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Introduction

The starting point in the theory of zeta functions is the expansion of the Rieman zeta­
function ((s) ioto the Euler product :

00

((s) = rr(1 - p - 8) -1" =~ n - 3 (Re(s) > 1)
p n=I

The set of arguments s for which ((s) is defined can be extended to all sEC, s =I=- 1
and considered as the group of continuous quasicharacters

C = Hom(R~, C><), y f-+ yS.

The special values ((1 - k) at negative integers are rational numbers:

Bk
((1 - k) = -T '

where Bk - Bernoulli numbers, defined by the formal equality

eßt = ~ Bnt
n

=~
L..J n! et - 1
n=O

and we know (by Sylvester-Lipschitz theorem) that

I.: k Bk
c E Z ===> c (c - 1)]; E Z

The theory of non-Archimedean zeta-functions originates in the work of Kubota
and Leopoldt [!{u-Le] containing p-adic interpolation of these special values. Their con­
struction turns out to be equivalent to classical !{ununer congruences for the Bernoulli
numbers, which we recall here in the following form. Let p be a fixed prime number,
c > 1 an integer prime to p. Put

and let h(x) = 2:7=0 Gi xi E Zp[x] be a polynomial over the ring Zp of p-adic integers
such that

Then we have that
n

~ ai (f;~(-k) E prnZp •

i=O

This property expresses the fact that the numbers (f;~(-k) depend continuously on k
in the p-adic sense; it ean be deduced from the known formula for the surn of k -th
powers:

N-I

Sk(N) = ~ n k
-

n=I
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in which Bk(X) = (x+B)k = L:~=o (~)BiXk-i denotes the Bernoulli polynomial. Indeed,
all summands in Sk(N) depend p-adic analytically on k, if we restriet ourselves to
numbers n, prime to p ,so that the desired congruence follows if we express the nwnbers

(~~(-k) in terms of Bemoulli nwnbers-.
The set, on which p-adic zeta functions are defined, is the p-adic analytic Lie group

X p = Hom(Z; , C;)

--
where C p = Qp is Tate field (completion of an algebraic closure of the p-adic field Qp), so
that all integers k can be considered as the characters x; : y.-.. yk. The construction of
Kubota and Leopoldt is equivalent to existence ap-adic analytic function Cp : X p ~ C p

with a single pole at the point x = X;l, which becomes a bounclecl holomorphic function
on Xp after multiplication by the elementary factor (x p x - 1) (x E Xp) , and is uniquely
deflned by the conclition

(k ;::: 1).

This result has a very natural interpretation in framework of the theory of non­
Archimedean integration (due to Mazur): there exists a p-adic measure /-l(e) on Z;
with values in Zp such that Jz: X;/-l(e) = (~~(-k). Indeed, if we integr~te hex)
over Z; we exacHy get the above congruence. On the other hand, in order to define

such a measure /-l(e) it is suffieient for any continuous function <p : Z; --t Zp to define
its integral fz x rjJ (x) /-l (e). For trus purpose we approximate <p( x) by a polynomial (for

p

which the integral is already defined by the above condition), and then pass to the limit.
The important feature of the construction is that it equally works for primitive

DiricWet characters X modulo apower of p : if we fix an embedding ip : Q ~ C p

then the character X : (Z/ZpN)X ~ (Q)X becomes an element of the torsion subgroup
x;ors C X p and the above equality also holels for the special values L( -k, X) of the
Dirichlet L-series

00

L(s, X) = L x(n) n-" = II(1 - X(p)p-5)-1,
n=l p

so that we have

The original construction of I(ubota and Leopoldt [I(u-Le] was successesfully used
by Iwasawa [lw] for the description of dass groups of cyclotomic fields. Since then the
dass of functions admitting p-adic analogues has gradually extended.

Zeta-functions (of complex variable) can be attached as certain Euler products to
various objects such as diophantine equations, representations of Galois groups, modu­
lar forms etc., and they playa crucial role in modern number theory. Deep interrelations
between these objects discovered in last decades are based on identities for the corre­
sponding zeta functions which presumably all fit into a general concept of Langlands
L-functions associated with automorphic representations of a reductive group G over
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a number field K. From this point of view the study of arithmetic properties of these
zeta functions is becoming especially important.

The theory of modular symbols (due to Mazur and Manin, see [Man1J-[Man6],
[Maz-SD]) provided a non-Archimedean construction of functions, which correspond to
the case of the group G = GL2 over K = Q. Several authors (including Deligne, Ri­
bet, N.M.I<atz, Kurcanov and others, see [De-Ri], [I<a1]-[Ka3], [Kure1] -[Kure3], [8ho],
[V1], [V2]) investigated this problem for the case G = GL1 and GL2 over totally real
fields and fields of CM-type (i.e. totally imaginary quadratic extentions of totally real
fields). But the case of more general reductive groups remained unclear until the mid­
eighties although important complex analytic properties of the Langlands L-functions
had been proved. In recent years a general approach to consruction of non-Archimedean
L-fW1ctions associated with various classes of automorphic forms was developed, in par­
ticular, for the case of symplectic groups of even degree over K = Q and the group
G = GL2 X GL2 over a totally real field !(.

The main tool of the appearing theory is the systematic use of the Rankin-8elberg
method for obtaining both complex-valued and p-adic distributions as certain inte­
grals involving cusp forms and Eisenstein series. By this method we constructed non­
Archimedean analogues of the standard zeta fW1ctions attached to Siegel cusp fonns of
even degree and of sufficiently large weight.

For a Siegel modular form fez) of degree m and weight k, which is an eigenfunction
of the Hecke algebra, and for each prime number p one can define 8atake p-parameters
of f denoted by ai(p) with i = 0, 1, ... ,m . Then the standard zeta function of / is the
following product

V(s, /, X) =

= I] {(1- X;~)) jj (1 _X(P~~i(P)) (1 _x(p)a~~(p)-1) } -1 ,

where X is a DiricWet character. According to A.N.Andrianov and V.L.Kalinin [An-K],
this function can be represented as an integral convolution of f and a theta series with
an Eisenstein series as a kerne!. The construction of its p-adic analytic continuation is
based on explicit formulas for the special values of the standard zeta function and is
equivalent to some generalized I(tunmer congruences for these values. For to give the
precise formulation of our results we first introduce the normalized zeta fW1ctions

m

V-(s, /, x) = (27l')-m(,,+k-(m+l)/2) rr res + k - j)V(s, /, X),
j=l

v+ ( / ) = 2i
6
f( s)cos(7l'(S - 6)/2) v- ( / )

5, ,X (27l') " 5, ,x,

V*(s, /, X) = 7l'-( ..+6)/2r((s + 6)/2)V-(s, /, X),

where 8 = 0 or 1 according as X( -1) = (_1)6, and let

fez) =L a(~)em(~z) E Sr
e>o
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be the Fourier expansion of the Siegel cusp form I(z) of weight k, the SUffi is being
taken over all positive definite half integral1n x m-matrices , z E fl m ,

jjm = {z E GLm(C) It z = z, Im(z) is positive definite}

Siegel upper half plane of degree m and em ( z) = exp (tr(21riz)). Assume that k > 2m+2
and m is even.

Theorem A(A1gebraic properties of the special values of standard zeta functions)
a) For a11 integer s witb 1 :::; s :::; k - 8 - rn an X2 non-trivial for s = 1 we have tbat

(I, 1)-1 V+(s,l,x) E K = Q(/,AJ,X),

wbere K = Q(/, AJ, X) denote the neId generated by Fourier coeflicients of / ,by the
eigenvalues AJ(X) of Hecke operators X on /, and by the values of the character x.

b) For a11 integers s with 1 - k +8 +m :::; s :::; 0 we bave that

Assume also that a(eo) = 1 for sorne €o > 0 with det2eo = 1 jour essential as­
sumption is that the form / is p-ordinalJ' in a senee that I ip(0:'0 (p) Ip= 1 for a fixed
embedding i p : Q ~ C p .

Theorem B (non- Archimedean interpolation of the standard zeta fune tions) Under
the assumptions as above for each integer c > 1 prime to p there exist bOllilded Cp ­

analytic ftulctions
VC+(x,!), VC-(x,J): X p ~ C p ,

wbich are tulique1y defined by the following conditions:
a) for a11 non-trivial Dirich1et eharacters X E x;ors and for all integers s with

1 :::; s :::; k - 8 - m the following equality holds

V c+(xx;, I) =
G ( ) C m (s+k-1-m) ca V+( 1-)

. [ m X X X (1 _ -2( ) -2") s" X ]
tp

0:'0 (CX)2 G(X) X C C (I, I) ,

b) for al1 non-trivial Dirich1et characters X E x;ors and for 811 integers s witb
1 - k + 8 + m :::; s :::; 0 holds the equality

VC-(xx;,/) =
G ( ) C m(s+k-1-m) (

. [ m X x (1 _ 2() 2s-2) V- 8, I, X)]
tp 0:'0 (C

X
)2 X C C (I, I) ,

wbere
Gm(X) = L x(deth)em(h/Cx )

hEMm(Z) modCx

denotes the Gauss swn oE degree m of the primitive Diricb1et character X modCx' Cx =
pNx , O:'o(Cx ) = 0:'0 (p)Nx , G(X) = G1(X).

The standard zeta function D($, /, X) provides an example for the general definition
of Langlands L-functions. Fo~ a reductive group G over a number field ]( this definition
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is based on the notion of the Langlands L-group LG ;this group is a eomplex analytie
reductive group such that the lattiee of charaeters of its maximal torus and the lattiee
of its one-parameter subgroups are obtained from the similar objeets of the group G by
. .
InverSIon.

The important fact in the representation theory of reduetive groups over loeal
fielda is that for a place v of !( semisimple eojugaey classes h v of LG correspond to
eertain infinite dimensional representations 7rv of the group G(!(v) over the loeal field
K v (the completion of !( at v). It is known that for groups of the type An and D n this
construction preserves their types, and interchanges the types B n and C n, so that if
G = GL n then LG = GLn(C), and if G = GSPm then LG = Spin2m+1 (C) ,the universal
eovering of the orthogonal group S02m+I(C). For example, if G = GL2 and v a noo-

Archimedean place then L G = GL2(C) and for h. :3 (~l ~2) the corresponding

representation 7rv is the representation Ind~(JLI ® J.L2) induced from the maximal torus
T = GL I x GL}, JLI, JL2 : K: -t C X being unramified quasicharaeters of !(: with
JLi(Pv) = ai, i = 1,2.

Let 7r be an automorphie representation of the group G, which is an irreducible
subrepresentation of the smooth regular representation of the adelized group G(AK ).

Then there is the decomposition of 7r into the infinite tensor produet: 7r = ®v 7rv where
7rv is a representation of G(Kv ) which eorrespond to eertain classes hv from LG for
almost all v (i.e for v f/. S where S is a finite set of plaees of K). For a finite dimensional
representation r :L G -+ GLt(C) of the L-group we define automorphic L-funetions

L(s,7r,r) = LS(S,7r,1') = TI det(lt - (Nv)-"r(hv))-I
ves

where Nv is the number of elements of the residue dass field of v (which is apower of
some prime number),and the produet ia taken over all non-Archimedean places v, v rt S.

In the Siegel modular case we eonsider, associated with /, the automorphie repre­
sentation 7rJ whieh is generated by a function on GSPm (A) inflated from the eusp fonn
f on $jm (as a subrepresentation of the regular representsation of G(AQ) = GSPm(A)).
The irreducibility of 7rI is equivalent to the fact that f is an eigenfunction of the
Hecke algebra 'Hm = ®p 1-t;:' of the Siegel modular group r m of degree m. In trus
ease the corresponding eharaeter of Hp on / is completely detennined by its Satake
p-parameters , and for the universal covering r : Spin2m+l(C) -+ S02m+l(C) with
Spin2m+1 (C) C GL2ffl (C) we have that the classes hv and r( h v ) are represented by the
matriees

hv = Sp(hv ) 3 diag{ao(p)ai 1 (p) ... air(p) 10 ::; r ::; m, 1::; i l < i r ::; m}

r(hv) = St(hv) 3 diag{l, al (p), a2(p),"', Qm(P), al(p)-l, a2(p)-I, ,am(p)-l} ,

where Sp and St are called, respeetively, spinor and standard representations of the
Langlands group LG. Theerefore the standard zeta function D(s, /, X) eoinside with
the L-function L(s, 7rJ, St). The function
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TI

is the spinor zeta function of f. Its analytic properties were investigated by A. N.
Andrianov in the case m = 2 hut stil nothing is known about the algeqraic properties of
the functionj however, it follows from the general Deligne congecture on critical values
of L- functions that the properties analogous to those given in Theorem A could exist
only for 8 = k - 1.

Acknowledgement. I would like to express my deep gratitude to Professor F.
Hirzebruch and to the Max - Planck - Institut für Mathematik in Bonn for the hospitality
and for the support during my visit to the MPI in summer 1989. It is a pleasure for the
author to thank Professors H.I<lingen, S.Böcherer, J.Elstrodt, U.Everling, W.Kohnen,
P.Schneider, N.- P.Skoruppa and Don B. Zagier for very helpfull discussions and advice.
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Chapter I. Siegel modular forms and the holomorphic projection oper­
ator

This chapter contains mainly some preparatory facts wmch will be used for the
construction of non-Arcrumedean standard zeta-functions in the next chapter. We re­
call main properties of Siegel modular fonns and of the action of the Hecke algebra on
them, as well as the definitions of spinor zeta functions and standard zeta functions
(§I), see also [An2], [An7). Then in §2 we give basic facts about theta series with a
Dirichlet series [An-MI), [An-M2], [St2] and the definitions of Siegel-Eisenstein series
and of Rankin type convolutions of Siegel modular forms and their relation with the
standard zeta functions. In §3 we give an exposition of some recent results of Shimura
and P.Feit on real analytic Siegel-Eisenstein series and their analytic continuation in
tenns of confluent hypergeometric functions [Fe], [Shi7], [Shi9]. These results extend
previous results of V.L.I{alinin [I<] and Langlands [LII]. In the final §4 a detailed study
of holomorphic projection operator and its basic properties is given. The formula of the­
orem 4.2 provides an explicit formula for calculating the holomorphic projection onto
the space of holomorphic (not necessarily cusp) modular forms of functions helonging
to a wide class of (non holomorphic ) Siegel modular forms. Ealier the holomorphic
projection operator onto the space of cusp form was studied by J.Sturm [StIl, [St2],
B.Gross and D.Zagier [Gr-Z] under some restrictive assumptions on the growth of mod­
ular fonns. Theorem 4.6 gives an explicit description of the action of this operator
in terms of the (non holomorphic) Fourier expansions. Here we also establish a very
explicit fonnula (3.36) for the special (critical) values of the confluent hypergeometrie
funetion.

Notations

Let A be a cornmutative ring with identity, then Mr,,,(A) denote the set of all r X

8-matrices with coeffieients in A. For z E Mr(C) put er(z) = e(tr(z)) with e(u) =
exp(2rriu) for u E C. We denote by t z E Ma,r the matrix, which is transpose to
z E Mr.,,(A), and write ~[77] for t 77 (77. For adegenerate square matrix ~ we put ~. = t~-l.

H ~ is a hermitian matrix then we write ~ ;::: 0 or ~ > 0 according as ~ is non negative
or positive definite.

Let f)m denote the Siegel upper half plane on the degree m,

jjm = {z E Mm(C)ltz = z = x +iy, y > O},

so that Jjm is a complex analytic variety whose demention is denoted by (m) = m(m +
1)/2.

Let the symbol Am denote the lattice of all half integral symmetrie matrices in
the veetor space V = {y E Mm(R)]t y = y}, . This lattice is dual to the lattice L =
Mm(Z) n V with respect to the pairing given by (u,v) I--J. em(uv). For a function
f : jj m ---+ C of the form

f = L c(~)em(~z) (z E J)m)
eEA m

and for a positive integer A we use the notations
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J1V(A)(z) = J(Az) = L c(~)em(A~z),
~EAm

JIU(A)(z) = L c(A~)em(~Z),
~EAm

fP = L c(~)em(~z)
~EAm

as weil as the notations by A.N .Andrianov for the action of the Frobenius elements
rr+(q), rr-(q) given in 1.8. Moreover for A ~ 1 and an integer k we put

so that
(JIW(A))IW(A) = f

1
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§1. Siegel modular fornls and Hecke operators

1.1. Symplectic group and Siegel upper half plane. (see [An2], (An7J, [Shi4] ,
[Sie3], [Fr], [MaaJ). Let G = GSp be the algebraic subgroup of GL2m defined by

(1.1)

for any commutative ring A, where

The elements of GA are characterized by the conditions

(1.2)

and if

(ab) G th -1 ()-1 (t d _tb)Q' = c d E A en a = va_tc ta .

The multiplier v defines a homomorphism v : GA ~ A x so that v(a )2m = det(Q')2 and
Ker v is denoted by SPm(A). We also put

Goo = Ga, Goo+ = {a E Goo I v(n) > Ol, GQ+ = Goo+ n GQ. (1.3)

The group G acts transitivelyon the upper half plane ~m by the rule

so that scalar matrices act trivially, and jjm can be identified with a homogeneaus space
of the group SPm(R). Let !(m denote the stabilizer of the point i1 m E jjm in the group
SPm(R),

!(m = {a E SPm(R) Ia( i1 m) = ilm},

then there is a bijection SPm(R)/!(m ~ ~m and [(m = SPm(R) n S02m. The group G
is a maximal compact subgroup of the Lie group SPm(R) which can be identified with

the group U(m) of all unitary m x m-matrices via the map Cl' = (~ ~) I-> a + ib . We

adopt also notations

dx = TI dXij, dy = TI dYij, dz = dx dy,
i~j i~i

dX y = det(y)-(m+1)/2dy, d X z = det(v)-(m+1)dz,
(1.4)

where z = x + iy, x = (xii) = t X, Y = (Yii) = t y > O. Then d X z is a differential
on Jim invariant under the action of the group Goo+, and the measure dX y is invariant
under the action of elements a E GLm(R) on

y = {y E Mm(R) I t y = Y > O}

defined by the rule y r-+ t aya
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1.2. Siegel modular forms. Let us consider Siegel modular group r m = SPm(Z)
and let r c GQ + be an arbitrary congruence subgroup. This means that r is commea­
surable with r m in GQ + modulo its center (i.e as a group of transformations of ..t)m)
and r :) rm(N) for some N E N,where

is the main congruence subgroup of level N in r m. In order to give the general definition
of modular forms we consider a rational representation p : GLm(Q) --+ GLr(Q) which

will also be denoted by p. For a = (~ ~) E Goo+ and for any complex valued

function J : Jjm --+ er we use the notation

J Ip a(z) = p(cz + d)-l J(a(z)). (1.5)

Definition. A function J : .ijm --+ er is called holomorphic modular fonn of weight
p on r if the following conditions (1.6)-(1.8) are satisfied:

J Ip= J, (1.6)

J is holomorphic on .ij m, C1.7)

if m = 1, then J is holomorphic at cusps of r. (1.8)

Let M per) be the complex vector space of functions satisfying the above conditions.
For each J E Mp(r) there is the following Fourier expansion

fez) = L c(~)em(~z),
e

where cc~) E er, eron over all e= t~ E Mm(Q), e2:: 0 ( for m > 1 the last condition
automatically follows by the I<oecher principle). More precisely, let M be the smallest
integer such that

and we put
A = Am = {e = (eij) E Mm(R) I e = te, eij,2eii E Z,

B = Bm = {e E Ale 2:: O}, G = Gm = {~ E Ale> O}

Then Am is a lattice in the R-vector space of symmetrie matrices V = {E Mm(R) I
t x = x} dual to the lattice L = Mm(Z) n V with respect to the action (e,x) 1-+ emcex)
and for each J E M per) there is the following Fourier expansion

J(z) = L c(e)em(cz),
eEM-IB

(1.9)
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Moreoverfor each a E GQ+ we have that J Ip a E Mp(r(a)),where r(a) is a congruence
subgroup,

J(z) = 2: cu(~)em(~z),
eEM;lB

(1.10)

with cu(~) E C r , M u E N. A form J is called a cusp form if for all ~ with det(~) = 0 in
expansion (1.10) one has cu(~) = 0 for all CI E GQ + that is

f(z) = 2: cu(~)em(ez),
eEM;l c

We denote by Sp(r) c Mp(r) the subspace of cusp forms.
Defini tion oE tbe vector spaces M (N, 'lj; ). Let us consider congruence subgroups

ri(N) c rü(N) C rm(N) = SPm(Z),defined by

r;:'(N) = {-y = (: ~) E rm(N) I c =Om(modN)},

r~(N) =

{-y= (: ~) Erm(N)lc=Om(modN),det(a)-l(modN)},

and let r = 1, p(x) = Pk(X) = det(x)k(k E N). Then the vector space M(r~(N)) has
already been defined, and we put

M~(N,'lj;)= {f E Mp(r~(N)) I

f Ip, = Ij>(det(a))f for al1 , = (:~) E r;:'(N)},
(1.11)

where 'lj; is a Dirichlet series modulo N. Elements J E M~(N, 7/;) admit a Fourier
expansion of the form

J(z) = 2: c(e)em(~z),
eEBm

with z E J)m, c(e) E C, and the condition

c(uetu ) = 'lj;(detu)detukc(e) (e E Bm,u. E GLm(Z)).

Put

(1.12)

(1.12a)

S:n(N, 7/;) = M~(N, tP) n SPII (r~(N).

Tbe Petersson scalar product. For! E S~(N, 7/;) and h E M~(N, 7/;) the Petersson
scalar product is defined by

(J, h)N = r f(z)h(z)detykdXz,
J4'o(N)

where <Po(N) = J)m/rCf(N) is a fundamental domain for the group rü(N).

(1.13)
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The Siegel operator connects the vector spaces M ~ (N, "p) for different values of
m. H I E c, z E H m - 1 and A> 0 then we have that

(
zt 0)o iA E SJm,

and it follows from (1.12) that there exists the limit

(1.14)

where c(e) are the Fourier coefficients of f. Then

<pI E M~_l(N,,,p),

(we put M~(N, tf;) = 0). We then have that

S:n(N,,,p) ~ !(er<I> = {I E M~(N,tf;) I <I>I = O}

(for N = 1 both sets coincide , see(Maa]).
Estimates for Fourier coefIicients. If I E S~ (N, "p) then there is the following upper

estimate
1I(z) 1= O((dety)k/2) (z = x + iy E J)m),

which provide us also with the estimate

For modular ( not necessary cusp) farms

I(z) = L: c(e)em(€z) E M~(N, 'ljJ)
eeBm

there is the upper estimate of their grawth:

m

I c(e) 1= Cl II(1 + Aj),
. j=l

(1.15)

(1.15a)

(1.16)

with Al,' .. ,Am being eigenvalues of the matrix y, z = x + iy (see (St2],p.335). In this
situation one has also the following estimate

(1.16a)

in which C2 is a positive constant depending ooly on f,e = tu (~' g) 'U, 'U E SLm(Z),

e E Er, det e > 0, r ~ m.
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We refer the reader to [Fo1], [IG1], [Rag1] , [Rag4] for a more detailed discussion
of various estimates for Fourier coefficients and for growth of Siegel modular fonns and
for their applications to quadratic forms .

1.3. The Hecke algebra (see [An7], [Bö], [Sat]). Let q be a prime,q f N,

ß = Ll~ =

{a = (: ~) E GQ+ n GL2m (Z[q-l])11I(a)± E Z[q±],c _ Om(modN)}

be a subgroup in GQ+ eontaining r = ro(N). The Heeke algebra

over Q is then defined as a Q-linear spaee generated by the double eosets (g) =
(rgr) ,g E Ll of the group S with respeet to the subgroup r , for whieh multipli­
eation is defined by t he standard rule (see [An7], [Shi1] and in 1.7 below). We recall
the deseription of the strueture of .c = .c~(N), q .r N which looks as folIows: for each
j, 1 ~ j ~ miet us denote by Wj an automorphism of the algebra Q[xt1

, xt1
, ••• , X~l]

defined on its generators by the rule:

Then the automorphisms Wj and the permutation group Ern of the variables Xi (1 ~ i ~
m) generate together the Weyl group W = W m , and there is the Satake isomorphism:

(1.17)

where W m indieates the subalgebra of elements fixed by W m For any eommutative
Q-algebra A the group W rn act on the set (A x )m+l , therefore any homomorphism of
Q-algebras A : .c -+ A ean be identified with some element

(1.18)

An explicit description of the Satake isomorphism is gjven below in 1.7.
1.4. Any double eoset (g) = (rgr) (g E Ll = Ll~(N» can be represented is a

disjoint union of the left cosets:

()
t(g)r

9 = Ui=l gi,

therefore any element X E .c of the Hecke algebra .c takes the form of a finite linear
combination

t(X)

X = L Vi(rg i ),
i=l

with Vi E Q, gi E ß. In order to define Hecke operators we put for any 9 = (: ~) E ~

(flk,?,bg)(z) = (detg)k-(m+l)/2)?f(deta)det(cz + d)-k f(g(z» (1.19)
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( this convement notation by Petersson and Andrianov is especially useful when dealing
with Recke orerators in their normalized form, compare with (1.5)). Then the automor­
phy condition can be rewritten as follows

(flk,tP'Y)(Z) = f for all l' E r = r~(N).

In this case for any
t(X)

X = 2: Vi(r9 i) E (,
i=1

we have that the expression
teX)

fiX = 2: viflk,w 9i,
i=l

(1.20)

(1.21 )

is weil defined and fiX E M'k(N, 'lj;) so that the formula (1.21) gives a representation
of the Hecke algebra ,c = .cr;(N) on the complex vector space M'k(N, 'l/;) (q f N).

1.5. Hecke polynomials. Following A.N.Andrianov(An7], let us consider poly­
nomials

m

= (1 - xoz) II II (1 - XOXi 1 ••• Xi,.Z),

r=115it <··,<ir 5 m

m

R(z) = II(1 - xi1 z )(1 - Xi z) E Q [xt1, ... ,x;1
] .

i=1

(1.22)

(1.23)

It follows from the definition that the coefficients of the powers of the variable z all
belong to the subring

. Therefore by Satake isomorphism (1.17) we have that there exist uniquely defined
polynomials

2m 2m

Q(Z) = L (-1) iTi Zi, R(z) = 2:(-1) iRi zi E ,c [z]
i=O i=O

over the associative commutative ring ,C = 'c';(N) such that

2 m 2m

Q(z) = L(-1)ii\zi, R(z) = 2:(-l)iRizi
i=O i=O

(1.24)

with X = Bat X, X E 'c. As generators of the Hecke algebra one can talce the polyno­
mials ßA1±l, Ri(l ~ i ::; m - 1) and Tl for which

A' ±1 2 R S ( -1 -1)uM =XOX1"'Xm , i= i X1,"'Xm jX 1 ,"'xm ,

m m

Tl = Xo 2: Si(XI,' '. X m ) = Xo II(1 + Xi),

i=l i=l
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where Si denotes the elementary symmetrie polynomial of degree i and of the corre­
sponding sets of variables.

1.6. The spiDor zeta function and the standard zeta function. Let f E
M~(N,tf;) be an eigenfunetion of all Hecke operators f -+ flX,X E .c:;(N) with q
being prime numbers , q f N, so that fiX = Af(X)f. Then the numbers Af(X) E C
define a homomorphism Af : .c ~ C (see 1.3), which is uniquely detennined by a
(m + l)-tuple of the numbers

(1.25)

whieh are ealled the Satake q-parameters of the modular form f.
Now let the variables xo, Xl,' •. ,Xm in (1.22), (1.23) be equal to the eorresponding

Satake q-parameters (to,J( q), Q'1,J(q), ... (tm,/(q)

Qf,q(Z) =
m

= (1 - O'oz) TI TI (1 - O:Oait ... O'i rZ ),

r=ll:5;it< .. ·<i r :5;m

m

Rf,q(z) = TI(l- a;lz)(l- D:iZ) E Q[a~l, ... ,a~lJ.
i=l

(1.26)

(1.26a)

It follows then from 1.5 that the eoefficients of the polynomials (1.26) can be expressed
in terms of the eigenvalues AfeX) of the Hecke operators X = Ti, R i from (1.24). Next
we put

m

= {(1 - D:o(q)q-") TI TI (1 - O'o(q)O'i t (q) . .. air (q)q-")} -1,

r=ll:5;it <· ..<i r :5;m

(1.27)

and define the spinor zeta function Z (.9, f) of the modular form f E M ~ (N, tf;) by

Z(.9, f) = TI Z(q) (.9, f)
qlN

(1.27a).

Complex analytic properties of zeta functions Z(.9, f) were investigated by A. N.
Andrianov [An2] in the case m = 2. For m = 1 we have that

where J( z) = L:~=o a(n )e(nz) is the Fourier expansion of the normalized elliptic cusp
Hecke eigenform, so that the zeta function

co

Z(.9, J) = TI [1 - a(q)q-" + tf;(q)qk-1-2,,]-1 = L a(n)n-"
qlN n.-t

(n,N)_t
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coincide essentially with the Mellin transfonn

00

L(s, f) = L a(n)n- S

n=l

of f. Aremarkable fact is that one can get an the inverse roots of the Hecke polynomial
Qf,q(z) by the action of the Weyl group W m on ao(q), and

with

Qf,q(Z) =

1 - Aj(q)q-lJ + ... + q2
m

-
t
(mk-m(m+I)/2)z2

rn =
m

(1- ao(q)z) TI TI (1 - aO(q)ai t (q) ... air(q)z),
r=ll:5 i t<,,·<i r :5m

(1.28)

Af(q) = ).f(T(q)),T((q)) = L (rgf)
v(g)=q

being the Hecke opertor for the group r = r~(N), tgJmg = v(g)Jm. According to
the generalized Ramanujan-Petersson conjecture for a cusp eigenform f E S~ (N, 1jJ)
the absolute values of all inverse roots of the polynomial (1.28) should coincide (and
therefore be equal to q-(2mk-m(m+l)/4»). In the case m = 1 this conjecture is valid;
it was deduced by Deligne [DeI] from the Weil conjectures, also proven by rum [De2].
However, for larger values of m this conjecture in its original form is not true. Various
counterexamples to it are known, see [Kur],[H-PShl],[H-PSh2] which for the case m = 2
reflect the fact that some cusp fonns of degree 2 (namely those belonging to the Maass
subspace) are lifted from elliptic cusp fonus (i.e. of degree 1) via the Saito- I(urokawa
lifting [An8], [I(oj]. According to the modified Ramanujan·Petersson conjecture these
properties of the inverse roots and polynomials Qf,q should be valid for the "real" cusp
forms, i.e. those which can not be obtained from the fonus of smaller degree by a lifting
of the type mentioned above.

Tbe standard zeta function V(s, f, X) of f E M':n(N, 'ljJ) is the product V(s, f, X) =
IIq,(N V(q)(s, f, X) with

V(q)(s,f,x) = (1- X(q)7j;(q)q-S)-lR f ,q(X(q)'ljJ(q)q-lJ)-l,

that is

V(s,f,x) =

= 1]{(1- X(P~~(P») D(1 - x(p)t/J(~8ai(p)-I) (1 _X(p)t/J~)ai(p») } -I ,

(1.29)
where X is a Dirichlet character mod M. Analytic properties of the standard zeta
functions were investigated by A. N. Andrianov and V. L. I(alinin [An-K] in the case of
even degree m, and more recently S. Böcherer [Bö] extended these results to the case of
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arbitrary degree using a different approach. For m = 1 and a normalized cusp eigenform
fez) = L:~=o a(n)e(nz) E Mf(N,1jJ) we have that

D(s, f, X) = L2 ,J(s + k - 1, X),

where
00

L2,J(s, X) = LNM (2s - 2k + 2, X21jJ2) L x(n)a(n2)n-"
n=l

(1.30)

is the symmetrie square of the modular form f, see [An3], [An-K], [Pa3] , [Sch] , [Shi2]
[Za].

1.7. Non-commutative extensions of Hecke algebra and Satake isomor­
phism. Now we recall that multiplication in the Hecke algebra.c = VQ(f, ß) is defined
by use of the larger vector space V = VQ(f, ß) over Q consisting of all Q-linear com­
binations of left cosets of the form (fg), 9 E ß = ß';(N). H., E f and

t(X)

X = L vi(fgd E V
i=l

then the formula
t(X)

X . ., = L vi(fgi1') E V
i=l

defines a right action of the group f on V so that the algebra .c = VQ(r, ß) coincide s
with the subspace of all elements in vQ(r, ß) fixed by f via the inclusion .c -4 V which
sends a double cosets

(g) = (fgf) (g E ß = ß~(N» = U:~ifgi

to the formal sum 'E~~1 fgi. H

t(X) , t(Y)

X = L ai(fgi), Y = L bj(fhj )
i=I j=l

are two elements in VQ (r,ß) E V then the element

X· V = L aibj(fgihj) E VQ(f, ß)
i,j=l

(1.32)

is weIl defined and also belongs to VQCf, ß) E V. This construction can be applied to a
large variety of couples (f, ß), for wmch r is a subgroup of a (semi)group 1J. such that
any double coset (g) = (fgf) (g E ß = ß';(N» can be represented is a disjoint union
of the left cosets:
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(the theory of Hecke couples, see [An7],chapter 1). In particular for

f o = f;; = {g = (: ~) E rJ c = O},

ßo = ß;::q = {g = (: ;) E ß;::q I c = O}

we thus obtain an associative (but no longer conunutative) ring

It follows from the theory of elementaxy divisors that r6.o = 6.; therefore we get the
homomorpmsm c : .c -Jo .co defined as follows: for each

teX)

X = L Vi(rgi) E .c c V
i=l

we may assume that

where qVi = V(gd, and we put

teX) ( v· d*
eo(X) = 8vi(fo q ~ ;

Similar arguments show also that the matrix d i can be chosen in the form

with the uniquely defined exponents Oi(j). Now for

teX)

X :::; L vi(rgd E 1:. 0

i=l

we put by definition
teX) m

«I>(X) = L ViX~i TI (xjQ-i)8i (j).
i=l i=l

(1.33)

(1.34)

(1.35).

We get the desired Satake isomorphism as the composition of homomorphisms (1.33)
and (1.35):

Sat = <Pco : I:. .::+ Q[xtt, xt1
, ••• , x;l] Wrn (1.36)
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As a consequence of the construction we get that for an arbitrary homomorphism of
algebras ,\ : L -4 C (A = Aq,q f N,L = L;n(N),attached to the (m + 1)-tuple of
q-parameters

and for any element

teX)

X " (r) r ·th. _ (qvi d7 bi )= LJ Vi gi E J...; wz gl - O· di
i=I

and di is chosen in the form (1.34) the following equality holds:

teX) ~

'\(X) = 2: via~i IT(aiq-i)Oi(j).
i=I j=l

(1.37).

HA = Af,q for a modular fonn f E M~(N, 1jJ) then the numbers ao, a1,"', Q'~ satisfy
the following relation

(1.38)

which follows directly from the fonnula (1.37) and the definition (1.19) applied to the
operator X = (g) with 9 = q12~ (see[An7J).

1.8. Action of Hecke operators on Fourier expansions. Let

fez) = 2: c(e)ern(ez ) E M':n(N,1jJ) (~E B rn )
eeBm

and
teX)

X = 2: vi(rogd E 1:,0 (ro = r ü,Lo = L;;:q)
i=I

be an arbitrary element of the extended Hecke algebra 1:,0 with

Let coefficients (cIX) (~) be defined by the equali ty

(fIX)(z) = 2: (cIX)(~)ern(~z).
eeBm

Then we have that

teX)

(cIX)(e) = 2: viqVi(mk-(m)(detdd-k x
i=l

x 1jJ(qmVj ( detdi) -1 )em (q -Vi t bidi )c(q.-Vi die t di),

(1.39)

(1.40)

(1.41 )
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( here we assume that c(~) = 0 for ef/. E m (see [An7), §3.2)). We remark that for X E LO
not beloning to the subalgebra co(.c) C Lo we have , in general, that fiX f/. M~(N, 'ljJ).
However we claim that fiX E M~(r~), where

r~ = ni9ir;n(N)9i

(see (1.19)).
As an example we consider the Frobenius elements (see [An7), §2.1):

IL = II~(q) = (fo (q~m 1~) f o),

II+ = II+(q) = (fo (10' q~m) f o).

Then for f(z) = L:eEB
rn

c(e)ern(ez) E M:n(N, 'ljJ) we get from (1.41)

(cIIT-)(~) = 1jJ(q)mqmk-<m)c(q-l~),

(cIIT+)(~) = c(qe) (e E Ern C Am)

(1.42)

(1.43)

(1.44)

Note that the operator IT+ = II+(q) is defined by the formula (1.44) also for qjN, when
IT+ (q) sends M ~ (N, 'ljJ) to it self. However we assume in the next proposition that q f N .

1.9. Proposition. H f E M~(N, 'ljJ) with q not dividing N then

(1.45)

therefore

Proof. Note that

II~(q) = (fo (q~m 1~ ) ),

flII- = flk,v- (q~m 1~ ) ,

H we now take inta accaunt that

f;;'(qN) C(q~m l~) -1 f(;'(N) (q~m 1~)'

then we get that for all , E rü(qN) holds the following equality holds

In order to prove the analogous statement about II+ we use the antiisomorphism (in­
volition) X 1--+ X" of the algebra .co (see [An7], p. 75) with the property II~ = IT+ and
recall that by definition if

t(X)

X = I: vi(rogd E .co (Vi E Q,9i E ~o),
i=l
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then
t(X)

X· = 2: Vi(rOqV, 9;1) (qVi = v(q).
i=l

Next, let the equality xr' = X be valid for a given X E 'co where r o c r'r . Put
ß' = r' ßo, ßo C ß' c 6. and consider as in 1.3 the Hecke algebra L' = 'DQ(r', 6,/).
Then we have again that the homomorphism e' : ,C' --+ 'co, is defined so that its image
c:ri('c') coincides with the subalgebra of all elements in Lo fixed by r/. Consequently, for
some Y E ,C' we have that X = eri(Y) end we get X· = eri(Y·) by the definition of the
antiautomorphism *.In other words, the operator X· E .c' turns out to be r/-invariant.
In particulary we get II+r;,n(Nq) = II+ from the equality II-r;,n(Nq) = II_ which is
already proven, and from the fact that jlII+ E M~(qN, 'ljJ).

Now let us consider again Hecke polynomials, defined by (1.22)-(1.24). A. N .An­
drianov has dicovered factorization of the polynomials Q(z), R(z) E ,C [z] over the non
- commutative algebra Lo = LC;:q in terms of the Frobenius elements II+(q), IT_(q) (see
1.8). This factorization is essentially used in our non-Archimedean construction.

1.10. Proposition. Tbere are the following eApansions for tbe Hecke polynomials
introduced above

2l'n-l 2 m -l

Q(z) = ( 2: Vi+ zi)(l - II+z) = (1 - II_z)( 2: Vi- zi),
i=1 i=l

where
i

Vi+ = 2:(-l)jTjII~-j,
j=O

i

Vi- = 2:(-l)jII~-jTj E 'co
j=O

PraoE (see in [An7], §2.2)
Now let

(1.46)

(1.46a)

fez) = 2: c(e)em(ez) E M~(N, t/J)
eEBm

be an eigenfunction of the algebra ,C = ,C;l(N) whose eigenvalue is a homomorphism
Aj : ,C --+ C, fiX = Af(X)f for all X E J:, which is given by the (m + l)-tuple 0'0 =
0'0(p),0'1 = Ql (p), ... ,O'm = O'm(P) of the Satake p-parameters. Put

rn-l

fo = 2: O'o(p)-ifIVi+(p) (m = 2m
).

i=l

(1.47)

1.11. Proposition. a). The Eunction fo belongs to M~(Npm-1,?f;) with
(m = 2m ).

b) Tbe following equali ty holds
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Remark. We know from 1.3 that by the action of the Weyl group the inverse root
0:0 can be transformed into each of the 2m inverse roots

of the Iocal factor Z (p) ( s, f) of the spinor zeta finction. Therefore the construction in
Proposition 1.11 provides also 2m eigenfunctions g E M~(Npm-l, 'ljJ) of the algebras
,c = 'c':(N) for q jpN with the same eigenvalues as those of the original modular form
f E M ~ (N, 'ljJ) such that for q = p we have that glII+ (p )aq where 0: is any of the inverse
roots mentioned above.

ProoE oE the Proposition 1.11. The statement a) follows directly from (1.46a) and
from the definition (1.47). For to prove b) we note that there is the equality (with
in = 2m

)):

L fITi(p)· (_z)i = Q(O'O(P)'O'I(p)··· ,O'm(p);z)f;
i=O

in addition by definition of the polynomials (1.22) we have the identity:

m=2m

L (-O'o(p))-ifITi(p) = Q.

i=O
(1.48)

We want to prove that fol(IT+(p) - ao(p)) = o. But we have from (1.46),(1.47) that

fol(II+(p) - ao(p)) = -ao(p)fl(l - oül(p)II+) =

- oo(p)fl( L (-ao(p))-ifrv:+(p))(l - aül(p)II+(p) =
i=O

L fITi(P)( -ao(p))-i = 0,
i=O

and the statement b) follows.
1.12. An analogous statement is valid in the case of a finite set S of prime numbers

q coprime with N. For this purpose it is convenient to consider global Hecke algebras

r-(N) = 0.c:;(N), .co(N) = ®q,(N.c~q(N).
q,(N

Then the definition of the operators II+ (M), II - (M), Vi+ (q), Vi- (q) E ,C D:q (N) and of
the numbers ao(q) (q ..r N) can be extended by multiplicativity to all positive integers M
coprime with N; more precisely, operators V+(M), V-(M) are defined by the identities

m-I
L M_&V+(M) = TI [L q-&\ti+(q)J,

MIM~-l qlN i=1

(1.49)
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rn-I
L M-a V-(M) = TI [L q-aVi-(q)],

MIM:- 1 q IN i=I

where the notation
V±(qi) = Vi±(q), Mo = TI q.

qES

is used. We then put

/0 = 10,5 = L ao(M)-1/IV+(M).(1.50)
MIM:- 1

1.13. Proposition. a). Let I E MJ:(N, 1/;), then

/0 = 10,5 =E MJ:(N M rn- I , 1/J).

b). For a11 positive integers M with support SeM) in tbe set S we have tbat

c). Let

(1.49a)

(1.51 )

lo,s(z)= L ao(e)em(ez)EM~(NMrn-l,1/;) (eEBm)
eEBm

be Fourier expansion of tbe function lo,s(z) then there is the following multiplicativity
property of its Fourier coefBcients: for a11 M E N witb SeM) C S

(1.52)

The prüoE of the proposition is earried out in a very similar way as that of the
previous one if we take into aecount the formulas (1.44) for the action of the operator
II+(M) on Fourier expansions.

§2. Theta series, Eisenstein series and Rankin zeta function

2.1. Theta series (see [An3],[An~M1],[An-M2],[St2]). Let F E 2Cm be an even sym­
metrie positive definite matrix, and qo its level (Le. the smallest positive integer such
that qOF-1 E Mm(Z), and X a Dirichlet series modulo Q ( not neeesarily primitive).
Put v = 1 or 0 and define the theta funetion

8(X) =8~)(z; X) =

LeE Mm(Z)x(dete)dete V em (zF[e]/2).

2.2.Proposition. (a) H

'Y = (: ~) E r;{'(qoQ2),

then the following transfonnation fOrrrlula holds

(2.1)

B}(V) (z; X) = x(det d)x~n;~(I )det(cz + d)(m/2)+v B<;) (z; x), (2.2)



26

wbere X~m)C,) is a root oE unity oE the eightb degree, and iE m is even, tben

(m)( ) _ (( -1)m/2 det (F))
XF 1 - det d . (2.3)

(2.4)

(2.7)

(b) Let J(M) denote for M > 0 the matrix (~~m ~~m). If X is primitive

modulo Q tben the action oE tbe involution J(Q2 qO ) on (2.1) is given by

lJ~\J(Q2qO)Zj X) =

X( -1 )mQmvGQ(l m, x)det(F)(m/2)+V[det(-iz)](m/2)+vB~)(z;X),

GQ(e,x) = L x(deth)emCeh/Q)
hEMm(Z)modQ

being the Gauss sum oE degree m oE the character X.
2.3. Tbe prooE of (a) is given in [An-M2] for primitive cbaracters x, and in [St2] in

the general case by use of the generalized theta series

lJ~m)(z;X,Y) = L em((zF[e - Y] + 2€X - tXY)/2, (2.6)
€EMm(Z)

where z E jjm, X, Y E Mm(C)). The series (2.6) satisfy the following properties: for

all 'Y = (: ~) E rO"(qo) we have that

lJ~m)(,(z)jxa+ Fytb, F-1Xtc + ytd) =

X~m) (,)det(cz + d)(m/2) lJ~m) (Zj X, Y),

B~m)(z;X, Y) = (detF)-(m/2) [det( -iz)]-(m/2)lJ~~)1 (_Z-lj Y, -X) (2.8)

(see [An-M2], theorem 1 and lemma 2). For v = 0 the statements (a) and (b) immedi­
ately follow from (2.7), (2.8). For example , in order to get (b) it suffices to put in (2.8)
F equal to Q2 F, X = 0, Y equal to _Q-l Y then multiply by X( det(Y)) and to CaIry

out summation over Y E Mm(Z)modQ. From the left hand side of (2.8) we get

L X(det(Y))B~n;~(z; 0, _Q-l Y) =
YEMm(Z)modQ

L x(det(Y)) L em(zF[Q~ + Y]/2),
YEMm(Z)modQ €EMm(Z)

(2.9)
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and from the right hand side

(detQ2 F)-(m/2) [det( -iz)]-(m/2)B~n~?:JF_l(_Z-I; _Q-Iy, 0) =
(detQ2 F)-(m/2) [det( -iz )]-(m/2) x

x L X( det(Y» L em (( -Z(Q2 qO )-1 /qOF- I )[e] - 2Q-l teY )/2).
YEMrn(Z)modQ eEMm(Z)

(2.10)
Now we note that for any Dirichlet character X the definition (2.1) can be rewritten as
folIows:

B(X) =B~)(z; X) =

L X(det(Y» L (deteY' em (zF[e]/2),
YEMrn(Z)modQ e=YmodQ

(2.11 )

and if we take into account the primitivity of X then we get (see [An5],(5.12»

B~>Cz; X) = GQ(l m , X)-I X

L X( det(Y» L (dete)" em(zF[e] + 2Q-I t eY )/2), (2.12)
YEMrn(Z)modQ e==YmodQ

If we now take into account the standard relation

for Gauss sums, then (2.10) transforms to

B~)(z;X),

(2.13)

(2.14)

(2.15)
(detQ2 F)-(m/2) [det( -iz )]-(m/2) GQ(l m , X)8~~~-1 (J(qoQ2)( z); X) =
X( -1)(detF) -(m/2) [det(-iz )]-( m/2)GQ( 1m, X)B(O)F_l (J( qo Q2)(z)j X),

qo

Put in (2.12) F equal to qOP-I, Z equal to _(Q2 qOZ )-1 , replace X by X and eby -ej
comparison of (2.14) and (2.15) provides us with an identity ,which is equivalent to (2.4)
with v = O.

In order to prove the statements (a) and (b) with v = 1 we take a matrix FI = t PI E
Mm(R) with the condition 11 > O,F? = F,and let TJ = (TJij) E Mm(C) be the matrix
variable. If we put in (2.7) X = 0, Y = F1-

1"l and apply to both parts of the resulting
equality the differential operator L.,., = det(8/8"lij), then after some simplifications we
get the equality (2.2) with v = 1. In this calculation the differential identity

L.,.,(em((pt"l7] + 2 tT7] + R)/2» =
det(21ri(1]P +T»em((P t1]"l + 2 tT1] + R)/2»,

is particulary useful , where P, T, RE Mm(C), tp = P (see [An7], lemma 5.1).

(2.16)
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We give a more detailed proof of (h). Put in (2.8) X = 0 and Y = F 1-
1 1J and apply

the operator L,.,. Then the expression in the exponent of the summand corresponding
to an integral matrix € in the left hand side of (2.8) is equal to

7ri . tr(zF[~ - Fl-
l 7J]) =

7ri . tr(z t7J7J - 2 t(F1(z)7] + zF[€)).

This is easily deduced from the definition (2.6) if we note that

tr(AB) = tr(BA) = trC AtB).

According to (2.16) after application of L'1 this term will be multiplied by

det(27ri(7]z - FI~Z» = (27ri)mdetF1/2det«FI-
I

7] - ~)z).

Similarly the summand corresponding to a given matrix ein

(detF)-(m/2) [det(_iz)]-(m/2)B~~\(_Z-lj F
l
- 11], 0),

after application of L'1 will get the factor (detF)-1/2(27ri)mdet(~).Next we remember
that Y = F I-

I 7], then we see that after application of L'1 the expression (2.8) transforms
to the following

det(z) L ~ E Mm(Z)det(Y - e)em«zF[~ - Y]/2) =

(detF)-(m/2) [det( _iz)]-(m/2) x

x L det«()e m«_z-l p-l [~] + 2 t(Y)/2.
eEMm(Z)

(2.17)

Now again we put in (2.17) F equal to Q2 P, Y equal to _Q-1y, eequal to -e ,
multiply by x(det(Y» and earry out summation over YmodQ keeping in mind the
relation (2.13); as a result we get the equality (2.4) with v = 1 . An explicit ealeulation
of the multiplier X~m)(f) for even m is given in [An-I<].

2.4. Siegel -Eisenstein series. We start with recalling the definition of these
series. We eall matriees c, d E M(Z) coprime if

{G E M(Q)lGc, Gd E M(Z)} = M(Z)

A eouple (c, d) is ealled asymmetrie eouple if c td = dtc. Two symmetrie couples of
the eoprime matrices are ealled equivalent iff for some unimodular matrix U E GLm(Z)
we have (Cl, dl ) = (UC2, Ud2 ).

Let .6. = .6.m denote the set of equivalence classes of symmetrie couples of coprime
matrices. Then the set ean he identified with the set of right coset classes rü\rm of
the group r m = SPm(Z) with respect to its parabolie subgroup
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via the map

r;:,\rm
3 r;:, (: ~) ...... dass of (c, d) E t>m.

By this map also the set

(2.18)

{(c, d) E ~rnlc =O(modN)}

identifies with the set of cosets rü\rrn(N).
Now let k ,N be positive integers , s a complex number and X a DiricWet character

modulo N. For z E ~m define the Siegel-Eisenstein series by

E(z, s; k, X, N) = E(z, s) = det(yy I: X( det(d)det(cz + d)-k- 12s l, (2.19)

where the summation is taken over all (c, d) E ~ with the condition c - O(modN) and
we adopt the convenient notation by Deligne and Ribet [De-R]:

z-k-12,,1 der z- k l z l-2" for z E C·

The series (2.19) is absolutely convergent for k + 2Re(s) > m + 1 and it admits a
meromorphic analytic continuation over the whole complex s-plane. Put j(O', z) =

det(cz + d) for a = (: ~) and z E J:)m, then it follows from the description of t>m

given above that

E( z, s; k, X, N) = det(y)" I: X( det(daJj (a, z) -k-12"I,
aePnr\r

(2.20)

where r = r;:'(N), a = (:: ~:), and P denotes the subgroup of P c Goo+, consist­

ing of elements 0' with the condition Ca = O.
2.5. Rankin zeta function. Let f and 9 be two holomorphic modular fonns of

weight k and I on the congruence subgroup ,o(N) c r m with Dirichlet characters "p
and w. More precisely we assume that

fez) = I: a(e)em(ez) E S:n(N,1/J),
eeBm

(2.21)

g(z) = I: b(e)em(ez) E M~(N,1/J), (2.22)
eecrn

with Ern being the set of half integral non negative matrices of size mx m, and Gm C Ern
the subset of all positive definite matrices, see §1. Define an equivalence relation on Ern
by el .-v e2 iff el = 'Ue2U for same matrix u E SLm(Z). Then Rankin zeta function
(convolution of Siegel modular forms ) is defined as the series [St2] :

L(s, f, g) = I: aCe)b(e)det(e)-" (s E C)
.;ecm

(2.23)
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which is weil defined due to basic properties of Fourier coefficients of Siegel modular
forms; Gm = Cmffiod ,....., denotes the orbit space with respect to ,....., and Re(s) is supposed
to be large enough: Re(s) >- O. To be more precise, we note that the series

2: det(~)-tr

eecm

(2.24)

is absolutely convergent for Re(s) > m . It is easily seen from the fact that cardinality
of the set

SLm(Z)\{, E Mm(Z)ldet, = a > O}

is estimated by the finite sum L: a2a~ ... a~-I , hence the Dirichlet series in (2.24)
admits the upper bound

m-I

II ((Re(s) - i),
i=O

with ((s) being the lliemann zeta function (see (An7], p.133). I(eeping in mind estima­
tions (1.15a) and (1.16a) for Fourier coefficients of Siegel modular forms we get

so that the Dirichlet series (2.23) is absolutely convergent for Re(s) > m+k/2+1+e: (e: >
0).

2.6. Proposition (integral representation of Rankin zeta functions, see [St2) ,
proposition 6).

For s with Re( s) > 0 there is the following integral representation.

(47r)-mtrr m(s)L(s, /, g) = (fP, gE(z, s - k + (m + 1)/2; k -1, "pw, N»)N

where the inner product is denned by (1.13),

/P(z) = 2: a(~)em(~z) E S:n(N,1/;)
eeBm

r m (s) denotes the r -function of degree m, i.e.

m-I
r m ( s) = 7rm (m -I) / 4 II r (s - (j /2) )

j=O

(2.25)

(see also (3.8».

2.7. The standard zeta function V(8, J, X) as a Rankin convolution. Now
let

J(z) = 2: a(~)em(ez) E S:neN,,,p)
eecm

be a cusp form of even degree m which is an eigenfunction of the Hecke algebra 'c,;eN)
for q not dividing N, and

(aO,QI,···,Qm) = (a~q),aiq),···,a~» E [(AX)m+I]WnJ
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be the eorresponding (m + 1)-tuple of the Satake q- parameters of / ( see (1.18)). Fix
a matrix ~o E Gm such that a(~o) =j:. 0 and consider the primitive quadratic Dirichlet
eharaeter Xeo definied for positive integers d with (d,2det(2(o)) = 1 by the formula

(d) _ (( -1)m/2 det (2(o))
Xeo - d '

when det(2(o) is odd , then xeo(2) = 1 or -1 according to which of the two following
quadratic forms

or
2 2

XlX2 + ... + X m -3 X m-2 + Xm- 1 + Xm-1X m + X m

is equivalent our quadratic form eo over the field F 2 of two elements. Assume also that
xmodM is chosen SQ that (_1)V = X( -1). The main result of the A.N.Andrianov's
work [An6] ean be stated as a certain identity expressing the standard zeta funetion
'D(s, /, X) as a Rankin zeta function , namely the convolution of the giyen form / and
a theta function with the Diriehlet caracter X mod M. The precise statement of the
result is given in the following proposition.

2.8.Proposition. Under the notation and assumptions as above for the sufIiciently
large values of Re( s) the following identity is valid

a(~o)R(s,/, X) =
2-1det~~-'+A:-l+V)/2L((s + k -1 + v)/2, f,B~e~(zj X)),

where the function R(s, /, X) is defined by the following equality

rn-l
'D(s, /, X) = L(s + (m/2), "pxeox) TI L(2s + 2i, 1jJ2 X2)R(s, /, X),

i=O

(2.26)

(2.27)

and it is asstuTled that the modulus M of the cbaracter X is divisible by a11 prime divisors

of the number Ndet2eo, B~{~(zj X) being the theta function in 2.1.
More explicitly 1 the nght hand side of (2.26) ean be represented as the series

(deteo )(-,+k-l+v)/2 L X( dete)deteV a(eo[e])(deteo [en-(a+k-l+v)/2 =
e

L X( det()aC((o()(dete)-(a+k-l+v)/2

e

(2.28)

where the summation is taken over the set of equivalence classes eE SLrn(Z)\M;t(Z)
of the form eSLm(Z).

Now we put qo to be equal to the level of the quadratic form with the matrix 2eo (see
2.1). In order to get the integral representation of the standard zeta funetion we apply to
it the result of 2.6. For this purpose we put in the notation of 2.6 I = (m/2)+ v, W = Xxeo
with X being a Diriehlet character modulo M, and take the number N qoM 2 as N. We
note also that both parts of (2.27) and (2.26) eonverge absolutely for Re(s) > m ( see
also [An7], p. 133).
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2.9. Proposition ( integral representation of tbe standard zeta function). With
the notation and assumption as above for Re(s) the following equality holds:

2a((o)(det(o)-( ..+k-l+v)/2(41r)-m.. x r m(s + k - 1 + v)/2) R(s, !,X) =

(fP, B~~~(zj X)E(z, (s - k +m +V)/2))NM2 qO

witb tbe Eisenstem senes

E(z, s) = E(z, Sj k - v - (m/2), xxeo'l/J, N M 2qo).

defined by (2.29) in tbe right hand side.

(2.29)

§3. Formulas for Fourier coefflcients of Siegel..Eisenstein series

3.1. Rationality properties of Fourier coefftcients. For the full symplectic
modular group r = SPm(Z) Siegel has defined the series [Sie2], [Sie3] (see §2, 2.4)

E(z) = Eim)(z) = L j("z)-k,
"YEPnrm\rm

(3.1)

(3.2)

where z E tim is the point of the Siegel upper half plane of degree m, j(" z) = det(cz+d)

for 'Y = (~ ~) E r m
, P denotes the subgroup ofrm consisting of block matrices of the

form (~ :). In the original definition by Siegel the number k is even and k > m +1

so that the series (3.1) is absolutely convergent and is referred to as Siegel-Eisenstein
series. The rationality property of its Fourier coeffieients were established by Siegel
himself although it was certainly known earlier in the case m = 1:

2k 00

Ei1)(z) = 1 - Bk L O"k_l(n)e(nz) =
n=l

~ (20"k-l(n)) " k 11 +~ (1- k) e(nz), uk-l(n) = i: d - ,

where Bk are Bernoulli numbers, (s) being the Rlemann zeta function. After the
original Siegel's work his caleulation was generalized in various directions : to the case

of congrnenee subgroups of r~m)(N) c r m [St2] to non-convergent senes defined by
analytic eontinuation over an additional parameter (Heeke's method) [He], [Fe],to other
classes of algebraic groups and symmetrie domains [Ba],[Har2],[Fe],[Shi7],[Shi10].It was
discovered that the rationality property remain valid even for more complicated series,
which themselves are defined by some inductive proeess of inducing from other cusp
forms of lower degree (Klingen-Eisenstein series).More precisely, let! E Sr be a cusp
form of degree r (with respect to the group rr).H k > m + r + 1 and m ~ r then
Klingen-Eisenstein series is defined as the following absolutely eonvergent series

E;;,r(z, f) = L f«"z/r))j(" z)-k,
,EA m ,l"\rm

(3.3)
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with z E jjm, zer) being the upper left corner of Z of size r x r, and ßm,r denotes the

set of elements in r m having the form (0 * *) [1<:13]. This series turns out to
m-r,m+r *

be a modular fonn of degree m on the group r m . M Harris has proven the validity of
Garrett's conjecture: all Fourier coefficients the modular form E;"r(z, f) belong to the
field Q(f) generated by Fourier coefficients of f [Har2]. Explicit fonnulas for Fourier
coefficients of the series E,;,r(z, f) were given by Mizumoto [I<:ur-Miz],[Mizl],[Miz2]. It
turned out that that the most significant tenn in these formulas involves the special
values of the standard zeta function of f twisted with a certain quadratic DiricWet
character attached to the matrix number ~ of a Fourier coefficientj as it was noticed
above ,these functions reduce to the (twisted) symmetrie squares of the fonn f if m = 2.
The formulas of Mizumota can be considered as a vast generalization of the classical
formulas (3.2), if we assume that cusp fonns of degree 0 to be constants and their zeta
functions reduce to the Riemann zeta function and to Dirichlet L-series.

However, in what follows we are interested ooly in Siegel-Eisenstein senes wmch
were defined in §2 by:

E(z,s;k,X,N) = E(z,s) = det(y)" L x(det(da )j(a,z)-k- 126 1, (3.4)
aEPnr\r

for k + lRe(s) > m + 1, and by analytic continuation on s for the other values of sEC
(see [K], [Shil0] and 3.3 below). It is assumed in the identity (3.4) that N > 1, X is a
Dirichlet character mod N ( not necessarily primitive, e.g. trivial modulo N > 1) , and

The following investigation of aritlunetic properties of Fourier coefficients is based
on an explicit calculation of the Fourier expansion of the series

E"'(z.s) = E(-z-l,s)(detz)-k,

obtained from (3.4) by applying the involution

(3.5)

-1m )o .

However for k > m+ 1 and N = 1 both series coincide and reduce to the senes originally
studied by Siegel:

E(z) = E'k(z) = E(z, 0) = E"'(z, 0).

The investigation mentioned above was carried out by Shimura [Shil0] and P.Feit ([Fe],
§10) and were given in a more general situation, in particular for the Eisenstein senes
attached to the group SPm over a totally real field. For convenience we reproduce only
a specialization of these results to the case of F = Q.

The remarkable summation method by means of the analytic continuation of the
function E( z, f) over .9 to the point s = 0 was first discovered by Hecke [He]. Quite
recently this method was essentially extended by R.Weissauer [We2] to the case of
Klingen-Eisenstein series (3.3) and then used for a construction of Siegel modular fonns
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of relatively small weight (k = m, m + 1) which play a signifieant role in studying the
geometrie invanants of the Siegel modular varieties [We1],[We3].

3.2. Preparation: the confluent hypergeometrie function. For a de­
tailed description of the Fourier expansion of the series (3.5) we need sorne additional
notation.Let

v = Vm = {h E Mm(R)lth ~ h}

be the set of all real symmetrie matrices of size m x m, and

y = V+ {h E Vlh > O}

(3.5)

(3.7)

(3.8)

the subset of its positive definite elements. For eaeh matrix T E Mm(R) let S+(T)
denote the produet of all positive eigenvalues of T, S_(T) = 8+(-T) aod S+(T) = 1 if
T does not have positive eigenvalues.

For h E V let p = p(h) denote the number of positive eigeovalues of h eounted with
their multiplicities, and q = q(h) the number of negative eigenvalues. Then r = r(h) ==
p + q is the rang of h.

Let also
m-}

r m (s)==1im(m+2)/4 TI r(s-(j/2»,
j=O

be the r-funetion of degree m , which generalizes the ordinary r-funetion aeeording to
its integral representation

r m(s) =[(dety)'e-tr(uld"y,

whieh is valid for sEC with Re(s) > (m - 1)/2, and

dy == TI dYij, det(y)-(m+l)/2dy.
i:5j

(3.9)

Reeall that dX y is a measure on Y which is invariant with respeet to the action of
a E GLm(R) given by dXCaya) = dXy. For eomplex numbers a and ß we define the
numbers

" = (m + 1)/2,
r=r(h,a,ß)=

= (2p - m)a + (2q - m)ß + m + (m - r)K + pq/2,

0" = O"(h,a,ß) =
pa + qß + m - r + {(rn - r)(m - r -1)}/2.

In Shimura's work [Shi8] the funetion

w(y, hj Ci, ß),

(3.10)

(3.11)

(3.12)
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was constructed which is defined for all (y, h ja, ß) E Y x V X C 2 and is a holomorphic
function (0:, ß) E C 2 • It can be used for writing the Fourier expansion of the series

S(Z, Lj Q, ß) = L det(z + a)-Odet(z + a)-ß (z E i)m)

aEL

(3.13)

which is obtained by sununation over a lattice L C V and is absolutely convergent for
Re(o: + ß) > m. Let

L' = {h E Vltr(hL) E Z}

be the lattice dual to L with respect to the pairing given by (u, v) .-. em(uv) . In
particular there is the equality

p.(V/L)S(Zjo:,ß) = L ~(y,hjQ;,ß)em(hx)
hEU

in which

p.(V/L) = j dy
V/L

denotes the volume of the fundamental domain V/L,

(3.14)

(3.15)

~(y, h; 0:, ß) =
i mß- m0'2T 1T u rrn-rea + ß - K,)rm-q(Q )-1 r m_p(ß)-l x

x (dety y:.-o-ß0+(hy )O-K+q/40_( hy )ß-K+q/4W (21TY, hj 0:, ß),

and is additionaly assumed that Re(a) > m/2, Re(ß) > m/2 (for the regularity of r­
functions in (3.15) (see [Shi8],(4.34.I(» and we adopt the standard choice of branch for
the exponentiation , namely,

VO = eo1og(v), -iT:::; Im(log v) < iT.

The function ~(y, h; 0:, ß) admits the following integral representation: for 9 E Y, h E
V, (0:, ß) E C 2

~(y, h; 0:, ß) =

j (3.16)
v em ( -hx)det(x + ig)-Odet(x - ig)-ßdx,

with the integral being absolutely convergent for Re(a+ ß) > 2K,+ 1 (see [Shi8], (1.25».
Applying the equality (3.14) to the lattice L = S = VnMm(Z) when L' = A = Am

is the lattice of all synunetric half integral matrices and also to the lattice L = N S, L' =
N -lAm wit~ 0: = k, ß = 0, k > m and Gm = AM n Y we get the classical equality

L det(z +a)-k = (21Ti) mkrm(k)-l L (deth)k-Kem(hz)
aES hECm

(3.17)

(see, for example , the book of Maass [Maa]). Indeed, in the equality only the terms with
p = m, q = 0 do not vanish because of the poles of the r functions in the denominator
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of (3.15) , and the function w (2JrY, h; 0, ß) reduces to the exponent e m ( i y h) in view of
the fonnulas:

(y, h; 0,0) =
(3.18)

i-ma 2(1-K)m(2Jr)mO'rm(°)-1 (deth )a-K em (iyh),

~(y, 0; 0, ß) =
(3.19)

imß-ma2m(K+l-a-ß)JrmKrm(a + ß - x:)rm(o)-lrm(ß)-l

lim (y, h; x: + 8,8) = i-mK29JrmKrm(K)-lem(iyh), (3.20)
{-o

with q = 0 and 8 = [(rn + p)/2]. The fonnulas (3.18)-(3.20) are easily deduced from
[Sill8], (1.31), (4.35.K); see also [Shi10],(7.11)-(7.14).

The confluent hypergeometric fWlction w(2Jry, h; 0, ß) can be used for an analytic
continuation of the Siegel-Eisenstein series [K],[Fe],[ShilO] by means of the term by term
analytic continuation of their Fourier coefficients, which cau be expressed in terms of
the functions (3.12) ( see theorem 3.6 below). We list also some other properties of
these functions, which are uselul for the analytic continuation (se~ [Sill8], theorem 4.2):

functional equation

w(2JrY, h; 0, ß) =w(2JrY, h; K + (t/2) - ß, K + (t/2) - 0);

a uniform upper bound on compact subsets

(3.21 )

(3.22)

(3.23)

(3.24)

with 0, ß varying in a fixed compact subset T C C 2 and the constants Cl, C2 depending
only on T, T( x) being the sum of eigenvalues of a matrix x , J.l the minimum of tbeir
absolu te values.

3.3. Critical values ofthe confluent hypergeometrie function. Now we give
formulas, which express the function w(21rY, h; 0, ß) in terms of certain polynomials of
the entries of the matrix y = (Yij) provided h > 0 and either ax: E Z, a - f\, ;::: 0 or
ß E Z,ß :::; 0 (x: = (m + 1)/2). We call such pairs (o,ß) critical: as we will see in
the sequel the critical values of 8 for the standard zeta function correspond to same
critical pairs. The following calculation of the special values is based on properties of
the function (z;a,ß) defined for z E jj~ = {z E Mm(C)[iz E jjm} by the integral

(z; Cl, ß) =i e-tr(zx)det( x + Im)"-'detxß-'dx,

which is absolutely convergent for Re > K - 1 and defines a holomorphic function of
(z, a, ß). Let
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It was established by Shimura ([Shi8],theorem 3.1) that the function (3.24) can be
analytically continued to a holomorphic fWlction over ,fj~ X C2 satisfying the fWlctional
equation

w(Zj K - ß, K - a) = w(Zj 0', ß). (3.25)

For an arbitrary compact subset T C C2 there exsist positive constants A, B, > 0
depending only on T such that

IW(Zj 0', ß)I ::; A(l + Jl(y)-B) for y E Y C ,fj~, (a, ß) C T.

H is known also (see [Shi8]" (4.19))that

w(y, 1m ; a, ß) = 2m (m+1)/2 e-tr(y)w(2Yj a, ß)

and that for all a E GLm(R) one has

wCa-1 ya-1 j a, ß) = w(yj er, ß),

W(y, -hj 0:, ß) =w(y, h; ß, 0:)

w(y, hj 0:, ß) = 1.

Comparison of (3.27) and (328) shows that for h > 0 there is the identity

w(y, h; a,ß) = w(a(hy)a- 1 , 1m ; a,ß) = 2m (m+1)/2 e-tr(y)w(2a(hy)a-1 jO',ß),

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31 )

This is done by taking a matrix a E GLm(R) with the condition ahta = 1m,
Now let us consider the differential operator ß m on ß ® C of degree m defined by

the equality:
ß m = det(8ij), Gij = 2-1 (1 + oij)8/8ij.

For an integer n ~ 0 and a complex number ß consider the polynomial

R(z; n, ß) = (_I)mn etr(z)det(z)n+ßß~[etr(z)det(z)-ß],

(3.32)

(3.33)

with z E V ® C and the exponentiation being weIl defined by the condition : det(y)ß =
exp(log(det(y)))fordet > 0, Y E Y ® C. According to the definition (3.33) the degree of
the polynomial R( Z j n, ß)is equal to mn and the term of t he highest degree coincides wi th
detz n

. We have also that for ß E Q the polynomial R(Zj n, ß) has rational coefficients.

Proposition. (See [Shi8], proposition 3.2). For any non negative integer n the func­
tions det(z)nw(Zj n + K, ß) and det(z)nw(Zj Q, -n) are polynomial functions of z. More
precisely, we have that

w(z; n + K, ß) = det- n R(zj n, ß),

w(z ja, -n) =w( Zj n + K, n - Q') = det-nR( z j n, K - Q').

The praaf is carried out with help af the following differentiation rule :

(_I)mnß~ {e-tr(z)det(z)-pw(z; Q', ß)} = e-tr(z)det(Z)-pw(z; Q' + n, ß),

(3.34)

(3.34a)

(3.35)
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which follows immediately from the definition (3.23), (3.24) and provides also an analytic
continuation of the ftlllction w(z; 0, ß). The formulas (3.34) and (3.34a) follow then from
the identities (3.35) and

W(Z;K.,ß) =w(z;o,O) = 1,

Notice also that für m = 1 one has

In §4, theorem 4.8, we establish the following more explicit expression for the function
Rm(z; n, ß) of arbitrary degree m (see (4.32»

Rm(z;n,ß) =
m

L cm - rl (-ß)cm - r2 ( -ß - 1)··· Cm-rn (-ß - n + 1)Arl (z)··· Arn (z),
rl,···,rn=O

where

(3.36)

r-l

cr(z) = TI (0 + (k/2»),
.1.:=0

and Ar( z) are polynomial fllllctions of entries of the matrix variable z E Mm(C) defined
by

m

det(tl m - X) = L( _1)r Ar(X)tm- r

r=O

(3.37)

In other words Ar(Z) is the SlUIl of all diagonal minors of size r x r of the matrix z.
If we apply this to functions w(27rY, h; 0, ß) from 3.2 then we get for h > 0 the

following identity:

w(27rY, h; n + K., ß) = w(21t"y, h; K - ß, n) =

2-m(m+l)/2 em(ihy)w(41t"a- 1 (hy)a; n + K, ß) =

2- m(m+l)/2 em(ihy )det(41t"hy )-nRm(41t"hy ;n, ß).
(3.38)

3.4. Proposition. (Fourier expansion of the Siegel-Eisenstein series) E*(z, s), see
(Fe], §10). For tbe series denned by (3.5) the following Fourier expansion is valid

E*(z, s) = L b(h, y, s)em(hz),
hEN-IAnl

in wbich the coefficients have the form of the product

b(h, y, s) = N-mKW(y, h, s)r(h, s)RL*(h, x, k + 2s)M(h, X, k + 28),

witb the factars described as fallows ( (a)-(d)):

(3.39)

(3.40)
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(a)The conBuent hypergeometric lunction

W(y, h, s) = i-mk2T 1r0'w(21rY, h; k + s, s) X

(dety )K-k-"O+(hy)k+,,-K+q/48_(hy)"-K+p/4 '

with (comp. (3.15))

T =(2p - m)(k + s) + (2q - m)s + m + (m - r) + pq/2 =

2(r - m)s + (2p - m)k +m + (m - r)(m + 1)/2 +pq/2,.

u =p(k + s) + qs +m - r +{(rn - r)(m - r -1) - pq}/2 = '
=rs + pk + {(rn - r)(m - r - 1) - pq} /2

(3.41 )

(3.43)

(b) Gamma lactar r(h, s). Let for tbe integer r the symbol e(r) denote its parity:
e(r) = 0, 1 with r == e(r) mod 2. Put 8 = eCk), fL = e((r/2) + q +k) and tben define:

for e(r) = 0

r(h,8) =

_ r m-r (k + 28 - mp) r (s + ~) n~:(2) r(k + 28 - i)

- r m-q(k + 8)rm-p(8)r (8 + k-m~r/2+11) n~~~-r)/21 r(k + 28 - m + i + (r - 1)/2)'

and for e(r) = 1

r(h,s) =

_ r m-r (k + 2s - mp)r (8 + ~) n~:{2] r( k + 28 - i)

- r m-q(k + 8)rm-p(S) n~~~-r-l)/2lr(k + 28 - m + i + r/2)'

(c)The ratio of Dirich1et L -fWlctions RL· . Let for a Dirichlet character X modulo
N of a parity 8 = 0 or 1

LN(s, X) = reCk + 8)/2)LN(8, X) = reCk + 0)/2) TI (1 - x(q)q-")-l (3.42)
qÄN

denote the normalized Dirich1et L-function, which is regular for a11 sEC, s f=. 1,
inc1uding 8 = 0 ( due to the condition N > 1). Next we denne an additional quadratic
Dirich1et character Xh depending on h E Am and defined only for even r t= o. Namely,
for h = 0 let Xh = Xo be trivial; for h t= 0 we know that for some matrix u E GLm(Q)

'uhu = (~1 ~) with det h1 t- 0,

then let Xh denote the quadratic character attached to the quadratic neId Q(~)/Q
( trus definition is independent on the choice of the matrix u). Under these notation we
put:
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for an even r (i.e. with c(r) = 0)

RL*(h, X, k + 28) =

Liv(k + 28 - m + (r/2), XXh) n~~~-r)/2] L'N(2k + 48 - 2m + r - 1 + 2i, x2)

L'N(k + 28, X) n~:{2] Lj..,(2k + 48 - 2i, x2 )

and for an odd r (i.e. with c(r) = 1)

RL*(h, x, k + 28) =
II~~~-r-l)/2l L'N(2k + 409 - 2m + r - 1 + 2i, x2 )

Liv(k + 28, X) n~:{2l Liv(2k + 409 - 2i, X2 )

(d) The integral factor

M(h, x, k + 209) = II Mq(h, X(q)q-k-23)
qEP(h)

(3.44)

is a finite Euler product , extended over prime numbers q from the set P( h) of prime
divisors of the number N and of all elelnentary divisors of the matrix h. The important
property of the product is that for eacb q we have that M q ( h, t) E Z[t] is a polyno­
mial with integral coefficients. The explicit form of it is insignificant for our purposes;
however, one can find interesting explicit formulas for such polynomials in [Rag3], (Ki2].

3.5. NormaIized Siegel-Eisenstein series. We introduce here three types of
norrnalized Siegel-Eisenstein series in order to give a precise statement on their holomor­
phy properties with respect to the variable S , the properties of positivity of matrices
eenumerating the summands in their Fourier expansions, and also the algebraicity
properties of the Fourier coefficients:

G*(z,s) = G*(z.Sj k, x, N) =
N*m(k + 209)/2imk2-m (k+l)7l"-m(41+k)r(lm,s)-1 x

[m/2]

X Liv(k + 28, X) II L'N(2k + 43 - 2i, X2)E(-(NZ)-l, s)det(v'Nz)-k =
i=l

[m/2]

N m (k+23)/2r( k, S)LN(k + 209, X) II LN(2k + 409 - 2i, X2)E*(Nz, s),
i=l

(3.45)
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with

E*(Nz, s) = E( _(NZ)-l ,s)det(Nz)-k = N- km /2EIW(N),

I'(k,s) =
(m/2)

i mk2-m (k+1)7r- m (ß+k)r(lm, s)-lf((k + 28 + h)/2) II f(k + 2s - j) =
j=l

{

f m(k + s)r(s + (k - (m/2) + fL)/2), if m is evenj
imk2-m(k+1)7r- m(,,+k) X

f m(k + s), otherwise.
(3.46)

H m is odd then we put G+(z,s) = C-(z, s) = G*(z,s). H m is even then we define (
with Il = e((m/2) + k))

G-(z, s) = reCk + 28 - (m/2) + jj)/2)-lG*(z, s), (3.47)

iJ'7r(1/2)-k-26+(m/2)

G+(z, 8) = f((l _ k _ 28 + (m/2) + jj)/2) G*(z, s) =
(3.48)

2iJ'r(k +2s - (m/2)) cos(7r(k + 28 - (m/2) - jj)/2) C-( )
(27r )k+2,,-(m/2) Z, 8 .

We will see in §3 of the next chapter that the normalizing factors in fonnulas (3.45),
(3.47) and (3.48) are c10sely connected to those of the Dirichlet L-series and the standard
zeta functions (for even m).

Now we reformulate proposition 3.4 for the normalized series G*(z, s)

where

with

G*(z,s) = L b*(h,y,s)em(hz),
hEA m

b*(h, y, 8) = W*(y, h, s)f*(h, 8)Liv(h, X, k + 2s)M(h, X, k + 2s),

(3.49)

f*(h,s) = r-(lm, s)-lr-(h, s),

W*(y, h.s) = Nm(,,+k-K)imk2-m(k+1)7r-m(.!I+k)em( -ihy)W(Ny, N-1h, s) =
imk2-m(k+1)7r-m(,,+k)em( -ihy)TV(y, h, s).

The factor M(h, X, k + 2s) is given by (3.44) ,and for r is even we have that

[(m-r)/2]

Liv(h,X, k+2s) = Liv(k+2s-m+(r/2),XXh) II Liv(2k+48-2m+r-1+2i,X2
)

i=l
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and for r odd

[(m-r-l)/2]

LN(h, X, k + 28) = TI LN(2k + 48 - 2m + r - 1 + 2i,X2
)

i=I

3.6. Theorem (on holomorphy properties of the Fourier eoefflcients ol the Siegel­
Eisenstein series, see [Fe], theorem 9.1) Let 21N, N > 1. Then
(a) H X2 =f:. 1 then tbe funetion C* (z , 8) is an entire lune tion oE the variable 8;
(b) Suppose tbat X2 is trivial, then we have

(bI) iE eitber 2k ~ m and m odd or 2k ~ m and m is even , but (m/2) + k is odd
Ci. e. p. = 1 ), tben tbe funetion C* (z , s) is an entire Eunction of the variable s;

(b2 ) iE 2k ~ m and both numbers m and (m/2) + k are even (i.e. J-l = e(m) = 0)
then the function C*( z, 8) is an entire function of the variable s with the exc1usion oE a

possible simple pole at tbe point 8 = (m + 2 - 2k)/4;
(ba) if m > 2k 2:: 0 then the Eunetion C*(z, 8) is an entire Eunction oE the variable s

with possible exc1usion oE simple poles at those points s for whicb 28 is an integer and
[(m - 2k + 3)/2] ~ 25 ~ (m + 1 - 2k)/2 ;

(b4 ) if k = 0 tben tbe function C*(z, s) has a simple pole at the point s = (m+ 1)/2
iff X is trivial, and in this eBSe we have that the Eunction

ReS,,=(m+I)/2C*(Z, s; 0, 1, N)

oE the variable z is a non-zero eonstant.
3.7. Theorem. (On positivity properties ofFourier expansions oE tbe normalized

Siegel-Eisenstein series). Assume tbat 2k > m and define tbe numbers A(X), B(X),
C(X, k) as follows:

(a) H X2 is not trivial, m is even and p. = eCk + (m/2» then put

A(X) = B(X) = 1 + (m/2), C(X, k) = (m - 2k + 2 - 2p.)/4j

(b) HX 2 is trivial, m is even and p. = eCk + (m/2» then put

A(X) = B(X) = (m/2), C(X, k) = (m - 2k + 2 - 2p.)/4j

(e) H X2 is not trivial, m is odd,then put

A(X) = B(X) = (m +3)/2, C(X, k) = [(1 +m - 2k)/4];

(d) If X2 is trivial, m is odd, then put

A(X) = (m + 5)/2, B(X) = (m + 1)/2, C(X, k) = [(3 + m - 2k)/4Jj

under these notation and assumptions the Eollowing positivity properties oE matrices
h E Am enumerating the Fourier coefficients oE the series C*( z, 8) are valid:

1) if s ~ 0,8 E Z and k + 28 2:: A(X) tben

C*(z,s) = L b*(h,y,s)em(hz),
A m 3h>O

(3.50)
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2)if k + S - fit E Z l k + 09 - fit :::: 0 (~= (m + 1)/2), S ::; C(X, k) tben

C"'(z,s) = L b'''(h,y,09)em(hz),
Arn3h~O

(3.51 )

Tbe proof of the theorem 3.7 is contained in the book of P.Feit [Fe], theorems
14.l.A-14.l.F and is based on a detailed investigation of poles and residues of the r­
factor r"'(h, s) and of the DiricWet L-function L*(h, X, k + 2s), carried out in [Fe] in
terms of the functions J(n, 09) = r(n + 09 )/f(s), which for positive integers n turn out
to be polynomials with zeros gjven by 09 E /Z, s ::; 0,09 + n > O. It ,was established in
[Fe] that the factor r"'(g,s) = r(h,09)/f(1 m ,s) is equivalent (up to multiplication by
an invertible entire function) to a certain explicitly given polynomial in C[o9] (see [Fe],
§11). It follows also from this calculation that

(a) if X2 is trivial, m is odd and s = So = (m+2-2k)/4 then the function C"'(z,s)
has a pole at the point s = So such that the residue

Res,,=.!Io C"'( z, s) has a non negative Fourier expansion (3.52)

(3.53)

(theorem 14.l.C)j .
(b) if X2 is trivial and m is ocid then the function C"'( z, s) is finite at the point

s = So and has a non negative Fourier expansion.
It is essential for our purposes to reformulate the corresponding statements for the

series C+(z,s) and C-(z,s) (see(3.47),(3.48)), which are obtained from C"'(z,s) by an
additional nonnalization . The following theorem is an immediate consequence of the
theorem 3.6 on holomorphy and the properties (3.50)-(3.52) .

3.8. Theorem (on Fourier coefRcients witb positive matrix numbers). Let m is
even, 2k > m. Then:

(a) For 209 to be an integer, s ::; 0, k + 209 ~ 1 + (m/2) tbere is tbe following Fourier
expanSIon

C+(z,s) = L b+(h,y,09)em(hz),
A m 3h>O

where for s > (m + 2 - 2k)/4 in (3.54) non-zero tenns only occur for positive definite
h > 0, and for a11 s from (a) with h > 0, h E Am the following identity holds

b+(h, y,s) = W"'(y, h, s)Lt(k + 2s - (m/2), XXh)M(h,X, k + 2s),

with
L+( )= 2i6f(s)cos(7r(s-8)/2)L ( ~)

s, X (211'").!I N S, X

is the normalized Dirichlet L-function , 8 = 0 or 1 according to X( -1) = (_1)6, tbe
factor M( h, X, k + 209) being defined by (3.44),

W"'(y, h, s) = 2- m "dethk+2.!1_"clet(411'"Y).!IR(47rhYj -Sj ~ - k - s),

provided s is an integer, with R(Yj n, ß) defined by (3.33), and b+(h, y, 8) = 0 jf s ~ Z.
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(h)H 28 is an integer with k + 28 ::; m/2, k + 8 ~ I'\, then there is the following
Fourier expansion

C-(Z,8) = L b-(h,y,s)em(hz),
Am3h~O

and for a11 s from (h) with h > 0, h E Am tbe following identity holds

b-(h, y, 8) = W*(y, h, s)LN(k + 28 - (m/2), XXh)M(h, X, k + 28),

where

(3.53a)

L+(s,X) = LN(s,X),

W*(y, h,8) = 2- mK det(47ry)K-k-sR(47rhy; -8j k + s - 1'\,,8),

provided 8 + k - K. is an integer, and b- (h, y, s) = 0 otherwise.
The proof is deduced from the expansions (3.49) if we remember the definition of

the normalizing factors and the positivity property from the theorem 3.7. We also note
that by (3.41)

W*(y, h,s) = em ( -ihy)w(27rY, hj k + s, s)x
x (dety )K-k-30+(hy)k+3-K+q!40_( hy)3-K+p!4 '

and then take into account the formula (3.38) for the critical values of the function w .
In case of the odd panty 28 E Z we get vanishing of the Fourier coefficients because of
the r-factors in (3.47), (3.48).

§4. Holomorphic projection operator and the Maass differential operator

4.1.Holomorphic projection operator. We start with describing a vector space
on which this operator acts. A function

is called a COCJ-modular form of weight k on the group r(f(N) with a Dirichlet character
'lj;modN if the following automorphy condition is satisfied:

F((az + b)(cz +d) -1) = "p(det d) det (cz +d) k F(z)

for all

I E (: ~) E rg'(N)

(compare with §1, (1.11)). The space offunctions F with the above condition is denoted
by M~ (N, 'lj; ). For all F E M~ (N, 'lj;) there is the following Fourier expansion

F(z) = L A(y, h)em(hx),
hEA rn

(4.1)

where A(y, h) are same COO-functions on Y . The Petersson inner product is defined for
an arbitrary holamorphie cusp form f E S~(N, tf;) and F E M':n(N, 'lj;) by

{I, F}N = r !(z)F(z)detyk-m- 1dxdy,
14J o(N)
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where if>o(N) = fJm/ro(N) is a fundamental domain for the group ro(N).
We call a function F E M~(N, 1/;) a function of a hounded growth if far each e > 0

the follawing integral canverges:

(4.2)

(4.3)

where
x = {x E Mm(R)ltx = x, lXiii ~ 1/2 far all i,j},

Y = {y E Mm(R)lty = y > O}.

Respectively, we call a functian F E PA ~ (N, 1/;) a function of a moderate growth if far
all z E Jj m and for all sufficiently large values of Re( s) A> 0 the integral

{ F(w)det(w - z)-k-126Idetlm(w)k+6dxw
lf)m

is absolutely canvergent and admits an analytic continuation over s to the point s =
O. The last definition may differ from a traditional oue; its meaning is clarified by
the following result (theorem 4.2), which provides a refinement of theorem 1 of the
Stunn's paper [St2J. It will follow from the proof that all functions of bownded growth
automatically turn out to be of a moderate growth in the sense of definitions (4.2), (4.3)
given above.

4.2.Theorem. Let F E M:n(N,'IjJ) and k > 2m. Put for h > O,h E Am

a(h) = c(k,m)-ldet(4h)k-(m+l)/2 [ A(y, h)em(ihy)det yk-l-m dy, (4.4)

with
c(i, m) = r m(t - (m + 1)/2)1r-m(t-(m+l)/2),

and A(y, h) being coefIicients of tbe expansion (4.1) and suppose that tbe integral (4.4)
is ahsolutely convergent. Define the function

Hol F(z) = :E a(h)em(hz).
A m 3h>O

(4.5)

Then
(a) jf the function F E M~(N, 1/;) is of a bounded growth then tbat Hol F(z) E

S:n(N, 1/;).
(h) If tbe function F E M ~ (N l 1/1) is of a moderate growth and tbe expansion

(4.1) contains only terms witb positive definite matrices h E Am,then we have tbat
Hol F(z) E M~(N, 'lj;).

In both cases the following equality is valid:

(g, F)N = (g, Hol F)N. (4.6)

Remark. The cusp form Hol F is uniquely defined by (4.6) under the assumptions
of (a), but in (h) tbis equality is not sufIicient to identify the modular fonn Hol F. For
example, (4.6) does not change if we replace trus modular form by adding to it an
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Eisenstein series ( oE Siegel or oE Klingen type). the part (a) oE the theorem 4.2 was
established by Sturm {St2].

4.3. Poincare series of two variables ( of exponential type) of higher
level. In order to prove the theorem 4.2 we use this kind of Poincare senes introduced
by Klingen (1(13] and used by Böcherer in (Bö] instead of Poincare series of one variable
from (St2], [Gr-Za]. We consider an element (fgf) of the Hecke algebra [,m(N) with
r = r;r(N),

9 E ~ = Ll~ =

{Cl' = (~ ~) E GQ+ n GL2 m(Z[q-l ])Iv(Cl')± E Z[q±]' c Om(modN)},

where tgJmg = v(g)Jm, v(g) > O.Put

P~(z,w,g,s) = L 1/;(deta)j("z)-k-126I det(,(z) + w)k-!261, (4.7)
gErgr

'Y = (~ ~) E rgr and uk-12.1 <!!:.f u-klul-2• for u E C X
,8 E C. The series in

(4.7) converges absolutely and uniformlyon products of the type Vm (d) x Vm (d) for
k +Re(2s) > 2m + 1, d> 0,

Vm(d) = {z = x + iy E .JJmlY 2: dlm, tr('x x) :S ~}.

We also put

P~(z,w,g,s)= P~(w,z,g,s)

(b) automorphy wi th respect to both arguments:

p~(z,w, g, s) '= det Imz6det Im w"P~(z, w, g, s).

The following properties of these senes were established by Böcherer in [Bö]:
(a) symmetry

(4.8)

(4.9)

(4.11)

(4.10)
p~(,(z),,(w),g,s) =

1/'(detd1)1/'(detd2)j (,1, z)k (,2, W)k'P~ (z, w, g, s),

h (
aj bi ) r . 1 2w ere,i = Ci di E ,Z = , j

(c) action of Hecke operators:

p~(z, 1m,g,s)lk,,,,(rgr)z = 'P~(z,w,g,s) =

P~(z, w, 1m , S)lk,1,b(rgr)w,

where the subscript inclicates to which of the variables the Hecke operator is being
applied with the action defined by (1.21).

(cl) the integral representation: for all f E S:n (N, 1/') we have that

(4.12)
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with

( k )
_ m+m('5±1)-2m,,+1'-mk m('5±1)rm (k+s-(m+1)/2)

J.L m, ,S - 2 '1 7r f m (k + s) .

The proof of the properties (4.9), (4.11) is easily deduced from the symmetry rela­
tion

je"~ z)det(,(z) + w) = j(-Zj, w)det(-Zj(w) + z),

which is valid for all , E SPm(R) with

-_ [(1 m Om)],-, 0 1
m - m

(4.13)

and fgf = fgf for 9 E ß.Then (4.10) is immediately deduced from the definition (4.7).
Proof of the integral formula (4.12) is camed out similarly to that in Klingen's article
[1(15]; for this purpose we may admit that 9 = 1m • The integration in the left hand side
of (4.12) is reduced by a standard unfolcling procedure to that over the whole Siegel
upper half plane

Sjm = U-y,(<I>o(N)), 1 E f = f~(N),

where iPo(N) = .fJm/fÜ(N) is a fundamental domain for the group fü(N). The re­
qmred property follows from the integral representation

1 J(w)det(w - z)-k-12S'detlm(w)k+sdX w =
ßm

i mk 2m (m+l)-2m,,-mk Im(k + s - m - l)f(z) det !mez),

where

Im(s) = ( det(1 m - wwy'du dv =lEm

m(m±l) m(m±1) f m(S + 1 + (m - 1)/2)
7r 2 2 2

r m (s+m+1)

(4.14)

(4.15)

denotes the integral investigated by Hua Lo-I<en [HLI(], which is absolutely convergent
for Re(s) > -1, f E S:n (N, tf;) , the integration in (4.14) being taken over the generalized
unit disc

E m = {w = u + iv E Mm(C)ltw = w, 1m - ww > O}

of the degree m , the image of J)m via the Cayley transform

w ~ (w - i1 m )(w + il m )-l (w E Sjm).

In order to prove (4.14) we note that if f E S~(N, 'ljJ) then there is the following upper
estimate

fez) ::; cdet Im(w)-k/2

and the integral in (4.14) is majorated by

{ Idet(w - z)l- k - 2Re(&)det Im(w)(k/2)+Re(&)d x w,
Jßm
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which provides the absolute convergence of (4.14) in this domain for (k/2)+Re(s) > m.
Next we rewrite the integrand in (4.14) in the form

g(w)det(w - z)-k-6detIm(w)(k+6)

with the holomorphic function

g(w) = J(w)det(w - Z)-6,

wmch is integrated by use of the Cayley transform , so that (4.14) follows.
4.4. Reduction of the theorenl 4.2 to the properties of Poincare series.

We restriet ourselves to the ease of funetions F satisfying to assumptions of (b). Put
in formulas (4.10), (4.12) 9 = 1m and define a funetion of two variables K~(z, w, s) by
the equality

K~(z,w,s)= 1-L(m,k,8)-lp~(-z,w, 12 m,s).

We show that the funetion

(4.16)

(4.17)

(4.18)

obtained by analytic continuation of the right hand side to the point s = 0 satisfies to
all eonditions of the theorem, Le. it coineides with the funetion defined by (4.4) ,(4.5);
'Hol F E MZ(N, 1/') and the equality

(g, F)N = (g, 'Hol F)N.

holds for all 9 E Sr( N, 1/') . For this purpose we note that for sufficiently large value of
Re(s) the right hand side of (4.17) can be rewritten in the form of an integral over the
whole Siegel upper haJf plane .tJm of degree m:

(K~(z, w, s),F(W))N,w =
I'(m, k,s)-ldet Im(z)'l F(w)det(w - z)-k-12' ldet Im(w)k+'dx w

})m

(due to the assumption on the growth of F the integral (4.18) is absolutely convergent
for all Re(s) ~ 0). Next let us consider the subgroup

r~ = {-Y = ± nj" 1~) 17 Er} c r = r;;(N).

Then the set
{w = u+ iv E Sjm lu E X, v E Y}
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is a fundamental domain for the action of r~ on jjm, and we see that for Re(s) ~ 0
the right hand side of (4.18) takes the fonn

2J.l(m, k, s)-1 det Im(z)" [ [F(w) L det(w - z + b)-k- 12"ldet lm(w)k+.'Jd)( W =
Jx}y bEL

21'(m, k,s)-ldet Im(z)"L[ F(w)S(w - z,L; k + s, s)det Im(w)k+'dXw,

(4.19)
where L = Mm(Z) nV is a lattice in V = {x E Mm(R)[t x = x}, and the function

S(z, L; k + s, s) = L det(z +b)-k- 128 1

bEL

admits an analytic continuation to a1l sEC by means of the fourier expansion of (4.14)
and for k > m we have that

S(w - z, Lj k + s, s )1,,=0 = (-21ri) mkr m(k)-l L det hk-Kem(f(z - w)) (4.20)
A m 3h>O

Under the growth assumption on F the integral admits an analytic continuation to the
point s = 0 . This analytic continuation can be explicitly given in the form of a Fourier
expansion by means of (4.19), (4.20) using the positivity of h . As a result the function
Hol F takes the fonn

Hol F(z) = (41r)m(k-(m+l)/2rm(k - (m + 1)/2)-1 X

L deth k -(m+1)/2 r r F(z)em(h(z - w))det Imwkdxw.
A m 3h>O Jx Jy

Then the formula (4.4) follows from the obvious equality

L[ F(z)em(h(z - w))det Imwkdxw =

= em(hz) [ A(v, h)em(ihv)detvk-l-mdv.

In order to prove the remaining statements we note that the function Hol F(z)
defined by (4.17) is holomorphic and satisfies the automorphic properties with respect
to rü(N) of weight k with the Dirichlet character 1/;modN. Indeed , these properties
are satisfied by the function l(~(z,w, s) and consequently by (4.18) for Re(s) ~ 0 . But
the identity expressing the automorphy condition (1.11) does not change by analytic
continuation , and we get Hol F E Mr(N, 1/;) (for m > 1 also the I<oecher principle is
applicable) the equality (4.6) is then deduced from the definitions (4.16) and (4.17) ,
and from the automorphy property (4.12) of the Poincare series. For Re ~ 0 we get

(g,(I(~(z,w,s),F(w))N,w)N,z= (g, F)N =

(4.21 )

=(l(~(z, w, s), g(Z))N,z, F(Z))N,w.
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These equalities remain valid by the analytic continuation and we get (4.6). In the
equali ty (4.21) the property

I(~(z,w,S) K~(z,w,s).

(4.22)

was taken iuto account.
4.5. When using the fonnula (4.4) ,it is convenient to keep in mind the integral

representation (3.9) for the r-funetion of degree m ,

rn-I

r m(S)=7rm(m+2)/4 II r(s-(j/2)),
j=O

This integral representation ean be rewritten in the equivalent fonn

r m(v - (m +1)/2)detu(m+l)/2-v = !)dety)"-m-le-tr(UY) dy =

= i (dety)"-(m+Jl/2 em(i(2'lT)-luy) dXy.

Moreover if R(y) E C[Yij] is a polynomial of Y = Yij, i :::; j then for all v E Z, v > m
we have that

i R(y)(dety)v-(m+l)/2 e-t,(u y ) dX y =
,

(4.23)

R(8/8u)[rmev - (m + 1)/2)detu(m+l)/2-V),

where 8/8u = 8ij, 8ij = 2-1 (1 +8ij8/8uij). Indeed, it suffices to check the statement
(4.23) for monomials of the form

R() II a(i,j) (") Z (0 0) > 0Y = Yij ,a 'L,J E ,a 1"J _ •
i5:j

In this partieular ease this is done by application of the differential operator

II 8/8u~}i,j)

i5:j

to both sides of the equality (4.22). We will formulas (4.4) and (4.23) in a special
situation described in the theorem below.
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4.6.Theorem. Let Coo-modular fonn F E MJ:(N, 'ljJ) be a product of tbe type
F(z) = g(z)G(z), where

g(z) = L B(h)em(hz),
A m 3h>O

G(z) = L C(h)det(41ry)-nR(47rhy;.n,ß)em(hz),
Am3h~0

and F(z) satisfy one of the two conditions (a) or (h) of the theorem 4.2 and R(z; n, ß)
denotes thepolynomial (3.33) defined for any integern 2:: 0, ß E C and z = t z E Mn(C)
by

wbere
ß m = det(8ij ), (8ij = 2-1 (1 + 8ij )8/8ij z, i ~ j)

being the Maass differential operator. Then the following equality holds

'HolF(z) = L B(h1 )C(h2 )P(h2 ,h;n,ß)em (hz), (4.24)
Am 3h=h t +h. >0

where P(v, u) = P(V, Uj nß) denotes a polynomial of u = tu = (Uij) and V = tv = (Vij)

with tbe property
P(V, u; n, ß) =detvn(mod(Uij)) (4.25)

and P(V, u; n, ß) E Q[u, V] for any ß E Q.
Proof of the theorem 4.6 is carried out by straightforward application of the integral

formula (4.4) for the action of Hol to each of the Fourier coefficients of the function
F(z):

A(y, h) = L B(h1 )C(h2 )det(47ry)-nR(47rh2 y; n, ß)em(ihz),
Am 3h=h t +h.>O

so that we get

A(h) = L B(h1 )C(h2 )P(h2 ,h;n,ß),
Am 3h=h t +h 2 >0
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where

P(v,u) = P(v,u;n,ß) =

det(47ru )k-(m+l)/2 j
R(47rvy' n ß)det(47ry)-n+k-(m+l)/2 e (2iuy)dX y =

f m (k-(m+l)/2) y , , m

cl t(4 )k-(m+l)/2 j
e 7rU R(vY'n ß)det(y)-n+k-(m+l)/2e-truYdXy =

r m (k-(m+l)/2) y "

r m( k - n - (m + 1)/2) det u k-(m+l)/2 R(v . 8/8u,' n ß){det u(m+l)/2-k+n]
r m (k-(m+l)/2) , , ,

(4.26)

with n E Z, n ;::: 0, ß E C. To accomplish the proof it suffices to show that the function
P(v, u) = P(v, Uj n, ß) is a polynomial with the desired properties (4.25). This last
fact is deduced from the last of the equalities (4.26) and some general properties of the
differential operator 8/8u which are given below ( see also (I(15]).

4.7. Let us consider the natural representation

of the group GLm(C) on the vector space Arcm and put

p;(x) = det(x)Pr_mtx-1 (r = 0,1,'" ,m)

Then the representations P and P; turn out to be polynomial representations so that
for each x E Mm(C) the linear operators Pr(x), P; are weIl defined. We vconsider the
differential operators Pr(8/8z) and p;(8/8z) wmch associate to each C-valued function
on 5Jm a certain Mt(C) valued function on Sjm with t = (r;). In particular we put

The foIlowing differentiation rules are valid (see [ShiS], lemma 9.1):
(a) H f and 9 are any smooth C-valued functions on Sj m then

m

(h)

D.(fg) = 2: tr {t pr(8/8z)j. P~_r(8/8z)g]
r=O

Pr(8/fJz) det(z)a = cr(a)det(z)a-l P~_r(fJ/fJz),

p;(8/8z) det(z)a = cr(a)det(z)a-l Pm-r(8/8z)

(4.27)

(4.28)
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for 0' E C with
r-1

cr(0') = II (0' + (k /2)) = r r(0' + (r + 1)/ 2)
k=O rr(0'+(r-l)/2)

Now we define polynomial functions Ar(X) of X E Mm(C) by

m

det(zlm - X) = L( _1)r Ar(X)tm- r,
r=O

with a variable t. Then

m

ß(etr(uz)det(z)O') = etr(uz)det(z)O'-l L Cm-rAr(UZ).
r=O

(4.29)

(4.30)

To prove (4.30) it is sufficient to use (4.27) with f = etr(uz), 9 = det(z)O' and the apply
formulas (4.28). Indeed, .

ß(etr(uz) det(z)0') =
m

L tr[t Pr(a/az )etr(uz) . P~-r(a/az)det(z)0'] =
r=O

m

L cm-r(Q')det(Z )O'-ltr(Pr(z(a/ az)etr(uz)] =
r=O

m

L Cm_ r (a)det(z)O-l Ar (z(8/8z)e tr(uz)] =
r=O

m

L cm_r(O')det(zr~-l Ar(ZU) =
r=O

m

L em-rAr(uz)(a )det( Z )0'-1

r=O

( we note that trCab) = tr('ba) and that for each u = tu E GLm(C) one has u = tu E
GLm(C)).

In a very similar way we get the following formula for the action of an iteration of
ß:

x
m

(4.31 )

From this fonnula we deduce now the following very explicit expression for the polyno­
mial P(v, U; n, ß), which provides us with all desired informaton about it.
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4.8. Theorem. Under the assumptions and notations as in 4.5 and 4.6 the
following equality holds

P(v.u; n, ß) =
m

L C(ß; rl, ... ,rn)tr[Prl (v )P~-rl (u)] ... tr[Prn(v )P~-rn (u)],
rl,"',rn=O

where

C(ß; rl,' ", T n ) = Cm-rl (-ß)cm - r2 ( -ß - 1)· .. Cm-rn (-ß - n + 1) X

X (_1)mn+rl+.. ·+rn Crl (I\: - k)··· erl (I\: - k - n +1)
Cm (K, - k) ... Cm (K, - k - n +1) ,

and for rl = r2 = ... = r n = m we bave C(ß; m, ... , m) = 1;

(4.32)

r-l

rr rr(a + (r + 1)/2) rrr(l- a)
~=(m+1)/2, cr(a) = k=O(a+(k/2)) = rr(0'+(r-1)/2) =(-1) rr(-a)'

It is easily seen from trus fonnula that P(v, Uj n, ß) E Q[u, v] for ß E Q and that

P(v,u;n,ß) - detvn(mod(uij)

because of the homogenesity of degree m of the matrix coeflicients oE the representations
Pr, p;.

The prooE of the theorem 4.8 is then an immediate consequence of the equalities
(4.26) for which in view of (4.31) we have

R(z; n,ß) =
m

L (-1)r1 + .. ·+rnCm _rl (-ß)cm - r2 ( -ß - 1)··· Cm-rn (~ß - n + l)x

and

r m(k - (m + 1)/2) mn
r m (k _ n _ (m + 1)/2) = (-1) Gm (K - k) ... Cm (K, - k - n + 1),

and according to fonnulas (4.28)

Ar(V' 8/8u)detuO= tr{Pr(V' 8/8u)detuO] = cr(a)tr[Pr(V)det(u)O-1 P~_r(U)]'

This completes the proof for both theorem 4.8 and 4.6.
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Chapter 2: Non-Archimedean standard zeta functions of Siegel modular
forms

In this chapter we give explicit fonnulas for the special values of the standard zeta
function V( s, I, X) of a Siegel cusp fonn 1 of even degree m and of weight k > 2m + 2
and then construct a non-Archimedean interpolation of these special values. Multiplying
V( s, I, X) by certain r-factors we introduce the normalized standard zeta functions

V*(s,l,x), V+(s,l,x), V-(s,l,x),

for which we then formulate our results. First we state a theorem on holomorphy
properties of the function V*( s, I, X) (theorem 1.3). This theorem provides a general­
ization of a result of A.N.Andrianov and V.L.Kalinin [An-K] on analytic properties of
the standard zeta function j it is proved in §3 by use of a detailed study of poles and
residues of Eisenstein-Siegel series done by Shimura [ShilO] and P.Feit [Fe]. Then we
turn to algebraic properties of the special values

V+ (s, I, X) for s = 1 2 ... k - v - m
(I, I) ",

and
V-(s,l,x) 1 k 0(I, I) or s = 1 - + v + m, ... , -1, ,

where (I, I) denotes the Petersson scalar product, v = 0,1 according as X( -1) = (_1)V
( Theorem 1.4). The main result of the chapter is contained in Theorem 1.6 establishing
the non-Archimedean interpolation of these special values by means of the theory of 000­

Archimedean integration. We construct the non-Archimedean standard zeta functions
.VC+(x, f), VC-(x, I) as S-adic Mellin transfonn of certain measures obtained from the
special values. In their turn, these measures come from complex valued distributions of
§2. After regularization given in §4 these distributions become bounded measures taking
(p-adic) algebraic values at certain points and they provide us the non-Archimedean zeta
functions of the Theorem 1.6.

§l.Description of the non-Archhnedean standard zeta functions

1.1. The set, on which our S-adic zeta functions are defined, is the p-adic analytic Lie
group

Xs = Homcontin(Z~, C;)
.....

where C p = Qp is Tate field (completion of an algebraic closure of the p-adic field Qp),
so that all integers k can be identified with the characters x; : y......-+ yk. Put

where v = 1 or 2 according as p > 2 or p = 2 , then there is the decomposition

X s = X((Z/pVZ)X x TI Z;) x X(U).
q-:FP

(1.1 )
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The analytic structure on Xs is defined by means of the isomorphism

with 4J(x) = x(l +pli), 1 +pli being topological generator of the multiplicative group U
(see §4 of chapter 1). Elements X of the torsion subgroup X10 rs C X s form a discrete
subgroup and can be identified with primitive Dirichlet characters X with SeX) c S,
where S (X) is the support S (C(X)) of the conductor of X. Recall that every bounded Cp ­

analytic function F over X s is uniquely defined by its values F(XoX) with Xo fixed and X
being taken in X s with possible exclusion of a finite number of them in each analyticity
component of the decomposition (1.1). This condition is satisfied , for example, by the
set of characters X E X10rs with a S-complete conductor (Le. with SeX) = S) and even
under the additional assumption that X2 is non triviale this remark will be used in the
sequel).

Let J.L be a bounded Cp-valued measure on Z; (see [Man4], [Man6J, [V1] ), then
its non-Archimedean Mellin transfonn is given by

LJl(x) = p.(x) = r x dp.(x) (x E Xs,
Jz~

and defines a bounded Cp-analytic function

L p : Xs -+ Cp

1.2. Let

(1.2)

. (1.4)

f = I: a(e)em(e z )
e>o

be a Siegel cusp form of the even degree m of weight k on the congruence subgroup

with a Dirichlet character 1/J mod C. Suppose that f is an eigenfunction of the global
Hecke algebra

.cm(C) = 0 q ,(c.c;n(C) (1.3)

with the eigenvalue given by a homomorphism A : .cm(C) -+ C (Le. fIX = A(X)! for
all X E .c~(C)). Let

be a m+ 1-tuple of Satake q-parameters) which uniquely detennine A so that the relation

(1.5)

holds. Recall that the standard zeta function of f with a Dirichlet character X mod N
is defined as the Euler product

V(s,/,X) = TI V(q)(s,!,X),
q,q)'c

(1.6)
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with

n(q)(s,J,X) =

{(1 - X(q~~(q)) fi (1 _X(q)tP(~.ai(q)-I) (1 _X(q)tP;~)ai(q)) } -I ,

the product being absolutely convergent for Re( s) > 1 + ffi. Together with (1.5) let us
consider the following three types of nonnalized zeta functions

m

V* (s, I, X) = (27r )-m(3+1:-(m+l)/2)r((s + 8)/2) TI r( s + k - j)V(s, /, X), (1.7)
j=l

m

V-(s, /, X) = (27r)-m(3+k-(m+l)/2) TI res + k - j)V(s, I, X),
j==l

(1.8)

(1.9)V+( 1 )= 2i
6
r(s)cos(7r(s-8)/2)v_( f )

oS, ,x 27ri)" s, )X

where 8 = 0 or 1 according as ~X(-l) = (_1)6.

1.3. Theorem ( on analytic properties oE tbe standard zeta functions). Let X be
a Dirichlet character modulo a positive integer N ( not necessarily primitive) and

/ = L a(~)em(~z) E Sr(C,~)
A m 3e>O

be a Siegel cusp form of weight k ;::: m + 1I where 1I = 0, 1 witb X( -1) = (_1)1I and
assurne tbat the condition Cdet2~olN is satisned for some matrix ~o such that a(~o) -=f O.
Then the function V*(s, I, X) admits an analytic continuation whioch is holomorphic
for alloSE C with the possible exc1usion oE a simple pole at t}le point oS = 1 in case
when the character X2~2 is trivial.

This theorem is proven in §3 by means of the detailed study of poles and residues
of the Siegel- Eisenstein series as functions of the variable s, see 3.7 of chapter 1, and
also [Fe], [ShilO].

1.4.Theorem (Algebraic properties of the special values of standard zeta func­
tions)

a) For all integers oS with 1 :::; s :::; k - fJ - m and X2 non-trivial for s = 1 we have
that

(I, /}-l V+(s,/,X) E K = Q(/,Af'~'X),

wbere K = Q(J, Ai,,,p, X) denote the neId generated by Fourier coefflcients oE f ,by the
eigenvalues Aj(X) 01 Hecke operators X on J, and by the values of the cbaracters X
and'lj;.

b) For a11 integers s with 1 - k +8 +m :s; s :s; 0 we bave that
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Remark. (a) It follows from tbe definitions (1.7-(1.9) and the theorem 1.3 tbat
under the assumptions of the theorem 1.4 we have that 1'+(s, /, X) = 0 for sEN,
s ~ 8(mod2) and 1'-(s, /, X) = 0 for s _ 8(mod2), s E Z, s ~ O.

(b). From the proof of the theorem 1.4 in §3 (see 3.15) one can substract more
explicit infonnation about tbe action of Galois automorphisms Cf E Aut( C) on the
special values (1.10), (1.11): namely, that for some non-zero constant fl(A, k, 'lf;) E C X

depending only on k > 2m+2, the character t/J and the homomorphism A : ,em(c) ~ C
from the theorem 1.4 we have that

[
G(1/JX)m-l 1'+(s, /, X)] U_ G('lj;uXu)m-11'+(s, /u, XU)

Jl(A,k,'lf;) Jl(AU,k,1/JU)

[
G('lf;X)m-l1'-(8, f, X)] U= G(1/JuXu)m-11'-(s, /u, xU)

Jl(A, k, 'lf;) Jl(AU, k, 'lj;u)

(1.12)

(1.13)

with G('lf;X) being the Gauss sum of tbe primitive Dirichlet series associated witb 'lj;X.
Also, tbe following equality bolds

(trus means that the Petersson scalar product (I, f)c differ from the constant Jl(A, k, 'lj;)
only by an algebraic multiple from the field K 0 = Q(/, A, 'l/J) generated by Fourier
coeflicients of f and tbe values of A, t/J. In (1.12), (1.13) we adopted the standard
notation

fU = L a(~)Uem(~z) E Sr(c, 1/JU)
Arn3~>O

for the action of Cf E Aut(C).
The theorem 1.4 is proved in §3 (theorem 3.2), and the algebraicity properties ,

analogous to (1.12), (1.13) are established in 3.15. For some of the special values s in
theorem 1.4 these properties where discovered in ealier works· of M.Harris [Har1] and
J .Sturm [St2].

1.5. Before giving the precise statement of the main result we make some additional
assumptions on I. First of all we assurne that f is p-ordinary (with respect to a fixed
embedding i p : Q ~ C p ). This means that

(1.14)

Gf course, for q =f p this condition is automaticaly satisfied because of the relation
(1.14), and for q = p we may consider in (1.14) instead of ao(q) any of the numbers

(1.15)

because these numbers are permutated under the action of Weyl group W m described
in 1.6 of chapter 1. For this purpose it suffices to apply several substitutions of the type
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Recall that these numbers are inverse roots of the characteristic p-polynomial for the
spinor zeta function Z(s, f) of the cusp form f (see §1 of chapter 1):

Z(p)(S,f)-l = Qf,p(P-(J) =

1 - Af(P)P-(J + ... + p2
m

-
1
(mk-m(m+l)/2)p-2

1n

(J =
m

(1 - aop-(J) rr rr (1 - 0'00:'i
1

••• O'irP-(J),
r=11 ~i1 < ...<ir~m

with
Af(P) = Af(T(p», T((p)) = L (rgf)

lJ(g)=p

being the Hecke opertor for the group f = rü(C), tgJmg = v(g)Jm.
For eaeh q .r C we fix any (m + l)-tuple with the eondition (1.14) and define by

multiplieativity the functions ai(n) for n E N, (n, C) = 1. Moreovere we fix any half
integral symmetrie matrix ~o such that a( ~o) =I 0 and normalize f by the condition
a( ~o) = 1. Then a(~o) E Q for all Fourier coefficients. Suppose also that the fixed set 8
of prime numbers contains the support (Le. all prime divisors) of the number 2 det(2~0)

, qo being the level of ~o , and our last assumption is that

Put

8 n 8(C) = 0, i. e. (C, Mo) = 1, with Mo = rr q.
qES

No = 4qoM!:-lC, in = 2m
.

1.6. Main theorem. Let

(1.16)

fez) = L a(~)em(~Z) E Sr(C, 1jJ)
€>o

be a cusp form of weight k with Dirichlet cbaracter tf; mod C which is an eigenfunction
of the Hecke algebra .cm ( C) with egenvalues given by a bomomorphism A : .cm ( C) -+ C.
Suppose that for the cusp form f the conditions (1.14) and (1.16) are satisfied . Then
for a positive integer c > 1 with tbe condition (e, No) = 1 there exist bounded analytic
functions

VC+(x,f), VC-(x,f) : Xs -+ C p , (1.17)

uniquely defined by tbe following conditions: a) for a11 Dirichlet cbaracters X E X10 rs

with a S-complete conductor Cx (i.e. S(x) = S) and for all integers s witb

1 ~ s :::; k - v - m the following equality holds

VC+(xx;, f) =

G (1 ) Cm«(J+k-l-m) C(",I.-)(J
. [ m m, X X If"X (1 _ (-...I.)2( ) -2(J)
zp ao(Cx )2 G('lj;X) X'f" C C x (1.18)

x ~ {(I - (V>X)o(q)qB-l )/(1 - (XV> )O(q)q-B)} :D~j:'~)xl
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b) for a11 Dirich1et characters X E X10rs witb S(X) = S and for a11 integers 8 with
1 - k + v +m :::; 8 :::; 0 the following equality holds

where

VC-(xx;, f) =

G ( ) Cm (,,+k-l-m) V-( !-)
. [ m 1m ,X X (1- ( ",.)2( ) 28-2) 8, ,X ]
t p no(C

x
)2 Xo/ c c (!, f) ,

(1.19)

(1.20)

Gm(~, X) = :E X(det h)em(eh/Cx )
hEMm(Z) modCx

denotes tbe Gauss sum oE degree m oE the primitive Dirichlet character ('lj;X)o mod
C1/Jx associated with 'lj;x mod C Cx with the normalized zeta functions V±(8, f, X) being
defined by (1.8), (1.9).

1.7. Proof of the main theorem and of theorems 1.3 and 1.4 is based on the relation
of the flUlction V( 8, f, X) with a eonvolution of Rankin type given by

-(,,+k-l+V)/2) m
2a(~o )det~o V(s, f, X = Lc Cx (s + 2"' ?/Jxeox) x

(m/2)-1

X II Lccx (28 + 2i, ~2X2»L((8 + k - 1 + v)/2, /, B~e~(X),
i=O

where X is a Dirichlet eharaeter, v = 0 or 1 aeeording as X( -1) = (_1)V, eo heing a
fixed half integral symmetrie positive definite matrix. Also the left hand side of (1.20)
is an Euler produet associated with the homomorphism A: 12m

( C) -+ C, and the
right hand side of (1.20) is eompletely determined by the Fourier eoefficients of f. The
non-Archimedean part of the eonstruction is based on the theory of distributions and
S-adie integration.

Using a general criterion of finite additivity we eonstruct complex valued distribu­
tions assoeiated with V(8, /, X) by defining their values at Diriehlet charaeters in §2. We
prove in §3 an (Archimedean ) integral representation for these values , which enables us
to express the distributions in terms of the Fourier coefficients of Siegel-Eisenstein senes
from §3 of the previous chapter by applying the holomorphy projection operator (see §4
of chapter 1). After a regularization given in §4 these distributions become bOlUlded C p

-valued measures VC+, vc- taking algebraic values at compact open subsets of ZS , and
the proof of the main theorem is then eompleted by application of the non-Arehimedean
Mellin transform.

§2. Complex valued distributions associated with standard zeta func­
tions of Siegel modular fornls

2.1. Let as in 1.2

f = :E a(e)em(~Z) E Sr(C,?/J)
A m 3€>O

(2.1)

be a cusp form of degree m weight k with the Dirichlet character X 1f; modulo C on
the congruence subgroup r;f(C), which is an eigenflUlction of alilocal Hecke algebras
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..e = .er; with q not dividing the level C of I, so that the Satake q -parameters G'i =
G'i( q) (i = 0, 1,' .. ,m) are defined for all q 1c. We extend by multiplicativity definition
of the functions G'i(M) to all values of the argument M prime to the level C.

Now for the fixed set of prime numbers S = {q} not dividing C we define complex
valued distributions on the profinite group

Gs = TI Z;
qES

associated with the funetions V( s, /, X). The erueial role in the construetion is played
by the eusp form (1.50) , ehapter 1:

10 = lo,s = L QO(M)-l fIV+(M).
MIM~-l

with Mo = nqEs q, m= 2m
• Reeall that if

/o,s(z) = L ao(()em((z) E M~(NMm-1,1/J)
A rn 3e>0

(2.3)

(2.4)

be Fourier expansion of the function lo,s( z) then there is the folowing multiplieativity
property of its Fourier coefficients: for all M E N with S( M) C S

(2.5)

our construetion of the distributions is based on the identi ty (1.20) expressing V( s, I, X)
in terms of the Rankin type convolution:

()
-(,,+1;-1+11)/2 m)

2a (0 det(o V(s, /, X) = LCM(s + 2' 1/Jxeox x

(m/2)-1 (2.6)
x TI Lc M(2.9 + 2i, 1/J2 X2

) )L( (.9 + k - 1 + v)/2, I, B~~~ (X»,
i=O

where X mod M is a Dirichlet eharacter modulo M v = 0, 1, X( -1) = (-1) 11 ,Am :1 ~o is
some appropriate half integral symmetrie positive definite matrix, .9 E C is a complex
number with Re(s) ~ O,qo is the level of eo , qo E Mm(Z). Put

to = qoe;l, No = 4QoCMo
m-1

.
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2.2. Proposition. Let sEC, Re( s) > O. Tben there exist a complex valued
distribution V s on Gs whicb is uniquely detennined by its values on Diricb1et characters
X mod M with SeM) c S given by

2a(€0)dete~(1I+k-l+V)/2V(s, I, X) =

G'o (M;;-lM')-l (CM;;-l M,)m(211+2k-2-m)/4 cm(2v+m)/4 X

(m/2)-1

LNo(s+ ;,7Pxeox) TI L No (2s+2i,tP2X2)x
i=O

X det((2qo)-1/2€0)(m/2)+v L((s + k - 1 + v)/2, 10IV(C), B~~~ (XM )IW(NoM'»,

where

10IV(C)(z) = 10(Cz),

B~~~ (XM )IW(NoM') = det( viNoM' z)-(m/2)-vB~~~ (XM)( -(NoM')-l),

where M, M' are sufflciently large positive integers witb the condition

(2.8)

MoCxlM, MMoC~IM'

so tbat S(M) = S(M') = S with Cx being tbe conductor oE the character X and X111

denoting the Diricb1et cbaracter modulo M induced by X.
ProoE. According to a general criterion of finite additivity applied for the family

of functions DlIJM : (Z/MZ)X -+ C (see [Ka3], [Maz-SD]) it suffices to check that the
right hand side of (2.7) is independent of M and M'. The independence of M obviously
follows from the S-completeness of M (i.e. M is divisible by all primes from s.rn order
to show the independence of M' we put

M' = AB, A = M~C~, B = M1 = M'(MoCx )-2

and use the equality

(2.9)

in which
g(z) = B;~~ (XM )IW(NoM5Cx)-2) = L b(e)em(€z).

A m 3e:2:0

It follows now from the definition (2.33) of chapter 1 and from (2.9) that

L(s, 10IV(C), B(~) (XM )IW(NoM'» = M 1
m(2v+m)/4 L(s, 10 IV(C), gIV(M1» =2eo

M 1
m«2v+m)/4-1I)C-ms L a(M 1e, 10 )b( Ce)det€-lI. (2.10)

A. m 3h>O
mod-

Ta get the desired independence of M' ( or of M 1 ) we use the multiplicativity property
(2.5): ao(M€, 10) = G'o(M)ao(e, 10) Then after substititution of (2.10) into (2.7) with s
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equal to (s + k - 1 + v)/2, M' = MJC~MI we easily see that MI dissapear , and the
proposition follows.

Another way of proving the proposition is to calculate explicitly the integrals
'D~,M(X) of the Dirichlet characters X which is done below with some additional technical
assumptions.

2.3. Proposition. Let X mod M be a primitive Dirich1et cbaracter with an S­
complete conductor Cx ' CxlM (i.e. SeX) = S(Cx) = S). Assume also that S(2deteo) C
S. Then there is the following identity

V () - Gcx (1 m , X) . C;(2~+2k-2-m)/4 V( f-)
~,M X - C;:2/2 O'o(C

x
)2 S, ,x

where
Gcx (1 m,X) = L x(det h)emCeh/Cx)

hEMm(Z)modGx

is the Gauss sum of degree m of tbe character X. .
The proof of the proposition 2.3 is based on the transformation formula (2.4) of

the previous chapter for the theta function

H we now take into account that

Gcx(lm, X)Gcx(lm, X) = X( _1)mc;2, B~~~(X) = Bk:\x)IV(2),

then (2.12) transforms to

B(~)(x)IW(4qoQ2)=
2eo

( _1)m Gcx (1m, X) d t( 1/2 c-1 )(m/2)+vB(V) (-)
X Cm2 e qo ~o 2€o X ,

X

Next we write:

so that

(2.12)

(2.13)

(2.14)

and if we substitute (2.14) into (2.7) we get exactly the desired identity proving the
proposition.

Now we obtain integral representations for the values of the distributions V",M
with Re(s) » 0 using the identity (2.29) of the previous chapter from which follows
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that for all Dirichlet ehaxaeters X mod M with the eondition MalM

2a(~a)« 47r)mdet(ea)-(.!+k-l+V)/2rm«s + k - 1 + v)/2) D(s, f, X) =
(m/2)-1

LNo(s + ; ,VJxeox) TI L No (2s + 2i,1f'2 X2»X
i=O

x (fP(z), B;~~(z; X)E(z, (09 - k + m + V)/2»N,

where

(2.15)

E(z,s) = E(z,s; k - (m/2(-v,'lj;xeox,N)

is the Siegel-Eisenstein senes of weight k - (m/2) - v of level N . 4qoCM2 with the
Diriehlet chaxaeter 1f'XeoX introdueed in 2.4 of chapter 1.

2.4.Proposition. For sEC, Re ~ 0 there is the following integral representation
for the distributions of the proposition 2.2:

2a(~0)« 47r)deteo)-(.!+k-l+v)/2rm«s + k - 1 + v)/2) D.!,M(X) =

Cm(.!+k-l+v)/2 0'0(M~-l M')-l (Mom-l M,)m(2.!+2k-2-m)/4det(q~l /2 eo )(2v+m)/2 X

(m/2)-1

X LNo(S + ;, 1f'Xeox) TI L No (2s +2i,1P2 X2 »X
i=O

x (ft(z)IV(C), B(~) (XM )IW(NoM')E(z, (09 - k + m + v)/2»)N,
2,,0

(2.16)
where M, M' are sufIieiently large positive integers with the condition

MoGxIM, MMoG~IM'

so that SeM) = SeM') = S with Gx being the conductor of the charaeter X ,CxIM and
XM denote the Dirichlet cbaracter modulo M induced by x.

The proof of the proposition reduees to applieation of the integral representation
(2.15) to the eusp fonn 10 IV(G) E Sr(G2 Al~-l, t/J) of level G2 M;;-l defined by (2.7).

The next important ingredient of our construction is an application of the trace
operator to modular forms of level N = GNoM' in the above integral formula, whieh
enables us to reduce all eonsiderations (e.g. the integral formula) to the ease of the fixed
level GNo.

2.5. The trace operator. We define the trace operator TrgZ~MI acting on (not
neeessarily holomorphie) modular forms of the degree m weight k with the DirieWet
ehaxaeter VJ on the eongruenee subgroup rü(CNoM') by the following equality

FITrCNoM' = " FI (1m 0).
CNo 6 NoCu 1m

t u=uEMJn(Z)mod M'

Then the sealar product in (2.16) transforms in the obvious way:

(ft,F)CNoMI = (/t, FITrgZ~M')CNo'

(2.18)

(2.19)
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Now we give a useful description of the action of the trace operator on Fourier expansions
by means of the operator U(M'):

FIU(M')(z) = (M,)-m(m+1)/2

tu=uEMn}(Z)mod M'

F((z + u)/M'). (2.20)

(in the notation of the previous chapter this operator coincides with the Frobenius
operator II+(M') extended by multiplicativity to positive integral values of M' prime
to the level C: FIU(M') = FIII+(M')). H

F(z) = L aCe, y)em(ez ),
eEA m

then
FIU(M')(z) = L a(M'e, M,-l y)em(e z ).

eEA rn

The following relation holds

FITtgZ~MI = (M,)-m(k-m-1)/2 FIW(CNoM')U(M')W(CNo),

which is immediately implied from the matrix identity

(2.21 )

(2.22)

(
1m 0) , -1 ( 0 -1 m ) (1 m -ti ) ( 0 -1m )

CNou 1m = (CNoM) GNoM'l m 0 0 M'l m GNol m 0 .

Now let us apply (2.19) and (2.22) to the integral formula (2.16) then we get

2a(eo)((47r)deteo)-(6+l:-1+V)/2rm((s + k -1 + v)/2)V.. ,M(X) =

(2.23)
(m/2)-1

X LNo(s + ;, tPxeox) II L No (2s + 2i, v,,2 X2)) x
i=O

X (M,)m(m+l-k)/2 (ft(z)IV(C), F(s, X)IU(M')W(CNo))CNo1

where
F(s,X) = B(~)(XM)IV(G). E(z,(s - k + m + v)/2)IW(CNoM'),

2 10 0

and we noted that

(2.24)

§3. Algebraic properties of special values of normalized distributions

3.1. In this section we consider only the case of even m. In order to give a
pricise statements about algebraicity properties of the standard zeta functions and of
the corresponding distributions, it is convenient to make some additional normalization
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of these values because these properties look different for the integral points to the left
and to the right of the critical line Re(s) = ~ ( in the same way as for the Riemann
zeta function).

Recall that as in §1 we have introduced the following three types of the normalized
zeta function: for K: = (m + 1)/2

V*(s, f, X) =
m

(27r)-m(8+k-lC)r((s + 6)/2) TI res + k - j)V(s, I, X),
j=l

V-(s,l,x) = r((s + 6)/2)-lV"'(s,l,x) =
m

(27r)-m(,,+k-lC) TI res + k - j)V(s, I, X),
j=l

(3.1)

(3.2)

(3.3)

V+( f )= 2iOr(s)cos(7r(s-6)/2)v_( f )=
s, ,x (27ri)" s, ,x

i 67r(1-2,,)/2

r((1 + 6 - s)/2) V"'(s, I, X),

where 6 = 0 or 1 according as ,p X( -1) = C_1)6 with 1 E Sr (C, 7/J) be an eigenfunction
of the global Hecke algebra .cm(G) = c;)q)"C.c~(C) with the eigenvalue given as a homo­
morpmsm A : Am (C) -4 C. The convenience of the *-normalization (3.1) is explained
by the fact that the standard zeta functions continued holomorphically to the whole
complex plane satisfy to a functional equation connecting

(3.4)

although the precise fonn of such an equation is known only in sorne cases [An-I(], [Bö].
The principial difficulty in dealing with the general case is that for m > 1 one lacks the
correct and reasonable definition of the Euler factors for the standard zeta function at
bad primes, Le. for q[G. In the one dimentional case these factors are provided by the
Atkin-Lehner theory [At-Le], [At-Li]' [La3] , [Lil]; however even for m = 2 there is no
such a theory.

Now we turn to the nonnalizations (3.3) and (3.3). Their convenience is illustrated
by the following result about algebraicity of the special values of (3.2) and (3.3) wmch
is proven in this section together with the corresponding statement about the special
values of normalized distributions given below in 3.3.

3.2. Theorem (Algebraic properties of the special values of standard zeta func­
tions). Assurne that tbe cusp eigenfonn f E Sr(G, 'ljJ) is nonnalized by the condition
aceo) = 1 for same eo E Am, eo > O. Then

a) For all integers s witb 1 < s ~ k - 6 - m and s :f 1 iE the character X2'ljJ2 is
trivial we bave that

(/,/)-1 V+(s,/,x) E]( = Q(!,Aj,'lfJ,x),
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where K = Q(/, AJ, 'ljJ, X) denote tbe ne1d generated by Fourier coefflcients oE 1 ,by tbe
eigenvalues AJ(X) of Hecke operators X on I, and by the values oE the characters X
and'ljJ and 1)+(s, I, X) = 0 for S ~ 8(mod2);

b) For a11 integers 8 with 1 - k + 8 + m ~ S ~ 0 we bave that

and 1)-(s, I, X) = 0 for S =8( mod2), s E Z, S ::; O.
The proof of the theorem is completed in 3.15, although we assume there that X

is a Dirichlet character modulo N (not necessarily primitive) such that 2Cdet 2~o IN for
the fixed Co E Am, CO > 0 with the condition a(~o) t= O. This restriction is insignificant
and is being avoided by multiplying the special values in question by a finite number
of Euler factors corresponding to the divisors of det 2~o which take algebraic values for
integer values of s.

3.3. Now we define normalized distributions by the following formula

m

(I, I)C1);,M(X) = (21i)-m(s+k-(m+l)/2)r((s + 8)/2) TI r(s + k - j)1)s,M(X), (3.7)
j=l

m

1)~M(X) = (I, !)c/(21i)-m(,,+k-(m+l)/2) TI res + k - j)V",M(X),
j=l

V+ ( ) = 2iOr(s)cos(1i(s - 8)/2)V- ( )
",M X 21ii)" IJ,M X ,

where VIJ,M(X) are the values of the distribution VIJ,M on the finite group

Gs = Z~ = TI z; ~ Gal(Q(S)/Q)
qES

(3.8)

(3.9)

with Gal(Q(S)/Q) being the Galois group of the maximal abelian extension of Q Ull­

ramified outside S and oo.In the definitions (3.7) - (3.9) is assumed that XM is the
Dirichlet character modulo M induced by X and SeM) c S.

The following proposition is closely connected with theorem 2.2.
3.4. Proposition. (Algebraicity properties of values of the normalized distri­

butions) Assurne that the cusp eigenform ! E S'k(C, 'ljJ) is normalized by the condition
a(~o) = 1 for some ~o E Am, ~o > O. Then
a) For a1l integers s with 1 ::; s ::; k - 8 - m and s t= 1 if the character X2'ljJ2 is trivial
we bave that

v~M(X) E [( = Q(/, AJ,,,p,X,cxi(q);i::; m, q ES),,

where K = Q(!, AJ, 'ljJ, X) denote tbe neId generated by Fourier coefEcients of ! , by
tbe eigenvalues AJ(X) of Hecke operators X on !, tbe Satake q -parameters and by the
values of tbe cbaracters X and 'ljJ .
b) For all integers 8 with 1 - k + 8 + m ::; s ::; 0 we have that
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In the prooE of the properties (a) and (b) we always assurne that the set S contains
all prime divisors of the number 2det(2~o) . According to the explicit formula of propo­
sition 2.3 for DiricWe characters X with S-complete conductors the values V~M(X) are
expressed in terms of the corresponding special values of the nonnalized standard zeta
functions V±(s, IP, X) so that in this case the proposition is an immediate consequence
of the theorem 3.2. However for the non-Archimedean construction we have to consider
all characters of fhlite order of Cs because of their unavoidable presence in the general­
ized !(ummer congruences in §4. Very explicit formulas for the corresponding values of
the distributions are given in 3.6 and can not be simply reduced to those the theorem
3.2. the proof of the algebraicity properties is completed in 3.15 together with the proof
of the theorem 3.2. Application of a fixed embedding ip : Q ~ C p to the nonnalized
distributions V~M(X) provides us with p-adic distributions ip[V~M(X)] which becomes
bounded p-adic measures after a regularization in §4 . The basic fact used in the proof
of proposition 3.4 is an integral representation for V;=M(X) which we state now in a
preliminary form in tenns of the distribution V: M(X),'

3.5.Proposition. Let 1 E Sr (C, 'ljJ), ~ be even, x be a Dirich1et character
modulo M 2:: 1. Then there is tbe following equality:

where

(I, I)CV;,M(X) = ,(M')(/tIV(C), FM,(s, X)!W(GNO))CNo , (3.10)

,(M') =2m(2k-2-m-K)i-m(l:-(m/2)-v) a(~o)-lao(Mo)m-lM'-l (GM:-1 )(k-l-m)/2,

FM' (s, x) = (qO c)-m(2.!1+m)/4det~a.!l+k-l+V)/2 det(q~1/2eo )(2v+m)/2 X

X [2-18(~) (XM )IV(C) C*(z, s - k + v +m)/2)]IU(M'),
2,0

where
C*(z, s) = C*(z, Sj k - (m/2) - v, XXeo 'ljJ, N)

is the nonnalised Siegel-Eisenstein series from §3 oE the previous chapter with N ­
GNoM' = C2M:- 14qoM'.

Tbe right hand side of (3.10) is defined and holomorphic for a11 sEC with possible
exc1usion of S = 1 in case when tbe cbaracter X2'ljJ2 1s trivial.

The prooE of the proposition follows from the definition of the nonnalized Eisenstein
series C*(z, s) which for k equal to k - (m/2) - v, s equal to (s - k + v + m)/2 takes
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the following form

G* (z, (s - k + m + v) /2) =
(4QoC2M,)m(2,,+m)/4f'(k - (m/2) - v, (s - k + v + m)/2)x

m/2

X LN(s + (m/2), XXt.o'l/J) II LN(2s + m - 2j, 'ljJ2 X2)X
j=1

x 2mK E(z, (s - k + v + m)/2)IW(N),
(3.11)

where

r(k - (m/2) - v, (s - k + v + m)/2) =

im(k-(m/2)-v)2- m(k-(m/2)-v+1)1r- m(,,+k-v)/2r m(( S + k - v)/2)f(( s +8)/2),

and it suffices to take into account the following relation for the gamma factors:

m

(21r)-m("+k-K)r((s + 8)/2) II f(s + k - j) =
j=1

2m(2k-2-m-K)i- m(k-(m/2)-v)f'(k - v - (m/2), (s - k + v + m)/2)x

x 2m(m+l)/22m(2,,+m)/2(41r)-m("+k-l+v)/2fm((s + k - v - m)/2),

which follows from the duplication formula

and the definition

(3.12)

m-l
f m(s) = 1r(m-1)m/4 II f(s - (j /2».

j=O

The statement about holomorphy follows from the theorem on holomorphy of the Eisen­
stein series G* (z, s) (see theorem 3.6 of the previous chapter) and from uniform estimates
on z E ..fJ m of the Fourier coeficients which imply that the scalar product in right hand
side of (3.10) can be defined for al1 sEC s t= 1,if 'l/J 2 X2 is trivia!.

Now we specialize the integral representation (3.10) to the case of the critical values
s (see 3.3 of chapter 1), when the confluent hypergeometrie function admit an elementary
expression in tenns of a certain polynomial. Then we use the holomorphic projection
operator Hol (see §4 of chapter 1 in order to get an integral representation for the
distributions V~M(X) in terms of the holomorphic Siegel modular forms with algebraic
( and explicitly ~ven) Fourier coefficients.

3.6. Proposition. Under the assumptions and notations of Proposition 3.4 the
following integral representations are valid
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(a)For all integers s with 1 ~ s ~ k - 0- m and s = 1 if the character X2'1j;2 is non-trivial
we have that

(I, I)C'D~M(X)= "'((M')(/C1V(C), Ft,(s, X)IW(CNo))CNo ,

Ft,(s, X) = L L d+(s, h1 , hz)em(hz);
A m 3>O Ceo[hd+ h2=M'h

b) For a11 integers s witb 1 - k + 0 + m ~ s :::; 0 we have that

FM,(s,X)= L L d-(s,ht,hz)em(hz);
A m 3>O Ceo[h t ]+h2=M'h

(3.13)

(3.14).

Tbe functions Ft,(s, X) E M(CNo,1/J) are bolomorphic Siegel modular forms with
cyclotomic Fourier coefRcients explicitly given by:
if s ~ o(mod2), 1 :::; s :::; k - v - m then d+(s, h1 , h2 ) = 0;
if s =0(mod2), 1:::; s ::; k - v - m then

d+ (8, h1 , hz) = XM (deth1) dethr deth~2.!l-1)/2P(h2 , h, s) X

x (qOc)-m(2.!l+m)/4det~~.!l+k-l+V)/2det(q~l /2 ~O )(2v+m)/2;

iE s _ o(mod 2), 1 - k + v + m ::; s ::; 0 tben d-(s, ht, h2 ) = 0;
if s ~ o( mod 2), 1 - k + v + m ~ s ::; 0 tben

d-(s,h1 ,h2 ) = XM(deth 1 )dethr p (h 2 ,h,l-s)x

X LN(s,xxeo'ljJ~h2)M(h,xxeo7jJ,s + (m/2))x

(3.15)

(3.16)

P(v, 'U; 8) E Q [v, 'U] denotes a polynomial oE entries of matrix variables v = (Vij), u =
(Uij) which is defined for 8 =o(mod2), 1 ~ s ~ k - m - v with rational coefRcients
independent oE I, M, X, M' and satisfies the property

P(x, y, s) =detx(k-v-m-.!l)/2 mod ((Yij))
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M(h,xxeo"p,s + (m/2) denote the integer multiple from tbe Fourier expansion of the
Siegel-Eisenstein series (3.44) of the chapter 1, with

L+(s w)- 2i
6
r(s)cos(7r(s-0)/2)L ( )

N' - (21r)' N s,w ,

L"N(s,w) = LN(s,w) (0 = 0,1, w(-l) = (_1)6)

being the normalized Diricb1et L-series witb the Euler factors at q, qlN removed from
their Euler products. The summation in the inner sums oE (3.13) and (3.14) is taken
over a11 pairs (hI, h2 ) of integral matrices with the eonditions

(i.e. h1 js a integral matrix with positive detennmant, not necessarily symmetrie,
h2 E Am is a positive definite haH integral matrix, and C(o[h 1] denotes tbe matrix
given by Ct h1qo~-l h1 = Cqo~öl [h1 ].)

3.7. The proof of the proposition is carried out in several steps. First we write
down a preliminary integral representation using proposition 2.4 and the definitions
(3.8), (3.9) of the normalized distributions:

\J

where

(I, l)c'D;M(X) = "'((M')(/tlV(C), F~,(s,X)IW(CNo))cNo,, (3.17)

(3.18)

We already know the Fourier expansions of the functions in (3.17): by the definition of
theta functions from §2 of the previous' chapter we have that

(v) '"' "9
2eo

(XM) IV(C) = L...J XM(deth 1 )dethrem(C'o [h 1]z).
h t EM f1l (Z)+

The Fourier expansions of the series GtI ( Z , s) is explicitly writ ten in §3 of chapter 1.
H we put in the expansions (3.53), (3.53a) of chapter 1 s equal to (8 - k + v + m)/2, k
equal to k - (m/2) - v we get the equality:

Gt,(z, (s - k +m + v)/2) = L b±(h, y, (s - k + v + m)/2)em (hz),
hEA m

in which

b±(h, y,(s - k + v + m)/2) =

(3.19)

L±(s,xxeoxh"p)W*(h, y, (8 - k + v + m)/2)M(h, xxeo"p, 8 + (m/2)).
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For the critical values of 8 the function W·(h, y, (8 - k + l/ + m)/2) is explicitly given
by formulas (3.31), (3.34) of chapter 1 in terms of the polynomial

R(Zj n, ß) = (-1 )mnetr(z) det( Z )n+ßß~ [etr(z) det( z) -ß], (3.20)

where
ß m = det(8ij), 8ij = 2-1 (1 + 8ij )8/8ij.

with an integer n ~ 0 and a complex number ß. the degree of R(z; n, ß) is equal
to mn, and the the term of the highest degree coincides with detz n

. If ß E Q then
R(z; n, ß) E Q[Zij] . Put

Q(y,8) = R(Yj (k - l/ - m - 8)/2, (1 - 8 - k + l/ + m)/2). (3.21)

then for 8 E Z, 1 - k + l/ + m ~ 8 ~ k - l/ - m, the coefficients of (3.19) transform to
the following:
if ~ 8 ~ k - l/ - m, 8 ~ 8( mod 2)and X2'lfJ2 is non trivial for 8 = 1 then b+(h, Y, (8 ­
k + l/ +m )/2) = Oj
if ::; 8 ~ k - l/ - m, 8 =8 (mod 2)and X2

t/J2 is non trivial for 8 = 1 then

b+(h, y,(8 - k + l/ +m)/2) =

(3.22)

x Lt(8,XXeoxh1f;)M(h,xxeo7/;,8 + (m/2));

if s =8(mod2), 1 ~ 8 ~ k - l/ - m and ,p2x2 is non trivial for 8 = 1 then b-(h, Y, (8 ­
k + l/ + m)/2) = 0;
if 8 ~ 8(mod2), 1 - k - 8 + l/ + m ~ 8 ~ 0 then

b-(h, y,(8 - k + l/ +m)/2) =

det(411"Y )(1-,,-k+v+m)/2Q(411" hy, 1 - 8) X (3.23)

x L"M(s,XXeoxh'lfJ)M(h,xxeo,p,s + (m/2))j

It is assumed that in (3.22), (3.23) h > 0, h E Am. According to the theorem
about positivity for matrix indices in Fourier expansions (theorem 3.7 of chapter 1) for
these values of s we have that b+(h, y, (8 - k + l/ + m)/2) = 0 if h E Am is not positive
definite. Respectively, b-(h, y, (s - k + l/ +m)/2) = 0 for the corresponging values of s
if h E Am is not non negative (i.e. when it contains negative eigenvalues).However we
now will see that the Fourier expansions of the functions Pt,(s, X) from (3.17) involve
only those Fourier coefficients of Gt, (z, (8 - k+m +l/) /2) in the expansion (3.19) which
correspond to terms with positive definite h E Am.
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3.8. Proposition. (a) Jf s E Z, 1 ~ s ~ k - v - m and X2 'ljJ2 is non trivial for
s = 1 then we have in (3.17) that

(h) If 1 - k + v +m ~ s ~ 0, s E Z then

FM,(s, X) = L L J-(s, hI, h2 )em (hz);
A rn 3>O Ceo[htl+h.=M'h

(3.24)

(3.25)

the functions Ft,(s, X), FM,(s, X) E Mr(CNo,'ljJ) are non holomorphic Siegel modular
forms with tbe Fourier coeflicients given by:

J+(y, s, hI, h2)em( hz) = XM(deth1)dethr deth~2.!1-1)/2det(47ry)(1I-k+v+m)/2 X

(3.26)

X (qOc)-m(2.!1+m)/4det~~.!I+k-1+V)/2det(q-;1/2 ~o)(2v+m)/2;

J- (y, S, h1, h2) = XM (deth 1) dethrdet(47rY )1-1I-v-m+k)/2 X

x (qO c)-m(2.!1+m)/4det~~1I+k-l+V)/2 det(q-;1/2~o )(2v+m)/2

wi th Q( y, s) being the polynomial (3.21) and the summation heing extended to all pairs
h 1 , h2 of matrices h1 E M;;' (Z), Am 3 h2 > 0 with the condition

Cqothleölhl + h2 = M'h, A m :3 h > O.

The proof of the proposi tioo is an immediate consequence of the preliminary inte­
gral representation (3.17) and the formulas (3.18), (3.19), (3.22), (3.23) for the Fourier
coefficients .

The final step of proving proposition 3.6 is to deduce it from the already proven
proposition 3.8 by applying to the non holomorphic modular forms Pt/es, X) the holo­
morphic projection operator 'Hol and using the formulas from theorem 4.6 of chapter
1 which describe its action on Fourier expansions. In order to justify the applica­
bility of this result (more precisely, the statement (b)) to our situation to calculate
'Hol (P"tt,(s, X)) we note that the positivity property of the Fourier expansion for the
functions Gt/ (z, s) in proposition 3.8 imply the corresponding property for the func-
tions Ptt,(s, X). 00 the other hand, the moderate growth condition follows from growth
estimates given in (St2] (see also [Fe], [Shi10]). The essence of these estimates is that
for critical values of s (Le. for which the corresponding Fourier expansions of Gt,( z, s)
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contain only terms with positive definite matrix indices) these (non holomorphic ) mod­
ular forms satisfy the same growth estimates that those valid for holomorphic modular
forms (see (1.15),(1.16) of chapter 1). Hence we obtain the necessaxy growth estimates
also for functions Pt,( s, X) and the moderate growth condition (4.3) of chapter 1 is
then easily checked by applying to it the same upper estimate as in the integral formula
(4.14) of chapter 1 finishing the proof of proposition 3.6.

Now we will prove the theorems 1.3 about the analytic properties of the special
values of standard zeta functions. We start with an integral representation for the
normalized zeta-ftu1ction V*(s, /, X) which is analoguous to that for the distributions
V;,J ( see (3.10) in proposition 3.5).

3.9. Proposition. Let / E Sr(C, 1/;) be a cusp form of weight k ~ m + 1 wbere
m is even,X be a Diricblet character modulo M ~ 1.Put N = 4qo M 2 C wbere qo is tbe
level of a quadratic form with the matrix 2€o such that a(€o) =j:. O. Tben we have that

where

K* (z, s; €o, X) =N-m(2,,+m)/42m(2k-m+2-K)i- m (k-(m/2)-v) X

X det€~"+k-l+V)/28~~~(X)G*(zl (s - k + v + m)/2)IW(N),

where tbe subscript N in the notation Viv (s, /, X) inrucates that a11 Euler factors cor­
responding to q, qjN are removed from the Euler product, and the series

G*(z, s) = G""(z, Sj k - (m/2) - v,xxeo'l/J, N)

being defined in 3.5 , (3.45), of ebapter 1.
Tbe proof is deduced from the integral representation (2.15) rewritten in the form

2a(€o)«47r)mdet€o)-(,,+k-l+II)/2rm«s + k -1 + v)/2)V(s,/,X) =
(fP(z), K(z, Sj €o, X))N,

where

(m/2)-1

LN(S + ;, 'l/Jxeox) II LN(2s +2i , 'l/J2 X2)) X

i=O

x 8~e~(zj X)(E(z, (s - k + m + v)/2)lk-(m/2)-1IW(N)]lk-(m/2(-1I WeN).
-l

'\) in this equality we used the definition (3.1)Of the normalized zeta ftu1ctions, the defini-
\J tion of the series G* (z , s) and the relation (3.12) for the r -fac tors. Now the theorem

1.3 follows from the proposition 3.9 and the theorem 3.6 of chapter 1 in which we take
k to be equal to k - (m/2) - v .

Note that the function Viv(s,f,x) is obtained from the function V*(s,/,X) by
multiplying it to an elementary holomorphic multiplej however we do not know how
deduce from the theorem holomorphy properties of the function V* (s1 / l X) itself and
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trus interesting question needs a further study. But under the assumptions of theorem
1.3 we have that

V·(S, /, X) = Viv(s, /, X)

hence the proof is completed.
3.10. In order to prove the theorem 3.2 about algebraicity properties we need an

integtral representation for the functions V±(s, /, X) analoguous to that of the proposi­
tion 3.9.

Let X be a Dirichlet character modulo M and assume that all conditions of the
theorem 3.2 are satisfied .Put N = 4QLC , then we have the following integral repre­
sentation

(3.28)

with

x det€al'+k-l+V)/2'Hol [8~e~(x)IW(N)G±(z, (s - k + v +m)/2)]jW(N),

in which

the series
G±(z, s) = G±(z,Sj k - (m/2) - v, XXeo 'lj;, N)

are defined by (3.47), (3.48) of the previous chapter and the symbol 'Hol denotes the
holomorphic projection operator from the theorem 4.6 of chapter 1. The proof of (3.28)
is carried out in exactly the same way as that of the proposition 3.9 if we take into
account the definitions (3.2) and (3.3) of the functions V±(s, /, X) , the definition of the
senes G±(z, X) and use the relation (3.12) for the r-factors. The possibility of applying
'Hol to the function

(3.29)

by fonnulas of the theorem 3.7 of chapter 1 is justified as in the end of 3.8 bearing in
mind positivity properties of Fourier expansions of the series G±(z,s) in the theorem 3.7
of chapter 1 and the growth estimates mentioned above. It follows from these estimates
that the function (3.29) satisfy the bounded growth condition , and its Fourier expansion
contains only terms with positive definite matrix indices.

Remark. Hk> 2m + 2 then for s = k - v - m the series defining the function

C±(z,O) = C*(z, 0; k - (m/2) - v, xxeo7/J,N)

is absolute1y convergent so tbat trus function is bolomorphic , and we can omit tbe
symbol 'Hol in the integral representation (3.28):

a(eo)r+(k - v - m)VN(k - v - m, /, X) = (/P, K±(z, k - v - mj eo, X))N, (3.30)
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with

K±(z,k - v - m;eo,X) =
N- m (2k-2v-m)/42 m (2k-2-m-K)+m(2k-2v-m)/2i- m (k-( m/2)-v) X (3.31)

x 8~~~ (X)[G±( z, O)IW(N)],

with

r+( s) = (21r)-m(.+k-K) 2i
6
f(s) C~;S~~s-.5)/2) i1 r(s +k - j) (3.32)

being tbe gamma-factor. Witb tbese values of k and s the identity of A.N.Andrianov
(proposition 2.8 of the chapter 1 and tbe equality (2.28}) takes the form:

a(~o)V+(S,f,XN) = a(eo)V+(s,f,x) =
(mf2)-I

r+(S)LN(S + (m/2),x xeo1/;) II L N(2s + 2i,X2'ljJ2)X
i=O

x L XN(detf)a(~o[h])deth-( ..+k-I),

hESLTn(Z)\M;h (Z)

where X be a Dirichlet character modulo N denned by XN( d) = X( d) for det2eolN. The
series in (3.33) is absolutely convergent for Re(s) > 1 + m due to the estimate

la( h)1 = O(deth(k/2)+~)

for the Fourier coefflcients.
3.11. Action of the group Aut(C) on scalar products of modular forms.

Recall that the group Aut(C) acts on modular forms

f = L a(e)em(e z ) E M 'k (NI , 'ljJ )
An13~O

by the following rille:

fU = L a(e)Uem(ez ) E M'k(N1 ,7jJ), (a E Aut(C»)
Am3~O

and this action commutes with the action of the Hecke algebra, see [Shi5], [St2]. Consider
the global Hecke algebra

.c(NI ) = ®qlN1 .c:;(N1 )

and suppose that f E M(Nt, t/J) is an eigenfunction of the Hecke algebra .c(NI ) with
the eigenvalue given by a homomorphism A : 'c(N1 ) -+ C, i.e. fIX = A(X)f for all
X E .c;;(N1 ) and all q f NI. Let N1 IN. We define a A-packet of modular forms as the
following subspace of S;;(N, 'ljJ):

HJ:(A, N, 7jJ) = {f E Sr(N, 1jJ)lfIX = A(X)f, X E .cr;(NI ), q f N},
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and let
H'k(A,'ljJ) = UN=(modNdH 'k(A,N,1fJ),

Sr(1/J) = UN=(modNdSr(N, 1/J).

From the fact that the action of Aut(C) commutes with the action of the Hecke algebra
follows that for each a E Aut(C)

(3.34)

where A0' (X) = A(X)O' . On the other hand if we use nonnality of Hecke operator
with respect to the Petersson scalax product and commutativity of the Hecke algebra
A(NI) we see (as in the classical case) that for a certain set of homomorphisms A =
Al,' .. ,At there is the decomposition of S(N, tP) into the orthogonal direct SUffi of the
corresponding A -packets:

S(N,'ljJ) = EB'Hr(Ai,N,'ljJ).
i=l

(3.34a)

(3.35)

the folloing proposition was established by J .Sturm ([St2], theorem 3). We state here
this result in a fonn more suitable for our applications.

3.12.Proposition. Let m be even then for any integer k with k > 2m + 2 a
Dirichlet character 'ljJ mod N and a homomorpbism A : .c(N) -4 C tbere exists a non
zero constant J.l(A, k,1/J) E C X depending only on A, k, 1/J such that

[ (fP,g)N ]0' = (fO'P,90')N
Jl(A, k,1/J) Jl(AO', k, 1/J0')

for a11 I E H'k(A, N, 1fJ), 9 E Mr(N, 1/J), a E Aut(C).
Remark. JE we take in equalitj (3.35) 9 equal to IP then proposition 3.12 implies

that
(I, I) NC-

1 E Q(A, I),

with Q(A, I) being the subfield oE C generated by the values oE the homomorphism A
and the Fourier coeflicients oE f.

We give here a proof based on the Andrianov's identity (3.33) in which the right
hand side has the form:

where

V+(S,I,XN) = r+(s) = II R(A,q,k)(X(q)'ljJ(q)q-&)
qlN

(3.36)

R(A, q, k)(t) E Q[A(X), X E 'c~(N)] [tl

are polynomials with the property R(A, q, k)(O) = 1 depending only on the A-packet of
the form I and on the numbers q and k. The product in(3.36) converges absolutely for
Re(s) > 1 + m. Put s = k - v - m where v = 0,1, k =v mod 2, take as XN the trivial
character modulo N and define

p,(A, k, 'ljJ) = G(tP)m-1r+(k - v - m) II R(A, q, k)('ljJ(q)q-Ck-lJ-m»,
q12B

(3.37)
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with the r factor being defined by (3.32),B = B(A, k, 1/J) being positive integer such
that the product in (3.37) does not vanish; such number exists due to the absolute
convergence of the product ( see the remark in 3.10), and we can and will assmne that
B( A, k, 1/J yr = B(Aet, k, 1/;et).

Now , wi th the nmnber J..L( A, k, 1/;) already been defined , we prove first the propo­
sition 3.12 for the special modular form 9 = G( 1/; )m-1 K+ (eo, 1/;), in which the notation
}(+ ( eo, .,p) = K+ (z, k - v - m; eo, XN ) is adopted in order to stress the dependence of the
function K+(z, k - v - mj eo, XN) on eo and XN (recall that XN is the trivial character
modulo N. Then the folloing identi ty holds

(3.38)

This important fact expresses in a more precise fonn the result of proposition 3.8 of
chapter 1 about the cyclotomicity of the Fourier coefficients of this Siegel modular form.
The identity (3.38) will be proved later in 3.14 , and now we deduce from it proposition
3.12. Accorcling to the equalities (3.36) and (3.30) , the following relation is valid:

II R(A, q, k)(1/;(q)q- (k - JI - m) ) ,

'212B
q ,.fdet2(o

(3.39)

with the finite Euler product in the right hand side on which the automorphisms a E
Aut(C) act term-by-tenn. Therefore, it follows from (3.38) and (3.39) that for the
functions of the type 9 = G(1f;)m -1 1(+(eo ,1/J) the relation (3.35) is valid.

In order to deal with the general case we vary eo E Am, eo so that the J;lumber
N = N(eo) will now depend on eo , and consider the trace operator

d

Tr(N2 , N1 , 1/;) = :E 1/;(a( i) )Flkg(i).
i=l

(3.40)

where elements g( i) = (:i;j ;~g) fonn a complete system of representatives of the right
cosets:

d

r~(Nl) = Ur~(N2)g(i).
i=1

The important property of this action is that it commutes with the trace operator. This
fact is stated more precisely in the following proposition.

3.13. Proposition. Let F E M'k(N2 , t/J) be a Siegel modular form with cyc1o­
tomic Fourier coeflicients,

F(z) = :EA(~)emC(~Z), Ace) E Qab.
e~o

Then for a1l a E Aut(C) the following equality holds
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Tbe prüoE is given in [St2], lemma 11 , and it is based on properties of the action
of the restricted adele group GA+ on the gradued ring of automorphic forms studied by
Shimura [Shi5] , where GA+ denote the subgroup of the adelization

consisting of all elements Q E GA for which Archimedean component of the idele v(a)
is positive. For x E GA+ and a modular form F E Mr = UM Mk(rm(M)) the action
of x on F is denoted by FX. H t E nq zt an idele whose action on Qa.b by the class
field theory coincides with that of (j E Aut(C), then we have that

F U = FX(t-
1

) with x(t) = (1 m Dm ) E GA +
Dm tIm

for the action on modular forms mentioned above. Now the proposition is easily deduced
from this equality. In view of the strang approximation theorem for the group SPm(A)
we can choose for each representative gei) in (3.40) elements u(i) E SPm(A), h(i) E
SPm(Z) such that u(i)q =12m (modN2) for all primes q, qlN2 and

( 1m _~m ) g( i) (1m Dm ) = u( i) h( i).
Dm t 1m Dm tIm

Let us take into account F U = FX(C
1

) then we get the equality

[(PU) ITr(N2 , Nl, ?jJU]O"-l = [2: ?jJ(a( i))O" pO" Ig( i)]O"-l
i

and it follows from the choice of h( i) that

r~(NI) = U1=Ir~(N2)h(i),

with h(i) = (::?:j ~:i~~) and a(i)' =a(i) mod N2 , so that the proposition follows.

Now we are able to finish the proof of the proposition 3.12. We let the element ~o

in the equality (3.39) vary, and put N2 = B 2Ndee2~o, NI = N.then

(fP, j{+ (eo,?jJ)) N. = (fP, K+ (~o, ?jJ)jTr(N2, NI, 1;;))Nu

and it follows from the proposition 3.13 that the equality (3.35) is now valid for all
modular forms g from the set

v = {G(?jJ)m- I K+(eo,,p)ITr(N2 ,NI ,?jJ)IAm :1 eo > O,N2 = ß 2 det2 2eo, NI = N}.

Let
VI = {gI E Hk(A,N,,p)lg - gl is orthogonal to same 9 E V}.

In other words , the set VI consists of those elements in Hk (A, N, 'lj;) which are or­
thogonal projections of the special elements 9 E V considered above. We claim that VI
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generates the whole A-packet H'k(A, N, t/J). Indeed, if

11 = L al(e)em (e z ) E Hk(A, N, 'l/J)
e>o

is s)lch that (lI, 91) N = 0 for all 91 E VI then (3.39) implies that a(eo) = 0 for 811
~o E Am, eo > 0 hence /1 - O. It follows also that proposition 3.12 is valid for all
gl E Hk (A, N, 'l/J). For an arbitrary Siegel modular form 9 E M k (N, t/J) wri te 9 = 91 +h
with 91 E H'k(A, N, t/J) and (gt,h 1 )N = O. Now we combine (3.34) and (3,34a) and get
that

gU = gf +hr, gf E Hf(Au, N, -;pr), (gf, hf)N = O. (3.41)

To obtain the above equality we used the important fact about the invariance of the
subspace of Eisenstein series in Mk(N, t/J) under the action of er E Aut(C). In turn, this
property follows from the general decomposition theorem [K13], describing the subspace
of Eisenstein series (orthogonal complement to the subspace of cusp fonns) in terms of
the Klingen-Eisenstein series, and from the invariance properties of such series under the
action of er E Aut(C), established by M.Harris and other authors (see [Har2],[Kur-Miz],
[Miz1], [Miz2]). This last fact stated in a more precise form comprise the content of the
Garrett's conjecture, proven in [Har2]. However we do not use this fact any more and
therefore will not go into detail of this interesting research. Returning to the equality
(3.41) we get

[{IP,9)Nfl(A,k,'l/J)-I]U = [(!P,gl)Nfl(A,k,t/J)-I]u =
(!UP, gf) N J1.( AU, k, t/Ju)-1 = (/UP, gU) NJ1.( AU, k, t/JU)-t,

To accomplish the proof of proposition 3.12 we need only to check the property (3.38)
which is will be now stated in a more general form.

3.14. Proposition . Let X mod N be an arbitrary Dirichlet character, and

denote .a modular form in the integral representation (3.30). Then for a1l er E Aut(C)
there is the following relation

(3.42)

PraoE. H we look at the definition of the theta series we immediately see that

Therefore it suffices to check the following property:

[G(t/JX)m-ldet~~/2G+(Z,0; xxeo'l/J, k - (m/2) - v, N)IW(N)]U =
G(1/;uXu)m-l « dete61/2)U G+ (z, 0; (xxeo t/J)U, k - (m/2) - v, N) IW( N),

because of the equality

dete;-(m+I)/2 = dete;-(m/2)-I, m/2 E Z.

(3.43)
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According to formulas in §3 (3.53) of chapter 1 , the Fourier coefficient of the series
G+(z, 0; XXeo 7/;, k - (m/2) - v, N) by em(hz) with h E Am, h > 0 has the form

(det h )k-Jl-m-(1/2) L + (k - V - m, XX hXeo 7/; )M(h, xxeo tf;, s), (3.44)

where
M(h,xxeotf;,s) = II Mq(h,xxeotf;(q),q-~)

qEP(h)

is the finite Euler product (3.44) of the previous chapter, the product is extended to all
prime nnmbers q in the set P(h) of prime divisors of N and the elementatry divisors of
the matrix h , with the property Mq(h, t) E Z[t]. Therefore

M(h, XXeo tf;, k - v - (m/2))U = M(h, (x1jJ)U Xeo' k - v - (m/2)).

Now let us consider the factor L+(k - v - m, XXhXeo tf;) and recall an elementary result
about the special values of the Dirichlet L-functions [LeI], [8hi3], [Wa] , [La3]. Let
X mod N be a DiricWet character of conductor No, and XO mod No be the corresponding
primitive character,

No

G(X) = G(Xo) = Lxo(x)e(x/No)
x=1

be its Gauss sumo Put for a positive integer r

P(r, X) = G(X)-1 (27ri)-rL(r, X).

Then for all a E Aut(C) and X( -1) = (-lt we have that

P(r, xY" = P( r, X
U )(3.45)

If we apply this property to normalized Dirichlet series we see that

[G(X)-1 L+(r, X)]U = G(Xu)-1 L+(r, xU) r E Z, r > 0

L-(r, x)U = L-(r, XU) r E Z, r ~ 0

(3.46)

(3.47)

so that for the values of the "wrong parity" the corresponding values vanish.It follows
from the basic property of Gauss sums that

The last property implies the usefnl relation:

G(7/JX)U _ G(1jJ)uG(X)U
G('ljJuXU) - G(7f;u)G(XU) . (3.48)

(3.49)

Let us now apply the properties (3.46) and (3.48) to the coefficients (3.44), then we get

[G(7/JX)-1 (deteo h)1/2 L+(k - v - m, xXhxeo7/;]U =
G( tf;u Xu)-1 ((deteo h? /2)U L+(k - v - m, (x'l/J)U Xeo Xh).
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In the equality (3.49) we used the following elementary property of Gauss sums:

G(xeoXh) (det(xioh))1/2 E Q

which is due to the fact that XeoXh) is an even quadratic character (see [B-Sei)). To
complete the proof of (3.43) and (3.44) we need the following general compatibility
property of the action of Aut(C) aod of the involution W(N) (see [St2],lemma 5, and
[ShiS)): for a modular form f E M'k(N, 'l/;) with cyclotomic Fourier coefficients and for
all er E Aut(C) we have that

(3.50)

where v E (Z/NZ)X is chosen so that e(l/N)U = e(v/N). Now the proof of proposition
3.12 is finished.

3.15. Now in order to deduce the theorem 3.2 about algebraicity of the normalized
standard zeta function and the algebraicity property of the nonnalized distributions we
use the already proved algebraicity properties of Fourier coefficients of the functions
K±(z, Sj ~o, X)IW(N) in the corresponding integral representation (3.28) and of the
functions p±(z, X) in (3.13) and (3.14). We apply these properties in the fonn given
below: let k > 2m+2, f E Hr(A, N, 'l/;) C Sr(N, 'ljJ) be a cusp fonn ,an eigenfunction of
the Hecke algebra [,m(N) with an eigenvalue given as the homomorphism A : [,m(N) -+

C. Let us consider a linear functional

[,f : 9 ~ (fP,gIW(N))N
(f,f)N

on the vector space Mk(N, 'ljJ) with

9 = L b(h)em(hz) E Mr(N, 'ljJ)
h;:::O

(3.51 )

being its arbitrary element. Then there exist positive matrices h), h2 ,' •• ,ht E Am and
algebraic numbers a), 0:2,' .• ,at E Q(f, A, 7/J) from the field Q(/, A, 'ljJ) generated by the
Fopurier coefficients of f and values of the homomorphism A and the character 'lj; such
that for all 9 E M'k( N, 'lj;) the linear functional is explicitly given by

(3.52)

Indeed, we notice that every Siegel modular fonn of weight k > 2m is uniquely de­
tennined by its Fourier coefficients with positive matrix indices h E Am' This fact
is equivalent to saying that for such a weight k there are no singular modular forms
(i.e. having only Fourier coefficients with degenerate h E Am', det h = 0), which was
established by G.L.Resnikov ([Res], [Rag3]). Then proposition 3.12 implies that the
number
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belongs to the field Q(J, g, A, .,p) generated by the Fourier coefficients of the forms f
and 9 , by the values of A and ,p. Moreover we have that

(see the remark after proposition 3.12), and (3.52) follows. In order to prove theorem
3.2 we use proposition 3.12 and take in it the modular forms

as g, which have cyclotornic Fourier coefficients vanishing for degenerate matrix indices
h E Am such that the action of er E Aut(C) on them is described as in 3.14. Hence we
obtain also the following more explicit desCl-iption of the action of er E Aut(C) on the
special values in question. Put

iJ+ (s, /, X) = G( ,pX)m-1v+(s, /, X)Il( A, k, 1j;) -1 ,

iJ-(s, /, X) = G('l/;X)mv-(s, /, X)J1.(A, k, 1/;)-1.

Then under the assumption of the theorem 3.5 for every q E Aut(C) we have that

(3.53)

proving ,in particular, theorem 3.2. In order to deduce algebraicity properties 3.4 for the
normalized distributions we take in 3.12 / be equal to foIV(C) E Sr(NoC, ,p), and 9 be
equal to F±(z,X) from (3.13), (3.14). In this situation the constant J1.(A, k, 'Ij;) depending
only on the A-packet of / is the same as that for the original cusp f considered above.

§4. Integrality properties and congruences for the distributions

4.1. The proof of theorem 1.6 is based on a regularization od the Q-valued distri­
butions

from §3.
Let c be a positive integer with (c, No) = 1, c > 1 and No = 4qoM~-1C. Then we

see as in §2 that there exist distributions v~-, v~+ on Z~ uniquely defined by

V~~M(X) = (1- (X,p)2(c)C2(S-]»)V~M(X), (4.1)

V~;M(x) =C~xG(1/;X)-](l - (X1/J)2 C-28)V:M (X) X

X TI {(I - ('l/;X)( q)q8-1 )(1 - (x'l/;)( q)q-8) -] }, (4.2)

qlNo

where V~ft.l(X) and V;M(X) are defined by (3.8) and (3.9). under the assumption of §1
we have (e, Cx ) = 1 where Cx is the conductor of X and it follows from basic elementary
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relations for Gauss sums that

C!.. C' C'tPX tP x- -
G(1/JX) G(X)X-1(Cx)G( 'ljJ )1/J(Cx)

C'
C(1/J)'X(C tP ) G(~) [G(~)'ljJ(Cx)]-l.

(4.3)

In order to define S-adic measures in the main theorem we put s = 0 and apply
the embedding i p : Q t--Jo Cp, then we get

V C+ - . (Vc+) v c- - . (VC
-)- zp 0' - 'Lp 0 . (4.4)

4.2. Proposition. (a) For a11 integers .9 with the condition 1 ~ .9 ~ k - 1J - m we
have that the distributions ip(V~+) are bounded and the following equality holds

(4.5)

in which both sides vanish for .9 ~ 8( mod2).
(b) For aJ1 integers s with the condition 1 - k + 1J + m ::; .9 ~ 0 we have that the

distributions ip(V~-) are bounded and the following equality bolds

(4.6)

in whicb botb sides vanish for s - 8( mod2) (Recall that

IJ,8 = 0,1 ,(-lY' = X( -1), (_1)6 = 1/JX( -1)).

4.3. The proof of the proposition 4.2 is based on integral representations (3.13)
and (3.14) . Taking into account the reguarizing factors in (4.1) and (4.2) we deduce
that for the corresponding values of s E Z gjven in the proposition 4.2 the following
hold

(f, f)c'D~t(X)= ,(M'){ftIV(C), FM-:1;(s, XM )jW(CNO))CNo, (4.7);,

here
FX~(.9,XM)= L L dC±(s,h1 ,h2 )em (hz) (4.8)

A rn 3>O Ceo[htl+h 2 =M'h

are modular forms from MJ:(CNo, 1/J) with cyc1otomic Fourier coefficients gjven by
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x II {(1 - ("pX)( q)qtJ-I )(1 - (x7/J)( q)q-lf)-l } X

qlNO

X (qO c)-m(2tJ+m)/4dete~lf+k-I+1I)/2 det(q~] /2 eo )(211+m)/2;

(4.9)
with Weo,h"J = XXeo 7/Je h "J be a Dirichlet character modulo No;

d-( s, hl, h2 ) = XM(deth l ) dethr P(h2 , h, 1 .:.... s) X

x (1 - (X"p )2(C)C2(tJ-I»)LN(s, XXeo 7/Jeh 2 )M(h, XXeo 7/J, s + (m/2)) x

(4.10)
where P(v,u,s) E Q[vij,uij;i ::; j] denotes the polynoIDial explieitly given by the
formula (4.32) of chapter 1 which is defined for all s E Z, 1 ~ s ~ k-m-v, s =o( mod 2)
with coefficients independent of f, M, X, M' and with the property

(4.11)

and where
M(h,xxeo7/J,s) = II M q (h,xxeo7/J(q),q-lf)

qEP(h)

is the finite Euler product (3.44) of the previous chapter, with the product being ex­
tended to all prime numbers q in the set P( h) of prime divisors of N and the elementatry
divisors of the matrix h, such that for all these q Mq(h, t) E Z[t]. The sununation in the
inner sum of (4.8) is taken over all pairs (hl, h2 ) of integral matrices with the eonditions

(i.e. h l is a integral matrix with positive detenninant, not neeessarily symmetrie,
h2 E Am is a posi tive definite half integral matrix , and C to [hd denotes the matrix
given by C t h] qOe-1hl = Cqoeol [h l ].

Now we notice that according to (4.9) and (4.10) the coefficients

d-(s,hl,h2 ) = d-(XM;S,h 1 ,h2 )

does not depend on modulus M for the character XM (that is, they satisfy the eompat­
ibility erierium for distributions) and define for fixed hl, h2 a distribution on Gs = Z;
wi th values in Qab; these distributions will also be denoted by d- (s, h 1 , h2 ). As we
soon will see these distributions turn out to be bounded measures , and the measures
of proposition 4.2 will be expressed in tenns of them.
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4.4. Let us consider the C -linear functional

-C (fP,gIW(N»)N
f : 9 ~ (f, f)N (4.14)

on the vector space M'k(N, 1/J) defined by (3.51) whose explicit description is given in
3.15 with

9 = L b(h)em(hz) E M'k(N,1/J)
h~O

being arbitrary element of the vector space on which the functional is defined: there exist
positive matrices h1 , h2 ,' .• ,ht E Am and algebraic numbers al, 02,' .. ,at E Q(f, A,?jJ)
from the field Q(f, A, ?jJ) generated by the Fourier coefficients of f and values of the
homomorpmsm A and the character 'lj; such that for all 9 E Mr(N,7/;) the linear
functional is explicitly given by

(4.15)

According to proposition 4.5 of chapter 1 the values of the distributions V~± can be
represented in terms of the functional -C a.s follows

v~± = ~(M').c(FM=1;(s, XM ».
Combining (4.15) and (4.16) we see that

with

(4.16)

(4.17)

(4.17a)vC±(M'h(i),S,XM) = L dC±(s,hl,h2 )

Ceo(hd+h 2 =M' h

being Fourier coefficients of the functions F~=1;(s, XM). Therefore the statements (a) and
(b) of proposition 4.2 under the assumptions of the main theorem are equivalent to the
corresponding statements about the distributions dC± (s, h1 , h2 ) . Indeed, the value of
lip(~(M')lp remain unchanged with the varying M' by the definition of ,(M') in (3.10),

,(M') = 2m (2k-2-m-K)i- m (k-(m/2)-1I) a( ~o) -1 ao(Mr;-l M'-l)(CMom-l )(k-l-m)/2

if we remember the condition lip(Mo)lp = 1 of the form f to be p-ordinary wmch
implies that the denominators in the linear combination (4.17) are uniformly bounded
with varying XM and M'. Below in 4.6 is gjven a more precise argument based on
the generalized I(ummer congruences. However we show first that the distributions
dC±(s, hl, h2 ) essentially reduce to the S-aclic Mazur measure for the Kubota-Leopoldt
zeta function (see [Ku-Le], [Le2], [Maz-SD], [Man4], [Man6], [Wal ) whose properties
are recalled in the following 4.5.

4.5. Let w mod A be a fixed primitive Dirichlet character such that (A, Mo) = 1
with Mo = I1qes q. Put S = S U S(A), M = ITqes q. Then for any positive integer
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c with (c,M) = 1, c> 1 there exist Cp-measures J.L+(C,W),IL-(C,W) on Z~ which are
uniquely defined by the following conditions:

(4.18)

for s E Z, s > 0, and

for s E Z, s ::; 0 where

L+ ( - ) _ T--I - )2iOr(s) cos(1r(s - fJ)/2)
Mo s, X W - .......M\s, XW (21r)~ 1

(4.19)

(4.20)

(4.22)

Lt o ( 8, xw) = LM<s , xw) (4.21)

are the normalized Dirichlet L-functions with fJ = 0,1, (_1)8 = xw( -1) . The functions
(4.18) and (4.19) satisfy the following functional equation

LMo (1 - 8, xw) = rr {(I - xw( q)q~-l )/(1 - xw(q)q-S) }Lto(s, xw).
qES\S(x)

The properties (4.18) - (4.22) easily follow when we remember the definition of the
S-adic Mazur measure J.Lc on Z~ for which (4.18) and (4.19) are given by the equalities

r dJ.l+(c,w)= r xx;lW-ldJ.lc,
Jzx lZ!.

s s

where we understand that x E Xs C X s ,
4.6. To accomplish the proof of proposition 4.2 we use the abstract I{ummer

congruences ( [I(a3],p.258) which give a criterion of boundness of p-adic valued distri­
butions as follows. Let {li} be a family of continuous functions li E C(Y,Op) in the
ring C(Y, Op) of a1l continuous functions over the compact totally disconnected group
Y = Z~ with values in the ring of integers Op of C p such that the Cp-linear span of
{li} is dense in C(Y, Cp)' Let also {ad be a family of elements ai E Op. Then existence
of a Op -valued measure IL on Y with the property

i fi d,.. = a;
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is equivalent to the validity of the following eongruenees: for an arbitrary choice of
elements bi E C p almost all of which vanish

L bifi(Y) E pnOp for all Y E Y implies L biai E pnOp •

i I

In our situation we take the family of funetions of the type xx; with s as in
proposition 4.2 with X E X10rs denoting Dirichlet characters to be the family {fd with
the dense Cp-linear span. For any finite number of Diriehlet eharaeters X E X10rs we
choose an integer M and a sufficiently large integer M' such that each of these charaeters
is defined modulo M and the formula of the proposition 3.6 is valid for the values of
distributions V~±M' Then we apply the functional 12 and use the equality (4.17). As it
was mentioned a:bove , the coeffieients of the linear combination in (4.17) are p-adieally
bounded for varying M' and X hence the proof of the abstract I{ummer congruences
for the numbers v~t is reduced to checking the correspondent congruences for the
numbers vC±(M'h, s: X) (see (4.17a)). In turn, in order to do this we fix h1 and use the
formulas (4.9) and (4.10). It is seen from the relation eto [h 1 ] + h2 = M' h in (4.8) that
the following congruence holds:

(4.23)

(4.24)

with detto = qodeteö 1
. If we then use the property (4.11) of the polynomial P(v, u, s)

and (4.23) then we get for the faetor P(h 2 ,h,s) in (4.9) and (4.10) the following con­
gruence:

P( h2, h, s) == [(-Cqo )mdeteo -1 dethi](k-v-m-s)/2( modM' )

where 1 ~ s ::; k - v - m, s - 8(mod2).
It ean happen that the eongruence (4.24) is valid only modulo a slightly smaller

positive integer than M' (Le. obtained from MI by dividing it by a divisor independent
on the choice of M'). However, with the growing M' we may ignore this divisor when
we multiply the numbers (4.9) and (4.10) by a suitable positive integer independent of
M'.

Recall that in fonnulas (4.9) and (4.10) we used the notation Weo,h o = W for the

primitive Dirichlet character associated with XedX h'J 'ljJ ,and if deth2 det(io) = a2 t with
a square free integer t then we have that w = Xt'ljJ where Xt is the primitive Dirichlet
cxharacter associated with the quadratic field Q(Vi). The congruence (4.23) imply in
partieular that t =1(mod4) hence the conductor of Xt is equal to t. Indeed if qlM'
(e.g. q = 2) then according to (4.23) we get

( deth~detto ) = ( dethidet:~(-c)m) ,
in view of the parity of m and it follows that w(q) = 'ljJ(q) for qlMo (q E S) and w 2 = 'ljJ2,
and also that (t, Mo) = 1.
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(4.25)

(4.27)

v

v
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Now we compare the fonnulas (4.9) and (4.10) with the corresponding fonnulas
(4.18) and (4.19) for the Dirichlet L-series, and take into account that

Cwx = tC'l/Jx, w = Xt1/;, Xt(C~x) = 1,

G(WX) = G(Xt1/;X) = Xt(Ct/Jx7/JX(t)G(xdG(1/;x) = 1/;X(t).j(t)G(7/JX),

(1 - (x1/;)(C)-2"') = (1- (wxc-"')(l + (wxc- S
) c

Next let us apply the embedding ip to (4.9) and (4.10) keeping in mind (4.25) and
(4.26), then (4.9) and (4.9) take the following form

i p [dC+ (s, h), hz )] =

.,p~t))v'i (1 + (Wxc-') [ Xx; dl'-(c, w) X
X t t'" Jzx

5

'!- XM( deth l ) dethr deth~Z"'-])/2P( hz , h, s )M(h, XXeo 'lj;, s + (m/2» x

x (qOc)-m(2s+m)/4detea",+k-I+V)/2det(q~]/zeo)(2v+m)/2 j

for 1 :::; s :::; k - v - m,

ip[d-(s, h), hz)] =

(1 + (Wxc-"') r X x; d/-L-(c,w)xJzx
5

x XM(deth]) dethr P( h21 h, 1 - s )A1(h, XXeo 1/;, s + (m/2»x
(4.28)

x (qO c)-m(2",+m)/4detea,,+k-l+V)/2det(q;;1/2 eo )C2v+m)/2 j

for 1 - k + v + m ::; s :::; O.
Notice that the finite Euler product M(h, XXeo 'lj;, s+(m/2» is a finite linear combi­

nation of terms of the type X(b)b'" «b, MI) = 1) whose coefficients are algebraic integers
independent of X. Bearing in mind also the congruences (4.23) we get from (4.27) and
(4.28) that for the corresponding values of s the expression for vc± (MI h, s, X) mod M'
takes the fonn

L Aix(YiM1x Xx; dl'±(c,w) =
i Zs

LAi [)XX;)(YiY)dl'±(c,w)(y) (y,Yi E Z~),
i lzs

(4.29)

with uniformly p-adically bounded algebraic coefficients Ai E ip(Qab). It remains to
notice that the abstract Kummer congruences are tautologically valid for the expressions
of the type (4.29) which obviously satisfy the identities of the form (4.5) and (4.6). Hence
the corresponding statements valid also for the distributions V~± proving proposition
4.2.
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Finally, we get the proof of the main theorem as a combination of all the results
obtained above: proposition 4.2, the relation of the values of the nonnalized distribu­
tions with the values of the normalized standard zeta-functions (proposition 2.3), the
definitions of the normalizing factors (3.2), (3.3), (3.8), (3.9) and of the regularizing
factors (4.1), (4.2).
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