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Topology of a manifold is reflected in its diffeomorphism group. It is challenging
therefore to understand the diffeomorphism group Dif f(M) both as a topologi-
cal and discrete group. Twenty years ago, some work had been done, in connec-
tion with characteristic classes of foliations, in constructing continuous cohomology
classes for Dif f(M). For M closed oriented n-dimensional manifold, a class in
HMPUDif f(M),R) had been explicitly written down by Bott [Bo] [Br]. This class
is defined as follows. The group Dif f(M) acts in the multiplicative group C$*(M)
of positive smooth functions, and on its torsor A, (M) of volume forms. Hence one
gets a cocycle in H,,,(Dif f(M),C(M)), defined by A(f) = -'L—v(ﬂ = Jac,(f),
where v € A,(M) and f € Dif f(M). The Bott class is
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The nontriviality of Bott class had been shown for M = S! [Br], and recently for §*
[BCG], CP" [Go] by restricting to finite-dimensional Lie groups in Dif f(M). In
fact, the restriction of the Bott class on SO(n,1) C Dif f(S™) gives the hyperbolic
volume class, whereas the restriction on PSL(n + 1,C) C Dif f(CP") gives the
Borel class.

By its construction, the Bott class vanishes on the group Dif f, (M) of volume-
preserving diffeomorphisms. Moreover, since it is defined by an invariant closed
(n+1) -form in the space A, (M) where Dif f(M) acts, and by a theorem of Brooks
[Br] there are no more invariant forms there, one gets just one class in dimension
(n + 1) for a fixed manifold M. This contrasts sharply the usual intuition coming
from the study of finite-dimensional semisimple group, where there is a range of
continuous cohomology classes.

In this paper we construct, for a closed manifold M™ with a volume form v, a
series of continuous cohomology classes in Hf ., (Diff,(M),R) for all k = 5,9,....
The classes will be shown nontrivial already for a torus T". We also will con-
struct, for a symplectic manifold (M, w), a series of classes in H2*(Sympl(M),R)
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for k =1,3,.... Again, these are nontrivial for a torus 7" with standard symplectic
structure.

Working harder, we will show that for the smooth moduli space of stable vec-
tor bundles over a Riemann surface M with its Kahler structure, our class in
H?*(Symp(M,),R) is nontrivial and restricts to a generator of H*(Map,,R), where
Map, is the mapping class group:

Theorem (3.6). H*(Sympl(M,),R) is nontrivial. Moreover, the homomorphism
Map, = Sympl(M,,R) induces a nontrivial map in the second real cohomology.

In both cases, our classes arise from action on a “principal homogeneous space” X
which in the case of Dif f, (M) will be the space of Riemannian metrics with volume
form v, and in the case of Sympl(M) will be the twistor variety, introduced in [Re]
[Rel]. In that paper we have studied the symplectic reduction of X with respect
to the Hamiltonian action of subgroups of Sympl(M) with a primal interest in
integrable systems arising on Teichmuller space and universal Jacobian. A lenghty
computation from [Re] [Rel] related to the existence of the moment map will be
used here to prove a vanishing result in 5.4.

There is quite another way to look at our classes, from the stand point of
the transfer map. The subgroup Dif fO(M) of Diff,(M) which fixes a point
p € M, has the tangential representation to SL,(R) and one can pull the Borel
classes back on Dif fO(M). The transfer map [G] [Gu] will send these classes to
H . (Diff,(M)). We will not however prove a rigorous comparison theorem re-
lating these two types of construction in the present paper. However we do use the
transfer map to define a new source of classes in H*(D:iff,(M)) coming from the
fundamental group of M. Namely, a map

§: H*(m(M),R) - HY(Dif f7 (M), R)

will be constructed where Dif f)*(M) is the connected component of Diff,(M).
For k = 1, the dual of this map, a character

SV Dif 5 (M) — H{(M,R)

has been known for forty years [Sch] and called the asymptotic cycle map. One can
view our map S as “higher” asymptotic cycle map.

For M a closed surface with an area form, the groups Dif f, (M) and Sympl(M)
coincide. The two previously described constructions produce a class in H2,  ,(Dif f,(M))
which we will show to lie in bounded cohomology group HZ(Diff(M),R). For
f.g € Dif f,(M) we give an explicit formula fora cocycle {(f, g) representing this
class. For any lamination on M [Th] one can exhibit quite a different formula, using
the expression for Euler class from [BG].

The following application of dynamical nature will be proven. Let F; be a free
group in two generators, and let, for some words h;, ki in Fy, a sum Y o, a;(hi, ki),
T|ai| < oo be a cycle for ¢! -homology of Fp. This homology has dimension 2%,
as shown in [ ]. Let M be a closed surface with an area form v. Given f,g €
Diff,(M) one has a homomorphism F; — Dif f, (M), so the words h;, k; may be
viewed as diffeomorphisms in D:f f,(M).
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Theorem (4.2). Suppose Y 2, a;i £(hi, ki) # 0. Then the group generated by f, g
in Dif f,(M) is not amenable.

The significance of Theorem stems from the fact that the condition ¥ a;4(h;, ki) #
0is C! -open on f,g. Therefore one gets a domain in Dif f, (M) x Dif f, (M), such
that any pair (f,¢) in it generate a “big” group in Diff,(M). One can see this
result as a step towards “Tits alternative” for the infinite-dimensional Lie group
Diff, (M).

We will show in the next paper that this theorem holds for M symplectic of higher
dimension. For that purpose we ill use Lagrangian measurable foliations and Lyon-
Vergne Maslov class to show that our class in H*(Sympl(M,, R) is bounded. See
also the end of [BG].

In [Re2] we defined the “symplectic Chern-Simons” classes Kg,2, (Sympl(M)) =
m2i—1((B Symp)®(M))*) — R/A, where A is the group of periods of the Car-
tan form in Q%! (Sympl’®?(M)), introduced in [Re2], on the Hurewitz image of
m2i—1(Sympl?®?(M)) in Ha;—1(Sympl®?(M),R). The real classes introduced in the
present paper seem to be in the same relation to the symplectic Chern-Simons
classes as Borel classes in H},,,(SL.(K),R) are to proper Chern-Simons classes
(K = R,C). The “symplectic Chern-Simons classes” of [Re2] have remarkable
rigidity property: for a continuous family of representations of a f.p. group I' into
Sympl(M), the pull-back of these classes are constant in H*(I'). This contrasts
strikingly the famous non-rigidity of the Bott class, proved by Thurston. In fact,
Thurston exhibited a family of homomorphism m1(S) — Dif f(S?!), where S is a
closed surface of genus two, with varying Godbillon-Vey class (which coincides with
the Bott class for Dif f(S')).

We do not know if the real classes constracted in the present paper in H*(Dif f, (M))
and H*(Sympl(M)) are rigid. However, we introduce a new “Chern-Simons” class
in H*(Dif f,(S*),R/Z) which is rigid and restricts to usual Chern-Simons class
on H3(S0(4),R/Z). This uses the invariant scalar product on Lie (Dif f,(S?%)) in
much the same way we used invariant polynomials on Lie (Sympl(M)) in [Re2].

1. FORMS ON THE SPACE OF METRICS

We work with the manifold M with the fixed volume form v. Define the space
P as the Frechet manifold of C*° -Riemannian metrics on M, whose volume form
is v. Obviously, Diff,(M) acts on P. We can look at P as a space of sections
of a fibration R — M with a fiber SLy(R)/SO(N), where N = dim M. Clearly,
M is contractible. For any n = 5,9,... fix the Borel form: a SLy(R) -invariant
closed n-form on SLy(R)/SO(N), normalized as in [Bo]. For a vector space V of
dimension N with a volume form v this gives a canonical choice of a closed form on
the space PV of Euclidean metrics on V with determinant v. Call this form .
Now, we define a form on P by ¢ = [,,%1=Mdy(z). That means the following:
let g € P a Riemannian metric on M. Let hy,... ,h,; € TyP be symmetric bilinear

smooth 2-forms. Define ¢¥n(h1,... ,hn) = f,, 1,bn’(M)(h1(m),... yha(z))dy.
Lemma (1.1). The form 3 € Q"*(P) is closed and Dif f,(M) -invariant.
Proof. The invariance is obvious from definition. To prove the closedness, observe

first that a form ¥, (zy,... yzm)(hy,... ,hn) = Z;’f__l /\j’l,bfej(M)(hl(mj), .. yha(zj))
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is closed as a pull-back of a closed form under the map P = [];_, PL=i (M) Now
one approximates ¥ by ¥, (z1,... ,zm) to show that ¢ is closed.

1.2 The definition of the classes. We will now apply a general theory of regulators,
as presented in [Rel], section 3. For a Frechet-Lie group ®, acting smoothly on a
contractible smooth manifold Y, preserving a closed form ,, this theory prescribes
a class in H"(®%,R), called r(¢,) in [Rel].

Definition (1.2). Consider the action of Dif f, (M) on the contractible manifold P
with the invariant form 1, as above. A class v, € H*(Diff3(M),R) is defined as

7(%n).
Theorem (1.3). The class v, lies in the image of the natural map

H,n (Dif fo(M),R) —» H*(Dif f) (M), R).
The proof follows from Proposition 1.3 below.

1.8 Stmplices in P and a Dupont-type construction. Fix two metrics g1,¢2 in P.
We can join them by a segment in two different ways. First, there is a straight
line segment Iy, g.(t) 1t t- g 4+ (1 —t)gs. Second, there is a geodesic segment
Jor,02() : t = (& = c(t,g1(2),92(2))). Here t € [0,1],2 € M,g1(z),g2(z) €
PT=(M) and c(t,¢1(z),g2(z)) is a geodesic segment in the homogeneous metric of
symmetric space on PT=(M) ~ SLy(R)/SO(N). Now, having n metrics g1,... , gn
in P we define two singular simplices Iy, ,. 16 = P and Jg,. 4, : ¢ = P by
induction as a joint of g; and Ig, .. 4., (resp. g1 and Jg,. 4.) using straight line
segments (resp. geodesic segments, comp [Th2]).
Now fix a reference metric g in P. Define

‘Y:{(gla 7gﬂ)=/ 'ﬂbn
I( )

and

SH TS ,gn)=/ Pn
)

Proposition (1.3). Both «) and v are continuous cocycles, representing ~y,.
Proof. The proof mimics the finite-dimensional case, ¢f. [Du], and is therefore
omitted.

2. NON-TRIVIALITY

We will prove that the class =, in discrete group cohomology, and consequently
classes of 4. and #;/ in continuous cohomology are non-trivial in general. For that
purpose, consider a torus TV = RV /Z" with a standard volume form dz; ...dzy.
We have an inclusion

SL(N,Z) < Diff,(T")



Proposition (2.1). The class v, restricts to the Borel class in H*(SL(N,Z),R)
and is therefore nontrivial for N big enough.

Proof. Let Py be the space of left-invariant metrics on TV with the determinant
v; as a manifold, Po & SLy(R)/SO(N). The embedding Py — P is SLy(Z)
-invariant, and the pull-back of the form %, on Py is the Borel form on Py. Now
by [Rel], section 3, r(¢,) coincides with the Borel class.

3. COHOMOLOGY OF SYMPLECTIC DIFFEOMORPHISMS

We will now adapt the theory for the group Sympl{M) of symplectic diffeomor-
phisms of a compact symplectic manifold M. For this purpose, we will introduce
a new ( oo -dimensional) contractible manifold Z, on which Sympl(M) acts, pre-
serving some differential forms of even degree.

8.1 Principal transformation space. Let § be the fibration over M?", whose fiber
over ¢ € M consists of complex structures in T, M, say J, such that w, is J-
invariant and the symmetric form w(J-,-) is positive definite. Alternatively, F is
a Sp(2n,R)/U(n) fiber bundle over M, associated to the Sp(2n,R) -frame bundle.
The principal transformation space Z is defined as a space of C'*® -sections of §. So
a point in Z is just an almost-complex structure on M, tamed by w, in the sense
of Gromov [Gr|. Since the Siegel upper half-plane Sp(2n,R)/U(n) is contractible,
the space Z is contractible, foo.

3.2 Forms on Z. Fix an Sp(2n,R) -invariant form on Sp(2n,R)/U(N). This in-
duces a form ¢T=M on F, for each z € M and a form

99:/ LPT”M‘wn
M

as in 1.1. Obviously, this form ¢ is Sympl(M) -invariant. Recall that the ring of
Sp(2n,R) -invariant forms on Sp(2n,R)/U(n) is generated by forms in dimensions
2,6,... [Bo].

Correspondingly, we have Sympl( M) -invariant closed forms, in same dimensions.

We single out the symplectic (Kahler) form on Sp(2n,R)/U(n), which may be
described as follows. For J € Sp(2n,R)/U(n), the tangent space T;Sp(2n,R)/U(n)
consists of operators A : R?" — R?" satisfying AJ = —JA and (Az,y) = (4y, ),
where (-,-) is the symplectic structure. Alternatively, A is self-adjoint in the Eu-

clidean scalar product (J-,-) and skew-commutes with J. The Kahler form on
T; Sp(2n,R)/U(n) is given by (4, B) = Tr JAB.

3.8 Simplices on Z. For two almost-complex structures Jy, J2, tamed by w, we de-
fine a segment J(¢) : t = (c(t, J1(z), J2(z)) where c(t, J1(z), J2(z)) is the geodesic
segment in the Hermitian symmetric space of nonpositive curvature Sp(2n,R)/U(n),
joining Jy(z) and Jz(z). For a collection Jy,...,J, define a singular simplex
K(Jy,...,Jn) asin 1.3.

8.4 Continuous cohomology classes in Sympl(M): a definition. For any generator
of the ring of Sp(2n,R) -invariant form on Sp(2n,R)/U(n) we define a continuous
cohomology class in Heoni(Sympl(M),R) by the explicit formula
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where Jy is any fixed tamed almost-complex structure, and ¢ is a form of 3.2.

8.5 Non-truiality. Let M be a flat torus R?"/Z2"™ with a standard symplectic struc-
ture dzy Adzy + ... + dz2p—1 A dza,. As in 2.1, we have an Sp(2n,Z) -invariant
embedding Sp(2n,R)/U(n) — X, and the classes of 3.4 on Sympl(M) restrict to
Borel classes on Sp(2n,Z), nontrivial for big n [B].

3.6 Application to moduli spaces. Let S be a closed Riemann surface of genus

g 2 2, and let M, be a component of the representation variety Hom(m(S), SO(3))/SO(3)
with Stiefel-Whitney class 1. This is known to be a smooth compact simply-
connected symplectic manifold {Go2] of dimension 6g — 6. By a famous theorem of

[NS], M, is identified with the moduli space of stable holomoprhic vector bundles

of rank 2 and . The mapping class group Map, acts symplectically on My,

so we have an injective homomorphism Map, — Sympl(M,). Now we claim the
following

Theorem (3.6). H*(Sympl(M,),R) is nontrivial. Morover, the homomorphism
Map, — Sympl(Mgy, R) induces a nontrivial map in second real cohomology.

Proof. By the main theorem of [NS] there is a holomorphic embedding of the Te-
ichmiiller space Ty to the space of complex structures in M, tamed by Goldman’s
symplectic form. In particular, we have a Map,-invariant holmorphic embedding
T, — Z(M,). Let Q be the Kahler form of Z(M,), then o*(Q) is a Map, -
equivariant Kihler form on T,. We know there exist holomorphic maps ¥ -+ S,
where S is a closed Riemann surface, Y is a compact complex surface and = is
a smooth fibration by complex curves of genus ¢, such that the corresponding
holomorphic map S — T, is nontrivial. We may form a flat holomorphic fibration
F — S with T as a fiber, associated to the homomorphism 7 (S) = Map,, coming
from m. The Borel regulator of the flat fibration 7 — S, corresponding to the form
a*(Q2) on Ty, will coincide with the pullback of the class in H2(Sympl(M,),R) un-
der the composite map m,(S) = Map, — Sympl(M,). The variation of complex
structure Y — S gives a holomorphic section of F — § which is not horizontal.
Therfore the pullbak of *(Q2) on S using this section will have positive integral
over S. By [Rel], section 3, this precisely means that the class we get in H?(S,R)
is nontrivial. Therefore the map Map, — Sympl(M,) induces a nontrivial map in
H? Q.E.D.

4. BOUNDED COHOMOLOGY FOR AREA-PRESERVING DIFFEOMORPHISMS

4.1. Let M? be a compact oriented surface of any genus and let v be an area
from on M. Then Dif f,M = Sympl(M). The construction of 3.4 gives a class in
H? . (Diff,M,R).

Theorem (4.1). The cocyle §(h1,hs) of 3.4 is bounded. The class [6] lives there-
fore in the image of the natural map

H{(Diff,(M),R) — H*(Dif f;(M),R)
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Proof. Fix atame almost-complex structure Jo. Then é(hy, hg) is given by [, areap( )
w, where areas(z,y, z) is the hyperbolic area in SL2(R)/SO(2) = H? of the geodesic
triangle, spanned by z,y,z. Therefore |§(h;,hy)| £ 7 w(M).

4.2 Non-amenability of two-generated subgroups of Dif f,(M). We will apply the-
orem 4.1 to the following problem: given two area-preserving maps f,g: M — M,
when the group ¢(f,g9) € Diff,(M) is “big” (say, free)? When Diff,(M) is
replaced by a finite-dimensional Lie group, this problem has been studied exten-
sively, see e.g. [Red], and references therein. In [Red] we showed how the value
of a (twisted) Euler class forces 2x elements fi,..., fax of SL3(R) to generate a
free group. Here we will give a criterion for ¢(f,g) as above to be non-amenable.
For that, denote F(f,g) a free group in two generators f,g. Consider the ¢! -
homology Banach space Hél (FyR)[ ]. An element of this space has a representive
Z;ﬁ.l aj(hj,kj) with hj, k; € F,E|a;| < 0o and Z aj(hjkj—hj—h;)=0in €I(F).

A bounded cocycle ¢ induces a continuous functional

> ajb(hi ki) HY (F,R) - R
which vanishes if [¢] = 0 in HZ(F,R).

Theorem (4.2). Let Y a;(h;,k;) beany € -cyclein H{* (F,R). I a; 6(h;, ki) #
0, then the group ¢(f,g) is non-amenable. The set of pairs (f,g) € Dif f,(M) x
Dif f, (M) satisfying this inequality, is open in C' -topology.

Proof. Consider the following maps:

H{(Diff, (M), R) = H}(¢(f,9),R) = H}(F(f,9),R) = (H;' (F(f,0),R))"
If ¢(f, g) is amenable, then HZ(¢(f,g),R) = 0[Gr2], so the image of § in (H (F(f,g),R))*

is zero and (4, Y ai(hj, k;)) = 0, a contradiction. The last statement of the theorem
is checked directly from the definition of 4.

4.8 Constructing €' -cycles. The cardinality of dimpg Hzt‘(F(f,g), R)is 2% by [ ].
To apply the theorem 4.2 it is useful to have explicit formulas for ¢! -cycles. One
way is described in [ .

5. LIE ALGEBRA COHOMOLOGY

We will give the Lie algebraic analogues of the above constructed classes in
Diff, (M) and Sympl(M). Observe that some odd-dimensional classes in the Lie
algebra of Sympl(M) were constructed in [Re2] they induce, in general, nontrivial
classes in cohomology of Sympl(M) as a topological space. The even-dimensional
classes constructed here always induce trivial classes in H*(Sympl‘°?(M),R).

5.1 Formulas for Dif f,(M). Let X;,...,X2x41 € Lie(Diff,(M)). Fix a Rie-
mannian metric ¢ with volume form V. Let

28541

’(,b(Xl,... ,X2n+1) =/ AltTT’ H (VXJ+(VXJ)*) Vv
M

j=1



Theorem (5.1). i defines a cocycle for H***!(Lie(Dif f,(M)).

Proof. Consider a Dif f, (M) -equivariant evaluation map Diff, (M) - M : f —
(£*)"'(g). Then the Dif f, (M) -invariant forms on M, constructed in 1.1 induce
left-invariant closed forms on Dif f, (M), whose restriction on T, Dif f, (M) will be
a Lie algebra cocycle. The derivative of the evaluation map Lie(Dif f, (M)) — T, M
is given by X — Lxg = g(YX + (VX)*,"). Accounting the formula for Borel

classes (see e.g. [Re3]), one arrives above-written formula for .

5.2 Formulas for Sympl(M). Let X,,...,X,. € Lie(Sympl(M)). Fix a tame

almost-complex structure J. Let

28

(pg,;(Xl,... ,XQ,;) I/ AltTT‘J Hﬁ‘\’j.]‘wn

M =1

Theorem (5.2). ¢ defines a cocycle for H**(Lie(Sympl(M)).
Proof. Same as for 5.1.
5.8 Vanishing for @, for flat torus.

Proposition (5.8). Let M = R?"/Z*" be a torus with standard symplectic structure.
Then for any choice of a tame almost-complex structure, the cohomology class of
2 in H?(Lie(Sympl(M)),R) is zero.

Proof. The cohomology class of 3 does not depend on the choice of J, since X is
connected. Choose J to be the standard complex structure. We need to work on
the formula for ¢,. Let g be a metric, defined by ¢(J-,-) = w (flat in our case).
We then have LxJ = [ X, J] since g is Kéhler and 7xJ = 0. So

pa(X,Y) = jM Tr J(9 X, Y, J] - [9Y, T[T X, T])) - "

Let X be Hamiltonian, so that X = Jgrad f. Then X = J Hy, where Hy is the
Hessian of f. If Y is also Hamiltonian, say Y = J grad h, we have

o2(X,Y) = -]M Tr J[Hy, J)[Hp, J] - "

Direct computation shows that the last expression is zero for flat torus. Now,
Lie(Sympl(M)) is a semidirect product of the ideal of Hamiltonian vector fields
and an abelian subalgebra of constant vector fields, generated by (multivalued)
linear Hamiltonians. Clearly, w2(X,Y") is zero for all choices for X and Y.

5.4 Vanishing of o for a symplectic surface.

Proposition (5.4). Let (M,w) be a compact surface with a symplectic form.
Then for any choice of a tame almost-complex structure, the cohomology class of
@y in H*(Lie(Ham(M),R)) is zero.

Proof. Let g be as above. Again we have

8



or(X,Y) = _/M Tr J[Hy, J)[Hp, J) - w

The proposition follows now from the following remarkable identity.

Theorem (5.4). On a compact Riemannian surface (M, g) the following identity
holds:

/ TrJ[Hf,J][Hh,J]-darea-—-—/K(g){f,h}-darea, (*)
M

where K(g) is the curvature of g.

Proof. We were only able to prove this identity by a direct (very) long computation
([Rel]), which we will sketch here. Let g = e4(*¥)(dz? 4 dy?) in local conformal

i z =1 y =1 ¢ -1 y =1 S
coordinates. Then I';, = 34,,I'Y, = 3A4,,T7, = 34,,TY, = 34, T}, = —34,,

Iy, = —2A;. Next, Hy = 7(Grad f) and to the matrix of Hy is

(e—af:m: + %e_A(Ayfy - Az:fa:) e_Af.ry - %G—A(Ayfz + Arfy))
e A foy — %E_A(Ayfm + Az fy) e fyy + %S_A(Arfz — Ay fy)

and the same for h. Substituting to the left side of (*) one gets

-2 [f(e_Afa:y - %G_A(Ayfa: + Az fy)) - (haz — hyy + Ayhy — Aghy)—

- /(E_Ahry - %(Ayhr + Azhy))(fez = fyy + Ay fy — Acfe)| dady

Twice integrating by parts, one finds this equal to

/e_A[_Axa:yf:r + AyAa:xfa: - Ayyyf.r+
+AyAyyf:r: + Ayya fy — Az Ayy fy + Azaafy — Aa:Azrfy]dxdy

On the other hand, the right hand side is

/M{fa:hy — fyhs} - (Azs + Ayy)e A dady.

Again integrating by parts, one gets the same expression as above. q.e.d.
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6. CHERN-SIMONS-TYPE CLASS IN H*(Diff,(M?®),R(Z)

This section is best read in conjunction with [Re2]. In that paper, we constructed
secondary classes in Hom(mq;—(B Sympl®(M)*,R/A) where M?" is a compact
simply-connected symplectic manifold and A is a group of periods of a biinvariant
(21 —1) -form on Sympl(M), whose restriction on the Lie algebrais fi,... , f2i—1 —
Alt fM {f1,f2}f3... f2i=1 -w". In particular, it implied the following results.

6.1 Theorem ([Re2]) (Chern-Simons class extends to Sympl(5?)). There
exists a rigid class in H®(Sympl(S?,can),R/Z) whose restriction on SO(3) is the
standard Chern-Simons class.

6.2 Theorem ([Re2]) (Chern-Simons class extends to Sympl(CP?)). There
exists a class in H3(Sympl{CP?, can),R/Z) whose restriction on SU(3) is the stan-
dard Chern-Simons class.

6.3 Theorem ([Re2]). There exists a class in H*(Sympl((S?, a; - can) x §%(ay x
can)),R/Z),a; # a3, whose restriction on SO(3) x SO(3) is the sum of standard
Chern-Simons classes.

Let M? be a rational homology sphere, say f - Hi(M,Z)=0, f € Z.

6.4 The definttion of the ChS class. Fix a point p € M and consider the evaluation
(at p) map

Diff,(M)— M.

The pull-back of v under this map is a closed left-invariant form v, on Dif f, (M),
having integral periods. The general theory of [Re3] and [Re2] produces a regulator

n3(BDiffo(M)T) 5 R/Z (*)

A different choice of a point p' € M will give another left-invariant form v
such that v, — vy = du for a left-invariant form p. It follows from {Re3] that
the regulator (*) does not depend on p. In fact, one has a biinvariant 3-form
w on Dif f,,(M ), whose values on the Lie algebra are given by w(X,Y,Z) =
Sy v(X(p), Y (p), Z(p))dv(p). The form w gives the same regulator as above.

To extend the regulator to H3(Dif f$(M),R/Z), we need to alter the scheme of
[Re3] as follows. Since MSO3(B Dif f5(M)) ~ H3(BDiffé(M),Z) any class in
H3(BDiff*(M),Z) is represented by a map X N B Dif f(M), or equivalently,
by a representation my (X) 5 Diff,(M). Now, for M a flat bundle M — £ — X,
assoclating to p. The form w extends to the closed form on £ whose periods on
fibers are 1. That gives an element A in H3(£,R/Z). The spectral sequence of £
with R/Z -coefficients looks like

R/Z HY(X,R/Z) H}X,R/Z) HYX,R/Z)...
0 0 0 0
H(X,W) H(X,W) H(X,W)  H(X,W)...
R/Z HY(X,R/Z) HYX,R/Z) H)X,R/Z)...

where W is the local system whose stalk at p is H!(M,R/Z) = HWZ) The
element A lies in the kernel of the wedge map H*(£,R/Z) — H*(M,R/Z). Now,
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the group H?(X, W) has exponent a divisor of f, and the image of the transgression
d? : HY(X,W) - H*(X,R/Z) has the same property. Therefore, f - A induces a
well-defined class in H*(X,R/Z- ). If M is a Z-homology sphere, we get a class
in H3(X,R/Z).

If Y - BDiff%(M) is a map, bordant to ¢, then the same argument as in
[Re2] proves that the value of the corresponding class in H*(Y,R/Z - -]f) on [Y] is
the same as for X. So we constructed a well-defined map

H3(Diff6(M),Z)—>R/Z-%

6.5 Invariant scalar product on Lie(Diff, (M), the Cartan form and rigidity of
ChS class. Here we will prove that the ChS class

H3y(Diff§(M),Z) — R/Z

of the previous section is rigid for M & §3. For that purpose we need to work
with principal flat bundles rather then with flat associated bundles. The clue is
that the form w constructed above on Dif f, (M) can be viewed as a Cartan form,
associated with an invariant scalar product on Lie(Dif f, (M)).

We are going to prove similar results for the group Diff,(M?) of volume-
preserving diffeomorphisms of a compact oriented three-manifold. Throughout this
section, M is assumed to be a rational homology sphere, that is, H,(M,Z) is tor-
sion.

Let X € Lie(Dif f,(M)) a vector field with div X = 0. The form X |v is closed,
whence exact: dp = X |v. Put (X,X) = f,, - (X]v). An immediate computation
shows that (X, X'} does not depend on the choice of u. Moreover X — (X, X)
is a quadratic form, invariant under the adjoint action of Dif f,(M). By Arnold
[A], (X, X) is the asymptotic self-linking number of trajetories of X. We need the
following elementary lemma (the proof of left to the reader)

Lemma (6.5). For any X,Y,Z € Lie(Dif f,(M)),

QAX,Y,Z2) =w(X,Y, 2)
that is, the forms  and w coincide.

Now, as in [Re2] we define a biinvariant form Q on Dif f,(M) by Q(X,Y,Z) =
([X,Y], Z) on the Lie algebra.

Lemma (6.6). Let M = S3/T where S° is considered as a compact Lie group and
the finite subgroup I' acts from the right. Then the pullback of ! by the natural
map S* = Diff,(M) is ]%[ - (volume form of §°%).

Proof. 1t is clearly enough to check this for ' = {1}. Let v € Lie(S%) and X is
the corresponding right-invariant vector field. Let g be a right-invariant 1-form,
defined by (v,-) on Lie §%). Then du = X v and u A (X |v) = v. q.e.d.
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6.6 Theorem (Chern-Simons class in Diff,(5%) ). There exists a rigid class
in H¥(Dif f,(5%),R/Z) whose restriction on SO(4) =~ §* x §*/Z, coincides with
the sum of standard Chern-Simons classes. Moreover, for M = §3/T there exists
a class in H*(Dif f,(M),R/Z) whose restriction on S* is |[| times the standard
Chern-Simons class.

Proof. By the general theory of regulators, developed in [Re3|, section 3, and [Re2],
the invariant form §2 gives rise to a map

m(BDiffS(M)T) > R/A

where A is the group of periods of © on the Hurewitz image of m3(Dif f,(M)) in
Hy(Diff,(M),Z). Moreover, if Diff,(M) is homotopically equivalent to S* or
S0(4) this extends to a map

Hy(B Dif f*(M)) — R/A

By Hatcher [H| and Ivanov {I] this is exactly the case for M = S%/T". Moreover,
periods of 2 are 27? - Z and 272 - ]%[Z, respectively. Since @ is a Cartan form,
associated to an invariant polynomial in Lie(Dif f,(M)), it is rigid by Cheeger-
Simons [Che-S].

6.6 Case of Seifert manifolds. Let T’ be a uniform lattice in Sf;f]/R), then M =
é

e —

SL,(R)/T is a Seifert manifold. There is a cohomology class 8 € H*(SLy(R) ,R),
called the Seifert volume class [BGo], such that for any I' C SL;(R), the restriction

of f on T is vol(SL2(R)/T') times the fundamental class. Then the computation of

———

6.4 gives the class in H*(Diff,(M),R), whose restriction on SL2(R) is 8, subject
to the condition that Dif f,(M) is contractible. It is not known to the author if
this is true for all such M, comp. [FJ].

7. MEASURABLE TRANSFER AND HIGHER ASYMPTOTIC CYCLES

We will first outline here an alternative approach in defining the classes of 1.2
in Dif f,(M). For M a locally symmetric space of nonpositive curvature, this
approach also leads to new classes in H},,,,(Dif f,(M),R), different from those of
1.2,

Let & = Diff,(M) and &, C ® is a closed group, stabilizing a fixed point
p € M. Let &~ be the connected component of ® and let &7 = ® N By. Fix a
measurable section s : M — & such that s(¢)p = ¢. We will always assume that

s(M) is compact.
7.1 Ergodic cocycle in non-abelian cohomology [Guj. Defineamap ¢ : ®x M — &

by gs(q) = s(g9q)¥(g,q). We will view it as a map & 2 F(M,®q). Here F(M, ®p)
is the group of measurable functions from M to &, with compact closure of the
image. ® acts on F(M,®g) by the argument change and v is a cocycle for the
non-abelian cohomology H!(®, F(M, ®)).

7.2 Measurable transfer [Gu]. Now let f: &g X ...®; — R be a locally bounded
(say, continuous) cocycle. Define F : & x ... x & = R as F = fM f(¥(g1,m),
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¥(g2,m) ... ¥{gn,m))dv(m). This defines a cohomology class in H*(®,R), inde-
pendent of the choices of s and f [Gu].

Now, we have the tangential representation &, — SL(T,(M)). Pulling back
the usual Borel classes on g, we construct cohomology classes in H'(®g,R) for
i =5,9,.... The transfer will map these to classes in H'(®,R), which we have
constructed in 1.2. We do not prove the comparison theorem here, however.

7.8 Supertransfer. We will now define a map

H*(my(M),R) = H*(Diff,(M),R)

in the following way. We know that mo(®5) = 71 (M) /7 (™). This defines a homo-
morphism 85 — w(B5) = 7 (M) /7 (&™), and a map H*(m (M)/m(&~),R) -
H* (&7, R).

In many interesting cases one knows that = (®~) = 1. If M is a surface of
genus ¢ > 2, a result of BEarle and Eells says that ®™ is contractible. For M
locally symmetric of rank > 2 [FJ]. For any M such that = (&™) = 1, we get
mo(®o) = m (M) so that there is a map

HE(my(M)) — H"(mo(®5)) = H"(67).

Now, composing with the measurable transfer H*(®7') — H*(&™) we arrive to a
desired map

S:H*(m(M),R)—> H*(&~,R)
7.4 Higher asymptotic cycles. The dual to the above-constructed map S 1s

SV : Ho(®™,R) = Hy(m (M),R).

As we will see now, this is higher version of the classical asymptotic cycle character

&~ 23 H(M,R)

[Sch]. Indeed, for k£ = 1 the map SV will act as follows: let g € ®™ be a volume-
preserving map, isotopic to identity. Fix an isotopy g¢(t,z) such that g(0,-) = id
and g(1,) = g. For ¢ € M, ¢(¢,z) is a path from z to g(z) and may be considered
as a 1— current. Now, the integral

fM{g(t,m)ldv(w)

is a closed current, defining an element in H, (M, R). This will be $¥(g).

Now, the definition of the asymptotic cycle map [Sch] gives the following recepy:
for an element z € H!(M,Z) let f : M — S! be a representing map. The map
fog—f: M — S!is zero-homotopic, so it comes from the map F : M — R.
Now, [, F(modZ) is the image of 7(f) on 2. If f is isotopic to identity, 7(f) lifts
to Hi(M,R). It is easy to check that (df, f,,[g(t, z)]dv) = (7(f),z), which proves

SY = 7 in dimension 1.
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