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1. Introduction

The analysis of differential equations on spaces with singularities (e.g., with piece-wise
smooth geometry) is necessary in various applications in physics and engineering. Also
pure mathematics (such as geolnetry, Lie Group theory, index theory, topology) require
the analysis near singularities. \-Ve will siI11ply speak of lnanifolds with singularities,
although we actually allow stratified spaces that are in general no C manifolds. It is a
natural problel11 to extenel the c1assical concept of pscudo-differential operators from
the Coo case to Inanifolels with singularitics, in particular, ellipticity and parametrix
constructions within corresponding operator algebras. v\Te shall see (here in the case
of edges) that the construction of a paralnetrix of a gi ven single operator in a singular
situation does enlploy the insight [1'0111 rather general operator algebras. associated
with correspollding lower singulari ties (here conical ones).
The local model of CL space with conical sillgularities is the geolnetric cone

X6 = (ii+ X X) / ({O} x X)

where the base X is a closed cOl11pact Coo lnanifold. \-Ve lllay always think of an
el11bedded cone in iRN for sufficiently large lV, where X C SN-l is a submanifold of
the unit sphere anel

X 6 = {.Ax: x E X,.A ~ O} .

The analysis will always be perfonned on the open stretched cone

x/\ = ~+ X X :1 (t" x) . (1.1 )

The natural differential operators A of order p on X /\ are those of Fuchs type, namely

(1.2)

with operator-valued coefficients aj(t.) E coo(i+, DilJ~-j(X)). Here DiffV(X) is the
(Frechet) space of all differential operators of order v on X with sInooth coefficients
with respect to every chart. Note thai; when g(t) is a t.-dependent Rieillannian metric
on X, Coo in t up to t = 0, then thc Laplace-Bcltralni operator to the metric dt 2+t2g(t)
on X/\ is just of Fuchs t.ype, of order It. = 2. Another easy observation is that for every
differential operatorÄ in Rn +1 of order p

A= L aCt(x)D~
ICtI~~

with ao:(x) E COO(iRn+I), the restl'ict.ioll A = AI~n+l\{O} takes the fonn (1.2) under the
substitution of polar coordinates, with t = lxi and x E sn = X. Differential operators
of Fuchs type in adequate weighted Sobolev spaces have been studied by Inany authors.
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Let us mention, in particula.r, Konorat'ev's technique for characterizing tbe Fredholm
property under an ellipticity condition anel the asylllptotics of solutions in terms of
meromorphic falnilies of operators on X, cf. [K 1]. Aigebras of pseudo-differential
operators of Fuchs type containing the parmnetrices of elliptic elements have been
constructed by Schulze [87]. Note that the FredhollTI property in this context may be
studied both for cOlllpact 11lanifolels with eonieal singularities as weIl as for the infinite
(open stretched) cone X". In the laUer case there have to be ilnposed so-called exi t
conditions for t ---+ 00, where t ---+ 00 is regarded as an exit of the lnanifold ta infinity,
cf. Cordes [Cl], Schrohe [81].
The case of operators on lnanifolels with conical singularitics is of independent interest.
The structure of the corresponeling pseuelo-differential algebras (with various sorts
of asynlptotics, discrete and continuous ones) is rather conlplex cOlnpared with the
Coo situation. The role of the conical singularities in the present discussion is that
11lanifolcls with edges are loeally elose to an eclge of dilnension q of thc fonn of a weclge

X A x n with open n ~ ntq
•

The analysis will refer to the open stretched wedge

X" X n = lll+ X ){ X n 3 (t, x, y) . (1.3)

The Inethod of treating operators Oll X" X n will be to perfonn a calculus of pseudo­
differential operators on n with operator-valued SYlllbols, taking values in the pseudo­
differential algebra of Fuchs operators on X". In this application of the analysis for
eonical singularities it is aetually necessary t.o have an algebra, because of the point­
wise cOlnpositions between sYlnbols.
Similarly to the differential operators of Fuehs type on X" there is a elass of natural
(so-called edge-degenerate) differential operators on the wedge X" X fl, cf. Section
2 below. Our calculus gives the answer to the problein of characterizing a pseudo­
differential algebra on the wedge that contains these operators anel the parametrices
of elliptic e1elnents. This theory covers Inany special cases, in particular

(i) pseudo-differential boundary value problellls without (aod with) the
translnission property, cL Visik, Eski n [VI], Eskin [EI], Boutet de 1\100­

vel [Bl], Renlpel, Schulze [Rl],

(ii) Inixed and transIllission prableills, cf. Schulze [S8], Relllpel, Schulze [R2],
[R3],

(iii) probleIl1s of Sobalev type, cf. Sterniu [S 10], RCIllpel, Schulze [Rl],

(iv) operators on "branched" spaces when the singular sets are edges in our
sense.

Note that (i) corresponds 1,0 the case when the base X of the 1110del cone X" of the
wedge is of dilnension o. Thell n is a neighbourhood on the boundary and IR+ = X" is
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the inner nonnal. Similarly to bOl1ndary vall1e probleITIS, where the Fredholm property
depends on elliptic boundary conditions (in the pseudo-clifferential case of trace anel
potential type) the theory on Iuanifolels with eelges requires elliptic conclitions along
the edges, also being of trace anel potential type in general, both occurring even for
differential operators when dilll X > O. In Schulze [S4] as weIl as in the hook [87]
there has been described an algebra of pseudo-differential edge problems för the case
X = sn, with trace anel potential conclitions. The present paper will aUow general
eone hases X. Abrief survey on results of this type for arbitrary X was also given in
[86]. It was applied in the latter paper to operators on Inanifolds with corners, locally
being cones with bases X that have conical points, again. It is obvious for geometrie
reasons in that case that the edge theory is necessary along the one-dimensional edges
~ IR+, elnanated frOlll the corners. elose to such corners there was also established an
edge theory \vith the f\1ellin transfofll1 on IW.+. This progranl, ealled the f\1ellin-edge
approach, was eontinuecl anel cleepend in Dorschfeldt, Schulze [D1].
The present Fourier-edge approach to pseuelo-differential operators (i.e. with the
Fourier transforlll along the cdges) will point out the aspeet of edge-degenerate oper­
ators that are c0l11pleted to an algebra. f\110re details 1l1ay also be found in the second
part of the book Egorov, Schulze [E2].

2. The typical differential operators on a manifold with edges

A differential operator on X" X [2 :1 (1., x, y) of order Il E N(= {O, 1,2, ... }) is called
edge-degenerate if it has the fonn

(2.1 )

with operator-valued coeffieients (lja(t,y) E coo(i+ x 0, DiffP--(j+laD(x)). The edge­
degenerate di fferellt.ial operat.ors ,vill be regardeel as tbe typical ones on the (open
stretched) wedge X/\ X n. If g(t, y) is a (t, y)-dependent Rietnannian nletrie on X,
Coo in (t, y) up to t = 0, then tbe Laplace- ßeltra.lni operator for the Illetric of the
"geometrie wedge" dt 2 + t2g(t, y) + t,'2dy'2 on X" x [2 is just edge-degenerate, of order
J1 = 2. Let HS also note that for evcl'Y different.ial operat.or A in ~n+I X n :1 (x, y) of
order J-L

- '"" - ßA = L.J Qß(x, y)Dx,y
IßI:5p-

with aß(i, y) E COO (IRn+ 1 x n), tbe restrietion A of Ä to (iRn+1
\ {O}) X n takes

the foftll (2.1) nnder the substitution of polar coordinates in JItn+l \ {O}, with t = lxi,
X E sn = X. In this case (2.1) lna)' be regarclcd as an anisotropie reformulation of the
operator Awith respect to thc fictitious cdge O. This shows that the edge-degenerate
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symbols, i.e. those of the fonn

f.-llp(t,X,y,tT,~,f.'1]) , (2.2)

are much more general than the "llsual ones". (T, ~, 1]) are the covariables to (t, x, y).
For convenience, x will indicate points of X aB weH as local coordinates on X under
corresponding charts.
Let W be a lnanifold with edge Y, i.e. IV \ Y anel Y are Coo Inanifolds of dimensions
n + 1 + q and q, respectively, alld IV is Iocally elose to every y E Y of the form
X ä x n with sOlne closed COll1pact Coo Il1anifold X and an open neighbourhood n of
y in Y. Then we can analogously talk about edge-degenerate differential operators
A on IV, by deluanding that A takes the fonn (2.1) in local coordinates near y.
The analysis of such operators will refer to the stretched Iuanifold W "with edge" Y,
that is a Coo Inanifold with boundal'Y, descl'ibcd near the boundary by lll+ x X X n.
The transition diffeolnorphis1l1S are assuIl1ed to be SJl100th up to t = O. The edge­
degenerate behaviour of operators reIl1ains invariant under such diffeoIl1orphisn1s. If
U is a coorclinate neighbourhood on X with Iocal coordinates x then the restriction of
A to ll4 x u x n :3 0, x, y) will lwse a cOlnplctc sYInbol of the fonn (2.2), where

p(t., :Z:, y, T, C'Il) (2.3)

is Coo in t up to t = o. If ]J(Jl) (t" x, y, T, ~ ,I}) is thc hOIl1ogeneous principal part of (2.3)
in (T, ~,1;) of oreIer Il, then

(2.4)

is the hOll1ogeneous principal sYIl1bol of A of order 1"- Let us also set

(2.5)

For the ellipticity we shal1 neecl a furtlter (operator-valued) sYlnbol, dependent on
(y, 1]) E T·Y \ 0, acting as a falnily of cone operators on X". This is

(2.6)

called the hotl1ogencous pl'illcipal edge sYlnbol of A of order p. (2.6) will be an operator
faInily

(2.7)

between the weight.ed SoLoie\' spaccs }(:8,"Y(X") of SIl100thness s E ~ anel weight I E llL

Here, by defini tion,

(2.8)
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for a cut-off function w(t) (i.e., w E Cgo(ii+), w(t) = 0 for 0 ::; t < e with sorne € > 0),
further H!I(X") is the Sobolev space of slnoothness s, based on the ~1ellin transform
in t and (locally) on the Fourier t.ransfonn in x. Details nlay be found in Schulze [S7].
For sEN we have u E H!I(X") for an U Suppol'ted by"i+ x U iff

(t8doo8;11 ..... a~:u(t,x) E t-~ L2(IIt+ x lltn)

for all a = (0'0, ... , an) with 10:1 ::; s. Finally 116(X") is the standard Soholev space
on the infinite cone that corresponds to fl!l(IRn+1) outside the origin in the special case
X = sn, cf. [S7]. In view of H!I(X") C llfoc(X") , tbe space (2.8) is independent of
the concrete choice of w.

Remark 2.1 Set (1\:.\ u)(1., x) = A~ u( Al" x) J07' A E 1R+. Then {~.\} .\EI.+ is a group of
isomorphis111s on K:.'r'i(X") be/onging to C(llt+,.cO"(K:""'(X"))) for (LU 8" E Ilt. Here a
indicates the strong operat07' topology.

Remark 2.2 The operator funüly (2.6) is h07r!ogeneous 01 order J-i in the sense

(2.9)

f 0 l' ull A E Ilt+ J 1] =j:. o.

The operators (2.7) belang to the cone algebra on X" for every fixed (y,7]), cL [87],
[S8]. The so-called cononna,} sY1noo1 of order IL follows by inscrting z E C for -tOt and
putting t = O. Itwill be denoted by a~J (-). Tlten

J.i
a~JaÄ(A)(y, z) = L o.jo(O, y)zj: H.'r(X) ~ H.'r-J.i(X)

j;:O

is an operator faillily het.ween the standard Soholev 8paces H!I(X) on X, that 18

independent. of 1].

Remark 2.3 Let A be edge-degencrate, of ordcr p, and

a~,b(A)(0,x,y,T,~,7;)=j:. 0 Jor all (x,y) E X X n,(T,~,ij) E ~n+l+q \ {O}. (2.10)

Then, for eve7'Y Yo E n lhcre exisls a c01J1llable discrete subsei D = D(yo) C C with
J( n D finite f01' every c01npaet J{ C C such tha.l

is an isomorphism f01' all z E C \ D(yo) aull oll .s E IR.

Let ß E C and
r ß = {z E C: Re z = Re ß} .

6
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Theorem 2.4 Let A be edge-degenerate, of o1'der fl, and aSSU1T/,e (2.10). Then

(2.12)

is a Fredho17n operator for all s E IR, 17 E IRq \ {O} J and all , = ,(y) E llt for which

D(y) n r ~-'Y(Y) = 0.

Remark 2.5 The index 01 (2.12) for an allowed weight , is independent of s. Further
we have

ind uÄ(A)(y,I/) = ind uÄ(A) (y, I~I) . (2.13)

The lalter relation follows f1'0'ln (2.9). Finally the index may depend on the choice of ,.
In all cases when (2.12) is Fredholrn there are finite-dirnensional subspaces L~ (y, ry) J

L~(y, 1]) 01 S (Ii+, COO(X)) (= S (~, COO(X)li+)) such that

L~(y,1]) = kera,Ä(A)(y,q), L~(y,17) ES itn a,Ä(A)(y,q) = KS''Y(X'')

for every y E Y J 17 =f=. O.

lf we set N± = dilll L;(y, 17), we find a Illatrix of operators

KS-iJ.,'Y-iJ.(X")

ES
CN+

(2.14)

that is an isoIllorphislll for the given fixed (y, 17). For obtaining c and b it suffices
to choose arbitrary iS0I110rphisIuS c: CN - ---+ Lt(y,ry) and b: L~(Y,1]) ---+ CN+,

respectively. Further we Illay set.,. = O. The edge calculus below will require such a
choice of c, b, r, such that (2.14) SIlloothly depends on yEn and 1] =f=. 0 and that

() () ( ) ( )

-1
a c _ iJ. n,,\ 0 (l C "'>.. 0
b l' (y, A1]) - A 0 1 b.,. (y, 7J) 0 1 (2.15)

for all A > 0, with a := a~(A), This hOIllogeneity relation is satisfied for the left
upper corner anyway, cL Renlark 2.2. For the renlaining entries it suffices to have
an isomorphism (2.14) for arbitrary y anel 1'lJ1 = 1, and then to 'define the values of
c, b, r at 7J =f=. 0 by (2.15) by putting A = 1"'71, and replacing 1] by ~. It remains to

choose c, b, r SlllOOthly in y anel 1] with 1'1l! = 1. The existence of such a choice for
y varying over a cOInpact !( @ n is actually an easy consequence of generalities on
families of Freelhohll operators, paraIlletrizecl by a cOIupact parameter set, which is
here !( x Sq-l :1 (y, 1]), (cf. Schulze [87], [S8]). The restriction to compact [( will be
sufficient for our purposes, since n below plays the role of a piece from a compact Coo
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manifold Y (the eelge). Sinee the dinlensions JV_ anel !\'+ will jump in general under
varying y, we finally get operator fatnilics

!C ~-Ii."I-1i (X1\)

----+ EB
J+

(Y,1J)

(2.16)

where J± are vector bundles over !( X Sq-l (sub (y, "1) indieates the fiber aver (y, 17))
and dirn J(+ ) - diIn ./(- ) = 1V+ - 1V-. Then, in general, we have ta aHaw r =1= O.

~,1J Y,7/

It is naw a topologieal eondition 1,0 t.he original operator A that ./-, J+ Il1ay be chosen
as the loeal representatives of veeLor bundles on Y, i.e. the dependenee on 1] in (2.16)
disappears. Under that eOllditioJl we obtain

K:~-Ii,"I-Ii(XI\)

----+ EB
J+

y

(2.17)

whieh is then ta be used below as the hOInogencous prineipal edge symbol of some
"edge probleIn" associated with A.
For purposes helow we shall introduee here operator-valuecl Il1erOI110rphie functions

h(z) E A(C \ D, L~l(X)) . (2.18)

Here D is a eountable set in C with finit.e [( n D for every e0I11paet !(. The spaee
L~I(X) of classieal pseudo-differcntial operators on X of order Il is endowed with
its natural Freehet topology, cL [S8], anel A(U) for an open U ~ C is the spaee
of hololl1orphic funetions in U. Further A(U, E) for any, say Freehet, spaee E is
the spaee of holoillorphie E-valued funetions on U. Clearly A(U, E) has a natural
Freehet strueture, again. Denote t.he point.s of D by {Pj }jEZ' \Ve will assunle that
D n {z: c::; Re z ::; c'} is fini te for evcl'j' C < C'. Furthenl10re let us fix a sequenee
{1nj}JEZ, 1Hj E N, anel a sequenec {lVj } JEZ of finitc-elilllcnsional sllbspaees N j of finite­
dinlensional operators in L-OO(X). \Vrit.e

Every such P will also be ealled a (discrct.e) asynlptotic type for ~1ellin symbols. We
will also need L~l(X; A) for A := ~l wit.h SOlne I E N whieh is the spaee of all .\­
dependent classieal pseudo-differcntial operators on X, i.e. the aInplitude funetions,
given loeally, are classieal of order I' in (e, .\), and L-OO(X jA) = S(A, L -OO(X)). The
space L~(XjA) is also Frechet in a natural way. Now

l\J~(X)

8
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will denote tbe subspace of all h(z) like (2.18) such that for every D-excision function
x(z) (i.e. x(z) E COO(C), x(z) = 0 for dist. (z, D) < co, x(z) = 1 for dist (z, D) > Cl,

with certain 0 < co < cd

x(z)h(z)lrfj E 'L~l(Xj litT) for r = Inl Z ,

for all ß E R, uniformly in c ~ ß ~ c' for every c < c'; furthennore it is required
that h(z) is merolllorphic with poles at pj of nlul tiplicities 1'n'j + 1, and the Laurent
expansion at Pi is

nij

h(z) = L ~j(z - Pj )-(1.-+1) + hj(z)
~·=o

with ~j E 1\'j, hj(z) E A(U, L~l(~){)) for SOHle neighbourhood U of Pi' The space
A1~(X) has a natural Frechet t.opology. \Ve will write

JH~(X) when D = 0 .

By replacing L~f(X) by L~l(Xj 1\) we get analogously the space

l'J IJ (X' A)o , ,

Le. h(z, A) E A1~(X; A) nIeans h(z, A) E A(C, LJ.t(X; A)) anel

h(z, A) Jr ß E L~LI ( ~\'; liT X 1\)

for all ß E IR, unifonnly in ß for c ~ ß ~ Cl for all c < c'.

3. The wedge Sobolev spaces

(2.20)

(2.21 )

We now briefly renlind of tlle Inatcrial on the weelge 5obolev spaces from [84], [57].
Let first E be a Banach space allel

be a group of isolllorphislllS in E wit.h K.,\K. p = Ii>.p for all A, p E li (a indicates the
strang operator topology). Let us fix a stl'ictly positive fUllction 7] --+ [7]] in COO(IR~)

with

with SOHle c > O. V'Je will set
(3.1 )

An exalnple for a choice of
(3,2)

was given in Reillark 2.1.



If E is any Frechet space we will denote by S(Rq, E) the Schwartz space of E-valued
functions on IRq. Then S(IRq, E) = S(IRq) 011" E, where 011" is the completed projective
tensor product. In an analogous sense we will fornl other vector-valued spaces that
extencl scalar ones, for instance

A(U, E) = A(U) 011" E

when U ~ C is open anel A(U) t.he space of all hololnorphic functions in U in the stan­
dard Frechet topology. Vve can also fann the Sobolev space 11& (rrtq

, E) o[ smoathness
s, defined as thc subspace of allu E S'(ne.q, E) := .c (S(Rq), E) for which

for all j E~. Here {rj }jEZ is a sClni-nonn SystCIlI for thc topology of E, and FlI-1/ is
the Fourier transfofln in ~q.

Let us now return to (3.2) for a Banach space E.

Definition 3.1 W&(lR tJ , E), .5 E lR, is t.he subspace 0/ all u E S'(llltJ, E) with

I

{J[17J2'11,,-1('1)(F._"1t)(11)II~d11} 'i < 00 .

The basic properties of spaccs like W&(lRtJ , E) Inay be found in Schulze [S7]. In the
present calculus it is sufficiellt Lo deal with Hilbert spaccs E. Such a case is

E = K&()'(X")

with {~;d fraIlI ReJuark 2.1. \Ve ob1.ain by definition the weighted wedge Sobolev
space of smoothness s E rR anel weight / E IR on X" X Iltq

(3.3)

Anothcr exalnple is

+1 !!.±..!.E = fl&(fR~ ) with (....:.\u)(x) = A 2 U(AX), A > 0 .

Then, an easy calculation shows

If E is Frechet, with the systenl {rj}jEZ of scnü-llonlls with rj(I'>.e) E C(lR+) for all
e E E, j E 7l, then W&(Rq, E) will denotc the space of all u E S'(IItq, E) such that
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for all j E LZ. In all concrete applications here E will be either a Hilbert space or a
projective linlit of Hilbert spaces. FrOln now on we will assllIne that E is of that type,
though Inany assertions also hold in Inore general cases. Note that there is a canonical
isomorphisln

T := Frj-'::'yK,( 11) Fyl_ 7/: W.! (IW.q, E) -----t H.! (w..\ E) .

This allows one to fonn W.!(IW.q, \I) C WS(IItq, E) to (closed) subspaces \I C E also in
cases when V is not invariant under {K,;d '\EI4' It suffices to set

In the applications it will not be a prohicill thaI, W.!(m.q, V) Illay depend on the concrete
choice of the function 11 --. ['1,]; the error tci·nlS can be characterized and fit to the
elelnents of the calculus. A typical eXeunple is E = }('!,"Y(X") with the above {K,\} and

Vp = linear span of {w(t )cil.( X )Cpj log" I.: Ci I· E Li, 0 :::; k :::; mj,

n+l n+1.}
-2- - f +{) < Re Pi < -2- - "J = 0, ... , N

Here
(3.4)

is a so-called discrete asYlnptotic type, i.e. a. tuple of data with Pi E C in the strip
nil -,+17 < Re Pi < nil -I, with fixed {) < 0, and Lj are finite-diInensional subspaces
of COO(X). The cut-off functioll w(t,) is fixed. Vp is a finitc-diInensional subspace of
}('!"(X") for every s E I1L Then the space W"·'(IItq, \lp ) can be characterized as the
linear span of all distributions of the fonn

(3.5)

with arbitrary Viß.. E H"(fR5) anel VjA- = Fyl_rjVjk. Let us set

with
}(~I(~\;") = nK","Y-t?-~(XI\) ,

~>o

and 0 = ({),O] indicatillg a wcight st.rip of length -17. Then, both K~"Y(XI\) and
K~1'(X") are projective lilni ts of Hilbert spaces that are {/{,,\ }-invariant. We then
obtain the spaces

W~'I(X" X ~q) := W" (w..q,}(~I(X")) ,

W~I(XI\ X I1iq):= W,,(~q,K~')'(XI\)) ,

11
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by the above scheIne. Thc elelncnts of (3.6) Inay be interpreted as distributions of edge­
flatness -{} - 0 relati ve to the weight I, whereas (3.7) is the subspace of W",'"Y (X" x ~q)

of distributions with (discrete) edge asYlnptotics of type P. It can be proved that

In this sense the "singular fund,ions" of the edge asymptoties have the fOrIn
(3.5) Inodulo Woo (IRq, K~'''Y (X A)), Whereas Woo (IW.q, K~'; (XA)) eonsists (nlodulo
woo(lRq,K~'''Y(XI\))) of all elements of the fOrIn

with arbitrary Vjk E Hoo('jj.q) anel Cjk E Lj , 0 ~ k ~ 1nj, j = 0, ... , N. The edge
asymptoties in the fOrIn (3.5) have been first obtained in the book RempeI, Schulze
[R3J, cf. also Schulze [S7].
If }';l is a paraeolnpaet. Coo Illanifold we fOrIn Hfoc (AI) in the usual lTIanner as the
spaee of all distributions on J"t of loeal Sobolev sll100thness s. Then H~omp(M) is the
subspace of elelllents wit.h eOlllpact, support.. Analogously it is possible to form

}V:omp (J\I, E) .

Here it is usecl the eoordinate invarianee of the spaees.

Proposition 3.2 For evc'/'y 5, / E ~ we !lave

Now let Hf be a cOlllpact Inallifold with cdge Y in the sense of Section 2. Then we
form the \\'eighted Sobole\' space on the associated stretched lnanifold W

(3.8)

as the subspace of all 1.1 E IItoc(int ~J) wit.h <pu E W"(IPl.q, K"';(X A
)) elose to 8w for

every r.p E cgo (W), in the corresponding loca.! coordinates. Analogously, to every
asymptotic type (3.4) satisfying (P, nl, L) E P =} (p - j, ffi, L) E P for all JEN
such that Re]J - j > nil - / + '11, we cau fOrIn thc global spaces with discrete edge
asYlnptotics

W~"Y(W) 1 8 E ~ , (3.9)

defined by the condition 1.J. E (3.9) {:} 11. E J1toc(int WJ), 'PU E W"(ntq
, K~'"Y(XI\)) for all r.p

as lllentioned. Note that the transition diffcolllorphisIlIS for W elose to 8w are assuIlIed
to be (t, x )-independent for Sll1aU t. Otherwise the global notion of asYlnptotic types
needs a little further disCllssion on the coefficient spaces Lj . This will be dropped
here.
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Proposition 3.3 Let A be an cdge-flcgenc1>a.tc diffe7'cntial operator on Hf 0/ order J-l.
Then A induces continuous opcnJio1's

(3.10)

Jo1' all s" E llL Fu1'lhcnn01'c J to cvcry aSY1nplotic lype P (associated with the data
(,,8) J 8 = CO, 0)) therc exis/,s an a8ynlptotic type Q (analogously associated with
(, - j.l, 8)) such that A in duces con /JIl 11.0 1/.8 opC1'nto1'S

A: w;;r(w)~ WQ-Jl,'-/J(W)

Jor all s E IIL

The operator A is called elliptic with respect to a~ alld a~,b if a~(A) (the hODlogeneous

principal sYlnbol of A of order 11. as a function on T*(int ViI) \ 0) is non-vanishing, anel
if a~,b(A)(t,x,y,T'~"lj) =I 0 for all (t.,x,y) E 1i4 x X x f2, (r,C 17) =I 0 with respect to

every chart o[ W near 8w (cf. (2.5)).
It is now a natural question whether (:3.10) is a FredhoiIn operator for arbitrary s" E
IW., once A is elliptic with respect to a~ anel a~,b' The answer is negative in general. A
result of our theory will be t.hat the Fredholtn property requires the bijectivity of the
following operator-valued edge sYlnbol, nalnel.y of

a~(A)(y,'1]): K~,r(Xi\) ~ K~-Jl"-Jl(XA) (3.11)

for all y E Y and 17 =j:. O. However frolll Theorenl 2.4 we only know that (3.11) is a
faulily of Fredhohn operators for tllOse weights '"'( ERsuch that D(y) n r !!..:}!-_-y = 0 for

all V E Y. This shows tiJat \ve Illay cxpcct exccptional weights where the Fredholm
property of (3.10) will be violat.ed. On the other hand the Fredholnl property (3.11)
is not sufficient. The idea [roln Relnpel, Schulze [R3] anel Schulze [84], [87] is now to
enlarge the dass of operat.ors by allowing nlatrices

W~"(W)

ES ----i'

11~ (Y, J-)

WS-Jl,,-Jl (w)

ffi
11~-Jl(Y, J+)

(3.12)

where J± are finite-dinlensional cOll1plex vector bundles on Y. The meaning of the
additional operators B (trace with rcspect to Y), C (potential with respect to Y),
R (pseudo-differential on Y) is analogous f,o that fronl pseudo-differential boundary
probleuls, cL Visik, Eskin [VI], Boutet de r\'lonvel [BI], Relnpel, Schulze [R1]. The
operators B, C, R will also be called edge conditiolls. They can be generated in
local tenns over f2 ~ Iltq as psellclo-differential operators in V with the operator-valued
sYlnbols

XCI] )b(y, 17), XCI] )c(y, '1]), XCI] }r(y, 'I]) ,

with b(V,17), C(V,17), 7'(V,'1]) [rom (2.17) anel an excision fllnction X(1J), cf. the no­
tions frolll Proposition 4.:] below. Thc problelll of constructing a paranletrix of (3.12)
will motivate considering analogous operator lnatrices with edge-degenerate pseudo­
differential operators in the left. llpper corners.
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4. Pseudo-differential operators with operator-valued sym­
bols in the Fourier-edge approach

We now pass to the elenlcnt.s of thc calculus of pseudo-differential operators with
sytnbols taking values in .c(E, E) for Banach spaees E, E. The notation "Fourier­
edge approach" indieates thaI, the operators are bascd on the Fourier transform, and
the sYlnbol estiInates eontain groups of iSOl110rphislllS

We then set 1\-(7]) = ~[1Ib k(11) = k[ry]. Sitnilarly to Definition 3.] the objects will
depend on the eonerete ehoiec of (4.1), hut the groups are fixed once and for all in
any eouerete case. So we will olnit iudicat.ing the role of (4.1) iu the notations, exeept
when the opera.tors are the identieal ones for all "'.
The spaees E (01' E) are allowed to hc of finite dinlension. In this case /\,)., (or K:,\) are
always assulned to be the identities for all "'.

Definition 4.1 SJl(O x Rq; E, E) for open 0 C IRP and I-l E R lS the space 01 all
a(y, 7]) E coo(O X Rq; .c(E, E)) such lhat

11;;-1(1/) {D~ D?,a(y, '1) },,(11)IIC(E.E) :S c[l71~-IßI (4.2)

for all rTlulti-i1ldices 0' E NP,. ß E Nq und all y E !( for a7'bitra1]! J( @ 0J 7] E IRq, with
consta71ts c = c(0', ß, !() > O. Thc dementsin Sp(n X Rqj E, E) are cal/ed operator­
valued sY1nbois (0"1' Q.1nplit1ulc fundions) of orde7' 11..

The best eoustauts in the sYlnbol cst.ilnates (4,2) for given a fornl a selni-norm system

on SJl(O x IRq; E, E) tInder whieh tltis space is Frechet. The space SJl(IItq; E, E) of
elements that are y-inclependent is closecl in thc induced topology. Then

S'~(n x IRq; E, E) = Coo(n, 8~(Iltq; E, E))
Coo(O) 01r S~(~q; E, E)

(with 01r as cOlllplet.ed projective t.ensor product). l\1any elell1ellts of the theory of
analogous scalar spaces (i.e. where E = E = C) Inay be obtained analagously also in
the operator-valued case, cL [S7]. \Ve will not repea.t here a.1l those things. Let us
oIlly Inention that asylnpt.otic SUlllS of syinbols aj of orders Ilj, JEN tending ta -00

as j ~ 00 can be carried out. wit.hin t.he SYlllbol classes. This 1l1eanS t.hat there is a
M

sYlnbol a of order Jl = Inax{Jlj} such t.hat. for every JV there is an .Al with a - L: aj

j=O
being of order Jl - Ar. Thell a is ullique inodulo

S-oo(O x Rq
; E, E) = nS~(O x IRq; E, E) 1

JlEm
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00

and we write a f"V L: aj. Note that
j=O

whieh is independent of the conerele ehoiee of {1\->,}.

Example 4.2 Let

with eoeffieients ajnU, y) E Coo (iii+ x f2, DiffJ.l-U+lol) (X)) that are independent of t
for t ~ C with some C > O. T,hen

for every s" E IR, with 1\->., K,>. from Relnark 2.1.

Proposition 4.3 Let

be homogeneous 0/ order p. in '11 :j:. 0,. i.c.

aÜt )(y,A-1]) = AJiK,>.a(Ji)(y,17)1\-~1

JOT all A > 0, y E f2 } '1 :j:. o. Fu.1"lh er lel, xC,,) bc an excision /unction (i. e. X(77) E
coo(i~q), X( 17) = 0 for 1.,,1 ~ co, XC'7) = 1 fo1' 1'1J I ~ CI, with consLants 0 < Co < Cl < 00) .

Then

Definition 4.4 A symbol a(y, 11) E SJ.l(f2 X IRq; E, E) is called classical i/ there are

/unctions a(Ji-j) (y, 17) E coo (n x (IRq \ {O}),.c( E, E)) that are h01nogeneous of order
p-j,jEN,with

a(y, 17) f"V L X(q )a(Ji-j) (y, 17)
)

for any excision junction X. l'Ve dC710te by S~(n x IRq; E, E) the space of all classical
symbols.

Set
a~(a)(y,',,) = a(J.l)(y,'1]) ,

ealled the honlogeneolls prineipal sYlnbol of a E S~(n x I1iq; E, E) of order J-L.

15
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Remark 4.5 The syrnbol a(y,1/) of EXflmple 4.2 belongs lo S~(f2 x IItq; K"'1'(X"),
K"-Jl,1'-J.l(X")) once the coefficients fljew a7'e independent 0/ t and a~(a)(y, 7]) =(2.6).

Let F = FY- TI be as above the Fourier transfoflll in ~q. Then, silnilarly to the scalar
theory of pseudo-differential operators, we can fOI'l11

Op( (l) 1I(y) = JJei(y-y' )'1 (l (y, y', 'I )u(y')dy' a'l

with il1] = (27r )-qd7], for every a(y, y', '1J) E ,S'Jl(f2 x n x I1tqj E, E) with open n ~ ne.q.
Hefe we first assUI11e 1/. E Cg'(O, E). Then Gp(a) iucltlces a continuous operator

Definition 4.6 Lei. n c; I1tg be open.. /1 E llt. Thcn

is called the space 0/ psc11.do-dilJcrc71tia/ ;:perators (with operator-va/ued symbols, zn

the edge approach). The subset L~l(nj E, E), deji71ed by classical a(y, V', 7]), consists by
definition of the classical pseudo-diffcre71tial operators.

Remenlber that
L-OO(Oj E, E) = nLll(Oj E, E)

JlEil

consists of all Op(a) with a(v, V', '1J) E 8-00 (0 X 0 X IItq; E, E), which is the sanle as

the space of all integral operators wit.h kernel in

Theorem 4.7 Every A E LJ.1.(O; E, E) extends to a continuous operator

for eve7'y s E ~.

Rell1ark 4.8 The basic ele'ments of I.he scalar ]Jseudo-differential calc711us have cor­
responding unalogues in the operato'l'-valll.cd ease. This coneerns, in partieular, com­
positions with the Leib1liz prodllet on syntbolic level, and the result how to pass /rom
Op(a) with a(y, yl, 7J) to an Op(gJ wilh [l(y, 7]) beiug independent 0/ y' (everything mod

L -00 (Oj E, E)). Any such f!.(V, ,,]) is called a cOln])lete sY7nboi 0/ the operator.
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Remark 4.9 It is not hO.1'd to gcnel'alize the pseudo-diJJerential calculus with ope­
ralor-valued sY11tbols to the case of Frechet spaces E und E. In our applications E and
B can be written as countable projective li7nils of l/ilbert spaces Ei and Bk, that are
invariant unde1' {K.\} and {K:,\L rcspeclively, fo'l' all j, k. The details 1nay be found in
[87], [88].

Let us finish this sectiOIl by SOIne exanlples. To this end we relnind of the fact that for
every (discrete) asYln ptotic type P associatcd wi t,h the weight data (p, 8) the space
K~P(X") can be written as projective lilnit of Hilbert spaces that are {~.\} invariant.
This is also thc case for Kc;'P( X") whieh givcs us tohe symbol spaces

(4.4)

for every s, 11., /1 P E IR. For every elelnen t in .c (K "" (X"), KT,p (X")) we can define the
fonnal adjoint as an elelnellt. of .c(K-r,-p(X"),K-"'-'(X")), via the non-degenerate
sesqui-linear pairings

K""(X A
) X K-S'-'(.X A

) ~ c ,
induced by the KO,O(X")-sca.lar product, für every $,,' E IR. To every g(y, 1/) in (4.4)
we cau point-wise pass to t.hc fOI'Iltal adjoint y-(y, '1/) anel delnand that it belongs to

s~(n X Iltq ; K",-P(X A
), KQ'-'Y(X A

))

for SOlne other (discrete) asYl11ptot.ic t.ype Q, associated with (-/18).
We shall actually replace K~·P(XA), KO'-'(.\;") by subspaces S~(XA) and SÖ'"Y(XA),
respeetively, where

(4.5)

Here w(t) is any fixeel cut-off fund,ion anel S(X
A

) = S(i+, COO(X)). Then, the space
(4.5) does not depend on the eOllcrete ehoiee of w.

Definition 4.10 R~(n x ntq
, fZ)P.Q 1.vilh fL = (I' p, 8) is tlefined as the space 01 all

g(y, '1]) E nS~~(O x ~q;K""(XA)"S~(XA))
sEil

for which

g-(y,1}) E nS;~(n X ~q;K"'-P(XA),SQ'Y(XA))

"EI.

Here n is an open set in ~q 0'1' in ~q X Iltq. In lhe latter case y will also be wntten as
(y,y'). The ele111ents of R~(O x I~5,~)p,Q will be called Green sym,bols, to the weighl
dala g = (/, p, 8), with the asymptotic types P, Q. For the edge pseudo-differential
calcufus it is 1tfCeSsal'y a.lso /'0 cOllsider lhe space

nJJ. (0 x IItq g' CN - CN+ )PQG '_" ,
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consisting 0/ all

g(y, 11) E nS'~ (n x Rq
; }C3·'Y(XA) EB cN- 1S~(XA) EB cN+)

3Ell.

wilh
g*(y,11) E nS'~(n X ~q; J(s,-P(X A

) EB cN+ 1 Sö'(XA
) EB cN

_)

.sEI.

lVe will also speak 0/ G,'een symbols in the con'esponding generalized sense, where for
9 = (gij)i,j;1,2 the ele71lent 9'1.1 has the lneaning of a traee, 912 0/ a potential sYTnbol
wilk respeet to the edge. 922 is nothing else than an ]\'_ X !\'+ matrix 0/ classieal sea/ar
sYlnbols. Remelnber that the invoilJed groups aet on finite-dimensional spaees as the
identities, i. e. the grouIJs a1'e 0/ fhe /01''111 {/'C,\ EI? I} with the original /'C,\ in the first
cOlnponenl and the ide1llily 1 in fhe second finite-ditnensional eornponent.

Rc;(O x Iltq
1 [L; CN

_, CN+) (4.7)

will denote the union of the classes (4.6) over all P, Q. An analogous notation makes
sense wit h R6 (n x ~q , [L) .

5. The algebra of edge problems

Let us now return to the progralll to obtain a dass of "edge-degenerate" pseudo­
differential operators on a (stretched) Inanifold W with edges Y that completes the
edge-degenerate differential operators (cL Proposition 3.3) to an algebra, containing
the paralnetrices of elliptic elelnents. rvlany results aHow fonnulations in local terms, in
particular, with l'espect to thc "intcrior sYlnbol classes". The operators we are talking
about will belong to LJ-J(int W) anel L~l(int. 'l'l'J) , respective1y. Thus we concentrate on
a collar neighbourhood \I of fJ'o/Y in 'l'}'il, \l ~ i+ x 8w, written as a union of stretched
wedges

Wj ~ R+ x X x }j, j = I, ... ,N

with subsets Yj C Y fonning a.n open covering of Y. Let

f\,j; }j~ nj, j = I, ... , IV

be charts with open nj ~ ~q and denote thc points in iii+ X X x Oj by (t, x, y) (j
will often be fixed in concret.e considerat.ions). Further choose a covering of X by
coordinate neighbourhoods X k , k = 1, ... , AI. Thc local coordinates under charts
Xk: X k ~ Uk with open Uk ~ IRn will also be denoted by x if no confusion is possible.
In other words the interior sYlnbols are locally defincel on

~+ x U x n 3 (t.,:r,y) wit,h open U ~ ~n, 0 ~ ~q •
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They are assullled to be of the fonn

(5.1 )

with
p(t, x, y, T, ~,'1]) E S~(iii+ x U x 0 x lll~~~ii+q) . (5.2)

We Illight allow as weil non-c1assical sYIllbols, but the question here is to obtain a
"nlininlal" algebra with the Inclltioned properties. The choice of classical symbols also
leads to a stronger locally convex t.opology of the operator spaces. Note that (5.2)
implies

( t) 5'It (- U tI I+n+ q )p f"X,y,f,T,l.",f,q E cl IR+ x X H X llt r ,e,1] •

Since t > 0 corresponds Lo int VI and because of the cut-off factors in a partition of
unity on ViI we IIlay assulne that p(t., x, y, T, C1]) is independent of t for t > c with
some c > O. For analogous reasons it is allowed to a.ssulne for a 11loment that p has its
support with respect to x in a cOlllpact subset of U. It i5 now an important technical
point to find an operator A E L~JI(X" x 0) wit.h (5.1) as a cOlnplete symbol such that

(5.3)

is continuous (fol' all s E IR) for arbit.rary <.p,'lj; E COO()(), supported by a cOlnpact
subset of thc coordinate neighbourhood on X, corrcsponding Lo U. Since A is uniquely
determind by (5.1) Illod L-OO(X" x 0), the problell1 consists of finding a suitable
representative in the dass of operators tllodulo silloothing ones. A choice of A for
which (5.3) actually holds is by 110 Ineans evident (unles5 we have an edge-degenerate
differential operator) anel requires Cl carerul discussion of a corresponding operator
convention that assigns an operator to such a sYInbol. The crucial observation is that
there are t\1ellin operator convelltions. Let us recal! the standard form of the t\1ellin
transfofln A1, nalnely

00

Mll(z) = Jtz-I u(I.)dt, z E C ,

o

first defined on C~(IR+) alld thcn cxt.endcd t.o various distribution spaces on lll+. In
an analogous Inanner we will underst.and 1\1 when u depends on further variables to
which there lllay be applied t.he Fourier trans[OrIl1. The inverse of M has the form

Mu(z) = JCZg(z)dz ,

f!

rß = {z: Re z = Re ß}. If 0 ~ ~p is SOllle open set then
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will denote the space of all a(x, z, e), where (x, e) is for a 1110ment the variable in
f! x ~N, such that a(x, ß+ iT, e) belongs to S/l(f! x IRr X IItf). In an analogous manner
we obtain sYlnbol spaces with subscript cl, or spaces like

(5.4)

Remenlber that (5.4) has a natural Frechet t.opology. Now let

S'~~(i+ x U x n x c X~n X lltq)hol

be the subspaee of all a(t,x,y,z,e,"'l) in COO(i+ x U x n x C x IRn x ~q) that are
holomorph ie in z E C and such that a(t., x, y, ß+ i T, ~, 17) belongs to (5.4) uniformly
in c ::; ß ~ c' for arbitrary c < c'. Analogously we have such SYlllbol classes with IR+
instead of &+. Let us set

(5.5)

with h(t, ... , z, ... ) being a synlbol in the covariable Inl z, varYlng over fl_5 ,
2

(T-Oh)( ... , z, ... ) = h( ... , z - 8, ... ) and

OPM(J)V(t) 2~i1r Z f(t, z) {I tlZ_1U(tl)dtl} dz

r t 0

= l'I;':'tlAItl_ z v .

The latter expression is a rvIellin pseudo-differential operator, relative to the weight
line r~, whereas (5.5) corresponds 1.0 the \\'eight line r !-o' If h in (5.5) depends on

(t, x, y, z, ~, 77), then we can fonn tbe pseudo-differential action with respect to the
other variables with the Fourier t.rallsfonn. This will be indicated by 0Pt/J,Xl 0Pt/J,(x,y)l

In particular, we have

Op,;,.x(p)w(x) = (27rt" 11 ei(x-x'){p( ... ,x, ... ,(, ... )w(x')dx'd(

with P being a sYlnbol in (x, ~). To any given

we obtain the (y, 17 )-dependent operat.or fanlily

for every 8 E IR. \Ve then have
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The Mellin representation in t.lle i-variable is always possible for such operators because
of the equivalence of the phase fUIlCt.iollS (t. - t1 )r and (log t' - log t)r. That does
not mean at Ollce that a pseudo-differential operator falnily, written in the ~1ellin

convention for suitable 8, will lead to (5.:3) after applying 0Pl/J,lI' This will only be
ensured by a corresponding control of thc anlplitude function elose to t = O. The
following theoreln on the exist.ence of such ~Ilellin operator convention will show that
the smoothness in t up ta i = 0 relnains preserved.

Theorem 5.1 To every pU, x, y, ir, ~,tq) E S~(i+ x U x n x Ii~~~T/+q) with (5.2) there
exists an

f(t., x, y, z,~, 17) E 5'~(iit+ x U x n x coo x Ii€ X Ii1,)hol

such that for h(t, x, y, z,~, '1]) = f(t., x, y, z,~, t1})

OP1/J,(t,x)(p)(y, 1}) - OjJ~IOjJ1/J.x (h)(y, '1J) E COO (n, L -00 (Ii+ x U; IR~))

fOT all 8 E IR.

Remark 5.2 The clwice oj f as (J holomorphie jU1lction in z folloUJs by a cut-off
argu1nent on the level of (hst1'ibutio'llal kenlels. This technique as UJell as other details
of ihe proof of Theo1'e11l 5.1 m (ly bc fOll.nd in Schulze [55].

Fron1 Theorern 5.1 it is BOW easy (and essential fron1 the point of view of operator­
valued syrnbolic structure) to pass to a corresponding global I\1ellin convention with
respect to X. To this end we choose sYlnbols

for k = 1, ... , 1'I, thai satisfy t.he conditions of Theoreln 5.1 for U = Uk • Further let
{cpk}k=I, ....M be a partition of unity on X, belonging to the open covering {Uk}k=l,...,M,

anel let {1/J.I..}.I..=I,....M be fUllctions in C~(U.I.') with 'PJ,-1/J.I.' = CPk for all k. Then

M

P(y 1 "}) := L 'PkOP1/J,(t,x) (Pk)(Y, 1] )1/Jk
.1.'=1

(5.6)

is an element of coo (!1, L~Jf(XI\; ~~)) (for sill1plicit.y the pull-backs of Jocal operators
aver Uk ta XI.- were suppressed). Analogonsly we can fonn the fk in the sense of
Theoren1 5.1 for U.I." anel we set.

N

f(t, y, z, 'Ti) L CPkopJ/J.x(fd(t, y, z, 1i)1/Jk ,
.1..;;;; 1

h(t, Y, z, 'I} ) •- f (t, y, z, f.1}) .
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(5.8)

Then !(t,y,Z,lj) E Goo(i+ x n,k[~(.\';IR~)), cL (2.21). It follows for the operator
family (5.6)

From now on we shall tacit.ly assulue that all Pk are independent of t in the first
t-argun1ent for large t.
Now let us fix arbitrary cut-off fund,ions w( t,), wo( t.), Wl (t) satisfying

u...'Wo =w, (5.9)

Indicate by f",J the equi valellce IIlOd COO (0, L-00 cy 1\; I1tq)). Then (5.8) ilnplies

P(y,17) = w(t.[o,,))P(y,17) + (1 - w (t. [1]))) P(y,17)

f",J w(t.[o1JJ)op~/(h)(y,.'1)+ (1 - W(t.[17J)) P(Y,1J) .

In view of

w(t.['q))op~/(h)(y,l])(1-u...'o(t['l71)) ,...., 0,

(I -W(t['I/J)) P(y,-q)Wl(t[oq)) f",J 0,

which is a consequence of (5.9), it follows

with

Proposition 5.3 F01' every operato1' family of the f01"ln (5.6) with associated (5.7) we
have for

a(y , 17) = w ( t [-q)) f. - tt 0P~,~ ~ (h)( y, 1/ )"'-'0 (t. ['1]]) + (1 - w (to (-q J) ) t - tt P(y , 17) (1 - Wl (t [1]])) .
(5.11)

with fixed , E ~

for all s E IR. Here J as abovc, thc opcrato1'-valuclj sy'm,bol classes re/y on the Jamilies
0/ isomorphisms U(At., x) --+ A~U(At" x)J A > O.

Corollary 5.4 Let A = oPt/J.,,(a). Thcn A E L~l(XI\ X 0) ind11.ces continuo1Js operato1'S

for all s E IIl.
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The operator faInilies of the fonn (5.11) will also be called (coInplete) edge symbols.
Dur next objective is to add the so-called sI1100thing I\.1ellin operators with discrete
asymptotics. Let

p = {(Pi, 1ni, f\Tj )}. Z
. JE

be a sequence with Pj E C, IRe pjl ~ 00 as Ijl ~ 00, mj E N, and N j being a
finite-dimensional subspace of finite-dinlensiollal operators in L -OO(X), j E 2l. Set
7rcP = {Pj} jEt.. \Ve then have the space

l"lpOO(.~) = nkl~(X) ,
J..IEf.

cf. (2.19), as the set of alt opcrator-valucd functions h(z) in the c0I11plex plane with
the following properties

(i) h(z) is an L -OO(X)-valued IneroInorphic function with poles at the points
Pi of 11lultiplicities lHj + 1, j E 2l,

(ii) the Laurent coefficients of h(z) at. (z - Pj )-(,1.-+1) belong to Nj for 0 ~

k ~ mj, j E 2l,

(iii) if x(z) is any 7rcP-excision funct.ion (i.e. X(z) = 0 in SOIne neighbourhood
of 7rcP, X(z) = 1 for dist. (z,trcP) > € with an € > 0) then

for all ß E IR anel unifonnly in c ~ ß :::; c' for every c < d.

The space A1pOO (X) has a canonical Frechet topolügy (which is nuclear). Thus it
makes sense to talk about. coo(O, J\lpOO(~~)) für evcry fixed P. For every 8 E R with
7rcP n r !.-6 = 0 we can fonn the rvlellin pseuclo-diffcrential operators

2

They are eleInents of L-00 (~~1\).

Proposition 5.5 Let t....(t.) , t...'o(t.) be arbit1'o.ry cu.t-off functions, h(y, z) E Coo(n,
Mpoo(X)), and 7rcP n r 9=l--"" = 0. Thc'Tl J lhe operator fU1nily

t- V t...' (t[11 ])OJ1~~ ~ (h )(y )wQ (t(TJ ])1]a

for a E Nq, v E ~J is an element of

for every s E R.
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Remark 5.6 Lei us fix p, / E llt (wd j E RJ. Choose any fJ E IR wilh

1rcP n r ~-s = 0 .
'2

(5.12)

Then for arbitra7lJ h(y, z) E coo(O, klpoo(X)) we have

m(y, ''7) := t- J1+j
W (t. [1/])op~7 ~ (h)(y )WQ (/.['17])1(

E S~~-(j-Ic.D (0 x IRq; K"''"1(X''), KOO ,'"1-J1(X"))

for every s E IR.

(5.13)

Note that the hOlllogeneous principal SYlllbol of (5.13) of order J1 - (j - laI) in the
sense of (4.3) equals

(5.14)

Proposition 5.7 Lei /h(y, '17) be oJ allalogo'Us fonn as (5.13) wilh the same h(y, z) but
for another choice of the cul-off /lLllet.ions w, Wo, 0/ the funet.ion '7 -+ [1]], and 0/ fJ,
satisfying (5.12). Then

nl.(y,·,,) -l1l(y,·,,) E R~;-(j-Iol) (0 x m,q, 2)

wilh E. = Cr, f - It, 8).

Definition 5.8 Let /,/1- E IR, f!.. = (1', l' - 1',,8) wilh 8 = CI?, 0], -00 < {) < 0. Then

RJ1(O x Rq
, 2)

denoies lhe set 0 f all
a (y ,17) + 'In (y , .1]) + 9(Y , 17 )

wilh a(y, 1]) bcing 0/ lhe /07'nl (5.11) J nl.(y,1]) a finit.e SU11l 0/ ope1'alor falnilies like (5.13)
over j,a wilh (j,n)-depelldent h = hjoJ fJ = bjOI and fuTi.her g(y,1]) E R:;(D X Rq,f!..)'

For technical reasons we will also talk about

for any v E IR with J-l - v E N, defined in an analogous Inanner, where now a(y,7])
refers to v instead of /I. allel for the slullIllauels of rn(y,1,} it is required j 2:: J1 - v.
Further define

'R,V(O x IRq, [L; CN_, CN+)

as the set of all operator falnilies
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where ru (y, 1]) = (a +1n +9u)(Y, q) belongs to R1I (0. x IItq, g) anel the matrix (gij) to

1(.0(0. x Iltq, gj CN _, CN+) in t.be sellse of (4.7). In these not;tions 0. is an open set in
IItq. We may-also allow all objects t.o depencl on (y, V') E 0. x n. Then we shall write

Proposition 5.9 H'e ha.ve f01' f!.. = (1, 1 - p, 8)

R 1I (f2 x D x IRq, [Li CN _, CN+) C S1l(D x n x JJtqj E, E)

wilh E = K-"/(X") ffi c.!''''- .. E= X::-'-1I·/- 1J C\'"") ffi cN+ .. f01' al'bilral7/ s E JJt.

Next we shall introduce the principal SYlllbols of order v to r(y, y',.,,) E 1(.11(f2 x n x
JJtq, g; CN - ,CN+). They will be defined on y = y', so it suffices to neglect V'. First the
co~)letesYlnbols (5.1) (now for J1 replaced by 11) relatecl to coordinate neighbourhoods
U on X, f2 on Y, lead to the invariant systenl of hOlllogelleous cOlnponents of order v

This extencls together with the hOlllogeneous prillcipal sYlnbols globally on int w to
an elenlent

(5.17)

that is hOlnogeneous of order I1 in the covariables. In a collar neighbourhood of 8w in
the (l, x, y)-coorclinates we get that

is Coo up to t = o. As above we set.

(5.18 )

If we write l' as a 2 x 2 Inat.rix (5.16), wc get

in the notat.ions of Proposit.ion 5.9. Thus there is a well-defined hOlll0geneous principaI
symbol in the sense of (4.3), nalnely O'~(in (y, '17)' Furthernl0re, by construction,

with a(y, 17) being of the fann (5.1:3) \Vi th I1 insteacI of Il, ancl
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From the latter relation we get a h0111ogeneous principal sYlnbol O'~(m + 9u)(Y, 1]).
Finally we, set

0'~ ( a )(y , Tf ) •- w ( t·1 'I) I) t. -11 0 P~~ ~ ( 11.0 ) (y , "I) ) ~10 ( t 11] I)
+ (1 - ~1( t.['1Jj)) t.- II Po(V, 'I}) (1 - Wl (tI1}1))

Here, in the notations of Proposit.ion 5.3,

ho(t,y,z,-,}) = f(O,y,z,i1}) ,

cf. (5.7), and

(5.19)

M

Po(y, -I}) = L r.p~.OP1/1,{t ,x) (PJ.·,(II),O) (y, '1} )1f;k
'/..=1

cf. (5.6), with PJ..,(II),O = Pk.(II)(O,x,y,lr,c,/,'q), sub (11) indieating the hon10geneous
prineipal sYI11bol of order v. Note t.hat we always aSSU1ne here 1] =J. o. We thus obtain

This yields

II()( ) (O'~("'u) 0) ( ) II(~)( )0'" r y ,1} = 0 0 y, 1} + 0'" 9 y, TJ

as an elelnen t

(5.20)

sat.isfyi ng

(]~(r)(y, >'1/) = >'" (~A ~) (]~(r)(y, 17) (~A ~)-[ (5.21 )

for all ,,\ > O. (5.21) is the hOIl10geneous pri Beipal cdge Sy111bol of 1'. Every r(y, y', 1]) E
'RII (0 x 0 x ne.q , fl; CN - ,CNt ) gives rise to CL pseudo-clifferent.ial operator with respeet

to the v-variables

Op( r) 11 (y) = JJei(y-v')', r(y, y' ,1/) ll(y')dy' (11/ ,

dry = (27r )-qdry. FrOln Theore111 4.7 we get eontinuous operators

for every s E R. We now look at a cOI11pact Inanifold IV with eelges Y, cf. notations
in the beginning of this seetioll. Choose a collar neighbourhood V of 8w, written
as a finite union of stretched wcdges WIlj, anel consieler Kj: Wj ~ i+ x X x Oj,
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aceording to our geometrie assuIllptions, \\'ith open fl j ~ ~q" Fix a system of funetions
1/;] E Co(Wj), ~ 1/;] = 1 on U1I:jl {O ::; t ::; 5} with SOUle 5 > 0, ~ 1/;j = 0 on

j j j

U~jl {t 2:: 25}. Further ehoose J; E Co (Wj) with J;j7/Jj = 7/Jj for all j and ~.(/Jj = 0
j j

on UJ\, j l {t 2:: 38}. Then, t.o every SYStCIll of synlbols
j

we can form a global operator

Av = Llj;j~;Op(rj)J;j
j

with the operator pull- back ~;.

Definition 5.10 yv (W, [L; CN - , rcN+) is lhe space 0/ all operators of the form

(
WO ) (u..,'o 0) (A = 0 1 Av 0 1 +

whe1'e Av is as rne1llioned whereas

l-w
o

I -WI

o (5.22)

are operators wilh P E L~l(int Vii?)!" W, u..,'o: Wl o.'l'e in COO(W), supporled by a col/ar
neighbourhood of 8w and salisfy WWo = wJ Wu..,'l = WI; jinally 9 is a so·called smoolhing
Green operalor, i.e. il illduccs cO'llhnuous maps

9

Q*

W.'I·"Y(WJ)
ffi -)-

H.'I(}/, CN _)

W.'I,-"'+Jl (W)
ffi -)-

fI.'I(Y, CN+)

W~,'Y-Jl (w)
ffi

HOO(y, CN+)

WQ,-"Y(W)

ffi
IlOO(Y, CN _)

fOT all s E ~, with discrele (Q -depclldellt) asynlplotic types P and Q, associaled with
the corresponding wcight dnla. * 1:11r1icat,es thc formal adjoint in the sense
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The elements of yv (w, g; cN- , CN+) are called edge pseudo-differential operators of

order v with respect to the weight. dat.a 9 = (" 1 - j1, 8). An analogous definition
makes sense for (cOlnplex) vector bUIldle~ .]-, ./+ over Y instead of the triviaiones
Y X CN- and Y X CN+ , respcctively. This yields thc operator classes

(5.23)

Here we have fixed once and for all Hennitean structures in the occurring bundles J
over Y such that non-degellcrate pairings such as

I
H 3 (Y, J) X 11- 3 (Y, J) -----+ C, s E ~ ,

make sense (H3(Y,./) being the Sobolev space of distributional sections in J of smooth­
ness s). Every such A in (5.23) inclLlces continllOUS operators

A:
}V'S'')'(VJiJ)

EB -----+

H3(V, .]-)

W 3 - V ,i-tJ(W)
EB

H3-V(Y, J+)
(5.24 )

for all s E IR. Furthenllore for every (discrete) asynlptotic type P to (f' 8) there is a
resulting (discrete) asYlnpt.ot.ic t.ype R to (,- It, 8), also dependent on A, such that
A induces continllolls operators

A:
W~')"(~,)

ffi -----+
I13( Y, .]-)

W~-V.,),-tJ(w)

EB
II3-V(Y, .]+)

(5.25)

for all s E R.

Another obviolls generalization of (5.23) conccrns the case of operators, also acting
between distributional sectiolls of vector bllndles E, F over W. In other words we
wOllld have operators li ke

W 3
: r (w, E)

ffi
H3(l', J-)

W 3 - V ,I-ll(W, F)

-----+ EB
fIS-V (}/, .]+)

All reslllt.s here have iIlll11ediate gClleralizatiolls t.o this situation. Details will be
dropped for brevity. However nOll-t.rivial bUlldles J+, J- are interesting even when
the left upper corners are scalar elliptic operators. This is known already from the
more special elliptic pseudo-differential bOllndary value problelTIs. Therefore we sha11
formulate things froIll now on for non-trivial .]+, J-. Every A E YV(W, g;.]-, J+)
allows two leading sYlnbols, Ilrunely first -

aif.(A) E COO(T*(int W) \ 0) ,

28

(5.26)



whieh is homogeneous of oreIer 11 in the covariables. It coincieIes by definition with
a~(l.u.e. A) frolll the ieft tipper corner (abbreviated by l.u.c. ). The second one is the
homogeneous edge sYlnbol of order l/

(5.27)

s E IR. Here 7ry: T-Y \ 0 -t }/ is t.he eanonieal projection, and 1ry indieates the
pull-back under 7ry. The hOlnogcnei ty tneans

(5.28)

where the identities in the right. tower corners refer to the fihers in the bundles J­
und J+, respectively. Ir .J~ are t.rivial, of fibre dinlension N~ then a~(A) can also be
interpreted as an operatol'-valucd funct.ion

satisfying (5.28), cL also (5.21).

Theorem 5.11 A E yV(W,g;.]-, J+) f01' 9 = (I' I - Jl, 8), 8 = (-k, 0], Jl - l/ < k,
and a~(A) = 0, a~(A) = 0 i-:;;lIJlV lhat (5.24) is Q. C07npact operator JOT all s E IR.

Theorenl 5.12 Let J1., p, 11 , 1-\. E llR: 8 = (- k, 0], k E W\ {O}, and

A E yv (VI!, g; GI, .J+), 9 = (1' - p, l' - (p + p), 8) ,
B E Y"('~ftl,T!.j.]-, G), b:. = (I' 1- P, 8) ,

for vector bundles G, .7-) .]+ over Y. Then Aß E YII+K(W, 1nj J-, J+) with m =
( •.,., '/ - (Jl + p), 8), Q,nd

Let

a~!+K(Aß) = a~.(A)a~(8),

a~+"(Aß) = a~(A)a~(B).

(5.29)

(5.30)

YXI+C(W, [Li J-, ,)+) (5.31)

be the subspace of all A E YII(W, 9; J-, .J+) for which the operator P in the represen­
tation (5.22) vanishes as weil as a(Y,lJ) in the loeal descript.ion of the sYlnbols Tll (y, 17).
If in addition all 1n(y, 11) vanish we gel. by definition the subspace

(5.32)

The operators in (5.31) are ealled SIlloot.hing t\1ellin+Green, those in (5.32) Green
operators.
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Remark 5.13 11 A or B in The01'c1H 5.12 belangs to the operator space with subscript
M +G (G) then also the composition AB.

Remark 5.14 The edge pBe1uJo-dijJe1'cnlial ]Jroblcnts A E YV(W, gj J-, J+) al/ow also
a formal adjoint A* E YV(w, g*j J-, .]+) in an obvious rnanne;; with 9* = (-, +
p, -,,8) f07' 9 = (", - p, 8)J-anti tllcTe is a natural sY7nbolic rule uni~r passing to
the 101'1nal a.dj~int. This will not bc uscd in the sequel, so the details are d7'opped. Hfe
shall denote by

YV(Vfl, fL), }~v+G(W, fl), Yö(W, fL) (5.33)

the subclasses 0/ e/e1nents 0/ (5.23)J (5.31) and ( 5.32)J respeclivelYJ for which the fibre
dimension of J- and J+ are zero. In other words (5.32) just consist of the left upper
corner of the c07'7'esponding spaces of opcnJ.lor l1H/,trices.

6. Ellipticity and parametrices

Definition 6.1 An oIJenllor A E YJ!(V1I, fLi J-, .]+) f07' ~('"'(,' - J-l, 8), 8 = (-k, OL is
called elliptic if

(i) a~(A) -I 0 on T*(int w) \ 0 antl1.tla~(A)(t,x,y, t-lT,~, t- I ,]) #- 0 in a

collar neighbouTllOod of 8VIl in lhe coordinates (t, x, Y)J including t = 0J
and for all (T, C1]) f:. 0J

(ii)
K~·...,,(XfI) K&-tJ.i-tJ(X fI )

a~(A)(y,7,): EB ~ EB (6.1)
J; J:

is an is01Horphi--r.;1H f07' all y E Y J .1] i= 0J for SOl1W fixed s = So E lIt (sub
y indicates the fib7'c of the COITCS]J071fling bundle over y).

Remark 6.2 F1'orn the theory of IJseudo-diffcrcntial operators on the infinite open
stretched conc X/\ = TIe.+ x X it is kno7.vn th fIl tlze coudition (ii) of Definition 6.1 is
salisfied for all s E IR as soon a$ it holds fOT a paTticula1' 80 E IR.

Relnark 6.3 Th e condilion (i) 01 Dcfiniti0n 6.1 1nay be 1'egaTfled a8 ihe inteTior el­
liplicity 01 A. It is ihe cllipticity of the lefl. upper corner in int W in the sense of
edge-degenerale symbols and independent of the weight '"'(. The condition (ii) is an
analogue of the Shapi7'0-Lopalinski c01Hlition in boundary value problems. In lhe edge
case it depends 011,. Th e index 01 a~ (A)(y, '1]) f07' A = 1. u.c. A depends on 'J and it
may happen that fOT a pa1'licu/tn' 10 th e operator A cannot be c07npleted to a 1natrix A
for which (ii) is salisfied.
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Ir we write

A = (~ ~) , (6.2)

then A = l.u.c. A is the "interior" pseudo-differential operator of the "edge problem"
A, up to SOHle sll100thing ~'Iellin anel Green operator. B l11ay be regarded as a trace,
C as a potential operator with I'espccl. to tbe edge Y. The operator R is pseudo­
differential on }7. It may happen that C, R 01' B, R vanish in an elliptic edge problem
to A.
Note that in cant rast to the case of boundary value problellls (i.e. when the nlodel
cone of the wedge equals ~+) the ellipticity of A for an eelge-degenerate differential
operator A does require in general hoth trace anel potential conditions. In other words

(6.3)

will be a fanüly of Fredhohn operators wit.h non-trivial kerneis and cokernels (of ,­
dependent dilnension). For every fixed y, 'Il thc opera.tor (6.3) belongs to the cone alge­
bra, i.e. to the algebra of pscudo-diffel'ential operat.ors on the (open infinite stretched)
cone X/\. I-Ience it has a leading cononnal sYl11boi which is an operator family (1]­

independent)
a~Ia~(A)(y,z): H!I(X) ~ H!I-~(X) (6.4)

for y E Y, zEr !!.±.!._..., (n = dinL\"). The condition (ii) of Definition 6.1 implies that
'2

(6.4) is a falnily of iSOlllOrphisl11S for Ihn zl > c with c > 0 sufficiently large, for all
y E Y. This is true for aU A E YJJ.(V'J,g;,]-,,]+), A = l.u.c. A. In addition (6.4) is a
merol1lorphic fanlily of Fredholtn operat~rs. Then there is only a discrete set D(y) c C
of exeptional values of z, wlIere (6.4) is no iSOIllorphisIll.

Definition 6.4 Let A E yJt(W, 9i,]-, ,]+) wilh 9 = (1,1 - /-l,8) and P E
y-~C~'V, 9- 1 j ,]+, .1-) wilh 9- 1 = (,,-- J1, 1,8). 1'h e:;; P is called a parametrix 01 A
if - -

AP- ]
PA-l

E yc/·:J(W,!L-;,]+,.1+) ,
E Yc/~'"J CViJ, l!.J; ,]- , .J -) ,

(6.5)
(6.6)

The definition of a paralnctrix can be weakend in Inany ways. The present one is
reasonable for the purpose here. In the elliptic case we shall ilnpose a technical a5­

slIlnption which is not necessary for the Fredhohn property of the operator (6.8) helow,
hut silnplifies things considerabl.y, naInel)' t.hat

(6.7)

for an y-independent asYlnptotic type R. Then, in particular, the set D(y) does not
depend on y.
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Theorem 6.5 Let A E Y1-l(W,g; .]-,.]+) fOl' 9 = (", - fl,8), "jl E IR, e = (-k,O],
k E W\ {O}. Then, the /ollowillg conditiollS a;:e equivalent

(i) A is elliptic,

(ii) the operator

is Fredholtn f01' an s = 80 E llL

In that case (6.8) is a Fl'cdholm operator f01' aU 8 E IR. Undel' the condition (6.7) there
is a pararne17'ix P E y-1-l(W,~-I; ,]+, ,]-).

Remark 6.6 If A E Y1-l(W,g) (cf. (5.32)) satisfies fhe condifion (i) of Definition 6.1
and i/ (6.7) holds, then ther; exists a P E y-1-l(W, fl..-l) with

PA - 1 E r:~f+G(W, l!J) ,

cf. the notations 0/ Definition GA.

Theoreln 6.7 Let A E yJ-i(W,fl..;.J-,.]+) wilh fl... = (,,'Y - jL,8) he elliptic. Then,

/01' a fixed s E llt and
lJ E vV-oo."r (W) ffi H- oo (Y, J-)

i7nplies u E W",r(w) ffi fl"(Y,.]-). 1\I01'cover

/01' an asynl,ptotic type P to ('Y - p, 8) a.nr/ (G. 7) ünply

with an asymptotic typc Q to (/,8).

(6.9)

Remark 6.8 Thel'e can he llcji1led more general c/asses 0/ pseudo-diJJerential cdge
problems that allOll} y-dcpc1ldcllt discret.c asymptotic types in the Cl'een und A1ellin
ope1'ators. In the case 0/ bou1lr/a1'Y value p1'oblc11ls ihis wa.s done in Schulze [89].
The non-trivial edge case is completely Q,nalogous. In particular, the weighted Soholev
spaces do o.//ow y-depcndent disC1'ete (in general branching) aSYlnptotic types. Then
the parametrix construction is lJOssl:ble in the la1'[jc1' dass 0/ edge problems and the
elliptic regularity wilh asymptolics holds 'lvithout the condition (6.7). Details will be
published in forthcom.-ing papers.

32



Remark 6.9 There is anolhc1' gencralizaUon 0/ Y"'(W, ... ) in the sense 0/ so-cal/ed
continuous aSY111ptotics, cf. analogonsly Schulze [54], [57]. The notion 0/ ellipticity does
not re/er to that nature 0/ asymptolics. llowe-ver an elliptic operator A E yJl(W, . .. )
in the present sense has always a panlTnet.rix in the sense 0/ the dass y-~(W, ... ) with
continuous aSY1nptotics, withoul the condilion (6.7).

Theorem 6.10 Let A be an cdge-degenerate pse1ldo-differential operator on VI 0/ or­
der JL, A being 0/ fhe type of a le/l llpper corner in YJl (...). Let A be elliptic in
fhe sense 0/ conditi01l (i) of Definition 6.1. Furlher aSSU1Tle that there is an elliptic
operat01' A E YJl(W, [L;,]-, J+) with A = l.u.c. A. Then

has dosed irnagc in the space W"-/t,.r-Jt(W) fo1' eve1'Y ..." E llt.

7. Remarks

Our operator algebra of Definition 5.10 concerns t.he case of a Illanifold with edges
without boundary. It is natural to ask thc satne things in the case of boundary value
probleills, where the base X of the nloelel cone is a Slllooth cOlnpact Illanifold with
boundary. There is no cal10nical cllOice for an analogue of the pseudo-differential
operators in that case. However for const.ructing a "Ininimal algebra" containing
the parailletrices of elliptic differcnt.ial bounelary value problenIs (for elliptic edge­
degenerate operators) one Inay choose Bautet de t\10nvel's algebra on X. This program
is planned to be carried out in a sel'ies of papers jointly with Schrohe, starting with
[52]. On the other hand it is also very natural to start with the algebras

(7.1 )

here with respect to ){, l'egarded as a tllanifold witlt edge ax, where the Illodel cone is
trivial. Then it would be neccssar.y first to pass to the conification of (7.1), i.e. to the
cone algebra on X/\ = IR+ x «">\, relative to (7.1), and then t.o perfonll the edgification,
again, analogously to the above constructions for t.he wedge without boundary. This
is to be done iIl future anel not so easy as in Bautet de rvlonvel 's case. This theory
does contain near the cdges t.hree singular directions lR+ x IR+ X IR+ and heuce three
tillles !\1ellin operator const.ructions wit.hin the subordinat.ed operator structures. The
papers of Schulze [56] and Dorschfeldt, Schulze [01] are devoted to the necessary
steps for repeated conifications anel edgifications of given pseuelo-elifferential operator
algebras from lower singularity orders to higher olles. The general program will be
to establish an axioillat.ic approach for reaching the adequate calculus on arbitrary
stratified spaces (e.g. polyhedra). This requires always to fornlulate the correspond­
ing paralneter-elependent variants of every algebra that is al ready constructed. The
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additional paraIllet.ers are t.llen lIsed as t.lle fllrt.hcr covariables in the next cone axis di­
rection 01' the next edge. In BehIll [B2] there will be obtained the parameter-dependent
edge theory as the necessary ext.ension of t.lle present. edge algebra. Like in "ordinary"
boundary value problenls where elliptic tl'ace (and potential) conditions are na.tural
in the concept of ellipticity, also thc algebras far highcr singularities will contain sub­
algebras related to the lower-diInensional skeletons of the given piece-wise smooth
configuration. Those skeletons are by no Illeans C Illanifolds but branched spaces.
This shows that it was adeqllate frOlll the very beginning to allow more general cone
bases than spheres. It ShOltid finally be Illcntioned that whenever some singularity is
of the type of an edge, in general being locally a Cartesian prodllct between an open
set n ~ ntQ aud a 1110del COlle of singular bchaviaur, i.c. wit.h a polyhedron as base, we
have to expect a rather cOlllplex behaviollr of asYlllptotics of solutions in the sense of
a variable discrete bchaviour as it was studiecl in Schulze [59].
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