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Topology of a manifold is reflected in its diffeomorphism group. It is challenging
therefore to understand the diffeomorphism group Diff(M) both as a topologi­
cal and discrete group. Twenty years ago, some work had been done, in connec­
tion with characteristic classes of foliations, in constructing continuous cohomology
dasses for Dij f(M). For M closed oriented n-dimensional luanifold, a class in
H~t~(Dijf(M), IR) had been explicitly written down by Bott [Bo] [Br]. This class
is defined as follows. The group Dilf(M) acts in the multiplicative group Gf(M)
of positive sluooth functions, alld on its torsol' An(M) of volulue fonus. Hence one

gets a cocycle in H~ont(Diff(M),C'+(M)), defined by A(f) L:.f!1 = Jac v (!),
where v E An(M) and I E Dill(M). The Bott class is

iM log U dlog ,,\ U . ~. U d log ~
n

The nontriviality of Bott class had been shown for M = SI [Br], and recently for sn
[BeG], cpn [Go] by restricting to finite-dimensional Lie groups in Dijf(M). In
fact, the restrietion of the Bott class on SO(n, 1) C Dil j(sn) gives the hyperbolic
volUlue class, whereas the restrietion on P SL(n + 1, C) c Dill(cpn) gives the
Borel dass.

By its construction, the Bott class vanishes on the group DijIv (M) of volume­
preserving diffeomorphislus. Moreover, since it is defined by an invariant closed
(n +1) -fonu in the space An (M) where Di j f (M) acts, and by a theorem of Brooks
[BI'] there are no more invariant forms there, one gets just one dass in dimension
(n + 1) for a fixed luanifold M. This contrasts sharply the usual intuition coming
from the study of finite-dimensional selnisinlple group, where there is a range of
continuous cohomology classes.

In this paper we construct, for a closed lnanifold Mn with a volume form v, a
series of contintiOUS cohomology classes in H~on t ( DiI Iv (M), IR.) for all K = 5, 9, ....
The classes will be shown nontrivial already for a torus Tn. We also will con­
struct, für a SYl11plectic lnanifold (M, w ), aseries of classes in H 2

K ( S ympt(M), IR. )
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for K, = 1,3, .... Again, these are nontrivial for a torus Tn with standard symplectic
structure.

Working harder, we will show that for the smooth moduli space of stable vec­
tor bundles over a Rlemann surface M with its Kähler structure, our dass in
H 2 (Symp(M g), IR) is nontrivial and restricts to a generator of H 2 (lvJapg, IR), where
M apg is the mapping dass group:

Theorem (3.6). H 2 (Sympl(M g ), IR) is nontrivia.l. Moreover, the homolnorphism
!vIapg -r SYlnpl(M g , IR) induces a nontrivial map in the second real cohomology.

In both cases, our dasses arise froln action on a "principal homogeneous space" X
which in the case of DifIv (M) will be the space of Rlemannian lnetrics with volume
form v, and in the case of Sympl(M) will be the twistor variety, introduced in [Re]
[Rel]. In that paper we have studied the symplectic reduction of X with respect
to the Hamiltonian action of subgroups of Sympl(M) with a prinlal interest in
integrable systems arising on Teichmüller space and universal Jacobian. A lenghty
COlllputation from [Re] [Rel] related to the existence of the moment map will be
used here to prove a vanishing result in 5.4.

There is quite another way to look at our classes, from the stand point of
the transfer map. The subgroup Diff2(M) of Dilfv(M) which fixes a point
p E M, has the tangential representation to S Ln (IR.) and one can pull the Borel
classes back on Di/ f2 (M) . The transfer map [G] [Gu] will send these classes to
H;ont (Di f f v(M)). We will not however prove a rigorous comparison theorem re­
lating these two types of construction in the present paper. However we do use the
transfer map to define a new source of dasses in H*(Diffv(M)) cOllling from the
fundamental group of M. Namely, a map

will be constructed where DifI;; (!vI) is the connected component of DifIv (M).
For K, = 1, the dual of this lnap, a character

has been known for forty years [8ch] and called the asymptotic cycle map. One can
view our map S as "higher" aSYlnptotic cycle lnap.

For !vI a closed surface with an area form, the groups DifIv (M) and SYlnpl(M)
coincide. The two previously described constructions produce a dass in H;ont (DiI Iv (M))
which we will show to lie in bounded cohomology group H~(DilI(M), IR). For
f, 9 E Dif f v(Al) we give an explici t formula fora cocyde e(I, g) representing this
dass. For any lamination on M [Th] one cau exhibit quite a different formula, using
the expression for Euler dass from [BG].

The following application of dynaluical nature will be proven. Let F2 be a free
group in two generators, and let, for some words hi, k i in F2 , a SUIU 2:::1 ai(hi, kd,
~Iad < 00 be a cyde for e1 -homology of F2 • This homology has diInension 2No ,

as shown in [ ]. Let M be a dosed surface with an area fonn v. Given /, 9 E

Dif f IJ (M) one has a homolnorphislu F2 -r DiI f v (M), so the words hi, k i may be
viewed as diffeomorphisms in Diffv(M).
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Theorem {4.2}. Suppose 2:~1 ai R..(h i , kd =f. O. Then the group generated by I,g
in DilIv (M) is not amenable.

The significance ofTheorelll sterns from the fact that the condition E aie(hi, ki) i=­
ois CI-open on I, g. Therefore one gets a elomain in Dillv (M) x Dif Iv (M), such
that any pair (I, g) in it generate a "big" group in Di / Iv (M) . 0 ne can see this
result as a step towards "Tits alternative" for the infinite-dimensional Lie group
Diffv(M).

We will show in the next paper that this theorem holds for M symplectic of higher
dimension. For that purpose we ill use Lagrangian n1easurable foliations anel Lyon­
Vergne Maslov dass to show that our dass in H 2(Sympl(M g , IR) is bounded. See
also the end of [BG].

In [Re2] we defined the "symplectic Chern-Simons" dasses K;/:'1 (Sympl(M)) =
7i"2i-l ((B 5Y1np)6 (M))+) --+ IR/A, where A is the group of periods of the Car­
tau form in n~:-l (SympltoP(M)), introduced in [Re2J, 011 the Hurewitz image of
tr2i-l (SympltoP(M)) in H2 i-l (SympltoP(M), IR). The real dasses introduced in the
present paper seem to be in the same relation to the symplectic Chern-Simons
dasses as Borel classes in H;ont(SLn(K), IR) are to proper Chern-Simons dasses
(K = IR. ,C). The "symplectic Chern-Silllons dasses" of [Re2] have remarkable
rigidity property: for a continuous family of representations of a f.p. group r into
SympI(M), the pull-back of these dasses are constant in H *(r). This contrasts
strikingly the famous non-rigidity of the Bott dass, proved by Thurston. In fact,
Thurston exhibited a family of homomorphism trI (S) --+ Dij/(51

), where S is a
dosed surface of genus two, with varyillg Godbillon-Vey dass (which coincides with
the Bott dass for Di/f(SI )).

We do not know if the real dasses constracted in the present paper in H* (Dil fv (M))
and H*(Sympl(M)) are rigid. However, we introduce a new "Chern-Bimons" dass
in H 3 (DilIv (83

), fR/Z) which is rigid aud restriets to usual Chern-Simons dass
on H 3(SO(4), fRjZ). This uses the invariant scalar product on Lie (Dillv(S3)) in
much the same way we used invariant polynomials on Lie (Sympl(M)) in [Re2].

1. FORMS ON THE SPACE OF METRICS

We work with the manifold M with the fixed volume fonll v. Define the space
P as the Frechet manifold of Coo -Riemannian metrics on M, whose volume form
is v. Obviously, DifIv (M) acts on P. We cau look at P as aspace of sections
of a fibration IR --+ !vI with a fiber SLN(R)/SO(N), where N = dimM. Clearly,
M is contractible. For any 11, = 5,9, ... fix the Borel form: a 5LN (IR) -invariant
dosed n-form on SLN(R)jSO(N), normalized as in [Bo]. For a vector space V of
dimension N with a volume form l/ this gives a cal10nical choice of a dosed form on
the space p V of Eudideau metries on V with determinant v. Call this form 7/J;:.
Now, we define a form on P by 'l/;n = IM 'l/;~zM dl/(x). That means the following:
let 9 E P a Riemanl1ian metric on M. Let h1 , • •• ,hn E Tg P be syn1metric bilinear

smooth 2-forms. Define 7/Jn(hI, . .. ,hn) = IM 7/J~z(M\hl (x), . .. ,hn(x ))dv.

Lemnla (1.1). Tbe form 'ljJ E f2n(p) is closed and Diffv(!vJ) -invariant.

Proof. The invariance is obvious froln definition. To prove the dosedness, observe
",m T Zj (M)

first that a fonn 'ifn(Xl" .. ,Xm)(hl, . .. ,hn) = L..Jj=1 Aj'l/;n (h1(x j), . .. ,hn(xj))
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is dosed as a pull-back of a closed fonn under the map P ~ TI;:1 pTlJj(M). Now
aue approximates 'lj; by 'lj; 71 ( X 1 , . •• ,xm) to show that 'lj; is dosed.

1.2 The definition 0/ the classes. We willnow apply a general theory of regulators,
as presented in [Rel], section 3. For a Frechet-Lie group <5, acting smoothly on a
contractible smooth manifold Y, preserving a closed form 'lj;n, this theory prescribes
a dass in H n(<5 0 , IR), called r(VJn) in [Rel].

Definition (1.2). Consider the action of DilIv (M) on the contractible manifold P
wi th the invariant fornl 'lj; 71 as above. A class In E H 71 (Di IIZ (M), IR) is defined as
r( 'lj;n).

Theorem (1.3). The c1ass In lies in the image oE the natural map

The proof follows from Proposition 1.3 below.

1. S Simplices in P and a Dupont-type construction. Fix two metries 91,92 in P.
We ean join them by a segment in two different ways. First, there is a straight
line segment 191 ,92 (t) : t ~ t . 91 + (1 - t )92. Second, there is a geodesie segment
J91,9~(t) : t r-+ (x Ho C(t,91(X),92(X))). Here t E [O,l],x E M,91(X),92(X) E
pTz: (M) and c(t, 9] (x), 92 (x)) is a geodesie segment in thc homogeneous metric of
symmetrie space on pTz:(M) ~ SLN(IR)/SO(N). Now, having n metries 91, ... ,971

in P we define two singular siluplices 191 ...9n : a --+ P and J91 ... 9n : a -+ P by
induetion as a joint of 91 and 19'2,'" ,gn' (resp. 91 and Jg'}. ...gn) using straight Ene
segments (resp. geodesie segments, COlllp [Th2]).

Now fix a reference metric 9 in P. Define

1~(gl"" ,gn) =1 1/;71
I( )

and

1~(gl"" ,gn) =1 VJn
J( )

Proposition (1.3). Both I~ and I~ are continuous cocyc1es, representillg In'

Proof. The proof mimics the finite-dimensional case, cf. [Du], and is therefore
omitted.

2. NON-TRIVIALITY

We will prove that the dass In in discrete group cohomology, and consequently
classes of I~ and I~ in continuous cohomology are non-trivial in general. For that
purpose, consider a torus T N = IR N /ZN with a standard volume form dx] ... dx N.

Vve have an inclusion
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Proposition (2.1). Tbe dass In restriets to tbe Borel dass in Hn(SL(N, Z), IR)
and is tberefore nontriYial for N big ellough.

Proof. Let Po be the space of left-invariant metrics on T N with the determinant
v; as a manifold, Po ::::::: SLN(R)/SO(N). The embedding Po '-+ P is SLN(Z)
-invariant, and the pull-back of the form 'l/Jn on Po is the Borel fonn on Po. Now
by [Rel}, section 3, 1'('l/Jn) coincides with the Borel dass.

3. COHOMOLOGY OF SYMPLECTIC DIFFEOMORPHISMS

We will now adapt the theory for the group Sympl(M) of symplectic diffeomor­
phisms of a cOlnpact symplectic lnanifold M. For this purpose, we will introduce
a new ( 00 -dimensional) contractible manifold Z, on which Sympl(M) acts, pre­
serving some differential forms of even degree.

S.l Principal transformation space. Let ~ be the fibration over M2n, whose fiber
over x E M consists of complex struetures in TxM, say J, such that W x is J­
invariant and the symmetrie form w( J " .) is positive definite. Alternatively, ~ is
a Sp(2n, IR)/U(n) fiber bundle over M, associated to the Sp(2n, IR) -frame bundle.
The prineipal transformation space Z is defined as aspace of coo -sections of~. So
a point in Z is just an almost-complex strueture on M, talned by w, in the sense
of Gromov [Gr]. Sinee the Siegel upper half-plane Sp(2n, IR)/U(n) is eontraetible,
the space Z is contraetible, too.

9.2 Forms on Z. Fix an Sp(2n, IR) -invariant form on Sp(2n, IR)/U(N). This in­
duces a form c.pTz:M on :Fx for each x E M alld a form

'" = 1M ",T.M . w
n

as in 1.1. Obviously, this form c.p is Synlpl(M) -invariant. Reeall that the ring of
Sp(2n, IR) -invariant forms on Sp(2n, IR)/U(n) is generated by forms in dimensions
2,6, ... [Bo].

Correspondingly, we have Sympl(M) -invariant dosed forms, in same dimen~ions.

Vve single out the sympleetic (I(ähler) form on Sp(2n, IR)/U(n), whieh may be
described as follows. For J E Sp(2n, IR)/U(n), the tangent spaee TJSp(2n, IR)/U(n)
consists of operators A : IR 2

n -+ R2
n satisfying AJ = -JA and (Ax, y) = (Ay, x),

where (.,.) is the sympleetic structure. Alternatively, A is self-adjoint in the Eu­
didean scalar product (J.,') and skew-commutes with J. The Kähler form on
Tj Sp(2n, TR)/U(n) is given by (A, B) = Tr J AB.

9.9 Simplices on Z. For two almost-complex structures J1 , J2 , talned by w, we de­
fine a segment .:J(t): t I-t (c(t,J1(X),J2(x)) where c(t,J1(X),J2(x)) is the geodesic
segment in the Hermitian sYlnmetric spaee ofnonpositive curvature Sp(2n, IR)/U(n),
joining J1 (x) and J2 (x). For a collection J1 , ••• ,Jn define a singular simplex
K(J1 , ... ,Jn ) as in 1.3.

9.4 Continuous cohomology classes in Sympl(M): adefinition. For any generator
of the ring of Sp(2n, IR) -invariant fonn on Sp(2n, IR)/U(n) we define a continuous
cohomology dass in Hcont(Sympl(M), IR.) by the explicit formula
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o(hI, . .. ,hn ) = [ 'PJJ;;( )

where Jo is any fixed tamed almost-complex structure, alld 'P is a form of 3.2.

9.5 Non-trviality. Let M be a flat torus IR. 2n/Z2n with a standard symplectic struc­
ture dXl 1\ dX2 + ... + dX2n-l 1\ dX2n. As in 2.1, we have an Sp(2n, Z) -invariant
embedding Sp(2n, IR)/U(n) Y X, ancl the classes of 3.4 on Syn1pl(M) restrict to
Borel classes on Sp(2n, Z), nontrivial for big n [B).

3.6 Application to nl0duli spaces. Let S be a closed Rielnann surface of genus
9 ~ 2, and let Mg be a component of the representation variety H om( 7r1 (S), SO(3)) / SO(3)
with Stiefel-Whitney class 1. This is known to be a smooth compact simply­
connected symplectic lnanifold [Go2] of dimension 69 - 6. By a famous theorem of
(NS], Mg is identified with the modllii space of stahle holomoprhic vector bundles
of rank 2 and . The mapping class group M apg acts symplectically on Mg,
so we have an injective homolllorphism A1apg ~ Sympl(M g). Now we claim the
following

Theorem (3.6). H 2 (Sympl(M g ),IR.) is llontrivial. Morover, the homomorphism
Mapg -+ Sympl(M g , IR) illduces a nontriviallnap in second real cohomology.

Praaf. By the main theorem of [NS] there is a holomorphic embedding of the Te­
ichmüller space Tg to the spacc of complex strllctures in Mg, tamed by Goldman's
symplectic form. In particlllar, we have a M apg-invariant holmorphic embedding

Tg ~ Z(M g ). Let fl be the I(ähler fonn of Z(M g), then a*(n) is 'a Mapg ­

equivariant I(ähler fonn on Tg . We know there exist holomorphic maps Y ~ S,
where S is a closed Riemann sllrface, Y is a cOlnpact complex surface and 7r is
a SllloOth fibration by complex Cllrves of genus 9, such that the corresponding
holomorphic map S ~ Tg is nontrivial. Vve may form a flat holomorphic fibration
:F -+ S with Tg as a fiber, associated to the homonlorphism 7rl (S) -+ M apg, coming
from 7r. The Borel regulator of the flat fibration:F ~ S, corresponding to the form
a*(fl) on Tg , will coincide with the pullback of the class in H2(Sympl(M g ), IR) Ull­

der the composite map 7rl (S) -+ Mapg -+ Sympl(M g ). The variation of cOlnplex

structure Y ~ S gives a holomorphic section of :F -+ S which is not horizontal.
Therfore the pullbak of a*(O) on S using this section will have positive integral
over S. By [Re1], section 3, this precisely means that the dass we get in H 2 ( S, IR.)
is nontrivial. Therefore the map Mapg -+ Sympl(M g) induces a nontriviallnap in
H 2

• Q.E.D.

4. BOUNDED COHOMOLOGY FOR AREA-PRESERVING DIFFEOMORPHlSMS

4.1. Let M 2 be a compact oriented surface of any genus and let v be an area
from on M. Then DiffilM = SYlupl(M). The construction of 3.4 gives a class in
H;ont(Dif filM, IR).

Theorem (4.1). The cocyle J(h1 , h2 ) oE 3.4 is bounded. The c1aBS [0] lives there­
fore in the iInage of the natural map

6



Proof. Fix a tarne almost-complex structure Jo. Then J(h 1 , hz) is given by JM areak( ).
w, where areah(x, y, z) is the hyperbolic area in SLz(IR)/50(2) ~ 1{2 ofthe geodesie
triangle , spanned by x, y, z. Therefore IJ(h1 , h2 ) I ::; 1r . W ( M).

4.2 Non-amenability 01 two-generated subgroups 01 Dilly(M). We will apply the­
orem 4.1 to the following problem: given two area-preserving maps I,g : M -+ M,
when the group cP(/,g) E Dillv(M) is "big" (say, free)? When Dillv(M) is
replaced by a finite-dimensional Lie group, this problenl has been studied exten­
sively, see e.g. [Re4] , and references therein. In [Re4] we showed how the value
of a (twisted) Euler class forces 2K elements /1,' .. ,/2'" of SL2 (IR) to generate a
free group. Here we will give a criterion far cP(/, g) as above to be non-aluenable.
For that, denote F (I, 9) a free group in two generators f, g. Consider the el

­

homology Banach space Hf (F, IR) [ ]. An element of this space has a representive
L:~1 aj(hj ,kj ) with hj , kj E F, ~Iaj I < 00 and L: aj(hjkj - hj - hj ) = 0 in el (F).
A bounded cocycle einduces a continuous functional

L aj I!(h i , ki ) : Hit (F, IR) -+ IR

which vanishes if [C] = 0 in Hl (F, IR).

Theorenl (4.2). Let L: aj(hj , k j ) be anye l -cyc1e in Hit (F, IR). If~ aj o(h j , kd =I­
0, then the group 4>(/,9) is non-amenable. The set ofpairs (1,9) E Diffy(M) x
Dif fv (M) satisfying tl1is inequality, is open in Cl -topology.

Proof. Consider the following luaps:

Hl(Difly(M),IR) -+ Hl(4)(f,g),R) -+ Hl(F(f,g),fR) -+ (Hi1(F(f,g),fR))*

If 4>(f, g) is amenable, then Hl (4)(f, g), R) = 0 [Gr2], so the image of 0 in (Hit (F(f, g), IR))*
is zero and (0, L: ai (h j, kj)) == 0, a contradiction. The last statelnent of the theorem
is checked directly from the definition of J.

4.9 Constructing e1 -cycles. The cardinality of dinllR Hi 1 (F(f,g),IR) is 2No by [ ].
Ta apply the theorem 4.2 it is useful to have explicit formulas for el -cycles. One
way is described in [ ].

5. LIE ALGEBRA COHOMOLOGY

We will give the Lie algebraic analogues of the abave constructed classes in
DijIv (M) and SYlupl(M). Observe that SOlue add-dimensional classes in the Lie
algebra of Syrnpl(M) were constructed in [Re2] they induce, in general, nontrivial
classes in cohomology of Sympl(M) as a topological space. The even-dimensional
classes cOllstructed here always induce trivial classes in H*(SympltoP(M), IR).

5.1 Formulas lor DiffyCA1). Let XI, ... ,X2K+1 E Lie(Diflv(M)). Fix a Rie­
mannian metric 9 with vohune form V. Let

2K+l

1jJ(X1 , ... ,X2K+Jl = 1AltTr II (\lXj + (\lXj)*)' v
M j=1

7



Theorenl (5.1). 'ljJ defines a coc)'c1e for H 2K+1 (Lie(Dillv(M)).

Proof. Consider a Dillv(M) -equivariant evaluation map DiI Iv (M) -t M : I f-1

(/*)-l(g). Then the Dilfv(M) -invariant forms on M, constructed in 1.1 induce
left-invariant dosed forms on Di f / v(M), whose restriction on Te Di f f v(M) will be
a Lie algebra cocyde. The derivative of the evaluation lllap Lie(Dif f v (M)) -+ Tg M
is given by X Ho LXg = g(\lX + (\lX)*" .). Accounting the formula for Borel
classes (see e.g. [Re3]), one arrives above-written formula for 'ljJ.

5.2 Formulas /or Sympl(M). Let Xl, ... ,X2K E Lie(Sympl(M)). Fix a tarne
almost-complex structure J. Let

2K
'P2K(X1, ... , X 2K ) = j Alt Tr J . II Lx; J . w

n

M j=l

Theorenl (5.2). cp defines a coc)'c1e for H 2 K(Lie(Sympl(M)).

Proof. Sa1ne as for 5.1.

5.9 Vanishing /or CP2 for ftat torus.

Proposition (5.9). Let M = IR2n/Z2n be a torus with standard symplectic structure.
Then for any choice of a tarne almost-complex structure, the cohomology dass of
CP2 in H 2(Lie(Sympl(M)), IR) is zero.

Proof. The coho1nology dass of tp2 does not depencl Oll the choice of J, since X is
connected. Choose J to be the standard complex structure. We need to work on
the formula for c.p2. Let 9 be a metric, den.necl by 9 (J " .) = w (Rat in our case).
We then have LXJ = [\lX, J] since 9 is Kähler and \lxJ = O. So

Let X be Halniltonian, so that X = J gradf. Then \lX = J Hf, where Hf is the
Hessian of f. If Y is also Harniltonian, say Y = J grad h, we have

Direct computation shows that the last expression is zero for Rat torus. Now,
Lie(Sympl(M)) is a semidirect product of the ideal of Hamiltonian vector fields
anel an abelian subalgebra of constant vector fields, generated by (multivalued)
linear Hamiltonians. Clearly, c.p2(X, Y) is zero for all choices for X and Y.

5.4 Vanishing 0/ <.p2 for a symplectic sur/ace.

Prop osit ion (5.4) . Let (M, w) be a eompaet surface wi th a s)'mpleetie form.
Then for an)' choice of a tame alnlost-eomplex strueture, the eohomology c1ass of
c.p2 in H 2(Lie(Harn(M), IR)) is zero.

Proof. Let 9 be as above. Again we have

8



The proposition follows now from the following rernarkable identity.

Theorem (5.4). On a cOIllpact Riemannian surface (M,g) the following identity
holds:

1M Tr J(Hf, J][Hh, J] . d area = - 1K(g){f, h} . darea, (*)

where I{(g) is the curvature of g.

Proof. We were only able to prove this identity by a direct (very) long computation
([Re1]), which we will sketch here. Let 9 = e A (x ,y) (dx 2 + dy 2 ) in local conformal

d· t Th r x - I A r y - 1 A fX - I A fY - I A fY - 1 Aeoor lna es. en xx - '2 Xl yy - 2 y, xy - 2 y, xy - '2 x, xx - -2 y,
r~y = -tAx. Next, Hf = \J(Gradf) and to the nlatrix of Hf is

(

e-a fxx + te-A(Ayfy - Ax/ x )

e-Afxy - ~e-A(Ay/x + Ax/ y)

e-A/xy - te-A(Ayfx + Ax/y))

e- A /yy + ~e-A(Axfx - Ayfy)

and the same for h. Substituting to the left side of (*) one gets

Twiee integrating by parts, one finds this equal to

1e-A[-Axxyfx + AyAxxfx - Ayyyfx+

+AyAyyfx + Ayyxfy - AxAyyfy +Axxxfy - AxAxx/y]dxdy

On the other hand, the right hand side is

Again integrating by parts, one gets the same expression as above.

9
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6. CHERN-SIMONS-TYPE CLASS IN H3 (Di! Iv (M3 ), JR(Z)

This section is best read in conjunction with [Re2]. In that paper, we constructed
secondary classes in H orn(1T2i-l (B Syrnpl& (M)+, IR/A) where M 2n is a compact
simply-connected syrnplectic manifold and A is a group of periods of abiinvariant
(2i -1) -form on Sympl(M), whose restrietion on the Lie algebra is 11, ... ,!2i-1 ---+
Alt IM {lI, 12}13 ... !2i-1 . w n. In particular, it implied the following results.

6.1 Theorem ([Re2]) (Chern-Simons class extends to Syrupl(82
)). Tbere

exists a rigid dass in H 3 (Sympl(S2, can), JR/Z) whose restrictioll on 80(3) is tbe
standard Cbern-Simons dass.

6.2 Theorem ([Re2]) (Chern-Simons class extends to Sympl(Cp2)). Tbere
exists a dass in H 3 (Sympl(Cp2, can), IR/Z) wbose restrictioll on SU(3) is tbe stan­
dard Cbern-Simons dass.

6.3 Theorem ([Re2]). Tbere exists a dass in H3(Sympl( (82 , aj . can) x 8 2 (a2 x
can)), IR/Z), al =I- a2, whose restl'ictioll on 80(3) x SO(3) is the sum oi standard
Chern-Simons dasses.

Let M 3 be a rational horuology sphere, say I . H1 (lvI, Z) = 0, I E Z.

6.4 The definition 0/ the ChS dass. Fix a point p E M and consider the evaluation
(at p) map

Diflv(M) -+ M.

The pull-back of v uncler this map is a closed left-invariant form vp on DijIlJ (M),
having integral periods. The general theory of [Re3] and [Re2] produces a regulator

(*)

A different choice of a point p' E M will give another left-invariant form Ypl

such that Y p - Y p ' = dfl for a left-invariant fonn J.l. It follows from [Re3] that
the regulator (*) does not depend on p. In fact, one has a biinvariant 3-form
w on DifflJ(M), whose values on the Lie algebra are given by w(X, Y, Z) =
IM v(X(p), Y(p), Z(p))dv(p). The form w gives the same regulator as above.

To extend the regulator to H 3 (Di II~ (M), IR / Z), we need to alter the scheme of
[Re3] as follows. Since M803 (B DiIIO(lvI)) ~ H3 (B Dil!O(M),Z) any class in

H3 (B DijJO (M), Z) is represented by a map X ~ B Dill(M), 01' equivalently,

by a representation 1Tl(X)~ Diffv(lvI). Now, for M aflat bundle M ---+ E ---+ X,
associating to p. The form w extends to the closed form on E whose periods on
fibers are 1. That gives an element A in H3 (E, 1R/71). The spectral sequence of E
wi th IR / 7l -coefficients looks like

R/Z

°HO(X, W)
IR/Z

H 1 (.:Y, IR/71)
o

Hl(X, W)
H1(X, IR/tl)

H 2 (X, IR/Z)
o

H 2 (X, W)
H 2 (X, IR/Z)

H 3 (X, IR/Z) ...
o

H 3 (X, W) .
H 3 (X, 1R./71) .---where W is the loeal system whose stalk at p is H1 (M, IR/Z) :=::: H1(M, 7l). The

element A lies in the kernel of the wedge map H3 (E, 1R/71) ---+ H3 (M, IR/Z). Now,
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the group H2(X, W) has exponent a divisor of I, and the image of the transgression
d? : H 1 (X, vV) -t H 3 (X, IR/Z) has the same property. Therefore, I . A induees a
well-defined class in H 3 (X, IR/Z· ]-). If M is a Z-holllology sphere, we get a class

in H 3 (X, R/Z).
If Y -t B Dil/8 (M) is a 11lap, bordant to 'P, then the same argument as in

[Re2] proves that the value of the eorresponding dass in H 3 (Y, lR/Z . ]-) on [Y] is
the same as for X. So we constructed a well-defined Inap

6.5 Invariant scalar product on Lie(DilIv (M), the Cartan form and rigidity of
ChS class. Here we will prove that thc ChS class

of the previous section is rigid for M ~ 53. For that purpose we need to work
with principal flat bundles rather then with flat associated blUldles. The clue is
that the form w constructed above on Di f f v (M) ean be viewed as a Cartan form,
assoeiated with an invariant scalar produet on Lie(Diflv(M)).

We are going to prove sitnilar results for the group Dif Iv (M3 ) of volulne­
preserving diffeomorphisms of a eompact oriented three-manifold. Throughout this
section, M is assumed to be a rational homology sphere, that is, H1 (M, Z) is tor­
SIon.

Let X E Lie(DiI Iv (M)) a vector field with div X = O. The form X J1J is closed,
whence exact: dfL = XJv. Put (X,X) = IM It· (XJv). An immediate eomputation
shows that (X, ..Y) does not depend on the ehoice of J.L. Moreover X r--t (X, X)
is a quadratic fornl, invariant under the adjoint action of DifIv (M). By Arnold
[AL (X, X) is the asymptotic self-linking number of trajetories of X. We need the
following elementary lemma (the proof of left to the reader)

Lenlma (6.5). For any X, Y, Z E Lie(Diffv(M)),

n(}{, y~, Z) = w(X, Y, Z)

that is, tbe [arms n and w coincide.

Now, as in [Re2] we define abiinvariant form n on Dillv(M) by S1(X, Y, Z) =
([X, Y], Z) on the Lie algebra.

Lemma (6.6). Let M = 8 3 /r where 8 3 18 considered as a compact Lie group and
the finite subgroup r acts from the right. Tllen the pullback oE n by the natural
map S3 --t DilIv (M) is #r' (volume form of 8 3

).

Proof. It is dearly enough to check this for r = {I}. Let v E Lie(83 ) and X is
the corresponding right-invariant vector field. Let fL be a right-invariant I-form,
defined by (v,,) on Lie 53). Then dlJ = X Jv and p 1\ (XJv) = 11. q.e.d.

11



6.6 Theorenl (Chern-Shnons class in Dillv(S3) ). There exists a rigid dass
in H 3(Dil Iv (53), R/Z) whose restriction on SO(4) ~ 53 X 53/Z2 coincides with
tl1e swn of standard Chern-Simons dasses. Moreover, for lvI = 53Ir tbere exists
a dass in H 3 (Di I Iv (M) , IRIZ) whose res triction on 53 is Ir I times tbe stanclard
Chern-Simons dass.

Proof. By the general theory of regulators, developed in [Re3], section 3, and [Re2],
the invariant form n gives rise to a lnap

rr3 (B DillZ (M)+) --t IRIA

where A is the graup of periods of n on the Hurewitz image of rr3 (Di I Iv (M)) in
H 3 (DilIv (M), Z). Moreover, if DilIv (M) is homotopically equivalent to 53 01'

50(4) this extends to a lnap

H 3 (B DiI 1& (M)) --t IRIA
By Hatcher [H] and 1vanov [I] this is exactly the case for M = 53 Ir. Moreover,
periods of n are 2rr2 • Z and 2rr2

• r/lZ, respectively. Since n is a Cartan form,

associated to an invariant polynomial in Lie(Dillll(M)), it is rigid by Cheeger­
Silnons [Che-S]. -6.6 Gase of Seifert manifolds. Let r be a uniform lattice in 5 L 2 (IR), then M =_ _6

5L2 (IR)/r is a Seifert manifold. There is a cohomology class ß E H 3 (5L 2 (IR) ,IR),
called the Seifert volume dass [BGo], such that for any r c SL2 (1R), the restriction-of ß on r is vol(5L2 (IR)/r) times the fundamental dass. Then the computation of-----6.4 gives the dass in H 3 (Dillv(M), IR), whose restriction on 5L2 (IR) is ß, subject
to the coudition that DiI f 11 ( M) is contI'actible. It is not known to the author if
this is true for all such 11,11, comp. [FJ] .

7. MEASURABLE TRANSFER AND HIGHER ASYMPTOTIC CYCLES

V\Te will first outline here an alternative approach in defining the classes of 1.2
in DilIv (M). For M a locally synunetric space of nonpositive curvature, this
approach also leads to new classes in H;ont(Dil Iv (M), IR), different fronl those of
1.2.

Let (8 = DiI f 11 (M) and (80 C (B is a dosed group, stabilizing a fixed point
p E M. Let (8 ..... be the connected cOlnpollent of (B and let <Ba = Q; n (!)o. Fix a
measurable section s : M --t Q; such that s(q)p = q. We will always assurne that
s(M) is compact.

7.1 Ergodie cocycle in non-abelian cohomology [Cu}. Define a map 'ljJ : Q; x M --t Q;o

by 9 s(q) = s(gq)1/J(g, q). We will view it as a map ~ ~ :F(lvI, <Bo). Here :F(M, (!)o)

is the group of measurable fUl1ctions from M to Q;o with compact closure of the
image. (!) acts on :F(M, Q;o) by the arguluent change and 1/J is a cocycle for the
non-abelian cohon101ogy H] (~, :F(lvI, <Bo)).

7.2 Measurable transfer [Cu}. Now let I : (Bo x ... (80 --t IR be a locally bounded
(say, continuous) cocyclc. Define F : <B X ... X (8 --t IR as F = IM 1(7/;(9], m),
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'ljJ(g2, m) ... 'ljJ(gn, m))dv(m). This defines a COhOluology dass in Hn(<B, IR), ind~­

pendent of the choices of sand f [Gu].
Now, we have the tangential representation <Bo -+ SL(Tp(M)). Pulling back

the usual Borel classes on <Bo, we construct cohomology classes in H i (~o, IR) for
i = 5,9, .... The transfer will lnap these to dasses in Hi(CS, IR), which we have
constructed in 1.2. We do not prove the comparison theorem here, however.

7. S Supertransfer. vVe will now define a map

in the following way. We know that 7fo (<.!Ja) ::::: 7fl (M) /7fl (~"'). This defines a homo­
morphism <.!Ja --+ 7ro (!jü) --+ 7rl (M) /7rl (!j"'), and a map HK (7rl (M) / iTl (®"'), IR) --+
HK(~a, IR).

In many interesting cases one knows that iTl (®"') = 1. If M is a surface of
genus 9 2:: 2, a result of Bade and Eells says that <B'" is contractible. For M
locally sYlnmetric of rank 2:: 2 [FJ]. For any M such that 7fl (~"') = 1, we get
7ro(~o) ::::: trI (M) so that there is a map

Now, composing with the measurable transfer HK((5Ü) --+ HK(!j"') we arrive to a
desired map

7.4 Higher asymptotic cycles. The dual to the above-constructed map S is

As we will see now, this is higher version of the classical asYlnptotic cycle character

[8ch]. Indeed, for '" = 1 the nlap Sv will act as follows: let 9 E Q)'" be a volume­
preserving map, isotopic to identity. Fix an isotopy g(t, x) such that g(O,·) = id
and g(1,·) = g. For x E M,g(t,x) is a path frolu x to g(x) and luay be considered
as a 1- current. Now, the integral

L[g(t, x l]dv(x)

is a closed current, defining an element in H1 (M, IR). This will be Sv (g ).
Now, the definition of the asymptotic cycle 111ap [8ch] gives the following recepy:

for an element z E H l (A1, Z) let f : M -+ 51 be a representing map. The map
fog - f : M --+ SI is zero-homotopic, so it comes from the lnap F : M --+ IR.
Now, IM F(mod Z) is the image of T(/) on z. If / is isotopic to identity, T(/) lifts
to H1(M,IR). It is easy to check that (df, JM[g(t, x)]dv) = (T(f),z), which proves
Sv = T in dimension 1.
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