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Introduction

We construct flag domains for simply connected groups G defined over a
nonarchimedean local field K. The case where G is split over K was treated
in [PV] (There the spaces we call flag domains were called symmetric spaces.
But flag domains seems to be a better name). Here we concentrate on the
absolutely almost simple groups that are not split over K.

Let us first recall the definition of a flag domain. Let X be a projective
homogeneous space (not necessarily defined over K). Then X = G/P with
P C G® K, a parabolic subgroup and K, is the separable closure of K. We
call an open analytic subspace Y C X a flag domain if it has the following
two properties:

(1) Y is stable under the action of G(K)

(2) For every discrete co-compact subgroup I' C G(K) the quotient Y /T
exists and i3 a proper rigid analytic space defined over K,.

This definition seems to be the p-adic analog of archimedean flag do-
mains. If G is defined over the field of real numbers ® then an open G(R) -
orbit Yin G(C)/P(C) for some parabolic subgroup P C G®C is called a flag
domain if Y & G(R)/H for some compact subgroup H C G(R) (See [GrS]
and [WW]).

If Char(K) > 0 then discrete co-compact subgroups I' C G(K) only exist
if G is of inner type A; (See [Ve] or [M]). So G = SL,(D) with D a skew
field defined over K. To make the notion of a flag domain also meaningful for
other groups in positive characteristics, one could replace (2) in the definition
above by the following :



(2’) There ezists a formal scheme Y on which G(K) acts, with generic
fibre Y. The closed fibre of Y consists of proper components that are in 1-1
correspondance with the vertices of the Bruhat-Tits building of G(K) .

Note that (2’) implies (2) in the case of existence of discrete co-compact
subgroups of G(K). Our construction of flag domains will be such that they
also satisfy (2°).

We use the following construction. Let £ be an ample line bundle on
X. If the set of stable points coincides with the set of semi-stable points for
the action of a maximal K -split torus S C G on X with respect to £, then
Y :=Ngeq(k) & - X°(5, L) is a flag domain for G(K) . Here X*(S, £) denotes
the set of stable points. This construction is described in detail in [PV].

In section 1 of this article we briefly recall the construction. The sets of
stable points on X are studied in section 2. In section 3 the calculations with
weights needed in section 2 are performed.

I thank the Max Planck Institut fiir Mathematik for providing the space,time
and money to be able to write this article.



1 The Construction

1.1

We will briefly recall the construction of flag domains as described in [PV].
We generalize it a little to make it also work for non-split semisimple groups.

1.2

Let K denote a nonarchimedean local field and let K© denote its ring of inte-
gers. Let X be a normal projective (possibly non-connected) variety defined
over K° on which a group defined over K° acts algebraically. The action
being defined over K°. We assume the group G is connected, semisimple,
absolutely almost simple and isotropic. A group G is called isotropic if G(K)
is non-compact. It is called almost simple if G(K) does not contain a proper
infinite normal subgroup, and absolutely almost simple if this remains true
for G(L) with L D K any finite extension of fields.

Let £ be an ample line bundle on X. We assume that L is defined over K°.
We will explain what we mean by this. If £ is ample then for some natural
number n the line bundle £®" is very ample. So £®" gives an embedding
of X into some projective space P™. The action of G on X induces a G-
linearization of £L&". So we can identify P™ with the projectivization P(V) of
some G-module V. We call £ defined over K° if there exists a representation
G — GL(V) defined over K° corresponding with the G-linearization of L&
for some n such that £®" is very ample.

Let S C T be a maximal K°- rational K°-split torus.Then £ determines
the sets of stable and semistable points for the action of S on X, denoted by
X5(S, L) and X%(8S, L) respectively, both defined over K°. For a scheme Z
defined over K° we denote by Zg the same scheme but now defined over K,
i.e. Zg 1= Z Xgpec(ko) spec(K). Clearly X*(S, L)k and X*(S, L)k are the
sets of (semi-)stable points for the action of Sg on Xk with respect to the
ample line bundle £L ® K.

We define a G(K) -stable analytic subspace Y C Xg by:

Y :=Ngegkyg - (X°k(Sk, £ ® K)).
In [PV] the following theorem is proved:
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1.3 Theorem

If X5(S,L) = X%(S,L) then Y/I' is a proper rigid analytic space for any
discrete co-compact subgroup I' C G(K).

1.4

In {PV] this theorem is only proved for split groups G acting on a projective
homogeneous variety X = G/P, where P C G is a parabolic subgroup. In-
specting the proof given there, one sees that it only uses general properties
of the Bruhat-Tits building (to be found in [BrT] and [T.3] ) and properties
of sets of (semi-)stable points. Hence the theorem remains valid in this more
general set up.

In particular the following remains true:

1.5 Proposition

Xg — Y is the union of a compact set of Zariski closed divisors.

1.6

Suppose X*(S, L) = X%(S, L). Let k be the residue field of K. Let us assume
that Xp := X Xgpec(ko0y spec(k)consists of one single component. Then the
pure affinoid covering of Y given in [PV] is such that the reduction of Y
consists of components in 1-1 correspondance with the vertices of the Bruhat-
Tits building of G(K). This gives rise to a formal scheme Y associate to Y
such that the components of the closed fibre of Y are in 1-1 correspondance
with the vertices of the Bruhat-Tits building.

The analytic space Y/TI' is proper for any discrete co-compact subgroup
I' C G(K). According to [Lu.2] any formal scheme belonging to a proper
rigid analytic space has a closed fibre consisting of proper components.

Therefore we have, assuming X} consists of one component:

1.7 Theorem

There ezists a formal scheme Y with generic fibre Y such that the closed fibre
consists of proper components in 1-1 correspondance with the vertices of the
Bruhat-Tits building of G(K) .



1.8

There is also a scheme theoretical way to construct the formal scheme Y (See
[PV] and [Ku ]).

The non-algebraicity result proved in [PV] theorem 4.2 remains valid in
our more general set up. Indeed the results of Wang [W] and Liitkebohmert
[Lu.1] used in the proof are also valid for non split groups.

1.9 Theorem

Let G have only a finite number of orbits on X and let X5(S, L) = X*(S, L).
Let T' C G(K) be a discrete co-compact subgroup. Then every meromorphic
function on the proper rigid analytic space Y /I is constant on each connected
component of Y [T if codim(Xg — X§ (S, L)) > 2.



2 Stable Points
2.1

We assume that G is a simply connected, semisimple, absolutely almost
simple group defined over a non-archimedean local field K.

All varieties occuring in this section are defined over a suitable finite
separable extension of the field K. So we will not work over KU in this
section.

2.2

Let S C T C G be a maximal K-split torus and a maximal torus defined over
K, respectively. The torus T and the group G both split over the separable
closure Kg of K. Let X(T) be the character group of T. Let ® denote the
(absolute) root system of G. We choose a simple basis A of &.

Let W bethe Weyl group of . Choosing a W - invariant inner product
on X(T)®R , the group W is generated by the reflections in the hyperplanes
orthogonal to the simple roots @ € A. One has W = Np/Z1(K;). Here Np
and Zr are the normalizer and centralizer of the torus T in G. We denote
the simple roots in A by «;, i=1, ...,£ . Here £ = dimg,(T) is the absolute
rank of G. Let w; € W be the reflection belonging to a;.

The simple basis A of ® determines a Borel subgroup B C G. One has
B =< T, U.|a € ¢t >, where &+ is the set of positive roots and U, is the
T-stable additive subgroup on which T acts with character a.

For any subset I C {1,...,£},I # @ we denote by Wy C W the sub-
group generated by the reflections w;, ¢ ¢I. Then the parabolic subgroups
containing B are the groups P; := BW;B. Any parabolic subgroup of G is
conjugated to exactly one of the groups Pj. These parabolic groups P are
all defined over the splitting field of G.

2.3

Let H be the Galois group H := Gal(Kg/K). We fix an ordering on X(S).
We choose an ordering on X'(T) compatible with the ordering on X'(S). The
set of simple roots of G with respect to T vanishing on S is called Aq. The
relative root system of G, i.e. the roots of X(S), is denoted by ®k. The



relative Weyl group is called Wgk. One has Wi & Ng/Zg(K), where Ng
and Zg are the normalizer and the centralizer of S in G. The simple basis of
$g is denoted by Ag.

The Galois group H acts on X(T), since T is split over Kz. We will need
a twisted action of H on X(T). For any h € H the image h(A) of A is
again a simple basis of ®. There exists an unique element w € W such that
wh(A) = A. We set h* = woh and call the *-action of H on X(T) the
twisted action . Let H* := {h*|h €H}. Then H" acts on X'(T). Note that
H* is a finite group.
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Let £ be an ample line bundle on X = G/P. Then £ is in fact very ample. So
L determines an embedding X — P(V). Here P(V) is the projectivization
of a G -module V. When Char(K) = 0 the module V is irreducible. If
Char(K) > 0 then this might not be the case ( See [Ke] and [MR] ).

However, the module V is uniquely characterized by its highest weight.
We will denote this G-module with highest weight A by V.

Next we describe the weights A such that there exists an ample line bundle
L on X = G/Pj corresponding to the G-module V). Let w; be the fundamen-
tal weight determined by 2(w;, a;)/(a;,a;) = 6;. Here (-,-) is a W-invariant
inner product on X(T)® R. The ample line bundles £ on X = G/Py corre-
spond to the modules V) with highest weight A = 3,1 n; - w; with n; > 0.

We need to know which representations of G can be defined over K. These
can be found in [T.2]. Let A, denote the root lattice, i.e. the sublattice of
X(T) generated by the roots o € ®. We restate the theorems 3.3 and 7.2 of
[T.2] in a form suitable for our purposes:

2.5 Theorem

The representation py of G into GL(@®,cq+ Vo(n)) can be defined over K if
A € A, (otherwise if A @ A, it can be defined over some skew field D defined
over K).



2.6

If Char(K) = 0 then this representation is irreducible over K and the theorem
is actually proved in [T.2]. Otherwise if Char(K) > 0, the representation
might not be irreducible, but it follows from the proof given in [T.2] that the
theorem above remains true.

The theorem above gives us for each weight A = 3",y n; - A; € A, a rep-
resentation p, defined over K. Let vy € @,cg. Vo(r) be a vector contained
in V@ < 0 >, whose component in V) is a heighest weight vector. The
image X'y of the orbit G - vy in P(@,¢q+ Vo(n)) is isomorphic to G/Pr. In
P(@®,en- Vo(n)) we have a variety X1 defined over K, whose connected com-
ponents are X1,(,), 0 € H*. The connected components are all isomorphic.
Moreover the very ample line bundle £ associated with this embedding,
gives on each connected component X *,( ») the line bundle £ associated with
the weight o(}).

So for each X = G/P;j defined over Ky and ample line bundle £ on X
corresponding to some weight A € A, , we can construct a variety Xt and an
ample line bundle £ ,both defined over K , such that one connected com-
ponent of X' is isomorphic to X and the restriction of £! to this component
is L. So we can forget about X and L being defined over K, since we can
always construct suitable X' and L' defined over K, if X € A,.

The fact that we have to assume that A € A, is unimportant for us, since
for any weight A we can find an integer n > 0, such that n- A € A,. If L is
a line bundle on X corresponding to A, then £®" corresponds to the weight
n - A. Hence A and n - A define the same sets of (semi-)stable points on X.

From now on we will always tacitly assume that A € A,.

2.7

The sets of (semi-)stable points of X for the action of T w.r.t. £ can be
determined using the criteria given in [MF]. Let £ give an embedding of X
into P(V) for some G-module V. Then we have an unique decomposition
V =@®Vs B € X(T) of V into eigenspaces V5 on which T acts with
character 8. Let 7p be the projection V — Vj. For z € X we denote by
1(z) C X(T)® R the polyhedron given by the convex hull of {8|rs(v) # 0},
where v € V is some original of z € X C P(V). One has:

z € X3(T,L) <= 0 € int p(z)
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z € X®¥(T,L) <> 0 € p(z)

Using [GS] the following is proved in [PV] theorem 1.1:

2.8 proposition

Let C be the ample line bundle on X = G/P, corresponding to the weight X.
Let T € G be a mazimal torus. Then we have:

a) For any point z € X the vertices of u(z) are contained in the set
{w(A)|w € W}. The edges of u(z) are parallel to the rootsa € & .

b) X3(T, L) = X5(T, L) if and only if A is not contained in a hyperplane
(through 0) spanned by roots.
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Using the restriction map = X(T) — X(S) one gets a map r o u with.
which one can determine the sets of (semi-)stable point for the action of S
on X with respect to the line bundle £. Since all characters of § are stable
for the non-twisted action of the Galois group H, we have r(h())) = r(})
for any A € X(T) and h € H. In [BoT] proposition 6.7 it is proved that
r(h*(A)) = r(h(A)), where h* denotes the twisted action of h € H. This fact
will be very useful. We now state some properties of the map r o u.

2.10 proposition

Let £ be an ample line bundle on X = G/P, corresponding to the wheight A
and let S C T C G be as before. Then we have:

a) For any point z € X the vertices of r o u(z) are contained in the set
{r(w(A)lw € W}. The edges of r o u(z) are paralell to roots a € Py .

b) X%(S, L) = X®(S, L) if for all w € W r(w(})) s not contained in a
hyperplane (through 0) spanned by roots.

c) X5(S,L) # X%(S,L) if X is contained in a hyperplane V spanned by
roots a € ® and moreover there ezists an element w € W such that r(w(V))
is a hyperplane (spanned by roots f € &y ).



2.11 Proof

Since r maps ® into @x U {0}, part (a) of the proposition is clear. Using (a)
one concludes that (b) must hold.

Part (c) follows from [PV] 1.4. There one constructs for A contained in
a hyperplane V spanned by roots a point z € X such that one has u(z) =
conv({w(A)|w € Wy}). Here Wy is the Weyl group of the root system #NV.
Then 0 € u(z) C V. Taking w(V) such that r(w(V)) is a hyperplane in
X(S) @ R, one has 0 € r(w(p(z))) = ro g(w(z)) C r(V). This shows that
w(z) € X*(S, L) — X?(S, L). This proves (c).

2.12

The classification of absolutely almost simple groups over a non-archimedean
local field K can be found in [Sa], [T.1] and [T.3]. In [Sa] and [T.1] the groups
are given by their index. A simply connected semisimple group over a non-
archimedean local field is essentially determined by its index.

The indez of G is the following. One takes the Dynkin diagram D of
the absolute root system ®. The vertices of D represent the simple roots
a € A. One draws a circle around each vertex that represents a simple root
« that does not vanish on S. These circled vertices are called the distinguished
vertices. One indicates the action of H* on the simple roots by arrows joining
the vertices corresponding to roots that are in the same H* orbit.

A group G is called an tnner form if H* = {id.}. Otherwise it is called
an outer form . A group G is called quasi-split if no root a € A vanishes on
the K-split torus S.

2.13 Theorem

There ezists an ample line bundle L on X = G/P such that
X5(S,L) = X5(S, L) if and only if one of the following holds:

1) P = B and G is any group

2 P=Py,J={1,...,£— 1} and G a non split form of C,. Here ay is
the unique long root in A.

3) P = Py and G = SL,+,(D), where D is a skew field defined over K.
Here g.cd.(i € I,s+1) =1 and G/Py;y = Gr(i,(s+1)-d), where d* denotes
the dimension of D over K.
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2.14

The theorem above is in almost all cases a direct consequence of proposition
2.10 and the calculations done in 3.2 till 3.17. The only exeptions are the
outer forms of type A, with P; # B. Then the hyperplane V constructed
in 3.11 containing Ay is not spanned by roots. But, since the polyhedron u
constructed in remark 3.12 in fact is the polyhedron u(z) for some z € X =
G/ Py, we still have X*(S, £) # X%(S, £) in this case.

2.15

Associated to the variety X and the ample line bundle £ both defined over
K one has a variety X! and an ample line bundle £t both defined over K.
By construction one has:

X5(S,£) = X*(S, L) «= (XN*(5, L") = (XN)*(S, L)

Since all components of XT® K are isomorphic to X @ K;, one sees that
X and £ can be defined over K if and only if X1@ K = X ® K. Using
proposition 3.18 and theorem 2.5 one easily proves:

2.16 Theorem

There exists an ample line bundle L defined over K on X = G/P (defined
over K) such that X%(S,L) = X*(S,L) if and only if P is as in theorem
2.18 and G s not a quasi-split group with §H* = 2 or an outer form with
P = A,

2.17 Proposition

Let G be a non split group and suppose that X5(S,L) = X%(S,L). Then
codim(X — X5(S,L) > 2.

2.18 Proof

Since S C T one has X3(T,L) C X*(S,L) and X*¥(T,L) C X*¥(S,L).
Hence codim(X — X3(S, L) > codim(X — X%(T, L).
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Let ® # A, then in [PV] lemma 4.12 it is proved for X = G/B that
codim(X — X%(T,L)) > 2. If P # B, then we have a G-equivariant map ¢ :
G/B — G/P and for any ample line bundle £ on G/P one can find an ample
line bundle £* on G/B such that (G/B)*(T,L") = ¢~1((G/P)*(T,L)).
Hence we have always codim(X — X3%(S, L)) 2 2 in this case.

If ® = A, and X = G/P with P a maximal parabolic subgroup, then
in [PV] lemma 4.5 it is shown that codim(X — X%(S,L)) > 2 for X #
P%,Gr(2, 4). Since we assume X°(S, L) = X®(S, L) the case X = Gr(2, 4)
does not occur. If X = P! then G = SL,;;(D) with d(s + 1) = 1 + 1.
Then one easily that codim(X — X%(S,L)) = d > 1. For general X one
has codim(X — X3(T, L)) = 1 if and only if for a map ¢ as above one has
X3(T,L) = ¢~ (set of stable points in Pt or Gr(2,4)). Now one easily con-
cludes that codim(X — X5(S, L)) > 1 for all X.

2.19

Assume X5(S,L) = X®%¥(S,L). Since G and X'can in fact be defined over
K9 we are allowed to use the construction of paragraph 1 of this article.
Applying theorem 1.9 to Y'! := ﬂ,EG(K)(Xf)S(S,C) one sees that every
meromorphic function on Y!/I' is constant on each connected component.
Since the connected components of Y!/I" are all isomorphic to Y/I', where

Y = nyEG(K) XS(S, [.:) one has:
2.20 Theorem
Let G be a non split group and let X°(S,L) = X*¥(S,L). LetT C G(K) be

a discrete co-compact subgroup. Then any meromorphic function on Y /I is
constant.
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3 Weights

3.1

In this section we perform the calculations with weights that are needed to
prove the last two propositions of the previous paragraph.

As before £ will denote the absolute rank of G. The set I will always denote
a non-empty subset of the set {1,...,£€}. And Aj will denote a weight of the
form A; = 3,1 ni - wi, where the w; are the fundamental weights of the root
system @.

First we will determine for each group G the sets I such that there do or
do not exist weights A\; with r(w(A)) contained in a hyperplane spanned by
roots o € g for some w € W. In proposition 3.18 we will determine the
sets I such that for some weight Aj stable under the action of H* no r(w(Ay))
is contained in a hyperplane as above.

3.2 Proposition

Let ® # A, and let G be different from a non split form of C,. Then for
every wetght A; , I # {1,...,£}, there ezists an element w € W such that
w(Ag) is contained in a hyperplane V spanned by roots a € ® and such that
r(V) is a hyperplane (spanned by roots a € ¥ ).

3.3 Proof

Let ) be the highest root of ®. If ® contains roots of different length we
call the highest short root §;. Since ® # A,, there exists an unique simple
root v; € A such that (8;,7;) # 0. So the hyperplane g, C X(T)® R is
spanned by the roots a € A, a # ;.

Since the B, are uniquely determined by the simple basis A , they are
stable under the twisted action of the Galois group H. The same is true of
the simple roots «;, since ® # A,.

If r(v;) # 0 then r(B;') is the hyperplane in X'(S) ® R spanned by the
roots @ € Ak, a # r(v;).

We will show that there exists an element w € W such that w(}) € gt
or w(\) € Byt. Since I C {1,...£}, I # {1,...,£}, There exists a root
a € @, such that (Ar,a) = 0. Since the Weyl group acts transitively on the
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long (short) roots in ®, we can find an element w € W such that w(Ap) is
contained in §;* or B, .

3.4 Proposition

For every group G there exist weights A\;, I = {1,...,£} such that no r(w(A})),
w € W is contained in a hyperplane spanned by roots a € Og.

3.5 Proof

Let A denote the union of hyperplanes in X(S)®%® that are spanned by roots.
Then B := U,ww(r~'(A)) is the union of a finite number of hyperplanes
in X(T)®R. Since the fundamental weights w; span X'(T) ® R, we can find
a weight A; avoiding all these hyperplanes.

3.6

Next we treat the non split groups with absolute root system & of type C,.
They are inner forms of C;.

We will use the following description of the root system C,. Let e,
i =1,...,€ be an orthonormal basis of #¢. Then the root system C; consists
of the vectors +e; e, i1 #jand £2-¢;,1,j=1,...,£. As a simple basis
we take A = {egli = 1,...,€} , where a; = ¢; ~ €;4;, ¢t = 1,...,£— 1 and
oy = 2. €.

Let J denote the set J = {I,...,£— I}.

3.7 Proposition

Let G be a non split group with absolute root system C,.

a) For every weight I, I 2 J there exists an element w € W such that
w(Ap) is contained in a hyperplane V spanned by roots a € & and such that
r(V) is a hyperplane (spanned by roots a € ¥k ).

b) There exzist weights A\;, I 2 J such that no r(w(A;)), w € W is
contained in a hyperplane spanned by roots a € Pk .

14



3.8 Proof

a) The proof the same as that of proposition 3.2. Now only r(8¢) # 0 .

b) Since the fundamental weights w;, 1 € J span a,* = e/1, it is sufficient
to prove that a,* € B, where B is as in 3.5. So we only have to prove that
r(w(est)) is not contained in a hyperplane spanned by roots a € .

Now w(e,t) = ¢;* for some i = 1,...,£. One verifies that we have:
e;‘L =< (g, q3,...,0¢ >

eil =< Ayye ey Ao, Qi g + QL Oy, >, i = 21"'1£_ 1.
ng' =< Oyy..., 089,22  Qp_y + Q¢ >

Inspecting the indices one finds that r(e;1) spans ®g. This proves (b).

3.9

Next we treat the outer forms with absolute root system ® = A,. Then G is
a special unitary group.

3.10 Proposition

Let G be an outer form with absolute root system A,. Then for every weight
Ar, T #{1,...,€}, there ezists an element w € W such that r(w(Af)) is
contained in a hyperplane spanned by roots a € Py .

3.11 Proof
Let S be the highest root of ®. Then we have :
Bt =<a,—apna|i=1,...,6—1>

Since r(a;) = r(a;) # 0, we have:

r(ft)=<r(x)|i=1,...,4— 1>

Therefore there exists an element w € W such that »(w(A})) is contained
in the hyperplane r(8+), which is spanned by roots a € ®.

3.12 Remark

In the proposition above w(A;) € V = 8+, but 8+ is not spanned by roots
a € ®. Let ¢" be VN @ and let W*be the Weyl group of ®°. In general 0 is not
contained in the polyhedron g, which is the convex hull of {w*(w(A[))|w’® €
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W*}. But 0 is contained in r(g), since r{a; — @) = 0. Furthermore r(y) is
contained in the hyperplane r(V).

3.13

The only groups left to study are the inner forms of type A,. They are the
groups A,, with s+1 dividing £+ 1, i.e. the groups G = SL,+1(D) with D
a skew field of dimension d%, d = -d;— over K. Since SL(D) is compact, we
will assume that s > 0. If d_I then D=K and G is split.

We will use the following description of the root system A,. Let e,
i =1,...,£4+1 be an orthonormal basis of R¢*!. The root system A, consists
of the vectors =(¢; — ¢;), i # 7. The simple basis A of ® we will use consists
of the roots a; = €; — e;47, i = I,...,£. Furthermore X(T) @R C R™*! is
given by Y4t 5 = 0.

The index of G has s distinguished vertices. They are the vertices corre-
sponding to the roots a;.4, = 1,...,s. The relative root system ®g of G
is of type A,. We take an orthonormal basis f;, i = 1,...,s+ 1 of R**! and
give the root system A, as above with ¢; replaced by f;. Now X(S)@ R is

given by Z;‘*f v =0.

The restriction map r can be given as follows:
e — fi,i=j-(d-1)+1,...,j-d,j=1,...,8+1.
The fundamental weights w; of ® with respect to A are:
w; = ¢ +89+"'+C.‘—H+'I(61 4+ oeeyr)

3.14 Proposition

Let G be an inner form of type Ay. If g. c¢. d.(1 € I,34+1)=1 then there exists
a weight A\; such that for no w € W one has that r(w(})) is contained in a
hyperplane in X(S) @ R spanned by roots a € Pg.

3.15 Proof

Ifg. c. d.(: € I,s+1) = 1, then we can choose n; > 0 such that g. ¢. d.( n;-
i,s+ 1) = 1. Let us fix such n; and let Ay := 3"y 7 - w;. For any element

w € W we have w(Af) = Y a; - ¢, — Zl:T"'i-(e; + -+« + €41 ), where the g;
are certain integers.
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Now r(w(Ar)) = T b - f; — 2285 (f, 4o 4 f4)

_Z:b i — 2.47' (fr +- + fogt)

L (s =S )

Here the b are certain integers. Now r(w(Af)) is contained in a hyper-
plane in X(S) ® R spanned by roots in ® g if and only if there exists a subset
Jc{t,...,s+1},J#8,J#{1,...,5+ 1}, such that :

Lieg(bj-(s+1)—En-i)=0

@ Lies b (s+1) =) - Tni-i

Now g. c. d. (_ni-i,s+ 1) = 1 implies that §J = s+ 1 or §J = 0. This
cannot be.

Therefore no r(w(Ap)) is contained in a hyperplane spanned by roots.

3.16 Proposition

Let G be an inner form of type Ag. If g.c.d.(1 € I,s+ 1) > 1 then for every
weight Af there ezists an element w € W such that w(Ar) is contained in a
hyperplane V. C X(T) @ R spanned by roots € ¢ and r(V) C X(S) QR s
a hyperplane spanned by roots a € @y .

3.17 Proof

Let us first look at w; = e; +ep+---+ej—gy(eg+- - +ey1). Supposen > 1
divides g.c.d.(z,s + 1). Then w; is contained in the following hyperplanes in
X(T) @R spanned by roots a € &:

Yiel % +Xser 2 =0, where J C {1,. i},ﬂJ:%and
Fc{i+1,...,0+4 1}, jF = &L=,

Let I = {:,, .y 3g} with ¢ < ig < --- <1, Suppose g.cd(i€Il)=n>
1. We can construct a hyperplane V"’ spanned by roots a € ® containing
all the weigts w;, i € I and therefore containing A;. The hyperplane V* is
defined by ¥°;c72z; = 0. Here J is given by:

J= AL, SR OUIZ G+ 1, g+ B UG+ 1 g+ )

It is clear that d divides §J = ﬁ;i One can find an element w € W such
that w(Ag) is contained in the hyperplane V given by 371, z; = 0, where
m = §J. Then r(V) is given by 2, /4 y; = 0, which is spanned by roots
a € ®g. This proves the proposition.
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3.18 Proposition

Let AH" ¢ X(T)@R denote the set of weights stable under the action of H*.
Then there ezists an element w € W such that r(w(AH")) is contained in @
hyperplane spanned by roots & € Bk if and only if G is an outer form of type
A or a non split quasi-split form with §H* = 2 (Then & = A4, Dy or E;.).

3.19 Proof

We first remark that AH* ® R is always spanned by roots. Therefore
r(w(AH" @ R)) is always spanned by roots o € bg.

If G is an inner form then §H* = I and therefore AH* = A and r(w(47"))
is never contained in a hyperplane.

Let us now assume that G is quasi-split with fH* = 2 and that ® # A,.
Since G is quasi-split we have rank(A¥") = rank(®g). We can find o, 8 € A,
a # B, such that {a,8} is a H*-orbit and (@,8) = 0. Let w = r, be
the reflection in the hyperplane orthogonal to a. Then a + 8 € AH" and
w(a+ B) = ~a+ . Now r(a + 3) # 0, but r(—a+ B) = 0. One easily
concludes that r(w(AH°)) is contained in a hyperplane spanned by roots
a€ .

A similar argument as above also works for the non quasi-split outer form
with & = A,.

Now we treat the non quasi-split outer form with ® = D, and with
jH* = 2. Let ® be ® = {xe; + ¢li,j = i...£,1 # j}, where the ¢,
i=1,...,£ form an orthonormal basis of ‘. Let us assume that the simple
basis A consists of the roots a; = ¢;, — €4y, t = 1,...,£ — 1 and ay =
ee: + €. It is easy to see that AH" spans the hyperplane orthogonal to
ar_; — ay = —2¢. Therefore one has for any w € W that w(AH' @ R) = ¢
for some i = 1,...,£. Inspecting the indices one sees that r(e;") is never a
hyperplane. So r(w(AH")) is never contained in a hyperplane in this case.

We leave the remaining cases up to the reader. They are outer forms with
$ = A, and 9 = D,.
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