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HOPF TORI IN 53

1) Introduction

Let = : S3 —_ S2 be the Hopf fibration. Then the inverse

image of any closed curve on S2 will be an immersed torus in

S3 which will be called a Hopf torus. Using Hopf tori we prove

Theorem 1: Every compact Riemann surface of genus one can be

conformally embedded in the unit sphere S3c::lR4

as a flat torus. The embedding can be chosen as
the intersection of 83 with a quartic hypersur-

face in ]R4 .

By stereographic projection of S3 onto ZIR3 we obtain the

following

Corollary: Every compact Riemann surface of genus one can be

5

conformally embedded in 1R as an algebraic

surface of degree eight.

Garsia [2] had shown that every compact Riemann surface (of any
genus) can be conformally embedded in :R3 as an algebraic
surface, but his method of proof was not constructive and he

therefore did not obtain bounds for the degree of this surface.



As another application of Hopf tori we construct new examples

of compact embedded Willmore surfaces. A surface in ZR3 is

called a Willmore surface if it is an extremal surface for the

variational functional IszA (H the mean curvature){1].
The only examples of compact embedded Willmore surfaces known
so far are the stereographic projections of compact embedded

3

minimal surfaces in § [8]. Using results of Langer and

Singer [3] on elastic curves on 82 we will exhibit an infinite
series of compact embedded Willmore surfaces that do not stem

from minimal surfaces in S3 .

2) Hopf tori

The usual way to describe the Hopf map 7 : S3 _—> 52 is to

restrict the canonical projection of ¢2—{0} onto @p' = s?

to the unit sphere S3 in cz . For our purpose we need a more

explicit description.

We identify S3 with the set of unit quaternions

{9€® , gqq = 1} and 82 . with the unit sphere in the sub-~
space of M spanned by 1,3 and k . Let q}l—> g denote
the antiautomorphism of ¥ that fixes 1, and k but sends

i to -1 . Define 7 : s3 —> H by
(1) - m(q) = qq .

Then 1w has the following properties:



a) wi(sd) = s?

b) n(ei‘pq) = n(q) for all q€S3,w€IR

¢c) The group S3 acts isometrically on S3

multiplication and on 82 via

by right

(2) q—> 'i"qr +r YES .

7 intertwines these two actions, i.e. for all
q,r€S3 we have w(qr) = Tgr .

Let g : [a,b] —> 82

3

be an immersed curve. Choose

g ¢ [a,b] —> 8 such that ney = g . Then with the notation

81 : =]R/2"zz we define an immersion x of the cylinder

1 3

[a,b]l xS into S~ by

(3) x(t,0) = ¥y (t) .

X is called the Hopf cylinder corresponding to the curve g .
We always assume that the curve y 1is parametrized by arc-
length and cuts the fibres of 7w orthogonally, that means

g'(t) has unit norm for all t and is orthogonal to
ie
(4) xw(trw) = ie"Ty(t) .
Lower indices always will denote partial derivatives. Since

in addition y'(t) 4is orthogonal to y(t) there is a func-

tion u : [a,b] —> span(j,k) such that |u| = 1 and



(5) g' = uy .

Concerning the curve p = 1oy on S we have

P =1
(6) p' = 23uy
|g*| = 2

The two partial derivatives

X = eiwin
(7) ¢y
LY

xs=e uy

are orthogonal and have unit length, hence (6) implies

Lemma 1: Let p be a curvilinear arc on 82 of length L .
Then the corresponding Hopf cylinder is isometric

to [0,L/2]xs! .

If p 1is a closed curve (i.e. p(t+L/2) = p(t) for all t )
then equation (4) defines a covering of the (t,y)-plane onto

an immersed torus in 83

. This torus will be called the Hopf
torus corresponding to g . The isometry type of this torus
depends not only on the length of g but also on the "area
enclosed by p ": If p : [a,b] —> s? is any curve with

p(b) = p(a) then we define the "oriented area enclosed by p "



(8) A= [ av

wvhere dV is the canonical volume form on 82 and c¢ |is
an arbitrary 2-chain on 82 such that 23c = g and
Jave([-2m,21) . A is well defined because H, (Sz) ~7 and
vol (s%) = 4n .

Proposition 1: Let p be a closed curve on S2 of length
L enclosing an oriented area A . Then the
corresponding Hopf torus M 1is isometric to
:R%/P , where the lattice T 1is generated by

the vectors (2#,0) and (A/2,L/2) .

Proof: Let y and x be defined as in (3). Then X can be
considered as a riemannian covering of the (t,¢p)~-plane onto
M . The translation in the direction (2w,0) generates a group
of deck transformations for this covering. The lines in fig. 1

parallel to the ¢-axis are mapped by x onto fibres of

Fig. 1



The t-axis is mapped by x onto the curve y . We have
n{g(L/2)) = w(p(0)) and hence

(9) y(L/2) = eiSy(0)

for some 6€ [-n,n) . It is clear that the whole group of
deck transformations for the covering x 1is generated by the

translations (27,0) and (6§,L/2) . To prove the proposition

we have to show

(10) § = a/2 .

Note first that the mapping « : S3 —_> 82 can also be con-
sidered as a principal fibre bundle over, S2 with structure
group 81 (a "circle bundle®). We define a connection on this
bundle by assigning to each xEES3 the subspace of TxS3
orthogonal to the fibre of = through x . Then the curve g

is a "horizontal 1lift" for p . Let QGZAZ(Sz) be the curvature

2-form of the above: connection. The Euler number of the circle

bundle n is 1 , hence we have
(11) Izﬂ = 2%
S

For reasons of symmetry (see (c) on page 3 ) R must be a

maltiple of the volume form dVv , thus by (11)

(12) Q= VY2 av .



Now it is well known that the curvature form of a circle bundle
measures the non~closedness of horizontal lifts of closed.curves.

In our situation this means

(13) § = fQ
c
where ¢ is any 2-chain on s® such that ac = g and
J Q€ [-7,7) (The proof of the theorem on p. 191 of [7] can be
c

easily adapted to yield this result). The proposition now

follows from (8), (12) and (13).

3) Algebraic flat tori in S3

Iet Y be an embedded closed curve on 52

of length L and
oriented area A . Changing the orientation on <y changes the
sign of A . So we gan assume 0<AS2m . The only further

restriction on (A,L) is given by the isoperimetric inequality
on the sphere [6]:

(14) L2-4ma - 2220 .

'Equality in (14) is attained only for circles on S2 . In terms

of (A/2,L/2) we can write (14) as



(15) (a/2-m2 + w222z .
Thus for each point (A/2,L/2) in the shaded region df fig. 2

there is an embedded closed curve on 82 with length IL and

area A .

It is well known that every compact Riemann surface of genus
one is conformally equivalent to nf?} where T is the lattice
in R generated by (27,0) and another vector whose endpoint
lies in the doubly shaded region of fig. 2. Thus we have al-

ready proved the first of the two assertions in theorem 1.

L72
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Fig. 2

Examples: 1) The point (A/2,L/2) = (w,mn) corresponds to
a square lattice in :R2 . But A =L = 271 1is attained for a
great circle on S2 , hence the inverse image = '(y) of a
great circle vy on 82 under the Hopf map 7 is isometric
to a square torus. In fact one can verify that n_1(y) is a

"Clifford torus". Under a suitable stereographic projection



u71(7) is mapped onto a special standard torus. In fig. 3

also the images of the Hopf fibres are indicated.

Fig. 3

2) The point (A/2,L/2) = (m,/37) corresponds to a hexagonal

2

lattice T in R® . To obtain a torus which is conformally

equivalent to the hexagonal torus ]RZ/I. we only have to

chose any curve Y on s? with A = 2m + L = /321 and then

consider T '(Y) . One possible choice for Y is shown in

fig. 4 a). Here Y is the intersection of S2 with a cubic

cone. Since Y is given by quadratic polynomials (see (1)) the

corresponding Hopf torus w'1(y) is the intersection of S3

with a hypersurface in 2R4 of degree 6. Thus w-1(y) is

algebraic of degree 12. Projection preserves degree, hence

also the steréoqraphic projection of w-1(Y) has algebraic

degree 12 (fig. 4 b).



a) b)
Fig. 4

We now complete the proof of theorem 1 by showing that one can
achieve any conforhal structure on n—1(y) by choosing y to

be a suitable curve on 82 of degree less than or equal to four.

If the conformal structure in question corresponds to a rectan-

gular lattice then we can chose y to be a suitable circle on

82 . In this case we have equality in (14) and (15).

If the conformal structure is not rectangular then we chose a

corresponding point (A,L) in the region Ur::IR2 defined by

the inequalities

0<A/2<2n
(16)

‘/,"7_,“/2_“)2 < L/2<2 /‘N’Z-(A/Z-W)z

This choice is possible because U contains nearly a whole

fundamental region of the modular group (see fig. 2). Only the
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points on the circle L/2 = /P-(a/2-m*%  are missing, which

correspond however to rectangular lattices.

2 with area A and denote

Let D, be a circular disk on S
the length of its boundary circle by L, . By (16) we have
L, <I.<2I.1 , hence 0 <I.--L1 <L, . Let D2 be another circular
disk on S2 such that the length of 8D2 is equal

to Lz = L--L1 and

(17) area (D1r)D2) = 1/2 area (Dz) .

It is easy to see that such D2 always exists and that the

confiquration consisting of the two disks D1,D2 is dniquely

defined by the above conditions up to congruent motions of S2 .

Fig. 5

The union of the two boundary circles 3D1 and 3D2 can
be considered as a reducible quartic curve. As indicated in
fig. 5 we can perthrb this reducible quartic slightly so as to

obtain a nonsingular and connected quartic v whose length T
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and area A are approximately given by L and A . Obviously

we can parametrize this perturbation by a parameter ¢ with

0Se<1 such that L and A depend contineously on L,A and
€ . The function

(18) £= (X,5) : Ux[0,1) — R>

obtained in this way satisfies the condition £(x,0) = x for
all x€U . Now the following lemma provides us with a non-

singular connected quartic on 82 with prescribed area and

length (A,L) €U :

Lemma 2: Let tJCIIR2 be open, £ : Ux[0,1) —> Rz a

contineous mapping such that f£f(x,0) = x for all
X€U . Then for each x€U there is a pair

(y,e) €Eux (0,1) such that £(y,e) = x .

The proof of lemma 2 is left to the reader.

3) Willmore tori

We now want to determine the mean curvature of a Hopf torus.

By (5) we have

x, (t,0) = e*®u(t) g (t)
(19)

= u(t)e-iwn (t) .
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Using (4) and (19) it can be verified that a unit normal vector

field for the immersion x is given by
(20) n(t,0) = tult)e Pyt) .
Taking derivatives of (20) we obtain

n, = -2xxt—x¢

(21)

l'(w = "Xt .

Here we have defined «x by the equation

{(22) u' = 2iku .

t I—> x(t) is the curvature function of the spherical curve

g = 3y. This can be seen from the identities

By ' = 2quy
(23)
Gig)" = 2F(u'-2)y
(Recall that for 3€8> the map sending q€ 82 to 3gs

2

is an isometry of vS ).

By (21) «x(t) is also the mean curvature of the surface x at
the point x(t,¢) . Therefore the Willmore functional

»(M) [1,8) is given by
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B(M) = | 1ec2 () dpdt
F

L 2
[ 1+x“(s) ds
0

-3
Here F is a fundamental region for the covering

X s :Rz —> M and ds = 2dt denotes arclength on the

spherical curve §p . The principle of symmetric criticality
{5] is applicable here, hence x is an extremal surface for

the functional ® if and only if § 1is an extremal curve for

f 142 as .

Langer and Singer [3] have shown that there are infinitely

many simple closed curves on 82 that are critical points for

¢ 14k ds . Therefore there are infinitely many embedded Hopf

tori that are critical points for ® . The stereographic pro-

jections of these tori are then embedded Willmore tori in 2R3

Fig. 6 shows such a Willmore torus and the cdrresponding

curve on: 32 .

| Y
L]
L}

- tme.

{
1
!
¢

Fig. 6
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We now want to show that with one exeption the above examples

of Willmore tori in ]R3 cannot be obtained by stereographic

projection from minimal surfaces in s3. Clearly this follows

from

3

Proposition 2: Let McS be a Hopf torus that is a critical

point of ¥ , a : S3 —_— 83

a conformal trans-

formation such that a(M) is a minimal surface

3

in S8 . Then M is a Clifford torus.

Proof: The directions of curvature on a minimal surface N in

S3 are given by the zero directions of the real part of a

holomorphic quadratic differential on N [4]). This property

is invariant under conformal transformations, hence under the
hypotheses of the proposition the same must hold for M . Using
the complex coordinate z = t+i¢9 on M (t and ¢ define as
in (3)) wevcan write the mentioned quadratic differential on

M as adz2 for some constant a €€ . This means in particular
that on M the lines of curvature cut the Hopf fibres under

a constant angle. Then it can be seen from (21) that x must
be constant, that means the curve Yy on S2 corresponding

to M is a circle. Since by our assumptions on M this circle
is a critical point' for the functional ¢ 1+x2 ds it must

be a great circle.
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