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3
Introduction

The starting point in the theory of zeta functions is the expansion of the Rieman zeta-
function ¢(s) into the Euler product :

() =JJ1-p")" =3"n"" (Re(s) > 1)

p

The set of arguments s for which ((s) is defined can be extended to all s € C,s # 1

and considered as the group of continuous quasicharacters
C = Hom(R},C*), yw~—y"
The special values ((1 — k) at negative integers are rational numbers:

By
where By - Bernoulli numbers, defined by the formal equality
2 Bnt® tel
Bt __ n _
© = Z nl  et—1

n=0

and we know (by Sylvester-Lipschitz theorem) that
. By,
cez~_—>c‘(c’°—1)—k’t €z

The theory of non-Archimedean zeta-functions originates in the work of Kubota
and Leopoldt [Ku-Le] containing p-adic interpolation of these special values. Their con-
struction turns out to be equivalent to classical Kummer congruences for the Bernoulli
numbers, which we recall here in the following form. Let p be a fixed prime number,
¢ > 1 an integer prime to p. Put

(k) = (1= p*)(1 = HFH1Y((=k)

and let h(z) = 3.0, aiz* € Z,[z] be a polynomial over the ring Z, of p-adic integers
such that
x € Z, => h(z) € p"'Z,.
Then we have that .
> @i ¢ (—k) € p"Z,.
i=0
This property expresses the fact that the numbers C((;;(—k) depend continuously on k

in the p-adic sense; it can be deduced from the known formula for the sum of k -th
powers:

N-1
1
Si(N) = Z nf = Py [Bi41(N) — Bri]
n=1
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in which By(z) = (z+B)* = ZLO (f) B;z*~# denotes the Bernoulli polynomial. Indeed,
all summands in Sx(NN) depend p-adic analytically on k, if we restrict ourselves to
numbers n, prime to p ,so that the desired congruence follows if we express the numbers
Cg;(—k) in terms of Bernoulli numbers.

The set, on which p-adic zeta functions are defined, is the p-adic analytic Lie group

X, = Hom(ZX,CJ)

where C,, = ap is Tate field (completion of an algebraic closure of the p-adic field Q, ), so
that all integers k can be considered as the characters :L'J’; : y + y*. The construction of
Kubota and Leopoldt is equivalent to existence a p-adic analytic function (, : X, — C,
with a single pole at the point z = a:p_l , which becomes a bounded holomorphic function
on X, after multiplication by the elementary factor (z, z—1) (z € X,) , and is uniquely

defined by the condition
G(z*) = (1 -p)(=k) (k21).

This result has a very natural interpretation in framework of the theory of non-
Archimedean integration (due to Mazur): there exists a p-adic measure u® on Zx

with values in Z, such that fpx z&u(® = ¢{9(~k). Indeed , if we integrate h(z)
P

over Z we exactly get the above congruence. On the other hand, in order to define
such a measure (9 it is sufficient for any continuous function ¢ : Z) — Z, to define
its integral fz,’,‘ ¢(z) u{©). For this purpose we approximate ¢(z) by a polynomial (for
which the integral is already defined by the above condition), and then pass to the limit.

The important feature of the construction is that it equally works for primitive
Dirichlet characters x modulo a power of p : if we fix an embedding i, : Q — C,
then the character x : (Z/Z,~)* — (Q)> becomes an element of the torsion subgroup
X;°™ C X, and the above equality also holds for the special values L(—k,x) of the
Dirichlet L-series

(o

L(s,x) = Z x(n)n™? = H(l —x(P)p~71,

n=1

so that we have

G(xak) = ip[(1 = X~ H)L(~k,%)] k21, k€ Z, x € X',

The original construction of Kubota and Leopoldt [Ku-Le] was successesfully used
by Iwasawa [Iw] for the description of class groups of cyclotomic fields. Since then the
class of functions admitting p-adic analogues has gradually extended.

Zeta-functions (of complex variable) can be attached as certain Euler products to
various objects such as diophantine equations, representations of Galois groups, modu-
lar forms etc., and they play a crucial role in modern number theory. Deep interrelations
between these objects discovered in last decades are based on identities for the corre-
sponding zeta functions which presumably all fit into a general concept of Langlands
L-functions associated with automorphic representations of a reductive group G over
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a number field K. From this point of view the study of arithmetic properties of these
zeta functions is becoming especially important.

The theory of modular symbols (due to Mazur and Manin, see [Manl]-[Man6],
[Maz-SD]) provided a non-Archimedean construction of functions, which correspond to
the case of the group G = GL; over K = Q. Several authors (including Deligne, Ri-
bet, N.M.Katz, Kuréanov and others, see [De-Ri], [Kal]-[Ka3], [Kurcl] -[Kuré3], [Sho],
[V1], [V2]) investigated this problem for the case G = GL; and GL; over totally real
fields and fields of CM-type (i.e. totally imaginary quadratic extentions of totally real
fields). But the case of more general reductive groups remained unclear until the mid-
eighties although important complex analytic properties of the Langlands L-functions
had been proved. In recent years a general approach to consruction of non-Archimedean
L-functions associated with various classes of automorphic forms was developed, in par-
ticular, for the case of symplectic groups of even degree over K = Q and the group
G = GL2 x GL; over a totally real field K.

The main tool of the appearing theory is the systematic use of the Rankin-Selberg
method for obtaining both complex-valued and p-adic distributions as certain inte-
grals involving cusp forms and Eisenstein series. By this method we constructed non-
Archimedean analogues of the standard zeta functions attached to Siegel cusp forms of
even degree and of sufficiently large weight.

For a Siegel modular form f(z) of degree m and weight k, which is an eigenfunction
of the Hecke algebra, and for each prime number p one can define Satake p-parameters
of f denoted by a;(p) with: =0,1,---,m . Then the standard zeta function of f is the
following product

D(s, f,x) =

T2 () (e

=1

where x is a Dirichlet character. According to A.N.Andrianov and V.L.Kalinin [An-K],
this function can be represented as an integral convolution of f and a theta series with
an Eisenstein series as a kernel. The construction of its p-adic analytic continuation is
based on explicit formulas for the special values of the standard zeta function and is
equivalent to some generalized Kummer congruences for these values. For to give the
precise formulation of our results we first introduce the normalized zeta functions

D(s, f, x) = (2r) " mleHk=(m+1)/2) H T(s + k —)D(s, f, %),
J=1

_ 2i°T(s)cos(m(s — 6)/2) _
DY (s, f,x) = (2r)’ D™ (s, f1x),

D*(s, f,x) = n=C*O2D((s + 6)/2)D (s, f, X),

where § = 0 or 1 according as x(—1) = (=1)%, and let

f(z) =Y a(€)em(E2) € ST

£>0
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be the Fourier expansion of the Siegel cusp form f(z) of weight k, the sum is being
taken over all positive definite half integral m x m-matrices , z € £,,,

Am = {z € GL(C) |' z =z, Im(z2) is positive definite}

Siegel upper half plane of degree m and em(2) = exp (tr(27iz)). Assume that k > 2m+2
and m is even.
Theorem A (Algebraic properties of the special values of standard zeta functions)
a) For all integer s with 1 < s < k—& —m an x? non-trivial for s = 1 we have that

(f, /ITIDT(s, fix) € K = Q(f,Af,X),

where K = Q(f, Ay, x) denote the field generated by Fourier coefficients of f ,by the
eigenvalues A ;(X') of Hecke operators X on f, and by the values of the character x.
b) For all integers s with 1 —k + 6§ + m < s < 0 we have that

(f, /H7'D(s,f,x) € K.

Assume also that a(§y) = 1 for some § > 0 with det2{;, = 1 ;our essential as-
sumption is that the form f is p-ordinary in a sence that | i,(ao(p) |p,= 1 for a fixed
embedding 1, : Q — C,.

Theorem B (non-Archimedean interpolation of the standard zeta functions) Under
the assumptions as above for each integer ¢ > 1 prime to p there exist bounded C,, -
analytic functions

D°+(a:,f), D (z,f): Xp — Cyp,

which are uniquely defined by the following conditions:
a) for all non-trivial Dirichlet characters x € X;° and for all integers s with
1< 8 <k—6—m the following equality holds

D (xzp, f) =

. Gm(X)C;!(H_k—.l—m) C;( =2 —2s D+(‘9’f’f)
e R (R O b o

b) for all non-trivial Dirichlet characters x € X;°* and for all integers s with
1—k+ 6+ m < s <0 holds the equality

D (xzp, f) =

. [Gm crletk—1-m) D= (s, f, X
ZP [ (X)O,O?CX)Z (1 - XQ(C)C23—2) (gc‘? ;)X)] ]
where
Gm(x) = > x(deth)enm(h/Cy)
hEM(Z) modC,,

denotes the Gauss sum of degree m of the primitive Dirichlet character x modC,, C, =
pMx, ao(Cy) = ao(p)™x, G(x) = G1(x)-

The standard zeta function D(s, f, x) provides an example for the general definition
of Langlands L-functions. For a reductive group G over a number field K this definition
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is based on the notion of the Langlands L-group G ;this group is a complex analytic
reductive group such that the lattice of characters of its maximal torus and the lattice
of its one-parameter subgroups are obtained from the similar objects of the group G by
inversion.

The important fact in the representation theory of reductive groups over local
fields is that for a place v of I semisimple cojugacy classes h, of “G correspond to
certain infinite dimensional representations m, of the group G(K,) over the local field
K, (the completion of K at v). It is known that for groups of the type A, and D,, this
construction preserves their types, and interchanges the types B, and C,, so that if
G = GL; then 'G = GL,(C), and if G = GSp,), then LG = Spin,,,,,(C) ,the universal
covering of the orthogonal group SO3,,4+1(C). For example, if G = GL; and v a non-

Archimedean place then YG = GLy(C) and for h, 3 ("61 C?
2

representation 7, is the representation Indg(,u] ® p2) induced from the maximal torus
T = GL; x GLy, pj,p2 : K) — C* being unramified quasicharacters of K with
pi(po) = @i, 1 =1,2.

Let m be an automorphic representation of the group G, which is an irreducible
subrepresentation of the smooth regular representation of the adelized group G(A k).
Then there is the decomposition of 7 into the infinite tensor product: = = ®,7, where
7y is a representation of G(K,) which correspond to certain classes h, from “G for
almost all v (i.e for v € S where S is a finite set of places of K). For a finite dimensional
representation r :¥ G — GL(C) of the L-group we define automorphic L-functions

) the corresponding

L(s,m,7) = Ls(s,m,r) = [] det(1: — (Nv)™*r(hy))™"
vgS

where Nv is the number of elements of the residue class field of v (which is a power of
some prime number),and the product is taken over all non-Archimedean placesv, v € S.

In the Siegel modular case we consider, associated with f, the automorphic repre-
sentation my which is generated by a function on GSp,,(A) inflated from the cusp form
f on §3,, (as a subrepresentation of the regular representsation of G(Aq) = GSp,,(A)).
The irreducibility of m¢ is equivalent to the fact that f is an eigenfunction of the
Hecke algebra H™ = ®,H;* of the Siegel modular group Ty, of degree m. In this
case the corresponding character of H, on f is completely determined by its Satake
p-parameters , and for the universal covering r : Sping,,;(C) — SO2,41(C) with
Spin,,,+1(C) C GL2m(C) we have that the classes h, and r(h,) are represented by the
matrices

hy = Sp(hy) 3 diag{ao(p)ai,(p) - -0, (p) [0 ST <m, 1 <2y < -+ 4, S}
T(hv) = St(hv) 3 di&g{lsal (p),ag(p), B am(p),al(p)_l,az(p)_l, T 1am(P)—1} ’

where Sp and St are called, respectively, spinor and standard representations of the
Langlands group LG. Theerefore the standard zeta function D(s, f,x) coinside with
the L-function L(s,7s, St). The function



Ls,vs,Sp) =[[1 I (1 —x(®)aop)ai(p)-- i (p)p™")] ™"

ogrgm

1€i1< <+ ipgm
is the spinor zeta function of f. Its analytic properties were investigated by A. N.
Andrianov in the case m = 2 but stil nothing is known about the algebraic properties of
the function; however, it follows from the general Deligne congecture on critical values

of L- functions that the properties analogous to those given in Theorem A could exist
only for s =k — 1.
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Hirzebruch and to the Max - Planck - Institut fliir Mathematik in Bonn for the hospitality
and for the support during my visit to the MPI in summer 1989. It is a pleasure for the
author to thank Professors H.Klingen, S.Bocherer, J.Elstrodt, U.Everling, W.Kohnen,
P.Schneider, N.- P.Skoruppa and Don B. Zagier for very helpfull discussions and advice.
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Chapter I. Siegel modular forms and the holomorphic projection oper-
ator

This chapter contains mainly some preparatory facts which will be used for the
construction of non-Archimedean standard zeta-functions in the next chapter. We re-
call main properties of Siegel modular forms and of the action of the Hecke algebra on
them, as well as the definitions of spinor zeta functions and standard zeta functions
(81), see also [An2], [AnT7]. Then in §2 we give basic facts about theta series with a
Dirichlet series [An-M1], [An-M2], [St2] and the definitions of Siegel-Eisenstein series
and of Rankin type convolutions of Siegel modular forms and their relation with the
standard zeta functions. In §3 we give an exposition of some recent results of Shimura
and P.Feit on real analytic Siegel-Eisenstein series and their analytic continuation in
terms of confluent hypergeometric functions [Fe], [Shi7], [Shi9). These results extend
previous results of V.L.Kalinin [K] and Langlands [L11}. In the final §4 a detailed study
of holomorphic projection operator and its basic properties is given. The formula of the-
orem 4.2 provides an explicit formula for calculating the holomorphic projection onto
the space of holomorphic (not necessarily cusp) modular forms of functions belonging
to a wide class of (non holomorphic ) Siegel modular forms . Ealier the holomorphic
projection operator onto the space of cusp form was studied by J.Sturm [St1], [St2],
B.Gross and D.Zagier [Gr-Z] under some restrictive assumptions on the growth of mod-
ular forms. Theorem 4.6 gives an explicit description of the action of this operator
in terms of the (non holomorphic) Fourier expansions. Here we also establish a very
explicit formula (3.36) for the special (critical) values of the confluent hypergeometric
function.

Notations

Let A be a commutative ring with identity, then M, ,(A) denote the set of all r x
s—matrices with coeflicients in A. For z € M,(C) put e,(z) = e(tr(z)) with e(u) =
exp(2riu) for u € C. We denote by ‘z € M, , the matrix, which is transpose to
z € M, ,(A), and write {[n] for ‘nén. For a degenerate square matrix £ we put £* = ¢!,
If £ is a hermitian matrix then we write £ > 0 or £ > 0 according as £ is non negative
or positive definite.

Let $,, denote the Siegel upper half plane on the degree m,

DAm = {z EMn(Cl'z=2z=z+1y, y> 0},

so that $,, is a complex analytic variety whose demention is denoted by (m) = m(m +
1)/2.

Let the symbol A,, denote the lattice of all half integral symmetric matrices in
the vector space V = {y € Ma(R)|'y =y}, . This lattice is dual to the lattice L =
Mn(Z) NV with respect to the pairing given by (u,v) — ep(uv). For a function
f:9Hm — C of the form

f=) cf)em(tz) (2 € Hm)

£€EAM

and for a positive integer A we use the notations
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fIV(A)2) = f(Az) = ) c(f)em(4L2),

£EAMm
fIUA)z) = 3 c(Ab)em(E2),
EEAM
fo=Y" @em(t)
EEA,

as well as the notations by A.N.Andrianov for the action of the Frobenius elements
IT*(q),I17(q) given in 1.8. Moreover for A > 1 and an integer k we put

fIW(A)(z) = flsW(A)(2) = det(VA2)* f(~(42)7),

so that
(fIW(ANIW(4) =1
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1. Siegel modular forms and Hecke operators

1.1. Symplectic group and Siegel upper half plane. (see [An2], [AnT7], [Shi4],
[Sie3], [F¥], [Maa]). Let G = GSp be the algebraic subgroup of GL;,, defined by

Ga= {a € GLyy(A) | *adme = v(a)Jpm, v(a) € Ax}, (1.1)
for any commutative ring A, where
Om _1m
Tm = (1,,. o )

The elements of G4 are characterized by the conditions

ba—d'b=dc—ctd=0p,, da-cb=1,, (1.2)

b _ 1 f d =
a=(i d)GGAtheno.'l:v(a)l(_tc ‘a)'

The multiplier v defines a homomorphism v : G4 — 4% so that v(a)?™ = det(«)? and
Ker v is denoted by Sp,,(A). We also put

and if

Go = GR,Goot = {a € G | v(a) > 0},Gq+ = Goot N Gq. (1.3)
The group G acts transitively on the upper half plane $,, by the rule

z— ofz) = (az + b)(cz+d)™! (a= ((; z) € Goot, 2 € Hm)

so that scalar matrices act trivially, and $),, can be identified with a homogeneous space
of the group Sp,,(R). Let K,, denote the stabilizer of the point i1, € f,, in the group

S m(R)a
g Kon = {@ € Spn(R) | alilm) = iln},

then there is a bijection Sp,,(R)/ K., ~ H» and K, = Sp,,(R) N SO;,,,. The group G
is a maximal compact subgroup of the Lie group Sp,,(R) which can be identified with

the group U(m) of all unitary m x m-matrices via the map a = (3 Z) — a+1b. We

adopt also notations

de = Hd:c,-j, dy = de.-j, dz = dz dy,
i< i<s (1.4)
d*y = det(y) "™t/ 2dy, 4%z = det(y) "™V dz,
where z =z + iy, = = (zij) = 'z, y = (yi;) = 'y > 0. Then d*z is a differential

on f,, invariant under the action of the group G4, and the measure d*y is invariant
under the action of elements a € GL,,(R) on

Y = {y € Mm(R) | 'y =y > 0}
defined by the rule y — aya
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1.2. Siegel modular forms. Let us consider Siegel modular group I'™* = Sp,,,(Z)
and let I' C G Q4 be an arbitrary congruence subgroup. This means that I" is commea-

surable with ' in Gq4 modulo its center (i.e as a group of transformations of $,,)
and I' D I'™(N) for some N € N,where

I™(N)={y= (3 3) eEr™ |~y = lgm(modN)}

is the main congruence subgroup of level N in I'™. In order to give the general definition
of modular forms we consider a rational representation p : GL,,(Q) — GL,(Q) which
will also be denoted by p. For a = (‘: 3) € Goo4+ and for any complex valued

function f : 9,, — C” we use the notation
£ 1o alz) = plez +d)™ f(a()). (1.5)

Deflnition. A function f : §),,, — C" is called holomorphic modular form of weight
p on I if the following conditions (1.6)-(1.8) are satisfied:

fle= 1, (1.6)
f is holomorphic on ,,, (1.7)
if m =1, then f is holomorphic at cusps of T'. (1.8)

Let M ,(I") be the complex vector space of functions satisfying the above conditions.
For each f € M ,(T') there is the following Fourier expansion

()= c(b)em(é2),

3

where ¢(€) € C", € run over all £ = '€ € M,,(Q),£ > 0 ( for m > 1 the last condition
automatically follows by the Koecher principle). More precisely, let M be the smallest

integer such that
r>{ (16“ Ji"'“) € Mu(2), ‘u=u

and we put
A=An={{=() e M,(R) | £ =", &;,26i € Z,
B=Bn={(€A|£20},C=Cn={(c4|E>0)
Then A, is a lattice in the R-vector space of symmetric matrices V = {€ M,,(R)

l
*z = z} dual to the lattice L = M;,(Z) NV with respect to the action (£,z) — en(éz)
and for each f € M ,(T') there is the following Fourier expansion

fR)= 3 el&em(E2), (1.9)

tEM=-1B
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Moreover for each o € Gq4 we have that f |, 0 € M ,(I'(c)),where I'(c) is a congruence

subgroup,
fR= 3 col€)em(E2), (1.10)

(eEM;'B

with ¢,(£) € C",M, € N. A form f is called a cusp form if for all £ with det({) =0 in
expansion (1.10) one has ¢,(£) = 0 for all & € Gg4 that is

&= Y col®enlé2),

¢eM;

We denote by §,(I") C M ,(T") the subspace of cusp forms.
Definition of the vector spaces M(N ). Let us consider congruence subgroups
I'*(N)CT#(N) CT™(N) = Sp,,(Z),defined by

IP(N) = {y = (‘i 3) € T™(N) | ¢ = 0(mod )},

IP(N) =

{v= (z 3) € I'™(N) | ¢ = Op(modN), det(a) = 1(modN)},
and let r = 1, p(z) = pi(z) = det(z)*(k € N). Then the vector space M(I'T*(N)) has
already been defined, and we put

Mu(Np) = {f € M,(TT(N)) |

ab

flp v =v(det(a))f for all y = (c d) e I ()}, (1.11)

where 1 is a Dirichlet series modulo N. Elements f € ME (N,v) admit a Fourier
expansion of the form

@)=Y c&em(t2), (1.12)
€€Bm
with 2 € Hm, c(£) € C, and the condition
c(uttu) = p(detu)detu* c(£) (€ € B, u € GL,(Z)). (1.12a)

Put
SE(N,$) = ME(N,$)NS,, (TEHN).

The Petersson scalar product. Forf € 8% (N,v) and h € MK (N, ) the Petersson
scalar product is defined by

(f, h)n ='/; - f(z)h(2) dety*d> z, (1.13)

where ®¢(N) = H,/T7(N) is a fundamental domain for the group I'f*(N).
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The Siegel operator connects the vector spaces MX (N, ) for different values of
m. If fec, € H,,_; and A > 0 then we have that

20
(0 i/\)e-ﬁm, o

and it follows from (1.12) that there exists the limit

oner-pms (5 5))-
ee;_lc((%' g))em—l(f'm'), (1.14)
where ¢(£) are the Fourier coefficients of f. Then
of € My (N, ¥),
(we put ME(N, ) = 0). We then have that
Sx(N,$) C Ker® = {f € M},(N, ) | 2f = 0}

(for N =1 both sets coincide , see[Maa]).
Estimates for Fourier coefficients. If f € SX (N, ) then there is the following upper
estimate

| £(2) |= O((dety)*/?) (z =z +iy € Hm), (1.15)
which provide us also with the estimate
| c(€) |= O(det(£)*/?) (1.15a)

For modular ( not necessary cusp) forms
f(2) =) e(f)em(é2) € ME(N,¥)
{€Bm

there is the upper estimate of their growth:

m

e®) = [T+ ), (1.16)

i=1

with Ay, -+, A, being eigenvalues of the matrix y, z = = + iy (see [St2],p.335). In this
situation one has also the following estimate

| o(€) |= ca(det(¢")*"?) (1.16a)

in which ¢, is a positive constant depending only on f,£ = ‘u (50’ g) u, u € SL,(Z),
¢ € B,,deté >0, r <m.
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We refer the reader to [Fol], [Kil], [Ragl], [Rag4] for a more detailed discussion
of various estimates for Fourier coeflicients and for growth of Siegel modular forms and
for their applications to quadratic forms .

1.3. The Hecke algebra (see [An7], [Bd], [Sat]). Let ¢ be a prime,g /N,
A= Ag‘ =
{CM = (z (I;) € GQ+ N GL2m(Z[q_l])ly(a)Zh € Z[q:l:],c = Om(mOdN)}

be a subgroup in Gq4 containing I' = I'§*(IN). The Hecke algebra
£ = £(N) = Dg(T, &)

over Q is then defined as a Q-linear space generated by the double cosets (¢) =
(Tgl') ,9 € A of the group S with respect to the subgroup I' , for which multipli-
cation is defined by the standard rule (see [An7], [Shil] and in 1.7 below). We recall

the description of the structure of £ = £Li*(N), ¢ } N which looks as follows: for each

7,1 £ 3 < m let us denote by w; an automorphism of the algebra Q[:cf,ﬂ,:cjtl, ozl

defined on its generators by the rule:

To W ToTj, T; :v:j_l,:c,- —z; (1<i<myi#j).

Then the automorphisms w; and the permutation group £, of the variables z; (1 <1 <
m) generate together the Weyl group W = W,,, , and there is the Satake isomorphism:

Sat: L5 QzF!, ¥, ..z Wm (1.17)

where W, indicates the subalgebra of elements fixed by W,,, . For any commutative
Q-algebra A the group W, act on the set (4%)™*! | therefore any homomorphism of
Q-algebras A : £ — A can be identified with some element

(aovala"'aam) € [(AX)m+I]W,,.. (1'18)

An explicit description of the Satake isomorphism is given below in 1.7.

1.4. Any double coset (g) = (I'yT') (g € A = AF(N)) can be represented is a
disjoint union of the left cosets:

(9) = Uy,

therefore any element X € L of the Hecke algebra £ takes the form of a finite linear

combination
HX)

X = Z vi(Tgi),
1=1
with v; € Q, g; € A. In order to define Hecke operators we put for any ¢ = (Z 3) €A

(F%9)(z) = (detg)* ="+ Dyp(deta)det(cz + d) ™ f(g(=)  (1.19)



16

( this convenient notation by Petersson and Andrianov is especially useful when dealing
with Hecke orerators in their normalized form, compare with (1.5)). Then the automor-
phy condition can be rewritten as follows

(fle,wy)(z) = f forall y €T =TIg'(N). (1.20)

In this case for any
tH(X)

X= Z vi(Tg;) e L

=1

we have that the expression
¢(X)

X = viflew i, (1.21)
i=1

is well defined and f|X € MP(N,%) so that the formula (1.21) gives a representation
of the Hecke algebra £ = LI;"(N ) on the complex vector space M7 (N,%) (¢ fN).

1.5. Hecke polynomials. Following A.N.Andrianov[An7], let us consider poly-

nomials L
Q = Q(x(l}mla"' ,$m;z) =

=(1—-a:0z)H H (1 — zoziy - - - i, 2), (1.22)
r=11< <<, <m
R(z) = H(l —z712)(1 - z42) € QzF, -+, zE). (1.23)
i=1

It follows from the definition that the coefficients of the powers of the variable 2 all
belong to the subring
Qe o, -, o)

?

. Therefore by Satake isomorphism (1.17) we have that there exist uniquely defined
polynomials

2m 2m
Q(z) = ) (-1)'Tiz', R(z)=) (-1)'Riz' € L[2] (1.24)
=0 1=0

over the associative commutative ring £ = L*(N) such that

2™ 2m
Q) = Y (-1)'Tis', R(z) = (1) 'R
=0

t=0
with X = Sat X, X € £. As generators of the Hecke algebra one can take the polyno-
mials Ah,*! Ri(1 <i <m —1) and Tj for which

1

Al 41 _ 2 - S -1
AM _woml..-xm’Ri_S'-(a:l’-oozm’a;l ’...:L'm )’

Ty = 2o Zsi(mls S Tm) = T H(l + z;),
=1

1=1
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where S; denotes the elementary symmetric polynomial of degree ¢ and of the corre-
sponding sets of variables.

1.6. The spinor zeta function and the standard zeta function. Let f €
ME (N,4) be an eigenfunction of all Hecke operators f — fIX,X € LT(N) with ¢
being prime numbers , ¢ f N, so that f|X = Af(X)f. Then the numbers Af(X) € C
define a homomorphism Af : £ — C (see 1.3), which is uniquely determined by a
(m 4 1)-tuple of the numbers

(a0,1,+~ am) = (a0,1(g), 1,7(9), ** am,(g)) € [(C)™ ] (1.25)

which are called the Satake q-parameters of the modular form f.
Now let the variables zo, <, -, zm in (1.22}, (1.23) be equal to the corresponding
Satake g-parameters ag (q),a1,7(q), " @m, 5(q)

Qrq(2) =
=(1—az) [] II Q- a2, (1.26)
r=11<i, <<t Em
Rp(2) = [[(1 - o7 '2)(1 — aiz) € Qo' -+, 0E)]. (1.26a)
=1

It follows then from 1.5 that the coefficients of the polynomials (1.26) can be expressed
in terms of the eigenvalues A ;(X') of the Hecke operators X = T;, R; from (1.24). Next
we put

Z0(s,f) = Qrala™")" =
={0l-w@a)]] I Q-e@eul@ - anlda ™

r=11<¢; <---<i, <m

(1.27)

and define the spinor zeta function Z(s, f) of the modular form f € M¥ (N, ) by
Z(s, fy=[[ 29, f) (1.27a).

gfN

Complex analytic properties of zeta functions Z(s,f) were investigated by A. N.
Andrianov [An2] in the case m = 2. For m = 1 we have that

ao(q) + ao(g)aa(q) = a(q), ab(g)ea(q) = ¥(9)" 7,

where f(z) = Y oo a(n)e(nz) is the Fourier expansion of the normalized elliptic cusp
Hecke eigenform, so that the zeta function

o0

Z(s,f)= [[11 - a(@)g™* +¥(@)¢* ' 7*]7 = > a(n)n™°

ol
GJN (n,N)m=1
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coincide essentially with the Mellin transform

o v]

L(s, f) = Z a(n)n™*

n=1

of f. A remarkable fact is that one can get all the inverse roots of the Hecke polynomial
Qf,¢(2) by the action of the Weyl group W, on ap(g), and

Qrq(2) =
1~ A(9)g™" : coo o 27T (mEmm(mA1/2) 27 1.28)
Q-a(@))[] ] Q- ac(@)ei(9):-ai(9)2),

r=11<1H < <ip <
with
As(g) = A (T(9), T((0)) = D (TgT)

v(g)=q

being the Hecke opertor for the group I' = I'f(N),'gJmg = v(g)Im. Accordmg to
the generalized Ramanujan-Petersson conjecture for a cusp eigenform f € Sk (N,9)
the absolute values of all inverse roots of the polynomial (1.28) should coincide (and
therefore be equal to q_(zmk_m("‘"'l)/“)). In the case m = 1 this conjecture is valid;
it was deduced by Deligne [Del] from the Weil conjectures, also proven by him [De2].
However, for larger values of m this conjecture in its original form is not true. Various
counterexamples to it are known, see [Kur],[H-PSh1],[H-PSh2] which for the case m = 2
reflect the fact that some cusp forms of degree 2 (namely those belonging to the Maass
subspace) are lifted from elliptic cusp forms (i.e. of degree 1) via the Saito- Kurokawa
lifting [An8|, [Koj]. According to the modified Ramanujan-Petersson conjecture these
properties of the inverse roots and polynomials @ s, should be valid for the "real” cusp
forms, i.e. those which can not be obtained from the forms of smaller degree by a lifting
of the type mentioned above.

The standard zeta function D(s, f,x) of f € MX (N,4) is the product D(s, f,x) =

H”N D(s, f, x) with

DW(s, f,x) = (1 — x()¥(2)a~*) " Ry o(x(9)¥(2)a™*) ™",

that is
D(s, f,x) =
_ H {( x(p) ¢(p)) 1:11 (1 ~ x(p)tﬁ(;)sai(p)‘l) (1 _ X(P)¢£)I:)a;(p)) }‘1 |

(1.29)
where y is a Dirichlet character mod M. Analytic properties of the standard zeta
functions were investigated by A. N. Andrianov and V. L. Kalinin [An-K] in the case of
even degree m, and more recently S. Bécherer [BS) extended these results to the case of
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arbitrary degree using a different approach. For m = 1 and a normalized cusp eigenform

f(z) = 552, a(n)e(nz) € ME(N, ) we have that
D(Ss f1 X) = L'z,f(‘g + k— 1)X)?
where -
Ly s(3,x) = Lnm(2s — 2k + 2, x29?) z x(n)a(n®)n~* (1.30)
n=1
is the symmetric square of the modular form f, see [An3], [An-K], [Pa3], [Sch], {Shi2]
(Za].

1.7. Non-commutative extensions of Hecke algebra and Satake isomor-
phism. Now we recall that multiplication in the Hecke algebra £ = Dq(T", A) is defined
by use of the larger vector space V = Vq(I', A) over Q consisting of all Q-linear com-
binations of left cosets of the form (I'g), g € A = AP(N). f v € T and

¢(X)
X=> vlg)eV
=1

then the formula
1(X)

X y=) viTgr)€V

=1

defines a right action of the group I' on V so that the algebra £ = Dg(T', A) coincide s
with the subspace of all elements in Vg(T', A) fixed by T via the inclusion £ — V which
sends a double cosets

(9) = (TgD) (g9 € A =AMN)) =UTy

to the formal sum Ef(zgl) Fg;. If

t(xy . t(Y)

X = aiTg:),Y = > b;(Thy) (1.32)

are two elements in Dq(I', A) € V then the element

X V= abj(Tgih;j) € Vo(T,A)
ij=1

is well defined and also belongs to Dq(T', A) € V. This construction can be applied to a
large variety of couples (I', A), for which T is a subgroup of a (semi)group A such that
any double coset (g) = (I'gI') (g € & = AJ*(N)) can be represented is a disjoint union
of the left cosets:

(9) = Ui&Ty;
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(the theory of Hecke couples, see [An7],chapter 1). In particular for

m b
ro=1p=fo= (% §)erl e=0}

m a b m
A0=A0,q={g=(c d)eAO,q|c=0}

we thus obtain an associative (but no longer commutative) ring

E - ﬁgfq(N) = DQ(Fo, Ao)

It follows from the theory of elementary divisors that I'Ay = A; therefore we get the

homomorphism ¢ : £ — L defined as follows: for each

t(X)
X=)Y vilg)eLcy

=1

_(9d b
gt_( 0 d‘,))

HX)

o) = Y w0 (U5 5)

=1

we may assume that

where ¢* = v(yg;), and we put

Similar arguments show also that the matrix d; can be chosen in the form

g (1) g
a=| 2 mD ] amsosacm
0 0 - gi(m)

with the uniquely defined exponents é;(j). Now for

t(X)
X = Z vi(T'gi) € Lo

=1

we put by definition
H{X) m

(X)) = Z vizg' H(qu_j)5i(j)-

=1 j=1

(1.33)

(1.34)

(1.35).

We get the desired Satake isomorphism as the composition of homomorphisms (1.33)

and (1.35):

Sat = ®eo : L 5 QzF, zF!, ... 2T Wm

(1.36)
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As a consequence of the construction we get that for an arbitrary homomorphism of
algebras A : L —» C (A = A;,¢ [ N,L = LT(N),attached to the (m + 1)-tuple of
g-parameters

(Ofo,&'],' " ,Ofm) € [(CX)m-f*l]Wm,

and for any element
«(X) vige b
— (Ta- ah o= (9 G O
X = ;v,(f‘g.)eﬁ with g; = ( 0 di)
and d; is chosen in the form (1.34) the following equality holds:
#H(X)

AX) = Y wiag* [[(asa)8:0). (1.37).

IfA = As, for a modular form f € M¥ (N,) then the numbers ag, a;,- -+, &, satisfy
the following relation

agon - am = P(g)mgtm MmN, (1.38)
which follows directly from the formula (1.37) and the definition (1.19) applied to the
operator X = (g) with g = gl (see[AnT]).

1.8. Action of Hecke operators on Fourier expansions. Let
f(2)= ) elf)em(é2) € MY(N, %) (€ € Bm)
£€EBm

and
t(X)

X =) vi(Togi) € Lo (To =T, Lo =Ly,

=1

be an arbitrary element of the extended Hecke algebra Lo with

g = (q"z}d? Z) € AT (1.39)
Let coefficients (¢|X)(£) be defined by the equality
FIX)z) = Y (eX)(E)em(é2). (1.40)
£€EBm

Then we have that

t(X)

(e X)(€) = Z vig (M= (m) (detd, ) ¥ x (1.41)

=1

Xi,b(qm”i(detd,‘)_l )em(q""‘ tb,-d;)c(q_'”"d,-{‘d,-),
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( here we assume that ¢(£) = 0 for £ € B,, (see [AnT), §3.2)). We remark that for X € L,
not beloning to the subalgebra £4(£) C Lo we have , in general, that f|X & M (N, ).
However we claim that f|X € M¥ (Ty), where

X =Nigil'T'(N)gi
(see (1.19)).

As an example we consider the Frobenius elements (see [An7], §2.1):

I = I7(g) = (o (‘IB’" 11) Io),

I, = I™(q) = (T (16,, qu) T, (1.42)

Then for f(z) = Y ¢ep,, c(€)em(€2) € ME(N, ) we get from (1.41)
(|- )(€) = ()™ g™* ™ e(g1¢), (1.43)
(elI4+)(€) = c(g€) (£ € Bm C Am) (1.44)

Note that the operator II; = II4(g) is defined by the formula (1.44) also for ¢|N, when
1, (g) sends M¥ (N, %) to itself. However we assume in the next proposition that ¢ fN.

1.9. Proposition. If f € MX (N,v) with ¢ not dividing N then

FIM=(q), fill4+(q) € M3, (aN, ). (1.45)
Proof. Note that 0
(o) =@ (% 0 )

ln. O
- = Ao (57 1),

If we now take into account that

-1
m 1, O m 1, O
PO(qN)C(qo 1m) FO (N)(qo 1 ):

therefore

m

then we get that for all v € T'j*(¢N) holds the following equality holds
gy = (fIH-)[epy = fIT-.

In order to prove the analogous statement about Il we use the antiisomorphism (in-
volition) X +— X™ of the algebra £y (see [An7], p.75) with the property II* =1II; and
recall that by definition if
1(X)
X = Z vi(Togi) € Lo (vi € Q,g: € Do),

i=1
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then
1°X)

X* =Y wilTogert) (6% = wla).
=1

Next, let the equality XTI = X be valid for a given X € L, where I'y C I'T" . Put
A' =T Aq, A¢ C A’ C A and consider as in 1.3 the Hecke algebra £' = Dq(IV,A").
Then we have again that the homomorphism €' : L' — Lg, is defined so that its image
eo(L') coincides with the subalgebra of all elements in £y fixed by I''. Consequently, for
some Y € £’ we have that X = ¢;(Y) and we get X* = ¢5(Y™*) by the definition of the
antiautomorphism *.In other words, the operator X* € L' turns out to be I'-invariant.
In particulary we get II . T'(*(Ng¢) = II4 from the equality II_T'§*(Ng) = II- which is
already proven, and from the fact that f|II. € M% (¢N, ).

Now let us consider again Hecke polynomials, defined by (1.22)-(1.24). A. N .An-
drianov has dicovered factorization of the polynomials Q(z), R(z) € L[z] over the non
- commutative algebra Lo = L7, in terms of the Frobenius elements I1.(q), II_(g) (see
1.8). This factorization is essentially used in our non-Archimedean construction.

1.10. Proposition. There are the following expansions for the Hecke polynormials
introduced above

2™ -1 2™ —1

Q)= () Vire)(1-T2) = (1 - I_z)( Z Vi 2, (1.46)

i=1
where _
V=Y (1Y T,

7= (1.46a)

Vi =3 (-1YITT; € £
J=0
Proof (see in [AnT7), §2.2)
Now let

fz)= ) c€)em(Ez) € ML (N, )

£€€Bm

be an eigenfunction of the algebra £ = L7'(N) whose eigenvalue is a homomorphism
A i L = C,fIX = Ag(X)f for all X € £ which is given by the (m + 1)-tuple ap =
ag(p),ay = a1(p),- -+, am = am(p) of the Satake p-parameters. Put

fo= ) (@) fIVF(p) (R =27). (1.47)

=1

1.11. Proposition. a). The function fy belongs to M (Np™~1 y) with
(= 2™).
b) The following equality holds

folIl(p) = ao(p) fo-
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Remark. We know from 1.3 that by the action of the Weyl group the inverse root
ag can be transformed into each of the 2™ inverse roots

aga, oy, (1< <+ <1, <m)

I

of the local factor Z(P)(s, f) of the spinor zeta finction. Therefore the construction in
Proposition 1.11 provides also 2™ eigenfunctions ¢ € M¥ (Np™~1 ) of the algebras
L= L7 (N)for ¢ fpN with the same eigenvalues as those of the original modular form
f € ME(N, ) such that for ¢ = p we have that g|II.(p)ag where a is any of the inverse
roots mentioned above.

Proof of the Proposition 1.11. The statement a) follows directly from (1.46a) and
from the definition (1.47). For to prove b) we note that there is the equality (with
m = 2™)):

m=2m
> AITp) - (—2)' = Q(ao(p), aa(p)-- -, am(p); 2) 5
=0

in addition by definition of the polynomials (1.22) we have the identity:

m=2"

> (—ao(P)) " fITi(p) = 0. (1.48)

=0

We want to prove that fo|(II4(p) — ao(p)) = 0. But we have from (1.46),(1.47) that
fol(MLe(p) — ao(p)) = —en(P)fI(1 — a5 (P)IL4) =

m=2"

—ao(®)fI( Y (—eo@) T IV @)1 - o' ()4 (p) =
m=2"
S TN -2 =0,

and the statement b) follows.
1.12. An analogous statement is valid in the case of a finite set S of prime numbers
g coprime with N. For this purpose it is convenient to consider global Hecke algebras

LNY = Q) LI(N),  Lo(N) = @y LA (N).
aiN

Then the definition of the operators IL (M), TI_(M),V;*(¢),V;"(¢) € LJ,(N) and of
the numbers ag(q) (¢ fN) can be extended by multiplicativity to all positive integers M
coprime with N; more precisely, operators V*(M), V= (M) are defined by the identities

Y, M vt =]] [mz—: ¢V (9], (1.49)

MM gfN =1
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> =1 [X % @), (1.490)

MMP-! gIN =]

where the notation

VE) =VE(g), Mo=]]¢
geS
is used. We then put

fo=fos= Y, ao(M)™fIVH(M).(1.50)
MIMP>~?
1.13. Proposition. a). Let f € M7 (N,), then
fo = fos =€ MT(NM™',4).
b). For all positive integers M with support S(M) in the set S we have that

Fol(LL (M) = ao(M)) fo. (151)
c). Let
fos(2)= D ao(f)em(€2) € ME(NM™=1 4) (£ € Bp)

£€Bm

be Fourier expansion of the function fy s(z) then there is the following multiplicativity
property of its Fourier coefficients: for all M € N with S(M)C S

ao(ME) = ao(M)ag(€) (€ € Am,& > 0). (1.52)

The proof of the proposition is carried out in a very similar way as that of the
previous one if we take into account the formulas (1.44) for the action of the operator
I, (M) on Fourier expansions.

§2. Theta series, Eisenstein series and Rankin zeta function

2.1. Theta series (see [An3],[An-M1],[An-M2],[St2]). Let F € 2C,, be an even sym-
metric positive definite matrix, and ¢ its level (i.e. the smallest positive integer such
that goF~! € M,,(Z), and x a Dirichlet series modulo @ ( not necesarily primitive).
Put v = 1 or 0 and define the theta function

8(x) =6 (%) =
3 € € M (Z)x(deté)deté” em (2 FIE]/2).

2.2.Proposition. (a) If

(21)

a b m
7= (C d) € PG (qUQQ)s
then the following transformation formula holds

61 (2 x) = x(det )X Gap(7)det(cz + d)™/D+0) (), (22)
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where xgq.m)(fy) is a root of unity of the eighth degree, and if m is even, then

_1ym/2de
Xe () = (( Qe t(F))- (2:3)

detd

(b) Let J(M) denote for M > 0 the matrix (J‘LST _01’"

modulo Q then the action of the involution J(Q%qo) on (2.1) is given by

65 (J(Qq0)7ix) =
X(=1)™ Q™ Gq(1m, X)det(F)™/D+[det(—iz)| ™/D+60) (2, %),

). If x is primitive

(2.4)

with F = goF~! and

Go(6x)= Y. x(deth)en(*¢h/Q)

hEM,n (Z)modQ

being the Gauss sum of degree m of the character x.
2.3.The proof of (a) is given in [An-M2] for primitive characters y, and in [St2] in
the general case by use of the generalized theta series

00V (5;X,Y)= 3 em((zFl€-Y]+2¢X - ‘XY)/2, (2.6)
€EM A (Z)

where z € H,,, X,Y € Mz(C)). The series (2.6) satisfy the following properties: for

all v = (Z’ Z) € I't*(go) we have that

8™ (1(2);X® + FY*'b, F7 X'c + Y'd) =

(2.7)
X5 (y)det(cz + d)™/D60M (z; X, Y),

8™ (2, X,Y) = (detF)~ (™D [det(—iz)]~ (/D) (—271 Y, - X) (2.8)

(see [An-M2], theorem 1 and lemma 2). For v = 0 the statements (a) and (b) immedi-
ately follow from (2.7), (2.8). For example , in order to get (b) it suffices to put in (2.8)
F equal to Q?*F, X =0, Y equal to —Q~'Y then multiply by x(det(Y)) and to carry
out summation over ¥ € M,;,(Z)mod@. From the left hand side of (2.8) we get

Y X(det(Y)E5(2:0,~Q7Y) =
YEMn(Z)modQ (2 9)
> x(det(Y)) > em(2F[QE+Y]/2),

Y EM(Z)modQ EEM . (Z)
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and from the right hand side

(detQF) =™/ [det(—iz)] "/ D65, o, (27 —Q7Y,0) =
(detQ? F)~{™/D[det(—iz)]"(™/D x
x Y x(det(Y)) D em((—2(Q%q0) ™M /@ F T[] - 2Q71HEY)/2).

YEMm(Z)modQ EEMm(Z)
(2.10)
Now we note that for any Dirichlet character x the definition (2.1) can be rewritten as

follows:
6(x) =63 (% x) =
> x(det(Y)) Y (deté)’em(2F[E]/2), (2.11)

YEMm(Z)modQ =Y modQ

and if we take into account the primitivity of x then we get (see [An5],(5.12))

8% (2%) = Gg(1m X) '
Yo X(det(Y)) Y (deté)’em(zF[E] +2Q714EY)/2), (2.12)

YEM,,, (Z)modQ £=YmodQ

If we now take into account the standard relation

Go(1m, X)Gg(1m,X) = x(-1)Q™. (2.13)

for Gauss sums, then (2.10) transforms to
68 (2 x), (2.14)

(detQ? F)~("/D{det(~iz)] ™/ Gq(1m, ) p-1 (J(90Q2)(2); %) =
x(=1)(detF)~("/Ddet(~i2)] DG g(1m, X}y p-1 (V(00Q°)(2) ),

Put in (2.12) F equal to goF ™!, z equal to —(Q%qpz)~! , replace x by X and ¢ by —¢;
comparison of (2.14) and (2.15) provides us with an identity ,which is equivalent to (2.4)
with v = 0.

In order to prove the statements (a) and (b) with ¥ = 1 we take a matrix F; = 'F; €
M (R) with the condition fi > 0,F = F,and let = (7i;) € M,»(C) be the matrix
variable . If we put in (2.7) X = 0,Y = F ' and apply to both parts of the resulting
equality the differential operator L, = det(9/07;;), then after some simplifications we
get the equality (2.2) with v = 1. In this calculation the differential identity

Ly(em((P'nm+2'Tn + R)/2)) =
det(27i(nP + T))en((P 'y + 2'Tn + R)/2)),

is particulary useful , where P,T, R € M;»(C), ‘P = P (see [AnT], lemma 5.1).

(2.15)

(2.16)
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We give a more detailed proof of (b). Put in (2.8) X =0 and Y = F{ 'y and apply
the operator L,. Then the expression in the exponent of the summand corresponding
to an integral matrix £ in the left hand side of (2.8) is equal to

7i - tr(2F[¢ — F{ ') =
mi - tr(z 'qn — 21 (F1€2)n + 2 F[€]).
This is easily deduced from the definition (2.6) if we note that
tr(AB) = tr(BA) = tr(* A'B).
According to (2.16) after application of L, this term will be multiplied by
det(2ni(nz — F1£2)) = (2mi)"det F* 2 det((Fy'n — €)2).
Similarly the summand corresponding to a given matrix £ in
(detF)~™/D[det(—iz)) "D, (-2~ Fr 1y, 0),

after application of L, will get the factor (detF)~'/2(2n:)™det(¢). Next we remember
that ¥ = F'n, then we see that after application of L, the expression (2.8) transforms
to the following

det(z) Y € € Min(Z)det(Y — €)em((2zF[E — Y]/2) =
(det F)~(m/D[det(—iz)] ~(m/D x
x Y det(fem((—z T FTUE] +2'€Y)/2.

§EMn(2Z)

(2.17)

Now again we put in (2.17) F equal to Q?F, Y equal to —Q~'Y, £ equal to —¢
multiply by x{det(Y)) and carry out summation over Ymod@Q keeping in mind the
relation (2.13); as a result we get the equality (2.4) with v = 1. An explicit calculation
of the multiplier 7™ () for even m is given in [An-K].

2.4. Siegel -Eisenstein series. We start with recalling the definition of these

series. We call matrices ¢,d € M(Z) coprime if
{G € M(Q)|Ge, Gd € M(Z)} = M(Z)

A couple (¢,d) is called a symmetric couple if c'd = d'¢. Two symmetric couples of
the coprime matrices are called equivalent iff for some unimodular matrix U € GL(Z)
we have (¢1,d1) = (Uce, Uds).

Let A = A,, denote the set of equivalence classes of symmetric couples of coprime
matrices. Then the set can be identified with the set of right coset classes T'J*\I'™ of
the group I'* = Sp,,,(Z) with respect to its parabolic subgroup

m b m
I ={7=(g d)l‘rel‘ }
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via the map
TP\I™ 5 TP (‘(’; 3)  class of (c,d) € D (2.18)
By this map also the set
{(¢,d) € Ap|c = 0(modN)}

identifies with the set of cosets Ig*\I'™ (V).

Now let k , N be positive integers , s a complex number and x a Dirichlet character
modulo N. For z € §),,, define the Siegel-Eisenstein series by

E(z,8k,x,N) = E(z,s) = det(y)° > x(det(d))det(cz + d)~* 7¢I, (2.19)

where the summation is taken over all (¢,d) € A with the condition ¢ = 0(modN) and
we adopt the convenient notation by Deligne and Ribet [De-R]:

z—k-l2sl 4 z_"|z|'2" for z € C*

The series (2.19) is absolutely convergent for k 4+ 2Re(s) > m + 1 and it admits a
meromorphic analytic continuation over the whole complex s-plane. Put j(a,z) =

det(cz + d) for a = @ Z) and z € ., then it follows from the description of A,
given above that
E(z, 8k, x,N) =det(y)* > x(det(dys)j(e,2)~* 1, (2.20)

o€ PNC'\T

Ao ba

where ' =T (N),a = d ), and P denotes the subgroup of P C G oo+, consist-
o

Ca
ing of elements « with the condition ¢, = 0.
2.5. Rankin zeta function. Let f and ¢ be two holomorphic modular forms of
weight k and ! on the congruence subgroup 4§*(N) C I'* with Dirichlet characters 3
and w. More precisely we assume that

f(2)= ) a(b)em(é2) € SK(N,¥), (2.21)
£EBm,

9(z) = Y b(E)em(E2) € My (N, ), (2.22)
EECH

with B, being the set of half integral non negative matrices of size mxm, and Cp, C B,
the subset of all positive definite matrices, see §1. Define an equivalence relation on B,,
by & ~ & iff £ = ‘uéyu for some matrix v € SL,,(Z). Then Rankin zeta function
(convolution of Siegel modular forms ) is defined as the series [St2] :

L(s,f,9) = >_ a(£)b(£)det(¢)™* (s € C) (2.23)

£€Cnm
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which is well defined due to basic properties of Fourier coefficients of Siegel modular
forms; C;, = Cmmod ~ denotes the orbit space with respect to ~ and Re(s) i1s supposed
to be large enough: Re(s) 3> 0. To be more precise, we note that the series

> det(6)~ (2.24)

EECH

is absolutely convergent for Re(s) > m . It is easily seen from the fact that cardinality
of the set

SLm(Z)\{y € Mm(Z)|dety = a > 0}

is estimated by the finite sum Y azal---am~! | hence the Dirichlet series in (2.24)
admits the upper bound

TT ¢Re(e) =)

with {(s) being the Riemann zeta function (see [An7], p.133). Keeping in mind estima-
tions (1.15a) and (1.16a) for Fourier coefficients of Siegel modular forms we get

a(€) = O(det(€)*/?),  b(€) = O(det(£)")

so that the Dirichlet series (2.23) is absolutely convergent for Re(s) > m+k/24+1+¢ (e >
0).

2.6. Proposition (integral representation of Rankin zeta functions, see [St2] ,
proposition 6). :

For s with Re(s) > 0 there is the following integral representation.

(47) ™ m(8)L(s, f,9) = (f?,9E(z,8 =k + (m+1)/2;k — l,Yw, N))n (2.25)
where the inner product is defined by (1.13),
fo2)= 3 al€)em(Ez) € Sp(N,¥)
£€B,

I',.(s) denotes the I'-function of degree m, i.e.
m=1
Pm(s) = ™=V T T(s ~ (3/2))
j=0
(see also (3.8)).
2.7. The standard zeta function D(s, f, x) as a Rankin convolution. Now

f(2)= Y al@em(lz) € SE(N, )

£eCm

let

be a cusp form of even degree m which is an eigenfunction of the Hecke algebra L7?(NV)
for ¢ not dividing N, and

(a0,01, - am) = (ag”, 0, -+, ald)) € [(4) 1] W
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be the corresponding (m + 1)-tuple of the Satake ¢- parameters of f ( see (1.18)). Fix
a matrix {; € Cy, such that a(§) # 0 and consider the primitive quadratic Dirichlet
character x¢, definied for positive integers d with (d, 2det(2{,)) = 1 by the formula

oo - ()

when det(2) is odd , then x¢,(2) = 1 or —1 according to which of the two following
quadratic forms

1T+ T3T4 + ... 1T
or
TyZ2+ ...+ Tm—-3Tm-2 + -T«Zn_l +zm-1Zm + 273,,

is equivalent our quadratic form &, over the field F; of two elements. Assume also that
xmodM is chosen so that (—1)” = x(—1). The main result of the A.N.Andrianov's
work [An6] can be stated as a certain identity expressing the standard zeta function
D(s, f,x) as a Rankin zeta function , namely the convolution of the given form f and
a theta function with the Dirichlet caracter x mod M. The precise statement of the
result is given in the following proposition.

2.8.Proposition. Under the notation and assumptions as above for the sufficiently
large values of Re(s) the following identity is valid

a(ﬁO)R(Sa fa X) = (2 26)
27 det £ TF T L((s + k= 14 v)/2, 1,600 (21 %)), ‘

where the function R(s, f, x) is defined by the following equality

m—1

D(s, f,x) = L(s + (m/2),¥xeox) [] L(2s +2i,%*x*)R(s, £, ), (2.27)

i=0

and it is assumed that the modulus M of the character x is divisible by all prime divisors

of the number Ndet2¢,, Bg"g(z; x) being the theta function in 2.1.
More explicitly , the nght hand side of (2.26) can be represented as the series

(detfg)(""""H")/? Z x(det{)det{"a(fo[5])(det£0 [E])—(a+k—-l+v)/2 —
£

Z X(detﬁ)a(tggo5)(det5)—(a+k—1+u)/2
4

, (2.28)

where the summation is taken over the set of equivalence classes £ € SL,,(Z)\M},(Z)
of the form {SL,(Z).

Now we put gp to be equal to the level of the quadratic form with the matrix 2§y (see
2.1). In order to get the integral representation of the standard zeta function we apply to
it the result of 2.6. For this purpose we put in the notation of 2.6 I = (m/2)+v,w = xx¢,
with x being a Dirichlet character modulo M, and take the number NgoM?% as N. We
note also that both parts of (2.27) and (2.26) converge absolutely for Re(s) > m ( see
also [An7}, p. 133).
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2.9. Proposition ( integral representation of the standard zeta function). With
the notation and assumption as above for Re(s) the following equality holds:

2a(£o)(detéo)~CHET1FI/2(47) ™m0 T ((s + k — 1+ v)/2) R(s, f,x) =
(f°, 9(")(2, X)E(z,(8 — k +m + v)/2)) Nargo

with the Eisenstein series

. (2.29)

E(z,8) = E(z,8;k — v — (m/2), xXeo ¥, N M g0).
defined by (2.29) in the right hand side.

§3. Formulas for Fourier coefficients of Siegel-Eisenstein series

3.1. Rationality properties of Fourier coefficients. For the full symplectic
modular group I' = Sp,,(Z) Siegel has defined the series [Sie2], [Sie3] (see §2, 2.4)

Ex)=EM== Y i)™ (3.1)
~yePNI™\I'™
where z € £),, is the point of the Siegel upper half plane of degree m, j(v, z) = det(cz+d)

for v = (: 2) € ', P denotes the subgroup of I""™ consisting of block matrices of the

form ((’; :) In the original definition by Siegel the number & is even and k > m + 1

so that the series (3.1) is absolutely convergent and is referred to as Siegel-Eisenstein
series. The rationality property of its Fourier coefficients were established by Siegel
himself although it was certainly known earlier in the case m = 1:

EN)y=1- %’Z Z ok (n)e(nz) =

1+ Z (QCO('; 1(71)) e(nz), op_1(n)= de—l’

d|n

(3.2)

where B; are Bernoulli numbers, ((s) being the Riemann zeta function. After the
original Siegel‘s work his calculation was generalized in various directions : to the case
of congruence subgroups of Ff,”‘) (N) ¢ T™ [St2] to non-convergent series defined by
analytic continuation over an additional parameter (Hecke‘s method) [He], [Fe],to other
classes of algebraic groups and symmetric domains [Ba},[Har2],[Fe],[Shi7],[Shi10].It was
discovered that the rationality property remain valid even for more complicated series,
which themselves are defined by some inductive process of inducing from other cusp
forms of lower degree (Klingen-Eisenstein series).More precisely, letf € Sf be a cusp
form of degree r (with respect to the group I'")If £k > m + r + 1 and m > r then
Klingen-Eisenstein series is defined as the following absolutely convergent series

EM(z,f)= > f((rra))i(r,2) 7k, (3.3)

TEA M I
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with z € f,,, 2(" being the upper left corner of z of size r x r, and Ap,r denotes the
* * [K13]. This series turns out to
Om—r,m+r *

be a modular form of degree m on the group I'™ . M Harris has proven the validity of
Garrett‘s conjecture : all Fourier coefficients the modular form E}""(z, f) belong to the
field Q(f) generated by Fourier coefficients of f [Har2]. Explicit formulas for Fourier
coefficients of the series E;""(z, f) were given by Mizumoto [Kur-Miz],[Miz1],[Miz2]. It
turned out that that the most significant term in these formulas involves the special
values of the standard zeta function of f twisted with a certain quadratic Dirichlet
character attached to the matrix number € of a Fourier coeflicient; as it was noticed
above ,these functions reduce to the (twisted) symmetric squares of the form f if m = 2.
The formulas of Mizumota can be considered as a vast generalization of the classical
formulas (3.2), if we assume that cusp forms of degree 0 to be constants and their zeta
functions reduce to the Riemann zeta function and to Dirichlet L-series.

However, in what follows we are interested only in Siegel-Eisenstein series which
were defined in §2 by:

E(z,5k,x,N) = E(z,8) = det(y)’ 3.  x(det(da)i(en2)™F",  (3.4)

a€EPNC\T

set of elements in I'™ having the form (

for k 4 1Re(s) > m + 1, and by analytic continuation on s for the other values of s € C
(see [K], [Shil0] and 3.3 below). It is assumed in the identity (3.4) that N > 1,x is a
Dirichlet character mod N ( not necessarily primitive, e.g. trivial modulo N > 1) , and

o= (““ b") eC=T](N)cCTI™
Ca  da
The following investigation of arithmetic properties of Fourier coefficients is based
on an explicit calculation of the Fourier expansion of the series

E*(2.5) = E(—27, s)(det2) ¥, (3.5)

obtained from (3.4) by applying the involution

o -1,
= (2 ).

However for £ > m+1 and N = 1 both series coincide and reduce to the series originally
studied by Siegel :
E(z) = E{*(z) = E(z,0) = E*(2,0).

The investigation mentioned above was carried out by Shimura [Shil0] and P.Feit ([Fe],
§10) and were given in a more general situation, in particular for the Eisenstein series
attached to the group Sp,, over a totally real field. For convenience we reproduce only
a specialization of these results to the case of F = Q.

The remarkable summation method by means of the analytic continuation of the
function E(z, f) over s to the point s = 0 was first discovered by Hecke [He]. Quite
recently this method was essentially extended by R.Weissauer [We2] to the case of
Klingen-Eisenstein series (3.3) and then used for a construction of Siegel modular forms
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of relatively small weight (kK = m,m + 1) which play a significant role in studying the
geometric invariants of the Siegel modular varieties [Wel],[We3].

3.2. Preparation : the confluent hypergeometric function . For a de-
tailed description of the Fourier expansion of the series (3.5) we need some additional
notation.Let

V=Vn={he Mu(R)|'h=h} (3.5)

be the set of all real symmetric matrices of size m x m, and
Y = VH{heV|h>0}) (3.7)

the subset of its positive definite elements. For each matrix T € M,,(R) let §,(T)
denote the product of all positive eigenvalues of T, §_(T') = 64(—T) and 64 (T) =1 if
T does not have positive eigenvalues.

For h € V let p = p(h) denote the number of positive eigenvalues of h counted with
their multiplicities, and ¢ = ¢(k) the number of negative eigenvalues. Then r = r(h) =
P + ¢ is the rang of h.

Let also

m-—1
Lim(s) = 7m0/ T T(s - (5/2)), (38)

be the T-function of degree m , which generalizes the ordinary I-function according to
its integral representation

Tom(s) = / (dety)’e~ W q%y, (3.9)
Y
which is valid for s € C with Re(s) > (m — 1)/2, and

dy = de,'j, det(y)_(m+l)/2d‘y.

i<

Recall that d*y is a measure on Y which is invariant with respect to the action of
a € GLn(R) given by d*(*aya) = d*y. For complex numbers o and B we define the

numbers
k= (m+1)/2,

r=r1(h,a,B) = (3.10)
=2p—m)a+(2¢—m)B+m+(m—r1)k+pqg/2,
o=o(h,a,p)=
pa+gf+m—r+{(m-—r)(m-r—-1)}/2.
In Shimura‘s work [Shi8] the function

w(y, b a, B), (3.12)

(3.11)
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was constructed which is defined for all (y, h;a,8) € ¥ x V x C? and is a holomorphic
function (&, 8) € C? . It can be used for writing the Fourier expansion of the series

S(z,Lia, B) = ) _det(z +a) det(Z+a)™? (2 € Hum) (3.13)
acl

which is obtained by summation over a lattice L C V and is absolutely convergent for
Re(a + B) > m. Let
L'={heV|tir(hL) e Z}

be the lattice dual to L with respect to the pairing given by (u,v) — em(uv) . In
particular there is the equality

W(VIL)S(z0,8) = 3 E(y, hi c, Bem(ha) (3.14)
her!
in which
uW(V/L) = /V L

denotes the volume of the fundamental domain V/L,

£(y, h; o, B) =
P mAOT O (@ + B = K) e g(@) ' T p(B) ™' X (3.15)
X (dety)"_“_ﬂ6+(hy)“_"+‘7/46_(hy)ﬁ_“+QI4w(27ry, h; a, ),

and is additionaly assumed that Re(a) > m/2, Re(8) > m/2 (for the regularity of I'-
functions in (3.15) (see [Shi8],(4.34.K)) and we adopt the standard choice of branch for
the exponentiation , namely,

o

v® = e1°8(")  _7 < Im(logv) < .

The function &(y, h; a, f) admits the following integral representation: for g € Y,k €
V,(a,p) € C?
£y, b, B) =
3.16
f em(—hz)det(z + ig)~*det(z — ig) P dz, (3.16)
1%
with the integral being absolutely convergent for Re(a+ f) > 25+ 1 (see [Shi8], (1.25)).
Applying the equality (3.14) to the lattice L =5 = VNM,(Z) when L' = A = A,
is the lattice of all symmetric half integral matrices and also to the lattice L= NS, L' =
N—-1A, witha =k B8=0,k>mand C,,, = Ay NY we get the classical equality

> det(z +a)™F = (20) ™ T (k)" D (deth) " em(h2) (3.17)

(see , for example , the book of Maass [Maa]). Indeed, in the equality only the terms with
p = m,q = 0 do not vanish because of the poles of the I' functions in the denominator
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of (3.15) , and the function w(27y, h; a, B) reduces to the exponent e, (iyh) in view of
the formulas:

E(y, by, 0) =
(3.18)
i7me2(=RM (9 )T (o) 7! (deth)*  em(iyh),
£(y,0,0,8) =
(3.19)
imﬂ——mcrzm(x-l-l—cx—ﬂ)?rmnrm(a + ,B _ n)I‘m(a)_lI‘m(ﬂ)'l
}inh E(y, hyk +5,8) = i ™ 2™ (k) em(iyh), (3.20)

with ¢ = 0 and 8 = [(m + p)/2]. The formulas (3.18)-(3.20) are easily deduced from
[Shi8], (1.31), (4.35.K); see also [Shil0],(7.11)-(7.14).

The confluent hypergeometric function w(2ry, h; , §) can be used for an analytic
continuation of the Siegel-Eisenstein series [K],{Fe|,[Shil0] by means of the term by term
analytic continuation of their Fourier coefficients, which can be expressed in terms of
the functions (3.12) ( see theorem 3.6 below). We list also some other properties of
these functions, which are uselul for the analytic continuation (see [Shi8], theorem 4.2):

functional equation

w(2my, h;a, B) = w(2ry, h; 6+ (/2) — B,k + (¢/2) — a); (3.21)
a uniform upper bound on compact subsets
Jw(2my, i, B)] < Cre™ "I (1 + u(hy)=), (3.22)

with @, f varying in a fixed compact subset T C C? and the constants Cy, C; depending
only on T, r(z) being the sum of eigenvalues of a matrix = , y the minimum of their
absolute values.

3.3. Critical values of the confluent hypergeometric function. Now we give
formulas, which express the function w(27y, k; @, 8) in terms of certain polynomials of
the entries of the matrix y = (yi;) provided h > 0 and either ax € Z,aa — x 2 0 or
BeZ,f <0 (k= (m+1)/2). We call such pairs (a, §) critical: as we will see in
the sequel the critical values of s for the standard zeta function correspond to some
critical pairs. The following calculation of the special values is based on properties of
the function {(z; a, 8) defined for z € 9}, = {z € M (C)|iz € H,} by the integral

((z;a,B) = f e ") det(z + 1) *detzP~"dz, (3.23)
Y
which is absolutely convergent for Re > k — 1 and defines a holomorphic function of

(z,a,B). Let
(5, B) = T'n(B)~ det() (5, ). (3:24)
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It was established by Shimura ([Shi8},theorem 3.1) that the function (3.24) can be
analytically continued to a holomorphic function over §3’ x C? satisfying the functional
equation

w(z;k — B,k - a) =w(z; o, ). (3.25)

For an arbitrary compact subset T C C? there exsist positive constants A,B,> 0
depending only on T such that

w(zi e B) < AL+ p(y) ") for y €Y C By, (@B)CT.  (3.26)
It is known also (see [Shi8],, (4.19))that
(Y 1w, B) = 27D ey (2y; 0, B) (3.27)
and that for all a € GL,,(R) one has
w('alya ™l e, B) = w(y; e, B), (3.28)
w(y, —h;a, B) = w(y, h; B, a) (3.29)
w(y,hyo, ) =1. (3.30)

Comparison of (3.27) and (328) shows that for » > 0 there is the identity
w(y, h;a, B) = w(a(hy)a™, 1n; a, B) = 2™MmHD/2e=t W, (2a(hy)a™; @, B), (3.31)

This is done by taking a matrix a € GL,,(R) with the condition ah‘a = 1,,.
Now let us consider the differential operator A,;,; on A ® C of degree m defined by
the equality:
Am = det(8i;), 8ij =27'(1+ &;)0/d;;. (3.32)

For an integer n > 0 and a complex number 3 consider the polynomial
R(z;n, B) = (=1)™"e!"(Ddet(2)" P AR [ (D det(2) 7], (3.33)

with 2 € V ® C and the exponentiation being well defined by the condition : det(y)? =
exp(log(det(y)))fordet > 0,y € Y @ C. According to the definition (3.33) the degree of
the polynomial R(z;n, 8)is equal to mn and the term of the highest degree coincides with
detz™. We have also that for § € Q the polynomial R(z;n, ) has rational coefficients.

Proposition. (See [Shi8], proposition 3.2). For any non negative integer n the func-
tions det(z)"w(z;n + &, B) and det(z)"w(z; @, —n) are polynomial functions of z. More
precisely, we have that

w(z;n + &, f) = det """ R(z;n, B), (3.34)
w(z;a,—n) =w(z;n+ k,n —a) =det " "R(z;n,xk — a). (3.34a)
The proof is carried out with help of the following differentiation rule :

(—1)"‘"&’;‘{e_“(’)det(z)—ﬂw(z; a,p)} = e~tr(®) det(z)—ﬂw(z; a+ n,f), (3.35)
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which follows immediately from the definition (3.23), (3.24) and provides also an analytic
continuation of the function w(z; a, 8). The formulas (3.34) and (3.34a) follow then from
the identities (3.35) and
w(z; K, ) =w(z;0,0) =1,
Notice also that for m = 1 one has
n

Rien8) =3 (1)8(E+1)- (8- 1

k=0

In §4, theorem 4.8, we establish the following more explicit expression for the function
R (z;n, B) of arbitrary degree m (see (4.32))

Rn(z;n,B) =
Z cm-n(_ﬁ)cm—rz(_,g— 1)"'Cm_rn(—ﬂ——n+1)Arl(z)...Arn(z), (336)
ry, o, ra=0

where :
er(z) = [[(a+ (%/2)),
k=0
and A.(z) are polynomial functions of entries of the matrix variable z € M,,(C) defined
by
det(tlm — X) =) (1) A(X)t™" (3.37)

r=0

In other words A,(2) is the sum of all diagonal minors of size r x r of the matrix z.
If we apply this to functions w(27y, h; «, B) from 3.2 then we get for A > 0 the
following identity:

w(2ry, hin + &, B) = w(27y, h;k — B,n) =
Z-m(m+1)/2em(ihy)w(47ra_l(hy)a;‘n + K’ﬂ) = (338)
2—m(m+1)/26m(z'hy)det(41rhy)-an(47rhy s, B).

3.4. Proposition. (Fourier expansion of the Siegel-Fisenstein series) E*(z, s), see
[Fe], §10). For the series defined by (3.5) the following Fourier expansion is valid

E*(z,s)= > b(h,y,s)em(hz), (3.39)
heN-14,,

in which the coefficients have the form of the product
b(h,y,s) = N"""W(y, h,s)['(h,s)RL*(h, x, k + 28)M(h, x, k + 23), (3.40)
with the factors described as follows ( (a)-(d)):
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(a)The confluent hypergeometric function

Wy, h,s) =i ™*2"n%(27ry, h; k + s, 8)x

, 3.41
(dety)"‘k"5+(hy)k+a—~+q/45__(hy)a-—x+p/4 ( )

with (comp. (3.15))
T=2p-m)k+38)+(2g—m)s+m+(m~r)+pg/2=
2(r—m)s+(2p~-m)k+m+(m—r)m+1)/2+pq/2,
oc=plk+s)+gs+m—r+{m-r)(m—-r—1)—pg}/2="
=rs+pk -+ {(m —r)(m— 7~ 1)~ pa) /2

(b) Gamma factor I'(h, s). Let for the integer r the symbol e(r) denote its parity:
e(r) =0, 1 withr = e(r)mod2. Put § = e(k),n =€e((r/2) + q + k) and then define:
fore(r) =0
L(h,s) =
Poner ( + 25 = ZE) T (s + 59 [TIEA Tk + 25 - 4)
Tm—g(k + $)Tmp(s)T (s + L2424 T/ Dk 4+ 25 — i + (r — 1)/2)

and fore(r) =1
L(h,s) =
oy (K + 25 — 2E) T (s + 258 [T/ Dk 4 25 — 4)

Teq(k + )y () T8k + 25 —m + i +7/2)

(c)The ratio of Dirichlet L -functions RL* . Let for a Dirichlet character x modulo
N of a parity § =0 or 1

2(5,%) = T((k +6)/2)Ln(s,3) = T((k + 6)/2) [[A —x(a™)™  (3.42)
gAN

denote the normalized Dirichlet L-function, which is regular for all s € C,s # 1,
including s = 0 ( due to the condition N > 1). Next we define an additional quadratic
Dirichlet character x, depending on h € Ay, and defined only for even r # 0. Namely,
for h = 0 let xp = xo be trivial; for h # 0 we know that for some matrix u € GL,(Q)

fuhu = (’B‘ g) with det by # 0, (3.43)

then let x» denote the quadratic character attached to the quadratic field Q(+/deth;)/Q
( this definition is independent on the choice of the matrix u). Under these notation we
put:
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for an even r (i.e. with e(r)=0)
RL*(h,x,k +2s) =
2k 425 —m+ (r/2), xxa) [T/ L3 (2k + 45 — 2m 4+ 1 — 1 + 26, x?)

n(k + 25, ) TTI2{ Ly (2k + 45 — 24, x?)
and for an odd r (i.e. withe(r)=1)

Y

RL*(h,x, k + 2s) =
[m=r=D/2 L (2k 4 45 — 2m 4+ 7 — 1+ 24, x2)
Nk +28, ) T Ly (2k + 45 - 20,x%)
(d) The integral factor

M(h,x,k+28) = [] Mq(h,x(9)g7 %) (3.44)
q€P(h)

is a finite Euler product , extended over prime numbers ¢ from the set P(h) of prime
divisors of the number N and of all elementary divisors of the matrix h. The important
property of the product is that for each ¢ we have that M,(h,t) € Z[t] is a polyno-
mial with integral coefficients. The explicit form of it is insignificant for our purposes;
however , one can find interesting explicit formulas for such polynomials in [Rag3], [Ki2].

3.5. Normalized Siegel-Eisenstein series. We introduce here three types of
normalized Siegel-Eisenstein series in order to give a precise statement on their holomor-
phy properties with respect to the variable s , the properties of positivity of matrices
£ enumerating the summands in their Fourier expansions, and also the algebraicity
properties of the Fourier coefficients:

G*(z,8) = G*(z.8;k,x,N) =
N'm(k + 23)/2imk2_m(k+])ﬂ'_m(’+k)F(lm,3)_] x
[m/2]
X Ly(k+2s,x) J] Ln(2k+4s -2, x*)B(—(Nz)™",s)det(VN2)"F = (3.45)

=1
3 [m/2]
N™EH20/2F 0k YD n(k + 25, x) H Ln(2k + 4s — 2i, x*)E*(Nz, ),

=1
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with
E*(Nz,s) = B(—(N2)7!,s)det(Nz)™* = N~*"/2g|w(N),
T(k,s) =
[m /2]
gmkg=m(k+1) p—m(s+Rp(q $)TIT((k + 25 + 6)/2) H [(k+2s—3)=
i=1

m P(s+(k—(m , is even;
yethss) oty | Tk (= (2 0/2), i i v
Lk +3), otherwise.
(3.46)
If m is odd then we put G*(z,3) = G~(2,8) = G*(z,s). If m is even then we define (
with u = e((m/2) + k))

G~ (2,5) = D((k + 25 — (m/2) + 1)/ G (2,5), (3.47)
ihp(1/2)—k=2s+(m/2)

(1—k—2s+(m/2)+ p)/2)

Gt(z,s) = a G*(z,) =

(3.48)

24T (k + 25 — (m/2)) cos(m(k + 28 — (m/2) — u)/2)
(27,.)k+2a—(m/2)

G~ (z,s).

We will see in §3 of the next chapter that the normalizing factors in formulas (3.45),
(3.47) and (3.48) are closely connected to those of the Dirichlet L-series and the standard
zeta functions (for even m).

Now we reformulate proposition 3.4 for the normalized series G*(z, s)

G*(z,8)= Y b*(h,y,5)em(h2), (3.49)
h€A,,
where
b*(h,y,s) = W*(y, h, s)T*(h, 8)Li(h, x, k + 28)M(k, x, k + 25),
with '

T*(h,s) =" (1m,8) T (h, s),
W*(y, h.s) = N™otk=r)mko—m+1) z—m(e+8) e (_ihy)W(Ny, N~ h,s) =
grkgmmkt) pomlatk) e (_ihy )W (y, k, 8).

The factor M(h, x,k + 23) is given by (3.44) ,and for r is even we have that

[(m=r)/2]
Li(h,x,k+2s) = Ly(k+2s—m+(r/2),xxn) [[ In(@k+4s—2m+r—1+2i,x%)

=1
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and for r odd

[(m—r=1)/2]
Lyv(h,x,k+25)=  ]] N2k +4s ~2m+r -1+ 2i,x%)
=1

3.6. Theorem (on holomorphy properties of the Fourier coefficients of the Siegel-
Eisenstein series, see [Fe|, theorem 9.1) Let 2|[N,N > 1. Then
(a) If x* # 1 then the function G*(z,s) is an entire function of the variable s;

(b) Suppose that x? is trivial, then we have

(by) if either 2k > m and m odd or 2k > m and m is even , but (m/2) 4+ k is odd
(i.e. p =1 ), then the function G*(z,s) is an entire function of the variable s;

(b2) if 2k > m and both numbers m and (m/2) + k are even (i.e. p=¢(m)=0)
then the function G*(z,s) is an entire function of the variable s with the exclusion of a
possible simple pole at the point s = (m + 2 — 2k)/4;

(b3) if m > 2k > 0 then the function G*(z,s) is an entire function of the variable s
with possible exclusion of simple poles at those points s for which 2s is an integer and
[((m—2k+3)/2] <2s < (m+1-2k)/2;

(by) if k = O then the function G*(z, s) has a simple pole at the point s = (m+1)/2
iff x is trivial, and in this case we have that the function

R833=(m+1)/2G*(Z, L 0, 1, N)

of the variable z is a non-zero constant.
3.7. Theorem. (On positivity properties of Fourier expansions of the normalized

Siegel-Eisenstein series). Assume that 2k > m and define the numbers A(x), B(x),
C(x, k) as follows:

(2) If x? is not trivial , m is even and u = e(k + (m/2)) then put
A(x) = B(x) =1+ (m/2), C(x,k)=(m—2k+2—-2u)/4;

(b) If x? is trivial , m is even and pu = e(k + (m/2)) then put

A(x) = B(x) =(m/2), C(x,k)=(m—2k+2—2p)/4;
(c) If X? is not trivial, m is odd,then put

A(x)=B(x)=(m+3)/2, C(x,k)=[1+m—2k)/4];
(d) If x? is trivial, m is odd,then put

A(x)=(m+5)/2,B(x) =(m+1)/2, C(x,k)=I[@B+m—2k)/4];

under these notation and assumptions the following positivity properties of matrices
h € A,, enumerating the Fourier coefficients of the series G*(z,s) are valid:
1)ifs<0,s€Z and k+ 23 > A(x) then

G*(z,8)= Y b'(hy,s)em(h2), (3.50)
Amdh>0
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1

ifk+s—reZ,k+s—r20 (k=(m+1)/2),s < C(x,k) then

G*z,8)= Y b*(h,y,8)em(h2), (3.51)
Am k20

The proof of the theorem 3.7 is contained in the book of P.Feit [Fe|, theorems
14.1.A-14.1.F and is based on a detailed investigation of poles and residues of the I'-
factor I'™(h,s) and of the Dirichlet L-function L*(h,x,k + 2s), carried out in [Fe] in
terms of the functions f(n,s) = I'(n + s)/I'(s), which for positive integers n turn out
to be polynomials with zeros given by s € /Z,s < 0,584+ n > 0. It was established in
[Fe] that the factor I'*(g,s) = I'(h,s)/T(1m,s) is equivalent (up to multiplication by
an invertible entire function) to a certain explicitly given polynomial in C[s] (see [Fe],
§11). It follows also from this calculation that

(a) if x? is trivial, m is odd and s = sy = (m + 2 — 2k)/4 then the function G*(z, s)
has a pole at the point s = 35 such that the residue

Res,=,,G*(2,5) has a non negative Fourier expansion (3.52)

(theorem 14.1.C); _

(b) if x? is trivial and m is odd then the function G*(z,s) is finite at the point
s = 8y and has a non negative Fourier expansion.

It is essential for our purposes to reformulate the corresponding statements for the
series G¥(z,s) and G~ (z,s) (see(3.47),(3.48)), which are obtained from G*(z,s) by an
additional normalization . The following theorem is an immediate consequence of the
theorem 3.6 on holomorphy and the properties (3.50)-(3.52) .

3.8. Theorem (on Fourier coefficients with positive matrix numbers). Let m is
even, 2k > m. Then:

(a) For 2s to be an integer, s < 0,k + 23 > 1+ (m/2) there is the following Fourier
expansion

G*(z,8) = Z bt (h,y, s)em(h2), (3.53)
Amdh>0

where for 8 > (m + 2 — 2k)/4 in (3.54) non-zero terms only occur for positive definite
h >0, and for all s from (a) with h > 0, h € A,;, the following identity holds

Bk, 4y 8) = W*(y, by $)LE (k + 25 — (m/2), xxa)M(h, X, k +25),
with
_ 20°T(s) cos(n(s — 6)/2)
- (2m)*

is the normalized Dirichlet L-function , § = 0 or 1 according to x(—1) = (-1)°, the
factor M(h, x,k + 2s) being defined by (3.44),

L"‘(s,x) Ln(s,x)

W*(y, h,s) = 27" dethpya,-ndet(4ny)’ R(dwhy; —s; & — k — 3),
provided s is an integer, with R(y;n, ) defined by (3.33), and bt (h,y,s)=01if s ¢ Z.
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(b)If 23 is an integer with k + 2s £ m/2,k + s > & then there is the following
Fourier expansion

G (z,8)= Y b7 (h,y,8)em(h2), (3.53a)
Amdh>0

and for all s from (b) with h > 0,h € A,, the following identity holds
b (hy 4y 5) = W*(y, by )L ( + 25 — (m/2), xx8)M(h, X, & + 25),

where
L+(3sX) = LN(Sa X)a

W*(y, h,s) = Z-m"det(4‘rry)"_k_"R(47rhy; —s;k+ 38— k,s),

provided s + k — x is an integer, and b~ (h,y,s) = 0 otherwise.

The proof is deduced from the expansions (3.49) if we remember the definition of
the normalizing factors and the positivity property from the theorem 3.7. We also note
that by (3.41)

W*(y, h,s) = en(—thy)w(2ry, hi k + 3, 8)x

X (dety)"_k_‘&_i_(hy)k+a-n+q/45_(hy)s-n+p/4 ’

and then take into account the formula (3.38) for the critical values of the function w .
In case of the odd parity 2s € Z we get vanishing of the Fourier coefficients because of
the I-factors in (3.47), (3.48).

§4. Holomorphic projection operator and the Maass differential operator

4.1.Holomorphic projection operator. We start with describing a vector space
on which this operator acts. A function

F:$,—>C, Fe&C®%Hnm)

is called a C'*°-modular form of weight k on the group I'f*(V) with a Dirichlet character
y¥modN if the following automorphy condition is satisfied:

F((az +b)(cz + d)™") = (det d)det(cz + d)* F(z)
for all
ve (s o) e

(compare with §1, (1.11)). The space of functions F with the above condition is denoted
by ME (N,4). For all F € M¥ (N,) there is the following Fourier expansion

F(z)= 3 A(y,h)em(ha), ' (4.1)

hEAn

where A(y, h) are some C°°-functions on Y . The Petersson inner product is defined for
an arbitrary holomorphic cusp form f € S¥ (N, 1) and F € ME (N, %) by

(f, F)n = [p o TOFE) dety -z ay,
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where ®¢(N) = H/T7*(N) is a fundamental domain for the group I'f*(NV).
We call a function F € MX (N, ) a function of a bounded growth if for each € > 0
the following integral converges:

//[F(z)|c1etyk_l_me_‘"(y)dydm < oo (4.2)
XJY

where
X ={z € Mu(R)|'z = z,|z;;| < 1/2for all ¢,5},

Y = {y € Mu(R)|'y =y > 0}.

Respectively, we call a function F € M¥ (N, ) a function of a moderate growth if for
all z € 9, and for all sufficiently large values of Re(s) >> 0 the integral

/ F(w)det(T ~ z) " 1**ldetIm(w)*+*d*w (4.3)
is absolutely convergent and admits an analytic continuation over s to the point s =
0. The last definition may differ from a traditional one; its meaning is clarified by
the following result (theorem 4.2), which provides a refinement of theorem 1 of the
Sturm‘s paper [St2]. It will follow from the proof that all functions of bownded growth
automatically turn out to be of a moderate growth in the sense of definitions (4.2), (4.3)
given above.
4.2.Theorem. Let F € M (N,4) and k > 2m. Put for h > 0,h € A,

a(h) = c(k, m) " det(4h)k~(m+1)/2 /Y Ay, h)en(thy)det y* "™ dy,  (44)

with
c(t,m) =Tt — (m+ 1)/2),r-m(t—(m+1)/2),

and A(y, h) being coefficients of the expansion (4.1) and suppose that the integral (4.4)
is absolutely convergent. Define the function

Hol F(z)= > a(h)em(h2). (4.5)
Am3dh>0
Then _
(a) if the function F' € MX (N, 1) is of a bounded growth then that Hol F(z) €
Sn(N,$).
(b) If the function F € M (N,v) is of a moderate growth and the expansion

(4.1) contains only terms with positive definite matrices h € A,, then we have that
Hol F(z) € ME (N, ).
In both cases the following equality is valid:

(9, F)n = (g, Mol F)n. (4.6)

Remark. The cusp form Hol F' is uniquely defined by (4.6) under the assumptions
of (a), but in (b) this equality is not sufficient to identify the modular form Hol F'. For
example, (4.6) does not change if we replace this modular form by adding to it an
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Eisenstein series ( of Siegel or of Klingen type). the part (a) of the theorem 4.2 was
established by Sturm [St2].

4.3. Poincaré series of two variables ( of exponential type) of higher
level. In order to prove the theorem 4.2 we use this kind of Poincaré series introduced
by Klingen [K13] and used by Bocherer in [Bo] instead of Poincaré series of one variable
from [St2], [Gr-Za]. We consider an element (I'gT") of the Hecke algebra £L™(N) with
I'=T¢(N),

gELA=AT =

{0’ = (z 3) € GQ+ N GLzm(Z[q_I])lu(Q_)i € Z[qi],c = Om(modN)},

where ‘gJ,g = v(¢)Jm, v(g) > 0.Put

Pi(z,w,g,8) = Y t(deta)j(y,2)"* 12ldet(y(2) + w)*~ 1, (4.7)

g€lgl
a b def k|, | =22 x ies i
Y=\, 4 € I'gT and ug_|3s) = u™" |y for u € C*,s € C. The series in

(4.7) converges absolutely and uniformly on products of the type V;,(d) x Vi,(d) for
k+Re(2s) >2m+1, d >0,

Vin(d) = {z =z +1iy € Hmly 2 dlm, tr('z ) < %} ,

We also put
PE(z,w,g,5) = det Imz* det Imw* P% (2,w, g, 5). (4.8)

The following properties of these series were established by Bocherer in [Bo):
(a) symmetry
Pr(z,w,9,5) = Pp(w,2,9,) (49)

(b) automorphy with respect to both arguments:

Pr(v(2),v(w),9,8) =

‘ . ok (4.10)
¢(detd1)¢(detd2)j(71,2) (7217‘0) Pm(z7waga 3))
where ~; = (CI: dj‘ el, :=1,2
(c) action of Hecke operators:
Pk (2,1m,9,9) |k (TgD): = PE (2, w,g,8) =
(2,1m, 9,8)|,u(TgT) (2,w,9,9) (411)

P (2,0,1m, 8) |k, 9 (T,

where the subscript indicates to which of the variables the Hecke operator is being
applied with the action defined by (1.21).
(d) the integral representation: for all f € Sk (N, 1) we have that

(Pr(=Z,w,9,9), f(w))Nw = p(m, k,5) f|k,4(TgT)(2), (4.12)
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with
— 2m+1qﬂ—2ma+li—mkrm=ﬂl Py(k+s—(m+1)/2)
Co(k + 8) )

The proof of the properties (4.9), (4.11) is easily deduced from the symmetry rela-

p(m, k, s)

tion
(7, 2)det(y(2) + w) = j (¥, w)det(¥(w) + z), (4.13)
which is valid for all 4 € Sp,,,(R) with

= [(5 %))

and I'gT’ = I'gT" for ¢ € A.Then (4.10) is immediately deduced from the definition (4.7).
Proof of the integral formula (4.12) is carried out similarly to that in Klingen's article
[K15]; for this purpose we may admit that ¢ = 1,,. The integration in the left hand side
of (4.12) is reduced by a standard unfolding procedure to that over the whole Siegel
upper half plane

Hm = Uyr(Po(N)), v €T =T (N),
where ®,(N) = H,,/TF(N) is a fundamental domain for the group I'f*(N). The re-
quired property follows from the integral representation

w)det(T — z) ¥ 12¢ldet Im(w)* 2 d*w =
/ﬁmf( )det(i - 2) ¢ Im(w) "

gmkgmmtl)=2me—mk [ (L 4 s —m —1)f(z)det Im(z),

where
In(s) = / det(1l,, — Tw)’dudv =
Em

ﬂ_m(millz_ mim41) P (s + 1+ (m —1)/2)
Cm(s+m+1)

(4.15)

denotes the integral investigated by Hua Lo-Ken [HLK], which is absolutely convergent
for Re(s) > —1, f € SE(N, ), the integration in (4.14) being taken over the generalized
unit disc

En={w=u+1w € Mu(C)|'w =w,1, —Dw > 0}

of the degree m , the image of £, via the Cayley transform
w = (w—ilp)(w+ilm)" (w € Hm).

In order to prove (4.14) we note that if f € SX(N,v) then there is the following upper
estimate

f(2) € cdet Im(w)~*/2
and the integral in (4.14) is majorated by

/ (det(T — 2)|~*2Re(®) det Tm(w) F/D+Re() gy,
Am
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which provides the absolute convergence of (4.14) in this domain for (k/2)+ Re(s) > m.
Next we rewrite the integrand in (4.14) in the form

g(w) det(w — z)~*~*det Im(w)*+*)
with the holomorphic function
g(w) = f(w)det(w —2)~",

which is integrated by use of the Cayley transform , so that (4.14) follows.
4.4. Reduction of the theorem 4.2 to the properties of Poincaré series.
We restrict ourselves to the case of functions F' satisfying to assumptions of (b). Put
in formulas (4.10), (4.12) ¢ = 1,, and define a function of two variables K}, (2, w,s) by
the equality
Kk (z,w,8) = u(m, k,s)" ' Pk (=7, w, 12m, 5). (4.16)

We show that the function
Hol F(z) = (K (2,0, ), F(w)) N,w|s=0 (4.17)

obtained by analytic continuation of the right hand side to the point s = 0 satisfies to
all conditions of the theorem, i.e. it coincides with the function defined by (4.4) ,(4.5);
Hol F € MJ(N, ) and the equality

(g? F)N = (g$ HOIF)N

holds for all g € SJ*(N,+) . For this purpose we note that for sufficiently large value of
Re(s) the right hand side of (4.17) can be rewritten in the form of an integral over the
whole Siegel upper half plane ), of degree m:

(Kfn(z, w, 8), F(w))Nw =

wu(m, k,s)”" det Im(z)* /; F(w)det(T — z)~*~12ldet Im(w ) +*d*w (4.18)

(due to the assumption on the growth of F' the integral (4.18) is absolutely convergent
for all Re(s) > 0). Next let us consider the subgroup

lm b m
I‘gc,:{'y::t( 0 1m)|7er}cr=r0 (N).

Then the set
{fw=u+iv€ Hulue X,veY}



49

is a fundamental domain for the action of ', on i, and we see that for Re(s) > 0
the right hand side of (4.18) takes the form

2u(m, k, )" det Im(z)* / / F(w) ) det(@ — z + b)*~P*ldet Im(w)k+*d*w =
XY beL

2u(m, k,s)"'det Im(z)° / f F(w)S(W — 2, L; k + s, s)det Im(w)***d>w,
xJy

(4.19)
where L = M,(Z)NV is a lattice in V = {z € M,»(R)|'z = z}, and the function

S(z,L;k+s,s) = Z det(z 4 b) k124l
bel

admits an analytic continuation to all s € C by means of the fourier expansion of (4.14)
and for £ > m we have that

S — z,L; k + 8,8)|s=0 = (=2m)™ T (k)71 D dethi_rem(f(z =) (4.20)
Am3h>0

Under the growth assumption on F' the integral admits an analytic continuation to the

point s = 0 . This analytic continuation can be explicitly given in the form of a Fourier

expansion by means of (4.19), (4.20) using the positivity of 2 . As a result the function
Hol F takes the form

Hol F(z) = (4m)™k=(m+D/2D(k — (m +1)/2) ' x

> dethhmimHn/z / / F(2)em(h(z — @))det Imw*d*w.
Amdh>0 X VY

Then the formula (4.4) follows from the obvious equality

— k px —
[XLF(z)em(h(z—w))det Imw"d*w =
=em(hz)];A(v, h)em(ihv)detvg_1_mdv.

In order to prove the remaining statements we note that the function Hol F(z)
defined by (4.17) is holomorphic and satisfies the automorphic properties with respect
to I'T*(N) of weight k& with the Dirichlet character yymodN. Indeed , these properties
are satisfied by the function K (z,w,s) and consequently by (4.18) for Re(s) > 0 . But
the identity expressing the automorphy condition (1.11) does not change by analytic
continuation , and we get Hol F € M?(N,4) (for m > 1 also the Koecher principle is
applicable) the equality (4.6) is then deduced from the definitions (4.16) and (4.17) ,
and from the automorphy property (4.12) of the Poincaré series. For Re 3> 0 we get

(g:<I(t‘:z(z?wa3):F(w))N,w)N,1 = (9: F)N =
(4.21)
=(Kk(z,w,38),9(2))N,z, F(2)) N w-



50

These equalities remain valid by the analytic continuation and we get (4.6). In the
equality (4.21) the property

KE(z,w,s) = KE(zuw,3).

was taken into account.
4.5. When using the formula (4.4) ,it is convenient to keep in mind the integral
representation (3.9) for the I-function of degree m |

P(s) = 7m0/ T] T(s - (5/2),

j=0
This integral representation can be rewritten in the equivalent form
(v ~ (m 4 1)/2)detu(m+1/2=v = / (dety)* ™t tr(u¥) gy =
Y

(4.22)
- / (dety)*~(m+D/2¢(i(2m) " uy) d*y.
Y

Moreover if R(y) € Clyi;] is a polynomial of y = y;;, ¢ < j thenforall v € Z;v > m
we have that

[ R detyy (s zemssen gy =
Y
[ R@/0u)e s ety =m0 gy = (4.23)
Y

R(8/8u)[Cim(v — (m + 1)/2)detu(m+D/2=¥],

where 8/0u = 8;;, 8i; = 271(1+6;;0/0ui;). Indeed, it suffices to check the statement
(4.23) for monomials of the form

R(y) = [T, aGi,j) € 2, afi,j) 2 0.
i<
In this particular case this is done by application of the differential operator
H a/au:j(f,j)
i<j

to both sides of the equality (4.22). We will formulas (4.4) and (4.23) in a special
situation described in the theorem below.
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4.6.Theorem. Let C*°-modular form F € M (N,y) be a product of the type
F(z) = g(2)G(z), where

g(z)= > B(h)em(h2),

Apdh>0

G(z)= > C(h)det(4my) "R(4rhy;n, B)em(hz),
An3h>0

and F(z) satisfy one of the two conditions (a) or (b) of the theorem 4.2 and R(z;n, B)
denotes the polynomial (3.33) defined for any integern > 0, 8 € C and z = *2 € M,(C)
by

R(z;n, B) = (1) " P det(2)" TP AR [T det(2) 7P,
where

A, = det(@;j), (6,'_,‘ =21 (1 -+ 5,']')8/8,']'2, r < ])
being the Maass differential operator. Then the following equality holds

Hol F(z) = Z B(hy)C(h2)P(he, h;n, Blem(hz), (4.24)
Andh=h+h3>0
where P(v,u) = P(v,u;n8) denotes a polynomial of u = *u = (u;;) and v = ‘v = (vj;)
with the property
P(v,u;n,f) = detv" (mod(u,;)) (4.25)

and P(v,u;n, B) € Q[u,v] for any f € Q.

Proof of the theorem 4.6 is carried out by straightforward application of the integral
formula (4.4) for the action of Mol to each of the Fourier coefficients of the function
F(z):

A(y,h) = S B(h1)C(h)det(4my) "R(4nhay; n, B)em(ihz),
Amdh=hy+h>0

so that we get

ARy= Y B(m1)C(h2)P(ha, k;n, p),
Amdh=h1+h>0
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where

P(v,u) = P(v,u;n,f) =

det(dru)*—(m+1)/2
Pm(k—(m+1)/2) Jy

R(4rvy;n, B)det(dny) " dety*~ (Mt 2¢(2iuy)d*y =

det(41ru)k"(’"+1)/2
Pm(k—(m+1)/2) Jy

R(4mvy; n,ﬂ)det(47ry)_"+k"(m+1)/Zem(Ziuy)d"y = (4.26)

det(tlr':'ru)"“("""1)/2
Tk — (m + D72

[ Revysn, B)det(yy =D/t gy =
Y

Tk —n—(m+1)/2)
Tk~ (4 1)/2)

withn € Z,n > 0,8 € C. To accomplish the proof it suffices to show that the function
P(v,u) = P(v,u;n,B) is a polynomial with the desired properties (4.25). This last
fact is deduced from the last of the equalities (4.26) and some general properties of the
differential operator d/0u which are given below ( see also [KI5]).

4.7. Let us consider the natural representation

det u"'(’""'l)/zR(v - 0/ 0u;n, B)[det u(’“‘*‘l)/z"k'*'"],

pr : GLn(C) — GL(ATC™)
of the group GL,,(C) on the vector space A"C™ and put
pr(z) = det(z)pr—m'z™" (r=0,1,---,m)

Then the representations p and p} turn out to be polynomial representations so that
for each z € M,,(C) the linear operators p,(z), p; are well defined. We vconsider the
differential operators p,(3/0z) and p}(9/0z) which associate to each C-valued function
on H, a certain M,(C) valued function on §),, with ¢ = (). In particular we put

A = pn(8)8z) = p*,(8/0z) = det (271 (1 + 6:;)8/i;2)-

The following differentiation rules are valid (see [Shi8], lemma 9.1):
(a) If f and g are any smooth C-valued functions on §),, then

A(fg) =Y trl'p:(8/082)f - ph—,(8/82)g] (4.27)

(b)
pr(8/0) det(2)* = co(@)det(2)° ™ ph—(8/02),

B (4.28)
pr(0/0z) det(2)* = ¢.(a)det(2)* ™" pm—r(0/02)
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for « € C with

= _T(e+(r+1)/2)
Cr(a) = !_;_[O(a + (k/z)) = P,.(Of T (1‘ — 1)/2) (4'29)

Now we define polynomial functions A,(X) of X € Mn(C) by

m

det(z1m ~ X) = 3 (=1) M (X)tm-r,

r=0
with a variable t. Then

Ar(X) = trlp, (X)),

m 4.30
A(etr(uz)det(z)a) — etr(uz)det(z)a—l Zcm—r/\r(uz)- ( )

r=0

To prove (4.30) it is sufficient to use (4.27) with f = e"(*") g = det(z)* and the apply
formulas (4.28). Indeed,

A(et" ) det(z2)*) =

étf[‘pr@/&)e"(“} « Pl y(8]02)det(2)"] =
;,,.0 cm-,-‘(a)det(z)““tr[p,(z(a/az)etrtu,)l -
;mO cm—r(@)det(2)* A (2(8/82)e" ()] =

rf:ﬂ cm—r(a)det(z)* 7 Ae(zu) =

;mo Cm—rAr(uz)(a)det(2)*!

( we note that tr(*ab) = tr(*ba) and that for each u = *u € GL,,(C) one has u = *u €
GL,(C)).
In a very similar way we get the following formula for the action of an iteration of

A:
A"[e" ) det(2)*] = " (*det(z)* " x
e 4.31
X Z Cmer (@)Cm_r (@ —1) - Cpp (@ —n 4+ 1A, (uz) - A, (uz2). (4.31)
ry,oe,ra=0

From this formula we deduce now the following very explicit expression for the polyno-
mial P(v,u;n, ), which provides us with all desired informaton about it.



o4

4.8. Theorem. Under the assumptions and notations as in 4.5 and 4.6 the
following equality holds

P(vuyn,f) =
S CBir e ra)ilon (0 (] el @ @], D)
ri,,Ta=0
where
C(ﬂ, L ,Tn) = cm—ri(_ﬁ)cm—rg(“‘ﬂ - 1) te Cm—rn(_“ﬂ -n+ ]_)X
ymndbry e er(k—k)- e (k—k—-n+1)
x(=1) em(k—K) cm(r—k—n+1)’
and forry =1, =... =1, =m we have C(f;m,---,m)=1;
- (m o) = TTea _Ta+(r+1)/2) _,  T(l-a)

It is easily seen from this formula that P(v,u;n,f) € Q[u,v] for 8 € Q and that
P(v,u;n, ) = detv™(mod(u,;)

because of the homogenesity of degree m of the matrix coefficients of the representations

Pry Pr-
The proof of the theorem 4.8 is then an immediate consequence of the equalities
(4.26) for which in view of (4.31) we have

R(z;n,B) =

E (___1)r1+-..+f‘n cm—rl(_ﬁ)cm—rz('"ﬁ — 1) cas Cm—rn(*ﬂ —n+ l)x

ri,,ra=0
X Ay (2)Ary(2) 2+ Ar, (2),
and
Tm(k—(m+1)/2)
Tk —n— (m+1)/2)
and according to formulas (4.28)

=(=-1)""cp(k —k) - cm(k —k—n+1),

Ar(v - 8/0u)detu® = tr{p (v - 8/0u)detu®] = ¢ (@)tr[p-(v)det(w)* ! pk _(u)].

This completes the proof for both theorem 4.8 and 4.6.
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Chapter 2: Non-Archimedean standard zeta functions of Siegel modular
forms

In this chapter we give explicit formulas for the special values of the standard zeta
function D(s, f, x) of a Siegel cusp form f of even degree m and of weight k£ > 2m + 2
and then construct a non-Archimedean interpolation of these special values. Multiplying
D(s, f, x) by certain I-factors we introduce the normalized standard zeta functions

D(s,fix), DH(s,f,x), D7(s,£,x),

for which we then formulate our results . First we state a theorem on holomorphy
properties of the function D*(s, f,x) (theorem 1.3). This theorem provides a general-
ization of a result of A.N.Andrianov and V.L.Kalinin [An-K] on analytic properties of
the standard zeta function ; it is proved in §3 by use of a detailed study of poles and
residues of Eisenstein-Siegel series done by Shimura [Shil0] and P.Feit [Fe]. Then we
turn to algebraic properties of the special values

%f)’i)fors=l,2,---,k—u—m
and _ :
D ((;:f,f)aX) fOTS=1—k+V+m,"',“—]-aO»

where {f, f) denotes the Petersson scalar product, v = 0,1 according as x(—1) = (-1)"
( Theorem 1.4). The main result of the chapter is contained in Theorem 1.6 establishing
the non-Archimedean interpolation of these special values by means of the theory of non-
Archimedean integration. We construct the non-Archimedean standard zeta functions
D*(z, f), D°(z, f) as S-adic Mellin transform of certain measures obtained from the
special values. In their turn, these measures come from complex valued distributions of
§2. After regularization given in §4 these distributions become bounded measures taking
(p-adic) algebraic values at certain points and they provide us the non-Archimedean zeta
functions of the Theorem 1.6.

§1.Description of the non-Archimedean standard zeta functions

1.1. The set, on which our S-adic zeta functions are defined, is the p-adic analytic Lie
group
Xs = Homcontin(zgacg)

-~

where C, = Q,, is Tate field (completion of an algebraic closure of the p-adic field Q,),

so that all integers & can be identified with the characters :z::f .y y¥. Put

U= {zeZ|z=1(modp"},

where v = 1 or 2 according as p > 2 or p = 2, then there is the decomposition

Xs=X((Z/p*2)* x [[ Z]) x X(U). (1.1)
g#p
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The analytic structure on Xg is defined by means of the isomorphism
$: X(U)ST={teC)llt—1], <1},

with ¢(z) = (1 4 p¥), 1 + p” being topological generator of the multiplicative group U
(see §4 of chapter 1). Elements x of the torsion subgroup X¥™ C X¢ form a discrete
subgroup and can be identified with primitive Dirichlet characters x with S(x) C S,
where S(x) is the support S(C(x)) of the conductor of x. Recall that every bounded C,-
analytic function F' over X g is uniquely defined by its values F(xox) with x, fixed and x
being taken in X ¢ with possible exclusion of a finite number of them in each analyticity
component of the decomposition (1.1). This condition is satisfied , for example, by the
set of characters y € X¥™ with a S-complete conductor (i.e. with S(x) = 5) and even
under the additional assumption that y? is non trivial(this remark will be used in the
sequel).

Let p be a bounded Cp-valued measure on Z (see [Man4], [Man6], [V1] ), then
its non-Archimedean Mellin transform is given by

Lu@) = (o) = [ sdu(@) (zeXs, (12)

s

and defines a bounded C,-analytic function
L# . Xs - Cp
1.2. Let

fF=Yal)em(¢z)

£>0

be a Siegel cusp form of the even degree m of weight k on the congruence subgroup

I (C) = {(‘Z 3) € Sp,.(Z)|c = 0 mod c}

with a Dirichlet character 1 mod C. Suppose that f is an eigenfunction of the global
Hecke algebra '

L™(C) = 8oL (C) (1.3)

with the eigenvalue given by a homomorphism A : L™(C) — C (i.e. fIX = A(X)f for
all X € L](C)). Let

ao(q), @1(9), "+, am(g) (1.4)
be a m+1-tuple of Satake g-parameters, which uniquely determine A so that the relation
ag(g)ar(q) - am(q) = ¢* DDy (g (1.5)

holds. Recall that the standard zeta function of f with a Dirichlet character y mod N
is defined as the Euler product

D(s,f,x)= [[ D, f,x), (1.6)

7.9 4C
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with
DWD(s, f,x) =

{(1- x200) i (1- M=) (, oila)ete) } |

i=1 p

the product being absolutely convergent for Re(s) > 1 + m. Together with (1.5) let us
consider the following three types of normalized zeta functions

D*(s, f,x) = (2m) O (MHDIDT((s + 6)/2) ﬁ P(s+k—=3)D(s, f,x),  (L.7)

i=1
D (s, f,x) = (2m)~m(eHk=(m+1)/2) ﬁ T(s + k — 5)YD(s, f,x), (1.8)
D*(s, f,x) = 2i51"(s)c;jr(i7)r£s - 6)/2)'D_(3, £.%) (1.9)

where 6 = 0 or 1 according as ¥x(—1) = (-1)°.

1.3. Theorem ( on analytic properties of the standard zeta functions). Let xy be
a Dirichlet character modulo a positive integer N ( not necessarily primitive) and

f= 3 al@en(z) € ST(C,¥)

Am3E>0

be a Siegel cusp form of weight k > m + v where v = 0,1 with x(—1) = (—1)* and
assume that the condition C'det2¢,|N is satisfied for some matrix & such that a(&g) # 0.
Then the function D*(s, f,x) admits an analytic continuation whioch is holomorphic
for all s € C with the possible exclusion of a simple pole at the point s = 1 in case
when the character x24? is trivial.

This theorem is proven in §3 by means of the detailed study of poles and residues

of the Siegel- Eisenstein series as functions of the variable s, see 3.7 of chapter 1, and
also [Fe], [Shil0].

1.4.Theorem (Algebraic properties of the special values of standard zeta func-
tions)

a) For all integers s with 1 < s < k —§ —m and x? non-trivial for s = 1 we have
that

(.f) f)_l D+(3af1X) €K = Q(f)Af:"J)aX))
where K = Q(f, Ag, 1, x) denote the field generated by Fourier coefficients of f ,by the
eigenvalues A¢(X) of Hecke operators X on f, and by the values of the characters x
and .
b) For all integers s with 1 — k+ 6§ + m < s < 0 we have that

(f, Y7'D (s, f,x) € K.
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Remark. (a) It follows from the definitions (1.7-(1.9) and the theorem 1.3 that
under the assumptions of the theorem 1.4 we have that D* (s, f,x) =0 for s € N,

s # §(mod2) and D~(s, f,x) =0 for s = §(mod2), s€ Z,s<0.

(b). From the proof of the theorem 1.4 in §3 (see 3.15) one can substract more
explicit information about the action of Galois automorphisms ¢ € Aut(C) on the
special values (1.10), (1.11): namely, that for some non-zero constant u(A,k,) € C* °
depending only on k > 2m+2, the character 1 and the homomorphism A : L™(C) — C
from the theorem 1.4 we have that

Gx)™ D (s, £, )] GHTxT) "D (s, £, x%)
[ (A E, ) ] =T AT k) (112)
Gx)™ 1D (s, £,X)]° _ G7x")™=1D (s, £, x°)
[ X)) J =T A R ) (113)

with G(yx) being the Gauss sum of the primitive Dirichlet series associated with x.
Also, the following equality holds

,U(A, k, 11[’)_1(fa f)C € Q(fa A, "l’)r

(this means that the Petersson scalar product (f, f)c differ from the constant u(A, k, )
only by an algebraic multiple from the field Ko = Q(f,A,%) generated by Fourier
coeflicients of f and the values of A,%. In (1.12), (1.13) we adopted the standard
notation
=) al€)em(é2) € SP(CY7)
Am3E>0
for the action of o € Aut(C).

The theorem 1.4 is proved in §3 (theorem 3.2), and the algebraicity properties ,
analogous to (1.12), (1.13) are established in 3.15. For some of the special values s in
theorem 1.4 these properties where discovered in ealier works-of M.Harris [Harl] and
J.Sturm [St2].

1.5. Before giving the precise statement of the main result we make some additional
assumptions on f. First of all we assume that f is p-ordinary (with respect to a fixed
embedding i, : Q = C, ). This means that

lip(ao(q)lp =1 for g€ S. (1.14)

Of course, for ¢ # p this condition is automaticaly satisfied because of the relation
(1.14), and for ¢ = p we may consider in (1.14) instead of a(q) any of the numbers

ao(p)aiy(p) -+ @i, (p) (1< iy <o <ip Sm), (1.15)

because these numbers are permutated under the action of Weyl group W,, described
in 1.6 of chapter 1. For this purpose it suffices to apply several substitutions of the type

ao(p) = ao(p)ai(p), ai(p) = ai(p)™", a;(p) — a,-(p) (G#1 1=1,2,---,m)
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Recall that these numbers are inverse roots of the characteristic p-polynomial for the
spinor zeta function Z(s, f) of the cusp form f (see §1 of chapter 1):

Z(p)(s,f)—l = Qs (p7°) =
1= Ap(p)p™® 4+ p2  (mk=m(mt1)/2),,-2™s

Q-ap™)[] II (-aoa-aip™),
r=11<8 <L <
with
X(p) = M(T(p)), T((R))= ) (Tgl)
v(g)=p
being the Hecke opertor for the group I' = T'$*(C), ‘g Jmg = v(¢)Jm.

For each ¢ f C we fix any (m + 1)-tuple with the condition (1.14) and define by
multiplicativity the functions a;(n) for n € N, (n,C) = 1. Moreovere we fix any half
integral symmetric matrix §o such that a({) # 0 and normalize f by the condition
a(€o) = 1. Then a(&) € Q for all Fourier coefficients. Suppose also that the fixed set §

of prime numbers contains the support (i.e. all prime divisors ) of the number 2 det(2¢)
, go being the level of &, , and our last assumption is that

SNS(C)=0,ie (C,Mo)=1, with Mo =[] q. (1.16)
g€ES
Put i
No = 4qeMJ*1C, W =2".
1.6. Main theorem. Let

f(z) =) a(f)em(€2) € ST(C,¥)

>0

be a cusp form of weight k with Dirichlet character 1 mod C which is an eigenfunction
of the Hecke algebra L™(C) with egenvalues given by a homomorphism A : L™(C) — C.
Suppose that for the cusp form f the conditions (1.14) and (1.16) are satisfied . Then
for a positive integer ¢ > 1 with the condition (c, Ng) = 1 there exist bounded analytic
functions

Dt (z, f), D (z,f) : Xs— C,, (1.17)

uniquely defined by the following conditions: a) for all Dirichlet characters x € X
with a S-complete conductor C, (i.e. S(x) = S) and for all integers s with

1< s £ k— v —m the following equality holds
D (xz;, f) =

(Gl ) CFCHETIT CR) i e
zp[ ao(C)? G(#%) (1= (X¥)*(c)e™2)x (1.18)

< TT40 - @@ ™)/(1 - (Roho(a)g )} 2],
q/C ,




60

b) for all Dirichlet characters x € X¥™ with S(x) = S and for all integers s with
1—k+4+v+m< s <0 the following equality holds

D (xz,, f) =
m(Lim, m(a4+k—1—m) _ remn (s, f,% (119)
o Gy
where
Gm(€,x) = > x(det h)em(€R/Cy)

REM m(Z) mod Cy

denotes the Gauss sum of degree m of the primitive Dirichlet character (1Y) mod
Cyx associated with Y mod C C, with the normalized zeta functions D*(s, f, x) being
defined by (1.8), (1.9).

1.7. Proof of the main theorem and of theorems 1.3 and 1.4 is based on the relation
of the function D(s, f, x) with a convolution of Rankin type given by

(st k—14v m
2a(€o)detéy T ID(s, fx) = Lo, (s + 71 ¥Xea X)X

(m/2)-1 , (1.20)
x J] Lcc,(2s+2,$2x2)L((s+k = 1+2)/2, £,65(x),

1=0

where x is a Dirichlet character, v = 0 or 1 according as x(—1) = (—1)", & being a
fixed half integral symmetric positive definite matrix. Also the left hand side of (1.20)
is an Euler product associated with the homomorphism A : £™(C) — C, and the
right hand side of (1.20) is completely determined by the Fourier coefficients of f. The
non-Archimedean part of the construction is based on the theory of distributions and
S-adic integration.

Using a general criterion of finite additivity we construct complex valued distribu-
tions associated with D(s, f, x) by defining their values at Dirichlet characters in §2. We
prove in §3 an (Archimedean ) integral representation for these values , which enables us
to express the distributions in terms of the Fourier coefficients of Siegel-Eisenstein series
from §3 of the previous chapter by applying the holomorphy projection operator (see §4
of chapter 1). After a regularization given in §4 these distributions become bounded C,
-valued measures D, D°~ taking algebraic values at compact open subsets of Z° | and
the proof of the main theorem is then completed by application of the non-Archimedean
Mellin transform.

§2. Complex valued distributions associated with standard zeta func-
tions of Siegel modular forms

2.1. Let asin 1.2
f= Y al®)em(é2) € S(C,¥) (2.1)

AmdE>0

be a cusp form of degree m weight & with the Dirichlet character x 3 modulo C on
the congruence subgroup I'f*(C'), which is an eigenfunction of all local Hecke algebras
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L = LT with ¢ not dividing the level C of f, so that the Satake q -parameters a; =
ai(q) (2 =0,1,.--,m) are defined for all ¢ JC. We extend by multiplicativity definition
of the functions a;(M) to all values of the argument M prime to the level C.

Now for the fixed set of prime numbers S = {¢q} not dividing C' we define complex
valued distributions on the profinite group

Gs = H zx
geS

associated with the functions D(s, f, x). The crucial role in the construction is played
by the cusp form (1.50) , chapter 1:

fo=fos= Y  a(M)7fIVH(M). (2.3)
MIMP!
with Mo = [[ 59, ™ = 2™. Recall that if
fos(z) =D ao(€)em(£z) € ME(NM™™ y) (24)
AmdE>D

be Fourier expansion of the function f; s(z) then there is the folowing multiplicativity
property of its Fourier coefficients: for all M € N with S(M) C §

ao(M¢, fo) = ao(M)ao(§, fo) (§ € Am,§ 20). (2:5)

Our construction of the distributions is based on the identity (1.20) expressing D(s, f, x)
in terms of the Rankin type convolution:

- —14r m
2a(fo)detéy “HETIID(s, £,x) = Lom(s + 5, ¥xex)x

(m/2)-1 (2.6)
x ] Lom(2s+2i,92x®)L((s + k ~ 1 +v)/2, £,852(x)),

1=0

where x mod M is a Dirichlet character modulo M v =0,1,x(-1) = (—-1)", Am 3> & is
some appropriate half integral symmetric positive definite matrix, s € C is a complex
number with Re(s) > 0,g is the level of {, , g0 € M;n(Z). Put

€o = qot; 1, No = 4qoC M1,



62

2.2. Proposition. Let s € C, Re(s) 3> 0. Then there exist a complex valued

distribution Dgs on G g which is uniquely determined by its values on Dirichlet characters
x mod M with S(M) C S given by

2a(&o)detéy T D(s, £,x) =
aO(M(l)ﬁ—l Mr)—l (CMJH—IMI)m(23+2k—2—m)/4 Cm(2u+m)/4 x

(it (2.7)
Lng(s+ + ,¢xe°x) I Lwe(2s+2i,42%%)x
=0
x det((2g0) "/ 260) P L((s + k = 1+ v)/2, fo|V(C), 9;5.:)(XM)IW(N0M')),

where

FlV(C)(z) = fo(C?),

0(”)(XM)|W(N0M)—det( /ND z) (m/2)—u9(")(XM)( (N M') 1) (2‘8)

where M, M' are sufficiently large positive integers with the condition
M,Cy|M, MM,C:|M'

so that S(M) = S(M") = S with C,, being the conductor of the character x and xnm
denoting the Dirichlet character modulo M induced by x.

Proof. According to a general criterion of finite additivity applied for the family
of functions D, um : (Z/MZ)* — C (see {Ka3], [Maz-SD]) it suffices to check that the
right hand side of (2.7) is independent of M and M'. The independence of M obviously
follows from the S-completeness of M (i.e. M is divisible by all primes from S.In order
to show the independence of M’ we put

M'=AB, A=M{C?, B= M, = M'(MCy)™*
and use the equality
9(”)(XM)|W(N0M )y = M T v (), (2.9)

in which
9(2) = 6 (X)W (N MFCx) ™) = 3 b(&)em(€2).

AmDE20
It follows now from the definition (2.33) of chapter 1 and from (2.9) that

L(s, fo[V(C), 6% (xan)lW (NoM")) = MI"* ™4 L(s, £|V(C), gV (M) =
Mlm((20+m)/4—a)c—ms Z a(My€, fo)b(CE)deté ™. (2.10)

Amdh>0
mod ~

To get the desired independence of M’ ( or of M; ) we use the multiplicativity property
(2.5): ag(ME, fo) = ao(M)ao(€, fo) Then after substititution of (2.10) into (2.7) with s
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equal to (s+ &k —1+v)/2, M' = MgCiMl we easily see that M; dissapear , and the
proposition follows.

Another way of proving the proposition is to calculate explicitly the integrals
D, m(x) of the Dirichlet characters x which is done below with some additional technical
assumptions.

2.3. Proposition. Let x mod M be a primitive Dirichlet character with an S-
complete conductor Cy, Cy|M (ie. S(x) = S(Cy)=§). Assume also that S(2det,) C
S. Then there is the following identity

Ge (lm,X) C;1(23+2k—2—m)/4 _
Dy ailx) = 2 : D(s, , 2.11
,M(X) C;cnn/g Q’O(Cx)2 (‘g f X) ( )
where
Golmx)= 3 x(dethem(*Eh/Cy)
heEM, (ZYmod C)

is the Gauss sum of degree m of the character x.
The proof of the proposition 2.3 is based on the transformation formula (2.4) of
the previous chapter for the theta function

68 (X)W (0 Q?) =

chx lm,x _ m v (0 fe (212)
x(~1)" EECm N gei( g5 Vg6 (),
X
If we now take into account that
m m2 v v
Ge,(1m, X)Goy(1m, X) = x(=1)"CI’, 852 (x) = 8 (x)IV (2),
then (2.12) transforms to
652 (0IW (400Q?) =
_Ge,(1m,X) i o (8) e (2.13)
X(~1)" TR det (4765 ) B (R),
X
Next we write: i
NoM' =4g,Q?N' , N' = MJ*7'CM'C2,
so that
§NW (NoM') = (N)m v +mIA[60) | W (40 Q)] |V (N') (2.14)

and if we substitute (2.14) into (2.7) we get exactly the desired identity proving the
proposition.

Now we obtain integral representations for the values of the distributions D, s
with Re(s) > 0 using the identity (2.29) of the previous chapter from which follows
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that for all Dirichlet characters x mod M with the condition My|M

2a(€)((4m)™ det(£o) "5/ A0 (s + k — 1 +4)/2) D(s, f,x) =
(m/2)-1
Lo(s + 5, ¥XeoX) I=I0 Ly(25 + 2, %2 x)) X (2.15)

x (FP(2), 85 (2, X)E(z, (s — k +m + v)/2)) N,

where
E(z73) = E(z:'s; k— (m/2(—y, "l’XEoX: N)

is the Siegel-Eisenstein series of weight k — (m/2) — v of level N = 4¢goCM? with the
Dirichlet character ¢, x introduced in 2.4 of chapter 1.

2.4.Proposition. Fors € C, Re > 0 there is the following integral representation
for the distributions of the proposition 2.2:

2a(&o )((4m)detéy)~CHETIHIID (s 4k — 1 4+ v)/2) Do (X)) =

Cm(a+k—1+u)/2a0(M6ﬁ—l M!)—I(M(;h—l Mr)m(25+2k—2—m)/4det(qo—1/'2 50)(2v+m)/2 «
m (m/2)-1
X Lio(s + 5 %¥xeX)  J] Iwo(2s +2,9°%%))x
t=()
X (f(2)|V(C), 6% (xan)[W(NoM")E(z, (s — k + m +v) /2))N,
(2.16)

where M, M' are sufficiently large positive integers with the condition
MyCy|M, MM,CZ|M’

so that S(M) = S(M') = § with C,, being the conductor of the character x ,Cy|M and
xu denote the Dirichlet character modulo M induced by x.

The proof of the proposition reduces to application of the integral representation
(2.15) to the cusp form f3|V(C) € SPF(C?MJ* 1, ) of level C?M*~! defined by (2.7).

The next important ingredient of our construction is an application of the trace
operator to modular forms of level N = CNgM' in the above integral formula, which
enables us to reduce all considerations (e.g. the integral formula) to the case of the fixed
level C'N,.

2.5. The trace operator. We define the trace operator T&'g%g‘u ' acting on (not
necessarily holomorphic) modular forms of the degree m weight k& with the Dirichlet
character 3 on the congruence subgroup I''(C NgM') by the following equality

: 1 0
FITeeNeM = > F| ( ™ ) : (2.18)
tu=uEM,n(2Z)mod M’ NoCulp

Then the scalar product in (2.16) transforms in the obvious way:

(8, Fyenomr = (£§, FITIENM Ve, (2.19)
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Now we give a useful description of the action of the trace operator on Fourier expansions
by means of the operator U(M'):

FUGMYz) = (M) S R w/MY). (2.20)
tu=uEMm (Z)mod M’

(in the notation of the previous chapter this operator coincides with the Frobenius
operator II4(M") extended by multiplicativity to positive integral values of M’ prime
to the level C: F|U(M') = F|II (M")). If

F(z)= Y a(£,y)em(£2),

£CAm
then
FIUM')(z)= ) a(M'&,M'™ y)en(£2). (2.21)
£EAM
The following relation holds
FITeENM = (M")=mE=m=D/2F|W(CN,M' YU (M')W(CNy), (2.22)

which is immediately implied from the matrix identity

. 0 . 0 ~1m\ /lm -u 0 -1,
(CNou 1,,,) = (CNoM') (CNOM’lm 0 ) ( 0 M'lm) (CNolm 0 )
Now let us apply (2.19) and (2.22) to the integral formula (2.16) then we get

2a(&o)((4m)detéo) ~HETHIAD, (s + k = 14 v)/2) Doym(x) =

QO(MJ'H—] M!)—I(M(;?l—l Mi)m(2a+2k—2—m)/4det(qa‘lfzgo)@v+m)/2 %
(2.23)
m (m/2)-1
X Ly, (s + ?,¢X&Y) H LN, (28 + 21,9%%%))x

=0

x (M =R (f0(2)[V(C), F(s, WU (M)W (CNo)) oo

where

F(s,x) = ";Ez(XM)W(C) - B(2,(s =k +m +v)/2)|W(CNyM"),
and we noted that

0 (xaa) W (No M") [ W (CNo M) = c-"‘“”*m)/“ﬁg’gﬂ(xzw)IV(C)- (2.24)

§3. Algebraic properties of special values of normalized distributions

3.1. In this section we consider only the case of even m. In order to give a
pricise statements about algebraicity properties of the standard zeta functions and of
the corresponding distributions, it is convenient to make some additional normalization
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of these values because these properties look different for the integral points to the left
and to the right of the critical line Re(s) = 1 ( in the same way as for the Riemann
zeta function).

Recall that as in §1 we have introduced the following three types of the normalized
zeta function: for k = (m +1)/2

D*(s, f,x) =

(2m)~mEFEOIT((s 4 8)/2) [[ T(s + k = 5)D(s, £, %),

j=1

D7(s,f,x) =T((s +6)/2)7'D*(s, f,x) =

(3.1)

(2my=(+8= T] (s + & — 3)D(s, £,10), (32)
=1
.6 _
ST (GE-CTEY T P
8 o(1-28)/2 (33)
D*(s, £, %),

T((1+6—15)/2)

where § = 0 or 1 according as ¥x(—1) = (~1)® with f € §*(C, ) be an eigenfunction
of the global Hecke algebra L™(C) = ®, ¢ L] (C) with the eigenvalue given as a homo-
morphism A : A™(C) — C. The convenience of the *-normalization (3.1) is explained
by the fact that the standard zeta functions continued holomorphically to the whole
complex plane satisfy to a functional equation connecting

D*(s,f,x) and =2~D/2D*(s fr %) (3.4)

although the precise form of such an equation is known only in some cases [An-K], [Bo].
The principial difficulty in dealing with the general case is that for m > 1 one lacks the
correct and reasonable definition of the Euler factors for the standard zeta function at
bad primes, i.e. for ¢|C. In the one dimentional case these factors are provided by the
Atkin-Lehner theory [At-Le], [At-Li], [La3], [Lil]; however even for m = 2 there is no
such a theory.

Now we turn to the normalizations (3.3) and (3.3). Their convenience is illustrated
by the following result about algebraicity of the special values of (3.2) and (3.3) which
is proven in this section together with the corresponding statement about the special
values of normalized distributions given below in 3.3.

3.2. Theorem (Algebraic properties of the special values of standard zeta func-
tions). Assume that the cusp eigenform f € S§;*(C, ) is normalized by the condition
a(€o) = 1 for some & € Am, & > 0.Then

a) For all integers s with 1 < s < k— & —m and s # 1 if the character x%¢? is
trivial we have that

(fy /HT'D¥(s, fx) € K = Q(f, As,%,X),
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where K = Q(f, Ay, v, x) denote the field generated by Fourier coefficients of f by the
eigenvalues A¢(X) of Hecke operators X on f, and by the values of the characters x
and ¢ and DY (s, f,x) = 0 for s # §(mod2);

b) For all integers 8 with1 — k4 § 4+ m < s < 0 we have that

(f, NTID7(s, fix) €K

and D~ (s, f,x) =0 for s = §(mod2), s€Z,s <0.

The proof of the theorem is completed in 3.15, although we assume there that x
is a Dirichlet character modulo N (not necessarily primitive) such that 2Cdet 2§4|N for
the fixed & € A, > 0 with the condition a(€) # 0. This restriction is insignificant
and is being avoided by multiplying the special values in question by a finite number
of Euler factors corresponding to the divisors of det 2, which take algebraic values for
integer values of s.

3.3. Now we define normalized distributions by the following formula

(£, P D) = (2m) =+t 0D (0 1 6)/2) [[ T+ & = 5)Dupe(x)s (37)

1=1
i) = (£, )G @)y =D [ D4 b~ )Dose(), (39)
j=1
Diw() = 2 =0, (39)

where D, ar(x) are the values of the distribution D, as on the finite group

Gs =23 = [[ 2} > Gal(Q(S)/Q)

geES

with Gal(Q(S)/Q) being the Galois group of the maximal abelian extension of Q un-
ramified outside S and oo.In the definitions (3.7) - (3.9) is assumed that xar is the
Dirichlet character modulo M induced by x and S(M) C S.

The following proposition is closely connected with theorem 2.2.

3.4. Proposition. (Algebraicity properties of values of the normalized distri-
butions) Assume that the cusp eigenform f € S{*(C,v) is normalized by the condition
a(&) =1 for some €, € A, & > 0.Then
a) For all integers s with 1 < 38 < k—§é—m and s # 1 if the character x 1/) is trivial
we have that

DIM(X) €K = Q(faAf:":b’Xaai(Q);i < m,q € S):

where K = Q(f,A¢,9,x) denote the field generated by Fourier coefficients of f , by
the eigenvalues A y(X') of Hecke operators X on f, the Satake ¢ -parameters and by the
values of the characters y and ¢ .

b) For all integers s with1 — k+ 6§ +m < s <0 we have that

Dy mx) € K.
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In the proof of the properties (a) and (b) we always assume that the set S contains
all prime divisors of the number 2det(2£,) . According to the explicit formula. of propo-
sition 2.3 for Dirichle characters x with S-complete conductors the values D, (x) are
expressed in terms of the corresponding special values of the normalized standard zeta
functions D*(s, f#,%) so that in this case the proposition is an immediate consequence
of the theorem 3.2. However for the non-Archimedean construction we have to consider
all characters of finite order of G g because of their unavoidable presence in the general-
ized Kummer congruences in §4. Very explicit formulas for the corresponding values of
the distributions are given in 3.6 and can not be simply reduced to those the theorem
3.2. the proof of the algebraicity properties is completed in 3.15 together with the proof
of the theorem 3.2. Application of a fixed embedding 2, ' Q < C to the normalized
distributions D¥ "y (x) provides us with p-adic d13tr1but10ns ip [D% . M(x)] which becomes
bounded p-adlc measures after a regularization in §4 . The basic fact used in the proof
of proposition 3.4 is an integral representation for DiM(X) which we state now in a
preliminary form in terms of the distribution Dj p,(x)-

3.5.Proposition. Let f € S*(C,%), m be even, x be a Dirichlet character
modulo M > 1. Then there is the following equality:

(£, Fe Dy m(x) = v(M')FFIV(C), Fipe (3, X)IW(CNo)) o, (3.10)

where

7(M') =2m(2k-2—m—n)z'—m(k—(m/2)—u) a(go)—lao(Mo)rh-—l M (CM(;FI—I )(k-l—m)/2,

Fipi(s,x) = (goC) ™o/ 4qete{*HE 1442 gy (g 2 g )R¥Hm) /2
x [27 ‘9(”) S(Xm)IV(C)G* (2,5 — k + v+ m)/2)||U(M"),

where
G*(z,8) = G*(z,8;k — (m/2) — v,Xxe, ¥, N)

is the normalised Siegel-Eisenstein series from §3 of the previous chapter with N =
CN(]M' = CZM(;ﬁ—l-’-l(]'oM’.

The right hand side of (3.10) is defined and holomorphic for all s € C with possible
exclusion of s = 1 in case when the character Y2? is trivial.

The proof of the proposition follows from the definition of the normalized Eisenstein
series G*(z, s) which for k equal to k¥ — (m/2) — v, s equal to (s — k + v + m)/2 takes
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the following form

G*'(z,(s—k+m+v)/2)=
(4goC? M"Y+ m/AT(k — (m/2) — v, (s — k + v + m)/2)x

mj2
x Ly(s + (m/2),Xxeo®) [[ Ln(2s +m —25,4°%%)x
=1
X 2™ B(z, (s — k + v +m)/2)|W(NV),
(8.11)
where
Tk —(m/2) —v,(s —k+v+m)/2) =
im(k-(m/2)—u)2—m(k—(m/2)—u+1)Tr——m(a+k—v)/21-\m((S +k— V)/2)F((8 + 5)/2)’
and it suffices to take into account the following relation for the gamma factors:
(2m)"mCFEIT(s 4 6)/2) [[ (s + k= 4) =
i=1
om(2k—2—m—r);—m(k=(m/D-VP(k _ y — (m/2),(s — k + v +m)/2)x (3.12)

% 2m(m+1)/22m(26+m)/2(47r)—M(a+k-—1+u)/2I\m((3 +k—y— m)/z)’
which follows from the duplication formula

T(HNEES) = 27 VrT(s)

and the definition

m—1
Don(s) = wm=0m/4 T] T(s = (/2)).

j=0
The statement about holomorphy follows from the theorem on holomorphy of the Eisen-
stein series G*(z, s) (see theorem 3.6 of the previous chapter) and from uniform estimates
on z € H,, of the Fourier coeficients which imply that the scalar product in right hand
side of (3.10) can be defined for all s € C s # 1,if 3?52 is trivial.

Now we specialize the integral representation (3.10) to the case of the critical values

3 (see 3.3 of chapter 1), when the confluent hypergeometric function admit an elementary
expression in terms of a certain polynomial. Then we use the holomorphic projection
operator Hol (see §4 of chapter 1 in order to get an integral representation for the
distributions Df am(x) in terms of the holomorphic Siegel modular forms with algebraic
( and explicitly given) Fourier coefficients.

3.6. Proposition. Under the assumptions and notations of Proposition 3.4 the
following integral representations are valid
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(a)For all integers s with1 < s < k—6—m and s = 1 if the character x?? is non-trivial
we have that

(£, YD m(x) = v(M)FEV(C), Fagp (s, X)W (CNo)) oo,

Fi(s0= 3. S dfs i, ha)em(he); (319
Am3>0 Céo[hy)+ha=M"h
b) For all integers 8 with 1 —k+ 6 +m < s <0 we have that
(f, FleDym(x) = v(M')fFIV(C), Fip. (s, X)IW(CNo)) oo,
(3.14).

Fi(s,x) = Z Z d=(s, hy,hy)em(hz);

Am32>0 Céo[h1]4+ha=M'h

The functions Fg},(s,x) € M(CN,,v) are holomorphic Siegel modular forms with
cyclotomic Fourier coefficients explicitly given by:

if s # §(mod2), 1 < s < k—v~m thend¥ (s, hy,hy) =0;

if s =6(mod2), 1< s<k—v—m then

d* (s, hy, ha) = xa(dethy) deth?deth®* 2 P(hy b s)x

x LE (s, Xxeo¥éna) M (R, Xxeo ¥, 8 + (m/2)) %

(3.15)
X (goC) T A detgg ™ T det (g2 o) P/,
ifs=6(mod2), 1-k+v+m<s<0thend (s,h,h2)=0;
ifs#6(mod2), 1—k+v+m<s<0 then
d~ (s, hy, hy) = xp(dethy) dethy P(he, h,1 — 8)X
X Ly (8, XX ¢o%€na )M (R, XX 0¥, 8 + (m/2)) X (3.16)

X (qoC)'—m(2’+m)/4detf‘g"+k_1+”)/2det(qa-1/250)(2u+m)/2;

P(v,u;s) € Q[v,u) denotes a polynomial of entries of matrix variables v = (v;),u =
(uij) which is defined for s = 6(mod2),1 < 8 < k — m — v with rational coefficients
independent of f, M, x, M' and satisfies the property

P(z,y,3) = detz(F—v=m=2)/2 104 ({yi;))
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M(h,Xxe, %, 8 + (m/2) denote the integer multiple from the Fourier expansion of the
Siegel-Eisenstein series (3.44) of the chapter 1, with

2i'5I‘(s) cos(m(
(2m)°
Ly(s,w)= Ln(s,w) (6=0,1, w(-1)= (—1)'5)

L(s,w) = - 5)/2)LN(3,W),

being the normalized Dirichlet L-series with the Euler factors at ¢, q|N removed from
their Euler products. The summation in the inner sums of (3.13) and (3.14) is taken
over all pairs (hy, hy) of integral matrices with the conditions

hy €ME(Z), ha >0, hy € Am, Céolh1]+hy=M'R

( ie. hy is a integral matrix with positive determinant, not necessarily symmetric,
hy € A, is a positive definite half integral matrix , and Cylhy] denotes the matrix
given by C'hiqoé~ hy = Cqo&y ' [h1].)

3.7. The proof of the proposition is carried out in several steps. First we write

down a preliminary integral representation using proposition 2.4 and the definitions
(3.8), (3.9) of the normalized distributions:

(£, F)eDEp(x) = v (M) FEIV(C), Fiz.(3, X)W (CNo)) e No, (3.17)
where |

Ff,}, (s,x)= (qoC)—m(a+(m/2))det§(()a+k—l+v)/2det(q0—1/250)(2u+m)/2 v

x 2765 (xan)IV(C) - G2, (s — k +m + u)/2i|U(M').

We already know the Fourier expansions of the functions in (3.17): by the definition of
theta functions from §2 of the previous chapter we have that

B20anV(©) = Y xa(dethy)dethem(Céo[hule). (3.18)
hy €M, (Z)+

The Fourier expansions of the series Gfﬁ,.(z,s) is explicitly written in §3 of chapter 1.
If we put in the expansions (3.53), (3.53a) of chapter 1 s equal to (s —k+v +m)/2, k
equal to k — (m/2) — v we get the equality:

Gr(z,(s—k+m+v)/2) = Y b¥(h,y,(s —k+v+m)/2enm(hz),  (3.19)
hEcAnm,
in which
bE(h,y,(s —k +v+m)/2) =

L* (3, Xxe X)W * (b, y, (s = k + v + m)/2)M (b, Xxeo ¥, s + (1/2)).
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For the critical values of s the function W*(h,y,(s — k + v + m)/2) is explicitly given
by formulas (3.31), (3.34) of chapter 1 in terms of the polynomial

R(z;n, B) = (~1)™"e"(det(2)"HP AR [et" (D det(2) P, (3.20)
where
Am = det(F;;), 6,-,- = 2_1(1 + 5.'_,')3/3,’,’.

with an integer n > 0 and a complex number B. the degree of R(z;n,f) is equal
to mn, and the the term of the highest degree coincides with detz". If § € Q then
R(z;n,B) € Q[z;] . Put

Q(y,s) = R(y;(k—v~—m—28)/2,(1 —s—k+v+m)/2). (3.21)

thenfors€ Z, 1-k+v+m < s <k —v—m, the coeflicients of (3.19) transform to
the following:

if <s<k-v-—m, s# 8 mod2)and X¥*1?* is non trivial for s = 1 then b¥(h,y, (s —
k+v+m)/2)=0;

if <s<k-—v—m, s=6(mod2)and ¥?4? is non trivial for s = 1 then

br(hy,(s—k+v+m)/2) =

il

(detl'v',f'—*f det(41ry)("_k+”+m)/2Q(47rhy, 8)% (3.22)

X LL(S,YXfOXh'J’)M(h-;YXEo‘:b, s+ (m/z))’

if s = §(mod2), 1 < s <k —v—m and %?¥? is non trivial for s = 1 then b= (h,y,(s —
k+v+m)/2)=0;
if s #6(mod2), 1-k—s+v+m<3<0 then

b (h,y(s—k+v+m)/2)=
det(41ry)(1_’_k+”+m)/2Q(47rhy, 1-3)x (3.23)

X LI—W(S?YX€0X’I¢)M(’Z)YX50¢1 s -+ (m/z))‘l

It is assumed that in (3.22), (3.23) A > 0, h € A,. According to the theorem
about positivity for matrix indices in Fourier expansions (theorem 3.7 of chapter 1) for
these values of s we have that b*(h,y,(s —k+v +m)/2) =0if h € A,, is not positive
definite. Respectively, 8~ (h,y,(s —k + v +m)/2) = 0 for the corresponging values of s
if h € Ay, is not non negative (i.e. when it contains negatlve eigenvalues).However we
now will see that the Fourier expanmons of the functions Fi£, (s, x) from (3.17) involve
only those Fourier coefficients of G, (z, (s —k+m+v)/2) in the expansion (3.19) which
correspond to terms with positive deﬁnite he A,
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3.8. Proposition. (a) fs€ Z, 1 < s <k —v —~m and Y*%? is non trivial for
s =1 then we have in (3.17) that

Fhx)= Y > d* (s, h1, ha)em(h2); (3.24)

Am3>0 Cfolhi]+ha=M"h

(b)Ifl—-k+v+m<s<0, seZ then

Fsx)= )Y, > d™(s, hy, ha)em(hz); (3.25)

AmI>0 Céo[h1]+ha=M"h

the functions f’;ﬂ(s, X), Fip(s,x) € M}:’(CNU,$) are non holomorphic Siegel modular
forms with the Fourier coefficients given by:

dt(y, s, k1, ha)em(hz) = xar(dethy )deth? dethl?* /2 det(4my)a—kHvtm)/2y

x Q(4mhy, )L (8, Xxeo€na )M (R, Xxeo ¥, s + (M /2)) % (3.26)
x (qoc) m(23+m)/4d t£(5+k 1+V)/2d t( 1/25 )(2u+m)/2

d™(y, s, h1, ha) = xm(deth,) deth?det(dry)! 2+~ m+R)/2y

Q(47Thy, 1- S)L ( ’XXEO"Z)‘fhn )M(h1 XXfo“tba s+ (m/z)) (327)

« (qoC)-——m(2a+m)/4det£(()0+k-1+V)/2det(q(‘)‘1/250)(2u+m)/2

with Q(y, s) being the polynomial (3.21) and the summation being extended to all pairs
hy, hy of matrices hy € M} (Z), A, 3 hy > 0 with the condition

CQchlgo—lhq + hy = M'h, An D h>0.

The proof of the proposition is an immediate consequence of the preliminary inte-
gral representation (3.17) and the formulas (3.18), (3.19), (3.22), (3.23) for the Fourier
coefficients .

The final step of proving proposition 3.6 is to deduce it from the already proven
proposition 3.8 by applying to the non holomorphic modular forms F’f}, (s, x) the holo-
morphic projection operator Hol and using the formulas from theorem 4.6 of chapter
1 which describe its action on Fourier expansions . In order to justify the applica-
bility of this result (more precisely, the statement (b)) to our situation to calculate
Hol (F 31 (8, X)) we note that the positivity property of the Fourier expansion for the
functions Gf,,,(z s) in proposition 3.8 imply the corresponding property for the func-
tions F‘M,(s X). On the other hand, the moderate growth condition follows from growth
estimates given in [St2] (see also [Fe] [Shil0]). The essence of these estimates is that
for critical values of s (i.e. for which the corresponding Fourier expansions of G, (z, 5)
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contain only terms with positive definite matrix indices) these (non holomorphic ) mod-
ular forms satisfy the same growth estimates that those valid for holomorphic modular
forms (see (1.15),(1. 16) of chapter 1). Hence we obtain the necessary growth estimates
also for functions FM,(S x) and the moderate growth condition (4.3) of chapter 1 is
then easily checked by applying to it the same upper estimate as in the integral formula
(4.14) of chapter 1 finishing the proof of proposition 3.6.

Now we will prove the theorems 1.3 about the analytic properties of the special
values of standard zeta functions. We start with an integral representation for the
normalized zeta-function D*(s, f, x) which is analoguous to that for the distributions
D; ; ( see (3.10) in proposition 3.5).

3.9. Proposition. Let f € S*(C,v) be a cusp form of weight k > m + 1 where
m is even,x be a Dirichlet character modulo M > 1.Put N = 4q,M?C where ¢ is the
level of a quadratic form with the matrix 2§, such that a(§y) # 0. Then we have that

a(§o)Ph(s, f,x) = (f*, K™ (2,80, X)) N,

where

Kt(z, 3 ‘SO:X) =N—m(25+m)/42m(2k—m+2—N)i—m(k—(m/Z)—V) x
x dete{ '+t 1*")/29(")( )G*(z,(s — k + v + m)/2)|W(N),

where the subscript N in the notation D} (s, f, x) indicates that all Euler factors cor-
responding to q, ¢|N are removed from the Euler product, and the series

G*(z,8) = G*(2,8;k —(m/2) — v, xXeo %, N)

being defined in 3.5 , (3.45), of chapter 1.
The proof is deduced from the integral representation (2.15) rewritten in the form

2a(&o)((4m)™ det&o) ~CHFTIIIL (s + k — 14+ v)/2) D(s, f,x) =
(fp(z)a K(z; 83 '50, X))N

where

I‘{’(Z,S;fg,X) =
(mf2)-1
In(s+ 3 = ¥xeox) II Zw(2s+2,9°x%)x
=0
X ﬂézg(z; XNE(z,(s = k+m+v)/2)|k—(m/2)=s W (V) |k=(m2(- W(N).

in this equality we used the definition (333\01' the normalized zeta functions, the defini-
tion of the series G*(2,s) and the relation (3.12) for the I'-factors. Now the theorem
1.3 follows from the proposition 3.9 and the theorem 3.6 of chapter 1 in which we take
k to be equal to k - (m/2) — v .

Note that the function D} (s, f,x) is obtained frorn the function D*(s, f,x) by
multiplying it to an elementary holomorphic multiple; however we do not know how
deduce from the theorem holomorphy properties of the function D*(s, f, x) itself and
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this interesting question needs a further study. But under the assumptions of theorem
1.3 we have that

D*(s,f,x) =Dn(s, f, x)

hence the proof is completed.

3.10. In order to prove the theorem 3.2 about algebraicity properties we need an
integtral representation for the functions D* (s, f, x) analoguous to that of the proposi-
tion 3.9.

Let x be a Dirichlet character modulo M and assume that all conditions of the
theorem 3.2 are satisfied .Put N = 4¢3,C , then we have the following integral repre-
sentation

a(&0)D (s, £,x) = (£, K* (2,560, X)), (3.28)
with

Ki(z, $;60,X) = N —m(28+m)/4gm(2k—2—m—x) . —m(k—(m[2)=v) y,

x det€S"HF T I Hol (652 ()W (N)GE(2, (s — k + v + m)/2)]|W(N),

in which _
Ki(z’s;&]? X) € MT(Nalvb)a

the series
Gi(za '9) = Gﬂ:(z,s; k- (m/2) - ¥, XX&I,L',N)

are defined by (3.47), (3.48) of the previous chapter and the symbol Hol denotes the
holomorphic projection operator from the theorem 4.6 of chapter 1. The proof of (3.28)
is carried out in exactly the same way as that of the proposition 3.9 if we take into
account the definitions (3.2) and (3.3) of the functions D¥(s, f, x) , the definition of the
series G*(z, x) and use the relation (8.12) for the I'-factors. The possibility of applying
Hol to the function

65 (OIW(N)GE (2, (s = k + v +m)/2) (3.29)

by formulas of the theorem 3.7 of chapter 1 is justified as in the end of 3.8 bearing in
mind positivity properties of Fourier expansions of the series G¥(z, s) in the theorem 3.7
of chapter 1 and the growth estimates mentioned above. It follows from these estimates
that the function (3.29) satisfy the bounded growth condition , and its Fourier expansion
contains only terms with positive definite matrix indices.

Remark. If k > 2m + 2 then for s = k — v — m the series defining the function

Gi(z,O) = G*(Z,O; k— (m/2) -V, XXEOIP?N)

is absolutely convergent so that this function is holomorphic , and we can omit the
symbol Hol in the integral representation (3.28):

a(o)TT(k —v —m)Dn(k—v—m, f,x) = (f*, K (2, k —v —m; &, x))n, (3.30)
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with
Ki(z,k —v—m;€,x)=
N—m(2k—2u—m)/42m(2k-2—m—n)+m(2k—2u—m)/2z---m(k—(m/'z)—u) x (331)
x 652 () [G*(2, 0)|W(N),
with

F+(8) — (2ﬂ,)—m(a+k—n) 2° F(S) C(EZE:BES — /2 H F(S +k— ]) (332)

being the gamma-factor. With these values of k and s the identity of A.N.Andrianov
(proposition 2.8 of the chapter 1 and the equality (2.28)) takes the form:

a(é0)DF (s, f,xn) = a(&)DH(s, f,x) =

(m/z);l
Tt (s)Ln(s+ (m/2),x Xeo¥) '=H0 L(2s + 21, x29?)x .
% E xn(det f)a(Eo[h]))deth=(*TF~1),

h€ESL,(Z)\ME (2Z)

where x be a Dirichlet character modulo N defined by xn(d) = x(d) for det2{o|N. The
series in (3.33) is absolutely convergent for Re(s) > 1 4+ m due to the estimate

la(h)] = O(deth*/D+e)

for the Fourier coefficients.
3.11. Action of the group Aut(C) on scalar products of modular forms.
Recall that the group Aut(C) acts on modular forms

f= 3 alflem(tz) € MP(N1,¥)

Am32>0

by the following rule:
= a(€)em(tz) € MP(N1,Y), (o€ Aut(C))

Amd20

and this action commutes with the action of the Hecke algebra, see [Shi5], [St2]. Consider
the global Hecke algebra

L(N1) = ®qpn, £7'(N1)
and suppose that f € M(Ny,v) is an eigenfunction of the Hecke algebra £(N;) with
the eigenvalue given by a homomorphism A : L(N;) — C,ie. f|X = A(X)f for all
Xe E;"(Nl) and all ¢ J N;. Let N{|N. We define a A-packet of modular forms as the
following subspace of S;*(N,v):

HP(A N, ) = {f € STV, 9IfIX = MX)f, X € L7(M), ¢ [N},
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and let

H?(Aa llb) = UNE(mole)H?(AaNa l/)),

Sl?(“xb) = UNE(modN;)S}?(Na '9[))
From the fact that the action of Aut(C) commutes with the action of the Hecke algebra
follows that for each o € Aut(C)

fe HP(AY) < f7 € HF'(A%,97), (3.34)

where A7(X) = A(X)?. On the other hand if we use normality of Hecke operator
with respect to the Petersson scalar product and commutativity of the Hecke algebra
A(N,) we see (as in the classical case) that for a certain set of homomorphisms A =
Aj,--+, A, there is the decomposition of S(N, ) into the orthogonal direct sum of the
corresponding A -packets:

S(N,%) = @ ‘HI(Ai, N, ). (3.34a)

the folloing proposition was established by J.Sturm ([St2}, theorem 3). We state here
this result in a form more suitable for our applications.

3.12.Proposition. Let m be even then for any integer k with k > 2m + 2 a
Dirichlet character 1) mod N and a homomorphism A : L(N) — C there exists a non
zero constant pu(A,k,¥) € C* depending only on Ak, such that

[ (fp’g)N ]o' — (fap')ga)N
#(Askad)) .U(Aa,k’d)a)

for all f € H*(A,N,v¥),9 € MT(N,¥), o € Aut(C).
Remark. If we take in equality (3.35) g equal to f# then proposition 3.12 implies

(3.35)

that
(fsf)Nc_l € Q(A?f)a

with Q(A, f) being the subfield of C generated by the values of the homomorphism A
and the Fourier coefficients of f.

We give here a proof based on the Andrianov‘s identity (3.33) in which the right
hand side has the form:

D¥(s, fixn) =TH(s) = [] R(A, ¢, B)(x(9)¥(2)a™*) (3.36)
qlN

where

R(A,q,k)(t) € QIAX), X € LT(N)][
are polynomials with the property R(A, ¢, ¥)(0) = 1 depending only on the A-packet of
the form f and on the numbers ¢ and k. The product in(3.36) converges absolutely for

Re(s) >1+m. Put s=k —v —m where v = 0,1, k = v mod 2, take as xy the trivial
character modulo NV and define

p(A, k) = GR)™ITH (k- v —m) [ R(A,q,k)(g)g~*7*"™), (3.37)
¢ 2B
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with the I' factor being defined by (3.32),B = B(A, k,) being positive integer such
that the product in (3.37) does not vanish; such number exists due to the absolute
convergence of the product ( see the remark in 3.10), and we can and will assume that
B(A k%) = B(A?, k,¥7).

Now , with the number p(A,k,%) already been defined , we prove first the propo-
sition 3.12 for the special modular form ¢ = G(¥)™~? K+ (&0, ), in which the notation
K*(&o, %) = KT (z,k—v—m; &, xn) is adopted in order to stress the dependence of the
function K+(z,k — v —m;&,xn) on & and xn (recall that xx is the trivial character
modulo N. Then the folloing identity holds

[Gh)" T K (&, 9)]7 = G(7)" T KT (5, %7)- (3.38)

This important fact expresses in a more precise form the result of proposition 3.8 of
chapter 1 about the cyclotomicity of the Fourier coefficients of this Siegel modular form.
The identity (3.38) will be proved later in 3.14 |, and now we deduce from it proposition
3.12. According to the equalities (3.36) and (3.30) , the following relation is valid:

G(p)™ 1 (f?, K (&0, %)) N
p(A Ky i)

=a(éo) [[ R0k *™™), (339

ql3B
gAdet2{y

with the finite Euler product in the right hand side on which the automorphisms o €
Aut(C) act term-by-term. Therefore, it follows from (3.38) and (3.39) that for the
functions of the type ¢ = G(¥)" 'K+ (&, ) the relation (3.35) is valid.

In order to deal with the general case we vary £, € A, & so that the number
N = N(&) will now depend on & , and consider the trace operator

d
Te(Ng, N1, ) = Y 9(a(i))Flig(2)- (3.40)
i=1

where elements ¢(i) = (Z((:g 32:))) form a complete system of representatives of the right

cosets:
d
Lo (Ny) = | T8 (N2)g(9).-
=1

The important property of this action is that it commutes with the trace operator. This
fact 1s stated more precisely in the following proposition.

3.13. Proposition. Let F' € M(N2,v) be a Siegel modular form with cyclo-
tomic Fourier coefficients,

Fz)=Y A(f)em((€2), A(6) € Q™.

£20
Then for all 0 € Aut(C) the following equality holds

[£|Te(N2, Ny b)) = [f7[Te(Nz, N1, %7)].
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The proof is given in [St2], lemma 11 , and it is based on properties of the action
of the restricted adele group G o4 on the gradued ring of automorphic forms studied by
Shimura [Shi5] , where G 44 denote the subgroup of the adelization

Ga = {a € GLym|'adma = v(a)Jp, v(a) € GLi(A)}

consisting of all elements @ € G'a for which Archimedean component of the idele v(«)
is positive. For z € Ga4 and a modular form F € M} = [J,, M7(T'™(M)) the action
of z on F'is denoted by F*. If t € H Zj an idele whose action on Q®*® by the class
field theory coincides with that of ¢ € Aut(C) then we have that

F° = F*() with z(t) = ((1)'" t01m ) €Gay

for the action on modular forms mentioned above. Now the proposition is easily deduced
from this equality. In view of the strong approximation theorem for the group Sp,, (A)
we can choose for each representative g(z) in (3.40) elements u(i) € Sp,,(A), k(i) €
Spm(Z) such that u(i)q = lg;m(modN,) for all primes ¢, g|N, and

((l)mtoll )g()(0 o >~u(z)h()

Let us take into account F7 = F=("") then we get the equality
[(F|Te(N2, Ny, %17 = D #(a(3)) F7lg(3))"

and it follows from the choice of h(%) that
T§'(N1) = UL, T3 (N2) (),
with h(i) = (“ ('; Z,E‘g) and a(z)' = a(7) mod N,, so that the proposition follows.

Now we are able to finish the proof of the proposition 3.12. We let the element &,
in the equality (3.39) vary, and put N, = B2Ndet?2¢y, Ny = N.then

(f, K+ (&0, )Ny = (£, KT (€0, )| Te( N2, N1, B)) v,

and it follows from the proposition 3.13 that the equality (3.35) is now valid for all
modular forms ¢g from the set

= {G(¢)m-1K+(§0,¢)m(N2,N1,E)‘Am 3 & >0, N; = B2det?26,, Ny = N}.

Let
VY, = {gl € H,’:‘(A,N,J)‘g — ¢1 8 orthogonal to some g € V}.

"In other words , the set V; consists of those elements in H*(A, N, %) which are or-
thogonal projections of the special elements g € V considered above. We claim that V;
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generates the whole A-packet H*(A, N, ). Indeed, if

fi = Y au(E)em(€2) € HE(A, N, F)

£>0

is such that {f1,g1}n = 0 for all g; € V; then (3.39) implies that a({,) = 0 for all
fo € Am,§ > 0 hence f; = 0. It follows also that proposition 3.12 is valid for all
g1 € H*(A,N,¥). For an arbitrary Siegel modular form g € MP(N,y) write g = g1 +h
with g; € H*(A,N,+) and (g1, h1)n = 0. Now we combine (3.34) and (3,34a) and get
that

9” =97 +h{, ¢f € HP(A",N,¥"), (¢7,h])n =0. (3.41)

To obtain the above equality we used the important fact about the invariance of the
subspace of Eisenstein series in M (N, %) under the action of ¢ € Aut(C). In turn, this
property follows from the general decomposition theorem [KI3], describing the subspace
of Eisenstein series (orthogonal complement to the subspace of cusp forms) in terms of
the Klingen-Eisenstein series, and from the invariance properties of such series under the
action of ¢ € Aut(C), established by M.Harris and other authors (see [Har2],{Kur-Miz],
[Mizl], [Miz2]). This last fact stated in a more precise form comprise the content of the
Garrett‘s conjecture, proven in [Har2]. However we do not use this fact any more and
therefore will not go into detail of this interesting research. Returning to the equality
(3.41) we get

({2, 9)nu(A k)7 = [(FP, g1) wp(A K, ) 717 =
(f7, 07 ) vn(A7, k7)™t = (£7°,97) nul(A7, Ry 9p7) 7Y,

To accomplish the proof of proposition 3.12 we need only to check the property (3.38)
which is will be now stated in a more general form.
3.14. Proposition . Let x mod N be an arbitrary Dirichlet character, and

K+(€01¢5X) = K+(Z,k —V—-m, goad):X) € M?(N,J)

denote a modular form in the integral representation (3.30).Then for all o € Aut(C)
there is the following relation

{G(¢X)m—11{+(§01 190’ X)]a = G(¢axa)m_lf(+(fo, 7!"6’ Xa) (342)
Proof. If we look at the definition of the theta series we immediately see that

03 (2,x)7 = 85 (2,X%).

Therefore it suffices to check the following property:
(Gpx)™ " dety/* G (2,0; xxeo ¥, b — (m/2) — v, M) W(N))7 =
G($°x")" " (det&y1/2)° G (2,0, (xxeo¥)”, b = (m/2) = v, M) W(N),
because of the equality

(3.43)

detgF =Mt/ _ gepgk~(m/D1 0 e 7.
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According to formulas in §3 (3.53) of chapter 1 , the Fourier coefficient of the series
Gt (z,0;xxe, ¥,k — (m/2) — v, N) by e (hz) with h € A,,, h > 0 has the form

(det h)k—""m—(lﬂ)L"'(k —v—m, XXaXee V)M (h, XX, 5), (3.44)

where

M(h1XXE0¢aS) = H Mq(h: XX{O"(L'(Q),Q—’)
gEP(k)

is the finite Euler product (3.44) of the previous chapter, the product is extended to all
prime numbers ¢ in the set P(h) of prime divisors of N and the elementatry divisors of
the matrix h , with the property My(h,t) € Z[t]. Therefore

M(h, xxeo¥s k —v = (m/2))7 = M(h, (x¥)" X¢o: k —v = (m/2)).

Now let us consider the factor Lt (k — v — m, xx1X¢,¥) and recall an elementary result
about the special values of the Dirichlet L-functions [Lel], [Shi3], [Wa], {La3]. Let
x mod N be a Dirichlet character of conductor Ny, and xo mod Ny be the corresponding
primitive character,

N
G(0) = G(xo) = 3 xo(@)e(/ o)
z=1
be its Gauss sum. Put for a positive integer r
P(r,x) = G(x)~"(2m) " L(r, x)-
Then for all ¢ € Aut(C) and x(—1) = (—1)" we have that
P(r,x)” = P(r,x")(3.45)
If we apply this property to normalized Dirichlet series we see that
[GOOT' LY (r,x))” =G(x") ' LT (r,x°) r€2Z,r>0 (3.46)
L7 (r,x)’=L"(r,x°) r€Z,r <0 (3.47)

so that for the values of the "wrong parity” the corresponding values vanish.It follows
from the basic property of Gauss sums that

G(x)° = x°(v)1G(x°) for v € (Z/NZ)*, such that e(1/N)° = e(v/N). (3.47)
The last property implies the useful relation:
C¥x)° _ G) G
G(¥ox?)  GH)G(x7)
Let us now apply the properties (3.46) and (3.48) to the coeflicients (3.44), then we get
(G(x) ™ (det&oh) P L* (k — v — m, xxnXeo %] =
G($7x") ™ ((detéoh)' )7 L* (k — v — m, (x)" Xgo Xn)-

(3.48)

(3.49)
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In the equality (3.49) we used the following elementary property of Gauss sums:
G(xeoxn) (det(zioh))'/? € Q

which is due to the fact that x¢,xx) is an even quadratic character (see [B-Saf]). To
complete the proof of (3.43) and (3.44) we need the following general compatibility
property of the action of Aut(C) and of the involution W(N) (see [St2],Jlemma 5, and
[Shi8]): for a modular form f € MP(N, ) with cyclotomic Fourier coefficients and for
all o € Aut(C) we have that

fEIW(N) = (™) (FIW(N))", (3.50)

where v € (Z/NZ)* is chosen so that ¢(1/N)? = e(v/N). Now the proof of proposition
3.12 is finished.

3.15. Now in order to deduce the theorem 3.2 about algebraicity of the normalized
standard zeta function and the algebraicity property of the normalized distributions we
use the already proved algebraicity properties of Fourier coefficients of the functions
K*(z,8;&,x)|W(N) in the corresponding integral representation (3.28) and of the
functions F*(z,x) in (3.13) and (3.14). We apply these properties in the form given
below: let k > 2m+42, f € H*(A, N,9) C S;*(N,9) be a cusp form ,an eigenfunction of
the Hecke algebra £™(N) with an eigenvalue given as the homomorphism A : L™(N) —
C. Let us consider a linear functional

£, 9W(N)n
Liigm (2 3.51
! (i (351
on the vector space M (N, ) with
g=> b(h)em(hz) € MT(N,)
h>0
being its arbitrary element. Then there exist positive matrices hy, hq, -+, h; € A, and

algebraic numbers ay,az, -, a; € Q(f, A,9) from the field Q(f, A, 1) generated by the
Fopurier coefficients of f and values of the homomorphism A and the character i such
that for all g € MP*(N, %) the linear functional is explicitly given by

Li(g) = Z a;b(hy). (3.52)

Indeed, we notice that every Siegel modular form of weight k¥ > 2m is uniquely de-
termined by its Fourier coefficients with positive matrix indices h € A,,. This fact
is equivalent to saying that for such a weight & there are no singular modular forms
(i.e. having only Fourier coefficients with degenerate h € Ay, det h = 0), which was
established by G.L.Resnikov ([Res|, [Rag3]). Then proposition 3.12 implies that the
number

({2, 9W (V)N (A k)™ € Qf,9,A,%)
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belongs to the field Q(f,g,A,) generated by the Fourier coefficients of the forms f
and ¢ , by the values of A and 1. Moreover we have that

(f) f)N #(Aaks 'J")—] € Q(f:Aa"»b)x

(see the remark after proposition 3.12), and (3.52) follows. In order to prove theorem
3.2 we use proposition 3.12 and take in it the modular forms

K*(z,5;60,X)|W(N) € MP(N;9),

as g, which have cyclotomic Fourier coefficients vanishing for degenerate matrix indices
h € A, such that the action of ¢ € Aut(C) on them is described as in 3.14. Hence we
obtain also the following more explicit description of the action of & € Aut(C) on the
special values in question. Put

DH(s, fox) = G¥x)" T DH(s, £, x)m(A K, $) 7,
D (s, f,x) = G(¥x)™D~(s, f, x)u(A, k, )"
Then under the assumption of the theorem 3.5 for every o € Aut(C) we have that
D*(s, f,x)° = D*(s, £7,x%), (3.53)

proving ,in particular, theorem 3.2. In order to deduce algebraicity properties 3.4 for the
normalized distributions we take in 3.12 f be equal to fo[V(C) € SI*(NoC, %), and g be
equal to F*(z, x) from (3.13), (3.14). In this situation the constant u(A, k, ) depending
only on the A-packet of f is the same as that for the original cusp f considered above.

§4. Integrality properties and congruences for the distributions

4.1. The proof of theorem 1.6 is based on a regularization od the Q-valued distri-
butions

Dim(s) (1<s<k—vm)and Dy py(s) 1—k+v+m<s<0)

from §3.
Let ¢ be a positive integer with (¢, Ng) = 1,¢> 1 and Ny = 4ngg‘_IC. Then we
see as in §2 that there exist distributions D5, Dt on Z3 uniquely defined by

D3, (0) = (1 = (X)X =)D 1, (), (4.1)
Dihy(x) =C3 G(Fx)™ (1 — (X)) pe ()
x TT {( - @x)@)e* )1 - ®)a)a™) ™}, (42)

g|No

where 'D:M(x) and D ,/(x) are defined by (3.8) and (3.9). under the assumption of §1
we have (C,C, ) = 1 where C, is the conductor of x and it follows from basic elementary
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relations for Gauss sums that

cs. C3Cy _
G@x) GRXCGHIW(Cx) (4.3)
CH) X(Co) e G I(CN

G(X)
In order to define S-adic measures in the main theorem we put s = 0 and apply
the embedding 7, : Q — C,, then we get

D = iy(DGF), D™ = ip(D57). (4.4)

4.2. Proposition. (a) For all integers s with the condition1 < s <k —v—m we
have that the distributions iP(D3+) are bounded and the following equality holds

J

in which both sides vanish for s # §(mod2).
(b) For all integers s with the condition 1 —k + v +m < s < 0 we have that the
distributions ¢,(D;~ ) are bounded and the following equality holds

x = dD = i, (D%, (X)), (4.5)

X
5

fz x 2% dD* = iy(DS34 (%)), (4.6)

5
in which both sides vanish for s = §(mod2) (Recall that

v,6§=0,1,(-1)" = x(-1),(=1)° = ¥x(-1)).

4.3. The proof of the proposition 4.2 is based on integral representations (3.13)
and (3.14) . Taking into account the reguarizing factors in (4.1) and (4.2) we deduce

that for the corresponding values of s € Z given in the proposition 4.2 the following
hold

(f, PeDa(x) = v(M)FEIV(C), Fizi(s, xm)[W(CNo)) o, (4.7);
here

Fet(s,xm) = Z Y d°(s, hy, hy)em(hz) (4.8)

Am3>0 Golh1]+hy=M'h

are modular forms from M}*(C Ny, 1)) with cyclotomic Fourier coefficients given by
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dH(s, hy, ha) = xa(dethy) deth?deth* ™2 P(hy, b, )M (b, Xxe, s s + (m/2))
x Cg G(x) ™ (1 = (x¥)* ¢ ) LR (s,weo ha) X

x [T {Q = @@ ™)1 - (k) (a)g™*) ™"} x

g|No
X (QO C)-m(23+m)/4detft()""k—l'i"”)/zdet(qo—l/250)(2u+m)/2;

(4.9)
with wey a, = XX¢,%Er, be a Dirichlet character modulo Np;

d™(s,h1,he) = xp(dethy) dethy P(hy, h,1 = s)x
x (1= (x®)* ()L R(s, Xxeo ¥En,) M (R, Xxeo®, s + (m/2))x

v (qoC)—m(23+m)/4det£(()8+k—l+")/Qdet(qo—l/250)(2b'+m)/2;

(4.10)
where P(v,u,8) € Q[vij,uij;t < j] denotes the polynomial explicitly given by the
formula (4.32) of chapter 1 which is definedforall s € Z,1 < s < k—m—v, s = §( mod 2)
with coefficients independent of f, M, x, M’ and with the property

P(v,u,s) = deto* 7" =™=9/2(mod (u;)), (4.11)

and where

M(h,xxeo$,9) = ] Mo(h,xxeot(9),a7°)
q€EP(kK)

is the finite Euler product (3.44) of the previous chapter, with the product being ex-
tended to all prime numbers ¢ in the set P(h) of prime divisors of N and the elementatry
divisors of the matrix A, such that for all these ¢ M,(h,t) € Z[t]. The summation in the
inner sum of (4.8) is taken over all pairs (hy, h2) of integral matrices with the conditions

hy € ME(Z), hy >0, hy € Ay, Céylha) +hy = M'h

( i.e. hy is a integral matrix with positive determinant, not necessarily symmetric,
hy € A is a positive definite half integral matrix , and Cy[k;] denotes the matrix
given by Cthigof ™ hy = Cqoly ' [ha].

Now we notice that according to (4.9) and (4.10) the coefficients

d=(s,h1,hy) = d (xa; 8, ha, he)

does not depend on modulus M for the character xar (that is, they satisfy the compat-
ibility crierium for distributions) and define for fixed h;, ko a distribution on Gs = Zg
with values in Q®P; these distributions will also be denoted by d~(s,k;, he). As we
soon will see these distributions turn out to be bounded measures , and the measures
of proposition 4.2 will be expressed in terms of them.
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4.4. Let us consider the C -linear functional

W)
Crg (F, H)n

on the vector space M (N, ) defined by (3.51) whose explicit description is given in

3.15 with
g= Z b(h)em(hz) € MP(N,9¥)

h>0

(4.14)

being arbitrary element of the vector space on which the functional is defined: there exist
positive matrices hy, he,---, hy € A,, and algebraic numbers ay, g, -+, ¢ € Q(f, A, )
from the field Q(f, A,¥) generated by the Fourier coefficients of f and values of the
homomorphism A and the character ¥ such that for all ¢ € MP(N,¢) the linear
functional is explicitly given by

L5(9) =) _ asb(hs). (4.15)

According to proposition 4.5 of chapter 1 the values of the distributions Dt can be
represented in terms of the functional £ as follows

Dy = y(M')L(F37 (8, xm))- (4.16)
Combining (4.15) and (4.16) we see that

DF =) i v (MY, s, xm), (4.17)

with
v EMED s, xm) = Z d°%(s, by, hy) (4.17a)
Céolhi]+ha=M'h

being Fourier coefficients of the functions F§i(s, xar). Therefore the statements (a) and
(b) of proposition 4.2 under the assumptions of the main theorem are equivalent to the
corresponding statements about the distributions d°*(s, hy, hy) . Indeed, the value of
lip(y(M")]p remain unchanged with the varying M’ by the definition of 4(M") in (3.10),

7(M1) — 2m(2k—2—m—rc)z-—m(k—(m/Z)-u)a(Eo)—lQO(M‘;?:"] Ml—l)(CM(;ﬁ—l)(k—] —m) /2

if we remember the condition |i,(Mo)|, = 1 of the form f to be p-ordinary which
implies that the denominators in the linear combination (4.17) are uniformly bounded
with varying xp and M’'. Below in 4.6 is given a more precise argument based on
the generalized Kummer congruences. However we show first that the distributions
d°%(s, hi, hy) essentially reduce to the S-adic Mazur measure for the Kubota-Leopoldt
zeta function (see [Ku-Le], [Le2], [Maz-SD], [Man4], [Man6], [Wa] ) whose properties
are recalled in the following 4.5.

4.5. Let w mod A be a fixed primitive Dirichlet character such that (4,Mp) =1
with My =[] esq- Put S=S5US4), M= [T,e59- Then for any positive integer
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¢ with (¢, M) = 1, ¢ > 1 there exist C,-measures u*(c,w), " (c,w) on Z}% which are
uniquely defined by the following conditions:

it 2 dut(c,w)] = (1 = Yw(c)e™* Cuz
P o et o] = (0 R0 ) g o
x I {=x@(@)e /(1 - xw(g)a™*) L1z, (s}xw) '
g€S\S(x)
for s € Z,s3 >0, and
il X5 (6] = (1 =X (5.7 (4.19)
for s € Z,s <0 where
1%T(s8) cos((s —
A B (4.20)
LLo(s,fw) = Lz(s,xw) (4.21)

are the normalized Dirichlet L-functions with § = 0,1, (1)’ = Yw(—1) . The functions
(4.18) and (4.19) satisfy the following functional equation

Ly (1l — 8, x@0) = H {(1 = xw(g)*™")/(1 - Yw(q)q_s)}L'}t,o(s,fw). (4.22)
g€S\5(x)

The properties (4.18) - (4.22) easily follow when we remember the definition of the
S-adic Magur measure u° on Zg for which (4.18) and (4.19) are given by the equalities

/:cdp“(c,w):f z wdps,
z Z%

s

L" dut(c,w) = /zi a::c;Iw_l du®,
5

s

where we understand that € Xg C X=.

4.6. To accomplish the proof of proposition 4.2 we use the abstract Kummer
congruences ( [Ka3],p.258) which give a criterion of boundness of p-adic valued distri-
butions as follows. Let {f;} be a family of continuous functions f; € C(Y,0,) in the
ring C(Y,O,) of all continuous functions over the compact totally disconnected group
Y = Z3 with values in the ring of integers O, of C, such that the C,-linear span of
{fi} is dense in C(Y, C,). Let also {a;} be a family of elements a; € O,. Then existence
of a O, -valued measure x on Y with the property

f fidp=a;
Y
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is equivalent to the validity of the following congruences: for an arbitrary choice of
elements b; € C, almost all of which vanish

Zb,-f,-(y) € p"0, for all y € Y implies Z bia; € p"O,.

In our situation we take the family of functions of the type xz, with s as in
proposition 4.2 with x € X denoting Dirichlet characters to be the family {f;} with
the dense C,-linear span. For any finite number of Dirichlet characters x € X% we
choose an integer M and a sufficiently large integer M’ such that each of these characters
is defined modulo M and the formula of the proposition 3.6 is valid for the values of
distributions DC:" Then we apply the functional £ and use the equality (4.17). As it
was mentioned above the coefficients of the linear combination in (4.17) are p-adically
bounded for varying M and x hence the proof of the abstract Kummer congruences
for the numbers Dﬁﬂ]:w is reduced to checking the correspondent congruences for the
numbers vCi(M'h,s,x) (see (4.17a)). In turn, in order to do this we fix k; and use the
formulas (4.9) and (4.10). It is seen from the relation C&y[h1] + hz = M'h in (4.8) that
the following congruence holds:

dethy = (—C)™detéy deth? (modM') (4.23)

with detfo = ¢f"detéy ", If we then use the property (4.11) of the polynomial P(v,u,s)
and (4.23) then we get for the factor P(hy,hk,s) in (4.9) and (4.10) the following con-
gruence:

P(hg, h,s) = [(—Cqo)™deté&o ™" deth]k=¥=m=)/2(mod M") (4.24)

where 1 < s <k —v—m, s=6(mod2).

It can happen that the congruence (4.24) is valid only modulo a slightly smaller
positive integer than M’ (i.e. obtained from M' by dividing it by a divisor independent
on the choice of M'). However, with the growing M’ we may ignore this divisor when
we multiply the numbers (4.9) and (4.10) by a suitable positive integer independent of
M'.

Recall that in formulas (4.9) and (4.10) we used the notation we, 5, = w for the
primitive Dirichlet character associated with xe x4, ,and if dethgdet(éo) = a?t with
a square free integer t then we have that w = x,¥ where x, is the primitive Dirichlet
cxharacter associated with the quadratic field Q(+/f). The congruence (4.23) imply in
particular that £ = 1(mod4) hence the conductor of x, is equal to t. Indeed if ¢|M'
(e.g. ¢ = 2) then according to (4.23) we get

(dethgdetfo) _ (dethfdetég(—C)m)

q q

in view of the parity of m and it follows that w(gq) = ¥(q) for ¢|M, (g € S) and w? = 2,
and also that (t, M) = 1.
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Now we compare the formulas (4.9) and (4.10) with the corresponding formulas
(4.18) and (4.19) for the Dirichlet L-series, and take into account that

Cux = tCyx, w = x1¥, x(Cyx) =1,
GwX) = G(x¥X) = xe(Cyx¥T(t)G(x)G(¥T) = ¥X(t)V/(1)G(¥X),

(1= (x¥)(e)™) = (1~ (wxe™")(1 + (wXe™") , (4.26)

Next let us apply the embedding 7, to (4.9) and (4.10) keeping in mind (4.25) and
(4.26), then (4.9) and (4.9) take the following form

i, [dF (s, ha, h2)] =

1'b(t)\/%(l + (wfc_’)j;x X Tpdp” (c,w)X

(4.25)

x(t)te
(4.27)
{ XM(dethl)dethi’dethg%..l)ﬂp(hg, h,s)M(h,Xxe, ¥, 8 + (m/2))x
X (qOC)_m(28+m)/4det§ga+k—1+V)/2det(qo—]/260)(2v+m)/2;

forl1<s<k—v-—m,
ipld™ (s, b1, ho)] =
1+ (w}{c—’)/ X 28 d (e, w) %
z5

x xm(dethy)dethy P(ha, h,1 — s)M(h,Xxeo %, + (m/2))x (4.28)

X (qoC) ™™ @/ deteHHTIEI 2 det gy 12 )2/,

forl—k+v4+m<s<0.

Notice that the finite Euler product M(h,Xxe, ¥, 3+ (m/2)) is a finite linear combi-
nation of terms of the type X(b)b® ((b, M') = 1) whose coeflicients are algebraic integers
independent of x. Bearing in mind also the congruences (4.23) we get from (4.27) and
(4.28) that for the corresponding values of s the expression for v*¥(M'h, s, x) mod M’
takes the form

ZAix(ys)yf /zx x 28 dp (e, w) =
l S (4.29)
S [ Gee)) ditew)o) (o € 23),

with uniformly p-adically bounded algebraic coefficients 4; € i,(Q*"). It remains to
notice that the abstract Kummer congruences are tautologically valid for the expressions
of the type (4.29) which obviously satisfy the identities of the form (4.5) and (4.6). Hence
the corresponding statements valid also for the distributions D$* proving proposition
4.2.
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Finally, we get the proof of the main theorem as a combination of all the results
obtained above: proposition 4.2, the relation of the values of the normalized distribu-
tions with the values of the normalized standard zeta-functions (proposition 2.3), the

definitions of the normalizing factors (3.2), (3.3), (3.8), (3.9) and of the regularizing
factors (4.1), (4.2).
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