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Abstract. We compare the classical approach of constructing finite Postnikov systems by k-

invariants and the global approach of Dwyer, Kan, and Smith. We concentrate on the case of

3-stage Postnikov pieces and provide examples where a classification is feasible. In general though

the computational difficulty of the global approach is equivalent to that of the classical one.

. . . all mathematics leads, doesn’t it, sooner or later, to some kind of human suffering.

“Against the Day”, Thomas Pynchon

Introduction

Let X be a finite Postnikov piece, i.e. a space with finitely many non-trivial homotopy groups.

Let us also assume for simplicity that X is simply connected. The classical theory of k-invariants

tells us that one can construct X from Eilenberg-Mac Lane spaces and a finite number of cohomol-

ogy classes, the k-invariants, but of course it might be difficult to compute them explicitly. This

computational difficulty is probably best illustrated by how embarrassingly little one knows about

the cohomology of Postnikov pieces which are not H-spaces, see [22] for one of the few examples

where “something” has been computed.

In [8], Dwyer, Kan, and Smith propose a global approach. They provide in particular a model

for the classifying space of finite towers Xn → Xn−1 → · · · → X1 in which each fiber is a given

Eilenberg-Mac Lane space. We specialize to the case of 3-stage Postnikov pieces, and even further

to fibrations of the form

K(C, r)×K(B, n) → X → K(A,m)

with 1 < m < n < r. There exists a quite substantial literature about this situation, let us

mention especially Booth’s work, [2] and [3], and Pavešić, [20], [21]. We explain first how the

Dwyer-Kan-Smith model provides a classifying space for such fibrations and show in Corollary 5.4

that it coincides with Booth’s model from [2].

In the last section we compare then these two approaches, the classical one based on k-invariants

and the global one, and show that they are basically equivalent. From the global point of view what

we must compute is a set of homotopy classes of lifts in a fibration where the fiber is a product

of Eilenberg-Mac Lane spaces. It is quite remarkable how difficult it is to compute this, compared
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to the elementary case when the fiber is a single Eilenberg-Mac Lane space, a situation studied by

the first author in [17], and completely understood.

Consequently, a classification of three-stage Postnikov pieces will be hopeless in general since

it would necessitate the knowledge of the cohomology of an arbitrary two-stage Postnikov piece.

However, classifications can be obtained in specific situations, and we provide such examples along

the way. The fact that we could not find any explicit computation in the literature motivated us

to write this note. Let us conclude with the comment that this project grew up from a desire to

understand the real scope of the global classifying space model. Even though our conclusion might

seem rather pessimistic from a computational point of view, we hope that the elegance of the global

approach is still visible.

Acknowledgements. This work was achieved while the second author was visiting the Max-

Planck-Institut für Mathematik in Bonn. We would like to thank Christian Ausoni for helpful

comments.

1. Monoids of self-equivalences

Let X be a simply connected space. We consider some group-like topological monoids consisting

of (homotopy classes of) self homotopy equivalences of X:

aut(X): the topological monoid of self-homotopy equivalences of X,

aut∗(X): the topological monoid of pointed self-homotopy equivalences of X,

Aut(X): the discrete group of components of aut(X).

In all cases the topological monoid structure is defined by composition of maps. If X happens

to be an H-space, such as a product of Eilenberg–Mac Lane spaces, then aut(X) also inherits an

H-space structure from X. These two structures are in general not the same.

Proposition 1.1. ([1], [25],[15, Chapter IV]) There is a bijection of sets of homotopy classes of

unpointed maps Y → B aut(X) and fiberwise homotopy types of fibrations of the form X → E → Y .

If t : Y → B aut(X) classifies such a fibration, one often write E = Y ×t X for the total space

and calls it a twisted product. Much attention has been received by the set of component Aut(X),

but not so much by the space aut(X) itself. A nice exception is Farjoun and Zabrodsky’s [7].

2. Reminder on 2-stage Postnikov systems

In any introductory book on homotopy theory, such as [28, Chapter IX], one can read that a

simply connected space E with only two non-trivial homotopy groups (say πmE ∼= A and πnE ∼= B

for n > m) is classified by a k-invariant k : K(A,m) → K(B, n + 1). This means that E has the

homotopy type of the homotopy fiber of k. How does this relate to the approach described in the

previous section?
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We wish to understand the monoid aut(K(B, n)) and its classifying space. From Proposition 1.1

we infer that two-stage Postnikov pieces E with πmE ∼= A and πnE ∼= B are in bijection with

[K(A,m), B aut(K(B,n))].

As a space aut(K(B,n)) is a product Aut(B) × K(B,n); this splitting is compatible with

the H-space structure coming from that of the Eilenberg-Mac Lane space, but not with the one

we are looking at, coming from composition. In fact aut∗(K(B, n)) is weakly equivalent to the

discrete monoid Aut(K(B, n)) ∼= Aut(B). The weak equivalence is given by functoriality of the

K(−, n) construction and let us write ϕ(α) for the pointed self-equivalence associated to the group

automorphism α. The map ϕ splits the monoid map πn : aut(K(B, n)) → Aut(B). The fiber of πn

over the identity is aut1(K(B, n)) ' K(B, n), on which Aut(B) acts via ϕ by conjugation. Thus

we obtain a description of the classifying space, see [19].

Lemma 2.1. The split exact sequence K(B, n) → aut(K(B, n)) → Aut(B) of topological monoids

induces a split fibration

K(B,n + 1) //Baut(K(B,n)) //BAut(B)oo

and thus Baut(K(B,n)) is the classifying space for (n + 1)-dimensional cohomology with local

coefficients in B.

Proof. The section given by functoriality of the construction of Eilenberg-Mac Lane spaces is a

map of monoids.

We recover now Dold’s classification of fibrations with fibers K(B, n). They are classified by a

single k-invariant modulo the (non-trivial) action of Aut(B).

Theorem 2.2. ([6, Satz 12.15]) The set of homotopy equivalent fibrations over a simply connected

space Y with fibers K(B, n) is in bijection with [Y, K(B,n + 1)]/ Aut(B) ∼= Hm+1(Y ; B)/ Aut(B).

Proof. If we apply the functor [Y,−] to the fibration from Lemma 2.1, we obtain an exact sequence

[Y, Aut(B)] = Aut(B) → [Y,K(B,n + 1)] = Hn+1(Y ; B) → [Y, Baut(K(B, n))] → ∗ of sets and

group actions.

Corollary 2.3. Let n > m > 1 and A, B be abelian groups. The set of K(B,n)-fiber homotopy

types over K(A, m) is in bijection with Hn+1(K(A,m); B)/ Aut(B).

Let us look at a basic example, which will serve as starting point for examples of 3-stage Postnikov

pieces.

Example 2.4. For m = 2 and n = 3, let us choose A = B = Z/2 so Aut(Z/2) = 1. Since

H4(K(Z/2, 2);Z/2) ∼= Z/2, there are two homotopy spaces with the prescribed homotopy groups,

namely the product K(Z/2, 2) × K(Z/2, 3) and E2 the homotopy fiber of Sq2 : K(Z/2, 2) →
K(Z/2, 4), the space studied in [16] by Milgram (and many others).
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3. The classical approach to 3-stage Postnikov systems

In principle, the above theorem (and its corollary) can be used inductively to classify n-stage

Postnikov pieces. For a space E with only three non-trivial homotopy groups πmE ∼= A, πnE ∼= B,

and πrE ∼= C for r > n > m > 1 we could first construct E[n], the n-th Postnikov section, which is

given by an element in Hm+1(K(A,m); B)/ Aut(B) by Corollary 2.3. To reconstruct E we will then

need to know the cohomology of E[n], since the next k-invariant lives in Hr+1(E[n];C)/ Aut(C).

Our aim is to study fiber homotopy types where the fiber is a product of two Eilenberg-Mac Lane

spaces.

Amazingly enough, we could not find a single example of classification of 3-stage Postnikov

systems in the literature. Let us treat thoroughly one example, where we do the computations

“by hand”. Its interest also lies in the kind of computation one has to perform in order to do the

classification.

Example 3.1. Let us analyze fiber homotopy types of the form

K(Z/2, 5)×K(Z/2, 3) → E → K(Z/2, 2)

Thus E has three non-trivial homotopy groups, all of them isomorphic to Z/2. There are two k-

invariants. The first one is a cohomology class k1 ∈ H4(K(Z/2, 2);F2) ∼= F2〈Sq2ι2〉. Then the third

Postnikov section E[3] is the homotopy fiber of k1 and the second k-invariant k2 ∈ H6(E[3];F2) is

a class which restricts to zero in H6(K(Z/2, 3);F2) since we want the 3-connected cover E〈3〉 to

split as a product K(Z/2, 5)×K(Z/2, 3).

When k1 = 0, k2 is a class in H6(K(Z/2, 2)×K(Z/2, 3);F2) restricting to zero over K(Z/2, 3).

By the Künneth formula we see that k2 lies in

H6(K(Z/2, 2))⊕H3(K(Z/2, 2))⊗H3(K(Z/2, 3))⊕H2(K(Z/2, 2))⊗H4(K(Z/2, 3)).

There are thus 16 possible k-invariants, i.e. 16 different fiber homotopy types of spaces E over

K(Z/2, 2) ×K(Z/2, 3) with fiber K(Z/2, 5) such that E〈3〉 ' K(Z/2, 5) ×K(Z/2, 3). This is not

quite what we want. The group of components Z/2 of aut(K(Z/2, 2)×K(Z/2, 3)) acts on the 16

k-invariants by composition. It is easy to compute explicitly this action of Z/2: It acts trivially on

8 classes and identifies 4 pairs, so that we are left with 12 fiber homotopy types over K(Z/2, 2).

When k1 = Sq2ι2, let us denote by E2 the homotopy fiber. The mod 2 cohomology of this space

has been computed by Milgram, [16], or Kristensen and Pedersen, [11]. It is an elementary Serre

spectral sequence (for the fibration K(Z/2, 3) → E2 → K(Z/2, 2)) argument to compute it in low

degrees. We denote by ιn the non-zero class in Hn(K(Z/2, n);F2). In total degree 6, the only

elements that survive are on the vertical axis – H6(K(Z/2, 3);F2) – and the ι2⊗Sq1ι3 in bidegree

(2, 4).
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As the second k-invariant is a class in H6(E2) restricting to zero over K(Z/2, 3), it must be either

zero or the class corresponding to ι2⊗Sq1ι3. There are thus only 2 fiber homotopy types over E2.

Now, in principle, there could be an action of the group of self-equivalences of E2 (isomorphic to

Z/2) on these two k-invariants, but as it fixes zero, this action must be trivial. We have therefore

also 2 fiber homotopy types over K(Z/2, 2) covering Sq2ι2.

The point of the example is that it illustrates well that one needs to know the cohomology

in low degrees of certain 2-stage Postnikov systems (and then identify the action of a group of

self-equivalences). This was easy here, but imagine the situation if one would wish to compute

fiber homotopy type over K(Z/2, 2) with fiber K(Z/2, 3) × K(Z/2, 1000), or worse, to obtain a

classification in cases where the first k-invariant is not primitive (say Schochet’s [22] homotopy

fiber of the map K(Z/2 ⊕ Z/2, 2) → K(Z/2, 4), represented in cohomology by the product of the

fundamental classes)!

4. Spaces of lifts

In this section we recall briefly the description of certain spaces of lifts from the work of the first

author in [17]. It deals with the case when the fiber is a single Eilenberg-Mac Lane space. We then

set up a spectral sequence to treat the case of a Postnikov piece. Even in the case when the fiber is

a product of Eilenberg-Mac Lane spaces the description becomes quickly complex. We start with

some generalities about spaces of lifts. Let us fix a fibration p : Y → Z and a map u : X → Y .

Definition 4.1. The fiber containing u ∈ map(X, Y ) of the induced fibration p : map(X, Y ) →
map(X, Z) is the space of lifts map(X, ∅;Y, Z)u = {v ∈ map(X,Y ) | pv = pu} of all maps lying

over pu.

Let p∗ : [X, Y ] → [X,Z] be the induced map of sets of homotopy classes of maps.

Lemma 4.2. One has [X, Y ] ∼=
∐

p∗u∈p∗[X,Y ]

π0(map(X, ∅;Y, Z)u)/π1(map(X, Z), pu).

Proof. There are fibrations map(X,Y, Z)u → map(X, Y )p−1
∗ (p∗u) → map(X,Z)p∗u where p∗u runs

through the set p∗[X,Y ] ⊂ [X, Z].

In the associated action

π1(map(X, Z), pu)× π0(map(X, ∅; Y, Z)u) //π0(map(X, ∅; Y, Z)u) (1)

the effect of an element [h] ∈ π1(map(X, Z), pu) of the fundamental group of the base space on the

fibre map(X, ∅;Y, Z)u is given by h : map(X, ∅;Y, Z)u → map(X, ∅; Y, Z)u where h is a lift

{0} ×map(X, ∅;Y, Z)u
Â Ä //

Ä _

²²

map(X,Y )

p

²²
I ×map(X, ∅;Y, Z)u

pr1 //

h
44

I
h // map(X, Z)
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of the homotopy h ◦ pr1. Equivalently, h is a solution to the adjoint homotopy lifting problem

I ×map(X, ∅; Y,Z)u ×X → Y . Thus h is a homotopy from the evaluation map h(0, v, x) = v(x)

such that ph(t, v, x) = h(t, x) is the given self-homotopy of pu : X → Z. The end value of h takes

map(X, ∅;Y, Z)u to itself.

Assume now that the fibre of the fibration p : Y → Z is the Eilenberg–Mac Lane space K(A,n).

The primary difference between the two lifts

Y

p

²²
map(X, ∅; Y, Z)u ×X

ev
33ggggggggggggggggggggggggg

u◦pr2

33ggggggggggggggggggggggggg pr2 // X
pu

// Z

is an element of δn(ev, u◦pr2) in the group Hn(map(X, ∅; Y,Z)u×X; A). Let δi be the components

in
∏

Hi(map(X, ∅; Y,Z)u; Hn−i(X;A)) of δn(ev, u ◦ pr2) under the isomorphism

Hn(map(X, ∅;Y, Z)u ×X; A) ∼=
∏

0≤i≤n

Hi(map(X, ∅; Y, Z)u;Hn−i(X; A))

for the cohomology of a product. We can now state the generalization of Thom’s result, [27],

obtained by the first author.

Theorem 4.3. (Møller, [17]) The map
∏

δi : map(X, ∅;Y,Z)u →
∏

0≤i≤n K(Hn−i(X; A), i) is a

homotopy equivalence.

In particular, π0(map(X, ∅; Y, Z)u) ∼= Hn(X; A) and the action (1) takes the form of an action

π1(map(X, Z), pu)×Hn(X; A) → Hn(X; A)

of the group π1(map(X,Z), pu) on the set Hn(X; A). How can we describe this action?

Lemma 4.4. Let ev ∈ Hn(map(X, K(A,n)) ×X; A) be the evaluation map. Write ev =
∑

evi as

a sum of cohomology classes under the Künneth isomorphism

Hn(map(X, K(A,n)) ×X; A) ∼=
⊕

i+j=n

Hi(map(X, K(A,n));Hj(X; A))

Then
∏

evi : map(X, K(A,n)) →
∏

i+j=n

K(Hj(X; A), i)

is a homotopy equivalence.

We are now ready for the promised spectral sequence computing the homotopy groups of the

space of lifts in a fibration where the fiber has more than a single non-trivial homotopy group (there

is an analogous spectral sequence when the source X is a finite CW-complex). It is obtained by

decomposing the fiber by its Postnikov sections. The case of a space of sections has been studied in
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great details by Legrand, [13]. It generalizes work of Shih, [23], on limited and non-abelian spectral

sequences. The bigrading we have chosen here agrees with that in [18, Theorem 5.3].

Corollary 4.5. Suppose that F → Y → Z is a split fibration where the fibre F is a finite Postnikov

piece, connected and simple. Let u : X → Z be a map. Then there is third octant homology spectral

sequence (i + j ≥ 0 and i ≤ 0)

E2
ij = H−i(X;πj(F )) =⇒ πi+j(map(X, ∅;Y,Z)u)

converging to the homotopy groups of the space of lifts.

In principle, the cohomology groups appearing in the spectral sequence are to be understood

with local coefficients defined by the choice of a lift. The space of lifts here is not empty since we

assume for simplicity that the fibration has a section. The case when the fiber has two non-trivial

homotopy groups is already interesting.

Example 4.6. Suppose that the fibre F = K(A,m) × K(B, n) with m < n. In that case the

spectral sequence is concentrated on two lines and yields a long exact sequence. It can be identified

with the homotopy long exact sequence of the fibration

map(Z, ∅;Y, Y [m])u −→ map(Z, ∅; Y,Z)u −→ map(Z, ∅; Y [m], Z)u

where Y [m] denotes the fiberwise Postnikov section, i.e. the map Y → Z factors through Y [m]

and the homotopy fiber of Y [m] → Z is F [m] = K(A,m). We deduce from Theorem 4.3

that map(Z, ∅;Y, Y [m])u '
∏

K(Hn−i(Z;B), i) and map(Z, ∅; Y [m], Z)u '
∏

K(Hm−i(Z; A), i).

Hence the long exact sequence terminates in particular with

Hm−1(X;A) → Hn(X;B) → π0 map(Z, ∅; Y,Z)u → Hm(X; A)

Note that even though the fibre is a product, the k-invariant Y [m] → K(B,n + 1) may not be

trivial (it only restricts to 0 on the fibre) and therefore the k-invariant of the above fibration may

not be trivial either so that the sequence does not split!

This indicates that, as soon as there are more than one non-trivial homotopy group in the

fiber, it will be difficult even to compute the number of homotopy classes of lifts, in contrast with

Theorem 4.3.

5. The Dwyer-Kan-Smith model

Let us now look at the “global” point of view on Postnikov pieces. Instead of adding iteratively

one Eilenberg-Mac Lane space at a time, one can also try to understand how to add all homotopy

groups at once. This is the approach followed by Dwyer, Kan, and Smith in [8]. In this section we

will see how it specializes to the case of 3-stage Postnikov pieces and which modifications we need

to obtain explicit classification results.
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Let G be a space and consider the functor Φ which sends an object of Spaces ↓ B aut(G),

i.e. a map t : X → B aut(G), to the twisted product X ×t G, see Section 1. Dwyer, Kan, and

Smith describe a right adjoint Ψ in [8, Section 4]. They find first a model for aut(G) which is a

(simplicial) group and thus acts on the left on map(G,Z) for any space Z. This induces a map

r : B aut(G) → B aut(map(G,Z)). The functor Ψ sends then Z to the projection map from

the twisted product B aut(G) ×r map(G,Z) → B aut(G). This allows right away to construct a

classifying space for towers, in our case they will be of length 2.

Theorem 5.1. (Dwyer, Kan, Smith, [8]) The classifying space for towers of the form Z
q−→ Y

p−→ X,

where the homotopy fiber of p is G and that of q is H, is B aut(G)×r map(G,B aut(H)).

Fix now a fibration H → F → G where we think about the spaces H and G as simpler, in

particular the spaces aut(H) and aut(G) should be accessible. Such a fibration is classified by

a map s : G → B aut(H) and so F is the twisted product G ×s H. To construct B aut(F ), one

simply needs to refine a little the analysis done by Dwyer, Kan, and Smith. Let us denote by

map(G,B aut(H))[s] the components of the mapping space corresponding to the orbit of the map

s defined above under the action of Aut(G).

Lemma 5.2. Let H → F → G be any fibration, classified by a map s : G → B aut(H). The space

B aut(G)×r map(G,B aut(H))[s] classifies towers Z
β−→ Y

α−→ X where the homotopy fiber of α is

G, that of β is H, and that of the composite α ◦ β is F .

Proof. Since B aut(G) ×t map(G,B aut(H))[s] is a subspace of the classifying space for towers

Z → Y → X over X with fibers G and H, it classifies some of them. We claim that the fiber of

the composite map Z → X is precisely F .

From the adjunction property a map X → B aut(G) ×r map(G, B aut(H))[s] corresponds to a

map t′ : X ×t G → B aut(H), which yields a space E = X ×t G×t′ H. The fiber we must identify

is thus the homotopy pull-back of the diagram E → X ×t G ← G. In other words it is the twisted

product corresponding to the composite map G → X ×t G → B aut(H), which is homotopic to s.

This means that the homotopy fiber is F .

To find an description of B aut(F ) in terms of G and H is a more difficult task, because in

general not all fibrations with fiber F come from a tower as above. However there are situations

where this is so. Let us consider a homotopy localization functor L, like Postnikov sections, Quillen

plus-construction, or localization at a set of primes, see [9]. What matters for us is that there

are natural maps η : X → LX for all spaces X, and that L sends weak equivalences to weak

equivalences.

Theorem 5.3. Let L be a homotopy localization functor and consider a fibration L̄F → F
η−→ LF ,

classified by a map s : LF → B aut(L̄F ). Then B aut(F ) is B aut(LF )×r map(G,B aut(L̄F ))[s].
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Proof. Let F → Z → X be any fibration over X. It is possible to construct a fiberwise version of

L, i.e. obtain a new fibration LF → Y → X such that the diagram

F //

η

²²

Z //

²²

X

LF // Y // X

commutes, [9, Theorem F.3]. So any fibration comes from a tower Z → Y → X. In particular this

construction can be applied to the universal fibration F → B aut∗(F ) → B aut(F ) and this yields

a map B aut(F ) → B aut(LF ) ×r map(LF, B aut(L̄F )), which factors through the component

B aut(LF )×r map(LF,B aut(L̄F ))[s] by Lemma 5.2. There is a forgetful map going the other way,

and both composites are homotopic to the identity by uniqueness of the classifying space.

We are mainly interested in 3-stage Postnikov systems in this note. Consider thus a 3-stage

Postnikov piece E as being the total space of a fibration of the form F → E → K(A,m). The fiber

F is a space with only two non-trivial homotopy groups and the fibration is classified by a map

K(A, m) → B aut(F ), see Theorem 1.1. We understand now the monoid of self-equivalences of a

space with two non-trivial homotopy groups.

Corollary 5.4. Let F be a simply connected 2-stage Postnikov piece, with πmF ∼= A, πnF ∼= B,

k-invariant k, and n > m. Then B aut(F ) is B aut(K(A,m))×rmap(K(A,m), B aut(K(B, n)))[k].

Proof. The m-th Postnikov section F → F [m] is a homotopy localization functor.

Let us specialize even further, and assume that the k-invariant is trivial, that is, we are looking at

a fiber which is a product of two Eilenberg-Mac Lane spaces. Such a model has been independently

constructed by Booth in [2].

Corollary 5.5. Let A and B be two abelian groups and n > m. Then B aut(K(A, m)×K(B,n)) '
B aut(K(A,m))×r map(K(A,m), B aut(K(B,n)))c, where c is the constant map. The projection

B aut(K(A,m)×K(B,n)) → B aut(K(A, m)) has a section.

Proof. The orbit of the constant map is reduced to the constant map.

The computation of the set of components of aut(K(A,m)×K(B, n)) is straightforward, compare

with Shih’s [24], or the matrix presentation used in [3, Section 1].

Corollary 5.6. Let A and B be two abelian groups and n > m > 1 be integers. Then Aut(K(A,m)×
K(B, n)) is a split extension of Aut(A)×Aut(B) by Hn(K(A, m); B).
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6. Comparing the classical with the global approach

The classical approach to finite n-stage Postnikov pieces goes through the computation of the

cohomology of a (n − 1)-stage Postnikov piece. This is theoretically feasible via a Serre spectral

sequence computation, but practically very hard because of the differentials. What about the global

approach?

We consider the case of fiber homotopy types over K(A,m) with fiber K(B, n)×K(C, r) with

1 < m < n < r as before. In principle we only need to compute the set of homotopy classes

[K(A, m), B aut((K(B, n) × K(C, r))] and we have a model for this classifying space. The only

sensible way we could think of to compute this is by using the split fibration

map(K(B, n), B aut(K(C, r)))c → B aut((K(B, n)×K(C, r)) → B aut(K(B, n))

obtained in Corollary 5.5. Thus for each first k-invariant k1 : K(A, m) → K(B, n + 1) we must

understand the set of components of the space of lifts into B aut((K(B,n)×K(C, r)).

Example 6.1. Let us again analyze fiber homotopy types of the form

K(Z/2, 5)×K(Z/2, 3) → E → K(Z/2, 2)

We will now do the computation globally. Let us write shortly Kn for the space K(Z/2, n). The

classifying space is K4 ×t map(K3,K6)c. Consider now the sectioned fibration

K6 ×K3 ×K2 ×K1 = map(K3, K6)c
//Baut(K3 ×K5)

//Baut(K3) = K4
s

oo

so that [K2, Baut(K3 ×K5)] is the disjoint union of the components of map(K2, Baut(K3 ×K5))

which lie over 0 and those which lie over Sq2ι2 in map(K2, K4). By Lemma 4.2 these two sets can

be computed as quotients of sets of components of spaces of lifts under the action of a fundamental

group.

Let us do that. Over zero, there is no mystery, the space of lifts is map(K2,K6×K3×K2×K1)

and the fundamental group in question is π1 map(K2,K4) ∼= Z/2. It is straightforward to see that

the 16 components of the mapping space are grouped in 12 orbits. Over Sq2ι2, we are looking at

the space of lifts as in the following diagram:

K4 ×t map(K3,K6)c

²²
K2

Sq2

//

66nnnnnnnnnnnnn
K4

This is equivalent by the Dwyer-Kan-Smith adjunction [8, Section 4] to the subspace of maps

map(E2,K6) which restrict trivially to K3. From the 16 possible components we are left with 2,

compare with Example 4.6. The action of π1 map(K2,K4)Sq2 ∼= Z/2 is trivial and it seems we have

redone here as well the same computation as in Example 3.1.
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Let us carefully check whether we have really redone the same computations as in the classical

approach.

Our typical study case is that of a space with three non-trivial homotopy groups A, B, and C,

in degree respectively m, n, and r, with 1 < m < n < r. In the classical approach we use for each

possible first k-invariant k1 : K(A,m) → K(B, n + 1) the corresponding Serre spectral sequence

Hp(K(A,m); Hq(K(B, n); C)) of which we only need the p + q = r + 1-diagonal to determine the

possible values of the second k-invariant.

In the global approach we wish to compute, for each possible first k-invariant k1 : K(A, m) →
K(B, n + 1), the set of components of the space of lifts indicated in the diagram

K(B, n + 1)×t map(K(B, n),K(C, r + 1))c

²²
K(A,m)

k1 //

33gggggggggggggggggggg
K(B,n + 1)

Since the mapping space map(K(B,n),K(C, r + 1))c is a product of Eilenberg-Mac Lane spaces

K(Hn+1−j(K(B,n); C), j) for 1 ≤ j ≤ n + 1, Corollary 4.5 yields a spectral sequence of the form

Eij
2 = H−i(K(A,m); Hr+1−j(K(B, n); C)) with differential d2 of bidegree (−2, 1).

Techniques due to Legrand, [13] and [12], allow to prove the following result.

Proposition 6.2. (Didierjean and Legrand, [5, Théorème 2.2]) Suppose that F → Y → Z is a

fibration where the fibre F is a connected, finite Postnikov piece. The spectral sequences converging

to the homotopy groups of the space of lifts map(X, ∅; Y,Z)u defined from the skeletal filtration of

X, and the one defined by the Postnikov decomposition of F are isomorphic.

Proof. The same argument as in [5] for spaces of sections applies for spaces of lifts. It relies on

the techniques developed in [13]. Alternatively one could identify the space of lifts as a space of

sections (of the pull-backed fibration) and apply directly Didierjean and Legrand’s result.

Remark 6.3. This kind of spectral sequence appeared maybe first in work of Federer, [10]. It also

appears in Switzer, [26], in both forms, but he does not compare them however. When the target

Y is a spectrum rather than a space, the spectral sequences are the Atiyah-Hirzebruch one and

the Postnikov one. Maunder proved they coincide, [14]. When Y is a space, like here, cosimplicial

technology allowed Bousfield to construct such spectral sequences yet in another way, [4].

We now come back to our Postnikov pieces. The above proposition allows us to identify the

spectral sequence coming from a Postnikov decomposition of map(K(B, n), K(C, r + 1))c with the

one coming from the skeletal filtration of K(A,m). The last step is to identify this second spectral

sequence. Let us first regrade the spectral sequence by setting p = −i and q = r +1− j, so our E2-

term looks like Epq
2 = Hp(K(A,m); Hq(K(B, n); C)) (and the differential d2 has bidegree (2,−1)).
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This spectral sequence is concentrated in the first quadrant, in the horizontal stripe 0 ≤ q ≤ r+1. It

converges to πp+q−r−1 map(K(A, m), ∅;K(B, n+1),K(B, n+1)×t map(K(B, n),K(C, r+1))c)k1 .

Theorem 6.4. Let r > n > m > 1 be integers and A,B,C be abelian groups. For any k-

invariant k1 : K(A,m) → K(B,n + 1), the part of the Postnikov spectral sequence concentrated

in degrees p + q ≤ r + 1 computing the homotopy groups of the space of lifts into K(B, n + 1) ×t

map(K(B, n),K(C, r + 1))c over k1 is isomorphic to the corresponding part of the cohomological

Serre spectral sequence (with coefficients in C) for the fibration K(B, n) → K(A, m)×k1 K(B, n) →
K(A,m).

Proof. The fiber map(K(B, n),K(C, r+1))c is a connected and finite Postnikov piece with abelian

fundamental group, so that the Postnikov spectral sequence from Corollary 4.5 exists. From the

previous proposition we know that it actually coincides with the spectral sequence defined by the

skeletal filtration of K(A,m).

Instead of looking at the E2-term we will work with the E1-term. We write K(A,m)k ⊂ K(A,m)

for the k-th skeleton, and p : K(A,m)×k1 K(B, n) → K(A, m) for the natural projection. By the

Dwyer-Kan-Smith adjunction lifts over K(A, m)k correspond to maps from the preimage under

p to K(C, r + 1). This is precisely the filtration in the Serre spectral sequence. All differentials

in the triangle p + q ≤ r + 1 remain in the stripe 0 ≤ q ≤ r + 1, in which the E2-term of the

Postnikov sequence is abstractly isomorphic to the E2-term of the Serre spectral sequence thanks

to the regrading we have performed (for q > r + 1 it is zero).

Remark 6.5. Let r > n > m > 1 be integers and A, B,C be abelian groups. We have seen two

approaches to compute the number of fiber homotopy types X over K(A,m) with fiber K(B, n)×
K(C, r) such that X[n] is classified by a given k-invariant k1 : K(A,m) → K(B, n + 1). The one

we have called the global one computes the set of components of a space of lifts via a Postnikov

spectral sequence. Since the diagonal p + q − r − 1 = 0 is contained (as the edge) in the triangle

we have been able to analyze in Theorem 6.4, we see that this computation is exactly the same as

the classical one, where one is looking for the second k-invariant.
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