THE FANO SURFACE OF THE KLEIN CUBIC THREEFOLD

XAVIER ROULLEAU

Abstract

We prove that the Klein cubic threefold F is the only one cubic threefold which has an order 11 automorphism. We calculate the period lattice of the intermediate Jacobian of F and study its Fano surface S. We compute the set of fibrations of S on a curve of positive genus and the intersection between the fibres of these fibrations. These fibres generate an index 2 sub-group of the Néron-Severi group and we obtain the generators of this group. The Néron-Severi group of S has rank $25=h^{1,1}$ and discriminant 11^{10}.

MSC: 14J29, 14J50 (primary); 14J70, 32G20 (secondary).
Key-words: Fano surface of a cubic threefold, Automorphisms, Surfaces with maximal Picard number.
0.1. Introduction. Let $F \hookrightarrow \mathbb{P}^{4}$ be a smooth cubic threefold. Its intermediate Jacobian

$$
J(F):=H^{2,1}(F, \mathbb{C})^{*} / H_{3}(F, \mathbb{Z})
$$

is a principally polarised Abelian variety $(J(F), \Theta)$ of dimension 5 that has the role in the analysis of curves on F similar to the role of the Jacobian variety in the study of divisors on a curve.
The Hilbert scheme of lines on F is a smooth surface S called the Fano surface of F; the Abel-Jacobi map $\vartheta: S \rightarrow J(F)$ is an embedding that induce an isomorphism $\operatorname{Alb}(\mathrm{S}) \rightarrow \mathrm{J}(\mathrm{F})$ where

$$
\operatorname{Alb}(\mathrm{S}):=\mathrm{H}^{\circ}\left(\Omega_{\mathrm{S}}\right)^{*} / \mathrm{H}_{1}(\mathrm{~S}, \mathbb{Z})
$$

is the Albanese variety of S and $H^{o}\left(\Omega_{S}\right):=H^{o}\left(S, \Omega_{S}\right)$ ([5] 0.6, 0.8).
The cotangent bundle theorem ([5] Lemma 12.5) ables us to recover the cubic F if we know only its Fano surface and moreover it gives a natural isomorphism beetwen the spaces $H^{o}\left(\Omega_{S}\right)$ and $H^{o}\left(F, \mathcal{O}_{F}(1)\right)=H^{o}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(1)\right)$. As we mainly work with the Fano surface, we will identify the homogenous coordinates $x_{1}, . ., x_{5}$ of \mathbb{P}^{4} with elements of $H^{o}\left(\Omega_{S}\right)$. We will also identify the Abelian variety $J(F)$ with $\operatorname{Alb}(\mathrm{S})$.

In [10], we give the classification of elliptic curve configurations on a Fano surface. It is proved that this classification is equivalent to the classification of the automorphism sub-groups of S that are generated by certain involutions. Moreover, it is also proved that the automorphism groups $\operatorname{Aut}(\mathrm{F})$ and $\operatorname{Aut}(\mathrm{S})$ of a cubic and its Fano surface are isomorphic. In the present paper, we pursue the study of these groups. By [10] Corollary 1.19, the order of Aut(S) divides

$$
11.7 .5^{2} 3^{6} 2^{23}
$$

This legitimates the study of the Fano surfaces which have an order 11 automorphism. A. Adler [1] has proved that automorphism group of the Klein cubic:

$$
F: x_{1} x_{5}^{2}+x_{5} x_{3}^{2}+x_{3} x_{4}^{2}+x_{4} x_{2}^{2}+x_{2} x_{1}^{2}=0
$$

is isomorphic to $P S L_{2}\left(\mathbb{F}_{11}\right)$. We prove in the present paper that:
Proposition 0.1. The Klein cubic is the only one smooth cubic threefold which has an order 11 automorphism.

If a curve admits a sufficiently large group of automorphisms, Bolza has found a method to compute a period matrix of its Jacobian (see [4], 11.7). As for the case of curves, we will use the fact that the Klein cubic F admits a large group of automorphisms to compute the period lattice of its intermediate Jacobian $J(F)$ or, what is the same thing, the period lattice $H_{1}(S, \mathbb{Z}) \subset H^{o}\left(\Omega_{S}\right)^{*}$ of the two dimensional variety S.

Let $\nu=\frac{-1+\sqrt{-11}}{2}$ and let \mathbb{E} be the elliptic curve $\mathbb{E}=\mathbb{C} / \mathbb{Z}[\nu]$. Let us denote by $e_{1}, . ., e_{5} \in H^{o}\left(\Omega_{S}\right)^{*}$ the dual basis of $x_{1}, . ., x_{5}$. Let ξ be a primitive 11-th root of unity and let $v_{i} \in H^{o}\left(\Omega_{S}\right)^{*}$ be :

$$
v_{i}=\xi^{i} e_{1}+\xi^{9 i} e_{2}+\xi^{3 i} e_{3}+\xi^{4 i} e_{4}+\xi^{5 i} e_{5}
$$

For s a point of the Hilbert sheme S, we denote by C_{s} the divisor on S that parametrizes the lines on F that cut the line corresponding to the point s.

Theorem 0.2. The period lattice $H_{1}(S, \mathbb{Z}) \subset H^{o}\left(\Omega_{S}\right)^{*}$ is equal to:

$$
\frac{\mathbb{Z}[\nu]}{1+2 \nu}\left(v_{0}-3 v_{1}+3 v_{2}-v_{3}\right)+\frac{\mathbb{Z}[\nu]}{1+2 \nu}\left(v_{1}-3 v_{2}+3 v_{3}-v_{4}\right)+\bigoplus_{k=0}^{2} \mathbb{Z}[\nu] v_{k}
$$

The Néron-Severi group $\operatorname{NS}(\mathrm{S})$ of S has rank $25=h^{1,1}(S)$ and discriminant 11^{10}. The image of the morphism

$$
\vartheta^{*}: \operatorname{NS}(\operatorname{Alb}(\mathrm{S})) \rightarrow \mathrm{NS}(\mathrm{~S})
$$

is sub-lattice of index 2 and $\mathrm{NS}(\mathrm{S})$ is generated by this lattice and the class of the incidence divisor C_{s}.
The set of numerical classes of fibres of fibrations of S in a curve of positive genus is in natural bijection with $\mathbb{P}_{\mathbb{Z}}^{4}(\mathbb{Z}[\nu])$ and generate $\vartheta^{*} \mathrm{NS}(\mathrm{Alb}(\mathrm{S}))$.

We remark that $J(F) \simeq \operatorname{Alb}(\mathrm{S})$ is isomorphic to \mathbb{E}^{5} but by [5] (0.12), this isomorphism is not an isomorphism of principally polarised Abelian varieties. The fact that $J(F)$ is isomorphic to \mathbb{E}^{5} is mentioned in [2].

The main properties used to prove Theorem 0.2 are the fact that the class of $S \hookrightarrow \operatorname{Alb}(\mathrm{~S})$ is equal to $\frac{1}{3!} \Theta^{3}$ and the fact that the action of the group Aut(S) on $\operatorname{Alb}(S)$ preserves the polarisation Θ.

To close this introduction, let us mention two known facts: (1) as the plane Klein quartic, the Klein cubic threefold has a modular interpretation see [7], (2) the cotangent sheaf of its Fano surface is ample [10].
0.2. Properties of the Fano surfaces. Let us recall some facts proved in [10] and fix the notations:
An automorphism f of F preserves the lines on F and induces an automorphism $\rho(f)$ of the Fano surface S.
An automorphism σ of S induces an automorphism σ^{\prime} of the Albanese variety of S such that the following diagram:

$$
\begin{array}{ccc}
S & \xrightarrow{\vartheta} & \operatorname{Alb}(\mathrm{~S}) \\
\downarrow \sigma & & \downarrow \sigma^{\prime} \\
S & \xrightarrow{\vartheta} & \operatorname{Alb}(\mathrm{~S})
\end{array}
$$

is commutative (where $\vartheta: S \rightarrow \operatorname{Alb}(\mathrm{~S})$ is a fixed Albanese morphism). We denote by $M_{\sigma} \in G L\left(H^{o}\left(\Omega_{S}\right)^{*}\right)$ the linear part of the differential of σ^{\prime} and we denote by

$$
q: G L\left(H^{o}\left(\Omega_{S}\right)^{*}\right) \rightarrow P G L\left(H^{o}\left(\Omega_{S}\right)^{*}\right)
$$

the natural quotient map. We have ([10], Theorem 1.15):
Theorem 0.3. A) The morphism $q\left(M_{\sigma}\right)$ is an automorphism of $F \hookrightarrow$ $\mathbb{P}\left(H^{o}\left(\Omega_{S}\right)^{*}\right)$.
B) The morphisms $\rho: \operatorname{Aut}(\mathrm{F}) \rightarrow \operatorname{Aut}(\mathrm{S})$ and $\sigma \rightarrow q\left(M_{\sigma}\right)$ are reciprocal isomorphisms.
C) For all $\sigma \in \operatorname{Aut}(\mathrm{S})$, the automorphism σ^{\prime} is an automorphism of the principally polarised Abelian variety $(\operatorname{Alb}(\mathrm{S}), \Theta)$.
0.3 . The unique cubic with an order 11 automorphism. Let us prove that the Klein cubic is the only one that possesses an order 11 automorphism.

Suppose that a cubic threefold F has an order 11 automorphism f. Let $\tau=$ $\rho(f)$ be the induced automorphism of the Fano surface S. The Proposition 13.2 .5 and the Theorem 13.2 .8 of [4] imply that the eigenvalues of M_{τ} are 5 pairewise non-complex conjugate 11-th primitive root of unity.
We denote by \mathcal{O} the set of sets of 5 pairwise non-complex conjugate 11-th primitive root of unity : \mathcal{O} contains 2^{5} elements. The group Aut (\mathbb{C}) of automorphisms of \mathbb{C} acts on \mathcal{O}.
Let ξ be a 11 -th primitive root of unity. For $i \in\{0,1, . .10\}$, we denote by χ_{i} the 1 dimensional representation:

$$
x \rightarrow \xi^{i} x \in \mathbb{C} .
$$

Let us suppose that $\left\{\xi, \xi^{9}, \xi^{3}, \xi^{4}, \xi^{5}\right\} \in \mathcal{O}$ is the set of eigenvalues of M_{τ}. The third symmetric power of the dimension 5 representation:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \rightarrow\left(\xi x_{1}, \xi^{9} x_{2}, \xi^{3} x_{3}, \xi^{4} x_{4}, \xi^{5} x_{5}\right)
$$

is decomposed in the following direct sum:
$H^{o}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(3)\right)=5 \chi_{0}+2 \chi_{1}+3 \chi_{2}+3 \chi_{3}+4 \chi_{4}+3 \chi_{5}+3 \chi_{6}+3 \chi_{7}+3 \chi_{8}+3 \chi_{9}+3 \chi_{10}$.
The space $5 \chi_{0}$ is generated by:

$$
x_{1} x_{5}^{2}, x_{5} x_{3}^{2}, x_{3} x_{4}^{2}, x_{4} x_{2}^{2}, x_{2} x_{1}^{2}
$$

By an appropriate variable change, we see that any smooth cubic of this space is isomorphic to the Klein cubic:

$$
x_{1} x_{5}^{2}+x_{5} x_{3}^{2}+x_{3} x_{4}^{2}+x_{4} x_{2}^{2}+x_{2} x_{1}^{2}=0 .
$$

The other stable spaces define singular cubic threefolds.
The orbit $\mathcal{O}_{0} \subset \mathcal{O}$ of $\left\{\xi, \xi^{9}, \xi^{3}, \xi^{4}, \xi^{5}\right\} \in \mathcal{O}$ by $\operatorname{Aut}(\mathbb{C})$ is:

$$
\mathcal{O}_{0}=\left\{\left\{\xi, \xi^{9}, \xi^{3}, \xi^{4}, \xi^{5}\right\},\left\{\xi^{10}, \xi^{2}, \xi^{8}, \xi^{7}, \xi^{6}\right\}\right\} .
$$

Let us study the representation $\chi_{1}+\chi_{2}+\chi_{3}+\chi_{4}+\chi_{5}$. Its third symmetric power is:
$H^{o}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(3)\right)=4 \chi_{0}+3 \chi_{1}+2 \chi_{2}+3 \chi_{3}+2 \chi_{4}+\chi_{5}+3 \chi_{6}+4 \chi_{7}+4 \chi_{8}+5 \chi_{9}+4 \chi_{10}$.
A basis of $5 \chi_{9}$ is :

$$
x_{2} x_{3} x_{4}, x_{1} x_{3} x_{5}, x_{5} x_{2}^{2}, x_{1} x_{4}^{2}, x_{3}^{3}
$$

and any cubic of this space is singular at the point: $(1: 0: 0: 0: 0)$. As we can verify, the other stable spaces give also singular threefolds.
Hence there is no Fano surface with an order 11 automorphism τ such that the eigenvalues of M_{τ} is the set $\left\{\xi, \xi^{2}, \xi^{3}, \xi^{4}, \xi^{5}\right\}$.
The orbit $\mathcal{O}_{1} \subset \mathcal{O}$ of the element $\left\{\xi, \xi^{2}, \xi^{3}, \xi^{4}, \xi^{5}\right\} \in \mathcal{O}$ by $\operatorname{Aut}(\mathbb{C})$ has order 10. Hence we have studied 10 representations and no one gives a smooth cubic threefold.

The set $\left\{\xi, \xi^{2}, \xi^{3}, \xi^{4}, \xi^{6}\right\} \in \mathcal{O}$ is not an element of the orbits \mathcal{O}_{0} and \mathcal{O}_{1}. The third symmmetic power of the representation:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \rightarrow\left(\xi x_{1}, \xi^{2} x_{2}, \xi^{3} x_{3}, \xi^{4} x_{4}, \xi^{6} x_{5}\right)
$$

is decomposed in:
$H^{o}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(3)\right)=3 \chi_{0}+3 \chi_{1}+2 \chi_{2}+3 \chi_{3}+2 \chi_{4}+3 \chi_{5}+3 \chi_{6}+4 \chi_{7}+4 \chi_{8}+4 \chi_{9}+4 \chi_{10}$.
As we can verify, no element of these 11 spaces gives a smooth cubic threefold. The orbit \mathcal{O}_{2} of the set $\left\{\xi, \xi^{2}, \xi^{3}, \xi^{4}, \xi^{6}\right\}$ by the action of $\operatorname{Aut}(\mathbb{C})$ has order 10.

The set $\left\{\xi, \xi^{2}, \xi^{3}, \xi^{5}, \xi^{7}\right\} \in \mathcal{O}$ is not an element of the orbits $\mathcal{O}_{0}, \mathcal{O}_{1}$ and \mathcal{O}_{2}. The third symmmetic power of the representation:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \rightarrow\left(\xi x_{1}, \xi^{2} x_{2}, \xi^{3} x_{3}, \xi^{5} x_{4}, \xi^{7} x_{5}\right)
$$

is decomposed in:
$H^{o}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(3)\right)=4 \chi_{0}+2 \chi_{1}+3 \chi_{2}+2 \chi_{3}+4 \chi_{4}+3 \chi_{5}+4 \chi_{6}+3 \chi_{7}+3 \chi_{8}+4 \chi_{9}+3 \chi_{10}$.
No one elements of these 11 spaces gives a smooth cubic threefold. The orbit \mathcal{O}_{3} of the set $\left\{\xi, \xi^{2}, \xi^{3}, \xi^{5}, \xi^{7}\right\}$ by the action of $\operatorname{Aut}(\mathbb{C})$ has order 10 .

The union of the orbits $\mathcal{O}_{0}, \mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$ is equal to \mathcal{O}. This shows that the Klein cubic

$$
x_{1} x_{5}^{2}+x_{5} x_{3}^{2}+x_{3} x_{4}^{2}+x_{4} x_{2}^{2}+x_{2} x_{1}^{2}=0
$$

is (up to isomorphism) the only one smooth cubic on which $\mathbb{Z} / 11 \mathbb{Z}$ acts.
Remark 0.4. By the same method, we can prove that there is no smooth cubic threefold with an order 7 automorphism.
0.4. The period lattice of the intermediate Jacobian of the Klein cubic. Let F be the Klein cubic and let S be its Fano surface. Let $\vartheta: S \rightarrow$ $\operatorname{Alb}(S)$ be a fixed Albanese morphism; it is an embedding. We compute here the period lattice $H_{1}(S, \mathbb{Z}) \subset H^{o}\left(\Omega_{S}\right)^{*}$ of the Albanese variety of S.

The order 5 automorphism:

$$
g:\left(x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right) \rightarrow\left(x_{5}: x_{1}: x_{4}: x_{2}: x_{3}\right)
$$

acts on F. Let be $\sigma=\rho(g)$. By Theorem 0.3 , there exists a 5 -th root of unity θ such that $M_{\sigma} \in G L\left(H^{o}\left(\Omega_{S}\right)^{*}\right)$ is equal to:

$$
M_{\sigma}: x \rightarrow \theta\left(x_{5}, x_{1}, x_{4}, x_{2}, x_{3}\right)
$$

Since the Klein cubic and g are defined over \mathbb{Q}, we have $\theta=1$.
Moreover, we know that M_{τ} verifies:

$$
M_{\tau}: x \rightarrow\left(\xi x_{1}, \xi^{9} x_{2}, \xi^{3} x_{3}, \xi^{4} x_{4}, \xi^{5} x_{5}\right)
$$

where $\tau=\rho(f)$ is defined in paragraph 0.2 .
Let q_{1} be the endomorphism of $\operatorname{Alb}(S)$ defined by the linear part of:

$$
\sum_{k=0}^{k=4}\left(\sigma^{\prime}\right)^{k}
$$

(where $\sigma^{\prime} \circ \vartheta=\vartheta \circ \sigma$. Its differential is:

$$
d q_{1}: x \rightarrow\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)\left(e_{1}+e_{2}+e_{3}+e_{4}+e_{5}\right)
$$

and its image is an elliptic curve which we denote by \mathbb{E}. Let us take $\xi=e^{\frac{2 i \pi}{11}}$ where $i^{2}=-1$. The restriction of the linear part of $q_{1} \circ \tau^{\prime}: \operatorname{Alb}(\mathrm{S}) \rightarrow \mathbb{E}$ to \mathbb{E} is the multiplication by:

$$
\nu=\xi+\xi^{9}+\xi^{3}+\xi^{4}+\xi^{5}=\frac{-1+i \sqrt{11}}{2}
$$

The curve \mathbb{E} has complex multiplication by the principal ideal domain $\mathbb{Z}[\nu]$. Up to a normalization of the basis $e_{1}, . ., e_{5}$ by a multiplication by a scalar, we can suppose that:

$$
H_{1}(S, \mathbb{Z}) \cap \mathbb{C} v_{0}=\mathbb{Z}[\nu] v_{0}
$$

(such normalization preserves the equation of F).
For $i \in \mathbb{Z} / 11 \mathbb{Z}$, let v_{i} be the vector:

$$
\begin{aligned}
v_{i} & =\left(M_{\tau}\right)^{i} v_{0} \in H^{o}\left(\Omega_{S}\right)^{*} \\
& =\xi^{i} e_{1}+\xi^{9 i} e_{2}+\xi^{3 i} e_{3}+\xi^{4 i} e_{4}+\xi^{5 i} e_{5}
\end{aligned}
$$

Let $\Lambda_{0} \subset H^{o}\left(\Omega_{S}\right)^{*}$ be the \mathbb{Z}-module generated by the $v_{i}, i \in \mathbb{Z} / 11 \mathbb{Z}$. The \mathbb{Z}-module Λ_{0} is leaved stable by M_{τ} and $\Lambda_{0} \subset H_{1}(S, \mathbb{Z})$.

Lemma 0.5. The \mathbb{Z}-module Λ_{0} is equal to the lattice:

$$
R_{0}=\mathbb{Z}[\nu] v_{0}+\mathbb{Z}[\nu] v_{1}+\mathbb{Z}[\nu] v_{2}+\mathbb{Z}[\nu] v_{3}+\mathbb{Z}[\nu] v_{4}
$$

Proof. We have:

$$
\nu v_{0}=v_{1}+v_{3}+v_{4}+v_{5}+v_{9}
$$

hence νv_{0} is an element of Λ_{0}. This implies that the vectors $\nu v_{i}=\left(M_{\tau}\right)^{i} \nu v_{0}$ are elements of Λ_{0} for all i, hence: $R_{0} \subset \Lambda_{0}$.
Reciprocally, we have:

$$
v_{5}=v_{0}+(1+\nu) v_{1}-v_{2}+v_{3}+\nu v_{4}
$$

This proves that R_{0} is leaved stable by M_{τ} and that the lattice R_{0} contains the vectors $v_{i}=\left(M_{\tau}\right)^{i} v_{0}$. Hence we have: $R_{0}=\Lambda_{0}$.

We need to know the first Chern class $c_{1}(\Theta)$ of the Θ divisor of $\operatorname{Alb}(\mathrm{S})$.
Lemma 0.6. Let H be the matrix of the Hermitian form of the polarisation Θ in the basis $e_{1}, . ., e_{5}$. There exists a positive integer such that:

$$
H=a \frac{2}{\sqrt{11}} I_{5}
$$

where I_{5} is the size 5 identity matrix.
Proof. The automorphism τ^{\prime} preserves the polarisation Θ (see [10], Lemma 1.18). By [4] Lemma 2.17, this implies that:

$$
{ }^{t} M_{\tau} H \bar{M}_{\tau}=H
$$

where \bar{M}_{τ} is the matrix in the basis $e_{1}, . ., e_{5}$ whose coefficients are conjugated of those of M_{τ} and where ${ }^{t}$ is the transposition. The only Hermitian matrices that verify this equality are the diagonal matrices. By the same reasonning with σ instead of τ, we obtain that these diagonal coefficients are equal and:

$$
H=a \frac{2}{\sqrt{11}} I_{5}
$$

where a is a positive real (H is a positive definite Hermitian form). As H is a polarisation, the alternating form $c_{1}(\Theta)=\Im m(H)$ take integer values on $H_{1}(S, \mathbb{Z})$. But v_{1} and v_{2} are elements of $H_{1}(S, \mathbb{Z})$ and:

$$
\Im m\left(H\left(v_{1}, v_{2}\right)\right)=-a
$$

hence a is an integer.
Let be $k \in \mathbb{Z} / 11 \mathbb{Z}$. The differential of the linear part of the morphism $q_{1} \circ\left(\tau^{\prime}\right)^{k}$ is:

$$
x \rightarrow \ell_{k}(x)\left(e_{1}+. .+e_{5}\right)
$$

where ℓ_{k} is the linear form:

$$
\ell_{k}=\xi^{k} x_{1}+\xi^{9 k} x_{2}+\xi^{3 k} x_{3}+\xi^{4 k} x_{4}+\xi^{5 k} x_{5} \in H^{o}\left(\Omega_{S}\right)
$$

Let be $\lambda \in H_{1}(S, \mathbb{Z})$. As

$$
H_{1}(S, \mathbb{Z}) \cap \mathbb{C} v_{0}=\mathbb{Z}[\nu] v_{0}
$$

the scalar $\ell_{k}(\lambda)$ is an element of $\mathbb{Z}[\nu]$. Put:

$$
\Lambda_{4}=\left\{u \in \mathbb{C}^{5} / \forall k, 0 \leq k \leq 4, \ell_{k}(u) \in \mathbb{Z}[\nu]\right\}
$$

The set Λ_{4} contains $H_{1}(S, \mathbb{Z})$.
Lemma 0.7. The \mathbb{Z}-module Λ_{4} is equal to the lattice:

$$
R_{1}=\sum_{i=0}^{i=3} \frac{\mathbb{Z}[\nu]}{1+2 \nu}\left(v_{i}-v_{i+1}\right)+\mathbb{Z}[\nu] v_{0}
$$

Moreover M_{τ} leaves stable Λ_{4}.
Proof. The element $u=\sum u_{i} e_{i} \in H^{o}\left(\Omega_{S}\right)^{*}$ is in Λ_{4} if and only if

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
\xi & \xi^{9} & \xi^{3} & \xi^{4} & \xi^{5} \\
\xi^{2} & \xi^{7} & \xi^{6} & \xi^{8} & \xi^{10} \\
\xi^{3} & \xi^{5} & \xi^{9} & \xi & \xi^{4} \\
\xi^{4} & \xi^{3} & \xi & \xi^{5} & \xi^{9}
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right) \in\left(\begin{array}{l}
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu]
\end{array}\right) .
$$

The group Λ_{4} is writted in the basis $b=v_{0}, . ., v_{4}$:

$$
\frac{1}{1+2 \nu}\left(\begin{array}{ccccc}
-1 & -\nu & 0 & -1 & 1-\nu \\
-\nu & 2 & 0 & -\nu & 3+\nu \\
0 & 0 & 0 & 1 & -1 \\
-1 & -\nu & 1 & -2 & 1-\nu \\
1-\nu & 3+\nu & -1 & 1-\nu & 2+2 \nu
\end{array}\right)\left(\begin{array}{c}
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu]
\end{array}\right)
$$

and by elementary operations with coefficients in $\mathbb{Z}[\nu]$ on the rows, we obtain that Λ_{4} is equal to R_{1}.
Now, we use the fact that:

$$
v_{5}=v_{0}+(1+\nu) v_{1}-v_{2}+v_{3}+\nu v_{4}
$$

to prove that $\frac{1}{1+2 \nu}\left(v_{4}-v_{5}\right)$ is an element of Λ_{4}. As $M_{\tau}\left(v_{j}\right)=v_{j+1}$, this ables us to conclude that Λ_{4} is stable by M_{τ}.

We denote by $\phi: \Lambda_{4} \rightarrow \Lambda_{4} / \Lambda_{0}$ the quotient map. The ring $\mathbb{Z}[\nu] /(1+2 \nu)$ is the finite field with 11 elements.

Lemma 0.8. The quotient $\Lambda_{4} / \Lambda_{0}$ is a $\mathbb{Z}[\nu] /(1+2 \nu)$-vector space with basis:

$$
\begin{array}{ll}
t_{1}=\frac{1}{1+2 \nu}\left(v_{0}-v_{1}\right)+\Lambda_{0}, & t_{2}=\frac{1}{1+2 \nu}\left(v_{1}-v_{2}\right)+\Lambda_{0} \\
t_{3}=\frac{1}{1+2 \nu}\left(v_{2}-v_{3}\right)+\Lambda_{0}, & t_{4}=\frac{1}{1+2 \nu}\left(v_{3}-v_{4}\right)+\Lambda_{0} .
\end{array}
$$

Proof. The quotient $\Lambda_{4} / \Lambda_{0}$ is an hyperplane of the 5 dimensional $\mathbb{Z}[\nu] /(1+$ $2 \nu)$-vector space $\frac{1}{1+2 \nu} \Lambda_{0} / \Lambda_{0}$.

Let R be a lattice such that $: \Lambda_{0} \subset R \subset \Lambda_{4}$. The group $\phi(R)$ is a sub-vector space of $\Lambda_{4} / \Lambda_{0}$ and:

$$
\phi^{-1} \phi(R)=R+\Lambda_{0}=R
$$

Because M_{τ} preserves Λ_{0}, the morphism M_{τ} induces a morphism \widehat{M}_{τ} on the quotient $\Lambda_{4} / \Lambda_{0}$ such that $\phi \circ M_{\tau}=\widehat{M}_{\tau} \circ \phi$. As M_{τ} leaves stable $H_{1}(S, \mathbb{Z})$, the vector space $\phi\left(H_{1}(S, \mathbb{Z})\right)$ is stable by \widehat{M}_{τ}. We denote:

$$
\begin{aligned}
w_{1} & =-t_{1}+3 t_{2}-3 t_{3}+t_{4} \\
w_{2} & =t_{1}-2 t_{2}+t_{3} \\
w_{3} & =-t_{1}+t_{2} \\
w_{4} & =t_{1}
\end{aligned}
$$

The matrix of \widehat{M}_{τ} in the basis $w_{1}, . ., w_{4}$ of Λ_{4} / Λ is:

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The sub-spaces leaved stable by \widehat{M}_{τ} are the space $W_{0}=\{0\}$ and the spaces $W_{i}, 1 \leq i \leq 4$ generated by $w_{1}, . ., w_{i}$. Let Λ_{i} be the lattice $\phi^{-1} W_{i}$, then:

Theorem 0.9. The lattice $H_{1}(S, \mathbb{Z})$ is equal to Λ_{2}, and Λ_{2} is equal to

$$
R_{2}=\frac{\mathbb{Z}[\nu]}{1+2 \nu}\left(v_{0}-3 v_{1}+3 v_{2}-v_{3}\right)+\frac{\mathbb{Z}[\nu]}{1+2 \nu}\left(v_{1}-3 v_{2}+3 v_{3}-v_{4}\right)+\bigoplus_{k=0}^{2} \mathbb{Z}[\nu] v_{k}
$$

Moreover, the Hermitian matrix associated to Θ is equal to $\frac{2}{\sqrt{11}} I_{5}$ in the basis $e_{1}, . ., e_{5}$.

Proof. Let $c_{1}(\Theta)=\Im m(H)=i \frac{a}{\sqrt{11}} \sum d x_{k} \wedge d \bar{x}_{k}$ be the alternating form of the principal polarisation Θ. Let $\lambda_{1}, . ., \lambda_{10}$ be a basis of a lattice Λ. The Pfaffian $P f_{\Theta}(\Lambda)$ of Λ is the determinant of the matrix

$$
\left(c_{1}(\Theta)\left(\lambda_{j}, \lambda_{k}\right)\right)_{1 \leq j, k \leq 10} .
$$

Since Θ is a principal polarisation, we have $P f_{\Theta}\left(H_{1}(S, \mathbb{Z})\right)=1$.
It is easy to find a basis of $\Lambda_{j}(j \in\{0, . ., 4\})$. For example, the space W_{2} is generated by $w_{2}=t_{1}-2 t_{2}+t_{3}$ and $w_{1}+w_{2}=t_{2}-2 t_{3}+t_{4}$ and as

$$
\begin{gathered}
\phi\left(\frac{1}{1+2 \nu}\left(v_{0}-3 v_{1}+3 v_{2}-v_{3}\right)\right)=w_{2} \\
\phi\left(\frac{1}{1+2 \nu}\left(v_{1}-3 v_{2}+3 v_{3}-v_{4}\right)\right)=w_{1}+w_{2}
\end{gathered}
$$

the lattice R_{2} (that contains Λ_{0}) is equal to Λ_{2}.
Then, with the help of a computer, we can calculate the Pfaffian P_{j} of the lattice Λ_{j} and verify that it is equal to:

$$
a^{10} 11^{4-2 j}
$$

where a is the integer of Lemma 0.6 . As a is a positive, the only possibility that P_{j} equals 1 is $j=2$ and $a=1$.
0.5. The Néron-Severi Group of the Fano surface of the Klein cubic. Let us define:

$$
\begin{gathered}
u_{1}=\frac{1}{1+2 \nu}\left(v_{0}-3 v_{1}+3 v_{2}-v_{3}\right), u_{2}=\frac{1}{1+2 \nu}\left(v_{1}-3 v_{2}+3 v_{3}-v_{4}\right) \\
u_{3}=v_{0}, u_{4}=v_{1}, u_{5}=v_{2}
\end{gathered}
$$

Let $y_{1}, \ldots, y_{5} \in H^{o}\left(\Omega_{S}\right)$ be the linear forms such that:

$$
\sum_{k=1}^{k=4} x_{k} e_{k}=\sum_{k=1}^{k=4} y_{k} u_{k}
$$

Let be $k, 1 \leq k \leq 5$. The image of $H_{1}(S, \mathbb{Z})$ by $y_{k} \in H^{o}\left(\Omega_{S}\right)$ is $\mathbb{Z}[\nu]$, and this form is the differential of an Abelian varieties morphism

$$
r_{k}: \operatorname{Alb}(\mathrm{S}) \rightarrow \mathbb{E}=\mathbb{C} / \mathbb{Z}[\nu]
$$

The morphisms $r_{1}, . ., r_{5}$ form a basis of the $\mathbb{Z}[\nu]$-module $\operatorname{Hom}_{\mathrm{ab}} \operatorname{var}(\operatorname{Alb}(\mathrm{S}), \mathbb{E})$.
We denote by Λ_{A}^{*} the free $\mathbb{Z}[\nu]$-module of rank 5 generated by $y_{1}, . ., y_{5}$ and for $\ell \in \Lambda_{A}^{*}$, we denote by $\Gamma_{\ell}: \operatorname{Alb}(S) \rightarrow \mathbb{E}$ the morphism whose differential is $\ell: H^{o}\left(\Omega_{S}\right)^{*} \rightarrow \mathbb{C}$.
Let $\vartheta: S \rightarrow \mathrm{Alb}(\mathrm{S})$ be a fixed Albanese morphism. We denote by $\gamma_{\ell}: S \rightarrow \mathbb{E}$ the morphism $\gamma_{\ell}=\Gamma_{\ell} \circ \vartheta$ and we denote by F_{ℓ} the numerical equivalence class of a fibre of γ_{ℓ} (this class is independant of the choice of ϑ).
We define the scalar product of two forms $\ell, \ell^{\prime} \in \Lambda_{A}^{*}$ by:

$$
\left\langle\ell, \ell^{\prime}\right\rangle=\sum_{k=1}^{k=5} \ell\left(e_{k}\right) \overline{\ell^{\prime}\left(e_{k}\right)}
$$

and the norm of ℓ by:

$$
\|\ell\|=\sqrt{\langle\ell, \ell\rangle} .
$$

We denote by $\mathrm{NS}(\mathrm{X})$ the Néron-Severi group of a variety X. The aim of this paragraph is to prove the following result:

Theorem 0.10. Let ℓ, ℓ^{\prime} be elements of Λ_{A}^{*}. The fibre F_{ℓ} has genus:

$$
g\left(F_{\ell}\right)=1+3\|\ell\|^{2}
$$

verifies $F_{\ell} C_{s}=2\|\ell\|^{2}$ and:

$$
F_{\ell} F_{\ell^{\prime}}=\|\ell\|^{2}\left\|\ell^{\prime}\right\|^{2}-\left\langle\ell, \ell^{\prime}\right\rangle\left\langle\ell^{\prime}, \ell\right\rangle .
$$

The image of the morphism $\vartheta^{*}: \mathrm{NS}(\operatorname{Alb}(\mathrm{S})) \rightarrow \mathrm{NS}(\mathrm{S})$ is a rank 25 sub-lattice of discriminant $2^{2} 11^{10}$.
The following 25 fibres

$$
\begin{array}{ll}
F_{y_{k}}, k \in\{1, . ., 5\} \quad & F_{y_{k}+y_{l}}, 1 \leq k<l \leq 5 \\
& F_{y_{k}+\nu y_{l}}, 1 \leq k<l \leq 5
\end{array}
$$

are a \mathbb{Z}-basis of $\vartheta^{*} \mathrm{NS}(\operatorname{Alb}(\mathrm{S}))$ and together with the class of the incident divisor $C_{s}(s \in S)$ they generate the Néron-Severi group of S.

We begin by the following lemma:
Lemma 0.11. The Néron-Severi group of $\operatorname{Alb}(\mathrm{S})$ is generated by the 25 forms:

$$
\begin{array}{ll}
\frac{i}{\sqrt{11}} d y_{k} \wedge d \bar{y}_{k}, k \in\{1, . ., 5\} \quad & \frac{i}{\sqrt{11}}\left(d y_{k} \wedge d \bar{y}_{l}+d y_{l} \wedge d \bar{y}_{k}\right), 1 \leq k<l \leq 5 \\
& \frac{i}{\sqrt{11}}\left(\nu d y_{k} \wedge d \bar{y}_{l}+\bar{\nu} d y_{l} \wedge d \bar{y}_{k}\right), 1 \leq k<l \leq 5 .
\end{array}
$$

Proof. The Hermitian form $H^{\prime}=\frac{2}{\sqrt{11}} I_{5}$ in the basis $u_{1}, . ., u_{k}$ defines a principal polarisation of $\operatorname{Alb}(\mathrm{S})$. Let $\operatorname{End}^{\mathrm{s}}(\mathrm{Alb}(\mathrm{S}))$ be the group of symmetric morphisms for the Rosati involution associated to H^{\prime}. There exists an isomorphism

$$
\phi_{H^{\prime}}: \operatorname{NS}(\operatorname{Alb}(\mathrm{S})) \rightarrow \operatorname{End}^{\mathrm{s}}(\operatorname{Alb}(\mathrm{~S})) .
$$

The group $\operatorname{End}^{s}(\operatorname{Alb}(S))$ is easily calculated and we obtain the lemma when we take the inverse morphism of $\phi_{H^{\prime}}$ (see [4] Proposition 5.2.1).

The Néron-Severi group of the curve $\mathbb{E}=\mathbb{C} / \mathbb{Z}[\nu]$ is the \mathbb{Z}-module generated by the form:

$$
\eta=\frac{i}{\sqrt{11}} d z \wedge d \bar{z}
$$

Let $\ell \in \Lambda_{A}^{*}$, we have:

$$
\Gamma_{\ell}^{*} \eta=\frac{i}{\sqrt{11}} d \ell \wedge d \bar{\ell}
$$

and this form is the Chern class of the divisor $\Gamma_{\ell}^{*} 0$.
Lemma 0.12. The 25 forms:

$$
\begin{array}{ll}
\eta_{k}=\Gamma_{y_{k}}^{*} \eta, k \in\{1, \ldots, 5\} & \eta_{k, l}^{1}=\Gamma_{y_{k}+y_{l}}^{*} \eta, 1 \leq k<l \leq 5 \\
& \eta_{k, l}^{\nu}=\Gamma_{y_{k}+\nu y_{l}}^{*} \eta, 1 \leq k<l \leq 5
\end{array}
$$

are a basis of the Néron-Severi group of $\operatorname{Alb}(\mathrm{S})$.
Proof. Let $1 \leq k \leq 5$ be an integer. The element $\Gamma_{y_{k}}^{*} \eta=\frac{i}{\sqrt{11}} d y_{k} \wedge d \bar{y}_{k}$ is in the basis of Lemma 0.11. Let $1 \leq l<k \leq 5$ be integers, let be $a \in\{1, \nu\}$, and $\ell=y_{k}+a y_{l}$. We have:

$$
\Gamma_{\ell}^{*} \eta=\frac{i}{\sqrt{11}}\left(d y_{k} \wedge d \bar{y}_{k}+\bar{a} d y_{k} \wedge d \bar{y}_{l}+a d y_{l} \wedge d \bar{y}_{k}+a \bar{a} d y_{l} \wedge d \bar{y}_{l}\right),
$$

this proves, when we take $a=1$ and next $a=\nu$, that the forms of the basis of Lemma 0.11 are \mathbb{Z}-linear combinaisons of the forms $\eta_{k}, \eta_{k, l}^{1}, \eta_{k, l}^{\nu}, 1 \leq k, l \leq$ 5.

Let us prove the Theorem 0.10.
Proof. As the homology class of S in $\operatorname{Alb}(\mathrm{S})$ is equal to $\frac{\Theta^{3}}{3!}$, the intersection of the fibres F_{ℓ} and $F_{\ell^{\prime}}$ is equal to:

$$
\int_{A} \frac{1}{3!} \wedge^{3} c_{1}(\Theta) \wedge \Gamma_{\ell}^{*} \eta \wedge \Gamma_{\ell^{\prime}}^{*} \eta .
$$

Write ℓ in the basis $x_{1}, . ., x_{5}: \ell=a_{1} x_{1}+. .+a_{5} x_{5}$ and $\ell^{\prime}=b_{1} x_{1}+. .+b_{5} x_{5}$, then:

$$
\frac{1}{3!}\left(\frac{i}{\sqrt{11}}\right)^{2} d \ell \wedge d \bar{\ell} \wedge d \ell^{\prime} \wedge d \overline{\ell^{\prime}} \wedge\left(\wedge^{3} c_{1}(\Theta)\right)
$$

is equal to:

$$
\begin{aligned}
& \left(\frac{i}{\sqrt{11}}\right)^{5}\left(\sum a_{j} x_{j}\right) \wedge\left(\sum \bar{a}_{j} \bar{x}_{j}\right) \wedge\left(\sum b_{j} x_{j}\right) \wedge\left(\sum \bar{b}_{j} \bar{x}_{j}\right) \\
& \quad \wedge \sum_{h<j<k} d x_{h} \wedge d \bar{x}_{h} \wedge d x_{j} \wedge d \bar{x}_{j} \wedge d x_{k} \wedge d \bar{x}_{k}
\end{aligned}
$$

that is equal to:

$$
\left(\sum_{k \neq j} a_{k} \bar{a}_{k} b_{j} \bar{b}_{j}-a_{k} \bar{a}_{j} b_{j} \bar{b}_{k}\right) \frac{1}{5!} \wedge^{5} c_{1}(\Theta) .
$$

But : $\int_{A} \frac{1}{5!} \wedge^{5} c_{1}(\Theta)=1$ because Θ is a principal polarisation of $\operatorname{Alb}(\mathrm{S})$, hence:

$$
\begin{aligned}
F_{\ell} F_{\ell^{\prime}}=\int_{A} \frac{1}{3!} \wedge^{3} c_{1}(\Theta) \wedge \Gamma_{\ell}^{*} \eta \wedge \Gamma_{\ell^{\prime}}^{*} \eta & =\sum_{k \neq j} a_{k} \bar{a}_{k} b_{j} \bar{b}_{j}-a_{k} \bar{a}_{j} b_{j} \bar{b}_{k} \\
& =\|\ell\|^{2}\left\|\ell^{\prime}\right\|^{2}-\left\langle\ell, \ell^{\prime}\right\rangle\left\langle\ell^{\prime}, \ell\right\rangle
\end{aligned}
$$

By [5] (10.9) and Lemma 11.27, $\frac{3}{2} \vartheta^{*} c_{1}(\Theta)$ is the Poincaré dual of a canonical divisor K of S, hence:

$$
K F_{\ell}=\frac{3}{2} \vartheta^{*} c_{1}(\Theta) \vartheta^{*} \Gamma_{\ell}^{*} \eta=\frac{3}{2} \int_{A} \frac{1}{3!} \wedge^{4} c_{1}(\Theta) \wedge \Gamma_{\ell}^{*} \eta
$$

and:

$$
K F_{\ell}=\int_{A} 6\left(\frac{i}{\sqrt{11}}\right)^{5}\left(\sum a_{j} d x_{j}\right) \wedge\left(\sum \bar{a}_{j} d \bar{x}_{j}\right) \wedge \sum_{1 \leq k \leq 5}\left(\wedge_{j \neq k}\left(d x_{j} \wedge d \bar{x}_{j}\right)\right)
$$

so $K F=6 \sum_{k=1}^{k=5} a_{k} \bar{a}_{k}=6\|\ell\|^{2}$. Hence we have $g\left(F_{\ell}\right)=\left(K F_{\ell}+0\right) / 2+1=$ $3\|\ell\|^{2}+1$.

Lemma 0.12 give us a basis $\eta_{1}, \ldots, \eta_{25}$ of $\operatorname{NS}(\operatorname{Alb}(S))$ and we know the intersections $\vartheta^{*} \eta_{k} \vartheta^{*} \eta_{l}$ in the Fano surface. With the help of a computer, we can verify that the determinant of the intersection matrix:

$$
\left(\vartheta^{*} \eta_{k} \vartheta^{*} \eta_{l}\right)_{1 \leq k, l \leq 25}
$$

is equal to $2^{2} 11^{10}$. By general results of [10], Proposition 1.17, the index of $\vartheta^{*} \mathrm{NS}(\operatorname{Alb}(\mathrm{S})) \subset \mathrm{NS}(\mathrm{S})$ is 2 and $\mathrm{NS}(\mathrm{S})$ is generated by $\vartheta^{*} \mathrm{NS}(\mathrm{Alb}(\mathrm{S}))$ and the class of an incidence divisor C_{s}.

We obtain also the following corollary:
Corollary 0.13. Let C be a smooth curve of genus >0 and let $\gamma: S \rightarrow C$ be a fibration with connected fibres. Then there exists an isomorphism $j: \mathbb{E} \rightarrow C$ and an $\ell \in \Lambda_{A}^{*}$ such that $\gamma=j \circ \gamma_{\ell}$.
The connected fibrations (in a curve of genus >0) up to isomorphism are in bijection with $\mathbb{P}_{\mathbb{Z}}^{4}(\mathbb{Z}[\nu])$.

Proof. The natural morphism $\wedge^{2} H^{o}\left(\Omega_{S}\right) \rightarrow H^{o}\left(S, \wedge^{2} \Omega_{S}\right)$ is an isomorphism, hence if $\gamma: S \rightarrow C$ is fibration on a curve of genus >0, the curve C has genus 1. This implies that there is a morphism $\Gamma: \operatorname{Alb}(\mathrm{S}) \rightarrow \mathrm{C}$ such that $\gamma=\Gamma \circ \vartheta$. Moreover Γ has connected fibres hence C is isomorphic to \mathbb{E} (here we use the fact that $\mathbb{Z}[\nu]$ is principal).
Let $\ell \in \Lambda_{A}^{*}, \ell=t_{1} y_{1}+. .+t_{5} y_{5}$, the fibration Γ_{ℓ} has connected fibres if and only if $t_{1}, . ., t_{5}$ generates $\mathbb{Z}[\nu]$.

References

[1] AdlerA., "On the automorphism group of a certain cubic threefold", Amer. J. of Math. 100 (1978), 1275-1280.
[2] AdlerA., Ramanan S., "Moduli of Abelian varieties", LNM 1644, Springer, Berlin, (1996).
[3] Barth W., Hulek K., Peters C., Van De Ven A., "Compact complex surfaces", Ergeb. Math. Grenzgeb. vol.4, 2nde edition, Springer (2004).
[4] Birkenhake C., Lange H., "Complex Abelian varieties", Grundlehren, Vol 302, 2nde edition, Springer (1980).
[5] Clemens H., Griffiths P., "The intermediate Jacobian of the cubic threefold", Annals of Math. 95 (1972), 281-356.
[6] Griffiths P., Harris J., "Principles of algebraic geometry", Wiley (1978).
[7] Gross, M., Popescu, S. "The moduli space of (1,11)-polarised abelian surfaces is unirationnal", Compositio Math. 126 (2001), no 1., 1-23.
[8] Manin Y., "Cubic forms", North-Holland Publishing Company, Amsterdam, (1974).
[9] Murre J.P., "Algebraic equivalence modulo rational equivalence on a cubic threefold", Compositio Math., Vol 25, 1972, 161-206.
[10] Roulleau X., "Elliptic curve configurations on Fano surfaces", preprint.
[11] Tyurin A.N., "On the Fano surface of a nonsingular cubic in $\mathbb{P}^{4} "$, Math. Ussr Izv. 4 (1970), 1207-1214.
[12] Tyurin A.N., "The geometry of the Fano surface of a nonsingular cubic $F \subset \mathbb{P}^{4}$ and Torelli theorems for Fano surfaces and cubics", Math. Ussr Izv. 5 (1971), 517-546.
[13] Zarhin Y., "Cubic surfaces and cubic threefolds, Jacobians and the intermediate Jacobians", arxiv:math/0610138v2 [mathAG].
Xavier Roulleau
Max Planck Institute für Mathematik,
Vivatgasse 7,
53111 Bonn,
Germany
roulleau@mpim-bonn.mpg.de

