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1. Introduction

The analysis of differential equations on spaces with singularities (e.g., with piece-wise
smooth geometry) is necessary in various applications in physics and engineering. Also
pure mathematics (such as geometry, Lie Group theory, index theory, topology) require
the analysis near singularities. We will simply speak of manifolds with singularities,
although we actually allow stratified spaces that are in general no C manifolds. It is a
natural problem to extend the classical concept of pseudo-differential operators from
the C* case to manifolds with singularities, in particular, ellipticity and parametrix
constructions within corresponding operator algebras. We shall see (here in the case
of edges) that the construction of a parametrix of a given single operator in a singular
situation does employ the insight from rather general operator algebras associated
with corresponding lower singularities (here conical ones).

The local model of a space with conical singularities is the geometric cone

X% = (Ry x X)/({0} x X)

where the base X is a closed compact C* manifold. We may always think of an
embedded cone in RN for sufficiently large N, where X C SV-! is a submanifold of
the unit sphere and

X2={dz: zeX,1>0}.

The analysis will always be performed on the open stretched cone
XM=Ry x X 3 (1) . (1.1)

The natural differential operators A of order ¢ on X” are those of Fuchs type, namely

A=Y ) (—-t%)j (12)

j=0

with operator-valued coefficients a;(t) € C°(Ry, Diff*7(X)). Here Diff*(X) is the
(Fréchet) space of all differential operators of order ¥ on X with smooth coefficients
with respect to every chart. Note that when ¢(t) is a t-dependent Riemannian metric
on X, C®intuptot =0, then the Laplace-Beltrami operator to the metric dt*+t*g(¢)
on X is just of Fuchs type, of order yz = 2. Another easy observation is that for every
differential operatorA in R**! of order

A=) as(#)Dg

lo|€u

with aq(2) € C®(R™'), the restriction A = A|gnt1\ (o) takes the form (1.2) under the
substitution of polar coordinates, with t = || and z € §™ = X. Differential operators
of Fuchs type in adequate weighted Sobolev spaces have been studied by many authors.
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Let us mention, in particular, Kondrat’ev’s technique for characterizing the Fredholm
property under an ellipticity condition and the asymptotics of solutions in terms of
meromorphic families of operators on X, cf. [K1]. Algebras of pseudo-differential
operators of Fuchs type containing the parametrices of elliptic elements have been
constructed by Schulze [S7]. Note that the Fredholm property in this context may be
studied both for compact manifolds with conical singularities as well as for the infinite
(open stretched) cone X*. In the latter case there have to be imposed so-called exit
conditions for t — oo, where ¢ — oo is regarded as an exit of the manifold to infinity,
cf. Cordes [C1], Schrohe [S1].

The case of operators on manifolds with conical singularities is of independent interest.
The structure of the corresponding pseudo-differential algebras (with various sorts
of asymptotics, discrete and continuous ones) is rather complex compared with the
C> situation. The role of the conical singularities in the present discussion is that
manifolds with edges are locally close to an edge of dimension ¢ of the form of a wedge

X% xQ withopen QCRY.
The analysis will refer to the open stretched wedge
XPx =Ry x X x0Q>3(¢z,y). (1.3)

The method of treating operators on X x 2 will be to perform a calculus of pseudo-
differential operators on {2 with operator-valued symbols, taking values in the pseudo-
differential algebra of Fuchs operators on X*. In this application of the analysis for
conical singularities it is actually necessary to have an algebra, because of the point-
wise compositions between symbols.

Similarly to the differential operators of Fuchs type on X* there is a class of natural
(so-called edge-degenerate) differential operators on the wedge X x £, cf. Section
2 below. Our calculus gives the answer to the problem of characterizing a pseudo-
differential algebra on the wedge that contains these operators and the parametrices
of elliptic elements. This theory covers many special cases, in particular

(i) pseudo-differential boundary value problems without (and with) the
transmission property, cf. Visik, Eskin [V1], Eskin [E1], Boutet de Mon-
vel [B1], Rempel, Schulze [R1],

(i1) mixed and transmission problems, cf. Schulze [S8], Rempel, Schulze [R2],
[R'3],

(ii1) problems of Sobolev type, cf. Sternin [S10}, Rempel, Schulze [R1],

(iv) operators on "branched” spaces when the singular sets are edges in our
sense.

Note that (i) corresponds to the case when the base X of the model cone X* of the
wedge is of dimension 0. Then Q is a neighbourhood on the boundary and R, = X" is



the inner normal. Similarly to boundary value problems, where the Fredholm property
depends on elliptic boundary conditions (in the pseudo-differential case of trace and
potential type) the theory on manifolds with edges requires elliptic conditions along
the edges, also being of trace and potential type in general, both occurring even for
differential operators when dim X > 0. In Schulze [S4] as well as in the book [ST7]
there has been described an algebra of pseudo-differential edge problems for the case
X = 8", with trace and potential conditions. The present paper will allow general
cone bases X. A brief survey on results of this type for arbitrary X was also given in
[S6]. It was applied in the latter paper to operators on manifolds with corners, locally
being cones with bases X that have conical points, again. It is obvious for geometric
reasons in that case that the edge theory is necessary along the one-dimensional edges
2 Ry, emanated from the corners. Close to such corners there was also established an
edge theory with the Mellin transform on Ry. This program, called the Mellin-edge
approach, was continued and deepend in Dorschieldt, Schulze [D1].

The present Fourier-edge approach to pseudo-differential operators (i.e. with the
Fourier transform along the edges) will point out the aspect of edge-degenerate oper-
ators that are completed to an algebra. More details may also be found in the second
part of the book Egorov, Schulze [E2].

2. The typical differential operators on a manifold with edges

A differential operator on X" x Q3 (f,z,y) of order g € N(= {0,1,2,...}) is called
edge-degenerate if it has the form

A=t 3" ajlty) (_;%Y(my)‘ﬁ (2.1)

Jtle|Lu

with operator-valued coefficients a;.(t,y) € C=(Ry x Q, Diﬁ“_(j+|°|)(X)). The edge-
degenerate differential operators will be regarded as the typical ones on the (open
stretched) wedge X" x Q. If ¢(t,y) is a ({,y)-dependent Riemannian metric on X,
C* in (t,y) up to t = 0, then the Laplace-Beltrami operator for the metric of the
"geometric wedge” dt? + t2g(t,y) + t*dy* on X" x Q is just edge-degenerate, of order
4 = 2. Let us also note that for every dilferential operator Ain R x Q3 (Z,y) of
order p
A= Z a‘ﬁ(iay)Dg.y
1B1<n

with ag(%,y) € CP(R™! x Q), the restriction A of A to (R™'\ {0}) x © takes
the form (2.1) under the substitution of polar coordinates in R™*\ {0}, with ¢t = ||,

X € S* = X. In this case (2.1) may be regarded as an anisotropic reformulation of the
operator A with respect to the fictitious edge 2. This shows that the edge-degenerate



symbols, i.e. those of the form

tﬁ#p(t,$’1 ’tT7£’tn) ¥ (2'2)

are much more general than the "usual ones”. (7,€,7n) are the covariables to (¢, z,y).
For convenience, z will indicate points of X as well as local coordinates on X under
corresponding charts.

Let W be a manifold with edge Y, i.e. W\ Y and Y are C* manifolds of dimensions
n + 1+ ¢ and g, respectively, and W is locally close to every y € Y of the form
X8 x Q with some closed compact C* manifold X and an open neighbourhood Q of
y in Y. Then we can analogously talk about edge-degenerate differential operators
A on W, by demanding that A takes the form (2.1) in local coordinates near y.
The analysis of such operators will refer to the stretched manifold W "with edge” Y,
that is a C° manifold with boundary, described near the boundary by Ry x X x €.
The transition diffeomorphisms are assumed to be smooth up to ¢t = 0. The edge-
degenerate behaviour of operators remains invariant under such diffeomorphisms. If
U is a coordinate neighbourhood on X with local coordinates z then the restriction of
AtoRy x U x Q3 (¢, z,y) will have a complete symbol of the form (2.2), where

])(f-,:E,'f siaéz'ﬁ) (23)

is C®intuptot=0.If p,y(t,z,y,7,&7) is the homogeneous principal part of (2.3)
in (7,€,7) of order g, then

O'Z(A)(t,lf,y,‘l:,g,ﬁ) = t—#p(#)({‘!‘t’? afagaﬁ)'i':t'r,ﬁ:tn (24)

is the homogeneous principal symbol of A of order p. Let us also set

oﬁ,b(“l)(trmiy:%afrﬁ) = p(#)(tamyyr%)érﬁ) - (25)

For the ellipticity we shall need a further (operator-valued) symbol, dependent on
(y,n) € T*Y \ 0, acting as a family of cone operators on X”*. This is

AN = T a0 (—15) @) (2:6)
JHla|Ln

called the homogeneous principal edge symbol of A of order g. (2.6) will be an operator
family
TR )+ KP(XR) — BT (X0) 2.7)

between the weighted Sobolev spaces K#Y(X") of smoothness s € R and weight v € R.
Here, by definition,

KX = w(t)H (XN + (1 —w(t)) H(X7) (2.8)
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for a cut-off function w(t) (i.e.,w € CP(Ry), w(t) = 0for 0 <t < € with some e > 0),
further H*(X*) is the Sobolev space of smoothness s, based on the Mellin transform
in ¢ and (locally) on the Fourier transform in z. Details may be found in Schulze [S7].
For s € N we have u € H*(X") for an u supported by Ry x U iff

(t0)*0g) - ...  Oru(t,z) € "7 [}(Ry X R")

for all @ = (ao,...,a,) with |a] < s. Finally H*(X") is the standard Sobolev space
on the infinite cone that corresponds to H*(R™!) outside the origin in the special case
X = 5", cf. [ST]. In view of H*(X") C H} (X"), the space (2.8) is independent of

the concrete choice of w.

Remark 2.1 Set (xyu)(t,z) = An‘g‘l'u.(/\!.,m) Jor A € Ry.. Then {£)}ser, is a group of
isomorphisms on K*¥(X*) belonging to C(Ry, L, (K:""’(X"))) for all s,y € R. Here o
indicates the strong operator topology.

Remark 2.2 The operator family (2.6) is homogeneous of order p in the sense
TR (A)(y, ) = N raoR(A)(y, sy (2.9)
forall X € Ry, 7 #0.

The operators (2.7) belong to the cone algebra on X" for every fixed (y,7), cf. [ST),
[S8]. The so-called conormal symbol of order i follows by inserting z € C for —t9; and
putting ¢ = 0. It will be denoted by &%,(:). Then

ohioh(A)y,2) = ) ajo(0,y)7 : H(X) — H*™*(X)

=0

is an operator family between the standard Sobolev spaces H*(X) on X, that is
independent of 7.

Remark 2.3 Let A be edge-degenerate, of order y, and
oy o(A)0,2,y,7,6,7) #0 forall (z,y) € X x Q,(7,§,7) € R”"1\ {0} . (2.10)

Then, for every yo € Q there exists a countable discrete subset D = D(yo) C C with
K N D finite for every compact K C C such that

oaon(A)(yo, 2) 1 H'(X) — HH(X)
is an isomorphism for all z € C\ D(yo) and all s € R.

Let 8 € C and
[g={z€C: Rez=Ref}. (2.11)



Theorem 2.4 Let A be edge-degenerate, of order p, and assume (2.10). Then
ak(A)(y,n): K*(X") — K7THYH(X) (2.12)

is a Fredholm operator for all s € R, n € R?\ {0}, and all v = v(y) € R for which

Remark 2.5 The indezx of (2.12) for an allowed weight v is independent of s. Further
we have

ind o#(A)(y, 1) = ind o*(A) (y, %) . (2.13)

The latter relation follows from (2.9). Finally the index may depend on the choice of 7.
In all cases when (2.12) is Fredholm there are finite-dimensional subspaces L7 (y,7),

L¥(y,n) of S(Ry,C=(X)) (= S(&, C=(X)lg,)) such that

LE(y,n) = kerah(A)(y,n), L5 (y,n) ®im oh(A)(y,n) = K*(X")
for everyy €Y, n#0.
If we set Ny = dim LE(y,7), we find a matrix of operators

K (XN JCommamB (XA

m

( "’\gA) N ) e — o (2.14)
! oN- N+

that is an isomorphism for the given fixed (y,n). For obtaining ¢ and b it suffices
to choose arbitrary isomorphisms ¢ : €Y= — L¥(y,n) and b : L7(y,n) — C™,
respectively. Further we may set r = 0. The edge calculus below will require such a
choice of ¢, b, r, such that (2.14) smoothly depends on y € Q and 5 # 0 and that

(Z ,c-)(y,f\n)=/\“('3\ ?)((g f)(y,n)(%" [1))_1 (2.15)

for all A > 0, with a := ox(A). This homogeneity relation is satisfied for the left
upper corner anyway, cf. Remark 2.2. For the remaining entries it suffices to have
an isomorphism (2.14) for arbitrary y and |y| = 1, and then to define the values of
¢, by r at n # 0 by (2.15) by putting A = |4|, and replacing n by T:h It remains to
choose ¢, b, r smoothly in y and 5 with |y} = 1. The existence of such a choice for
y varying over a compact K € ) is actually an easy consequence of generalities on
families of Fredholm operators, parametrized by a compact parameter set, which is
here K x S9! 3 (y,7), (cf. Schulze [S7], [S8]). The restriction to compact K will be
sufficient for our purposes, since §} below plays the role of a piece from a compact C*®



manifold Y (the edge). Since the dimensions N_ and Ny will jump in general under
varying y, we finally get operator families

K:a.‘y(XA) Ks—p.ﬁ—a(xh)

i
("«*f("‘) C): o  — & (2.16)
b T - J+
(vm) (v.)

where J* are vector bundles over K x S77! (sub (y,7) indicates the fiber over (y, 7))

and dim J&.n) —dim.Jg = N* — N-. Then, in general, we have to allow r # 0.

It is now a topological condition to the original operator A that .J=, J* may be chosen
as the local representatives of vector bundles on Y, i.e. the dependence on 7 in (2.16)
disappears. Under that condition we obtain

K:s.-'y(X/\) }CS_‘L'TFH(XA)

(A

( Ud}l(:v ) f ) (y,m): 25 — Fant (2.17)
I JF

which is then to be used below as the homogeneous principal edge symbol of some
"edge problem” associated with A.
For purposes below we shall introduce here operator-valued meromorphic functions

h(z) € A(C\ D, LE(X)) . (2.18)

Here D is a countable set in € with finite X N D for every compact K. The space

4(X) of classical pseudo-differential operators on X of order g is endowed with
its natural Fréchet topology, cf. [S8], and A(U) for an open U C C is the space
of holomorphic functions in U. Further AU, E) for any, say Fréchet, space E is
the space of holomorphic E-valued functions on U. Clearly A(U, E) has a natural
Fréchet structure, again. Denote the points of D by {p;};ez. We will assume that
DN{z: ¢ < Rez <} is finite for every ¢ < ¢. Furthermore let us {ix a sequence
{m;},ecz, m; € N, and a sequence {N;};¢z of finite-dimensional subspaces N; of finite-
dimensional operators in L™°(X). Write

7 P= {('pj,mj, N_,‘)}iez , D=mcP.

Every such P will also be called a (discrete) asymptotic type for Mellin symbols. We
will also need L4(X;A) for A := R' with some [ € N which is the space of all A-
dependent classical pseudo-differential operators on X, i.e. the amplitude functions,
given locally, are classical of order y in (€, A), and L=°(X;A) = S(A, L=>°(X)). The

space L(X; A) is also Fréchet in a natural way. Now

ME(X) (2.19)



will denote the subspace of all 2(z) like (2.18) such that for every D-excision function
x(z) (i.e. x(z) € C®(C), x(z) = 0 for dist (z, D) < €0, x(z) = 1 for dist (z,D) > ¢y,
with certain 0 < &9 < &)

x(2)h(2)|r, € ‘LS(X;]Rf) for r=Imz,

for all § € R, uniformly in ¢ < 8 < ¢ for every ¢ < ¢’; furthermore it is required
that A(z) is meromorphic with poles at p; of multiplicities m; + 1, and the Laurent
expansion at p; is

my

h(z) = wi(z = ;)"0 + hy(z)

k=0

with &; € Nj, hj(z) € A(U, LE(X)) for some neighbourhood U of p;. The space
Mp(X) has a natural Fréchet topology. We will write

ME(X) when D=0 (2.20)

u
el

By replacing L% (X) by L5(X; A) we get analogously the space
ME(X;A), (2.21)
i.e. h(z,A) € M§(X; A) means h(z,A) € A(C, L*(X;A)) and
Mz, A)|r, € Lo(X R, x A)

for all B € R, uniformly in Bforc < < forallc< .

3. The wedge Sobolev spaces

We now briefly remind of the material on the wedge Sobolev spaces from [S4], [S7].
Let first £ be a Banach space and

{ra)}rer, C C(]R+,£0(E))

be a group of isomorphisms in £ with xy&, = k), for all A\,p € R (¢ indicates the
strong operator topology). Let us [ix a strictly positive function n — [5] in C®(R?)
with
()=l for |nf=c
with some ¢ > 0. We will set
k() = gy - (3.1)
An example for a choice of

{E, {£:}ren, } (3.2)

was given in Remark 2.1.
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If E is any Fréchet space we will denote by S(R?, E') the Schwartz space of E-valued
functions on R?. Then S(RY, F) = S(R?) ®, F, where ®, is the completed projective
tensor product. In an analogous sense we will form other vector-valued spaces that
extend scalar ones, for instance

A(UE) = A(U) ®, E

when U C € is open and A(U) the space of all holomorphic functions in U in the stan-
dard Fréchet topology. We can also form the Sobolev space H*(R?, E) of smoothness
s, defined as the subspace of all u € S'(R?, E} := L(S(R?), E) for which

[ st < oo

for all j € Z. Here {r;} ez is a semi-norm system for the topology of E, and F,_., is
the Fourier transform in R%.
Let us now return to (3.2) for a Banach space E.

Definition 3.1 W*(R%, ), s € R, is the subspace of all u € S'(RY, F) with

= () (Fymm)(lEdn - < 00 .
/ }

The basic properties of spaces like W?(R?, ) may be found in Schulze [S7]. In the
present calculus it is sufficient to deal with Hilbert spaces E. Such a case is

E = K*(X")

with {&)} from Remark 2.1. We obtain by definition the weighted wedge Sobolev
space of smoothness s € R and weight v € Ron X" x R?

WX x RY) = WP (R, K (XM)) . (3.3)
Another example is
E = H(RMY) with (kau)(E) = AT u(Ad), A>0.
Then, an easy calculation shows
we (Rq’ Hs([Rn+l)) — ],[s(mn+l+q) )

If E is Fréchet, with the system {r;};ez of semi-norms with r;(kxe) € C(R4) for all
e € E,j €2z, then W*(RY, F) will denote the space of all v € §'(R?, F) such that

S 7 Pyt (1)) < o0

10



for all ; € Z. In all concrete applications here E will be either a Hilbert space or a
projective limit of Hilbert spaces. From now on we will assume that E is of that type,
though many assertions also hold in more general cases. Note that there is a canonical
isomorphism

T:=F2_ &(n)Fy—y: W(R,E) — H'(R,E) .

n—y

This allows one to form W?*(R?%, V) C W*(R?, E) to (closed) subspaces V C E also in
cases when V is not invariant under {£)}ep,. It suffices to set

WHRY, V) = T~ H* (&, V) .

In the applications it will not be a problem that W?*(R?, V') may depend on the concrete
choice of the function n — [y]; the error terms can be characterized and fit to the
elements of the calculus. A typical example is £ = K*7(X") with the above {x,} and

Vp = linear span of {w(f.)cj;,.(a;)(."’f loght: ¢jr € Lj,0 < k < mj,

| 1 .
n; —'r+19<Repj<2;——%1=0,---,N} :

Here
P = {('Pj:mja Li)}j_—.o ..... N (34)

is a so-called discrete asymptotic type, i.e. a tuple of data with p; € C in the strip
"%‘—7+19 < Rep; < %‘-—7, with fixed ¥ < 0, and L; are finite-dimensional subspaces
of C®(X). The cut-off function w(t) is fixed. Vp is a finite-dimensional subspace of
K*#(X") for every s € R. Then the space W*¥(R?, Vp) can be characterized as the
linear span of all distributions of the form

FZ, {w(t["I])["rll;r_lek(I)(f-['-'ll)-p" log* (t[n])ﬁjk(n)} (3.5)
with arbitrary vy, € H*(R?) and dj, = Fp_,v;,. Let us set
K (XY) = Vo + K57 (X7)

with
K%)= [ K2704(x7)
e>0
and © = (9,0] indicating a weight strip of length —?J. Then, both K£g"(X") and
K3'(X") are projective limits of Hilbert spaces that are {«)}-invariant. We then
obtain the spaces

W5 (X7 x RY) := W (R, K57 (X7)) (3.6)
WEY(X" x RT) := W*(R%, KRV (X™M)) (3.7)

11



by the above scheme. The elements of (3.6) may be interpreted as distributions of edge-
flatness —J — 0 relative to the weight v, whereas (3.7) is the subspace of W*7( X" x RY)
of distributions with (discrete) edge asymptotics of type P. It can be proved that

WET(X" x RT) = WET(X7 x ) + WP (R, Vp) + W (R, KF7(XM))

In this sense the 7singular functions” of the edge asymptotics have the form
(3.5) modulo W*(R?,KF7(X")), whereas W*(R?,K3"(X")) consists (modulo
W (R?, KZ"7(X"))) of all elements of the form

w(t)es ()P log" t vjn(y)

with arbitrary vje € H®(R?) and ¢jr € L;, 0 £k < mj, 5 =0,...,N. The edge
asymptotics in the form (3.5) have been first obtained in the book Rempel, Schulze
[R3], cf. also Schulze [S7].

If M is a paracompact C* manifold we form H}, (M) in the usual manner as the
space of all distributions on A of local Sobolev smoothness s. Then HZ,, (M) is the
subspace of elements with compact support. Analogously it is possible to form

#(ME), W

loc comp

(M, E) .
Here it is used the coordinate invariance of the spaces.
Proposition 3.2 For every s,y € R we have

WY (X" x RY) C H (X" x RY) |

Now let W be a compact mauifold with edge Y in the sense of Section 2. Then we
form the weighted Sobolev space on the associated stretched manifold W

WY (w) for s,y €R (3.8)

as the subspace of all v € H}, (int W) with pu € W*(R%, K*7(X")) close to W for
every ¢ € C§°(W), in the corresponding local coordinates. Analogously, to every
asymptotic type (3.4) satisfying (p,m,L) € P = (p—j3,m,L) € Pforall j € N
such that Rep -7 > "—g:—]- — v+ 9, we can form the global spaces with discrete edge
asymptotics

Wi (W), s€ER, (3.9)

defined by the condition u € (3.9) & v € H}, (int W), ou € W*(R?, K37 (X")) for all ¢
as mentioned. Note that the transition diffeomorphisms for W close to W are assumed
to be (¢, z)-independent for small t. Otherwise the global notion of asymptotic types
needs a little further discussion on the coefficient spaces L;. This will be dropped
here.

12



Proposition 3.3 Let A be an cdge-degencrate differential operator on W of order p.
Then A induces continuous operators

At W (W) — W4 () (3.10)

for all s,~v € R. Furthermore, to every asymptotic type P (assoeiated with the date
(7,0), © = (9,0]) there ezists an asymptotic type Q (analogously associated with
(v — 1, 0)) such that A induces continuous operators

A WE (W) — W77 (w)
for all s € R.

The operator A is called elliptic with respect to o} and o , if o};(A) (the homogeneous
principal symbol of A of order j as a function on T*(int W) \ 0) is non-vanishing, and
if oy (A)(t,z,y,7,€,7) # 0 for all (t,2,y) € Ry x X x Q, (F,&,7) # 0 with respect to
every chart of W near dW (cf. (2.5)).

It is now a natural question whether (3.10) is a Fredholm operator for arbitrary s,y €
R, once A is elliptic with respect to o, and o}, ,. The answer is negative in general. A
result of our theory will be that the Fredholin property requires the bijectivity of the
following operator-valued edge symbol, namely of

SH(AY,n) s KPT(XN) — KI8T (X) (3.11)
for all y € Y and 5 # 0. However [rom Theorem 2.4 we only know that (3.11) is a

family of Fredholm operators for those weights v € R such that D(y) N Fl’é‘—‘—v = @ for

all y € Y. This shows that we may expect exceptional weights where the Fredholm
property of (3.10) will be violated. On the other hand the Fredholm property (3.11)
is not sufficient. The idea from Rempel, Schulze [R3] and Schulze [S4], {S7] is now to
enlarge the class of operators by allowing matrices

A C W”’*(W) Ws—#rr—u(w)
A= ( B R ) : B — [ (3.12)
| H(Y,.J7) H*=#(Y, J+)

where J* are finite-dimensional complex vector bundles on Y. The meaning of the
additional operators B (trace with respect to Y), C (potential with respect to Y),
R (pseudo-differential on Y') is analogous to that from pseudo-differential boundary
problems, cf. Visik, Eskin [V1], Boutet de Monvel [B1], Rempel, Schulze [R1]. The
operators B, C, R will also be called edge conditions. They can be generated in
local terms over 2 C R? as pseudo-differential operators in y with the operator-valued
symbols

x(mbly,m),  xtely,n) »  x(m)r(vyn) ,
with b(y,%), c(y,n), r(y,n) from (2.17) and an excision function x(n), cf. the no-
tions from Proposition 4.3 below. The problem of constructing a parametrix of (3.12)
will motivate considering analogous operator matrices with edge-degenerate pseudo-
differential operators in the left upper corners.
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4. Pseudo-differential operators with operator-valued sym-
bols in the Fourier-edge approach

We now pass to the elements of the calculus of pseudo-differential operators with
symbols taking values in L(£, E) for Banach spaces E, E. The notation ”Fourier-
edge approach” indicates that the operators are based on the Fourier transform, and
the symbol estimates contain groups of isomorphisms

{£1)rers € C(Re, La(E)) , {Faren, € C(Re, Lo(E)) - (4.1)

We then set x(n) = &p,), £(y) = K. Similarly to Definition 3.1 the objects will
depend on the concrete choice of (4.1), but the groups are fixed once and for all in
any concrete case. So we will omit indicating the role of (4.1) in the notations, except
when the operators are the identical ones for all .

The spaces E (or E) are allowed to be of {inite dimension. In this case k) (or &)) are
always assumed to be the identities for all A.

Definition 4.1 $*(9 x mqiE’ E) for open Q C B? and u € R is the space of all
a(y,n) € C°°(Q X R% L(E, E)) such that

57 (0){ D5 D2y, ) } ()

for all multi-indices a« € NP, B € N? and all y € K for arbitrary K € Q, n € R?, with
constants ¢ = c¢(a, 3, K) > 0. The elements in S#(2 x RY; E| E) are called operator-
valued symbols (or amplitude functions) of order ju.

< C[?)]#—lm (4.2)

IC(E.E)

The best constants in the symbol estimates (4.2) for given a form a semi-norm system
on S*(Q x R% E, E) under which this space is Fréchet. The space S#(R% E, E) of
elements that are y-independent is closed in the induced topology. Then

SHOXRGE E) = C®(Q,S*R%E, E))
= C®() @, S“(R; E, E)

(with @, as completed projective tensor product). Many elements of the theory of
analogous scalar spaces (i.e. where £ = E = C) may be obtained analogously also in
the operator-valued case, cf. [ST]. We will not repeat here all those things. Let us
only mention that asymptotic sums of symbols «; of orders yj, j € N tending to —oo

as 7 — oo can be carried out within the symbol classes. This means that there i1s a
M
symbol a of order ¢ = max{y;} such that for every N there is an M with a — Y q;
j=0
being of order 4 — N. Then « is unique modulo

ST QxR EE) = () S xR% E,E)

pel
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[« o]
and we write a ~ Y a;. Note that
j=0

S X kY B, E) = C% (Q,S([R",E(E, E))) ’
which is independent of the concrete choice of {x,}.
Example 4.2 Let
d 7
alym) =17 Y @altyy) (—ta) (tn)°"
Jt|al<n

with coefficients a;q(t,y) € C°°(ﬁ§+ x , Dijf“_(j+|°|)(X)) that are independent of ¢
for t > ¢ with some ¢ > 0. Then

ay,1) € S (X R K*(X), K*h=4(X )
for every s,y € R, with sy, £) from Remark 2.1.
Proposition 4.3 Let
au(y,n) € C=( x (R7\ {0}, £(E, E))
be homogeneous of order u in n # 0, i.e.

(> M) = N Exa(y, m)s3

forall A > 0,y € Q, n#0. Further let x(n) be an ezcision function (i.e. x(n) €
C®(R?), x(n) =0 for [n] < co, x(n) =1 for |n} = e\, with constants 0 < ¢y < ¢; < 00).
Then _

x(magy(y,n) € S(QUXRLE,E) .

Definition 4.4 A symbol a(y,n) € S*( x ]R";E',E) is called classical if there are
functions ag,_;(y,n) € C*( x (R7\ {0}),L(E, E)) that are homogeneous of order
4—7,3 €N, with
aly,n) ~ Y XMy (¥ )
J
for any excision function x. We denote by S5H(Q x RY; E, E) the space of all classical
symbols.

Set
aa(@)y,n) = awy(y,n) (4.3)

called the homogeneous principal symbol of a € S4(1 x RY; E, E) of order .

15



pr=r-tapry

Remark 4.5 The symbol a(y,n) of EFzample 4.2 belongs to Sc‘}(ﬂ X R K XM),
KCe=m=#(X")) once the coefficients ajo are independent of t and oh(a)(y,n) =(2.6).

Let F = F,_, be as above the Fourier transform in R?. Then, similarly to the scalar
theory of pseudo-differential operators, we can form

Op(a)u(y) = / j eV Va(y, ', n)u(y’)dy’ dy

with dnp = (27)7%dy, for every a(y,y’,n) € S*(Q1 x Q x RY; E,E) with open 2 C RY.
Here we first assume u € C§*(§2, E). Then Op(«a) induces a continuous operator

Op(a) : CO(N,E) — C®(Q, E) .
Definition 4.6 Let Q C R? be open, t € R. Then
LY B E) = {Op(a) : a(y,y',n) € S*(Q2 x O xR, E, E)}

is called the space of pseudo-differential operators (with operator-valued symbols, in
the edge approach). The subset L5(Q; E| E), defined by classical a(y,y',n), consists by
definition of the classical pscudo-differential operators.

Remember that N _
L™(%E,E) =LY% E, )
HER

consists of all Op(a) with a(y,y’,n) € S~°(Q x Q x R E, E), which is the same as
the space of all integral operators with kernel in

C=(Q x O L(EE)) .
Theorem 4.7 Fvery A € L*(; E, E) crtends to a continuous operator

A: W (9, E) — WM, E)

comp

for every s € R.

Remark 4.8 The basic elements of the scalar pseudo-differential calculus have cor-
responding analogues in the operator-valued case. This concerns, in particular, com-
positions with the Leibniz product on symbolic level, and the result how to pass from
Op(a) with a(y,y’,n) to an Op(a) with a(y,n) being independent of y' (everything mod
L= () F, E)) Any such a(y,n) is called a complete symbol of the operator.
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Remark 4.9 [t is not hard to generalize the pseudo-differential calculus with ope-
rator-valued symbols to the case of Fréchet spaces E and E. In our applications E and
E can be written as countable projective limits of Hilbert spaces B? and E"‘ that are
invariant under {k)} and {k\}, respectively, for all j, k. The details may be found in

(57, [58].

Let us finish this section by some examples. To this end we remind of the fact that for
every (discrete) asymptotic type P associated with the weight data (p, ©) the space
KEP(X") can be written as projective limit of Hilbert spaces that are {x,} invariant.
This is also the case for K3”(X") which gives us the symbol spaces

S0 x RGK(XM), KEP(XM) (1.4)

for every s, 4,7, p € R. For every element in £L(K*7(X*),K™?(X")) we can define the
formal adjoint as an element of £L(AX~"7?(X"),K~*=7(X")), via the non-degenerate
sesqui-linear pairings

KX x K=Y (X)) —

induced by the K%°(X")-scalar product, for every s,v € R. To every g(y,n) in (4.4)
we can point-wise pass to the formal adjoint ¢*(y,7) and demand that it belongs to

A0 x R KZ"“’(X"),K?‘_’()\’A))

for some other (discrete) asymptotic type Q, associated with (—~, ©).
We shall actually replace Kp?(X"), Kg"77(X") by subspaces Sp(X*) and S57(X"),

respectively, where
SHXN) = WK (XM + (1 —w)S(XT) . (4.5)

Here w(t) is any fixed cut-off function and S(X") = S(R4,C*(X)). Then, the space
(4.5) does not depend on the concrete choice of w.

Definition 4.10 R (Q x RY, g)pq with g = (v, p, ©) is defined as the space of all

g(y,m) € () S4(Q x BTG (XM), SH(XM)
SER

for which

“(v,m) €[] Sa( x RGAT(XM), S57(XM)

sER

Here Q is an open set in RY or in RY X R?. [n the latter case y will also be written as
(y,9"). The elements of R($! x RY, g)pq will be called Green symbols, to the weight
data g = (v, p,®), with the asymptotic types P, Q. For the edge pseudo-differential
calculus it is necessary also to consider the space

R&(Q x RY, g; €=, M )pg (4.6)
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consisting of all

g(y,m) € [] S4(Q x RGLY(X") @ €V, Sp(XM) @ ™)

sclr

with

g (y,m) € ﬂ SE(Q x R K 7P(XM) @ ™ ,Sq 7 (X™) och-).

selR

We will also speak of Green symbols in the corresponding generalized sense, where for
g = (8ij)ij=12 the element g has the meaning of a trace, g12 of a potential symbol
with respect to the edge. gy3 is nothing else than an N_ x N, matriz of classical scalar
symbols. Remember that the involved groups act on finite-dimensional spaces as the
identities, i.e. the groups arve of the form {xk\ @ 1} with the original k) in the first
component and the identity ! in the second finile-dimensional component.

RE(Q x R, gy, M) (4.7)

will denote the union of the classes (4.6) over all P, (). An analogous notation makes
sense with R;(Q x R%, g).

5. The algebra of edge problems

Let us now return to the program to obtain a class of "edge-degenerate” pseudo-
differential operators on a (stretched) manifold W with edges Y that completes the
edge-degenerate differential operators (cf. Proposition 3.3) to an algebra, containing
the parametrices of elliptic elements. Many results allow formulations in local terms, in
particular, with respect to the "interior symbol classes”. The operators we are talking
about will belong to L#(int W) and L% (int W), respectively. Thus we concentrate on
a collar neighbourhood V of dW in W, V = Ry x gW, written as a union of stretched
wedges
W, 2R, xXxY;, j=1,...,N

with subsets ¥; C Y forming an open covering of V. Let

N

i Y, —Q;, 5=1,...,N

be charts with open Q; € R7 and denote the points in Ry x X x Q; by (¢,z,y) (J
will often be fixed in concrete considerations). Further choose a covering of X by
coordinate neighbourhoods Xy, & = 1,..., M. The local coordinates under charts
Xk @ Xp = Up with open Uy C R will also be denoted by z if no confusion is possible.
In other words the interior symbols are locally defined on

Ry XU x> (tx,y) withopen UCR*, QCRY.
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They are assumed to be of the form

7 (t, 3, y, 17, €, ) (5.1)

with
p(t,2,0,7,6,7) € SH(R, X U x Q x REE™) (52)

&0
We might allow as well non-classical symbols, but the question here is to obtain a
"minimal” algebra with the mentioned properties. The choice of classical symbols also
leads to a stronger locally convex topology of the operator spaces. Note that (5.2)
implies

plt,z,y,tr, € ty) € SH(Ry x U x Q0 x ]R:z";"'q) .

Since t > 0 corresponds to int W and because of the cut-off factors in a partition of
unity on W we may assume that p(t,z,y,7,¢,7) is independent of ¢ for t > ¢ with
some ¢ > 0. For analogous reasons it is allowed to assume for a moment that p has its
support with respect to x in a compact subset of U. It is now an important technical
point to find an operator A € L(X" x @) with (5.1) as a complete symbol such that

@A W (K57 (X)) — Wi (Q, K747 #( X)) (5.3)

loc

is continuous (for all s € R) for arbitrary ¢, € C°(X), supported by a compact
subset of the coordinate neighbourhood on X, corresponding to U. Since A is uniquely
determind by (5.1) mod L=®(X" x ), the problem consists of finding a suitable
representative in the class of operators modulo smoothing ones. A choice of A for
which (5.3) actually holds is by no means evident (unless we have an edge-degenerate
differential operator) and requires a careful discussion of a corresponding operator
convention that assigns an operator to such a symbol. The crucial observation is that
there are Mellin operator conventions. Let us recall the standard form of the Mellin
transform M, namely

o0

Mu(z) = /t"'u(t)(lt , 2€C,

4]

first defined on C§°(R,) and then extended to various distribution spaces on Ry. In
an analogous manner we will understand M when u depends on further variables to
which there may be applied the Fourier transform. The inverse of M has the form

Mu(z) = /t"’g(z)dz ,
'}
I's = {z: Rez=RefB}. If 1 CRPissome open set then

SH(Q x Ty x BY)
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will denote the space of all a(z,z,€), where (z,£) is for a moment the variable in
Q x RV, such that a(z, B+17,¢) belongs to $#*(Q x R, x RY). In an analogous manner
we obtain symbol spaces with subscript ¢l, or spaces like

SHRy x U x Q2 xT'g xR x RY) . (5.4)
Remember that (5.4) has a natural Fréchet topology. Now let
SH(Ry X U x QX C X R X RY)por

be the subspace of all a(t,z,y,2,&,n) in C®°(Ry x U x @ X € x R* X R?) that are
holomorphic in z € C and such that «(t,z,y,8 + 7,£,7) belongs to (5.4) uniformly
in ¢ £ B < ¢ for arbitrary ¢ < ¢’. Analogously we have such symbol classes with R,
instead of R;. Let us set

ophy(h)u(t) = tPopag (TR}t~ u(t) (5.5)

with A(t,...,2,...) being a symbol in the covariable Im z, varying over F%_m

(T8h)(...,2z,..)=h(...,z2—4,...) and

o0
1
oon(Nlt) = 5 [o 0628 [emuwyar  ds
l} 0
= M fMu_..v.

The latter expression is a Mellin pseudo-differential operator, relative to the weight
line F%, whereas (5.5) corresponds to the weight line I'y 5. If 4 in (5.5) depends on

(t,z,y,2,&,7m), then we can form the pseudo-differential action with respect to the
other variables with the Fourier transform. This will be indicated by opy =, 0py (z4),
In particular, we have

opy -(p)w(z) = (27)™" // ey, 6wz ) dE
with p being a symbol in (z,£). To any given
h(t,z,y,2,6,m) € SHRy X U x 2 X C X R" X Ry
we obtain the (y,7n)-dependent operator family
opiopu(B)(y,n) 0 CP(Ry x U) — CP(Ry x U)
for every 6 € R. We then have

ophropy.(h)(y,n) € C=(Q, LY (R4 x U;RY)) .
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The Mellin representation in the ¢-variable is always possible for such operators because
of the equivalence of the phase functions (¢ — t')7 and (logt’' — logt)r. That does
not mean at once that a pseudo-differential operator family, written in the Mellin
convention for suitable §, will lead to (5.3) after applying opy,. This will only be
ensured by a corresponding control of the amplitude function close to ¢ = 0. The
following theorem on the existence of such Mellin operator convention will show that
the smoothness in ¢ up to ¢ = 0 remains preserved.

Theorem 5.1 To every p(t,z,y,t7,&, 1) € SR x U x Q X Ri;::'q) with (5.2) there
exists an

such that for h(t,x,y,2,&,n) = f(t,z,y,2,€,tn)

0Py (1.2 (P)(Ws 1) — 0piopy2(h)(y,n) € C(Q, L™ (R4 x U;RE))
for all § € R.

Remark 5.2 The choice of [ as a holomorphic function in z follows by a cut-off
argument on the level of distributional kernels. This technique as well as other details
of the proof of Theorem 5.1 may be found in Schulze {S5].

From Theorem 5.1 it is now easy (and essential from the point of view of operator-
valued symbolic structure) to pass to a corresponding global Mellin convention with
respect to X. To this end we choose symbols

pe(t,z,y,tr, & 1) € Z(R+ x Up x Q x IR1+n4-q)

for k = 1,..., M, that satisfy the conditions of Theorem 5.1 for U = Uy. Further let
{vr}r=1...a be a partition of unity on X, belonging to the open covering {Ux }i=1,...M,
and let {¥ }i=1,...ar be functions in C§2(Us) with ¢y = ¢4 for all k. Then

M

P(y,n) = o1opyqa)(px) (¥, 1)t (5.6)

k=1

is an element of C®°(Q, L (X" RY)) (for simplicity the pull-backs of local operators
over Uy to Xy were suppressed). Analogously we can form the fi in the sense of
Theorem 5.1 for Uy, and we set

N
f(l"ﬂ 5277}) = Z(,Q;;Op;{:,_r(fk)(t,? ’z’ﬁ)d)k ?

k=1

ht,y,2,m) = flty,z1n). (5.7)
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Then f(t,y,2,7) € C®(Ry x Q, M5(X;R2)), cf. (2.21). It follows for the operator
family (5.6)
P(y,n) — o (R)(y;n) € C=(Q, L™(X"RY)) (5.8)

From now on we shall tacitly assume that all py are independent of ¢ in the first
t-argument for large £.
Now let us fix arbitrary cut-off functions w(t), wo(t), wi(t) satisfying

Wwy = w , Wy = W . (5.9)
Indicate by ~ the equivalence mod C*{Q, L=°(X";R?)). Then (5.8) implies

P(y,n) = w(tl])P,n) + (I —w(tl])) Ply,n)
~ w(t)opi (A)y,m) + (1 — w(ty])) Ply,n) -

In view of

w(tl)opl (W), m) (1 —wo(tl])) ~ 0,
(1 =w(tl])) Py, mwi(tl]) ~ 0,

which is a consequence of (5.9), it follows
P(y,n) ~ ao(y, )
with
ao(y, ) = w(t[n])oprs (), mwo(tn]) + (1 = w(tln])) Ply,n) (1 — wi(tl))) - (5.10)

Proposition 5.3 For every operator family of the form (5.6) with associated (5.7) we
have for

a(y,n) = w(t[n])t_“op;;%(h)(y,1;)w0({.[-:;]) + (1 - w(t[r;])) t™*P(y,n) (1 - wl(t[vz]s)) 1.)
1
with fixed v € R

a(y,n) € 5*( x BRG K*7(X M), K 7Hm8( X))

for all s € R. Here, as above, the operator-valued symbol classes rely on the families
of isomorphisms u(it,z) — )\%"u()\t,m), A>0.

Corollary 5.4 Let A = opy (a). Then A € LY(X" xQ) induces continuous operators
A : W:omp (Q’ K:JW(XA)) — WI"):“' (Q7 K“’_“J-#(XA))

Jor all s € R.



The operator families of the form (5.11) will also be called (complete) edge symbols.
Our next objective is to add the so-called smoothing Mellin operators with discrete
asymptotics. Let

P= {_(pj’m'js AIJ')}jez
be a sequence with p; € C, |Rep;| — o0 as |[j| = oo, m; € N, and N; being a
finite-dimensional subspace of finite-dimensional operators in L=*°(X), 7 € Z. Set
7cP = {p;};ez- We then have the space

ME=(X) = [ Mh(X),

ueR

cf. (2.19), as the set of all operator-valued functions A(z) in the complex plane with
the following properties

(i) h(z)isan L™°°(X)-valued meromorphic function with poles at the points
p; of multiplicities m; + 1, y € Z,

(ii) the Laurent coefficients of h(z) at (z — p;)~*+! belong to N; for 0 <
k< mj, J €z,

(iii) if x(z) is any m¢ P-excision function (i.e. x(z) = 0 in some neighbourhood
of meP, x(z) =1 for dist (z,7¢P) > € with an € > 0) then

X(B +i7)h(B +1i7) € S(R,, L™(X))

for all # € R and uniformly in ¢ < 8 < ¢ for every ¢ < ¢.

The space Mp*°(X) has a canonical Fréchet topology (which is nuclear). Thus it
makes sense to talk about C*(Q, Mz= (X)) for every fixed P. For every § € R with
meP NT1_g =0 we can form the Mellin pseudo-differential operators

2
opﬁ[(h) . h(z) € 1\’1;.'00(/\') .
They are elements of L=(X").

be arbitrary cut-off functions, h(y,z) € C*(9,

Proposition 5.5 Let w(t), wo(?)
= Q. Then, the operator family

Mp=(X)), and weP N Papr_,

t= w(t[n])opss * (W) (y)wo(tln))n®
for « € N%, v € R, is an element of
S"+|0|(Q x RY; K:B"Y(XA)’K:OO.‘)‘—V(XA))

for every s € R.



Remark 5.6 Let us fiz i,y € R and j € N. Choose any é§ € R with
128295, TP ATap =0 (5.12)

Then for arbitrary h(y,z) € C*=(1, M;‘”(X)) we have

my,n) = t#Hw(tl])opr E (k) (y)wo(tfn))n®

. 5.13
€ SymUID(Q x mI K (XM), KPTH(XN)) (5.13)

for every s € R.

Note that the homogeneous principal symbol of (5.13) of order g — (7 — |a|) in the
sense of (4.3) equals

oD () (y,m) = 7w (tnl)opyy * () (y)wo(thnl)n® - (5.14)

Proposition 5.7 Let m(y,n) be of analogous form as (5.13) with the same h(y, z) but
for another choice of the cut-off functions w, wy, of the function 5 — [n], and of §,
satisfying (5.12). Then

m(y,n) —m(y,n) € R VTN(Q x v2, g)
with g = (7y,7— 1, 0).
Definition 5.8 Let v, €R, g = (7,7 — #1,0) with © = (9,0}, —co < ¥ < 0. Then
R*(Q x B?, g)

denoles the set of all

a(y,n) + my,n) + 9(y,m)
with a(y,n) being of the form (5.11), m(y,n) a finite sum of operator families like (5.13)
over j,a with (j,a)-dependent h = hj,, § = 8jo, and further g(y,n) € Rg(S2 x RY, g).
For technical reasons we will also talk about

RU(QX]RQ)Q__) ) g_:(‘fa’y"'"‘we)

for any v € R with g — v € N, defined in an analogous manner, where now a(y,7)
refers to v instead of p and for the summands of m(y,n) it is required 7 > u — v.
Further define

RY(Q x R?, g; €=, ™M) (5.15)

as the set of all operator families

o) = ( miy,n) gy, ) (5.16)

ga(y,n) g22(y,n)

24



where r11(y,7) = (@ + m + gn)(y,n) belongs to R*(§} x R?, g) and the matrix (gi;) to
R&(Q x RY, g; €=, CM) in the sense of (4.7). In these notations Q is an open set in
R?. We may also allow all objects to depend on (y,y") € @ x Q. Then we shall write

R (QxQ xR, g; c-. MYy s r(y, v, ) .
Proposition 5.9 We have for g = (v, — u,0)
RY(Qx Q x R, g; €=, c™) € §Y(Q x @ x R E, E)
with B = K*7(X") @ cM-, E = K=v7=8(X") @ C+, for arbitrary s € R.

Next we shall introduce the principal symbols of order v to r(y,y’,n) € R*( x {1 x
R?, g;CN=-,CN+). They will be defined on y = ', so it suffices to neglect y’. First the
complete symbols (5.1) (now for g replaced by v) related to coordinate neighbourhoods
Uon X, QonY, lead to the invariant system of homogeneous components of order v

t_yp(u)(tv z,y,17,€, t’?) .

This extends together with the homogeneous principal symbols globally on int W to
an element

ay(r) € C=(T*(0 x X™)\ 0) (5.17)

that is homogeneous of order v in the covariables. In a collar neighbourhood of 0W in
the (¢, z,y)-coordinates we get that

?'.UO’:L('I‘)(I‘.,H;, yat_l‘r:‘f:t_ln)
is C® up tot = 0. As above we set
G;'b('-")(t,i,:r},‘!',f,?]) = t”afj}(r)(t,m, yvt_lTrfrt_l"'?) - (518)

If we write » as a 2 x 2 matrix (5.16), we get

i) i= ( 0 o )(y,u) € S50 x B% E, B)

G211 G2

in the notations of Proposition 5.9. Thus there is a well-defined homogeneous principal
symbol in the sense of (4.3), namely o%(§)(y,n). Furthermore, by construction,

ruly, 1) = aly,n) + m(y,n) + gn(y,n)
with a(y,n) being of the form (5.13) with v instead of g, and
m(y, 1) + guly,n) € Sp(Q x RG L (X), Ko7774(X 1)
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From the latter relation we get a homogeneous principal symbol o%(m + g11)(y, 7).
Finally we. set

%
2

a¥(a)(y,n) = w(tl)t™ops; * (ho)(y, n)wo(tln])
+ (l — w(i.[-q|)) =" Po(y,n) (l - w (il1}|)) )

Here, in the notations of Proposition 5.3,

(5.19)

h-()(f” Y, Z,'l]) = f(O’ Y, z,tv;) ’

cf. (5.7), and

A

Po(y,n) = Y @x0py ) (Proivy0) (¥> 1)

k=1

cf. (5.6), with pruyo = pry(0,2,y,tm,& 1), sub (v) indicating the homogeneous
principal symbol of order v. Note that we always assume here 7 # 0. We thus obtain

ox(ru)(y,n) = ol(a)(y,n) + ox(m + gu)(y,n) .
This yields
oz = (F 0 ) o) +ox@)

as an element

ax(r)(y,m) € C=(T" A\ 0, £(K=1(X") & e, KX @ ™)) (5.20)

satisfying
v v K’/\ 0 I K&A 0 -!
aX()y, Ay =M ek wm) g (5.21)

for all A > 0. (5.21) is the homogeneous principal edge symbol of ». Every r(y,y',7) €
RY( x Q2 x RY, g; CN-,CN+) gives rise to a pseudo-differential operator with respect
to the y-variables

Op(rulw) = [ [ Mty m)utydy' dn
dn = (27)~%dn. From Theorem 4.7 we get continuous operators

loc

Op(?‘) : w:omp(ﬂrx:sﬁ("\’/\)) —_ s—u(Q,K:s—u,w—u(X/\))

for every s € R. We now look at a compact manifold W with edges Y, cf. notations
in the beginning of this section. Choose a collar neighbourhood V of 0W, written
as a finite union of stretched wedges W;, and consider &; : W; — Ry x X x Q,
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according to our geometric assumptions, with open §2; C R?. Fix a system of functions

P; € CR(W;), }:1/;, =1 on Un Ho <t < 6) W1th some § > 0, Zd), = 0 on
Un'l{t > 26}. Further choose z,b € CS(W;) with wjah; = o for all j a.nd ;=0
F]

on |Jx;'{t > 36}. Then, to every system of symbols
b

riy,y'yn) € RY(Q; x Q; x R, g; -,

we can form a global operator
Av = z l,bj!i;Op(‘T‘j)l,‘(;j
J

with the operator pull-back 7.

Definition 5.10 Y*(W, g; CN-,CN*) is the space of all operators of the form

A=(‘(‘)’ O)AV(“;}“ ?)+(]gw 3)?(1_0“" 8)+g, (5.22)

where Ay ts as mentioned whereas

(1)

are operators with P € LY (int W); w, wo, wy are in C®(W), supported by a collar
neighbourhood of OW and salisfy wwy = w, ww, = w); finally G is a so-called smoothing
Green operator, i.e. il induces continuous maps

WY (W) WpTH(W)
g : ] — @ )
H’(Y, cN- ) H°'°(Y, cN+ )
W=t (W) W (W)
Gg* & — )
H3(Y,C™M+) H=(Y,cN-)

for all s € R, with discrete (G-dependent) asymptotic types P and Q, associated with
the corresponding weight dala. * indicates the formal adjoint in the sense

(G, V)woomaroresy = (4, G70)woomgro(r.ed-)

for all u € C(int W) @ C=(Y,CN-), v € CP(int W) @ C=(Y,CcN+).

SN
=1



The elements of Y¥(W, g;C¥~,CN+) are called edge pseudo-differential operators of
order v with respect to the weight data ¢ = (7,7 — £, ©0). An analogous definition
makes sense for {complex) vector bundles J~, J* over Y instead of the trivial ones
Y x €N- and Y x CM+, respectively. This yields the operator classes

Y (w, g0, J) . (5.23)

Here we have fixed once and for all Hermitean structures in the occurring bundles J
over Y such that non-degenerate pairings such as

]
H(Y,J)x H(Y,]) —C, s€ER,

make sense ( H°(Y, J) being the Sobolev space of distributional sections in J of smooth-
ness s). Every such A in (5.23) induces continuous operators

WY () W =i (W)
A: @ — ® (5.24)
H(Y,J7) H*=¥(Y,J%)

for all s € R. Furthermore for every (discrete) asymptotic type P to (v, 0) there is a
resulting (discrete) asymptotic type R to (v — p, ©), also dependent on A, such that
A induces continuous operators

Wem W)
A: &b - &, (5.25)
H(Y,J™) He=v (Y, JY)

for all s € R.

Another obvious generalization of (5.23) concerns the case of operators, also acting
between distributional sections of vector bundles £, F' over W. In other words we
would have operators like

W (W, E) W= (W, F)
= — T
Ho (Y, J-) Ho=v (Y, J%)

All results here have immediate generalizations to this situation. Details will be
dropped for brevity. However nou-trivial bundles J*, J~ are interesting even when
the left upper corners are scalar elliptic operators. This is known already from the
more special elliptic pseudo-dilferential boundary value problems. Therefore we shall
formulate things from now on for non-trivial J*, J=. Every A € Y (W,¢;J",J7)
allows two leading symbols, namely first B

ap(A) € C=(T*(int W)\ 0) , (5.26)
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which is homogeneous of order v in the covariables. It coincides by definition with
oy(lu.c. A) from the left upper corner (abbreviated by Lu.c. ). The second one is the
homogeneous edge symbol of order v

K (XM) Komvr=u( X 1)
oi(A): 7 Fa) — Ty E{i , (5.27)
g J

s € R. Herewy : T*Y \ 0 — Y is the canonical projection, and =y indicates the
pull-back under 7y. The homogeneity means

T (A)(y, M) = X ( h(")" (1] )GK(A)(y,ri) ( 'B" ? >_1 ; (5.28)

where the identities in the right lower corners refer to the fibers in the bundles J~
und J¥, respectively. If JF are trivial, of fibre dimension Nz then ¢%(.A) can also be
interpreted as an operator-valued function

oi(A) € (T Y \ 0, LK (XM @ -, K7 # (X ) @ ™)) .

satisfying (5.28), cf. also (5.21).

Theorem 5.11 A € Y (W,g;J7,J%) for g = (7,7 —11,0), © = (=k,0], p —v < k,
and o(A) =0, oX(A) =0 imply that (5.24) is a compact operator for all s € R.

Theorem 5.12 Let p,p,v,x €R, O = (—£k,0], k e N\ {0}, and

A € Y (W,g;G,0%), = (v=—p,7—(+p),0),
B € Yi(wW,hJ",G), = (1,7-00),

for vector bundles G, J~, Jt over Y. Then AB € Y"t*(W,m;J~,J") with m =
(777 - (p' + P): e): and

=<

o (AB) = ay(A)oy(B), (5.29)
o (AB) = a}(A)or(B) . (5.30)

Let
Vireo(W, 9577, J%) (5.31)

be the subspace of all A € (W, g;J~,.J*) for which the operator P in the represen-
tation (5.22) vanishes as well as «(y,n) in the local description of the symbols ry;(y,7).
If in addition all m(y,n) vanish we get by deflinition the subspace

Ye(w,g,07,07%) . (5.32)

The operators in (5.31) are called smoothing Mellin4-Green, those in (5.32) Green
operators.
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Remark 5.13 If A or B in Theorem 5.12 belongs to the operator space with subscript
M + G (G) then also the composition AB.

Remark 5.14 The edge pseudo-differential problems A € Y* (W, g; J~,J%) allow also
a formal adjoint A* € Y*(W,g¢*;.J~,J%) in an obvious manner, with ¢* = (—y +
B —=7,0) for g = (v,7— ;x,@),_(t:rti there is a natural symbolic rule under passing to
the formal adjoint. This will not be used in the sequel, so the details are dropped. We
shall denote by

Y'W,g), ViaaW.g), Yo(Wg) (5.33)
the subclasses of elements of (5.23), (5.31) and ( 5.32), respectively, for which the fibre

dimension of J= and J* are zero. In other words (5.32) just consist of the left upper
corner of the corresponding spaces of operator malrices.

6. Ellipticity and parametrices

Definition 6.1 An operator A € Y*(W,g;J7,J%) for g(v,7 — 1,0), © = (—k,0], is
called elliptic if

(i) oy(A) # 0 on T*(int W) \ 0 and oy (A)(t, z,y, 07, 6t ) £ 0 dn a
collar neighbourhood of QW in the coordinates (t,z,y), including t = 0,
and for all (7,€,7) # 0,

st.v(x’l\) }Cs—n,-y—u(XA)
o Aym): @& — e (6.1)
J; J
v ¥

is an isomorphism for all y € Y, n £ 0, for some fized s = 39 € R (sub
y indicates the fibre of the corresponding bundle over y).

Remark 6.2 From the theory of pseudo-differential operators on the infinite open
stretched cone X* = Ry x X it is known thal the condition (ii) of Definition 6.1 is
satisfied for all s € R as soon as it holds for a particular s4 € R.

Remark 6.3 The condition (i) of Definition 6.1 may be regarded as the interior el-
lipticity of A. [t is the ellipticity of the left upper corner in int W in the sense of
edge-degenerate symbols and independent of the weight 4. The condition (ii) is an
analogue of the Shapiro-Lopatinski condition in boundary value problems. In the edge
case it depends on v. The indez of ax(A)(y,n) for A = Lu.c. A depends on 7, and it

may happen that for a particular vg the operator A cannot be completed to a matriz A
for which (i) is satisfied.
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If we write

Az(ﬁ%), (6.2)

then A = l.u.c. A is the "interior” pseudo-differential operator of the "edge problem”
A, up to some smoothing Mellin and Green operator. B may be regarded as a trace,
C as a potential operator with respect to the edge Y. The operator R is pseudo-
differential on Y. It may happen that C, R or B, R vanish in an elliptic edge problem
to A.

Note that in contrast to the case of boundary value problems (i.e. when the model
cone of the wedge equals R..) the ellipticity of A for an edge-degenerate differential
operator A does require in general both trace and potential conditions. In other words

ok (AXy,n): K> X") — K778 XM (6.3)

will be a family of Fredholm operators with non-trivial kernels and cokernels (of ~y-
dependent dimension). For every fixed y, n the operator (6.3) belongs to the cone alge-
bra, i.e. to the algebra of pseudo-differential operators on the (open infinite stretched)
cone X*. Hence it has a leading conormal symbol which is an operator family (-
independent)

ook (AN, 2) : H(X) — H*™*(X) (6.4)
foryeY,z€lnn_, (n = dim X). The condition (ii) of Definition 6.1 implies that
(6.4) is a family of isomorphisms [or |Im z| > ¢ with ¢ > 0 sufficiently large, for all
y € Y. This is true for all 4 € Y*(W,g;.J7,J%), A =lu.c. A In addition (6.4) is a
meromorphic family of Fredholm operators. Then there is only a discrete set D{y) C C
of exeptional values of z, where (6.4) is no isomorphism.

Definition 6.4 Let A € y“(W,Q;.]',J+) with ¢ = (v,7 — #,0) and P €
y‘“(w,g_‘;.]+,.]‘) with g=' = (v = 41,7,0). Then P is called a parametriz of A
if
AP -1 € Yzo(W,h,;J*,J"), (6.5)
PA—-1 € YW, h;J7,07), (6.6)
for h, = (7 — Y — 1,9), b = (7,7, 0).

The definition of a parametrix can be weakend in many ways. The present one is
reasonable for the purpose here. In the elliptic case we shall impose a technical as-
sumption which is not necessary for the Fredholm property of the operator (6.8) below,
but simplifies things considerably, namely that

(o405 (A)(y,2)) " € C=(Y, Mz*(X)) (6.7)

for an y-independent asymptotic type R. Then, in particular, the set D(y) does not
depend on y.
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Theorem 6.5 Let A € Y*(W,g;J7,J7F) forg= (7,7 —1,0), v, ER, O = (=k,0],
k € N\ {0}. Then, the following conditions are equivalent

(i) A is elliptic,
(11) the operator

A: WY (W)@ H*(Y,J™) — W (W)@ H* (Y, JT)  (6.8)
is Fredholm for an s = sy € R.

In that case (6.8) is a Fredholn operator for all s € R. Under the condition (6.7) there
is a parametriz P € Y~H(W,g7"; J,J7).

Remark 6.6 If A € Y*(W,g) (cf. (5.32)) satisfies the condition (i) of Definition 6.1
and if (6.7) holds, then there exists a P € Y‘"(W,Q‘l) with

AP —1€YyaWh,),  PA-1€Yia(Wh),
¢f. the notations of Definition 6.4.
Theorem 6.7 Let A€ YW, g;J7,J%) with g = (7, — p1,0) be elliptic. Then,
Au € W7 H(w) @ H*~#(Y, JY)

for a fized s € R and
u €W W)@ H™™(Y,J7) (6.9)

implies w € WY (W) @ H*(Y,.J™). Morcover
Av € W4 (w) @ H*~#(Y,JY)
for an asymptotic type P to (v — 1, 0) and (6.7) imply
u e W (W) @ H*(Y,J7)
with an asymptotic type @ to (v,0).

Remark 6.8 There can be defined more general classes of pseudo-differential edge
problems that allow y-dependent discrete asymplotic types in the Green and Mellin
operators. In the case of boundary value problems this was done in Schulze [S9].
The non-trivial edge case is completely analogous. In particular, the weighted Sobolev
spaces do allow y-dependent discrete {(in general branching) asymptotic types. Then
the parametriz construction is possible in the larger class of edge problems and the
elliptic reqularity with asymplolics holds without the condition (6.7). Details will be
published in forthcoming papers.



Remark 6.9 There is another gencralization of Y¥(W,...) in the sense of so-called
continuous asymptotics, cf. analogously Schulze [S4], [ST]. The notion of ellipticity does
not refer to that nature of asymptotics. Howecver an elliptic operator A € Y*(W,...)
in the present sense has always a parametriz in the sense of the class Y~*(W,...) with
continuous asymptotics, without the condition (6.7).

Theorem 6.10 Let A be an cdge-degenerate pseudo-differential operator on W of or-
der p, A being of the type of a left upper corner in Y*(...). Let A be elliptic in
the sense of condition (i) of Definition 6.1. Further assume that there is an elliptic
operator A € Y*(W,g; ], Jt) with A = Lu.c. A. Then

A WHI(W) — WPHI74(w)

has closed image in the space W=7~ #(W) for every s € R.

7. Remarks

Our operator algebra of Definition 5.10 concerns the case of a manifold with edges
without boundary. It is natural to ask the same things in the case of boundary value
problems, where the base X of the model cone is a smooth compact manifold with
boundary. There is no canonical choice for an analogue of the pseudo-differential
operators in that case. However for constructing a "minimal algebra” containing
the parametrices of elliptic differential boundary value problems (for elliptic edge-
degenerate operators) one may choose Boutet de Monvel’s algebra on X. This program
is planned to be carried out in a series of papers jointly with Schrohe, starting with
[S2]. On the other hand it is also very natural to start with the algebras

Y(X,g; 07, 0%, (7.1)

here with respect to X, regarded as a manifold with edge dX, where the model cone is
trivial. Then it would be necessary first to pass to the conification of (7.1), i.e. to the
cone algebra on X* = Ry x X, relative to (7.1), and then to perform the edgification,
again, analogously to the above coustructions for the wedge without boundary. This
is to be done in future and not so casy as in Boutet de Monvel’s case. This theory
does contain near the edges three singular directions Ry x Ry x Ry and hence three
times Mellin operator constructions within the subordinated operator structures. The
papers of Schulze [S6] and Dorschfeldt, Schulze [D1] are devoted to the necessary
steps for repeated conifications and edgifications of given pseudo-differential operator
algebras from lower singularity orders to higher ones. The general program will be
to establish an axiomatic approach for reaching the adequate calculus on arbitrary
stratified spaces (e.g. polyhedra). This requires always to formulate the correspond-
ing parameter-dependent variants of every algebra that is already constructed. The
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additional parameters are then used as the further covariables in the next cone axis di-
rection or the next edge. In Behm [B2] there will be obtained the parameter-dependent
edge theory as the necessary extension of the present edge algebra. Like in "ordinary”
boundary value problems where elliptic trace (and potential) conditions are natural
in the concept of ellipticity, also the algebras for higher singularities will contain sub-
algebras related to the lower-dimensional skeletons of the given piece-wise smooth
configuration. Those skeletons are by no means C' manifolds but branched spaces.
This shows that it was adequate from the very beginning to allow more general cone
bases than spheres. It should finally be mentioned that whenever some singularity is
of the type of an edge, in general being locally a Cartesian product between an open
set (1 C R? and a model cone of singular behaviour, i.e. with a polyhedron as base, we
have to expect a rather complex behaviour of asymptotics of solutions in the sense of
a variable discrete behaviour as it was studied in Schulze [S9).
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