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Introduction.
The theory of elliptic surfaces over complex numbers
has been initiated and developped by X. Kodaira and we have the

satisfactory theory. But vepry little is known about elliptie

%) Parﬁially sﬁppcrted by Z.W.0.{Netherlands Organization for
‘the Advancement of Pure Research), "Moduli", 10-80-004.
#%¥) Partially supported by Z.W.0. and SFB 40, Universitit Bonn.



surfaces in positive characteristic. Main difficulty comes

from the existence of wild fibres. In this paper we study the
question to what extent the theory of elliptic surfaces over ¢
can be extended or has good analogy in positive characteristic.

For example, if 8 1is an elliptic surface with {K(8) = 1 ( that
is, the image of a rational map fjmxstassaaiated with the m~th
canonical system [mKS} of S 1is a curve for sufficiently large m)
over € , Iitaka [I2] showed that for m 286, §th3’ gives the
original structure of the elliptic surface. In this paper, we shall
prove @he following:

Theoremn. If S is an algebraic elliptic surface defined over
an algebraically closed field k of characteristic p20 with
f<(S) = 1, then iﬁ*ﬁ‘ gives the unique structure of the elliptic
surface for every mzll.

Moreover, it will be shown that the number 14 is the
best possible if char.k ¥ 2,3. The difference between our theorem
and Iitaka's theorem over € comes from the fact that we only
consider algebraic elliptic surfaces while Titaka considered all
analytic elliptic surfaces. Thus, even in case k = €, our theorem
seems néw. Té prove the above theorem, we need to study elliptic
surfaces f : 8§ —>P_ with J(Og) = 0. If such an elliptic
surface has multiple fibres mE, (1 =1, 2, vevs L), their
multiplicities and the orders of the normal bundles of Ei should
satisfy certain conditions (see Theorem 3.3 below). |

Another important fact in the theory of elliptic surface’
over € 1is thét all multiple fibres are obtained by means of
logarithmic transformations (see [K2],I,II). The logarithmic trans-
formatlon  is defined by means of the logarithmic function, Hence,



it is non-algebraic. But it 1s based on the fact that over ¢,
every multiple fibre is reduced to a non-multiple fibre, by taking
locally a ecyeclic covering of a base curve ramified at the
point over which the multiple fibre lies, pulling back the elliptic
fib?ation to the covering and taking the normalization. We can
therefore ask whether a similar procedure exists in case of positive
characteristic. Tﬁé‘procedure is divided into two parts. First
we reduce a wild fibre to a tame fibre, then a tame fibre to a
non-multiple fibre. Our main résulfs in this direction is the
following:
Theorem. Let mD be a wild fibre of an elliptic surface
f :8—>C where D is an ordinary elliptic curve or of type'ln’
(that is, a cycle of rational curves). Then, there exist an ;
element &eaHl(S,gE), a covering ﬂi : S(l) —> 8 associated with’
A and an elliptic surface fl : S(l)-—~¢ c(l) such that the }
corresponding multiple fibre in fl has a form m(l)D<l) with
pm(l) = m. By a finite succession of this process, the wild fibre
is reduced to a tame fibre.

The more detailed discription can be found in $6 below.
The reduction of a tame fibre to a non-multiple fibre will be given
in §7. By this theorem,.if D is an ordinary elliptic curve or
of type I, we understand the wild fibre mD well. Namely, in
this case, ﬂi H S(l) ——§~S is a 2/pZ? étale covering, hence -8
is obtained by a %/pZ étale quotient. The reason why a wild fibre
appears in a 2/p"% &tale quotient can be found in Remark 4.10 below.
Certain examples of this type of wild fibres will be found in 8.
If D is a supersingular elliptic curve, our result seems a little
weak. We do not know whether we can take degTy =p in this
case. On the other hénd, if D 1s not of the above types, that is,

ir Pico(b) = &, , we cannot directly apply our procedure 1in 36



to this case and the problem is unsolved. The same diffic&lty
appears when we reduce a tame fibre to a‘nen-multiple fibre,
although we know very few examples of tame fibres mD ﬁith
pic?(D) = &, (seé [K11). Note that if the multiple fibre mD
with PicQ(D) = €, 1is a tame fibre, we have m = p, since any
torsion point of G is of order p.

It is well- known that over ¢ m—genera and Kodaira
dimensions of surfaces are invariant under smooth deformation
(see [I2]). But in positive characteristic, m-genera are not
always invariant under smoeth‘defofmaticn or lifting;(See |
Examples 8.7, 8.8 below). However, we have the following:
Theorem. - The Kodaira dimension of smooth projective~surfaces‘
is idvariant under smooth deformation and lifting.

In this paper, weé only consider smooth deformation
and lifting of a surface over Spec(R) With discrete valuation
ring ,R, but it is easy to generalize the notion to an arbitrary
base s?ace. ”Gur reéult'is valiﬁ under such generalization. The:
theorem says, in particular, if ¢ :‘Sf——eQC is an elliptic surface
with K(S) = 1 and st is a smooth deformation‘or~lifting*of
S, then ﬁ(s') = 1, hence, if char.k %2,3, S' 1is an elliptic
surface f Y *—? C'”(in'case char.k = 2 or 3, S' may be
quasi-elliptic, if we consider equiéharacferistic deformation).
In $10 we shall show that in this situation, the genera of -c
and C' are same. We also conjecture, in this situation,

f' ¢ 8' —3 €' is a smooth deformation or a lifting of f? s——egc.
Although we will not discuss them, ‘the following two questiens
are worth While to mention

Question I. For any elliptic surface f : 8 —>C with K(8) =



does therg exist a positive integer my such that nmg-genus ano
is invariant under any smooth deformation and 1ifting of 8
for any nzl ?
Question II. Can every elliptic surface f: 8 —=> C defined ovér
an algepraically closed field k of pbsitivencharacteristic with
K(S) = 1 ‘be 1ifted to charactefistic zero in weak sense (see [0O]
for the definition of lifting) ? | |

Finally we give a brief outiine of our paper.
In §1 we recall basic facts about elliptic surfaces. In §2,kto
calculate the canonical divisor fqrmula for certain elliptic
surfaces, we shall study jumping values of a wild fibre. The results
in this section are mainly due tQkRaynaud [Rr21. Inf§3 we shall
study an elliptic surface f : 8 ———ejpi with J(05) = 0 and show |
that if such a surface exists, then its multiple fibres satisfy
certain conditions (Theorem 3.3). In §4 we shall discuss several
consequences éf Theorem 3.3. We also give an example of an eiliptic
surface which shows that our number 14 in the first theorem above
is the best possible. We also discuss examples of elliptic surfgcés
obtained by 2/pZ, )yp s ‘*p guotients. In §5, the theorem about
the pluricanonical mapping will be proved. In §6 the above mentiongﬁ
reduction of a wild fibfe to a tame fibre will be given. In 7
the process %0 reduce a tame fibré‘QQ a n?n-mulﬁiple;fibfe will
be given. In §8 examples of wild fibres will be given. We shall
also give examples of smooth deformation and lifting of elliptic
surfaces with wild fibres. 1In §9 the invariance of Kodaira
dimension of a surface under smooth deformation and 1ifting‘will
be proved. In §10 the invariance of the genus of the base curve

of an elliptic surface with K= 1 under smooth deformation and



1lifting will be proved. In Appendix 1, we show the necessary
and sufflcient condition for an analytic elliptic surface

f:8 **ﬁi?% with %{gS) = 0 to be algebraic. Finally,

In Appendix 2, we give the pfaof of a proposition on the normal
form of the action of g(p on & supersingular elliptic curve,
which was commented by F. Qort.
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Notation and conventions.

Throughout this paper, we fix an algebraically closed
field k of characteristic p20. By an elliptic surfa@a'
f: 8 —>C we mean that 8 is a complete smooth surface defined
over k, € 1is a complete smooth curve defined over k, f{ is
a surjective morphism defined over k with connected geometric
fibres and almost all closed geometric fibres of f are non-singular
elliptic curves. We also assume that any exceptional curve of the
first kind is not contained in fibres (this will not be assumed in §9)
We shall not distinguish a line bundle from the associated
invertible sheaf. Sometimes, a Cartier divisor and the assoclated
inver‘tit?le sheaf will be identified.

Let X be a complete smpoth algebraic variety defined
over k. We use the followihg notation.

hi(X,g) dim, H (X F) for any coherent sheaf F on X.

f’(U,F} : the group of sections of ¥ over an g;én '

set U of X.

KX : a canonical divisar»(ﬂr the canonical bundle) of X.

X —*‘ ( Ky) : the dualizing sheaf of X.

Pm(X)r& h (X,K§) : the megenus, M = L,2,..0000uss

p;(X) = Plfx) : the geametriﬁ genus,

ﬁi(Xi : the i“th Chern class of X.

b, (X) = dim H: (X, Ql), the i-th Betti number.

Q at

g(C) : the genus of a non-singular curve C.

[A] : the largest integer which does not exceed a
real number of .

Let D, D' be Carbtier divisors on X.

ID] : the line bundle assoclated with D.



D D' : linear equivalence.

D==D' : algebralc equivalence.

Let mD be a multiple fibre of an elliptic surface,
V= ordfDl|y .

Let R be a discrete valuation ring and ¥: X —>
Spec(R) a proper, smooth and separated morphism of algebrailc

spaces. By o (resp. ) we mean the closed {resp. generic)
point of Spec(R) and by X, (resp. X;) we mean the closed
(resp. generiec) geometric fibre of ¥.



§1. Preliminaries.

In this paper we always assume that an elliptic surface

f 1 8 vy O is minimal, that is,any fibre of f contains no
exceptional curves of the first kind, unless othervise mentioned.
For an elliptic surface, by the Leray specitrsl seguence we have
an exaclt seguence

(1.1) Q =7 34(332,3 e EE{S%?S}””M’ ﬁﬁ{ﬁaggﬂ%?sa e L

Let T be the torsion part of 33ggﬁs, Since € is a non-singular

curve, we have

: 1‘ / et
(1.2) R £x0g /T e gﬁifag

where f is a2 diviseor on C. By miﬁg, 102 1,2 0000y Dhy WE
denote 2ll the multiple singular fidres of the elliptie surface
f i3 S-3> C, Then we have the following canonical divisor formulsa

(1.3) Ky = f*{x - f) +j%a 1Dy

On]

where a;'s are ‘integers with 0L a;< m, = 1 and

(1.4) - deg £ = *}é(s,g&} + length T

{see for example [BM],1I, Theorem 2 3*’§ha formula {1.3) implies

cxis}z = 0 and by Noether's formuls and Igusa's squality (LI and
[r]) ), we nave

(1.5) K(s,04) = % cp(8) = o

Put }% = ord fﬁijtﬁi« If char.k= 0, then yi = Wy If char.k=

&

P > O, then there exist non-negative integers @, 1 = 1.2,.....,
"X, such that

. 3 . .,
i’}"‘ﬁ} migymyig 1& 1523&%&&1*0;@‘3&»%



The following conditions are equivalent~

(1.7) (i) T_=o0, p, = £(p,), (ii) n%o ) =1,

=P; L i =m0,
(iii) a; = m, - j, {iv) )’i = m.
In thig case, the multiple fibre miDi is called & tame fibre.
If a multiple fibre is not tame, it is called a wild fibre.
A multiple fibre miﬂi is wild, if and only iflone of the folleowing

equivalent conditions is satisfied.

T |
‘Y @ — 13 ) >
{1.8) (z)gp_# 0, p; = £(D;), (ii) hgfmﬁ_hﬂ 2,
=*i iti
» & & ) S - % i ) 4 . -
(iii) Qﬁaif;mi 2, (iv) 15){1___ m, 1
(see for examyle[ﬁﬁ] II, Proposition b}, A wild fibre appears

only in case of char.k= p? .

For a multiple fibre m, D., h (0 is 2 non-

)
nby
decre351ng functlon with respect to p051t1ve 1ategers n.
Def;nx;xon 1.1, A positive 1nteger n is called,a gggg;gg_xg&gg

, . . . 0, Y 0,
of the multiple fibre m;D,, if h‘(g(n_1)ni) < n ggnai)-
Lemma 1.2. Assume & multiple fibre m,D, is wild. Let 1, be

the positive integer such that hG(O(1 -1)D ) < ho(ol D ) =
SV i ~ =473

ho(o. p. )+ Then we have a; *+ l;>m,. Moreover, there exists the

i7i
Junping value n, of the multiple fidbre with as + ., = m 5
1§£IL.fiﬁL-

i i
Proof. By the Riemann~Roch theorem for a divisor -rDi and a
standard exact sequence, we have
(1'9) hc(o - )=hi(o )g r = 1,2:-o~n"ttc'acn.¢l

srD., rD.
i i ‘

and h (orD ) is & non-decreasing fumection im r. Let us consider

the fnllowzng exaot seqguences.



(0.} —» HEY(0 . )—> E(0.(-rD.)) —s H(O_.) —> O
.:.—S _:'I'Bi :uS 1 _;'S

(1.10) , ‘ |
[ . 19, 1
1 1 2 , 2y
B (0g) — H (g(r_1)ﬁi)~7 B (0g(~(r=1)D; }»E"(0g) —> 0.
Hote that‘,PT and PQ are surjective. If r is not a jumping

value, then by (1.9l‘f1 is isomorphic.| Take a éasitive integer oy

s P PR j A j
such that o [ Hence Yo 1s isomorphic.
(1.11) 0?0 (-m,D,)) = h2(0 (-n,D.)) > n°(0.(=(n,~1)D,)).
| 9 §P477 = B A0ghmmy 00 UgiTingm Yy

Then the nunmber n, is a jumping value of the multiple fibre.
By the Serre duality and (1.3), we have hE(QS(—miﬁi)) =
0 — N T o N

h (gs(xs+mini)) h (c,gc(xc £+ pi)), pi—f(Bi). As mD., is a
wild fibre, by (1.4) and (1.8) we have deg (X ~f + p: ) > 2g(C).
Hence, by {1.11) we have

2 vy = .0 e ey 4 1= om fa

h (g«( n;D:)) = 1h (c,gc(xc :)) + 1 gg(s) + 1, |

: 200 (-n.D.1) = n%0 (k ) o e s

As we have h QSS(-niDi)) h (SS(LS * niDi)), the canonical divisor
formula (1.3) implies

ay + n. - m
i TR 2

L

On the other hand, by {(1.11) we have
p_(8) = n2(0 . (~(n;-1)D,)) = (0 (X, + {(n,~1)D,))
£ - T rE’ "1 i <878 kA 17

Hence, by (1.3), this implies

a; + n; - 1<mi.
' q_‘IEUdn



12

§2. Jumping values of a wild fibre.

In this SECtiOH,Vusiﬂg a theory due %o Raynaud
{ﬁéh in certain cases we shall célgulate the number ay in the
canonical di#isqr formuia‘(X.B). The present section is
essentially due to Raynaﬁd[hzl
Let T :»S — O 'ﬁe an elliptic surface and
f“T(p) = nl s multiple singular fibre of multiplicity m over
a point p€ €. For any §ositive~integer n we consider nD as

’a subscheme Spec{gs/gs(_ﬁp)). Thep the dualizing sheaf cun of

nD is given by
{2.1) Q)n = cvu«s@?s(nn):nD s V‘gs((n"'a))‘nD.
By (1.9) and the Serre duality, we have
* 0 1, _ .0 1
(2.2) B, ) = n(05) =m0, ) = b (6,). |
We need the following two lemmas. For the proof we refer the
reader to [RZ]
Lemme 2.1.(CR2), Corollaire 3.7.6.) i) The dualizing sheaf A
- 1).
ii) . The dualizing sheaf u); is trivial if and only if
O/yy 3y = 40 |
b (@n) =h (wn—-‘f .
Lemma 2.2. ((R2],Lemme 2.7.7.) For the orders of line
bundles {Dji(n—ﬁ)D
possibilities:
(i) ora ({LDJI,nD}
(ii) ora ( [n]l )

Moreover, if the case (ii) holds, then the dualizing sheaf ¢

is not %rivial if and only if hO(GJn) = hO(CQn_
) o+ 1.

and [DjinD , there are only two

“ord ( fD]l én-‘! )D) 3
gora( [Dj‘(n~1nj)'

I

is trivial.



‘The following lemma is a part of [R2], Lemma 3.7.9.

For the reader's convenience we give a proof.

Lemma 2.3. Let n(£3 be the {-th jumping value of a wild fibre
mb. Set VY= ord([D}lD). Then, we have
,n(l) =y +1,
(2.3) {n“) - iZV.-&- 1 i ord([01| ) 4 1)p) -y,
p + 1Y+ 1 i ora(IDl|y 1)9) =pV .
Proof. Set J = 05(-D). The conormal sheaf J/J of D

'in .S is of order M . Therefore, we have (

(2.4) w2, (37337 = nt, (33HT) =0, r=1,2,...,V -1,

L‘)(D, (3/7%”) = nl(o, (3/5%)) =1

For each positive integer r, we have an exact seguence

(2.5) 00— (/3" —> 0pu1yp — Opp — O-

By (2.4) and (2.5), we infer that Ho(ﬁﬁD) is of dimension 1
and consists of constant functions. Therefore, the map
HO(269+1)D) hFe'HO(QVD) is surjective. Byk(2.4),ywe havg
~h0(9(ﬂ+l)D) = 2. Hence, we have n§1) = Y + 1 (see [BMJ;II§.
By.zemma 2.2, ord([D]](9+l)D) is y or pv~,‘ Now, assume
ord([DJl(ﬂ+1)B) =) (resp. oré({D]t(v+l)D = py). since y + 1
is a jumping value, by (2.2) and Lemma 2.1 5Gﬁ+1 is trivial.
f@erefore, by (2.1), wé have | )

(2.6) Y {V + 1+ a {(resp. p])]}7+ 1+ a). |
If &, 1is trivial for an integer n with Yy+l<n<g2y +1
(resp. Y+1<ng (p+ 1)y + 1), then W |p4qyp I8 trivial.
Therefore, we have ))]n + a (resp. pY) |n + a). Hence, by (2,6)‘
.we have y|n - 1 (resp. pﬂ] n -3y - 1). A contradiction. Thus,
UJn is not tfivial.fag any n with Y+ 1< n< 2y + 1 (resp.

Yy +1<n £ {p + l)9j+ 1). -Therefore, by Lemma 2.2, we have



Qr‘d(tbjlgvﬁ) = )) (I’ESP. OI‘&([D}ICP+1),’)D = P)} )' Ir OI’d([DJl(g)}.g.l)D
=Y (resp. Qrd{{gl‘(pﬁ+9+l)n) = py ), then L62»+1 (resp. &Jp9+ﬁ+l)
is trivial by (2.1) and (2.6). If ord([D] [(2941)p) = Y (resp.
ord (D] (y4ys1yp) = %Y ), then by Lemma 2.2, Woy,y (resp.
W(p+1w+1) 1s trivial. Hence, in both cases, by Lemma 2.1 we

have n'?) = 2y +1 (resp. n(®) < b+ 1)+ 1), q.e.d.
By Lemmas 1.2 and 2.3 we infer the following :
Lemma 2.4, Using the ahove notation, we have the following :

(1) 1Ir n(oD)—z,thena+))+1=m.
(ii) 1If n(omD) 3, thena + Y+ 1=m, a+2Y+ 1=
or a+ (p+1)Y+1=nmn
Corollary 2.5 ([BM], II, Corollary to Proposition 4).
1r ni(s, Og)=1, then we have a, + 1 =m or a, +V, +1 =m

Proof. By (1.1) and (1.2) we have
B(s, 0g) = (¢, o5) + (e, oy(£)) + n¥(c, .
-~ - , = =

On the ‘other hand, by (2 2) and R f‘_S = 0 we have

h (_(_)mi i) = nt O j_Di) = length(r' f30g®k(p;)) = 1 + length(T i),

Hence, we have h (0 Di)<:2 Therefore, by Lemma 2.4, we obtained

the desired result. g.e.d.



§3 A necessary condition for algebraicity.

In this section we consider an elliptic surface £ : 8
] ‘

—> P’ with (s, 0 .} = 0. By Noethers formxila, we have

¢,{8) = 0. Hence from Igusas formula { (21]) we infer that

1

£E:8 —3 P has no singular fibres except multiple flbres

m.E., i= ‘{,2,.....” A with elliptic curves Ei" Put ‘»Vi =
ora (04 (E;) |y ),
ZL

Definition 3.1.  The elliptic surface f !

S —s P as above :

X

is called of type {ma,mz,..‘..,m 1y1,;2,...;...;,g1) In case

all maltiple fibres are tame, that is Y .=‘mi . 1 =1 2,.....Jk ’

i
such an elliptic surface 1s called of type (ml,mz,..g..,mw)
Definition 3.2. For a fixed i, 11X , it is said that

(ml,mz,..‘,.,m] ul,vé;....., Y, ) satisfies condition Ui? if there
exist integers Nyallgsenees,lly such that

iniz—-"‘l mod 2)i
1

n/m1+ nz/m_2 e e +n)7{bf Z .

Theorem 3.3. | Let £ :8 —> B pe an algebraic elliptic .
surface of type (m1,m2,.....,q&‘yi, y;,.{...kg_). Then |
(m, Myeenna,m | Vo, Voreseso Y ) satisfies all conditions,‘
Ugrd= 1,200 N - |

In case k = @ we have a more precise result. This
will be discussed in Appendix 1. . To prove‘the‘theorem, we need
the following two Iemmés. | w
Lemma 3.4. For an elliptic surfacev‘g.: s—>¢c, we let
o : 8 ~——> Alb{(S) be an Albanese mapping of S and
¢ :-C ——% J{C) a natural mapping into the Jacobian variéty of é.
with a suitable choice of base points on S and €. Then, the

following conditions are equivalent.



(1}  There exists a fibre f'j {p): p€C such that e&‘(f“l (p)) is
a point. |
(ii) Alb(S) 1is isomorphic to J(C).
wie Raar
Otherwise) iiim Alb{(S) = dim J(C) + 1.
Proof. - By the universality of the Albanese mapping, choosing
suitablxk we may assume that there exists a surjective homonicrphism
€ : Alb(S) —5 J(C) with Qecl =Po £,

of
S ———> Alb(S)

(3.1) fl , J_Ie

| ’ c @ J(c)
If © is an isomorphism, then by the diagram (3.1), we see that
OKVA{fﬂ (p)) isAa point for ény point p on C. Hence (ii) implies (i).

| . Now assume (i). If dim «{(8) = 0, then we have dim Alb(S)

= dim J(C) = 0. Hence in this case, (i) implies (ii).  Assume
dim aK(S)Z 1.8uppose that there gxists a fibre f”.1 {(gq), g€ C such
that ~¢>((f-1(q)) is é curve. Then,’ there exists a hyperplane ‘
section H of Alb(S) such. that H intersects *Bs'.'(f"'1 {(g)) but
does not intersects (£ '(p)). Then, the effective divisor of im)
intersects f"1 (kq)k but does not intersect f—T (p) . This is a
contradiction. Therefore » under our assumption, : <>‘{(fm1 (gq)) is
a.point for any g e€C. -Hence, ™X(S) is a curve ’and there exists
‘a morphism from C to & (S). Hence by the universality of (Alb(S),

of '} and (J(C), ¢ ), Alb(S) is isomorphic to J(C).

Finallg;, assume that (i) does not hold. Take a

general point p on €. Then, ,‘5( (f‘”1 {p)) is an elliptic curve

E in Alb(S). VUsing the diagram (3.1), we see that ©6(E)



cne dimensicnal, B
is a point. Hence there EXlStsha: abellan subvarzeté}gf Alb(S)

such that the following diagraﬁ commutes:

Alb(S) ———  ALB(S) /gy

(3.2) ‘
J

J(c)

where 6  is the 1nduced homomcrphlsm which is surjectlve.

If dim (Alb{S)/% = 0, then dlm J(C} = 0 hence, dim Alb{S) =

dim J(C) + 1. If dim (Alb(S)/% "1, then by the same method as
above, Teol(S) is a curve and there exists a'morphism from C
to Teol (§). Therefore, by the universality of the Jacobian
variety, there is a homomorphism P g(C)?—*ﬁ Alb(S)/%- Since

avsol (S) generates Alb{S)/% j~/ﬂ is surjective; Hence, we have

dim J(C) = dim (A1B(S)/B)= dim Alb(S) - 1. g.e.d.
Lemma 3.5. Let £ : S -~—? 1P1 be an elliptic surface

with (X(os) = 0, Then, we have dim Alb(S)
Proof. By NOethers‘formuia, we have |
0 = 12-7X(0g) = ¢,(8) =2 = 2b,(S) + bys).
As b,(S) = 2dim Alb(S), we have dim Alb(S)> 1. Hence, by

Lemma 3.4, we have the desired result. = B q.e.a;

Proof of Theorem 3.3.

‘Let j : E; ——> S be the natural closed,immérSianr
Consider the morphism , o v

«e3 B, —> 5 — alb(s).
By Lemmas 34 and 3.5, oeoj dis an isc‘ageny., Hence we have a surjective
_homarphismv~} | |

, o , .0
st * : Pic® (alb(s)) —— Pic®(S) —» PiclE).
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In particular, we have a surjective homomorphism
i* + pic®(s) — ric(E).
Therefore, there exists a‘aivisor L on § such that

(3.3) 3*(0g (L)) = Qg (-E,) | og(z)e pic’ (s),

I
E;

=B
i

0 —0g(L) —% Og(E;+L) —> O

As OS(Ei+L)’E >0 by (3.3), we have the exact sequence
ot i .

p——— o‘

=B,
i
Hence we have a long exact sequence
(3.4) o — B (1) — %04 (E;+1)) — ®O(0_ ) —>
. - 1 :."Ei

— 2L} — H (0g (E;+L)) —ulo, ) —>
o polas §

— B2 (L) —> B2 (0g(E,+L)) — HZ(0, ) —> O,

i
where HQ(OE '22731(0E )= k. By the Riemann-Roch theorem, we have
-7 Ui
(3.5) Xog(E;+L)) = 0.
Suppose HG(OS(E1+L)) = ‘Hz(OS(Ei+L)) = 0. Then by (3.5), we have

H'(Og (B,+L)) = 0. So by (3.4), h%(0 (L)) = 1. By the Serre
duality, we have hO(OS(KS—L)) = 1. By E we denote a general
fibre of £ : 8 *%'P?. Then, using the canonical divisor formula .

(1.3), we see that there exists an effective divisor D on S

such that .

A
(3.6) D~ mE+ > agE.-0L,

§=1 3]
with a suitable integer m. By (3.3}, we have D<E = 0. Therefore,
D consists of  components of fibres, that is, there are non-
negative integers . n, d1, dz""‘%x such that

(3.7) D = nE + Z :\/ E..
: 3=1 J 3]



By (3.6) and (3.7), we have Jk
~L~ (n - mE + o ( oL- 1. )E..
by o 5510 %5 3508y

we have by (3.3) and (3.8)

(3.8)
Restricting_gs(-Ll on

Os®E)|g 2 Ogl(ey-a))E,) {Ei

Ei’

= }/ir we have

X, -a,= 1 mod P&.
Let H be a general hyperplane section of §. Then we have
L-H =0 and E-H # 0. Thereforg( by (3.8) we have

- A

0= (n-m + ?;T(akj—aj)/mj.
Hence , condition Ui is satisfied. |
’Next,suppose hoégS(Ei+Lf) f 0. Then there exists an
efféctive divisor D such that

(3.9) D~ E; + L.

D consists of

Since L<:PicG(S), we have D-E = 0, Therefore,

components of fibres, henc§k»
D~~~ nE + > <.E,

v

JF .

with suitable integers 'n,gil,.,,,lih By (3.9) we have

“L~ -nE- ~GEi- Laeeod, By (1= Ey

c(i+1Ei+1- N %&E‘}-

Restridting_gs(-L) on E.,, we have by (3.3)
C0L(E| . = O (1= R )ED] o -

Therefore wevhave
1 -o, =1 mod )/i‘



Intersecting a hyperplane section of 8 with L, we obtain
4] = -n - °(1/m1 - s-.'.otuﬁ(j”ﬂzi)/mi" I XEEEEE bt %/nb‘ .
Hence condition u, is satisfied.
Finally, suppose hZ(QS(Ei+L)) # 0. Then hoggs(Ks-Ei—L))
£ 0. Then, by the similar argument as above, we see that

condition Ui is satisfied. ; g.e.d.



- §4. A necessary condition for algebraleity, II.

The following corollaries are easy consequences of Theorem 3.7

Corollary 4.1. let £:8 — ¥P1 be an algebraic elliptic surface
Of type (M Mysesseses,my). Lot be the least common multiple of

WMy seanessany « For a prime nuther g we let o be the maximal integer
such thét q* divides m. Then there exist at least two indices
i and j such that g* divides both m, and my -

cho;;a_zz" ry 4.2. let £ 3 é — IPT be an algebraic elliptic‘surfaoe of
type .{m |¥ ). Then, the only one multiple fibre is a wild fibre

with m=p and Y =1, wvhere § is a positive interger.
Corollary 4.3. Let f : 8 —> P be an algebraic elliptic

surface of type (m,n). Then m = n.
Corollary 4.4. let £ : 8§ — 191 be an algebraic elliptic

surface of type | m, ,mz,m3) with {8) = 1. Then we have
1/m1 + 1/m2 + 1/m3§~5/6'
The equality holds if and only if (mj,mz,mai = (2,6,6).
Proof. By the canonical divisor formula {1.3), KS) = 1 if
and only if
~2 + (fm,i--n/mi + (m2-1)/m2 - {m3~‘3)/m3> 0.
Hence we have
AR VA IV A
Then by Corollary 4.1, it is easy to show the above inequality.

g.e.d.



Remark 4.5 (Iitaka {I2]). There exists an analytic ellipticusurﬁ
g : X v—aiPé which has only three singular fibres 2E,,3E,,7E; with
‘elliptic curves Ei, i=1,2,3 and X(X,0.) =0, W(X) = 1. It
is easy to show that if g : X —> P! is an analytic elliptic

surface with type (m1,m2,m3) with «{X) = 1, then we have

Vn U Vg &4 fia,

. example of ‘
Example 4.6.  Here we give an,algebraic elliptic surface of

A
type (2,6,6}, in case char.k# 2,3.
; Let CV be a hon—singular‘complete curve of genus
two defined by |
L yz = xG - 1.

Let us consider two automorphisms of C defined by

C%,y)  ——  (x, -¥),

4 CTEY) —— {Fx, V),
where p is a primitive sixth ioot of unity. Let G be a
. group generated by T and C ., The grgﬁp G is isoﬁorphic to
ZA2) + ZA6) . Fix an elliptic curve E,a torsin point a<E of érder‘
2 and a point- beE of order 6. Then the group G operates on
CﬁE by |
w g (x,y,8) —m— { x, ~y,k§ + a)

<L A%, ¥, §) — (fX,¥, 5+ D).
The operation is free and‘we have an élliptic‘surface
| £:8=CREjg -—~—-,-;- /s =B,
where f is obtained by the natural projection CX E 7 C.

The ell;ptic surface thus obtained is of type (2,6,6) and a



canonical divisor has a form

f£*(-2p) + E, + 5E, + 5E

1 3’
where 2E,, 6E,, 6E; are the multiple fibres. It is easy to show
that dim }131{3‘ = 0 and dim[mKSj?__l' for lei%.
Finally we‘give three typical examples of multiple

fibres in'characteristic .

Example 4,7, Let g be the automorhpism of the projective
line @' defiﬁed by |

k g : t \-——-—-> t + 1,

where t is  a  coordinate of an affine line A' in P .
Let E be én ordinary elliptic curvé:and ackE a point of order

p. Then the group G=<gr~ Zs/p?b acts on £912<E by

g: (£8) s (t+1, &+a).

14

Then we have an elliptic¢ surface f : § = EiAE/b —*«?“El/i‘"

" where £ is the morphism induced by the prcgectlcn. The elllptlc

surface 8§ has only one muitlple 31ngular flbre pPE,, over the

point at infinity of {Pq. 81nce the canonical morphism‘q;:

1

PXE — S is étale, we have fX(O ) = ﬁX( = 0, Hence,.

E

by Corollary 4.2, the multlple fibre pE,, is a wild fibre. By (1.6)

and (1.8), mﬁ@@h@é1,bmmmmnvmhmm/iﬁ&ék@kE)f—m,
In particular, we have pg(s) = 0, hence

h (OS) = tT. Therefore,;by CGrollary 2;5, the canonical divisor

of S8 is given by | |

K, = 1 =1+ 49-2)%,.;

S Q'.
ﬂ?
Another method to shmw this fact can be found in § 8.



VExamEle 4,8, As the group scheme G = a!p is a subgroup scheme

1

of 6,, G actsnaturallyon/A  and,action can be extended to

that gn‘&??. Let E be a supersingular elliptiq, curve. Since
D(P is also a subgroup scheme of E, it acts 6n {P%(E n&tu;ally.
Hence, we have an elliptic surface £ : S = @% Efy —> P /‘*p

o 931, where f. is induced from the natural p:ojection; The
elliptic surface has ‘oniy one singular fiber which is a.multiple
fibre pE,_. over vthe point at infinity. Siﬁce tﬁ;e guotient
morphism W : E“TK E —-———~=; -8 isipurely inseparable finite flat
morp’h‘ism of degree 'p, we have O((E‘_JS)‘ = X (O(P1)< E) = 0 -and
K(S)-.?— k(£P1AE) = -0° (gee [RS], for instance). Hence, by
Corollary 4.2, pE, is a wild fibre and we have pg(S) = 0.
Hem:e,, h‘1 {-.;Qs,) = 1, By the same meti;e_d as above, we obtain

Kg = £0 1) (e-2)%,,

Example 4.9,  Since /'\p is a subgroup scheme of € . :,t acts
naturally on A& ~{0}, This action can be extended £o that on 1.
Since /MP is also a subgroup scheme of an erdinary ellipt:.c
curve E, /«p acts naturally on fP1&E Hence ,k we obtain an
elliptic surfaée £f:8= ’PAE//M e P 4,&\V where f is
induced from the natural pro3ectlon. The elliptic surface has
two multiple singular fibres p’Eo over 0 and pEg over the point
at :Lnflnity of !P1 . Since the quotient morphism is purely
inseparable, finite and flat, we have  X(0g) = 0, p (S) = O,
and h'(05) = 1. Since neighbourhoods of E, and E are
isomorphic, if one of the multiple fibres is wild, the other is

also wild. Then, by the Leray spectral sequence associated with
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1, y o 10,51 0,51 ;
the morphism f, we have h (:gs) = h (R f*gs)?_h ((R f*gs%or)zz‘

This is a contradiction. Therefore, both multiple fibres are
ordinary and we have A

Kg = fﬁgpl(_Z) + (p-1)Ej *+ (p-~1)Eq.

Remark 4.10. ‘In the above three examples, let ,’,;‘ : tP’KE—-a 8

be the gquotierf morphism and T . ﬂ?1AE — @' the natural

projection. For general points

, V o o 1 - .
qeﬂli;I = IP1/G and u EIE’]', we have o ‘P XE - T =

* * * 0 -1, £ L L £

~_q ; P — P
~ p{f£ "(u)). Therefore, we have

) - ®
(4.1) ’IT(EGD) = tox E,

The
arestriction of & , N = 717 “NKE :¢¢x E —s E, is nothing

but the gquotient morphism E~——2E /e - T‘akingf the dual,
% ‘
we have a homomorphism v, : Pico (Eo) —_— Pico {E) . Then, the
: e . N / .
kernel of W, is the dual group scheme T of G. On the other
' ‘ pic? ‘ by 1 : e in Ker O
hand [E"’]‘E‘f Pic” (B and by (4.1) EE”]‘Eon is in Ker .

7~

If G ='22;/st (resp. Q(p, resp. /xp ¥, theq G is /‘*p { resp.

blp, resp. Zfog, ). Therefore, ,ord[Eg‘E.p is one (resp. p),
-if G is ‘Z/pmor Qp ( resp. /”‘p)‘ Thus, the wildness of a multiple

fibre of an elliptic surface obtained by a quotient by a finite

~ group shceme does depend on the dual group scheme.



§5., Pluricanonical mappings of elliptic surfaces.

In this section we study pluricanenical.mappingé.
of elliptic surfaces with K== 1. The follow;ng lemma is well~known .
and easy to QIDVE (see [I2], Propqsition 7, for instance).
Lemma. 5.1.  Let £ : §S —> C be an elliptic surface with k= 1.
Then,S carries the unique structure of the ellipiié’surface.
Theorem 5.2. | Let f : § —» C be an aigebrai§ elliﬁtic,surface

with K(S) = 1. Then, the complete linear system ‘mK

,S‘ gives the

unique structure of the elliptlc surface if mZ 14.
gggggg,S.B. 3). By Example 4, 6, the number 14 is the best possihle,
i_f'chér,k # 2,3,
2}. 1If we consider an analytlc elllptlc surface with K= 1, then
86 is the best possible number ([{I2] and see also Remark b, 5)
Proof of Theorem\s 2.

The idea of the proof is due to Iltaka I;Z] The unigue-

ness is clear from Lemma 5. 1. Using the notation in §1, we have
] sl = £x|mkg - me| ZE"‘*}P
where by [ p] we denotes the largest integer less than or equal

to‘/h . Put

g - n + 2]
A - {? - mf + P 1[?‘5;:‘?1'
g = g{C), t = length T.

If deg A 52‘2g'+ 1, then A is very ample, hence f*izﬁ( gives
the structure of the elliptic surface. On the other hand the

\con&ition k(S) = 1 4is equivalent to

.
' a ,
(5.1) 2g - 2 + KOg) + t +"1’>‘1 = > o.
: = ="



Therefore it is enough to show that if m> 14, we have

{*) degA=m(2g-2+7((0)+t)+2_—-—1>29+1.

Since r)((bs) > 0, we have the following six cases.
Case (I) r/)((ps) + t2>3,
Case (II) 0 <X(0g) *+ t<£2 and g>1,

Case (III) 7((25) +t=2 and g =0,

Case (IV-1) X0g)'= 1, t =0 and g =0,
Case (IV~2) ~X(Og) = 0, t =1 and g = 0,

Case (V) 706 ) t =0 and Ag = 0.

|

In case (I), (*) is sat:.sf;.ed for m> 1. In case (II),
since all multiple fibres are tame,
(*) is satlsfled for m>6. In cas& (IV-T]

it is easy to show that (*) is satis.fied for m=z 6. In case (V),

‘ean ' ' ‘ L.
using. Corollary 4.4, we Aprove the theorem by the same method as in[I2]
For the reader's convenlence, we glve the proof. Put

A= =24 Z (mi_n/mi' - By (5.1), we have A>0.

Tﬂerefcre, we h'a.,ve 1=z3. If A=24, we have

A2 2 af 1y 2f s 0

But (2,2,2,3) does not satisfied " condition U 4 ‘Hence we have
A > 1 /6 if X Z 4. On thebother hand, if J_= 3, by Corollary 4.4,

we have A 2 1/. Since we have

f‘mn— 1/m1)] - m{1- 1,/mi)2, ~t1-1/mi),
and 3 . |
Z[mﬂ— 1/m )] Z m(1- 1/m ) + ﬁj)}n(a— 1/"‘1}} m{Tf-]/mi)}
- > (m-‘l){Z (1- 1/m )} (m=1) {2+3), |

to prove (*), it is énough to show that (m-1){(2+a) > 2m if m3>14.



‘But this is clear by A > 1/6’

Next consider Case (III). By {5.1) we have
, J\ A

{5.2) i# l/g > 0.
If there exists at least one tame multiple fibre}'say m1D1: then we
have

deg A > [m(1- 1/1’111 )]J;Em/zla 1, if m>2.

Therefore;assume that there are no tame fibres. Since t<£2, there
exist either‘o:nly one wild fibre or two wild fibres, and Char.k =
P >0. First cbnsider the case in which fhere is only one wild fibre.

is a wild fibre, by
y (l 8) and (1.9) we have

Then (5.2) is equlvalent to a, }'0. - AS m,I 1,

(1 6) we have m, = pﬁ w1th,an 1nteger nz’

2 < 1’ (0

) o= h {o
1” 1 “m1°1

R alEgg, ) = 1 s e 3
Therefore, by Lemma 2.4, we have the following three possibilities.
‘l)a,* +')}1~+ 1 = m1, :”(ij_) a1 o+ 2)}1 £ 1 = m‘l"

(iii) a, + (pﬂ})«f‘1 +:1 = m, .
Case (i). In this cése, we have
deg A = [ng 1- wﬂ)/m)] (m(1 = 1/fy- 1/97),, y].
If p73, then degé,?@x('l 1/3~1/3)])1 for! mz 3. -Next assume
p = 2, If m, = 2, then- ~a,;= 0. This contradicts our assumption.
Therefore m, Z 4, since m,D, is wild. Hence (*) is satisfied
if m> 4.
Case (ii). In this case we have "
deg A 3 [m {1- @y m/mg] =.[m(1 - z/py.»—ft/pw).
‘As we have a p y.’ -2 )/ - 17 0, we have the following four cases:



4 p=-2, 72 2.
We can check that in each case deg 21 if mze.
Case (iii). In this case, as we have ai = p"‘{}’] -{p+1) }’1 - 170,
we have the following three cases | |

(1) p=3,922, (2) p=2, 723, (3)p=2, 7v=2, Vz2.
We canshow easily that (*) is satisfied for mz>8.

Next assume that the’re are two wild fibres. Then we have
2 and by (1.8) and (1. 9) we have

n’o 1= n'io

_mD m.D,

) = nUUR'EOQ ) =2, 1= 1,2
=T : , i ;
Therefore by Lemma 2.4, we have mg = ag+ }éf,'i”ri, i=1,2. By 7(‘5.2) ; We
may assume a,1>“0. Then by the same mefthodl aé in Case (i),
condition (*) is satisfied for m=4.

Finally consider the case (IV-2). As t =1, we

have only”one wild fibre, éay m1D1. Then by (1.8) and .Lem,a'«z-..é,

‘we have  a,+ J/,l‘+ 1=m, and 'm1 = p’Yy1 with an integer r=1.
Condition (5.1) is  written as
. ‘ XJ\‘

iﬂ

Hence, X 22. 1If A24, there are at leasii three tame fibres. ‘Hence,

degg)> ~m + 3,[m/2jz 1 if mzd4. If X = 3, we have two tame

fibres m)D, and myD, with my<m,. If my=2 .ang my> 3, then

deg AZ -m + [m/zj (n/y]21 4f m=z8. If m, =m

3

(5.3), we have a,>0, Hence m, = p’Y}/,‘Z; 3. Hence we have

deg A > -m + [m( 1- 1, =107 +2mfp) > 1 if mzi2.

If O\ = 2, there are a wild fibre m,D, and a tame



fibre mznz By Theorem 3.3, (mq,m [ y%,mz) satisfies conditions U,

i =1,2. By ¢ondition U,, we have 4m2[m1. If p| Y;+ then m, |m,

by condition Uy. If p} )., then we have m, = 9F}’1 with a non-negative
integer =7 by condition Ul,"rherefore, we have the following two

cases.:

1

(1) p| ¥ my=my= p'J, 721,

(]

(i) p | Y, m =p"P,, m, = p‘BY,, zp, az1.
Case (i}. In this case, condition (5.3) is written as
a, ~ 1= p”;% - )% -2 > 0. Hence the following three cases occur,
{i-1) pzé, Y23, (i-2) § = 2, ))12:2,0/.22
‘(1-3) p =2, 3’%24 T= ‘
In eéch case ,(*) is satisfied for m>14.
Case (ii). In this case condition (5.3) is written as
| ‘(Pfr" 1)}’ -(p P+1)—,”f(p£3-1)+(p ~1)(})~1)-2?0.
Therefore, by the condition p Y VT, the following twelve cases
occur:
(ii-1) >0, p25, (i1-2)f>1, p = 3, (ii-3) B= 1, P =3,
S Vyz2, (ii-4) f=1,p =3, Y, o=1, 722, (1i-5)f>1, p = 2,
(ii-6) P=1,p =2, Yz3, (4i-7) =1, p=2, Y =1,
?rza, (ii-8) f= 0, Yyz 2, pz5, (ii-9) {5 0, 1..?.
p=3,7T22, (11) =0, V24, p=3,¥=1, |
(11-11) p=0, %25, p = 2, (11-12) =0, V; =3, p = 2, Y 22.
In each case, it is easy to show that (*] is satisfied if mZ1d4.

g.e.d.



'§6, Reduction of a wild fibre to a tame fibre.

In thig s@cti@n, we use the notation :t,n §1

and denote m,D, b}g’ md. Put £(D) =p and J = ord [:E;]‘Ds
By (L&} « We have n = Q%J with a non-negative integer 7 . We
know that  Z 1 if and only if mD :;,s a wiléimfiibxe.
Lemma 6.1.(i) If £ p) = md is ‘a wild ﬁibfe, then the
natural mapping £ : Hl (S”fg?s) D Hd‘ .(D,QD) is 5Q:je,¢ti$fe;
(ii) Assume deg £< 0. (e::;, £ 8 —>C has a wild f£ibre.) |
Let f“ifq) = B, geC be n@t a wild f“ibre iThe:i‘the natural
restriction mappmg r: H (s, 0 ) ——% H (E OE) is the zerc{ mapping.
Proof.(i) From the exact sequ@nce

0 “'"“'«’,93(“13) — ,Qs
we obtain a long exact sequence

— Qmw—? 0,

B (03)“? H' (Q ) u? (Os(”D))w H (O ) ™7 0.
Since mD is a w:le fibre, we have (0 +D)) = h (0 (KS})
Therefore, in the above exact saquence, the natural restrict&gn
mapping P : H (0,,) m—— H (PD) ',L:.,s surjective,
{ii) - From the Leray spectral sequence associated with £ 3 §~>C,
we have the edge exact sequence | o
{6.1) 0--;3((:0)-—-:,» (SO)m—w;- H(CR:E*O)'”‘?' 0.
By (1.2) and deg f<0 H {c, R f*O y = T, The natural restriction
mapping p + H (S,O )--**’> H (E QE) factors through u! (s,,gﬁ)w-—:a»

1

B0 (CRf*OS)“—"'? B (EO Hence P=0. ‘qad.*

E)
Let X be a complete algebraic vaa:iaty de:ﬁmed
over an algebraically closed field k with char.k = p» 0., By the

Frobenius mapping Fy of X we means that Fy acts mnﬁi:he



structure sheaf:SX' by g;__?gp.; The Frobenius.mapping Fx~induces
a p~linear mapping of H1(X49,). We alééndenote5it by Foo We
assume that mD is a wild fibre and we shall reduce the wild
fibre into a tamé fibre in the following three cases: (I) D is
an ordinary eliiptic curve, (II) D is of typé I, (III) D is
a supersingular elliptic curve.

Case (I). As D 1is -an ordinary: elliptic curve, the

"ﬂ\(ﬂf ‘r.'uy\a

Frobeniu%mFD acts semi-simply on HT(D,OD). Considering the

Fitting decompbsition of HT(S,OS) with respect to the Frobenius
‘mapping FS' we can find a nonfz;ro element e H1(S,QS) such that
(6.2) ell) # 0, Fglh) =oL , Fl ClA)) = é(ol).

We make a covering qf S using the element &\ . For this purpose,
let>{tﬁ¥}iGI be an affine.opé# covering of S and let A be
represented by a géch cocycle {:fij}- with respect to this covering

By (6.2), there exist elements fié:rkui,os), ieI such that

p _ ~ . ,
£ = f£,. + £, £, on Uif\Uj.

i3 ij i 3
‘Let ’H] -3 S")r—;—é S be the covering defined by
25 - z, = £, onU, ieI,
(6.3)

zi = zj + fij on Ui(\Uj'

This is an étale covering of degree p.

If we restrict the covering o 5(1)_—_—9 s |
to D, we obtain a non—trivial &tale covering of degree p of D,
éiﬁce P(cl) # 0. on the qther hand if we restrict the covering

to a general fibre E, then by Lemma 6.1 (ii), the covering splits

into p copies of E. Hence by the Stein factorization of £-T,,



we obtain a curve Ccl) and morphisms Gy fT with a commutative

diagram

s «——35
fl if‘t
C é—ﬁm*- c’

where g, is totally ramified at p with deg g, =‘p; We denote

by p(T) the point on C‘i) (1))

‘such that g,(p
m{Mpl R “

Then we’héve o :
w0 - ENR NS

and -

(L. m/%.

Since D 1s an ordinary elllptlc curve and T’lD . D{?}ﬁaf. D

is an étale covering of degree p, PlG {D) -—?

*
: “1ID(1) :

PiCO(D(1)) is ~a purely insepérabié homomorphism of degree p.

Therefore, we have

M= ord(D}D = Ord ‘ﬁfl (1)[]3 \I{ = ordEDG)j{DU)v

Now continue this procedure ¢ times. We obtain the

following diagram:

G aw, .
(6.4) S"”‘E 1 5(1) 2 5(2) <__,_ e s saee ,«&_ﬁ: Sﬂ')
fl g1 f‘L A %y %‘TLW)\
CE — C( menn c(2)<—- R N R C i '
W w W ‘ B LW
P(O)= B P( ) p(2) | | o ?(W}’

where 7,8 are etale morphisms of degree p as in (6.3),



£, : gl ot

g; is a morphism of degree p totally ramified at 9(1"1)>f0r

'is an elliptic surface for each i,and

each i with gi(p(vi)) = p(iﬁ‘”‘. Put f? (p(i)) = m{i)D(i).

Then we have

ord[D(iE ID(i) = ordﬁ)‘i—”]‘nfi*ﬂ '
AN m(i-‘i):/P’

Hence, ordﬁ) W)}(D(/n = )j = m(m. This means that m(”nDW) ‘is
a tame fibre by (1.7).

Case (II). Let 'Piéa {D). be the group of ?.samcrphism
classes of invertible sheaves on D which are of degree 0 on each
irreducible cbmpcnent. - Bs D is of type I, pic’ (D) = € hence,
tbe Frobenius mapping Fp acts semi-simply on HTIOQ) ." Therefore

by the same method as above, we have the same diagram as in (6.4).

i

Put f? (p(i)) = m(i)D‘i). Then, the divisor D(i} is of type I
: P n

and we have m'i) = gfi=1) /p' It is easy to show‘ that the
homomorphism rﬁil* iy ¢ Pl =5 pic® ) is the
NE : ,

Frobenius morphism P : Gxﬁ —7 &, . Therefore, we have

ord[D(iqu(i—‘i)-: ord ﬁri‘;{i,&)‘ﬁﬁ‘gfiﬁ)sQrd[n‘iﬂn(i:

Hence, Dm’) is of )type" Ip’*’n and m(ﬂﬁm’) is a tame fibre.

Case (ITII) Since D is a supersingualr elliptic curve,

-

the Frobenius mapping F_ acts nilpotently on ! (Op) . Considering

3
- the Fitting decomposition of ! (S,OS‘) with respect to the Frobenius

mapping Fs, we find a non-zero element o & H{l (S,__?s) such that
(6.5) € #£0, FR ') £ 0, FAR) = 0, F(P60) =0

with 2 sultable positive integer n. -



: : : ing this o nt o , 0

We make a covering of S, using this element . Let‘{gi}iél
be an affine open covering of S such that od is represented by
a Cech cocycle {fij}‘ with respect to this covering. By (6.5},
there are £, ¢ F(Ui,:(‘)\s_) . i€I, such that

P = o - ,
f i3 fi fj on Ul(\Uf,

We define the covering ‘"171 H S(n'—*—} s by

p" .
N : . ” 2N 3 a2 E 3 -
lz, =2z, * £, onuNU,. the minimal non
v singular model {as an

* 3 i3
This is a flat covering of degree pn. elliptic surface) oﬁ !

Let XM :F§(1)*”*? S(i) beithe normalization of

3(1). By the Steiﬁ factorization, we have the follawlng diagram
¢ o M
f‘L 94 fil(n
C £ T EE— cre
4 o1
uwhete 6(1) is a non-singular complete curve and g1ip(1)) = P

Since the restriction of ’H} to a general fibre of £ is trivial

by Lemma 6.1 (ii), the morphism 9, is purely inseparable of

n the normallzatlan
degree p . Moreover, since D is an elllptlc CUTVE, ..

- Sof S( ) is already

non-singular in a neighbourhood of £ ( (1)) by the structure of

1
singular fibres of elliptic surfaces., Put £, { (3)} = m(13D(1},

1
955 = fiﬁ b s 9y = filDf Since Fj is the zero mapping on HqngQ;
there are elements hic;{”lui(\D,gn) such that

P2 - U. Al v



By a suitable choice of h,, we may assume

. n~1
(6.7) gy ='h§__’ , iel.

. /
Let us consider the covering 0?{ : D—p» D defined by

L = , /
{wi =Ry on TAD
Wi =Wyt gy5  onm Ui[\Uj(\D.
By {(6.5), this covering is a non-trivial flat covering of degree
p. By (6.6), (6.7) and normalization, we obtain the following

commutative diagram

s 4.:‘_1__ 3”} ¢ /A gfh)
g0
D & D T pll},

with deg @’= p. Therefore, setting n‘rfl = TipM, we have

,’;{,11(]3) = p?” 3D(1)
for a suitable integer j, 1<j<n. This implies
(6.8) nl? - LYAD
Since D is a supersingular elliptic curve, .D“") 'is also a
supersingular elliptic cufve. As % i D(T) is a purely inseparable
morphism, ’%-(1l;(1) : pic®(®) —> pic®(d!")  is also purely
inseparable.. Therefore, we have '

: ~ % .
{6.9) R ord[l}jb) = ord ,;;Tlg“)LDJID =

= crd[én-‘jD”ﬂi 1) = crd[D“.]lD(ﬂ,
becausg hsu (n d fDm} (1)
ASupersingularity of pic?(p (1) implies that or l |

is prime to p. Continuing this procedure, we obtain a tame fibre

by virtue of (6.8) and (6.9).



§7. Reduction of a tame fibre to a non-multiple filbre.

We use the same notation as in the previous
section. In this section we assume that mD 4is a tame multiple
fihie. Hence ord{p]lD = m. We shall reduce the multiple fibre
to a non-multiple fibre in the following three cases.

(I) D is an ordinary elliptic curve, (II}) D is of

type I, (III) D is a supersingular elliptic’ curve.

The missing case is a tame‘fibre pD  with Piéo(D) =6, . For this
case, very few examples are Kﬁown ([XK1I1).
First consider Case (I). Write
ﬁ = pgm; (p,m*) = 1, ¢.Z0.
First Step. Let t be a local parameter of p on an open
affine neighourhood of p in the curve C. Taking U small enough,
1

< : ) - "
we may assume that [@FD] is of order m" on £ " (U). Let {Ui}'be

an-affine bpen‘coveringgof ff1(U) and let £, =0 bea defining

3y in rfol -
D in U;. Then, (B 0]y is gefined by

trasition functions

fij = fi/%j on Ui{\Uj.

equation of p

-

Pulling bac%&by f, we consider t as a regular function on 3‘5'1

{uj .

Then we have

_ ’m» - ‘ - - ‘*,
Hence we have ,
. = m‘ 3 . s U./AT. .
“j ‘kfijui on Ulf\Uj.

(1)

Define an &tale covering i, : V

" —s £ M) of degree w'
by ‘



Fi =u  onU;,
zj = fijzi on Ui{\Uj.

For a general point ge U, the restriction of~[gr§] to f’1(q)

is trivial. Hence the restriction of the covering ‘ﬁ% to f""i

splits into m' copies of f"1(q);; As [ﬁyﬁ]{D is of “order m}

(q)

the restriction of the covering @, to D is a pon-trivial
connected &tale covering of degrge‘m: Therefore, by- the Stein’

factorization, we have the following commutative diagram.

T
£ «— -y
‘| Iy
; g 1
w U
P_ 9‘1) i

where u'!) 'is a non-singular curve, £, is an eiliptic fibration
and gT(p(?)) = P. The-mqrphism 94 is totally ramified at p.

Put f;lép(jl} = n{UplM, 'Theh<we have
*2 - j N o . 3 .
’(i‘,iD(n] b = iu‘”]‘pm, a8

Moreover, we have ‘
. ord[D‘“U ‘DH) =p? .

Second Step. _';Let s be a local parameter of p!1) on an - affine

Qpeh neighourhood vV of p(1) in U(T). Taking Vv small enough,
we may assume that '[D(i)lff—1(v’ is of order pgl Let‘{vi} ier
‘be an open affine covering éf f;](vr and 9; = 0 a defining
,equation'of ot on V- Then,[n(?!}if;1(v) is defined by transition

functions

giﬁ = gi/;j on Vi[\Vj.



Pulling back by f‘l' we may ccnsider s as a regular function

on f; (v}, Then, we have

o
iy

= v.qF :
s = v;97 on Vi, v;& r7Vl,O )
Then,we have
‘ )
f L 4P AT
{(7.1) S Vg R gygvy  om Vinvj.

Define a flat covering T[, : y(2) —-——’—}f‘“l(’V) of degree p?® by

P
: , P . .
{7.2) {Wi = Vi . on Vi’

By the same argument as in the first step and the Stein factorization,

we have the follo_x‘&ing diagram.

(1) :> f -1 W) . "T\"
f1 f \l/
o (1) ::) v . J§~“ - U(Z)

w(1} Co (2} |

| p(1) : 'P( )
where U(Z) is a non-singular c’urﬁre £ = £.].-1 £, is
N s an guLar v Ty HE vy T2 T

an elliptiec fibration and gz(pm) = p“)[. The ‘morphism 9, is

purely inseparable and of degree p= .

The following lemma is‘ well—-known.
Lemma 7.1. Let E be an ordinary elliptic curve, { U]}“Eix affine
open coveringof E and L a line bundle on E of order p? with
8> 1 defined by a dech cocycle c{fij} with respect to the
caveringg\ Ui}. Then there exist £, & r(Ui ,2;) ; 1€ I such
thét f§§ = fi/f Moreover, dfi;/fi' ieI  give a non-zero

regular 1-form @ on E.



By (7.2} the singular points of.V‘z) are

contained in the Zeros of the l-form

—I . ’
i on ﬁgﬁﬁ),lél.

Put vi = v, vi(\b“" Then, by (7.1} and Lemma 7.1, dvi/vi

dv

on Vif\D‘T}, ieI define a non-zero regular 1-form on E.
Therefore, in particular, dvi on \/i" has no zeros arround D{T).

‘Hence V(Z} (2)).'

is nqn—singularAarround f;1(p It is easy to

see that f;1(p(2)) is a regular fibre. Thus we obtain a reduction
of the tame fibre to a regular fibre.

Cases (II) and (III) are treated as follows. Since D is of
type In {resp. a supersinguiar elliptic curve}, Pica(D) is

Gﬁ (resp. a supersingular elliptic curve). Therefore, PicG(D) has

no points of order p; Hence if mD ‘is a %ame fibre, we have

{m, p) =1, since',m = or&[D]tD ,[D”D ¢ pic’ (D). -Thus, by

ihe same method as in the first step in Case (I), we obtain a

reduction of the tame fibre to a non-multiple fibre.



§ 8. ‘Examples;

In this section we give examples of elliptic'surfaces
with wild fibres. We also give examples of a smooth deformation
and a lifting of certain elliptic surfaces. In this section,
we fix an algebraically closed field k of char.k = p>0.

' First we generalize Example 4.7 in the following way.
I}  Etale quotients. Let W C — @l be a cyclic Galois
covering of degree pn ramified only at the point at infinity

1

of P,. For simplicity, assume that = is totally ramified at o9 .,

Put oo, = ’W—1(“9- Let g -be an automorphism of C which
generates the Galbis grouﬁ G of the covering 4; . Fix an ordinary
elliptic curve E over k and a torsion point agE(k) of order
p=. Then the cyclic group G operates on CXE by
g : CKE ————s CXE
W w ;

| (1, 3) s {glu), 5+ a).
By T:CKE —s § = C><E/E , we denote the guotient morphism.
The morphism f : § — 91 = C/% induced from the natu:al
projection CXE —> C_  gives a structure of an elliptic surface.
By our construction, the elliptic surface has only one multiple
singular fibre an03 over the point at infinity of’@1. By a

canonical divisor formula, we have

*.

(8.1) Kg = £ 0 ,(-240) + aBg,,
=p

(8.2) L= -deg £, 0L a<p” - 1.

By a similar argument as in Remark 4.10, we have

T (B = OoXE.



Since T 1is é&tale, - CAXE — 38
' ~ % o :
we have T Kg = chg = £ L : L £
¥ K. where T : CXE-—C | B et

is the natural projection.
Hence, by (8.1) we have
UZ.-Z)pn +a = 2g{C) - 2.

Therefore, by (8.2), we obtain

. [29(C) -2
‘{'—deg’_»_f_=w pn: ’ +2,

‘ " 2g(C) - 2
] - (e - _ 1 i - n
va = Zg(C? 2 - [; ey p

By a similar argument as in Remark 4. 10, we have

~ % - . ’
cord TR = ord [osx E]«I = 1.
¢ Proe E.. : =1 .
; GQTK E

(8.3)

Moreover, as & is étale, ‘X (0;) = 0. Hence, f : S -——-é,‘P1,

is of tyée ("N {see | Definition 3.1).

V‘ As special cases, we cbtain the fcllowihg examples.,
Example 8.1. Let C be the complete non-singular model of the
curve defined by the equation

P - x = (m,p) = 1.

The curve C hasthe automorphism g of qordez: P definedk by -
(8.4) g: {t, X) ——s (t, x+ 1).
The genus of C is given by
(.50 gle) = =L (p-1) (m-1).

Therefore, by (8.3), if we write



m = dp + b, 1£b<p, 420,
then.We have
- deg:£1= m - 4,
{a =p-b - 1.
Moreover, we have
Pg(S)'= m-d -1

1,

S - 6o if m=
k(s) =1 0 if m=2andp=3, orm=3andp = 2,
1 1 otherwise,

Thus, there exist elliptic surfaces of type ( p|1) with fixed
a, 0<£a £ p-2 and arbitrary large -deg f.

In general, aﬁy z/pnz covering of iEl is

Y , {see [W])
constructed by means of Witt vectoriﬁ Here, for simplicity, we

only consider certain IE/%ZZL~ coverings.

Exam?le 8.2. Let C be the non—§ingular"complete curve
whose function field is the extension of k(t) defined by the

equations

i

X+, (m, p) = 1,

i

L L m(p-i
5 (p-1)!  imip-i)

y -
11 (p-i) tdd

The curve C has the automorphism g defined by p=~1
9t (tmy) ——— (Ex 1,y - 2 T

i
=2 R
1=11P

.

The automorphism is of order Pz and has only one fixed point ixﬁ,
which lies over the point at infinity oo of ['.



Fix an ordiné,ry elliptic curve E over k. and
a torsion point b €E(k) of order pz. Define the action of g
on CXE by
p-1
gt (X, 7, 8) —> (t, x+1, y=- %:1@%;—)'—;—! xt, X+,

Then the quotient variety S=CXE /49 N with the natural morphism

1 _ . . o . ;
=C /< a> induced from the natural prajgzqtion is

£f:8 —P
an elliptic surface with only one multiple fibre pzl:“. over the
point at infinity. By the same argument as above, the elliptic
. surface S is of type (92{1) . The genus of the curve C is

given by
; i .
gi{€) = - (p-1) Cmpz'P"'m'l}.:

Hence, by (8.3), we have

| ' mp ~ (m+1)
--‘deg £= mp - ,m) + 1+ i 2 - .’ ,

P
B mp - (m+1}} 5
a = mp - (m+1) - S — ! p".
« : ‘ P " &
Here, we give some numerical results.
P=2, | m mdd | 1 |3
a -~ 1-0 2
p=3 im mod 9 | 1 2 4 5 7 8
8. 113 17 |0 4_1 6
p=5 {m mod25 . 1 2 3 4 T 6 7] 8] 9
e R 2 e - ng R - ,.; s s v P T v o f *
a 3 7 11 15- ' 23 2 6 |10

11 12, 13
KRR AR

21| 22| 23 | 24

9 o
0! 8| 12| 16 | 20

Ly
——
w
(OO {
| <
o )
fud




It is easy to see that all numbers a;p + a,
(ao = 0,1,2,.....,p~2, a; = 0,1,2,:4...,p=1) appear as the
number a, but numbers a;p + (p - 1) A(al &'0,1,2,.!.7;;p a‘l)
never appear as the number a. In general, the following
proposition holds.

Proposition 8.3. Let f : 8 —>C be an elliptic surface

with only one multiple fibré f'l(p) = vaEg‘FZI. Assume that.
E is an ordinaryfeiliptig curve with ord([éij)v=)}. Then,
for the number a, ‘[afg]: is not equal to —l;(moa D). /
Proof. We consider ﬁhe‘reduﬁtion of the wild Fibre ﬁr?E
to a tame fibre which we*des¢ribed in §6,(6.4). We set

& = 808y "ttt 0B, and = ‘Tl r2 --'--éﬁ;; Then, in our
case, g is ramified’only at p. Let ¢ (resp s) be a local

o).

ccordinate at‘p (resp‘ Then, with a sultable unit u

r)

at p , we have g¥*(t) = ﬁs?y. Con51derlng u ‘1n the
completion of the local ring‘ggpﬁd at p(Y); we have ordg (du}
¥ o1 (mod p). Therefore, we have ord (g*(&t)) ¥/-l (mod p)
By Hurwitz's formula, we have

25(cy _ 2 = prieglc) - 2) + ord. {g*(dt))
Therefgre,*we have

2g(c{) - 2 % -1 (mod p).
On the other hand,’ by the same method as in (8.3), we have

BT (28(C) - 2+ 1) + [aiy] = zg(c(T)> - 2.
Hence, we have [a/yp] ¥ -1 (mod p) g.e.d.

45



Example 8.4. . Let C be the compl_ete non-singular model of the
curve defined by
xP - x = tnm' { nm, p) = 1.

The curve C has two automorphims

L1

( £, 8) r——————— (£, x+1 )

h

il

{ £ X} —e—— (P, %), ’
whére P is a primi*;ivé n~th root of unity. A: The automorphims
g, h  generate the." group G = Z /P%X My+ The automorphism h
has (p+1) fixed points : g*({0,0)), k = 0,1,2,.....,p~1 and
éhe po:Lnt at infinity. Fix an ordinary elliptic curve E over
k and a torsion pbint‘ c& E(k) of order pn. Then, we introduce
the action of G on CXE by

g: 0t %x85) —s (t, xt1, ¥+ ne),

h: (t, x,5) =2 (pPt, x, §+ pc).

Let £ : 8= CXE/f, — P! = C/, be the quotient. The
elliptic surface £ : §S— 1}?1 has two multiple fibres :

nEO over the origin and pnE,, over the point at infinity.

As we assume | Anm, p) = 1, nEy is a tame fibre. By the similar
argument as ab}ove, we have ord{g.,..]iEi” = n, hence, pnEge is

a wild fibre and f : 38 —~———:7:[P3L is of type (pn, n]n,n) . If we write

m=4dp + b, 12 b<p-1,
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then we have

% o
Ko = £0 ‘1(-'-2+9~) + A(n-'-‘[)EO*-aEm,

s P
where
( = ~deg £ =m- 4,
{-a=pn-bn-1.

II. ,bip Quotients.
Example 8.5. . Let C be a singular curve in Pi defined
by the equation

¢ eP~ 1l _ P

The singular point of the curve C is Py = { 15030 ). The group

scheme o{p = Spec | k[E]

(Sgt 842 8,) s (55 5, +€£85: 5,).

/L EP) ) operates on C by

- Let E be a supersingular elliptic curve defined over k. Then

E contains p 2sa subgroup scheme. Therefore, the group

scheme = «_

o operatesﬂ on CAE. Put § =2¢C E/dp and

f:8 s C /Q( is the induced morphism from the natural projection.
P : , .

First we show that § is smooth. Since E
bperates on S, it is enoﬁgh to show ,smoothnessk‘ at the image of a
formal neighbourhood F of CX0 in CXE into S. Let SpE (k1)
be the formal compietion of E at the origin. Then the action of |
ﬂslp on the formal neighbourhood is given by
o—s T+&
(see Appendix 2). Q



The completion of the local ring of F at (§20:0 }X0 is given by
k@x,y, 'Vll/lxp_.yp 1) where x 1/30, g 2/ ga‘
Since o p 2cts on this local ring by

X —> X +&,

{y — v,

P T+ €,
the invariant ring is isomorphic to k[y, x- 73}, hence, xegular.
For another point p = (1:x,:¥,)&C, the completion of the local

ring of F at pX0 is given by kﬁiu1,v1,”73}'/(f (u ,"; 1) 7 where
' , ~ , ’ S L

u,.= - X
- % 0’

V-t: y -YQ'

Lt v ) = wP = (o P-1 4 4P
£lu,,v,) = uf - (vy * OV L
The action of e(p is given by

S B A €,

1V > Yy,

{y — 7 +2.
Hence the -invariant ring is isomcrphic to  k E.Z.V1 :u,i—?.'ﬂ, hence,
r‘egudlgarv.»‘ The completion of the local ring of F. at A0:0:1)X 0

is given by kI sgw,”il‘l/(ép_w) s kis,3) , where

SRl Ty

The action of o " is given by

P
(s —> s+ tw=1s+ €sP,
7 — "‘7 + ¢ .

Hence, the invarian£~ring is ispmcrphic to  k{fu,, v,1] , where

uza n?p, vzss_.qn)sp’



hence, - regular. Therefore, S is smooth. On the other hand,
C/;( is isomorxrphic to E] whose affine coordinates are

P , '
given by vy, w with yw = 1. Then the morphlsm f is given

in the above formal cocrdlnates by

.
LV T Y

P( 1 - u

g
¥

L}

p~1 : -1
2v2 *..J..‘.),

where the lastexpress1onls glven by solving the equatlon

w N

sP = vgt 1 - u259£9‘1)).

Hence, £ : S'—ﬁé»@1 has iny ene‘multiple singular fibre pE
over the point at infinity. The canonical divisor is calcula
by using the above formal coordinates, since wé know that KS has

N * N . . ,
the form £0 1(~-2+;’& ) + aBy - Since we have

| | vg = sFe1 - ‘7ng&p"1)) =w({ 1~ u2wpf1),
we have

* P
£ {dw) = wfduz.

Therefore, we have

, , ey -3 '
ayadlx-1) = a( A a1 - - WP, Aav,.

‘This means that Ks|% is a pull back of a line bundle 0 ,(p-3),

S| F ®
A ‘ ' ;
where F is the image of F into §. Since £ bhas only one

multiple fibre, we conclude

a=0, Qf=p-1.

Thus we have
*

Kg = £0 (P=3)
- N ”,j'm-lx z

L-deg £=p -1,



Hence, k({S) = =~co if p = 2 ( in this caée, S is a ruled

surface of genus one), K(8) = 0 if p =3 and k{s}) = 1,

if p>5. On the other hand, by our construction,4the elliptic

surface S is uni%uledo

Remark 8.6. Using p-closed vector fields on e’ X E with

supersingular elliptic curve E, we can construct many examples

of elliptic surfaces which éie similar to the above example ([RS]).
Next we give an example of a smooth deformation of

the elliptic surface in Example 8.5.

Example 8.7. Let us consider a group scheme G = Spec A,
over R = kTAJ}* ‘

A = kff)xﬂﬁgl/( Ep),\ » where the comultiplication & , coinverse §

’and counit l are given by

A(E)

H

E®1 + 1908 + NEOE

u

+ {~1) p-1 J\_p—z E p-1.

#

Lite) = o,

We define a curve € in i’Bﬁ by the equation
555 1= &h =0
The action of the group scheme G over R is given by

(36— 34
X, (1+2€) 8, + €8

0°
Sy —s 3,

Let E be an abelian scheme over R of relative dimension 1.
We assume that E contains é as a group subscheme. ILet ‘%

be the formal completion of E along the zero section of E



over R. Then, we may assume that the ‘coordinate ring of ’% is
written by RE7]I] with the action of G

s { T+ X)7 +8.
We show that S - CXRE/G —> Spec{R) is smooth and factors

through s -, ¢ /o = LP; —> Spec{R) such that ?ﬁ P 5y ﬁ’;;

Pad

and £7~ : s,? - in are elliptic Surfacas. Since E acts on
S as translation on each fibres, to show smothness, it is enough
to consider the izﬁage /F\ of a formal neighbourlfcod ¥ df
O-section . in CXE into S.  In Spec{R)X (1:0:0), the

completion of local ring of ¥ is given by

| 3 S.

where the action of G is glven by

X { 1+ A&)x + &,

7 t— ( 1+2£)Y =+ & .

Hence the invariant ring is isomorphic to RiL Yy, aq ’; ]
4 T+Ax

hence, smooth over R. In Spec{R)X {0:0:1 ), the completion
of the loeal r;ing‘of F is writ’tén by
RiCs,w, 73 Jiw - P 5 REs, 1]
where .
g = ii/jgy w = 3§fa/ %y
and the action of G is written by
&s ——— {1+ XE)s + &8P,

1% y————s {1+ XE)7 +E,

v s e s o . - s - P,
Hence, the invariant ring is isomorphic to RO 7%, -~—-—-;~;?-~33 )
, Te N

hence, smooth over R. In this way, we can show that S is smooth



over R. Moreover, it is easy to show that G/& Q;‘W;“ and

A ' o : ,
£y Sﬂ-wv-mé_ is nothing but the.elliptic surface in Example

8.5. The generic fibre is an elliptic surface ?; : 3,7——47!?1

obta;ned by fb§ quotient, since the group schege G is /“?
‘over L = k{{X)]). Moreover, fixed points.of G®L are the
point at infinity and (p-1) points defined by

, 1
(8.6) By = (x ¥ = (-4, @ '{P 1) L= 1,2,0000,0-1,

where W is a primitive (p~1)-th root of unity. Hence,

we have

* p-1 ‘ -

; E, = £t nd I =‘ “le). Note that
where pEy = fp~(p;) and pEy £y (=) ;

*

S
0 =P
- " py8
and by (8.6), all points,are speclallzed to the point at infinity
of Co ' Hence the multiple fibre pE,, of f0 is a specializ-
ation - of p tame multiple fibres.

Finally we give an . example of lifting of
the elliptic surface in Example 8.1. |
Example 8.8. - Let @ be a primitive p-th root of unity
and K‘ Q{6) a‘cyciotoﬁic field. The préme p is totally
ramified in K/@ By Z we denote the ring of aigebraic integers
of K, Pat p = ( 1-&), R %”Z%i Then 'R ‘ig a discrete
valuation ring with prime elementv 7 =1 -W whose residue field
is the prime ‘field of charécteriétic P. Let us‘consiaer an

automorphism of ml .defineﬁ by



g : X p—y WX + 1.

, p-1 , ;
The order of g is p. Put P(x) = JT g {x). Then P(x) is

a polynomial of degree p with coefficients in R and we have
(8.7) Pix) = xp(_ X mod (??).

Moreover, for any field extension L/%, we have

(8.8)  nex1®e 1lpx)]
where G = < gp.

Let C 'be a curve in Té defined by

o) §1 SR & - p-1 _ |
* Armoeths : ‘
The curve C is, over Spec(R}). By (8.7), the closed fibre C,
is a curve defined by the equation
P . Pt @GPl o
NN S S e

-

=
Pix an elliptic curve defined over K which has the following

properties: 1)»there exists a finite extensionki/k such that
there exists a non-trivial p~-torsion point a in E(L), 2) the

eliiptic curve E can be extended to an abelian scheme ¢ : E.

m——
d

- i~ I
— Spec{R) over Spec(R), where R 1is the integral closure of
R in L, the p-torsion point a .defines the section @
of order p , that is , on the closed fibre /;D is a non-trivial

p-torsion point of E0 Now we define the action of g on

Cﬂﬁ% E which is written symbolically by
‘ v, - \ Y é‘ v“ N k
g5 (8 L2890, 7 ) 1 5gs wX# K1 Sp)y 7@ )
Put 8 =

Cx4 B / with structure morphism *': S — Spec(R},
R /G

, ~
where G =<g> . Moreover, there is a morphism f

2

s — %/



By (8.8}, we have\ Cﬁyglcgiﬁ% . It is easy to show that ¥ is smooth,

i
surfaces. Since the automorphism g of Cq has p fixed

Moreover, ?B 1 8y —>P!  ang Ef,; Sqw—~g Pl ave elliptic

points, namely (p-1) points p; = (1 : 1/(1-W) : yy), 4 =1,2,...
p-1 , where y,'s are all roots of yp“1 = P(1/(1- w)) and the
point at infinity. Hence, we have

o p
Ke = £¥0 ,(-2) + = (p-1)E, ,
31 T pt i =1 i

where pEi = f']—l(pi}’ i=1,2,.....,p~1, and pEp = f—l(w).
On the other hand,'?a T 8y ~—ﬁ>£§' is one of the elliptie surfaces
in Example 8.1 'and we have
< oy
fsq = fo 2 (P30 ,
Similarly as in Example 8.7, p tame fibres of § are speclalized -

to one wild fibre.



§9. Deformation and lifting invariance of Kodaira dimension for

surfaces.

Iet R be a discrete valuation 'ring. By 9
(resp. o ) we dencte the generic (resp. closed) poi‘ni of Spec{R). Set kZL: k(!’{) y
the field of fractions of R {resp. k= k{o), the residue ’f'iei& of R).
In the following we assume that k.o is algebraically closed. Let X be
an algebraic space , proper, separated and of finite type over Spec(R)
with structure morphism ¢ : X~ Spec(R). By X, (resp. X, ) ve mean the
generic geometric ( resp. closed) fibre of @. Note that a smooth algebraic
, spa;:e of dimension 2 , pro’pef, separated and of fjinite type over en
algebraically ,ciloseci field is ’prgje'ctive.

The main purpose of thé present section is to prove
the following theorem. ’
Theorem 9.1. Let % : X —> Spec(R) be the same as above. Assume that
% is smooth and of relative dimension 2, and has connected geometric fibres.
Then we havé

r(X) = R’(X,). | |

Corollary 9.2. Under smooth deformation and lifting, the Kodaira dimensions
of smooth projective surfaces are invariant;

To prove the theorem, first we give & remerk on
the intersection theory. For two invertible sheaves 1. and 1” on a projective
surfece §, the intersection number {L+L”)

5

nyn, of a polynomial "X(S,I%1pL°"2) in n,

section number is defined by that of the corresponding invertible sheaves.

is defined by the coefficient of

and ne . For divis;ars the inter~

Now let ®: X — Spec(R) be the same as in Theorem 9.1 and D, D"divisors

on X. ILet L, L” be the invertibdle sheaves corresponding to D , D, respectively.



‘ n, n

Put D, = Dfxw D = Dlxa ete. Then as ¢ is flat, we have 34 (XQ, LO@LG )
e ~ .

= Y (XP L&‘) 1 ). Hencg we ha:ye (DQ- DQ)XO = (Dlgb’i)x{ Thus we proved

the following (see also [SGA 61, Appendice I Exposé X).

Lemma 9.3. Iet ¢: X —> Spec(R) be the same as in Theorem 9.1 and

D, D" divisors on X. Then we have

K %,

[ 38 1
(9.1) (KeeD ), = (K, D), »
‘ | ;Kxo o' Xy ’IS(I v,
(’DO-D;)XO = (o, }?'1)15'

The following Alem & plays an important role in our proof.

Lemma 9.k. et ¢ : X —> Spec(R) be the sameas inTheorem 9.1. If X,
contains. an exceptional curve of the first kind e , there exist a discrete

’ N . L r~ O [ .
veluatin ring ROR and & proper smooth morphism @ : X —# Spec(R). of algebraic
spaces which is separated and of finite type and a proper surjeqt:i;.vé morphism
M- 3 X@R ——2 X over Spec(R) such that on the closed fibre, - induces
the contractmon of the exceptional curve & Moreover, on the generic fibre,

97 also :.nduce.s & contraction of an exceptional curve of the first kind.

Proof, By [A1] I, Corollary 6.2, Hi:“’x/spec(n) .is represented by

an algebraic spece M, locally of finite type over Spec(R). Let ¥ be the
irredueidble cempcnent containing the point { g} corresponding to e. As we

have € o IP. ‘and- N &S 0 L=1)@®@ 0 ., ¥ is smooth et -\e} and of
. k &/X P P! %mﬁz
dimension 1. S:ane £ cannot move inside X,s the structure mor;ahismA;Ls
surjective. Therefore we can find = discrete valuation ring £ > R and
a morphism J : Spec(®) —> Y over Spec(R) with j(5) = igl. ve let? : F—
e N " s
Spec(R) be the puil*-baek of the universal family over Y. As the closed Fibre

W.Ea is a projective line, we may choose the morphism j in such a wa;v that

- the generic fibre E

By of p is also & projective line. Morsover E can be



» » i » kg A ’
considered as a smooth closed algebraic subspace of codimension 1 in X = x®F.
‘ , [P R ‘ ‘
By Lemma 9.2, we have | 1 -;g".o -31. HeneemEﬁ

the first kind. Hence by (AT} II, Corollary 6.11, there exists a contraction

is also an exceptional curve of

morphism 3 1 /}?w 3{} over Spea(% which conbtracts .ﬁ to a section of
G X — Spec{R)} where '(F’ is proper, smooth, separated and of finite
type over Spec (%J). g.e.d.
Proof of Theorem 9.1.
In the following proof, we freely use the results on the
classification theory of algebraic surfaces.
Step I. iC(;scﬁ) =-0° if and enly if w(X,) =-oo .
For a surfacs S, K{8) = -¢= if and only if P?Z(S) = 0. Hence
by the upper semi-continuity, K(Xo) = ~0oimplies Vi}(i) - . Conversely,
assume that ﬁ(XT) = -oo  , By Lemma 9.4, we may assume that X, is relatively
minimal. Since Y‘-{th) = =02 , there exists & curve C; in X, with (KX; 61)}% :
<. 0. By the‘ flat extension of C,‘ 3
there exists a curve C,on X with (‘XS{O Gc};g: {‘KK; Cg) Kf 0. Bince Xo is
relatively minimal, this implies that K(XQ} = -00
Step II. CR(X)) =2 if and oniy if (X)) =2.
Assume K(X ) = 2. By Lemma 9.4, we may assume that X, is minimel.
Then we have ‘O < Ei = !é . By Step I, this ‘:lmplies K{Xﬁ} = 2,
Conversely assume zz(x.!) = ; . Then, by LK41 and LTI we have |
| P(Xx)> P(X)= —ulm-1) Kyt WOpe) for m>0s

where .X*is the minimal model of Xi' Hence we have K"(’%) = 2,
Step III. k_:(xo) = 0 if and only of .z‘e:(x,!} = 0.

Assume K(XO) = 0., Then Pm(Xo)*—é_ ‘1 for all m< 1.
Hence iﬁ.(}f.,t )£ 0. By Step I, we have K{X13 = 0. Conversely assume

k:(xz) = 0. By the sbove steps, we have w(X ) =0 or 1. By Lemma 9.4

ve may assume that X is minimel. Hence we have O zK}z{ = lé . Therefore
O 1



X is also minimal. Therefore 1253[1 is trivisl, hence we have
_ ,0 . .0 : -
1T = h (xvg__‘(_-ﬂzxxi)) < n (xc,fgé~12xxe)). Hence, k(X ) = 0.

Step IV. (X)) = 1 if.and only if Kk(X,) = 1.
This is ciear from tﬁe sbove steps.
Thus the theorem Was proved.
Remark 9.5. . By a sipilar argument as above, it is easy to show that

each class of Enriques” classification of surfades is invariant under smooth
deformation gnd lifting (we consider quasi-elliptic surfaces
as in the class of elliptic surfaces). ’

The following lemma will be used in the next section,

Lemms 9.6. ~Iet ¢ 1 X —=»Spec(R) De the same as in Theorem 9.1.
Assume K(XO) = 0. Then ‘X1 is minimal if and only if so is XQ.

Proof, By -Theorem 9.1 we have o.é'k(xo) = 'fa(x,). Hence if X, is not

minimsl, then by Lemma 9.4 X, is not minimal. Therefore,assume that X is

1
minimal but X, is nmot winimal, Then we have Ki = li =2 0. Hence, if
, ' 1 o

K(XQ) =0 or 1, then Xa: is minimal. Hence K(Xo) = K(Xi) = 2.

Then by CKL1 and (T ] there exist positive intergers m, m, such that

]

’. P (X)) r m'(m 1)@0 + ()Cg_gxo), m2m,
Pm(X‘!) =  ’2 m(m - 1}1%‘ + ()C(gx1)s m Z m]’
where X is the minimal model of X.. &s we have ’X(Ox ) o= ’X(OX. )s
L : ‘ ’ R , o
K% > @1 = ﬁ(o > a,» we have Pm(x 1), > Pm(xo) for sufficiently lerge m,

This is a contradiction. : - g.e.d.



§ 10. Invariance of the genus of the base curve under Smooth deformation

and lifting.

By a smooth family of elliptic surface @ :X —> §=
Spec(R), we mean that X is an algebraié space of finite type over R, % is
smooth, proper and separated and . %  has connected geometric fibres which
are elliptie surfaces. We let ‘Xb be the closed fibre and i} the generié
geometric fibre of ¢ . In this section, we assume that K(XO) = K(X’j) '
= 1. Moreover, by Lenma 9.4 and Lemms 9.6, ;re may assume that XQ and X,

‘are minimal.

Theorem 10.1, © Let ¢ : X —— Spec{R) be the same as sbove,
We let fo : XD —r Co and fT : X1 ) 61 - be the elliptic fibrationms.

Then we have

Thet is, the genus of the base curve of an elliptic surface with « =1 is
inveriant under smooth deformation and lifting.

Proof. We choose a positiire integer m > 14 in such a way that m

is 2 common multiple of multiplicities of all multiple fibres of f Then

1'
(P*CU X/S 1s locally free and (gfm%’s @ k(nj ) e HO{X‘I’O(H}KX }).

; o PR R = 1
We let o : X —> Proj(‘fw?;fs) be the rational mapping over § = Spec(R).
Then n}{;v is nothing but a rational mapping associsted with the complete \
linear systenm lme?Q » hence by Theorem 5.2, it is a morphism and “K’«;(X.q )
is & non-singular curve O with C.,fbk("? Y c,. On the other hand,
the map "?o is a rational map associated with a sublinear system I of

{mKXO], given by ?*LOX /s® k. ﬁence, the linear system L hes only fixed

components consisting of fibres of e Therefore 7Y o is e morphisn.



, A A A
Thus ”‘fisamz;phism‘ Put 2 =“I’(X). Tet %':xm—? Zs I 222

\ be the Stein factorization of

‘ ~noA
~ S, the structure morphism. YJ /\V .
By the above consideration, = % /F
is isomorphic on the generic if

ne :
fibre. let ¥ : zo«-———?/i' 5

s s o~
be the normalization of Z, in
P e

P @
X, =nd 'f‘f'o o —7 %, the canonical morphismg Then, &s Y, is
defined by a sublmear system L of i l —7 I, is
isomorphic to the ell:;pt:c Pibration f X —p (3{J .(sfa:'i.. Lemma 5.1).
» . : » e /\ -
Since ﬂ{lo : X, _._-5 'Z o  has connected f:.bres, yi gz, — ZQ is factored
through a purely inseperable morphism 3’1 :(Zh,; Z* and e desingularizaion

A
y2 ZX‘ ey Z + Hence we have
o SRS g S A F
(10.1) sc) = &Z) = &@X).
A' ‘ * - &
On the other hand, sinece /p\ t %2 —~ 8 is a degeneration of curves, consider—
Al
ing & non~singuler model of Z, we get
‘ ~ A
(10.2) 8(z]) = &lz,) = alc,).
Moreover, if the equlity holds in (10.2), then 2 is non-singular.
By the étale cohomology theory, we have
[ b,(X) =2ain Al'h(Xc},
b {X,) =2 aim A1B(X,).
Since ¢ is smooth, we hawe
(10.4) By (X} = (XD
Moreover, by Lemma 3.k, we have
G dim AB(X ) = g{Cc.) or g(C) + 1,

dim ALB(X,) = g(g,) or glc,)+ 1.



By (10.1) and {10.2), we have g(CQ) = g(ﬁ‘&).Therefare’by {10.3), (10.4)
and (10.5}, we have g{CG} = g(C,{) or g(C1) = g{co} + 1. Suppose that
g(Cl)zg(Ca)ﬁ-l, Then we have dim Alb(Xl}m g(ﬂl) and dim Al&b(Xa)
= g(Co) + 1. Hence, by Lemma 3.4, by the Albanese mapping | ﬂi,‘ : Xi'**i?
A1b(X,) each fibre of f, is mapped to & point,but by the Albanese mapping
0(0 X, — A}.b{xo) each fibre of f;, is mapped to a curve. We show that
this gives & contradietion. For that purpose we need the following lemms.
Lemma 10.2, Iet ¢ : X —=> Spec(R) be a proper smooth separated
morphism of finite type of algebraic spaces with connected geometrie fibrés.
Then there exist a disecrete valuation ring ?f.:? R, an zbelian scheme Y : A
—— Syec{ﬁa and a morphism T %X = f(@?( —~® A  over Spec(g)
such that on the generic fibre ’QT,? ffn} —> Any is the Albanese mappizig ,
and on the closed fibre go : AXJQ —7 A is isogenous to the Albanese
mapping, that is, there exists an isogeny 8,: Alb(xg)*-? ‘é‘o - guch that
:(6 = ﬁo.gt o where X " is the Albanese mapping of Xg.

Now we assume Lemma 10.2 .and we apply it to our situnation.
We may assume Oﬁd = R. Let H be a relative hyperplane section of ¥ : A «~p
Spee(R), Then we have

(("‘;{1(1{ ) By )y, = 0,
1“'&:;1(}{0)’ Fg)xo ~> 0,

vhere F7 { resp. FG ) is a genera,l” fibre of fi( resp. i‘g)‘. On the other

hand, as we saw above, we have

(a1 ; SRS
( sy {}z_,g)»zvv),)(; (X, (Hﬁ%g‘“ya)xg

for a suitable non-negative integer m, & contradietion. q.e.d.
Proof of Lemma 10.2. We may assume that R is complete and <(> P J—

Spec{R)  has a section. Hence the Albanese mapping -aé,,] P Xy sy A,? is



defined over k(77 ). et 4 : A—» Spec(R) be the Néron minimal model

of A'l in the category of algebraic spaces, separasted and of finite type over R.
We show that « is an sbelian scheme. As ¢ : X —> Spec(R) is smooth,

the inertia group I of the Galois growp G = Gal{k®(? )/k(?)) cperates
t;r:wmlly on Hét(x,) ,%ﬁ) where k°(4) is the separsble closure of k(7))

and xryf = X,,}Qk\ () and f# char.k_(CSGA 7-I1, 2.4 and 2.5). Since

in our case Hét( X,—,- Wy_) it H; ( A—~,2Zﬂ} es G-module, by (8T7],Theoren 1,
ve conclude that A, has good reduction, Hence, Y : A —> Spec(R) is

an abelian scheme. By the definition of the Néron model, there exists & -
‘morphism Q¥ : X —> A over Spec{R) such that on the generic. fibre it
coincides with the Albanese mapping. Moreover, we have G-module isomorphisms
Hé,,c(xg ,zzﬂ s aét(x 'Z;L).anﬁH (Aﬁl ’E'JL) ~ H (A z&) (csea T7-I3, 2.4
and 2.5). As Q:?' induces an isomorphism H (X? ,K.\ﬁ)c% H (A‘? sZg ),

an isomorphism  H' (X Z.&) ~ Z‘X) Since the Al’banese .mapping induc

an isomorphism K (x ,mﬁ) o g/ (Al‘n(X ),Zy ), this implies that eyt

X o ---—? Aok is isogenous to the Albanese mapping. . q.e.d.

induces |
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Appendix 1. - A ecriterion for algebraicity over €.

In this appendix we give a necessary and sufficient
condition for an analytic elliptic surface f : 8 mw%&?% with
%fg_:os) = 0 to be algebraic. The condition ?(,(ES) = 0 implies
that £ : 8 -¢ﬁwé has only multiple singularngihres miﬁi with
elliptic curves Eyo 4= 1,2,....., %, and that the moduli of
general fibres ig constant. Let {pitpgg.l‘,i..,gk} be the
set of all points of Pé over which £ has multiple fibres
miEi and £ has smoothfibersover‘ @é - {P1r92:-~*'~'*3x}’*

By Kodaira [K2] II, such an elliptic surface is constructed as
follows.

iet .E be the elliptic curve appearing in a
general fibre of f. We express E -as a guotiént manifold C/A +
where A= Z-1 +Z-T, In®> 0. We let t, be a local

coordinate of Wé with center p; and consider D, = % tii

. e 3 1 ~ AT S oy 1/m.
jtikiif as ag opeg set in Pc,\Put Di = {sigﬁ “sij<;g i } .

Fix complex numbers :
‘ . B.
V. 1) ST S 2 ’ B.e % <) ) = 1.
(A.1) a; m, * ,mix, ofi, B, (%, ﬁi, m) = 1.

Define an anlytic automorphism g; of ’SiXE' by
where e = exp(?ﬁ{:i/mi) and £ is a global coordinate of
i ‘ ) ,
€, the universal covering of Ei?anﬂ [8] is the corresponding
point of E. By ({si,fﬁj)), we denote the image of a point
, A ) ’ R ,
& : o ¢ e i X/ : :
(s;,[&] Je DXE in the quotient manifold "D Ef%9i>" Then
a holomorphic mapping

~L | | m,
DXEL 9> 5 ((sy, [8])) ———s s,7¢ Dy

defines an elliptic fibration which has a multiple fibre miEi



over the origin, where the elliptic curve E, is isomorphic to
E .
/<ai>
Let us consider a holomorphic mapping
A.2 ~{0 , - E
a.2)  f : B, H’XE/<g1> —_— (D {G})x

w m.a

((s [g:}))\,__._._.__? (S:L [5’_ 2’7?‘]:’:;‘109 Si]).

It is easy to see that 93 is biholomerphic. Hence, using

the isomorphism - ?i, we can patch together D XE/zg ¢ 2= 1,2,..
S R ‘ i

...,J&, and (Eé ~-{p1,...,gk}-)XE~‘and'obtain a compact gnalytic
surfaée S with a gu;jective.holomorphic‘mapping £f:8 > Eé.
 The elliptic surface thts obtainéd has multiple fibres miE over
Pyr i'=1 2,.,..,1 and cher fibres are smooth. We denote this

»elllptic surface by Lp (mv,a )L (mzfa )~'~»-'-L {m :ﬁk)(wqéﬁE)
‘ and call it the elllptxc surface obtalned from Pé&E by means of
legarithmlc transformations. - By Kodalratgzj II, every elliptic
surface £ é’s ;;9 P; : wiﬁh"fx(o = 0 1is isomcrphlc ‘to the above
'elllptlc surface with a suitable cholece of ai's The following theor

is a cansequence of the proof of (k2},1I, Theorem 27.

Theozgm. - The elliptic surface | f/: 8 = Lp1£m1,31)Lp2(m2,a2)
can ._-'Lii) (m, ,aU\)(LPéXE) — rpé is Aalgebraic if and only if.
i=1 '
- Proof. 'Since“pg(s) = 0, 5 is algebraic if and only if b, (S)

is even. For a surface, it is known‘that b1(5j = O{S SE%) *
h'(s,0) ~and n's, og) = n° cs%é) or B° (ss?s) + 1 (see [K2],I).

By p,(S) =0 aqd 0g)=0, we have h’(3{93)=lﬁ Therefore; S is algebral



if and only if hO(S,Slé) = 1, and this is equivalent to the existence
of a noﬁ—zero‘holomorphie l1-form on S in our situation.

Suppose that we havé a holomorphic 1-form «). ‘Then,
on @Pé - iplapgs-l-‘,,ggkﬁ, tJis expressed(in a form |

w = Alt)ds + B(t)a<,
where t 1s a coordinate of an ;ffine line in‘IPé (we assume
that all points p,'s are in this affine line) and A{t)dt and
B(t) are holomorphic on ]Pé'-,{pl,pz,.....,pa}.‘ We may assume
ty =t - Y}, i=1,2,..... A . Then, by (A.2) 'Yiu} is holomorphic
on foE/4gi> , 1= 1,2, ..... 5 A . Therefore, B(t) is holcmorphiq
on IP% s hence,constant. Therefaré, we may assume that B(é)
= 1. Moreover, A(t}dt has simple poles at py with residues
éi/zrrJ?I , 1 =1,2,,...., A, and is holomorphic elsewhere.
Therefore, the problem is reduced to the existence of a meromorphic
l-form on ]Pé which has simple poles at Py with residues |
ai/QﬂJ:I »1=1,2,....., X, and is holomorphic elsewhere. Hence,
the abcve condition (A.3) is hecéssary and sufficient. g.e.d.
Remark. Using this theorem, we can construct an example of
g with 20g) = 0 unich

in ¢3, and 1s not algebraic.

an elliptic surface £ : 8§ —> P

satisfies all conditien Ui
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Appendix 2. An action of A .

Let E be a supersingular elliptic curve defined
over an algebraically closed field k of characteristic p<0 .
Let Gl,l = Spf(k[{ " ]J1) bve the formal group obtained by the
completion of E at the origin (for the notation, see [M1]).
We{denote by FE : E ~—%»E<p) (resp. F) the Frobenius morphism

of E (resp. G, .). We set

1,1

Nn —'-‘ Ker {Fg(pn-l)°""‘OFE(p)ﬂbE}.

Then, we have Nn‘§ Ker(gn}.~ In partiaﬁlar, we have Nl =c£g‘,
In this appendix, we prove the following proposition due to .
F. Oort.
Theorem 1. Tﬁe action of :%F = spec(k[€1/(¢P)) on 61’1
= Spf(k[[7T11) which is induced by the addition EXE —> E
is given b& 7

T e
with suitable elements ¥ and § .

We denote by Wn the Witt group scheme. The underlying
scheme of W 1s given by W = Spec(k[xl,xz,.g...,xn]). We also
denote by F the Frobenius morphism of Wn‘

Lemma 2. Let (xi,xa,..,..,xn), (yl,ya,.u...,yn) and (zl,zg,
“”"Zn> be three coordihates of Wn. Then, the addition of
wn is given by »

Z; = % + Y5 + Pj(xl"“’x,j—l’yl"”’yj-al) (j=1,2,...,n)
with suitable polynomials Pj(xl"‘“’Xjﬁl’ylﬂ""yj~1)* Moreover,
we have Pjixl"'"xj~1’y1"“’yj~l) = 0 mod <xl’x2"";xj~1}’
where (xl,xg,.s.,xjal) is an ideal of the polynomial ring

kixl""’x3~l’yl"‘"yjulE‘



For the proof, see [W]. We set
1 = K .- F s ] — ] 3
Ny Ker(F - RV : L -€>Wﬁ),

n
n+l to Wn . The following lemma

where V is the Verschiebung from W to W ., » and where R
is the restriction from W

is rather well-known.

' . = Nt
Lemma 3. N, Ny -
Proof. We use the theory of Dieudonné modules. We consider

the ring A = W[F,V], where W is the ring of infinite Witt vectors
over k, and where F and V satisfy the well-known relations
(see [DG]). We denote by D(G) the Dieudonné module of the
grsup scheme G. Then, we have

D(N,) = A/A(F", F-V, V7) = D(ND).
Therefcre, we conclude Nn £ Né . g.e.d.

We denote by I the ideal of k{xl,xé,..,,xnj which

defines N, in “w . Then, by the,definition‘of N! , we have

xg 0 {mod I), Xy = (mod 1), Xy = xg (mod I)yv.s, Xn.1 E xi

(m@d I) *
‘Bince we s&e that

'k[xl,xg,...,x 1/ is generated by x,. over k , by Lemma 3 we have

n
the homomnrphism Y’, from N to w defined by
(1) kftl/(tp ) éﬁ~'kEx1,x2,...,x /1 %--k{x3,xg,,..,x 1
¥
T < i xn

Moreover, we have the following commutative diagram:

@) N, —

?h+l
nﬁz 7 wn+l ?

where i is the natural immersion., Since G4 ¥ w;g_Nn P




in order to prove Theorem 1, it suffices to prove the following

lemma.

Lemma 4. The action of dp = Spec(k[£1/(sP) on N, = Spec (k[T1/(TF

which is induced by the addition EXE —> E 1s given by
‘ Tp—> T+¢.
with suitable elements T and § .

Proof. We-have the commutative diagram :

.

¥ .
dp X Nh.c—*"_a'Nn X;Nh.c"gﬁfgg’wh;x Wy

fli ) f’el " f3i

N, = N, & —> W,

where ,f% and /% are additions, and where /i is the morphism
induced by f; . Therefore, by (1) and Lemma 2, we see that
ji is given by

, ! n
x[€1/(e") ® k[t1/ (P ) &— x[tI/(TP)
A ’

W
18T + £®@1 <« : s T “g.e.d.




[AL]

[a2]

(BM]

[DG]

[11]

(x2]

[K1]

k27

(k3]

[Kh4]

References

Artin,M., Algebraization of formal moduli,I,II, in Global
Analysis (D.C.Spencer and S.Iyanaga, edé.), University of
Tokyo Press and Princeton University Press (1969), 21-71,
Ann.of Math.91 (1970), 88-135.

__, Théoremes de representablllté pour les espaces

algebriques, Publ Sém. Math. Sup. Univ de Montréal, 1973.

Bombieri,E. and D.Mumford, Enriques' classification of

surfaces in char. p, II, III, in Complex Analysis and
Algebraic Geometry (W.L.Baily and T.Shioda,eds.), Iwanami
Shoten Publisher and Princeton University Press (1977),

23-42, 1Invent. Math. 35 (1976), 1974232.

Demazure,M. and P§Gabriel,’ Groupes algébriques, Masson 3:Cie,

Paris, and North-Holland, Amsterdam, 1970.

Igusa,J., Betti and Picard numbers of abstract algebraic
surfaces, Proc. Nat. Acad. Sel. U;S.A‘,"&G (1960), T24-726.

Iitaka,S., Deformations of compacﬁ complex surfaces,II,

J. Math. Soc. Japan 22 (1970), 247-261.

Katsura,T., On Kummer sgrfaées in‘charagteristi# 2, in
Proc. Intern. Symp. on Aigebraic Geometry, Kyoto, 1977,
(M.Nagata, ed.), Kinokuniya, Tokyo 1978, 525-542. a
K§daira,K‘, On . the structure éf compaét analytic surfaces,
I,ITI, Amer. J. Math. 86 (1964), 751-798, ibid. 88 (1966), |
682-721.

_» On compact analytic surfaces,II,III,  Ann. of

Math. 77 (1963),563- 626 ibid. 78 (1963), 1-40.

» Pluricancnical systems on algebraic surfaces of

general type, J. Math. Soc. Japan 20 (1968), 170~192‘



[M1] Manin,Yu.I., The theory of commutative formal groups over
fields of finite characteristic, 'Russian Math, Surveys
18 (1963), 1-83.

(M21 7Mumford,D., Enriques' classification of surfaces in char. p,
I, in Global Analysis (D.C.Spencer and S.Iyanaga, eds.),
University of Tokyo and Princeton University Press (1969),
325-339. | |

(o] OQort,F.,, Finite group schemes,local moduli for abelian
varieties, and lifting problems, Compositio Math. 23

_ (1971), 265-296.

[R11] fRaynaud,M., Spécialisation du foncteur de Picard, Publ.
Math. THES 38 (1970), 27-76. |

[R2] _ ., Surfaces elliptiques et quasi-elliptiques,
manuscript. ‘

- [R3] _, Mod®les de Néron, C.R. Acad. Sci. Paris 262
(1966),813-416.

[RS]i ﬁudékov,A.N. and I.R. Shafarevich, Inseparable morphisms
of algebraic surfaces, Izv. Akad. Nauk SSSR Ser. Mat.
40 (1976), 1269-1307, English translation, Math. USSR Izv.
5 (1976), 1205-1237. '

[SGA 6] Lecture Notes in Math., 225, Springer, 1971.

[SGA 7-I] Lecture Notes in Math. 288, Springer, 1972.

[ST] Serre,J.-P. and J. Tate, Good reduction of abelian varieties,
ann. of Math. 88 (1968), 492-517.

(T] Tankeev,S.G., Pluricanonical mappings of élgebraic surfaces
of general type, (in Russian) Uspehi Mat. Nauk 30 (1975), 18h.

[W] Witt,E., Zykiische KSrper und Algebren der Characteristik p
vom Grade p”, J. reine ang. Math., 176 (1936), 126-140.

[Y] Yamada,H., BRational sections and Chern classes of vector

bundles, J. Math. Kyoto Univ, 6 (1967), 2°5-312.



Toshiyuki KATSURA
Department of Mathematics
Yokohama City University
Yokohama 236

Japan

Kenji UENO

Department of Mathematics
Kyoto, University

Kyoto 606

Japan



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 
	Seite 31 
	Seite 32 
	Seite 33 
	Seite 34 
	Seite 35 
	Seite 36 
	Seite 37 
	Seite 38 
	Seite 39 
	Seite 40 
	Seite 41 
	Seite 42 
	Seite 43 
	Seite 44 
	Seite 45 
	Seite 46 
	Seite 47 
	Seite 48 
	Seite 49 
	Seite 50 
	Seite 51 
	Seite 52 
	Seite 53 
	Seite 54 
	Seite 55 
	Seite 56 
	Seite 57 
	Seite 58 
	Seite 59 
	Seite 60 
	Seite 61 
	Seite 62 
	Seite 63 
	Seite 64 
	Seite 65 
	Seite 66 
	Seite 67 
	Seite 68 
	Seite 69 
	Seite 70 
	Seite 71 
	Seite 72 

