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Abstract. We prove that the Klein cubic threefold F is the only one
cubic threefold which has an order 11 automorphism. We calculate the
period lattice of the intermediate Jacobian of F and study its Fano
surface S. We compute the set of fibrations of S on a curve of positive
genus and the intersection between the fibres of these fibrations. These
fibres generate an index 2 sub-group of the Néron-Severi group and we
obtain the generators of this group. The Néron-Severi group of S has
rank 25 = h1,1 and discriminant 1110.
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0.1. Introduction. Let F ↪→ P4 be a smooth cubic threefold. Its interme-
diate Jacobian

J(F ) := H2,1(F,C)∗/H3(F,Z)
is a principally polarised Abelian variety (J(F ),Θ) of dimension 5 that has
the role in the analysis of curves on F similar to the role of the Jacobian
variety in the study of divisors on a curve.
The Hilbert scheme of lines on F is a smooth surface S called the Fano
surface of F ; the Abel-Jacobi map ϑ : S → J(F ) is an embedding that
induce an isomorphism Alb(S)→ J(F) where

Alb(S) := Ho(ΩS)∗/H1(S,Z)

is the Albanese variety of S and Ho(ΩS) := Ho(S,ΩS) ([5] 0.6, 0.8).
The cotangent bundle theorem ([5] Lemma 12.5) ables us to recover the

cubic F if we know only its Fano surface and moreover it gives a natural iso-
morphism beetwen the spaces Ho(ΩS) and Ho(F,OF (1)) = Ho(P4,OP4(1)).
As we mainly work with the Fano surface, we will identify the homogenous
coordinates x1, .., x5 of P4 with elements of Ho(ΩS). We will also identify
the Abelian variety J(F ) with Alb(S).

In [10], we give the classification of elliptic curve configurations on a Fano
surface. It is proved that this classification is equivalent to the classification
of the automorphism sub-groups of S that are generated by certain involu-
tions. Moreover, it is also proved that the automorphism groups Aut(F) and
Aut(S) of a cubic and its Fano surface are isomorphic. In the present paper,
we pursue the study of these groups. By [10] Corollary 1.19, the order of
Aut(S) divides
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11.7.5236223.

This legitimates the study of the Fano surfaces which have an order 11
automorphism. A. Adler [1] has proved that automorphism group of the
Klein cubic:

F : x1x
2
5 + x5x

2
3 + x3x

2
4 + x4x

2
2 + x2x

2
1 = 0

is isomorphic to PSL2(F11). We prove in the present paper that:

Proposition 0.1. The Klein cubic is the only one smooth cubic threefold
which has an order 11 automorphism.

If a curve admits a sufficiently large group of automorphisms, Bolza has
found a method to compute a period matrix of its Jacobian (see [4], 11.7).
As for the case of curves, we will use the fact that the Klein cubic F ad-
mits a large group of automorphisms to compute the period lattice of its
intermediate Jacobian J(F ) or, what is the same thing, the period lattice
H1(S,Z) ⊂ Ho(ΩS)∗ of the two dimensional variety S.

Let ν = −1+
√
−11

2 and let E be the elliptic curve E = C/Z[ν]. Let us denote
by e1, .., e5 ∈ Ho(ΩS)∗ the dual basis of x1, .., x5. Let ξ be a primitive 11-th
root of unity and let vi ∈ Ho(ΩS)∗ be :

vi = ξie1 + ξ9ie2 + ξ3ie3 + ξ4ie4 + ξ5ie5.

For s a point of the Hilbert sheme S, we denote by Cs the divisor on S that
parametrizes the lines on F that cut the line corresponding to the point s.

Theorem 0.2. The period lattice H1(S,Z) ⊂ Ho(ΩS)∗ is equal to:

Z[ν]
1 + 2ν

(v0 − 3v1 + 3v2 − v3) +
Z[ν]

1 + 2ν
(v1 − 3v2 + 3v3 − v4) +

2⊕
k=0

Z[ν]vk.

The Néron-Severi group NS(S) of S has rank 25 = h1,1(S) and discriminant
1110. The image of the morphism

ϑ∗ : NS(Alb(S))→ NS(S)

is sub-lattice of index 2 and NS(S) is generated by this lattice and the class
of the incidence divisor Cs.
The set of numerical classes of fibres of fibrations of S in a curve of positive
genus is in natural bijection with P4

Z(Z[ν]) and generate ϑ∗NS(Alb(S)).

We remark that J(F ) ' Alb(S) is isomorphic to E5 but by [5] (0.12), this
isomorphism is not an isomorphism of principally polarised Abelian varieties.
The fact that J(F ) is isomorphic to E5 is mentioned in [2].

The main properties used to prove Theorem 0.2 are the fact that the class
of S ↪→ Alb(S) is equal to 1

3!Θ
3 and the fact that the action of the group

Aut(S) on Alb(S) preserves the polarisation Θ.
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To close this introduction, let us mention two known facts: (1) as the
plane Klein quartic, the Klein cubic threefold has a modular interpretation
see [7], (2) the cotangent sheaf of its Fano surface is ample [10].

0.2. Properties of the Fano surfaces. Let us recall some facts proved in
[10] and fix the notations:
An automorphism f of F preserves the lines on F and induces an automor-
phism ρ(f) of the Fano surface S.
An automorphism σ of S induces an automorphism σ′ of the Albanese variety
of S such that the following diagram:

S
ϑ→ Alb(S)

↓ σ ↓ σ′

S
ϑ→ Alb(S)

is commutative (where ϑ : S → Alb(S) is a fixed Albanese morphism). We
denote by Mσ ∈ GL(Ho(ΩS)∗) the linear part of the differential of σ′ and
we denote by

q : GL(Ho(ΩS)∗)→ PGL(Ho(ΩS)∗)

the natural quotient map. We have ([10], Theorem 1.15):

Theorem 0.3. A) The morphism q(Mσ) is an automorphism of F ↪→
P(Ho(ΩS)∗).
B) The morphisms ρ : Aut(F)→ Aut(S) and σ → q(Mσ) are reciprocal iso-
morphisms.
C) For all σ ∈ Aut(S), the automorphism σ′ is an automorphism of the
principally polarised Abelian variety (Alb(S),Θ).

0.3. The unique cubic with an order 11 automorphism. Let us prove
that the Klein cubic is the only one that possesses an order 11 automorphism.

Suppose that a cubic threefold F has an order 11 automorphism f . Let τ =
ρ(f) be the induced automorphism of the Fano surface S. The Proposition
13.2.5 and the Theorem 13.2.8 of [4] imply that the eigenvalues of Mτ are 5
pairewise non-complex conjugate 11-th primitive root of unity.
We denote by O the set of sets of 5 pairwise non-complex conjugate 11-th
primitive root of unity : O contains 25 elements. The group Aut(C) of
automorphisms of C acts on O.
Let ξ be a 11-th primitive root of unity. For i ∈ {0, 1, ..10}, we denote by χi
the 1 dimensional representation:

x→ ξix ∈ C.

Let us suppose that {ξ, ξ9, ξ3, ξ4, ξ5} ∈ O is the set of eigenvalues of Mτ .
The third symmetric power of the dimension 5 representation:

(x1, x2, x3, x4, x5)→ (ξx1, ξ
9x2, ξ

3x3, ξ
4x4, ξ

5x5)
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is decomposed in the following direct sum:

Ho(P4,OP4(3)) = 5χ0+2χ1+3χ2+3χ3+4χ4+3χ5+3χ6+3χ7+3χ8+3χ9+3χ10.

The space 5χ0 is generated by:

x1x
2
5, x5x

2
3, x3x

2
4, x4x

2
2, x2x

2
1

By an appropriate variable change, we see that any smooth cubic of this
space is isomorphic to the Klein cubic:

x1x
2
5 + x5x

2
3 + x3x

2
4 + x4x

2
2 + x2x

2
1 = 0.

The other stable spaces define singular cubic threefolds.
The orbit O0 ⊂ O of {ξ, ξ9, ξ3, ξ4, ξ5} ∈ O by Aut(C) is:

O0 = {{ξ, ξ9, ξ3, ξ4, ξ5}, {ξ10, ξ2, ξ8, ξ7, ξ6}}.
Let us study the representation χ1 +χ2 +χ3 +χ4 +χ5. Its third symmetric

power is:

Ho(P4,OP4(3)) = 4χ0+3χ1+2χ2+3χ3+2χ4+χ5+3χ6+4χ7+4χ8+5χ9+4χ10.

A basis of 5χ9 is :

x2x3x4, x1x3x5, x5x
2
2, x1x

2
4, x

3
3

and any cubic of this space is singular at the point: (1 : 0 : 0 : 0 : 0). As we
can verify, the other stable spaces give also singular threefolds.
Hence there is no Fano surface with an order 11 automorphism τ such that
the eigenvalues of Mτ is the set {ξ, ξ2, ξ3, ξ4, ξ5}.
The orbit O1 ⊂ O of the element {ξ, ξ2, ξ3, ξ4, ξ5} ∈ O by Aut(C) has order
10. Hence we have studied 10 representations and no one gives a smooth
cubic threefold.

The set {ξ, ξ2, ξ3, ξ4, ξ6} ∈ O is not an element of the orbits O0 and O1.
The third symmmetic power of the representation:

(x1, x2, x3, x4, x5)→ (ξx1, ξ
2x2, ξ

3x3, ξ
4x4, ξ

6x5)

is decomposed in:

Ho(P4,OP4(3)) = 3χ0+3χ1+2χ2+3χ3+2χ4+3χ5+3χ6+4χ7+4χ8+4χ9+4χ10.

As we can verify, no element of these 11 spaces gives a smooth cubic threefold.
The orbit O2 of the set {ξ, ξ2, ξ3, ξ4, ξ6} by the action of Aut(C) has order
10.

The set {ξ, ξ2, ξ3, ξ5, ξ7} ∈ O is not an element of the orbits O0, O1 and
O2. The third symmmetic power of the representation:

(x1, x2, x3, x4, x5)→ (ξx1, ξ
2x2, ξ

3x3, ξ
5x4, ξ

7x5)

is decomposed in:

Ho(P4,OP4(3)) = 4χ0+2χ1+3χ2+2χ3+4χ4+3χ5+4χ6+3χ7+3χ8+4χ9+3χ10.

No one elements of these 11 spaces gives a smooth cubic threefold. The orbit
O3 of the set {ξ, ξ2, ξ3, ξ5, ξ7} by the action of Aut(C) has order 10.
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The union of the orbits O0,O1,O2,O3 is equal to O. This shows that the
Klein cubic

x1x
2
5 + x5x

2
3 + x3x

2
4 + x4x

2
2 + x2x

2
1 = 0

is (up to isomorphism) the only one smooth cubic on which Z/11Z acts. 2

Remark 0.4. By the same method, we can prove that there is no smooth
cubic threefold with an order 7 automorphism.

0.4. The period lattice of the intermediate Jacobian of the Klein
cubic. Let F be the Klein cubic and let S be its Fano surface. Let ϑ : S →
Alb(S) be a fixed Albanese morphism; it is an embedding. We compute here
the period lattice H1(S,Z) ⊂ Ho(ΩS)∗ of the Albanese variety of S.

The order 5 automorphism:

g : (x1 : x2 : x3 : x4 : x5)→ (x5 : x1 : x4 : x2 : x3)

acts on F . Let be σ = ρ(g). By Theorem 0.3, there exists a 5-th root of
unity θ such that Mσ ∈ GL(Ho(ΩS)∗) is equal to:

Mσ : x→ θ(x5, x1, x4, x2, x3).

Since the Klein cubic and g are defined over Q, we have θ = 1.
Moreover, we know that Mτ verifies:

Mτ : x→ (ξx1, ξ
9x2, ξ

3x3, ξ
4x4, ξ

5x5)

where τ = ρ(f) is defined in paragraph 0.2.
Let q1 be the endomorphism of Alb(S) defined by the linear part of:

k=4∑
k=0

(σ′)k

(where σ′ ◦ ϑ = ϑ ◦ σ. Its differential is:
dq1 : x→ (x1 + x2 + x3 + x4 + x5)(e1 + e2 + e3 + e4 + e5)

and its image is an elliptic curve which we denote by E. Let us take ξ = e
2iπ
11

where i2 = −1. The restriction of the linear part of q1 ◦ τ ′ : Alb(S) → E to
E is the multiplication by:

ν = ξ + ξ9 + ξ3 + ξ4 + ξ5 =
−1 + i

√
11

2
.

The curve E has complex multiplication by the principal ideal domain Z[ν].
Up to a normalization of the basis e1, .., e5 by a multiplication by a scalar,
we can suppose that:

H1(S,Z) ∩ Cv0 = Z[ν]v0

(such normalization preserves the equation of F ).
For i ∈ Z/11Z, let vi be the vector:

vi = (Mτ )iv0 ∈ Ho(ΩS)∗

= ξie1 + ξ9ie2 + ξ3ie3 + ξ4ie4 + ξ5ie5.
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Let Λ0 ⊂ Ho(ΩS)∗ be the Z-module generated by the vi, i ∈ Z/11Z. The
Z-module Λ0 is leaved stable by Mτ and Λ0 ⊂ H1(S,Z).

Lemma 0.5. The Z-module Λ0 is equal to the lattice:

R0 = Z[ν]v0 + Z[ν]v1 + Z[ν]v2 + Z[ν]v3 + Z[ν]v4.

Proof. We have:
νv0 = v1 + v3 + v4 + v5 + v9,

hence νv0 is an element of Λ0. This implies that the vectors νvi = (Mτ )iνv0

are elements of Λ0 for all i, hence: R0 ⊂ Λ0.
Reciprocally, we have:

v5 = v0 + (1 + ν)v1 − v2 + v3 + νv4.

This proves that R0 is leaved stable by Mτ and that the lattice R0 contains
the vectors vi = (Mτ )iv0. Hence we have: R0 = Λ0. �

We need to know the first Chern class c1(Θ) of the Θ divisor of Alb(S).

Lemma 0.6. Let H be the matrix of the Hermitian form of the polarisation
Θ in the basis e1, .., e5. There exists a positive integer such that:

H = a
2√
11
I5

where I5 is the size 5 identity matrix.

Proof. The automorphism τ ′ preserves the polarisation Θ (see [10], Lemma
1.18). By [4] Lemma 2.17, this implies that:

tMτHM̄τ = H

where M̄τ is the matrix in the basis e1, .., e5 whose coefficients are conjugated
of those ofMτ and where t is the transposition. The only Hermitian matrices
that verify this equality are the diagonal matrices. By the same reasonning
with σ instead of τ , we obtain that these diagonal coefficients are equal and:

H = a
2√
11
I5

where a is a positive real (H is a positive definite Hermitian form). As H is
a polarisation, the alternating form c1(Θ) = =m(H) take integer values on
H1(S,Z). But v1 and v2 are elements of H1(S,Z) and:

=m(H(v1, v2)) = −a
hence a is an integer. �

Let be k ∈ Z/11Z. The differential of the linear part of the morphism
q1 ◦ (τ ′)k is:

x→ `k(x)(e1 + ..+ e5)
where `k is the linear form:

`k = ξkx1 + ξ9kx2 + ξ3kx3 + ξ4kx4 + ξ5kx5 ∈ Ho(ΩS).
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Let be λ ∈ H1(S,Z). As

H1(S,Z) ∩ Cv0 = Z[ν]v0,

the scalar `k(λ) is an element of Z[ν]. Put:

Λ4 = {u ∈ C5/∀k, 0 ≤ k ≤ 4, `k(u) ∈ Z[ν]}.

The set Λ4 contains H1(S,Z).

Lemma 0.7. The Z-module Λ4 is equal to the lattice:

R1 =
i=3∑
i=0

Z[ν]
1 + 2ν

(vi − vi+1) + Z[ν]v0.

Moreover Mτ leaves stable Λ4.

Proof. The element u =
∑
uiei ∈ Ho(ΩS)∗ is in Λ4 if and only if

1 1 1 1 1
ξ ξ9 ξ3 ξ4 ξ5

ξ2 ξ7 ξ6 ξ8 ξ10

ξ3 ξ5 ξ9 ξ ξ4

ξ4 ξ3 ξ ξ5 ξ9




u1

u2

u3

u4

u5

 ∈


Z[ν]
Z[ν]
Z[ν]
Z[ν]
Z[ν]

 .

The group Λ4 is writted in the basis b = v0, .., v4 :

1
1 + 2ν


−1 −ν 0 −1 1− ν
−ν 2 0 −ν 3 + ν
0 0 0 1 −1
−1 −ν 1 −2 1− ν

1− ν 3 + ν −1 1− ν 2 + 2ν




Z[ν]
Z[ν]
Z[ν]
Z[ν]
Z[ν]


and by elementary operations with coefficients in Z[ν] on the rows, we obtain
that Λ4 is equal to R1.
Now, we use the fact that:

v5 = v0 + (1 + ν)v1 − v2 + v3 + νv4

to prove that 1
1+2ν (v4−v5) is an element of Λ4. AsMτ (vj) = vj+1, this ables

us to conclude that Λ4 is stable by Mτ . �

We denote by φ : Λ4 → Λ4/Λ0 the quotient map. The ring Z[ν]/(1 + 2ν)
is the finite field with 11 elements.

Lemma 0.8. The quotient Λ4/Λ0 is a Z[ν]/(1 + 2ν)-vector space with basis:

t1 = 1
1+2ν (v0 − v1) + Λ0, t2 = 1

1+2ν (v1 − v2) + Λ0

t3 = 1
1+2ν (v2 − v3) + Λ0, t4 = 1

1+2ν (v3 − v4) + Λ0.

Proof. The quotient Λ4/Λ0 is an hyperplane of the 5 dimensional Z[ν]/(1 +
2ν)-vector space 1

1+2νΛ0/Λ0. �
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Let R be a lattice such that : Λ0 ⊂ R ⊂ Λ4. The group φ(R) is a
sub-vector space of Λ4/Λ0 and:

φ−1φ(R) = R+ Λ0 = R.

Because Mτ preserves Λ0, the morphism Mτ induces a morphism M̂τ on the
quotient Λ4/Λ0 such that φ ◦Mτ = M̂τ ◦ φ. As Mτ leaves stable H1(S,Z),
the vector space φ(H1(S,Z)) is stable by M̂τ . We denote:

w1 = −t1 + 3t2 − 3t3 + t4

w2 = t1 − 2t2 + t3

w3 = −t1 + t2

w4 = t1.

The matrix of M̂τ in the basis w1, .., w4 of Λ4/Λ is:
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .

The sub-spaces leaved stable by M̂τ are the space W0 = {0} and the spaces
Wi, 1 ≤ i ≤ 4 generated by w1, .., wi. Let Λi be the lattice φ−1Wi, then:

Theorem 0.9. The lattice H1(S,Z) is equal to Λ2, and Λ2 is equal to

R2 =
Z[ν]

1 + 2ν
(v0− 3v1 + 3v2− v3) +

Z[ν]
1 + 2ν

(v1− 3v2 + 3v3− v4) +
2⊕

k=0

Z[ν]vk.

Moreover, the Hermitian matrix associated to Θ is equal to 2√
11
I5 in the basis

e1, .., e5.

Proof. Let c1(Θ) = =m(H) = i a√
11

∑
dxk ∧ dx̄k be the alternating form of

the principal polarisation Θ. Let λ1, .., λ10 be a basis of a lattice Λ. The
Pfaffian PfΘ(Λ) of Λ is the determinant of the matrix

(c1(Θ)(λj , λk))1≤j,k≤10 .

Since Θ is a principal polarisation, we have PfΘ(H1(S,Z)) = 1.
It is easy to find a basis of Λj (j ∈ {0, .., 4}). For example, the space W2 is
generated by w2 = t1 − 2t2 + t3 and w1 + w2 = t2 − 2t3 + t4 and as

φ( 1
1+2ν (v0 − 3v1 + 3v2 − v3)) = w2

φ( 1
1+2ν (v1 − 3v2 + 3v3 − v4)) = w1 + w2,

the lattice R2 (that contains Λ0) is equal to Λ2.
Then, with the help of a computer, we can calculate the Pfaffian Pj of the
lattice Λj and verify that it is equal to:

a10114−2j



THE FANO SURFACE OF THE KLEIN CUBIC THREEFOLD 9

where a is the integer of Lemma 0.6. As a is a positive, the only possibility
that Pj equals 1 is j = 2 and a = 1. �

0.5. The Néron-Severi Group of the Fano surface of the Klein cubic.
Let us define:

u1 = 1
1+2ν (v0 − 3v1 + 3v2 − v3), u2 = 1

1+2ν (v1 − 3v2 + 3v3 − v4)
u3 = v0, u4 = v1, u5 = v2.

Let y1, ..., y5 ∈ Ho(ΩS) be the linear forms such that:
k=4∑
k=1

xkek =
k=4∑
k=1

ykuk.

Let be k, 1 ≤ k ≤ 5. The image of H1(S,Z) by yk ∈ Ho(ΩS) is Z[ν], and
this form is the differential of an Abelian varieties morphism

rk : Alb(S)→ E = C/Z[ν]

The morphisms r1, .., r5 form a basis of the Z[ν]-module Homab var(Alb(S),E).
We denote by Λ∗A the free Z[ν]-module of rank 5 generated by y1, .., y5 and

for ` ∈ Λ∗A, we denote by Γ` : Alb(S) → E the morphism whose differential
is ` : Ho(ΩS)∗ → C.
Let ϑ : S → Alb(S) be a fixed Albanese morphism. We denote by γ` : S → E
the morphism γ` = Γ` ◦ ϑ and we denote by F` the numerical equivalence
class of a fibre of γ` (this class is independant of the choice of ϑ).
We define the scalar product of two forms `, `′ ∈ Λ∗A by:

〈
`, `′
〉

=
k=5∑
k=1

`(ek)`′(ek)

and the norm of ` by:
‖`‖ =

√
〈`, `〉.

We denote by NS(X) the Néron-Severi group of a variety X. The aim of this
paragraph is to prove the following result:

Theorem 0.10. Let `, `′ be elements of Λ∗A. The fibre F` has genus:

g(F`) = 1 + 3 ‖`‖2 ,

verifies F`Cs = 2 ‖`‖2 and :

F`F`′ = ‖`‖2
∥∥`′∥∥2 −

〈
`, `′
〉 〈
`′, `
〉
.

The image of the morphism ϑ∗ : NS(Alb(S))→ NS(S) is a rank 25 sub-lattice
of discriminant 221110.
The following 25 fibres

Fyk , k ∈ {1, .., 5} Fyk+yl , 1 ≤ k < l ≤ 5
Fyk+νyl , 1 ≤ k < l ≤ 5

are a Z-basis of ϑ∗NS(Alb(S)) and together with the class of the incident
divisor Cs (s ∈ S) they generate the Néron-Severi group of S.
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We begin by the following lemma:

Lemma 0.11. The Néron-Severi group of Alb(S) is generated by the 25
forms:

i√
11
dyk ∧ dȳk, k ∈ {1, .., 5} i√

11
(dyk ∧ dȳl + dyl ∧ dȳk), 1 ≤ k < l ≤ 5

i√
11

(νdyk ∧ dȳl + νdyl ∧ dȳk), 1 ≤ k < l ≤ 5.

Proof. The Hermitian form H ′ = 2√
11
I5 in the basis u1, .., uk defines a prin-

cipal polarisation of Alb(S). Let Ends(Alb(S)) be the group of symmetric
morphisms for the Rosati involution associated to H ′. There exists an iso-
morphism

φH′ : NS(Alb(S))→ Ends(Alb(S)).
The group Ends(Alb(S)) is easily calculated and we obtain the lemma when
we take the inverse morphism of φH′ (see [4] Proposition 5.2.1). �

The Néron-Severi group of the curve E = C/Z[ν] is the Z-module gener-
ated by the form:

η =
i√
11
dz ∧ dz̄.

Let ` ∈ Λ∗A, we have:

Γ∗`η =
i√
11
d` ∧ d`

and this form is the Chern class of the divisor Γ∗`0.

Lemma 0.12. The 25 forms:

ηk = Γ∗ykη, k ∈ {1, .., 5} η1
k,l = Γ∗yk+yl

η, 1 ≤ k < l ≤ 5
ηνk,l = Γ∗yk+νyl

η, 1 ≤ k < l ≤ 5

are a basis of the Néron-Severi group of Alb(S).

Proof. Let 1 ≤ k ≤ 5 be an integer. The element Γ∗ykη = i√
11
dyk ∧ dȳk is in

the basis of Lemma 0.11. Let 1 ≤ l < k ≤ 5 be integers, let be a ∈ {1, ν},
and ` = yk + ayl. We have:

Γ∗`η =
i√
11

(dyk ∧ dȳk + ādyk ∧ dȳl + adyl ∧ dȳk + aādyl ∧ dȳl),

this proves, when we take a = 1 and next a = ν, that the forms of the basis
of Lemma 0.11 are Z-linear combinaisons of the forms ηk, η1

k,l, η
ν
k,l, 1 ≤ k, l ≤

5. �

Let us prove the Theorem 0.10.

Proof. As the homology class of S in Alb(S) is equal to Θ3

3! , the intersection
of the fibres F` and F`′ is equal to:∫

A

1
3!
∧3 c1(Θ) ∧ Γ∗`η ∧ Γ∗`′η.
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Write ` in the basis x1, .., x5 : ` = a1x1 + ..+ a5x5 and `′ = b1x1 + ..+ b5x5,
then:

1
3!

(
i√
11

)2d` ∧ d` ∧ d`′ ∧ d`′ ∧ (∧3c1(Θ))

is equal to:

( i√
11

)5(
∑
ajxj) ∧ (

∑
āj x̄j) ∧ (

∑
bjxj) ∧ (

∑
b̄j x̄j)

∧
∑

h<j<k dxh ∧ dx̄h ∧ dxj ∧ dx̄j ∧ dxk ∧ dx̄k
that is equal to:

(
∑
k 6=j

akākbj b̄j − akājbj b̄k)
1
5!
∧5 c1(Θ).

But :
∫
A

1
5! ∧

5 c1(Θ) = 1 because Θ is a principal polarisation of Alb(S),
hence:

F`F`′ =
∫
A

1
3! ∧

3 c1(Θ) ∧ Γ∗`η ∧ Γ∗`′η =
∑

k 6=j akākbj b̄j − akājbj b̄k
= ‖`‖2 ‖`′‖2 − 〈`, `′〉 〈`′, `〉 .

By [5] (10.9) and Lemma 11.27, 3
2ϑ
∗c1(Θ) is the Poincaré dual of a canonical

divisor K of S, hence:

KF` =
3
2
ϑ∗c1(Θ)ϑ∗Γ∗`η =

3
2

∫
A

1
3!
∧4 c1(Θ) ∧ Γ∗`η

and:

KF` =
∫
A

6(
i√
11

)5(
∑

ajdxj) ∧ (
∑

ājdx̄j) ∧
∑

1≤k≤5

(∧j 6=k(dxj ∧ dx̄j))

so KF = 6
∑k=5

k=1 akāk = 6 ‖`‖2. Hence we have g(F`) = (KF` + 0)/2 + 1 =
3 ‖`‖2 + 1.

Lemma 0.12 give us a basis η1, ..., η25 of NS(Alb(S)) and we know the
intersections ϑ∗ηkϑ∗ηl in the Fano surface. With the help of a computer, we
can verify that the determinant of the intersection matrix:

(ϑ∗ηkϑ∗ηl)1≤k,l≤25

is equal to 221110. By general results of [10], Proposition 1.17, the index of
ϑ∗NS(Alb(S)) ⊂ NS(S) is 2 and NS(S) is generated by ϑ∗NS(Alb(S)) and
the class of an incidence divisor Cs. �

We obtain also the following corollary:

Corollary 0.13. Let C be a smooth curve of genus > 0 and let γ : S → C be
a fibration with connected fibres. Then there exists an isomorphism j : E→ C
and an ` ∈ Λ∗A such that γ = j ◦ γ`.
The connected fibrations (in a curve of genus > 0) up to isomorphism are in
bijection with P4

Z(Z[ν]).
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Proof. The natural morphism ∧2Ho(ΩS)→ Ho(S,∧2ΩS) is an isomorphism,
hence if γ : S → C is fibration on a curve of genus > 0, the curve C has
genus 1. This implies that there is a morphism Γ : Alb(S) → C such that
γ = Γ◦ϑ. Moreover Γ has connected fibres hence C is isomorphic to E (here
we use the fact that Z[ν] is principal).
Let ` ∈ Λ∗A, ` = t1y1 + ..+ t5y5, the fibration Γ` has connected fibres if and
only if t1, .., t5 generates Z[ν]. �
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