5z)+(5)
then (o, T)eris is the element (z) mod pM Acris of Ga[M)(mk) = Un(M(GA)),

such that
T (}Z,) - (}Z/) = (Z) mod ¢+ AL¢ .

Remark. This symbol is related to the filtered module M(G 4), or equivalently,
to the formal group G 4. When this dependance is important for us, we write
(a: T]GA ,CTis*

2.3.3. Lemma. The above definition of («, T)eris 18 correct.

Proof.

Solvability of the equation (*) of n.2.3.2 can be deduced from n.5 of [F-L} (where
it is considered a case of more general filtered modules). In fact, we apply below
crystalline symbol only for « € W(mg)", where solvability of the equation ()
follows from proposition of n.2.1.

Emistence of (Z)
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(§)-r (D)~ (2o
(8)- (68)+ (),

where a, € (tT A2 )". But the operator

= (2)=(¢ ) (0)~ (@)

is nilpotent on (¢T A% )*, therefore, we can define

(%)-2{e ()} (%) eerazar,
ot (1) =7 () + (7 ) mavecmmsme (1) = (7)- (32)

Uniquiness of Z

Ifr (g)—(g) = (Zi)modt‘*Ai‘;fs, then (Z) = (y)-—(gi> (t+ Alog \h
.and satisfies the relation
a ) a
(5)-(2) ()
N 0
Therefore, (‘;) = {g—l (3;)} (‘Z) — (0)’ because £ (i;) .

topologically nilpotent on (¢+Al°¢ )5,

Cris

Independence of the choice of (g)

Y, L ) . Y iy (Y a
If (21) € A2, can be taken instead of (Z)’ then (Zl) = (Z) + (b)’

where (Z) mod pM Acris € UM(M(G)). But 7 € T and, therefore, 7 (g

(b) modpM Ak, cf n. 2.3.1.

2.4. Symbol (a,T]cris in terms of operator A*.
Use notation from the above definition of (&, 7]crs. Then vector (1;) appears

as a solution of the system

oY

YZA-?-FBO’Z-I-O.'

(*) oY
Z2=C-—+DcZ.

P
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One can easily verify, that the correspondence (g) — Y, where Y € (Fil’ Acris)™,

Z € A*=m | gives one-to-one correspondence between solutions (}{;) of the above

system (#) and solutions ¥ € (Fil' A¢ys)™ of the relation

Y—-J-l—Yza.
P

So, calculation of the value oy € G[M](mg) of (@, T}eris can be done as follows:

a)findY € (Fil1 Acris)?, such that Y — A*Y/p = o

b) find y € (Fil' Acsis)™, such that y = A*y/p and 7Y — Y = ymod t+ Al°¢ ;

¢) find op € G[M](mk), such that y = pMI-A(éM)modpMAc,;s, where 6y €
W(mg) and v(6p) = op mod prnc.

2.5. Homomorphism Og, .

2.5.1. Fix some uniformizer # € K and denote residue field of K by k. Fix

to € mp, such that tE,U) = 7 (it is equivalent to choosing of a sequence 7, € mg,
such that 7o = 7 and 7}, = 7, for all s > 0).

Let O, ; = W(k)[[f]] C W(R), where t = [to], and let m; ; = {W(k)[[]] =
Oi N W(mpg). Remark, that 4(f) = 7 and, therefore, (O, ;) = Ok, Y(my ;) =
mMEK.

As usually, denote by m:,i the space of vector-columns of order n with coordi-
nates in m; ;. We use the following abbreviated form for elements of m}

%
Z wﬂ”’; = t(z wgliil,.. - Z w,'nfi“),
ieN’ i EN in €N
where w; = Y(wy,...,w;, ) € W(k)" and 7 = *(41,...,1,) € N™.

2.5.2. Let S w;i be some element of my . Hwy = 2 s>0P'lag,], where a5, =

t(a',-hs, sy @i, s) € K™ and [ai',a] = t([ail,-ﬁL ceey [aimﬂ])a set
01> wit) = > (p*ide.)([oq,)F)
1EN? (i“ﬂGA)

1,8

(here the right hand sum is the sum of points in the group G.a(m; ;).

So, we obtained the map Og,,1 = 01 :mj ; — Ga(my ;).

Lemma. 0, is group isomorphism.

Proof.
(©10Ta)( Y wit) =Ta( Y (p*ide,)([oz,]F)) =
e (in Ga)
- = A\ ! =
= ¥ #lallon ) = X o (=20 ) (i) =
820 520
Ha i iEN"
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. A*)“ A
= (id—-— (Z wit?).
( P 1EN"

So, ©1 014 is Zy-linear map my ; — Al and, therefore, ©; is group homomor-

phism. This formula shows also, that O, is isomorphism and the correspondence
_ A*
g lalg) - ?IA(Q)

gives inverse homomorphism 0 !, Ga(my ;) — m}:,i-
Remark.

In the above proof we obtained the identity

Aﬁs
p!

?A(@l(a))z(id+€;-+-~-+ +...)(a)

for any a € m} ;.
)

2.5.3. Define the homomorphism O, = © : m} ; — G 4(m k) as a composition
of ©; and of v: Ga(my ;) — Ga(my). Clearly, O is surjection.

A relation between vector power series f() € my ; and n-vector f = O(f(t)) €
mY can be explained in a following way.

Take any presentation of § in a form § = ) ; n w;r?, define vector power series
B(t) = 2ien w;ﬁ, then for

£(0) = Ta(8(D)) - %‘A(ﬁ(ﬂ),

one has f(f) € m? ; and O(f(%)) = B.
2.6. Lemma. Let o € my ; C W(mg). If T € Tk, then Ta — a € (t1 A28 )",

Proof.

It is sufficient to check that 7i —f € tT4/°¢ .

One can take a generator of the additive Tate submodule in A in a form
tT = logle], where ¢ = (e{*),59 € R is such that &® = 1,6 # 1. Remark,
tt = ([¢] — 1)n, where 5 invertible in As.

There exists a = a, € Zp, such that 7t = {[¢]*. This gives 7 —{ = {([¢]* = 1) =
tTw, where w = #([e]* — 1)([e] — 1)7* € W(mg) C Al
Remark. Because, tT A°¢ NW(R) = W (mp), the above proposition gives ra—a €
vW(img)™.

2.7. Let f € Ga(mg) and 7 € T'. One can consider the formal group symbol
as a pairing

Ga(mg) x Tk — Ga[M]|(mk).

Namely, (f,7]lc. = 7f1 —c. f1, where fi € Ga(mc) is such that (p™ idg  )(fi) =
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Proposition. If o € m;:{ and 7 € Ty, then
(a’: Tleris = (_idGA)(OGA (a)?T]G.A'

Remark. According to n.2.5.3, this statement can be reformulated in a following
way. If f € Ga(mg) and f(?) € my ; is a vector power series, such that f(7) = f,
then for any 7 € I'g

(firlox = (~ida,) (mf(t‘)) - %L«(f(f)), .

cris

2.8. Proof of proposition 2.7.
2.8.1. The exact sequence of n.2.1 gives a solution ¥ € (Fil1 Acris)” of the
equation

Y——A—Y=a
D

in a form Y = [ 4(g) for some g € GA(W!(mpg)).
By the definition of the crystalline symbol

Y=Y+ X +lar,

where I, ; € (Fil! Acris)?y layr = (A*/D)lar, lar mod pM Acris = (e, T]eris (under
identification Upr(M(G4)) = GA[M](mk) from n.2.3.1) and X € (#+APL)" is
such that X — (A*/p)X =72 — a.

We can use nilpotency of (A*/p)|(¢+ tec » and the identity from remark of n.2.5.2
to express X as follows

AN - .
X = (1d —?) (ta = a) =1i4(01(a)) — l4(O1(a))
(here ©; = O¢ , 1 is the isomorphism from n.2.5.2).

2.8.2. By lemmaof n.1.6.3 take h,y € G4(W(mp)), such that A*M4(h) = [4(g)
and A*MI4(y) = 14(01(a)).
Now the relation A*Y = pY — pa gives

A*MY :pA*M—ly_pAtM—la: -

—_'-—pMY _ (pM id-{—pM_l.A* + +pA*M_l)a —
= AMPMIL(R) = (M A M 4. £ pA D).

Remark, that we can cancell this relation by A*M because of the uniquiness
property of lemma 1.6.3.

Applying the identity from remark of n.2.5.2, we obtain

A* A*s
+-o
P

(PMAM o p A e = (M AM —id)(id + +..)a=

3
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=p"'1a(y) — La(©1()).
Therefore, for ' = h —g, y € G4(W(mpr)), we have the relation

(*1) La(g) = PMTa(R') + Ta(O1(e)).
Using this formula and the expression for X from n.2.8.1, we obtain

T T 7 MT ! !
T = ad — = ~Ga .
(*2) lor =1la(rg) —la(g) — X = pMIla(rh' =g R")

2.8.3. Apply morphism v : Ga(my ;) — Ga(mk) to both sides of the relation
(1) and use that ¢ € G4(W'(mp)). We obtain

(pM idg , )(FL) = (—1dg, )06 (@),

where h = y(k') € G(m¢). - )
Let 0 = (05)s>0 € T(G 4) be such that I, , = 14(3(0)), c.f. n.2.1. From 1.5.3, it
follows that

[4(5(0)) = pMla(6a) mod pMI (W' (mR)) + pM T W(mp),

where 6y € W(mpg) is such that y(ép) = op mod pme.
Therefore, the relation (xz) gives

Ta(6p) = La(th' =g, K'Y mod L4(W!(mpg)) + pW(mpg).

So, 6m = th' —g, h' + 6, where § € G4(W?*(mp) + pW(mg)). Applying v, we
obtain
oy =1h —Ga Emodpmc.
But oar,7h —G.a h e G[M](m¢), G[M](mc) N pm% = 0, and, therefore, opy =
rh—c. h S
But oM = (aaf]cris: and (OGA (a):T]GA = (_ idGA )(T(h) —Ga h)
Proposition is proved.

3. Relation between crystalline and Witt symbols.
3.1. Let Ry be the fraction field of the ring R. Denote by G the set of formal

sums
{ZP"[rnI | 7o € Boyrn — 0}'
nez n——oQ
Clearly, G D W(Ry) ®z, Qp = {2 ,5—0oP"[rn] | 7n € Ro} and can be identified
with completion of W(Ro) ® Q, in vg-adic topology. So, G has a natural structure
of a W(R)-module, continuos action of the Galois group I'y = Gal(K/K,) and

absolute Frobenius og : 3 p"[rs] = 3 p"[rf] is Z,-linear ['p-morphism. Clearly,
glag:id = W(Fp) ®Qp = Qp-
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Let
G(mp) = {Zp [rn] | 7 € MR, 7y n::roo(]} .

neZ

Then G(mp) is Ty-invariant W(R)-submodule of G, 0g|g(mp) is topologically nilpo-
tent morphism. Clearly, G(mg)|sg=ia = 0.

Let a,b € Q, @ > b > 0. Denote by G;, the subset of G, which consists of
S p"[rnl], such that va(r,) > —bn for n > 0, and vgr(r,) > —an for n < 0. It
is easy to see, that the W(R)-algebra structure on Wg,(Ro) induces the W(R)-
algebra structure on g;’,b. This structure is compatible with T'p-action and og
induces semilinear isomorphism of T'g-modules og : Q’Z,b — g;a’pb.

Ifa,b € Qa >b2>0,let G5y, be a p-adic closure of (JG2,. Then GJ,, is
' c>a ’
W (R)-algebra with continuos I'p-action. We set Go+ p =G24 ,® Qp C G.

‘Remark, Acis can be naturally identified with ['y-submodule in G. Clearly, if
a € Acris, then ca = oga.

3.1.1. Lemma.
a) A—cris C g(op_l).}.’o;
b) every element of B::tia = Aeris ® Qp C G(p—-1)+,0 is invertible in Gp_1)+ p—q;
c) if t7 € Acys is a generator of the additive Tate module Z (1) C Acris (c.f.
n.1.7.1)and ¢ € R is such that :cgo) =p, then(tt)™! ¢ [mg]"”/("'l)gg,l C Gp—1)+1
(and, therefore, Bes = BX [1/t1] C Gp-1)+.1)-
Proof.
a) Acris is a p-adic closure of the ring W(R)[{[zo]"/n! | n > 1}], where 2o € R is

such that w(()o) = p. So, it is sufficient to prove, that [zo]"/n! € G(,_1)+ . But this
follows from the inequality

UR(:ES) _ 7
n! [n/pl+ -+ [n/p?] + ...

>p— 1.

b) This follows from the fact, that in p-adic topology any element of B;is is limit
of finite sums ) p*[rn] € G.

c) ott = pt* implies t+ = 3 p*[r?" | for some r € mg. From the definition of
nelZ

t* it follows, that vg(r) = p/(p — 1). Therefore,

=14 S P,
nez\{0)

where vgr(r,) > —n for n > 0, and vg(r,) > —pn for n < 0. Now remark, that

(1 + Z p"[rn])—l =1+ Z(_l)s( Z pn[,’,n])s = g}(,),ll
n€Z\{0} s>1 n€Z\{0}

This gives (t1)~! ¢ [a:o]"”(’"”gg,l-
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Remark. One must be carefull about compatibility of Frobenius morphisms ¢ on
B is and og on G with respect to defined in n.b) inclusion of the field of frac-
tions Frac BY,, into G(,_1)+ ,—1. For example, o(1/t*) = 1/(pt*), but og(1/t) ¢
G(p-1)+,1- Compatibility of ¢ and og can be formulated as follows:

if b € Beris 19 such that og(b) € Gp_1y+ p—1, then ob = ag(b).

3.1.2. The above lemma gives existence of a natural inclusion of the field of
fractions Frac Acris into Gp—1)+p-1. Let ¥ be the element of W(R) defined in
n.1.7.2; and z¢ be the element of R from n. ¢) of lemma 3.1.1.

Lemma. 1
‘JW(R)[[W_I/?]] C [z0]P/*7VG) .

Proof. Iftis a generator of W1(R) from n.1.7.2, one can easily check, that W(R)[[¢?/p]] =

W(R)[[ [zo]?/p]]. Therefore, W(R)[[$*~" /p]] = W(R)[[ [zo]"/p ]| = G} o by lemma

of n.1.7.3. So, t* and 3 are associated elements of the ring QS,O and, therefore,
1 - —p/(p— —p/(p—
EW(R)[W’I) /pl] C o] P/ 1)gp(@],lgpl@],oz[:xo] »/(p ])Qﬁ,lo
t n Y h
32. Let @ = “(a1,...,an) € mi; Let 7)€ Al be such that V' €
(Fil' Aerie)™ and
Y -1 [ $1(Y) a)
=¢&!
(Z) (¢0(Z) "o

(we use all notation from the definition of the crystalline symbol, c.f. n.2.3). Re-
mark (c¢.f. n.1.7.6)

r—1

YE(wl(mR)H’ W(R)[[¢P“1/p]]) |

p

pr
Ze (W(mR) +

Choose some Z,-basis of T(G 4). Let

SR NN
(o', ) ... (o m)
be the matrix of values of the p-adic periods pairing with respect to the special
W(ko)-basis {l,...,ln,m1,...,mp—n} of M®(G4) and the above chosen Z,-basis of
T(G.4). All elements of the matrix V belong to the subring W(R)[[¢?~!/p]] C Acris,
c.f. n.1.7.6.

By n.1.8 the matrix V is nondegenerate in the field of fractions Frac Acis of Aeris.
Therefore, there exist unique vector-columns X, T € (Frac Acris)*, such that

xe(5) =)
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3.3. Lemma. 0 )
2) X,T e (W /pll) € (lea7G3,)";

b) ogT € G(p—1)+, and, therefore, ogT = oT;
¢)T—oT =X;

KT e ([rco]-P/(P-“g,?,])" is such that Ty — ogTy = X, then VT} = (2) €
}/] S (Flll Acris)n and

)= (252)+(5)

) can be taken instead of (l‘;) in computation of (&, T]eris)-

Ah

cris?

(in other words, ( "
Zn

Proof.
a) This follows because *VPV = t*tE}, t* and 4 are associated elements of the

sing R (ol and (). () € W@ o)
b) One can use nilpotency of ¢; on ¥?~! /pW(R)[[¢*~*/p]] and of ¢, = o/at
on PP~ 'W(R) (compare with n.1.7.5) to prove existence of the unique Y €

A
W(mpg)", such that V€ Wi(mg)t—",

(IZ’) mod(" 1 /p)W(R)[[w"~" /7)) = (}Z’) mod Y~ W(E)

1} - &1(1}) «
d| 5 )=&1 N .
= ()= (5%)) (6
If V is the matrix from n.1.8.4, there exist the unique X,T € (1/L)W(R)* C
G(,—1y+ 1» Such that

vo  [a o (Y
(%) vxz(o), VT:(Z).
It is easy to see, that T'mod(¥?=2/p)W (R)[[¥?~}/p]] = T mod s*~2W(R).

Consider the above equalities () in the ring W(Rg) (where Ry is the field of
fractions of the ring R). Then ow(r,) = 0¢|w(r,) and we have

("9/ t) (V) = ( jf; ) Voo = EVogT

gg

AN (Y\_ (Y a\ _ o env
(8 (5)=e(5)-¢(3) =evt -evx.

Therefore, 0T =T — X € (1/)W(R)* C [zo] P/ *=D(GS ). KT =T+ 1T,
where T1 € (P72 /p)W(R)[[¢*~!/p|], then

1
Ty € 1—)(93,0)" C (Gpo)*
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and ogTy € (gp,o)h C (g(p_1)+,1)h. So, ogT = A:'.!'gj‘I + ogT) € 9("?_1)4,'1 and
ogT =0oT.

¢) Because of the above n.b) we can apply operator (i;) to both sides of the
equality VT = ();) We obtain
(G40 D Yor (40)
(o', d0(m)) ... (0", do(m)) ¢o(Z)

This equality can be rewritten as

Y o .
5V0T=5(Z)—(0) =EVT - EVX.

So,cT =T-X.

d)If¢t =T, — T, thent € G/, _y; , and ogt = 0gTy —ogT =Ty —= T =t. This
gives

h
te (Q,, n [mg]_p/(”_’)gg,]) =z
Ift="a,...,as), then
i\ _yp (Y A 4D
() vmmvron=(5)s 5 )

So, Yi=Y + ¥ ai(o',]) € (Fil' Acyis)™ and
1<i<h

(2)-(2)-(2)-=()-()

Remark. The correspondence T' — VT gives one-to-one correspondence between
the sets

{T € ([:,:0]--10/'(113—1)go,])'ll | T — 0T = X}

and

((z) etav et anr, (7)== (56) + ()}

3.4. Lemma. For any 7 € 'k coordinates of the vector TX — X belong to

W (mpg)[[?=* /p]] + (p™ /)W (mr)[[$?~ /p]].
Proof.
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(4 (&

0 0
'YL are elements of the ring W(R)[[%?~"/p]], (g) € W(mp)", therefore,

From VX = ( ) it follows, that t+X = *YP ( ) Coefficients of the matrix

h
X & (FWomals /)
Rewrite the relation 7(VX) - VX = ('rao— a) as

(%) Y2(rY — V)X +tH(rX — X) = VP (”"0_“).

a) All coefficients of the matrix ‘V?(rV — V) belong to pMZtt C Acrie. Indeed,

for 1 <1 < h one has
TO' - 0' = Z pMa,-joJ,

1<i<h
where all a;; € Z,. Therefore,
Loy ... ot T
VoY= <(€1'T0(i - oo1 ﬁ”Z) (S'To?' - 0313 _))) - VpM((aj"))lsi,jsha

and
WPV — V) = pMt¥((a;i)1<i j<h-

b) Ta — a € (YW(mpg))?, cf. n.2.6, therefore,

Vo (T ) € W W (ma) = bW ()[4 5

Clearly, lemma follows from the above relation (*) and properties a) and b).

Corollary. Let T € ([:cg}"’/(""])gg,])h be such that T — ogT = X, then for any
T€l'K

a) 7T — T = Amod G(mg) + p™W(Ry), where A = “(Ay,..., Ap) € ZE;

b) If @ € m} ;, then

(a0, T]eris = Alo}w 4+ 4+ Ahof{,.

Proof. If t = 7T — T, then t € [zo] P/?P=1(G0 Y% C (G(mr) + W(Ro))* and
all coordinates of the vector t — ogt = X ~ 7X belong to W(mpg)[[¢?~1/p]] +
(" /)W (me)[[y? ' /pl] C G(mr) + pM W(Ro).

Let X —7X = X + pMX,, where X; € g(mR)" and X, € W(Ro)h. If¢ =
Zago o*X1 € G(mp)"*, then t; — ogty = X;. Take t, € W(Ro)*, such that t; —
ogty = Xa. Then A = ¢ — (tl -|-th2) € (Q(mR) + W(Ro))g‘:,:id = Zg.

Part a) of corollary is proved.
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Let (g) = VT, then (c.f. n.3.3) (g) € Al Y € (Fil' Acris)™ and

=¢&! .
(Z) (%(Z) "o
By definition of the crystalline symbol, there exist a;,...,ap € Z, and b €
(lse) p
A2 )" such that

(5)-(2) B ()

In this notation (o, 7]eris = @10}y + -+ + aho’i,,.
fa="%a,...,an) € Z:,‘, then we can rewrite the above equation as

T (};) = (g) + Va+tth.

Multiplying the both sides by the matrix *VP we obtain in notation from proof
of the above lemma

Pt rT((aji)igiign + (T = T) = tta + ¢+ ('VPh).

therefore,

7T —T =a+ ('VPb) +pMe,

where ¢ € ([oo] »/®DGY )" C (G(mr) + W(Ro))*. Now

h
b ="VPhe ([.’Eol_p/(pql)gg,l)

and A}im b, = 0 imply b; € G(mp)*.
-—_00
Therefore, a = Amod pMZ,, q.e.d.

3.5. Matriz V;.

3.5.1. Recall, K is a finite extension of the field Kj in K, such that G4[M](m¢) =
Ga[M](mk), where m is the maximal ideal of the valuation ring Ok of K.

In n.2.5.1 there was fixed uniformizer # € K and tg3 € mp, such that téo) = .
If k is the residue field of K, then O, ; = W(k)[[ £ ]] C W(R), where { = [to]. The
structural morphism v : W(R) — Oc¢ induces epimorphism of rings v : Oy ; —
Og. fmy; = tW(K)[ ]], then v(my ;) = mg. Clearly, Kerylo, , = g(f)Ok,;
and Kerv|m, ; = g(f)mk,;, where ¢ € W(k)[X] is irreducible polynom, such that
g(m)=0.

Denote by OE? p-adic closure of the divided power envelope of Oy ; with respect

to the ideal (g(2)). Clearly, OP® C Acris and can be identified with p-adic closure of
Ok 7 [{T*/n! | n > 1}], where e is absolute ramification index of the field K (use,
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that g(f) =t +a1 ¢ 1 +-- . +a., where ay, ..., a. € pW(k), vp(ae) = 1 and equality
of ideals (g(f),p) = (£, p) in the ring Oy ;).

3.5.2. Let o! (03)3>0, ..ot = = (o )3>0 be Z ,-basis of T(G 4). Then o}, ..., 0k,
give Z/pMZ-basis of GA[M](mK) Let IA be loga.nthm vector power series flom
n.1.3. For 1 < ¢ < h fix 6}y € m, ;, such that v(8}4,) = ofy. Then

pM1a(dly) € Fil' OPF.

Use matrices F, from n.1.3 to set

ﬁu(éM Z (0" /p) I-A(OM)

u>1
Then
pMima(6i) € OF% .
In fact (compare with n.1.7.6),

MT (i 1 gep jep
P la(oy) € my i+ ?Ok,f[[t /Pl

M - At ter Jep
P ma(dyy) € myp+ ?Ok,f[[t /7]
From n.1.5 it follows

Lemma. For1l <: < h one has

p—1

(o', 1) = p"Ta(6}3s) mod p™ (Wl(mn) + ¥ W(R)[[%b”"‘/p]])

p—1

(o', ) = pM i a(61) mod p (W(mn) LY W(R)[W"/p]l) -

3.5.3. Consider matrix of order £
Vi = ( pMIa(6y) .. pMia(6}) )
CTApMmaEy) .. PMRaleh) )
This matrix has coeflicients in OE? (cf. n.3.5.2) and can be considered as

approximation of the matrix V of values of the p-adic periods pairing from n.1.8.3.
Lemma of the above n.3.5.2 gives the equivalence

WP oy; = t* Ej mod pM (Wl )[[¢P_1/p]]) :

Therefore, one can write
VP oV; =t (E, —pMA),

where A is some matrix of order A with coefficients from

W(R)[[%*~ /p]).

1 _
—wW!
(]

3.5.4. Let ¢ be a generator of W!(R) from n.1.7.2.
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Lemma.

R = %W(R)upwn PP W(R) ([P /)]

is W(R)-subalgebra of G(,_1)+1-

Proof.
As topological W(R)-module R is generated by elements (pt/¢)™ %!, where m >
0, and ¥?~2(xp?~1 /p)’, where | > 0. It is sufficient to prove for any m,! > 0, that

m+1 -1\
(%t) P2 (1/)” l) — pm+1—ltm+1¢P—2+(P—1)l—(m+1) e R.
p

If m+1—1=2s>0, then this product is equal to

(f:) ¢p 24+(p—1) € R

Ifm+1—-1=—s <0, then this product can be rewritten as
_2 ]
1!,?-2 (","p ) tm+1¢(p—2)(m+l) cR.
D

Proposition. In notation of n.3.5.3 one has
(En —pMA)™ = By +pM Ay,
where A, is matrix of order h with coefficients from

1 t
R= W)

N?~ /o]l
Proof. We have

1
— ZPM3A3+1 — _Z s(M— ])(pA a+1
420 820

’d

has coefficients in (1/p)R, because pA has coefficients in R and R is a ring,

Corollary.

The matrix V; is invertible in the field of fractions Frac Okm? C Gp—1)+ p-1-

3.5.5. Proposition.
1
-1 —_ y;—1 M

Proof. We have
v—l 1 tvD( M ) v-l M 1 tvD
i __t+ E:h +p ,{S] = +p F {51
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Coefficients of the matrix (1/t7)*V? belong to

p—2
W (ol = W) + S WR) o]
By proposition of n.3.5.4 it is sufficient to prove, that
t PP? _1 1
L w(R)pt/ ]| —W(R) " /p]] € —R.

P p Py
For m,l > 0 take the product of generators

— - i
Ht- ILt m ’d)P 2 ’I‘DP 1 — p:n—l—].t1+m,¢]3—3+(p—1)f—m'
AN P p

Ifm—1—-1=s2>0, then it can be presented as

% (;:_;) JH =34 (=)l ¢ %W(R)[[pt/zb]]-

Ifm—-1-—1=—s < -1, then s + m = [ 4+ 1 and the above product can be
rewritten as

pr? (f’_bf__l)s_] 14+m {(p—2)m EWR p—1
> 5 £ € (B[*~ /pl).

Corollary. Coefficients of the matrix Vt-“l belong to

1 p—1 M i
SR 5]+ (pﬂ) .

3.6. In W(Ry)-module G any expresion of a form ), ., w,p®, where w, € W(Ry)

and w, — 0 in vg-adic topology has sense, i.e. gives some element of G.
§——00

Let

Gei=14 Y lowauf*p’ |us — 400, alla,u€k p CG.
s€Zu>u, ? i

Then Oy ; C Gi 1, Gy i is closed Oy ;-submodule in G.

One can easily see, that

a) Any element of Gy ; can be uniquelly presented in a form > es,u )t p® from
its definition.

b) OE}; CGiN g?ﬁ—l)‘hﬂ‘

¢) Any element of OE,I; is invertible in G, ; N G,_1)+ p-1.

Let L7 = Gy 1N Gp—1)+,p—1- Then L, ; is Wg, (k)-algebra, every element of
L ; can be uniquelly expressed as 3 w,i", where all w, € Wy, (k). It is easy to

u€cZ

see, that this Wg, (k)-algebra coincides with denoted by the same symbol Wy, (k)-
algebra from introduction.

3.7. Consider the matrix V;° ! from n.3.5. Clearly, all elements of 13 ! belong to
Ly ;. So, they are Laurent series in variable { with coefficients in Wy, (k), i.e. they
can be written as Y, o, wyt*, where all w, € Wy, (k).
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Proposition. Let V{l = ((vij))i<i,j<n and vi; = Zuezwui:f{u: where all wy;; €
W(k)®Q,. Ifu <0, then wyi; € W(k) (Le. all coefficients of the matrix V{l have
p-integral principal parts).

Proof.
By corollary of n.3.5.5 for any 1 <1,7 < h we have

vi; € Gpi N (1/pY)R.

3.7.1. Lemma.

! - -1)0
ﬁRC N 2p/(p )gpll_

Proof of lemma.

We have t € [zo|W(R) + pW(R) C [:co]gg,] and ¢~ € [zg]*P/(P—”gg,], c.f.
n.3.1.2. Therefore, pt/v € p[zg]“l/(”_l)ggil C G, (because plzo] /P € G 1)
and (t/%*)W(R)([pt/%]] C [z0]7?*/*=DG) ;.

As it was proved carlier (c.f. n.3.1.2), W(R)[[+"~/pl] C G ;. We have $?~* €
[xo]P(P‘i‘)/(P‘Ugg,l, because ¢ € [a:g]P/(P—“gg,l. Therefore,

Pr?
p

1 .z _ -
WR? ™ /o]l © ool 7T Gh s C laa] H/07GY
because [zo]?/p € G ;. So,

1 t
EJR = WW(R)HPU ¥l +

EWR ] € [ao] OGS,

Lemma is proved.

Clearly, our proposition is implied by the following lemma.

3.7.2. Lemma. Any Laurent series from [zo]™?G
cipal part.

Proof.
If v € [20] PGp ,_1 N Ly 7, then

Z p‘g[aa,u]{u + Z pB[CY,|u]£u,

sg—1 820
uz—ep(a+1) uz—e(p+s)

3,1,_1 N Ly ; has p-integral prin-

where all o, € k and e is absolute ramification index of the field K. Let ayg 4, # 0
for some s8¢ < —1. Then

u>—ep(s+1)2>0.
Lemma is proved.

o

3.8. Let X; = {_1 (0) =Y .ez Wul®, where wy, € Wy, (k).
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Proposition.
a) X; = X mod p™ (1/p)RW (mp);

b) if u < 0, then w, € W(k)*, i.e. “nonnegative” part X; = Y wyt" of the
u<0
vector Laurent series X; has p-integral coefficients;

c) if V§_l) is the matrix of principal parts of elements of the matrix V;_], then

a) equals to X;;

“nonnegative” part of the vector V:S_l) (0
d) pX; € W(mg) + pM W(Ro).

Proof.
a) @ € m} ; C W(mg)" gives by proposition 3.5.5

X; = Vt-"'l (g) =y-! (‘S) = X mod pM (pii,bR) W(mg).

b) and ¢) follow from proposition of n.3.7.
d) follows from corollary of n.3.5.5.

3.9. Now we can state the main result of this section.

Proposition. In the above notation let T; € W(Ry)" be such that T; — oT; = X;.
Ifr € Ty, then TT{—T; = amod W(mpg)+pMW(Ry), wherea = Y(ay,...,a1) € Zg
and

(@, Tleris = @103y + -+ + anoly.

Proof.

Let X; = X 4+ pMw, where X has coordinates in [xo]'P/(”"”gﬂ,l and w has
coordinates in [zo]7??/(*=DG% W(mpg), c.f. nn.3.8 a) and 3.7.1.

By corollary of n.3.4,if T € [930]“1’/(*"“1)(93’1)" is such that T'— ogT = X, then

7T — T = AmodG(mp) + pY W(R,),

where A = {(A4,...,A4) € Z;,‘ and (@, Teris = A10hy + - + Aho’;w.

It is easy to see, that [:co]"2p/(P“l)Q3,]W(mR) C G(mr) + W(Ryp). Therefore,
one can take wy € G(mp) + W(Rp), such that w; — ogw; = w.

Then for Ty = T + pMw, one has T; € (G(mg) + W(Ro))*, T; — 0gT; = X; and
T — Ty = Amod G(mpg) +pMW(R0).

Let X; = X; + X, where X; = 3 <o Wul® is the “nonnegative” part of Xj.
Then X; € G(mpg) and for TE' =T;— Esz—-o o®X; one has th € (G(mp)+W(Ro))",
T! - 0T} = X7 and 7T¢ — T! = Amod(G(mr) + p™ W(Ry)).

Therefore, T; — T; has coordinates in (G(mg) 4+ W(Ro))og=ia = Zyp, T — Ty =
7T — T3 has coordinates in

(Zp+ G(mr) + pYW(Ro)) NW(Ro) = Zp + W(mpg) + pMW(Ry),

and a = Amod pM.
Proposition is proved.
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4. Explicit formulae for the formal group symbol.

We use all previous notation. When reciprocity map of class field theory ¥ :
K* — 2P is considered, we assume that the residue field k of K is finite.

4.1. Preliminaries.

4.1.1. Functor field of norms, [Wtb]. B
Let {m,}s>0 be the sequence of elements of K chosen in n.2.5.1. This means,
that 79 = = is fixed uniformizer of K and %, = n, for all s € Z,s > 0. Let

K = {J K(s), where K(0) = K and K(s) = K(7,). The field K is infinitc APF-
820
extension, and the functor field of norms A gives equivalence of the category of

algebraic extensions of the field K and of the category of separable extensions
of the discrete valuation field K = X(K) of characteristic p. The residue field
of K can be canonically identified with the residue field k£ of K. By definition
K* =lmkK (s8)* with respect to norm maps. This gives fixed uniformizer t, = lim,

s
in K, so K = Frack([to]] = k((t¢)). One can fix a separable closure Kgp of K by
Ksep = X(K) and the functor X gives identification

v : Tk = Gal(Keep/K) = Gal(K/K) C T = Gal(K /K).

4.1.2. Homomorphism N : K* —s K™,

Let A be the projection K* = l‘i_n}K(s)* — K(0)* = K*. Clearly, N(t5) = =.
If @ € k C K, then V(&) = [a] € K*, where [o] is Teichmuller representative of o
considered as element of the residue field of K.

Let Ux and Uk be Z -modules of principal units in K and K, respectfully. Then
N(Uk) C Uk and can be described explicitly as follows.

Let o € W(k) and

E(a, X) = exp(aX + -+ (0a)XP/p+...) € Zy[[X]]
be power series from [Sh|. Any element u € Ux can be uniquelly presented in a
form
u= [[ Eleatf),
(a,p)=1
where all a, € W(k). With respect to this decomposition the homomorphism A is
uniquelly defined by the property, c.f. [Ab3],
N(E(a,t5)) = E(a, ),

where a € N,(a,p) = 1,a € W(k).

It can be easily shown, that K*/A(K*) is cyclic group of order p'°, where I is
maximal integer, such that K contains primitive p’-root of unity (this fact is well-
known modulo K *"'o, c.f. [Sh], then one should use, that p-completion of K AT

generated by 72" and all E(p"a,n?), where « € W(k),a € N,(a,p) = 1).
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The group K*/N(K*) is generated by the image of any p°-primary element.
These elements appear as principal units E;, € Uk, such that K(EP_IO) is unram-
ified extension of K of degree p'. Equivalently, if ¢y : K* — Fab 18 rec1pr0c1ty
map of class field theory, then ¢K(E10)(7rp_'°) = C'rr”-la for some primitive p'°-root
of unity ¢, and ¢K(E10)(up-‘°) = P "® for all u € Uy. Explicit constructions

of primary elements were considered in [A-H]|, [Sh], {Vol]. In n.4.3 below we give
Vostokov’s construction of primary elements.

4.1.3. Compatibility of class field theories, [La).

The homomorphjsmN relates class field theories for the fields X and K. Namely,
let i : — I'®? and g : K* — % be reciprocity maps of class field theory.
Then for any a € }C* we have L“b('gb,c(cv)) = 1/)K(JV(a)) where (2P T4 — [P js
induced by imbedding ¢ : 'y — Tk from n.4.1.

4.1.4. Witt ezplicit reciprocity law, [Fod].

The uniformizer ¢ty of the field K gives p-basis for any separable extension £ of
the field K. One can use ¢y to define functorial by M € N and by £ C K, system
of liftings O (&) of the field £ modulo p*. By definition Oy (&) is flat Z/pMZ-
algebra, such that Opm(E)/pOp(€) = €. These liftings can be given explicitly
as

OM(E) = WM(GMS)[’EO] C WM(E),

where f = [to] is Teichmuller representative of g in Wy (&) (this version of general
construction from [B-M] we use also in [Ab2]).

Multiplication by p induces epimorphisms of W(k)-algebras Opr41(€) — Op(E).
If O(€) = limOp(€) with respect to these epimorphisms, then O(£) is the valuation

M
ring of absolutely unramified field of characteristic 0 with residue field €. Clearly,
Om(K) is Was(k)-algebra of Laurent series W (k)(f )) = War(k)[[f }][F™"] with
coefficients in Wy (k), and O(K) is p-adic completion W(k)({f)) of War (E)[[E ][]

Absolute Frobenius morphism of Witt vectors induces compatible system of
Frobenius morphisms ¢ = g¢ : O(€) — O(£). We have O(Kep)o=ia = W(F,).
Action of T'x on K,ep induces action of I'x on O(Kgep ). If H C T'x is open subgroup
and IC:gp = &, then O(Ksep)™ = O(E).

Let Col : K* — O(K)* be Coleman’s multiplicative section of the projection
pr : O(K) — K, cif. [Fod4|. In our situation, the homomorphism Col can be
described explicitly in terms of generators of the group KX* from n.4.2. Namely,
Col(te) = t and Col(E(a,t3)) = E(w,t*), where @ € W(k),a € N, (a,p) = 1. This
property gives the following simple explicit description of the homomorphism

(M opr)lcotk+ : ColK* — K*:
if g = g(f) € ColK*, then N(pr(g)) = g(r).

One can easily prove the following characterization of the image Col(K*) in

O(K)*.

Lemma. Let g € Oﬁ(IC)‘. Then g € Col(K*) if and only if
a) g€ WOIE G
b) (0g/g%) € 1+ tW(k)(l¢ ]];
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c) 3 Liog(ag/g?) = 2 (ep)=1 %e ¢, where all a. € W(k).
Let f € O(K), g € K*, and let (f, g]lw € W(F,) be Witt pairing given by
(f:g]W =7T - Ta

where T € O(Ksep) is such that 0T — T = f and 7 = ¥k (g) € 3.
Then Witt explicit reciprocity law can be given by Fontaine formula, [Fod]

(f:9lw = (Resi—g 0 Tr) (fdc(f)(l)lgg> )

where Tr : W(k) — W(F,) is the trace map and Res;_, is residue at { = 0.

Finally, we remark, that this construction can be made in W(Ry), where Ry =
Frac R. We have a natural identification of the field X with some subfield of Ry
by the correspondence: ty —. (5)s>0 € Ro, ¢f. n.2.5.1, and if & € k C K, then
a — ([e?""])s>0 € Ro, where | ] denotes Teichmuller representative for elements
of the residue field of K. This embedding is a particular case of compatible system
of embeddings £ C Ry, where K C & C Ksep, given in [Wtb]. So, we have a natural
imbedding Keep C Ry compatible with Galois action (with respect to the inclusion
¢ : I'x — Tk from n.4.1). Then by universal property of Witt vectors there
exists the unique compatible with given Frobenius morphisms system of embeddings
O(€) C W(Rp). So, one can compute the value (f, g]w of Witt symbol in the ring
W (Ra).

Remark. Under the above embedding Ox = W(k)((

t)) C W(Ro) notation to and
t from this n. agree with notation ¢; and ¢ from n.2.5.1.

4.2. First ezplicit formula.

Let G = G4 be the formal group with vector logarithm power serles ] A( )
from section 1. If M is fixed natural number, choose Z/p™Z-basis ol,... of
Ga[M)(mk) = Ga[M])(mc), take liftings of its elements 6},,...,6%, in m;:t =

fW(k)" C O;:,,r with respect to the epimorphism 7 : my » — my given by f> 7
and construct the matrix from n.3.5

Vi = ( P;’_A(%) o pMIa(8}y) )
¢ pMma(el,) ... pMma(sh)
This matrix is invertible in the Wg, (k)-algebra £ ; and denote by VE("I) the matrix

obtained from V. ! by taking principal parts of its elements.

If f € Galmg), g € K*, then the value (f,g]g, of the formal group symbol
modulo pM can be expressed as '

(fi9lca = Ai(f,9)o + - + An(f, )0k,
where A(f,g) = '(Ai(f,9),---,4n(f.9)) € (Z/pMZ)".

Now propositions of nn.2.7, 3.9 and Witt explicit reciprocity law from n.4.1.4
give the following theorem
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Theorem A. Let 8({) € mg o
from n.2.5, and §; € K*. Then

G)G.All

my ; — Ga(my ;) be the isomorphism

A(B(m), N'(7)) = (Res;_, o Tx) {vg‘” (@ai,lo(ﬂ () ) diog Col 51} mod pM

We can use explicit description of @Ei’l from n.2.5.2 to give equivalent form of
the above theorem

Theorem Al. Let f € Ga(mg) = m%, g € K*. Take (1) € my . such that
B(m) = f and assume that there exists § = §(f) € ColK* C O(K) = W(k)((1)),
such that §(r) = g (c.f. lemma of n.4.1.4). Then

A(f,g):(Res;zooTr){ - ”( A(B(2) ‘0‘““‘ A®) )d.g }modpM

Remarks.

a) In the above theorems one can replace matrix vtﬂ—l) by V- ! because one can
compute residue also in the algebra £ ; and the above replacement does not affect
the value of residue.

b) Theorems A and Al give almost all information about values of the formal
group symbol. The only restriction is that the second argument can be taken only
from the subgroup A (K*). If K does not contain p-roots of unity, then N (K*) =
K*, and our formula gives complete description of symbol. If K contains primitive

pM-root of unity, one should involve in consideration p™-primary elements of K*,

c.f. n.4.3 below.

c) Another inconvenience of the above formulae is related to the special choice
of the power series Col§; (f) = 6(f) to obtain ¢ € K* as a result of substitution
{ — 7. In the case G = G,, Briickner-Vostokov formula is free from this restriction.
In n.4.4 below, we give similar expression for the formal group symbol.

4.3. pM-primary elements.

Assume, that K contains a primitive p*-root of unity (.

4.3.1. Let G; be the formal group from n.1.7.1. If G,n is the formal multiplicative
group, then 5 : X — E(1,X) = exp(lg, (X)) gives isomorphism of formal groups
n:G — Gpn. In particular, Gy (mg) ~ Gm(mK) = Uk and opr = n71(() is
generator of Gy [M](m¢) = G [M](mk).

In notation of n.1.7.2 the matrix of values of the p-adic periods pairing Vg,
for the formal group G equals ((t%)), where t* = Ig, (). If 6p € my; is such
that y(6pm) = om (i.e. 6p — op by substitution ¢ ~— =), consider sp(f) =
(p™ idg, )(0m). Then Vg, ; = (( g, (sm(%)) )), and one can easily see, that V( l)

((sp ()71 ))

Let 6o € W(k) be such that Tréy € Z; C Zp, where Tr : W(k) — Z, is the

trace map. Take Ty € W(k) C W(Ry), such that

Tt_ - O'TI = 50.
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Ifrelg,let A, = TT 15 € Z,C W( ). Clearly, the correspondence 7 +— A,
gives epimorphism j : 'y — Z,, Ker] is the inertia subgroup of I'yy and 7 induces
isomorphism Gal(K\;/K) ~ Z,, where K, is maximal unramified extension of K.

If © = 06g,, cf. n.2.5.2, then by nn.2.7, 3.9 for any 7 € I'x we have

(*) ( @(503M({)),T ]G1 = Arop.

If fi € Gy(mc) is such that (p¥ idg, )(f1) = Og, (608 ({)), then the above formula
(x) gives K(f1) C Kyr and [K(f1) : K] = pM. Therefore, we obtain p -primary
element Ey = 7(Og, (60511 (f))) by applying isomorphism 7 : G; — Gy,

4.3.2. The above considerations give the following explicit construction of p™
primary element from [Vol].

Proposition. If sy () = Y w0 Wu t*, where all w, € W(k), and

En(f) = [ E(bowu,*) € 1 +my 5,

then v(Ep()) = Ep(m) =
Proof. If bqwy = 3,5 olas,u]p®, where all oy € k, then

Og,,1(6osm () = D (p°ide, )([asult*),

in &

8,u

Ey = 1(0g, (bosm (1)) = v(n(O6, 1(8osnm (1)) =
= 7(]:[ E(ps[a‘s,u],t H E(60w87 ) - 7 EM t‘)

320 u>0
u>0

The following corollary is also well-known.

Corollary. If Epy € K* is a pM—primary element, then there exists power series
Epm(t) € 14+ my g, such that Ep(1) = Ep and diog Ep(2) € pMQbk -

Proof. Indeed, take Ep(2) from the above pr_oposition. Then

diog Em(f) =d(d o )= o (Eshy(d

520 820
u>0

But s (t) € pMOy ;, because Ig, (sm (%)) = pMlg, (6a1) and, therefore,

(L+sp @7+ +sp @7 4 ) dsm(®) = pM dlg, (6m) € pMQp,

4.3.3. Let Epr € K* be a pM-primary element and G 4 be the formal group from
section 1.

| :




Proposition. For any f € Ga(my) one has

(f:EM]GA = 0.

Proof. Choose some 7p1 € g, such that ¥y (Epr) 1s the image of Tps in I"}}’, where
Y K* — I“;}’ is reciprocity map of class field theory. We must prove, that
(f,7lea =0. .

The statement of proposition holds for the formal group G,, (c.f. n.4.1.2) and,
therefore, it holds for the formal group G;.

Take sp(t) € my; from n.4.3.1. If g € my; and T € W(Ry) is such that
T — oT = ao/sm(%), the equality (Og, (ag), Tar]s, = 0 is equivalent to the relation

(%) T — T € W(mpg) + p"W(R,).

Let V; be approximation of the matrix of values of the p-adic periods pairing

for the formal group G 4 from n.3.5, and let X; be nonnegative part of Vf"l (g),

c.f. n.3.8. By the part d) of proposition 3.8 vector-column 1 X7 has coordinates in
W(mg) + pMW(Ry). It is easy to see, that ¥ = sy (f) mod pM W(R), therefore,

A c 1
SM(f)
Now the above relation () gives:
if T; € W(R) is such that T} — ¢T3 = X;, then 74T; — T} has coordinates in

W(mg) + pMW(R,). By propositions of n.3.9 and n.2.7 this is equivalent to the
statement of our proposition.

m’,':,t-modpMW(Rg).

4.4. Second explicit formula.

4.4.1. Agreements.
As earlier, G ~ G 4 is the formal group over W (ko) from section 1. In particular,
we use description of the structure of filtered module M(G) from section 1 given

by the relation ) )
(am)=¢(a).

Z/pM-basis 0}y, ..., 0% of Ga[M](mk) and the matrix Vg, c.f. n.4.2. All appeared
Laurent series Y, ., wui®*, wy, € W, (k), are elements of the Wy, (k)-algebra Lri=
GriNGp—1)tp-1, 0 denotes absolute Frobenius of G, ; given by restriction of og,
ie. of ={? and o|w(x) is usual Frobenius of Witt vectors.

If 8 € Ga(my ;) and [4(X) is vector logarithm power series of the formal group
G a, then [4(8) has coordinates in L; ;N Gy, so for any u € N ¢*[4(f) has
sense in Ly ;. We use matrices Fy,, F, from n.1.3 to define Z ,-linear operator A* =
> u>1 Fuo® and to define for any 8 € Ga(my ;) vector Laurent series

aB) = 2 Y Fur(a(8) € GiiNGpo € Ly

u>1
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An easy consequence of the definition of these matrices Fy, and F}, is the following
formal identity for any 8 € m, ;

= ()= (™)

We denote by Hx multiplicative subgroup in Oy ff~'] C Ly i, such that

ob(f)

@y

So, the group Hy is generated by elements of 1 - m, ;, by t and by [, where
a € k*. Remark, that Col(K*) C Hy and by lemma of n.4.1.4 we have

6(t) e Hx < €1+4my;

(%) € Col(K*) <= &(f) € Hr and log 63’ > wde
(c,p)=1
where all w, € W(k).
As earlier, v : G(my ;) — G(mk) and v : Hg — K* are morphisms of
substitution £+ 7.

4.4.2. Masn theorem.
Assume, that K contains a primitive pM-root of unity.

It B = B(I) € Ga(my ), let

& (IB) (IA( )_O"AE:I_A(/B)) € (E’k,f)h :
wa() = vitea (740 Y e oy,

Theorem B. Let § € Ga(m, ;),6 € Hi, and B(B,6) =*(By,...,By) =

= (Resiog T (91(8) i 6+ Lo () %)) €@}

where Tr : W(k)® Q, — Q, is trace map, and Res;_,, is residue. Then B(3,6) €
Z" and
P

(v(8),7(8)lg. = 3103\4 + - Bhoﬁ,,.
Remark. We can use formal identity from n.4.4.1 to express the right-hand side of

the above expression for B(f, §) in a form, which is very close to Briickner-Vostokov
formulae

B(B,8) ="(Bi,...,By) =

D (i) ent =265 () 2 (200
L 41
|

(Res o Tr) {v‘ b [(1d (

1
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4.5. Proof of theorem B.
Consider the pairing

(5 Jei:Galmgy) x Hg — Q;‘

given for B € G a(my ;),7 € Hk by the expression

ab
(8,1t = (Reszag o Te)(B1(8) duog 6 + Lok F82(8))

This pairing has the following properties.
4.5.1. For any f§ € Ga(my;),6 € Hi, one has (8,8, ; € Z}.
Indeed, all elements of the matrix V; ! have principal parts with coefficients from
w(k),
[a(B) = (A" /p)a(B) = ©g,, 1(B) € m ; = EW(R)[[F )",

2IB ) h
CONCTON
diog 6 € t-1W(k)[[f]] df and (1/p)log(06/67) € my ;.

4.5.2. The pairing ( , | ;is Zy-linear by both arguments.
This property is obvious from the definition of pairing.

So, this pairing can be considered as homomorphism

(5 kit Galmgy) ©z, Hk — Z;}.
4.5.3. Proof of the following proposition will be given in n.4.6 below.

Proposition. ' .
Ify(8) =1, then for any f € Ga(m, ;) one has (8,6]; = 0mod p™.

4.5.4. Theorem B holds for any f € Ga(m; ;) and 6§ € ColK* C Hk.
By theorem Al of n.4.2 it is sufficient to prove, that

Res(; log B.F(I)g(ﬁ)) €p"Z,.
Lemma. d(Vt-_l) = pMW; di, where the matrix W; has coefficients in

[20] 2P/ P0G oy N Li

Proof of lemma. From definition of V; it is clear, that all coefficients of d(V;) belong

to pMQtV(k)[[t- 1 By nn. 3.5.5, 3.1.2 and 3.7.1 the matrix V; has coefficients in
1 _ 1 /(o - -
SV BIW /el + ™ (ﬁn) C leo) P0G |+ pM o) 2/ PGS |
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Then the equality
awy") = v dwvy!

gives d(Vi_l) = pMW; d i, where W; has coefficients in

[mo]—2p/(p—l)gg,1 [p[xo]"’/(?‘l)] C [$0]—2p/(p-})g3,p/(p—1)-
Lemma i1s proved.
Now from lemma of n.3.7.2 it follows, that principal parts of elements of W;
have p-integral coeflicients. Therefore, if V-_ ((v,_, () Ni<ij<n, and vii(t) =

> wyijt®, where all wy;; € Wo, (k), then uw,;; € p MW (k) if u < 0. In particular,
u€Z

if u < 0,(u,p) = 1, then w,;; € pMW(k).
Now remark, that there exists vector power series FI(t) € (W(k)[[t ]])*, such that
(o/p)u(ﬁ)) 4t
- F tp —
( om 4(B) Lo
and é € Col KX C Hy implies

—l—log Z ot

{¢,p)=1

where a. € W(k), cf. n4.14.
Therefore, the expressions for coordinates of the residue of

are linear combinations of wuij,(u,p) = 1, with coefficients from W (k). But all
such wy;; € pMW(k).

4.5.5. Theorem B holds for § = Epm(1) € 14 my ; from proposition 4.3.2 and any
B € Galmy 7).

By proposition 4.3.3 it is sufficient to check up, that B(8,6) € pMZ}. By
corollary of n.4.3.2 diegé € p Qw( B principal parts of coordinates of ®,(3)
have p-integral coefficients. So, Res(®1(8) diog &) € pM Z2.

From construction of Ep(f) it follows, that (1/p)log(c6/67) = 6psp(t), cf.
n.4.3.1.

If spr(f) = ¥ + pMwy, then we = twy € W!(mpg) = tW(mpg) and corollary of
n.3.5.5 gives

sV e (1 +PM%)W(R)[[¢”“1/1)]] +pM (14 pM 1) RC

CQO +pM[$0]—p/(P-1)g0 _

Therefore, principal parts of coefficients of s M(i)v have coefficients in pM W (k).
This gives

Res(603p(2)®2(8)) = 0mod pM

Clearly, the above properties 4.5.1-4.5.5 give the proof of theorem B.
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4.6. Proof of proposition 4.5.9.

We can calculate in Gp_1)+ -1 ®c, ; Q][;“. 2 Qlck 2

4.6.1. 4(6) = 1 implies existence of log§ € G 4 N tk,i. Now we have
Res(®,(8) diog §) = — Res(log 6 d &1(5)).

Lemma of n.4.5.4 gives

de,(8)=V;'d (TA(ﬁ) —O%TA(ﬁ)) mod p[ea] /P0G ) dE

Now we can apply lemma of n.3.7.2 and the formal identity from the beginning
of n.4.4 to obtain the following equivalence

Res(®1(B) diog 6) = — Res(log é Vt_—l d (;’f&%) -+

+Res(log§ V;'£7'd (Ugfi:(fﬂ))) mod p™ .

4.6.2. § € 1+ my ; implies (1/p)log(c6/é?) = (o/p)logé —logé. Now we can
use the last equivalence of n.4.6.1 to write

é
Res(@1(8) diog 6 + %log Toa(6) =

= —Res(log§ V; 1 d ( éAj(ﬁg))) + Res (%bg& @2(,3)> mod p™.

4.6.3. Let w(B) = V;! d( 4(6) )

]
ma(8)
Lemma.

a) og(log 6 w(pB)) € Q. and, therefore,

og(logé w(B)) = o(log 6 w(B));

b) (o /p)(log & w(B)) — (o /p)(log 8)P2(B) = pMY dt, where Y has coordinates in
Ly N 2] PG, o)
Remark. Generally, ogw(p) is not defined in Q.

Proof.
a) We can write, c.f. nn.3.5.4 and 3.5.5,



The matrix A; has coefficients in (¢/¥)W(R)([pt/+]] + %P~ /pW(R)[[¥*~/pl],
c.f. n.3.5.4. By construction of ¢, c.f. n.1.7.2, ¢/ = 1/(0c7'4)), therefore, ag(t/4) =
1/ € [zo]P/P=DGY .

This gives
o6 (WP © ool TG0, [ pleal 0D ] € 2] 700G

Clearly,

o (w72 [pW (R~ /pl]) € P72 [pW(R)[¢" 7 /o)) C lao] /P0G .

So, ogA1 has coefficients in [a;g]_f’/(”“l)gg »/(p—1) and og(D) = oAy,

bel+ mi ; implies

log6 _ t
%8 ¢ ZW(R) +

S e SR + W R L

By above arguments

(o) p=2
oo (ZE2) € Sw(r) + w5l € [a) VG,

log é logé o 1
7¢ ( i+ ) =°( o ) = o),
because o(logé) = o (l—jﬁ_ﬁ) ott and ott = ptt.

Clearly, ag(*VP), 0¢(1.4(8)), 0g(14(B)) have coordinates in G2 - So, og(log § w(B))
has coordinates in

Remark, this gives

([Eo]‘zp/(”"”gg,p/(p—J) N gk,f) dfc 9y, .-
b) Calculations of n.a) give

o(1og8 w(8) = (2 1og ) (VPN Bn + pModn)a ( T4 ).

Consider vector differential form

oy = (%10g 6)4%‘(01’13)(0&)‘1 (:;ﬂ(ﬁﬁ))) '

) h
Then estimates of n.a) give w; = pY; d, where Y; € [zo]2?/(P—1) (93 p/“’—n) ,
ola(B) 1 "
because d (a'n"m(ﬂ) € (pQW(k)[[z]}) ’
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If A is the matrix from n.3.5.3, then by the same reasons
_{Z 1y D ola(B) _ re
wa _-(p logé) At'*‘ (oV )d(ﬂﬁ”&_A(ﬂ) = pY, dt,

where Y has coordinates in {zo]~27/(P=1)G0 |
Therefore, o(log § w(f)) =

= (L1og8)Bs " )75 0V7)a ( T E) ) 4 - )

Now we use properties of the matrix V2 from n.1.8.
Lo yoyg( @aB®) Y e (@ Yo a/pla(B) _
sevia () = (7 ) v e () ) =
— tng——l d (O'/I)Z__A(ﬁ)> — t+v-—18—l d (J/pl_A(fB)) .

oma(f) om.4(f)

From definition of the matrix A it follows, that (E, — p A)Y~1 = Vt-"l, 50, we
obtained

o(log§ w(B)) = o(log §)V; 1€ d (‘;r/ﬁﬁij‘g))) +pMHYy df,

where Y € .[1:0]_2”/(?'1)93,,,/(;;—1) N Ly
Lemma is proved.

4.6.4. The vector Y from the above lemma has p-integral principal part, there-
fore,

Res(% logé ®2(8)) = Res (%(log& w(b’))) = o Res(log § w(f)) mod pM.

So, the equivalence of n.4.6.2 gives

(8,6) i = — Tr(Res(log 6 w(B))) + Tr(c Res(log § w(B))) = 0mod p™.

Proposition is proved.
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